
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Data Management Issues and Optimizations in an Ajax Application Framework

Permalink
https://escholarship.org/uc/item/7fx1w7q2

Author
Zhao, Keliang

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fx1w7q2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Data Management Issues and Optimizations in an Ajax Application Framework

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Keliang Zhao

Committee in charge:

Professor Alin Deutsch, Chair
Professor Yannis Papakonstantinou, Co-Chair
Professor Michael Carey
Professor Sujit Dey
Professor Ranjit Jhala

2018

Copyright

Keliang Zhao, 2018

All rights reserved.

The Dissertation of Keliang Zhao is approved and is acceptable in quality and

form for publication on microfilm and electronically:

Co-Chair

Chair

University of California San Diego

2018

iii

DEDICATION

To my parents Fangqiang Zhao and Ling Fang, my family and friends.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

Acknowledgements . xiii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 FORWARD Web Application Framework . 1
1.1 Introduction . 1

1.1.1 FORWARD’s Declarative Solution . 7
1.2 Creating an Application . 9

1.2.1 Example Application . 12
1.2.2 Unified Application State: Sources and Schemas . 13
1.2.3 The Page Configuration . 14
1.2.4 Page Data Objects in the Unified Application State 20
1.2.5 The Action Configuration . 24

1.3 Internal Architecture and Implementation . 26
1.3.1 Action-Page Cycle in Detail . 26
1.3.2 Rendered View Approach and Visual Schema . 28
1.3.3 Unit definitions and DTD . 30
1.3.4 Overview of Page Compilation . 33
1.3.5 Page Config Parser . 36
1.3.6 Visual Schema Builder . 37
1.3.7 Page.complete and Page.context Builders . 40
1.3.8 Page Query . 41

Chapter 2 ID-Based Incremental View Maintenance . 44
2.1 Introduction . 44
2.2 ID-based diffs . 49
2.3 System Architecture . 54
2.4 ∆-script Generation Algorithm . 55
2.5 From modifications to i-diffs . 64
2.6 Performance Analysis . 66

2.6.1 SPJ Views . 67

v

2.6.2 Aggregate Views . 69
2.7 Detailed Performance Analysis . 72

2.7.1 SPJ Views . 72
2.7.2 Aggregate Views . 76

2.8 Experimental Evaluation . 79
2.8.1 IVM in social analytics . 80
2.8.2 Effect of data & query parameters . 82
2.8.3 Comparison to the state of the art . 86

2.9 Generalization to SQL++ . 87
2.10 SQL++ data model . 92

2.10.1 Data model . 92
2.10.2 Algebra of query language . 94

2.11 Extension of IDs to Provenance . 96
2.11.1 Provenance extension to data model . 96
2.11.2 Provenance extension to query operators . 97
2.11.3 Additional operators for i-diff queries . 97

2.12 SQL++ i-diff format & semantics . 99
2.12.1 i-Diff instance format . 99
2.12.2 i-Diff signatures . 105
2.12.3 i-Diffs deeper than view definition . 109

2.13 i-Diff Propagation Rules for SQL++ . 110
2.14 Generation of SQL++ base table i-diffs . 115

2.14.1 Generation of base table i-diff signatures . 115
2.14.2 From modification logs to base table i-diff instances 118

2.15 Application of SQL++ i-diffs to the view . 121
2.15.1 Global provenance index . 121
2.15.2 Index selection algorithm . 123
2.15.3 i-Diff application using index . 125
2.15.4 Upper bound on number of indexes . 125

2.16 SQL++ IVM Cost model . 126
2.16.1 Application of nested i-diffs to the view . 127
2.16.2 Application of i-diffs deeper than view definition 128
2.16.3 SPJ views . 129
2.16.4 Group-by views . 131
2.16.5 Aggregate views . 131
2.16.6 GroupBy + Aggregate views . 132
2.16.7 Comparison to relational IVM cost model . 132

2.17 Conclusions . 133

Chapter 3 Related Work . 134
3.1 Existing Ajax Frameworks . 134

3.1.1 JavaScript Libraries . 134
3.1.2 Ajax Frameworks . 135

3.2 Related Database Research . 137

vi

3.2.1 Declarative Web Application Specifications . 137
3.2.2 Incremental View Maintenance . 145

Appendix A FORWARD Mapping Framework Specification . 148
A.1 Motivation . 148
A.2 Syntax . 149
A.3 Validity Check of Mapping Configuration . 150
A.4 Query Generation . 151
A.5 Selection Condition . 152
A.6 Mapping Provenance ID and Mapping Inversion . 155

A.6.1 Mapping Provenance Inferrer . 155
A.6.2 Mapping Inversion Algorithm . 155

Appendix B Key Inference and Retouching Specification . 159
B.1 Motivation . 159
B.2 Main Workflow . 160

B.2.1 Tables with Unknown Keys . 160
B.3 Key Information and Annotation . 162

B.3.1 Equivalent Key Attribute Groups . 163
B.4 Per Operator Rules . 164

B.4.1 Ground . 164
B.4.2 Scan (Access Path) . 164
B.4.3 Operators that Preserve Key Annotation as Is . 165
B.4.4 Navigate . 165
B.4.5 Project . 166
B.4.6 Product (Inner Join and Outer Join) . 167
B.4.7 Semijoin and Anti-Semijoin . 167
B.4.8 ApplyPlan . 167
B.4.9 Distinct (Any Set Operator with DISTINCT Quantifier) 168
B.4.10 Union All and Outer Union All . 168
B.4.11 Group-By . 170

Appendix C i-diff Propagation Rules . 171

Appendix D SQL++ Algebra Semantics . 178
D.1 Novel Semi-Structured Operators . 178
D.2 Extensions of Relational Operators . 181
D.3 Operator provenance inference rules . 183

Appendix E SQL++ i-diff Propagation Rules . 185

Bibliography . 192

vii

LIST OF FIGURES

Figure 1.1. The ReviewRestaurants page of the running example 3

Figure 1.2. High level architecture of FORWARD interpreter and application specifica-
tions . 10

Figure 1.3. Action-page cycle (without incremental view maintenance illustrated) 11

Figure 1.4. The page configuration of ReviewRestaurants - Part 1 15

Figure 1.5. The page configuration of ReviewRestaurants - Part 2 16

Figure 1.6. DTD syntax of Maps unit (a minimized version) . 17

Figure 1.7. Page.complete schema of running example . 21

Figure 1.8. Page.context schema of running example . 21

Figure 1.9. Internal mapping from page.complete to page.context 22

Figure 1.10. An application showing a heterogeneity between visual and logical page
states . 23

Figure 1.11. Logical & visual page states and their (abstract) mapping for the application
shown in Figure 1.10 . 24

Figure 1.12. Action configuration of SaveReview . 25

Figure 1.13. Internal FORWARD Architecture . 26

Figure 1.14. Config schema, visual schema, and c2v mapping (before mapping prove-
nance IDs are inferred) . 29

Figure 1.15. Translating a unit definition to DTD . 32

Figure 1.16. Internal page computation cycle (Incremental View Maintenance module
is not shown) . 35

Figure 1.17. Page compilation . 35

Figure 1.18. DTD of HTML visual unit . 37

Figure 1.19. Unit match rule for matching a tuple in page configuration to a table pattern
in unit definition . 39

Figure 2.1. Database schema and view for running example . 45

viii

Figure 2.2. Example of tuple-based and ID-based IVM . 45

Figure 2.3. idIVM architecture . 54

Figure 2.4. ∆-script generator architecture . 56

Figure 2.5. View definition and plan for extended running example 57

Figure 2.6. Rule DAG structure . 61

Figure 2.7. ∆-script for running example . 63

Figure 2.8. Rewrite rules for semantic optimization . 64

Figure 2.9. Configuration of social analytics experiments . 80

Figure 2.10. Speedup & IVM time for extended set of BSMA queries 80

Figure 2.11. Configuration of varying parameter experiments . 82

Figure 2.12. View maintenance time of ID-based IVM vs tuple-based IVM and two
DBToaster-inspired systems for varying parameters 83

Figure 2.13. BNF Grammar for SQL++ Values . 93

Figure 2.14. Algebraic plan of V (annotated by the ∆-script generator for ∆u
users) 112

Figure 2.15. Algebraic plan of V1 (annotated by the ∆-script generator for ∆u
users) 112

Figure 2.16. Algebraic plan of V (annotated by the ∆-script generator for ∆u
businesses Part

1) . 114

Figure 2.17. Algebraic plan of V (annotated by the ∆-script generator for ∆u
businesses Part

2) . 114

Figure 2.18. Global provenance index example . 122

Figure 3.1. Example of declarative page specification in WAVE 139

Figure 3.2. An example of unit logical layer in WebML . 142

Figure 3.3. An example of an AUnit tree in Hilda . 144

Figure A.1. The syntax of mapping tree . 149

Figure A.2. Query Generation from Mappings Configuration - Part 1 151

ix

Figure A.3. Query Generation from Mappings Configuration - Part 2 152

Figure A.4. Query Generation from Mappings Configuration - Part 3 153

Figure A.5. Updated Query Generation from Mappings Configuration with Selection
Condition . 154

Figure A.6. Inferring mapping provenance IDs . 156

Figure A.7. Mapping Inversion - Part 1 . 157

Figure A.8. Mapping Inversion - Part 2 . 157

Figure B.1. Main flow of key inference and retouching . 160

Figure B.2. An example of key inference that can tolerate intermediate tables with
unknown keys. 161

Figure B.3. Example of a single scan operator . 162

Figure B.4. Example of a query plan that has equivalent key attributes 163

x

LIST OF TABLES

Table 2.1. Operator ID inference rules . 58

Table 2.2. Scripts returned by the IVM algorithms . 73

Table 2.3. Costs of ID-based and tuple-based IVM on Vspj . 75

Table 2.4. Costs of ID-based and tuple-based IVM on Vagg . 78

Table 2.5. SQL++ Operators . 94

Table 2.6. Operator provenance inference rules . 98

Table B.1. Example query plan with inferred keys . 164

Table C.1. Rules for × . 171

Table C.2. Rules for ∪ . 171

Table C.3. Rules for σφ(X̄) . 172

Table C.4. Rules for γḠ, f (X̄)→c . 172

Table C.5. Rules for πD̄, f (X̄)→c . 173

Table C.6. Rules for γḠ,sum(X̄)→c . 173

Table C.7. Rules for onφ(X̄) . 174

Table C.8. Rules for γḠ,count(X̄)→c . 175

Table C.9. Rules for γḠ,avg(X̄)→c . 175

Table C.10. Rules for .φ(Inputl .X̄ ,Inputr.Ȳ) first part . 176

Table C.11. Rules for .φ(Inputl .X̄ ,Inputr.Ȳ) second part . 177

Table E.1. Rules for V =≫C
c̈7→(x,y) (B) . 185

Table E.2. Rules for V = •(ẍ,ÿ)7→z(B) . 185

Table E.3. Rules for V = σc̈(B) . 186

Table E.4. Rules for V = InnerCorrelateP(B) . 187

Table E.5. Rules for V = αP 7→x(B) . 187

xi

Table E.6. Rules for V = λ(f , ẍ1...ẍn)7→y(B) . 188

Table E.7. Rules for V = πx1...xn(B) . 188

Table E.8. Rules for V =×(Bl,Br) . 188

Table E.9. Incomplete rules for V = Bl onp Br . 189

Table E.10. Rules for V = ConstructTuple(x1:ÿ1...xn:ÿn)7→z(B) . 189

Table E.11. Rules for V = γ(x1 7→y1,...,xn 7→yn),g(B) . 190

Table E.12. Rules for V = λ(sum,ẍ)7→y(B) . 190

Table E.13. Rules for V = λ(count,ẍ)7→y(B) . 191

Table E.14. Rules for V = λ(avg,ẍ)7→y(B) . 191

xii

ACKNOWLEDGEMENTS

Chapter 1 contains material from “The SQL-based all-declarative FORWARD web appli-

cation and development framework” by Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou,

and Michalis Petropoulos, The Fifth Biennial Conference on Innovative Data Systems Research,

2011. The dissertation author was the primary investigator and author of this paper.

Chapter 2 contains material from “Utilizing IDs to Accelerate Incremental View Mainte-

nance” by Yannis Katsis, Kian Win Ong, Yannis Papakonstantinou, and Kevin Keliang Zhao,

ACM SIGMOD Conference, 2015. The dissertation author was the primary investigator and

author of this paper.

xiii

VITA

2007 Bachelor of Science, The Hong Kong University of Science and Technology

2007-2012 Graduate Student Researcher, University of California San Diego

2011 Master of Science, University of California San Diego

2018 Doctor of Philosophy, University of California San Diego

xiv

ABSTRACT OF THE DISSERTATION

Data Management Issues and Optimizations in an Ajax Application Framework

by

Keliang Zhao

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Professor Alin Deutsch, Chair
Professor Yannis Papakonstantinou, Co-Chair

Since 2005, with Ajax functionality becoming a de-facto requirement of cloud-based

applications, a developer needs to integrate a plethora of languages in order to deliver even

simple data-centric web applications: SQL to access the database, HTML and JavaScript for

browser-side interactions, and yet another programming language (e.g. Java) for server-side

business logic. Even worse, most of the JavaScript and Java is tedious, imperative code to

perform mundane, low-level data integration, coordination and access optimization problems,

which result either from language and data heterogeneities, or from the distributed programming

necessitated by multiple computation points (browser, application server, database server).

xv

FORWARD is a data-centric, declarative web application development framework that

uses SQL++, a minimally enhanced version of SQL as its core programming model. Data from

SQL queries can be styled directly with a data-driven page configuration that allows HTML

templates and pre-packaged Ajax units (e.g. maps, charts, calendars), thus leading to Ajax

pages that are automatically rendered and refreshed. In the majority of applications, no Java or

JavaScript is needed.

A central contribution is the provision of a unified, SQL-accessible application state that

captures the application’s database along with typical web application programming data spaces,

such as session and request data. The unified state includes a logical representation of the core

page data pertinent to the business logic, thus allowing the SQL-based business logic to easily

access page data seamlessly with the rest of the state.

This dissertation also discusses a few key optimization and automation components of

FORWARD, which are enabled by FORWARD’s declarative approach. FORWARD mapping

framework can express SQL++ queries found common in transforming data from one schema

to another, and is used extensively in the page layer. A novel ID-based incremental view

maintenance (IVM) system takes an algebraic approach and expresses data diffs with IDs, so

that diff computation is accelerated as data access is minimized. Furthermore, the IVM system is

extended to handle SQL++ query language and schema-less data model.

xvi

Chapter 1

FORWARD Web Application Framework

1.1 Introduction

The vast majority of database-driven web applications perform, at a logical level, fun-

damentally simple INSERT / UPDATE / DELETE commands. In response to a user action on

the browser, the web application executes an action (i.e., a program) that transitions the old

state to a new state. The state is primarily persistent and often captured in a single database.

Additional state, which is transient, is maintained in the session (e.g., the identity of the currently

logged-in user, her shopping cart, etc.) and the pages. The action performs a series of simple

SQL queries and updates, and decides the next step using simple if-then-else conditions over the

state. The changes made on the transient state, though technically not expressed in SQL, are also

computationally as simple as basic SQL updates.

Despite their fundamental simplicity, creating web applications takes a disproportionate

amount of time, which is expended in mundane data integration and coordination across the

three layers of the application: (a) the visual layer on the browser, (b) the application logic layer

on the server, and (c) the data layer in the database.

Challenge 1: Language heterogeneities.

Each layer uses different and heterogeneous languages. The visual layer is coded in

HTML / JavaScript; the application logic layer utilizes Java (or some other language, such as

PHP); and the data layer utilizes SQL. Even for pure server-side / pure HTML-based applications,

1

the heterogeneities cause impedance mismatch between the layers. They are resolved by mundane

code that translates the SQL data into Java objects and then into HTML. When the front end

issues a request, code is again needed to combine memory-residing objects of the session and

the request with database data. Consequently, developers write a lot of “plumbing” code.

Challenge 2: Updating Ajax pages with event-driven imperative code.

Since 2005, Ajax led to a new generation of web applications characterized by user

experience commensurate to desktop applications. The heavy usage of JavaScript code for

browser-side computation and browser / server communication leads to superior user experience

over pure server-side applications, comprising

• performance gains through partial updates of the page

• more responsive user interfaces through asynchronous requests, and

• rich functionality through various JavaScript component libraries, such as maps, calendars

and tabbed dialogs.

For example, consider the web application page of Figure 1.1, where an Ajax maps

component shows markers of restaurants. When a user clicks on a marker, a dialog shows up

for the user to submit restaurant reviews. The user can also read other users’ review comments

and ratings which are displayed in bar charts. The interactive maps component is not available

for pure server-side applications, since it requires client-side computation and asynchronous

requests. The best that a single server-side model can provide for this kind of applications is

showing restaurants as a list or table. Also, in the pure server-side model, submitting a review

for a single restaurant will cause the entire page to be recomputed. Indeed, the server may issue

queries for all the restaurants and reviews on the page, not only for the particular restaurant being

reviewed. Furthermore, the browser will block synchronously and blank out while it waits for

the new page from the server. Finally, various aspects of the browser state, including data of

2

Figure 1.1. The ReviewRestaurants page of the running example

3

non-submitted form elements, cursor positions, scroll bar positions and the state of JavaScript

components will be lost and re-drawn, thus disorienting the user.

For an Ajax page, however, a developer will typically optimize his code to realize the ben-

efits of Ajax and solve the pure server-side problems listed in the previous paragraph. The same

user action (e.g., the review submission) causes the browser to run an event handling JavaScript

function collecting data from the page’s components relevant to the action (i.e. the restaurant id,

the review comment and ratings), and send an asynchronous Xml Http Request (XHR) with a

response handler callback function specified. On the server, the developer implements queries

that only compute the changed data (i.e. the newly created row of review with a bar chart), to

take advantage of more efficient queries, as well as to conserve memory and bandwidth. While

the asynchronous request is being processed, the browser keeps showing the old page instead

of blanking out, and even allows additional user actions and consequent requests to be issued.

When the browser receives the response, the response handler uses it to partially update the

page’s state. The partial update retains non-submitted forms, scroll bar positions, etc., therefore

allowing the user to retain his visual anchors on the page.

The page state primarily consists of the browser DOM, which captures the state of

HTML form components such as text boxes and radio buttons, and the state of the JavaScript

variables, which are often parts of third-party JavaScript components. Therefore, the developer

implements the response handler by writing imperative code that navigates the DOM and

JavaScript components, and invokes JavaScript methods causing the DOM and components to

incrementally render to the browser.

The Ajax optimizations demand a serious amount of additional development effort. For

one, realizing the benefits of partial update requires the developer to program custom logic

for each action that partially updates the page, which was not the case in pure server-side

programming. In particular, in a pure server-side implementation, the developer needs to write

code for the effect of each individual action on the database, but writes only one piece of code

that generates the page according to the database state and session state. For example, notice that

4

the page of Figure 1.1 also provides a “Delete Review” button. The developer will have to write

two pieces of code that modify the database when “Submit Review” is clicked and when “Delete

Review” is clicked, respectively. The former issues either an INSERT or an UPDATE command

while the latter issues a DELETE command. Both of them share the same piece of code that

generates the page showing the list of restaurant markers, their review comments and ratings.

This piece of page computation code is independent of what user action caused the re-generation

of the page.

In contrast, in an Ajax application, each user action needs its own code to partially update

the page. This piece of code consists of server-side code that retrieves a subset of the data needed

for the page update, and browser-side JavaScript code that receives the data and re-renders a

sub-region of the page. In the running example of Figure 1.1, different pieces of code would be

needed for the “Submit Review” and the “Delete Review” buttons.

Such event-driven programming (which also occurs in Flash etc.) is well-known to be

both error-prone and laborious [40], since it requires the developer to correctly assess the data

flow dependencies on the page, and write code that correctly transits the application from one

consistent state to another. Moreover, in a time-sensitive collaborative application (similar to

Google Spreadsheet) where many users work concurrently, these dependencies may extend

beyond the page of the user who submitted the review, and into the pages of other users who are

viewing the same restaurants on their browsers.

Further compounding the custom logic required for each action is the amount of im-

perative code that needs to be implemented on the browser. Whereas the developer of a pure

server-side application needs to understand only HTML, the developer of an Ajax application

needs to integrate JavaScript as yet another language, understand the DOM in order to update the

displayed HTML, and write code that refreshes the JavaScript components’ state based on the

nature of each partial update. Since there is no standardization between the component interfaces

of different third-party libraries, the developer is left to manually integrate across these disparate

component interfaces.

5

Challenge 3: Distributed computations over both browser-side and server-side states.

In response to a user action, the browser sends an HTTP request to the server and activates

an action, which needs access to relevant data on the page in order to perform computations

that involve such page data and the database. Writing code that involves both page data and

server-side data was already mundane and time-consuming in pure server-side applications and

became even more so in Ajax and Flash.

In a pure server-side application, the browser is essentially stateless since all state

is lost when the new page is loaded. Using HTML markup such as <input type="text"

name="save comment" />, the developer declaratively specifies that the value collected by the

text box will appear as the parameter save comment in the HTTP request. The good news about

pure server-side programming is that when a user action causes an HTTP request, the browser is

responsible for navigating the DOM, and marshalling the request parameters according to the

HTML specification. The bad news is that, on the server-side, the application first unmarshals

the request parameters by using Java (or PHP, etc.), and then typically issues SQL queries where

the request parameters become parameters of an SQL statement. Overall, lines of Java code are

expended in such trivial “extract parameter from the request, plug it in the query” tasks. With

Ajax it gets much worse, as discussed next, since the marshalling of request parameters is no

longer automatic.

In particular, in an Ajax application the browser maintains its state across HTTP requests.

Consequently, the state of the web application becomes distributed between the browser and

the server. The developer is responsible for defining a custom marshalling format for the XHR

request, typically in XML or JSON, and for writing imperative code to navigate over the DOM

and marshal the relevant page data that must be sent to the server along with each HTTP request.

The usage of JavaScript components (calendars, etc.) on the page further complicates the issue

by requiring custom code that converts between the state of the component and the marshalling

format. On the server-side, the developer writes custom code to unmarshal the request parameters,

and then continues along the usual path, plugging such parameters into SQL statements.

6

A select few web application frameworks, such as Echo2 [19] and Microsoft’s ASP.NET

[4], mitigate the issue of distributed application state by automatically maintaining a mirror

of the browser state on the server. Such synchronization can occur efficiently, using reduced

bandwidth, by having the server send to the browser only the difference between the previous

page state and the new page state. Yet, mirroring is only a half-solution, since the mirror made

available on the server contains the exact and full state of the browser, despite the fact that each

request cares about a different subset of page data. For example, the submission of a review

for one restaurant of Figure 1.1 requires the data collected by the text box and sliders in the

restaurant’s pop-up dialog, while the submission of a review for another restaurant requires the

data from another pop-up dialog. Furthermore, the mirrored browser state include visual styling

details, which do not matter when logical form data is collected, yet they trouble collection. For

example, to read the rating values of food, service and environment from the three sliders in

Figure 1.1, using a mirror-based Ajax framework, the developer will need to navigate through its

ancestor HTML elements (e.g., <div> and <table>) that are used purely for visual layout. The

net effect of these issues is that the developer’s code includes many mundane lines that navigate

around the extraneous information in order to obtain the relevant data for the request.

1.1.1 FORWARD’s Declarative Solution

The data management field has recently applied with success and great promise declara-

tive data-centric techniques in network management and games. In a similar fashion, FORWARD

adopts an SQL-based, declarative approach to Ajax web application implementations, going

beyond prior approaches such as Strudel [21] and WebML [14] that focused on pure server-side

data publishing applications. In particular, FORWARD removes the great amount of Java and

JavaScript code, which is written to address the challenges above, and replaces them with the

use of SQL-based languages to facilitate integration and enable automatic optimization. The

7

objective is to “make easy things easy and difficult things possible”.1

FORWARD is a rapid web application development framework. The web application’s

pages are declaratively specified using page configurations. The actions that run when a request

is issued are also declaratively specified, using action configurations. Both page configurations

and action configurations are based on a minimally enhanced version of SQL, called SQL++,

which provides access to the unified application state virtual database that, besides the persistent

database of the application, includes transient memory-based data (notably session data and the

page’s data). The application runs in a continuous action-page cycle: An HTTP request triggers

the FORWARD interpreter to execute an action configuration. The action reads and writes the

application’s unified state and possibly invokes functions that have side effects beyond the unified

application state. (e.g., send an email). The action typically ends by identifying which page will

be displayed next. FORWARD’s interpreter creates a new page according to the respective page

configuration. The page configuration also specifies actions that are invoked upon specified user

events. The invocation of an action restarts the action-page cycle.

The key contributions of FORWARD are:

• The use of SQL++ allows unified access to browser data and server-side data, including

both the database data and the application server’s main memory data (e.g., session

data). In conventional web application programming, such access would require Java

and JavaScript. FORWARD eliminates Java and JavaScript from the majority of web

applications, therefore resolving Challenges 1 and 3.

• The page configurations are essentially rendered views that visualize dynamic data gener-

ated by SQL++ and are automatically kept up-to-date by FORWARD. The configurations

enable Ajax pages that feature arbitrary HTML and (pre-packaged) Ajax / JavaScript visual

units (e.g. maps, calendars, tabbed windows), simply by tagging the data with tags such as

1This objective is not followed by today’s web application development frameworks. Paradoxically, powerful
Turing-complete low-level imperative languages (such as Java and PHP) accomplish tasks that can be easily
accomplished by appropriate SQL-based declarative languages.

8

<maps>, BarChart, etc. The AJAX pages are automatically and efficiently updated by the

FORWARD interpreter by appropriately extended use of incremental view maintenance.

The FORWARD developer need not worry about coordinating data from the server to the

page’s Ajax components, which resolves a Challenge 2 problem.

• The business logic layer is specified by action configurations, where business logic

decisions and the transfer of data between the database and services are expressed in

FORWARD’s action language, which is a subset of PL/SQL with SQL++ extensions. The

action configurations have easy unified access to both the browser data and the database,

because FORWARD guarantees that the browser’s page data is correctly reflected into

the unified application state so that it can be used by the action. The automatic reflection

resolves Challenge 3.

• The page and action configurations have unified access to the persistent database, the

page and the session via a single language (SQL++), therefore resolving Challenge 1.

JavaScript needs to be written only if one needs to create a custom visual unit. Java needs

to be written only for computations not easily expressible in SQL. For example, one can

build the entire Microsoft CMT using the SQL++ based page and action configurations,

except for the reviewer/paper matching step, which requires a Java-coded stable matching

algorithm to assign papers to reviewers according to their bids.

1.2 Creating an Application

A developer creates an application by providing to the FORWARD interpreter source &

schema configurations, page configurations and action configurations. Figure 1.2 is a high-level

architecture diagram of FORWARD where developer-provided application specifications are

marked in blue color.

9

Unified Application State (accessible via SQL++)

FORWARD Interpreter

Browser-Side FORWARD JavaScript Libraries

HTML
DOM

JavaScript
Components

Persistent
Database
State (db)

Session
State

Page Configuration

<html>
 …
 <gunit:Maps>
 <markers>
 <fstmt:for query="{SELECT…}">
 <marker>
 …
 <funit:BarChart>
 …

Action DeleteReview

Action SaveReview

Request
State

Page.Complete

Page.Context

review
exists

default

review

UPDATE

default

no yes

review

INSERT

Data Source Schema Definitions

Figure 1.2. High level architecture of FORWARD interpreter and application specifications

10

Action-Page Cycle

In the spirit of MVC-based frameworks such as Struts and Spring, a FORWARD appli-

cation’s operation is explained by action-page cycles. Figure 1.3 shows the action-page cycle

at a high level. An HTTP request triggers the interpreter to run the action configuration that is

associated with the request’s URL. Before the action is run, if it is triggered from an existing page,

the page’s visual state is synced at the server side and becomes part of the unified application

state (step 1). The visual page state is used to derive the latest logical page states. Then the

action reads and writes the application’s unified state (e.g., database, session data, page data, etc.)

and possibly invokes functions that have side effects beyond changing the application’s state

(step 2). The action’s run typically ends with identifying which page p will be displayed next.

Conceptually, FORWARD’s interpreter creates a new page according to p’s page configuration,

which may be thought of as a rendered SQL++ view definition, and displays it on the browser

(steps 3 and 4). A displayed page typically catches browser events (such as the user clicking on a

button, mousing over an area, etc.; or a browser-side timer leading to polling) that lead to action

invocations (via http runs), therefore continuing the action-page cycle. More details of each step

will be explained in Section 1.3.1.

Unified
App State

 Visual
Page
State

page.
complete

page.
context

Action

5

4

2

3

1

session

persistent

…

Invoke

Logical Page States Browser-Side
FORWARD
JavaScript
Libraries

HTML
DOM

JavaScript
Components

Figure 1.3. Action-page cycle (without incremental view maintenance illustrated)

Notice that FORWARD enforces the full separation of the Controller functionality from

11

the View functionality, which current MVC frameworks only encourage but do not enforce: The

page configurations are literally views, unable to side effect the application state. This is marked

in Figure 1.2 by a single arrow from the unified application state to the page configuration

meaning that page computation can read from (but not write to) the unified application state,

unlike action configurations which have both to and from arrows with the unified application

state.

In the rest of this section, we will introduce the running example in Section 1.2.1.

Unified application state, as one of the corner stones of FORWARD, is formally introduced in

Section 1.2.2 with data source and schema configurations. The page configuration which can

access any part of the unified application state to compute a FORWARD page is discussed in

Section 1.2.3. Section 1.2.4 explains an important integration feature of the automatic inference

of several page data objects. These page data objects could be accessed by page and action

configurations. Finally, the action configuration is explained in Section 1.2.5.

1.2.1 Example Application

The running example of this section is a restaurant reviewing Ajax application. The

paper focuses on its ReviewRestaurants page (see Figure 1.1), where the user submits reviews

that consist of a comment collected using a text box, and food, service and environment ratings

collected using Javascript components. For each existing review, a bar chart component is used

to display the three rating values.

The full version of the reviewing application is available online at [22]. Online instruc-

tions on demo.forward.ucsd.edu also teach how to create your own FORWARD application.

The implementation of the discussed ReviewRestaurants page requires 179 lines of

FORWARD page configuration and the implementation of SaveReview action requires 27 lines

of FORWARD action configuration.

12

1.2.2 Unified Application State: Sources and Schemas

The FORWARD unified application state (UAS) includes data objects from different

data sources. A data source is configured with the type of the source (e.g., relational database,

LDAP server, spreadsheet) and how to connect to them. As a convenience for the development

of cloud-based applications and databases, FORWARD implicitly provides to each application

an SQL++ database source named db. In the running example, db provides the full persistent

data storage of the application.

A FORWARD application’s actions and pages also have access to the session, request

and page sources which are main-memory based. In the spirit of the in-memory data storage

provided by application servers, data in these data sources have limited lifetimes and there may

be more than one instances of them at any time. For example, the session source lives for the

duration of a session. All the pages of a browser session and all the actions initiated by HTTP

requests of the browser session have access to the same instance of the session source, while

pages and actions of other browser sessions have their own session instances. Similarly the

request source lives for the duration of processing an HTTP request by an action (as discussed

in Section 1.2) and each in-progress action has its own request instance. A page source lives

for the duration that a page instance is displayed on a specific browser window during a specific

session.

Each source stores one or more objects. Each object has a name, a schema and data.

The schema may be explicitly created with the Data Definition Language (DDL) of SQL++ or

may be imported from the source. For example, the schema of a relational database source is

imported from its catalog tables. In order to accommodate the needs of pages, of session data

and of other data typically occurring in web application programming, SQL++ is a minimal

extension of SQL, whereas the root of a schema is either a tuple or a table. An attribute of a tuple

may be either a scalar type or a table, whose tuples have attributes that may recursively contain

nested tables. Notice that standard SQL corresponds to the case where a schema is simply a

13

table and the table’s tuples may only have scalars (as opposed to nested tables). In order to allow

variability in the spirit of XQuery and OQL, SQL++ also supports a switch type, which can

contain multiple case tuples of different types. An instance of a switch type can have at most

one case tuple instantiated.

An example of a schema that uses the extra features of SQL++ is the session, which in

the running example is simply a tuple containing only the standard scalar attributes session id,

user id and role that are set by FORWARD’s session management and authentication and

authorization utilities (not shown). A key integration contribution of FORWARD, which attacks

Challenges 1 and 3, is the ability of SQL++ to combine persistent data with transient data using

just a single SQL++ query. An example query will be introduced in Section 1.2.3 as part of the

page configuration.

1.2.3 The Page Configuration

A page configuration is an XHTML file with added:

1. FORWARD units, which are specified as XML elements in the configuration and are

rendered as maps, bar charts, and other Javascript-based components. Internally FOR-

WARD units use components from Yahoo UI, Google Visualization and other libraries and

wrap them so that they can participate in FORWARD’s pages without any Javascript code

required from the developer.

2. SQL-based inlined expressions and for and switch statements, which are responsible for

dynamic data generation.

Figure 1.4 and Figure 1.5 provide the page configuration of the running example’s

ReviewRestaurants page. Figure 1.5 excludes a few parts, which are marked by <!--

skipped --> and can be found on the online demo. The complete page configuration’s size is

179 lines.

14

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns:funit="http://forward.ucsd.edu/units"
3 xmlns:fstmt="http://forward.ucsd.edu/statements">
4 <head>
5 <title>Review Restaurants</title>
6 </head>
7 <body>
8 <fstmt:switch>
9 <fstmt:case condition="{session.current.role='admin'}">
10 Go to Admin Home
11 </fstmt:case>
12 </fstmt:switch>
13 <div id="main-content">
14 <h2>Review restaurants near me</h2>
15 <gmaps:Maps height="700px" width="700px">
16 <options pancontrol="false">
17 <zoom name="zoom_input" carryover="true"/>
18 <center>
19 <direct>
20 <latitude name="lat_input" carryover="true"/>
21 <longitude name="long_input" carryover="true"/>
22 </direct>
23 </center>
24 </options>
25 <markers>
26 <fstmt:for>
27 <fstmt:query name="restaurants">
28 SELECT p.id AS pid, p.name AS pname, p.geometry.location.lat AS lat,
29 p.geometry.location.lng AS lng
30 FROM db.places AS p
31 </fstmt:query>
32 <marker draggable="false">
33 <position>
34 <direct>
35 <latitude>{lat}</latitude>
36 <longitude>{lng}</longitude>
37 </direct>
38 </position>
39 <infowindow>
40 <content>
41 <fesc:html>
42 {hidden save_pid : pid}
43 <div>
44 {pname}
45 </div>
46 <table>
47 <tr>
48 <th>Reviewer</th>
49 <th>Comment</th>
50 <th>Grades</th>
51 </tr>
52 <fstmt:for>
53 <fstmt:query>
54 SELECT r.comment AS comment, r.uid AS uid, r.place AS rpid,
55 r.food as food, r.service as service, r.env as env
56 FROM db.reviews AS r
57 WHERE r.place = pid AND r.uid=session.current.user_id
58 </fstmt:query>
59 <tr>
60 <td>{uid}</td>
61 <td>{comment}</td>
62 <td>

Figure 1.4. The page configuration of ReviewRestaurants - Part 1

15

62 <td>
63 <funit:BarChart><bars>
64 <bar bar_value="{food}" label="Food" />
65 <bar bar_value="{service}" label="Service" />
66 <bar bar_value="{env}" label="Environment" />
67 </bars></funit:BarChart>
68 </td>
69 </tr>
70 </fstmt:for>
71 </table>
72

73 <div>
74 My Review
75 </div>
76 <div>
77 <div>
78 <div>
79 Comments:
80

81 <hunit:textarea rows="2" columns="20">
82 <value name="save_comment">{null}</value>
83 </hunit:textarea>
84 </div>
85 </div>
86 <div>
87 Food
88 <cunit:Ratings>
89 <selected_value name="save_food">{null}</selected_value>
90 <ratings_ranks>
91 <rank>
92 <value>1</value>
93 <label>Awful</label>
94 </rank>
95 <rank>
96 <value>2</value>
97 <label>Bad</label>
98 </rank>
99 <rank>
100 <value>3</value>
101 <label>Average</label>
102 </rank>
103 <rank>
104 <value>4</value>
105 <label>Good</label>
106 </rank>
107 <rank>
108 <value>5</value>
109 <label>Excellent</label>
110 </rank>
111 </ratings_ranks>
112 </cunit:Ratings>
113 Service
114 <cunit:Ratings>
115 <selected_value name="save_service">{null}</selected_value>
116 <ratings_ranks>
117 <!-- skipped -->
118 </ratings_ranks>
119 </cunit:Ratings>
120 Environment
121 <cunit:Ratings>
122 <selected_value name="save_env">{null}</selected_value>
123 <ratings_ranks>
124 <!-- skipped -->
125 </ratings_ranks>
126 </cunit:Ratings>
127 <hunit:button onclick="AJAX SaveReview()" value="Save Review" />
128 <hunit:button onclick="AJAX DeleteReview()" value="Delete Review" />
129 <!-- skipped closing tags -->

A

Figure 1.5. The page configuration of ReviewRestaurants - Part 2

16

Lines 13-15 of the page configuration list the HTML that generates the top of the page

and contains the FORWARD unit gmaps:Maps. FORWARD units are encapsulated and expose

their states in the SQL++ data model. For page configuration, a unit’s interface is represented

in an XML format so that it can be easily incorporated with the rest of the page’s XHTML

content. Figure 1.6 shows the DTD of the Maps unit’s definition. The details of unit definitions

and their DTD are discussed in Section 1.3.3. Notice that a unit may contain other units and

XHTML, which may, in turn, contain other units. For example, the gmaps:Maps in Figure 1.4

contains XHTML (line 41) for the content of the popup dialog of its markers. The XHTML

contains several other units, including funit:BarChart (line 63), hunit:textarea (line 81),

and cunit:Ratings (line 90).

<!DOCTYPE Map [
 <!ELEMENT Map (options, markers?)>
 <!ATTLIST Map style string NULL>
 <!ATTLIST Map height string NULL>
 <!ATTLIST Map width string NULL>

 <!ELEMENT options (zoom?, center)>
 <!ELEMENT zoom (integer) 1>
 <!ELEMENT center (direct, indirect?)>
 <!ELEMENT direct (latitude?, longitude?)>
 <!ELEMENT latitude (double) 0.0>
 <!ELEMENT longitude (double) 0.0>
 <!ELEMENT indirect (address?, region?)>
 <!ELEMENT address (string) NULL>
 <!ELEMENT region (string) NULL>

 <!ELEMENT markers (marker*)>
 <!ELEMENT marker (position, infowindow?)>
 <!ELEMENT position (direct, indirect?)>
 <!ELEMENT direct (latitude?, longitude?)>
 <!ELEMENT latitude (double) 0.0>
 <!ELEMENT longitude (double) 0.0>
 <!ELEMENT indirect (address?, region?)>
 <!ELEMENT address (string) NULL>
 <!ELEMENT region (string) NULL>
 <!ELEMENT infowindow (content)>
 <!ELEMENT content ANY_UNIT>
]>

Figure 1.6. DTD syntax of Maps unit (a minimized version)

To generate dynamic data for FORWARD pages’ XHTML and units, a fstmt:for

17

statement evaluates its query and for each tuple in the result (conceptually) outputs an instance of

its body configuration, i.e., of the XHTML or unit tags within the opening and closing fstmt:for

tags. For example, the fstmt:for on line 26 outputs for each restaurant one instance of the

marker element on line 32 and its data. As another example, the fstmt:for on line 52 outputs

for each nested review one HTML table row (i.e., a <tr> element) that contains the review’s

information.

A fstmt:switch statement brings variability and outputs the content of the first

fstmt:case whose condition (specified in SQL++ again) evaluates to true. For instance, the

example page uses a fstmt:switch at Line 8 to display a link only when the current login user

is an admin.

FORWARD’s page configurations enable nested, correlated structures on the pages.

In particular, the query of a fstmt:for statement found within the body configuration of

an enclosing fstmt:for may use attributes from the output of the query of the enclosing

fstmt:for. For example, the table db.reviews has a foreign key restaurant. For each

“restaurant” instance the correlated query on line 53 produces a list of its reviews by using the

pid attribute of its enclosing query.

Expressions, which are enclosed in { }, can reference attributes of the query’s output.

Furthermore, an expression may be itself a query. In the interest of flexibility, which has been

the norm in tools and languages for web page creation,2 FORWARD coerces the types produced

by the expressions to the types required by the FORWARD units or XHTML, depending on

where the expression appears. Therefore, the developer need not worry about fine discrepancies

between the types used in the database (which are dictated by the business logic and are often

constrained) and the types used for rendering, which are often as general as they can be. For

example, the expression that feeds the bar value attribute of the funit:BarChart on line 64

is an integer attribute. However, it is coerced into a float, which is the type of argument that the

funit:BarChart expects.

2For example, JSP pages convert JSP expressions into strings whenever possible.

18

Query expressions can access any data objects in the unified applications state. The

expression {session.current.role} on line 9 is a SQL++ query accessing the attribute

role of the current tuple-typed data object in the session scoped data source. For example,

consider the query on lines 54 that combines session.current.user with the table reviews

of the persistent schema db to produce the reviews of the currently logged-in user in just four

lines of SQL. More integration contributions are made by the page data objects, discussed in

Section 1.2.4.

The syntax and semantics of the fstmt:for and fstmt:switch statements are delib-

erately similar to the forEach and choose core tags of the popular JSP Standard Tag Library

(JSTL) [35]. The same applies for FORWARD expressions and JSTL expressions. However,

FORWARD’s fstmt:for iterates directly over a query, whereas JSTL’s forEach iterates over

vectors generated by the Java layer, which are in turn produced by iterating over query results.

Besides the obvious code reduction resulting from removing the Java middleware, FORWARD

analyzes the queries behind the dynamic data of the page enables opportunities for automatic

heterogeneity resolution and performance optimization, which are elaborated in later chapters.

The page as an automatically updated rendered view

Conceptually, the page configuration is evaluated after every action execution. While

such an explanation is simple to understand, it is only conceptual. If the page that is displayed

on the browser window before and after an action’s execution is the same, then FORWARD will

incrementally update only the parts of it that changed, therefore achieving the user-friendliness

and efficient performance of Ajax pages, where the page does not leave the user’s screen (and

therefore avoids the annoying blanking out while waiting for the page to reload) but rather

incrementally re-renders in response to changes. [24] explains how FORWARD utilizes incre-

mental view maintenance in order to efficiently and automatically achieve pages as incrementally

rendered views.

19

Summary

The page configuration is essentially an SQL view embedded into a visual template,

consisting of HTML and unit tags. Therefore the page configuration resolves Challenge 1, since

it enables the production of pages without requiring Java and Javascript code in addition to

SQL. Furthermore, it is implemented as an Ajax page that is automatically updated to reflect the

database state, therefore resolving Challenge 2 of Ajax application programming.

1.2.4 Page Data Objects in the Unified Application State

Transient data is heavily used in web application programming. A typical use case of

it is to store a logical-level representation of page data, which captures user inputs (collected

by HTML forms or Javascript components). In FORWARD, this logical-level representation is

automatically created as part of the unified application state and belongs to the page data source.

A page.complete schema captures in an SQL++ schema the subset of page data that

has been named by developers, using a special XML attribute name in the page configuration.

Therefore the page.complete enables the developers to resolve part of Challenge 3, by enabling

him to create a data structure encompassing the data of interest to the actions as opposed

to, say, visual details. FORWARD infers the page.complete schema by inspection of the

page configuration. In the running example, the page.complete simply contains a table of the

restaurants that appear on the screen along with their reviews and ratings (see Figure 1.7).

In particular, it is a table named restaurants (due to the fstmt:for on line 11) with a

string attribute named save comment (due to line 33) and numerical attributes save food,

save service and save env due to the ratings units (the last two not shown in Figure 1.4).

The table restaurants also has the key attribute restaurant id so that one can associate the

data collected by the multiple instances of the textareas and the ratings units with restaurants.

Mechanically, FORWARD infers this attribute to be the key of the query that feeds restaurants

using a key inference algorithm (see Appendix B). Notice that such inference relies on the

underlying db.restaurants table having a known key, which is an unavoidable assumption of

20

the running example, no matter what technologies one uses to implement it.

page.complete tuple

restaurants table

tuple

save_pid integer

save_comment string

save_food integer

save_service integer

save_env integer

Figure 1.7. Page.complete schema of running example

The name attribute convention is reminiscent of the HTML standard’s convention to allow

a name to be associated with each form element and consequently generate request parameters

with the provided names. Drawing further the similarities to HTML’s request parameters, a

page.context data object keeps only the tuple of the page.complete that corresponds to the

invoked action. The page.context provides an important piece of data about which particular

action was invoked. In the running example, the page invokes the action SaveReview (line

62), and therefore it is important to know upon invocation which one of the many instances

of the SaveReview was invoked. There are as many instances as restaurants on the page.

The page.context identifies the restaurant id for the invoked SaveReview because all other

restaurant tuples are excluded from it. Therefore in Figure 1.8, page.context is only a tuple, as

opposed to the table in page.complete shown in Figure 1.7.

page.context tuple

save_pid integer

save_comment string

save_food integer

save_service integer

save_env integer

Figure 1.8. Page.context schema of running example

In fact, page.context can be computed from page.complete with action context informa-

21

tion. Figure 1.9 shows a mapping from page.complete to page.context as lines connecting source

and target attributes (where dash arrow lines represent tuple mappings and solid lines represent

scalar mappings). FORWARD uses an internal mapping framework tailored for such use cases

during page compilation, and mappings are translated to SQL++ queries. The construction of the

page.complete, the page.context and their mappings are discussed in Section 1.3.

page.complete tuple

restaurants table

tuple

save_pid integer

save_comment string

save_food integer

save_service integer

save_env integer

page.context tuple

save_pid integer

save_comment string

save_food integer

save_service integer

save_env integer

With
selection
condition

Figure 1.9. Internal mapping from page.complete to page.context

FORWARD guarantees that the page.complete and the page.context data is automatically

up-to-date when an action starts its execution. This is a key contribution towards resolving

Challenge 3. In a conventional Ajax application, Javascript and Java code has to be written

to establish a copy of relevant page data on the server, in a way that they can be subsequently

combined with the database.

Besides the difference between page.complete and page.context mentioned earlier, there

is a notable heterogeneity between the logical page representation (i.e., page.complete and

page.context) and the visual page representation. Notice that the page.complete and page.context

schemas are decided by statements and queries of the page configuration, i.e. the page’s logical

aspects, while the unit structure and XHTML (the visual aspects) are not considered. The

only unit aspect that matters is the types of data collected by the user, i.e., string from the

funit:textarea and numbers from the funit:Ratings. This is a key advantage over page

mirror-based frameworks, such as Microsoft’s ASP.NET, that offer to the developer a server-side

22

mirror of the page data, so that the developer does not have to code in Javascript. Unfortunately,

the structure of the mirror follows the (typically very busy) visual structure of the page, as

opposed to the data structure that best fits the database (a typical “Challenge 3” problem). We

will use an example to explain such structural heterogeneity.

Example showing logical and visual page heterogeneity

Figure 1.10. An application showing a heterogeneity between visual and logical page states

Consider an application that allows users to select a start and an end points by dragging

and dropping two markers in the Maps component (see Figure 1.10). Logical representation

of the page has exactly two markers (see page.complete in Figure 1.11), which are what the

related actions care about (e.g., an action computing the distance between the two markers).

The visual page, however, needs to conform to expected schemas of visual components. Here

the map component can support a list of arbitrary number of markers, and hence the visual

schema has to be in the form of a table of markers (see visual page in Figure 1.11). This is a

natural heterogeneity between logical and visual page that exist in web applications with visual

components in general. In a manually built version, the developer would have to resolve it by

specifying the computation to transform two distinct markers that are stored for business logic to

a list of markers for visual components to display, and vice versa for collecting user input from

the visual components and prepare it for related actions. In FORWARD, its resolution is handled

by the framework automatically, again using the internal mapping framework. Figure 1.11 shows

23

the mapping from the page.complete to the visual page state at a high level. Essentially the

mapping language supports mapping individual tuples to a table tuple. The mapping is invertible,

meaning that changes to target data (i.e., visual state) can be propagated back to source data (i.e.,

logical state). Detailed explanation of this heterogeneity resolution is discussed in Section 1.3,

where more page data objects will be revealed and the mappings are revised.

page.complete tuple

start_lat float

visual_page tuple

map tuple

markers table start_lng float

end_lat float

end_lng float

marker tuple

lng float

…

lat float

Invertible
mapping

Figure 1.11. Logical & visual page states and their (abstract) mapping for the application shown
in Figure 1.10

1.2.5 The Action Configuration

Actions of FORWARD applications can access and modify unified application state

through SQL++ queries and commands, and invoke functions provided by the framework.

Actions are specified in FORWARD Action Language which is a subset of Oracle PL/SQL. The

action language supports If-Then-Else control flow logic, INSERT/UPDATE/DELETE DML

statements, and calls to functions provided by the FORWARD framework.

In this section we illustrates a few key points of the action language’s syntax and semantics

using the SaveReview action configuration of the running example. Figure 1.12 shows the action

configuration of SaveReview. The action issues either an UPDATE statement to update an

existing review or an INSERT statement to insert a new review, depending on whether there

already exists a review of the restaurant by the current user. Recall that the review form data in

the context of the SaveReview action is retrieved by the framework and stored in page.context

data object, which is part of the unified application state and has its schema inferred by the

24

framework. The UPDATE and INSERT statements in the action configuration can freely use any

part of the unified application state, and in this example, they read from the page.context and

modify data in the persistent database.

Besides issuing DML statements, actions can invoke functions. A very common FOR-

WARD function used in actions is the built-in next page function. Line 26 of Figure 1.12

specifies the next page to display at the end of the SaveReview action by calling the next page

function with a page name. This function call typically happens at the end of an action when the

action leads to a (partial) page refresh, in which case the same page is specified, or navigation to

another page. A function may also produce output in the SQL++ data model, although here the

next page function does not produce any output.

1 CREATE ACTION SaveReview() AS
2 BEGIN
3 IF exists(
4 SELECT *
5 FROM db.previews
6 WHERE place=page.context.save_pid
7 AND uid=session.session.current_user
8) THEN
9 UPDATE db.previews
10 SET comment=page.context.save_comment,
11 food=page.context.save_food,
12 service=page.context.save_service,
13 env=page.context.save_env
14 WHERE place=page.context.save_pid
15 AND uid=session.session.current_user;
16 ELSE
17 INSERT INTO db.previews
18 TUPLE(session.session.current_user AS uid,
19 page.context.save_pid AS place,
20 page.context.save_comment AS comment,
21 page.context.save_food AS food,
22 page.context.save_service AS service,
23 page.context.save_env AS env);
24 END IF;
25
26 next_page('ReviewRestaurants');
27 END;

Figure 1.12. Action configuration of SaveReview

25

1.3 Internal Architecture and Implementation

In this section we discuss the internal architecture of FORWARD. First, Section 1.3.1

explains the action-page cycle with more internal architectural details. Then, Section 1.3.2 and

Section 1.3.3 discusses the visual page layer and how its data aspect is modeled by the visual

page state. The rest of this section discusses the page compilation process step by step, covering

the inference algorithms of various page states, and the resolution of heterogeneities between

them.

1.3.1 Action-Page Cycle in Detail

Unified Application State
(accessible via SQL++)

FORWARD
Interpreter

Action Configuration

Browser State

Page Configuration

HTML
DOM

JavaScript
Components

State Collectors
2

Action Invoker
3

Incremental
Renderers

6

Browser-Side

Visual Page State

Persistent
Database

Data

Session
Data

Page Data

page.complete

Modification Log

4

Incremental View
Maintenance

5

1

1

server-side

Visual Page State

page.context

Figure 1.13. Internal FORWARD Architecture

The internal architecture of the FORWARD interpreter is illustrated in Figure 1.13, which

26

displays internal modules (labelled with red numbers) in association with developer-visible

concepts of Figure 1.2. For efficiency of storage and communications, FORWARD maintains

a visual page state (a.k.a. visual data object), which provides an abstraction over the browser

state by including the externally visible state of visual units, but excluding their implementation

details. Two copies of the visual page state lazily mirrored between the browser and the server.

When the user performs interactions such as typing in a text box, the HTML DOM and

the JavaScript variables of visual components change in the browser state. The respective state

collectors of each FORWARD unit synchronize the appropriate part of the browser state with

the corresponding part of the browser-side visual page state. When the user eventually triggers

an event that leads to invoking an action, such as clicking the “Save Review” button of Figure

1.1, the action invoker guarantees that the browser-side visual page state has been fully mirrored

onto the server-side before the action executes. This guarantee is efficiently implemented via

incremental writes to the prior visual page state.

Using the action invocation context and page configuration, the interpreter calculates (1)

the page.complete data object consisting of named attributes of the visual page state, and (2) the

page.context data object, the part of the page.complete that is in the context of the action instance.

As services within the action read from and write to the unified application state, the system

also uses a modification log to intercept all changes to the unified application state. By using

the modification log in combination with the unified application state, the interpreter employs

incremental view maintenance optimizations to incrementally maintain the page data to the next

visual page state. Incremental view maintenance module is discussed in Chapter 2;

Finally, the interpreter uses data diffs to efficiently reflect changes back to the browser-

side visual page state. The same data diffs are also provided to the respective incremental

renderers of each visual unit, which, in turn, programmatically translates the data diff of the

visual page state into updates of the underlying DOM elements or method calls of the underlying

JavaScript components. Essentially, the incremental renderers modularize and encapsulate the

partial update logic necessary to utilize Javascript components, so that developers do not have to

27

provide such custom logic for each page. Also illustrated in [24], in addition to performance

gains due to less DOM elements / JavaScript components being initialized, incremental rendering

also delivers a better user experience by reducing flicker and preserving unsaved browser state

such as focus and scroll positions.

1.3.2 Rendered View Approach and Visual Schema

FORWARD treats Ajax pages as rendered SQL++ views consisting of units and XHTML

segments that correspond to different parts of the view (see [24]). The visual data object (i.e., the

“view”) contains all information needed to render a browser page. Internally, the state of a visual

unit is described by a SQL++ schema. Nodes of the visual schema (and hence of the visual data

objects) may be marked with unit annotations that specify what visual unit is associated with

the subtree rooted at each node. The unit annotation structure derived from the visual schema

forms a unit tree structure of the page, where a parent unit functionally contains a child unit. For

instance, the Maps unit in the running example is able to take an arbitrary child unit serving the

content of each popup dialog, which may have its own child units recursively. As a result, the

data of a child unit instance is nested under the data of its parent unit instance in the visual data

object according to the unit tree structure. For example, the visual schema in Figure 1.14 shows

that data for an XHTML unit (Line B) is nested under the Maps unit (Line C) as a child unit.

The rendering of the visual data object happens by first turning the visual data object into

a unit instance tree, and then having each visual unit’s renderer create corresponding HTML

DOM or JavaScript components. In case of a page refresh, the framework figures out the

difference of the visual data object using incremental view maintenance, and renderers may use

the difference of the visual data objects to partially update visual units accordingly. On the other

direction, the state collectors of visual units collect latest user input from the browser page and

reflect it back to the visual data object, which is mirrored on both the server side and the browser

side.

A technique commonly used to implement partial page update is to apply IDs to each

28

config tuple

template xhtml

children tuple

switch

tuple (for admin info) …

tuple (Maps unit)

options tuple

zoom boolean

center tuple

direct tuple

longitude double

restaurants (table)

marker (tuple)

position tuple …

infowindow tuple

tuple (XHTML unit)

template xhtml

latitude double

A

visual tuple

template xhtml

children tuple

switch

tuple (for admin info) …

tuple (Maps unit)

options tuple

zoom boolean

center table

direct tuple

latitude double

markers (table)

marker (tuple)

position tuple …

infowindow tuple

tuple (XHTML unit)

longitude double

Scalar mapping

Tuple mapping

2 1 Union branches

markers (tuple)

tuple

template xhtml

children tuple

string

table (for reviews)

tuple

string

tuple (BarChart unit)

bar tuple

bar_value float

label string

bar tuple

bar_value float

label string

bar tuple

bar_value float

label string

bars tuple

children tuple

string

table (for reviews)

tuple

string

tuple (BarChart unit)

bar tuple

bar_value float

label string

bars table

…

…

1

2

3

B

C

D

E F

G

Figure 1.14. Config schema, visual schema, and c2v mapping (before mapping provenance IDs
are inferred)

29

portion of the page so that page update can specify which part of the original page to change

using IDs. In manual Ajax application development, developers manually specify DOM IDs

in pages and have to figure out how to come up with the ID values that are unique and stable

(meaning that an ID value is kept the same for the same entity at different timestamps). In

FORWARD, IDs in the visual data object is automatically plugged in as keys that are inferred

by the framework. Besides the partial page update feature, IDs and keys also help to describe

the invocation context when action invocation happens. Key inference of FORWARD queries is

discussed in Appendix B.

The visual data object including its unit annotations is all that the framework needs to

render a page in the browser. The visual schema is completely driven by the requirement from

visual units. Therefore, visual units need a way to formally declare the possible schemas of data

that they can handle. Also notice that in FORWARD, schema and queries of visual data objects

are internal and hidden from developers. Therefore the developers need not be aware of them or

explicitly specify them. Instead, schemas and queries related to the visual state are automatically

inferred from the XML page configuration.

1.3.3 Unit definitions and DTD

Visual units of FORWARD framework use unit definitions to model its external-facing

state that is configurable in FORWARD pages. A unit definition describes three types of

information:

1. Composability: A parent unit can specify a node in its schema to be a placeholder for a

child unit. The page compiler will attach the schema of the child unit to the parent unit’s

schema in order to form a page’s visual schema. For example, the Maps unit specifies that

each marker’s popup dialog contains a child unit of any kind.

2. Interaction: A node in a unit definition may have event definitions about possible events

that can be triggered in the context of the node. Such events can be associated with actions.

30

For example, the button unit has an “onclick” event which is fired when the button is

clicked.

3. Polymorphism: The unit definition may describe a class of schemas that the unit can be

instantiated with, rather than a fixed SQL++ schema.

The last goal above is achieved by using schema patterns which is an extension to SQL++

schema tree. It has two notable features. First, attribute names can be open-ended wildcard or

prefix patterns. Second, the list of attributes of a tuple type may be open-ended. The presence

of an attribute may be quantified as either exactly one, at least one (+), or any (*). An attribute

with + or * has to have an open-ended name. A scalar attribute that is quantified as exactly-one

may carry a default value, which makes the attribute optional (?).

Unit definitions are automatically translated to an XML model and in particular the

Document Type Definition (DTD) in order to support the XML page configuration syntax. The

framework does the translation as follows. The root becomes an element with the unit name.

All tuple, switches and table patterns are translated to XML elements. Each scalar attribute,

depending on how the unit developer specifies it, is translated to either an XML element or an

attribute of the element corresponding to its parent tuple. Furthermore, the patterns of table,

switch and open-ended attribute list of a tuple can be expressed using DTD syntax. Figure 1.6

shows the DTD syntax of the Maps unit. Figure 1.15 illustrate the pseudocode of the main block

of unit definition-to-DTD translation.

Notice that the standard DTD syntax is less expressive than SQL++. For example, the

DTD of Maps does not specify whether the markers (including nested XHTML and units under

them) are of homogeneous type or not. Unit documentation covers such information. Therefore,

validation of page configuration with respect to visual unit’s schemas is performed via the unit

definition (see Section 1.3.6), instead of via DTD validation.

Unit definitions and their DTD representations are what developers need to know in order

to compose units into a page using XML page configuration. The page compiler then infers

31

function translateTuplePattern
input :TuplePattern t
Output :Element declaration of t
begin

e← an XML element for t;
foreach Attribute type v of t do

if v is of scalar type and v.Xmlization == Attribute then
a← an XML attribute for v;
Declare a as e’s attribute.;
if v has default value then

Declare a’s default value to be v.de f ault;
else

c← null;
if v is a tuple pattern then

c← translateTuplePattern(v);
else if v is a table pattern then

c← an XML element for v;
vt← table tuple of v;
ct← translateTuplePattern(vt);
Declare ct as c’s child element with * quantifier;

else if v is a scalar pattern then
c← an XML element for v;

else if v is a switch pattern then
c← an XML element with disjunctive child group;
foreach case tuple pattern vc of v do

cc← translateTuplePattern(vc);
Declare cc as c’s disjunctive child element;

else if v is an “any child unit” pattern then
c← an XML element for v;
Declare c’s element content as ANY UNIT;

dtd quanti f ier← none;
if v.quanti f ier ==+ or ∗ then

dtd quanti f ier← v.quanti f ier;
else if v is a scalar type and has default value then

dtd quanti f ier←?;
Declare c as e’s child element with dtd quanti f ier. ;

return e;

Figure 1.15. Translating a unit definition to DTD

32

various schemas and mappings from the XML page configuration.

1.3.4 Overview of Page Compilation

FORWARD’s page compilation engine achieves three goals.

Goal 1: Inferring visual and logical schemas from XML page configurations

Section 1.2 introduces several page-related state/data objects. To build a FORWARD

page, however, developers need not specify each page state individually, which would incur

redundant work and repetition. Instead, the page compiler infers all page states from the single

XML page configuration that the developers have to write.

Goal 2: Resolving heterogeneities between the visual schema and the logical schemas.

One may have noticed that in the example illustrated in Figure 1.10 of Section 1.2.4, a

page’s visual schema that represents the visual structure of a page can be very different from

the page’s logical schemas, and in particular the page.complete schema. Indeed, the two are

designed to serve different purposes to start with. At a high level, the visual schema reflects the

visual structure of the page. Internally, the visual schema of a page is dictated by unit definitions

of visual components, and the Maps unit actually requires data of markers to be formatted as

tuples in a table. The page.complete schema, on the other hand, is driven by the page’s logical

structure rather than the visual structure. That is why despite the markers are modeled as a table

of tuples visually, in the page.complete (Figure 1.11), there are standalone attributes for the

coordinates of markers standing for start and end points. The page.complete schema follows

the logical structure of the page implied by the XML page configuration, and provides what

an action wants to access from the page in an intuitive way. Moreover, a page.context schema

further simplifies the logical structure to contain only data that is in context of an action instance.

The gap between the visual schema and the logical schemas is one major issue that FORWARD’s

internal page architecture is designed to deal with.

33

Goal 3: Resolving the heterogeneities between the database schema and the visual
schema.

Besides the above-mentioned heterogeneities between a page’s visual and logical schemas,

there is another gap between the database schema and the visual schema. This is most notable

in terms of differences between scalar types. For instance, in the running example, Area A of

Figure 1.4 shows review ratings being retrieved from database and displayed in a bar chart. The

ratings are stored as integers in database, but when drawn as bars, they are treated as double

values which are expected by the BarChart unit.

Figure 1.16 shows the complete picture of page computation steps. Two internal page

data objects are revealed: Page query result is the result of running the page query, a query

obtained by combining all query expressions in the page configuration; Config page state is

the representation of the entire page configuration in the SQL++ data model. Since the page

query result is the result of all expressions (e.g., those within {}) in the page configuration,

the difference between the page query result and the config page state is that the former does

not contain constant non-expression data and static template data, while the latter does. The

difference between the config page state and the page.complete is that page.complete contains

only those named attributes in the page configuration.

Both page query result and config page state are internal concepts to FORWARD’s page

layer architecture. In principle they need not exist in implementation, since their computation

can be chained together and merge into the computation for visual page state and page.complete

etc., in order to reduce computation overhead. In this paper, we do use them to explain the page

computation and compilation process, because they help to present the overall architecture and

heterogeneity resolutions in a clear way.

As shown in Figure 1.16, the page data objects are transform from one to another using

either queries or mappings. Schemas, queries and mappings are the end products of page

compilation process. Figure 1.17 shows the internal flowchart of page compilation. The rest of

this section will discuss each step in detail.

34

Unified
App State

Visual
Page
State

page.
complete

page.
context

4

3

Action

1

session

persistent

…

Invoke

Config
page state

2

Page
Query

config-to-
visual

mapping

config-to-
complete
mapping

complete-to-
context

mapping

5

Logical Page States

Browser-Side
FORWARD
JavaScript
Libraries

HTML
DOM

JavaScript
Components

Page
query result

query-to-
config

mapping

Figure 1.16. Internal page computation cycle (Incremental View Maintenance module is not
shown)

FORWARD Interpreter

XML Page
Configuration

Page
Config
Parser

Visual
Schema
Builder

Config
Schema

Unit &
XML

Annotation

Complete
& Context
Schema
Builders

Half-
resolved
Config

Schema

Name Annotation

Page
Query
Builder

Page Schema & Mappings

Config
Schema

Config
Schema

Config-to-
visual

Visual
Schema

Config-to-comp. and
Complete-to-context

Page.complete
Page.context
schemas Query-to-

config

Page Query

Execution order Input/Output

Page.comp.
Schema

Figure 1.17. Page compilation

35

1.3.5 Page Config Parser

As the first step of page compilation, a page config parser takes an XML page con-

figuration as input and utilizes a few general rules to turn it into a config schema: First, each

XML element that has sub-elements or attributes (excluding the statement elements fstmt:for

and fstmt:switch) corresponds to a tuple in the config schema. Second, the remaining XML

elements and the XML attributes (excluding the special attribute name) correspond to attributes

in the config schema. Finally, each fstmt:for corresponds to a table and each fstmt:switch

corresponds to a switch. The resulting schema is non-resolved in the sense that its scalar types

are still unknown. These decisions are resolved in later steps of page compilation. The config

schema in Figure 1.14 is one that has been fully resolved.

Also produced by the page config parser are various annotations to the config schema,

including XMLization annotations that tell whether a SQL++ attribute originates from an XML

element or attribute, unit annotations that contain unit information and are used to build unit

trees, event annotations that associate actions with events of visual units, and name annotations

that carry the name information of the subset of config schema for building the page.complete

and the page.context schemas.

The page config parser specially handles HTML unit’s parsing so that its configuration

syntax can be aligned with XSLT style. Figure 1.18 shows the DTD of the HTML unit. The

HTML unit’s schema consists of a template scalar value representing the static part of the

XHTML document, and a children tuple containing values corresponding to dynamic data and

child units. These have been reflected in both the config and the visual schemas in Figure 1.14.

The template value also contains named placeholders, which will be substituted with values

from the children tuple during rendering. To use the HTML unit, developers need not explicitly

use its DTD. Instead, they use the fesc:html tag within which they can write directly XHTML

code with embedded fstmt tags and child unit configurations (e.g., Line 41 of Figure 1.4).

A config schema, even though not fully-resolved after this step, can be used to match

36

<!DOCTYPE Html [
 <!ELEMENT Html (template, children)>

 <!ELEMENT template (xhtml)>
 <!ELEMENT children (ANY_UNIT*)>
]>

Figure 1.18. DTD of HTML visual unit

against unit definitions by the visual schema builder to produce the visual schema and a config-

to-visual mapping.

1.3.6 Visual Schema Builder

Before we dive into the generation of the visual schema from the config schema, a subtle

question to ask is why they both exist conceptually. It may seem that the config schema and

the visual schema agree and all that we needed to do would be to add on the visual schema

attributes that have default values and are skipped in the config schema. The answer is about

the heterogeneity between visual and logical aspects of a page. Notice that the generation of

table and switch constructs in the config schema is driven by fstmt:for and fstmt:switch

statements, i.e., the logical structure of the dynamic data that will populate the page, rather than

the needs of the units that will consume the data. For example, the table of markers of line D

in Figure 1.14 is due to the fact that the query outputs a list of restaurants rather than the fact

that a Maps unit consumes a list of markers. Another example shown by Figure 1.14 is that the

config schema lines A corresponds to the visual schema lines E, where despite the fact that a

funit:BarChart requires a list of bars we map to it from three individual tuples on the config

schema, since the page3 does not require a query-dependent number of bars but rather needs

exactly three bars for displaying the review’s ratings.

Because the visual schema is decided by unit definitions, the visual schema builder

matches the config schema of a page to unit definitions in order to infer the page’s visual schema.

3Though in the running example, the logical-visual heterogeneity has limited impact, Figure 1.10 has shown that
in another example, it can become significant when the page.complete inherits the heterogeneity in order to serve
actions.

37

Also inferred during the unit match is the config-to-visual mapping (which internally replaces the

high-level complete-to-visual mapping introduced in Section 1.2.4). We use mapping instead of

SQL++ query for this purpose because the computation power needed here (and in several other

places of the framework for automatic data coordination and heterogeneity resolution as well)

is much less than the one provided by SQL++. Appendix A describes the mapping framework

in detail. For now it is fair to consider a mapping as a set of lines between two SQL++ schema

trees with their most straightforward meanings. Here, the config-to-visual mapping is built by

the visual schema builder through the unit match process.

The unit match algorithm of the visual schema builder fires a set of predefined rules to

recursively match a node in the config schema to a schema pattern in the unit definition, and

automatically loads the definition of a child unit when the matching dives into it. Successfully

firing a rule results in a subtree of the visual schema corresponding to the schema pattern, and a

subset of config-to-visual mapping towards the visual schema subtree. One important rule that

deals with the logical-visual heterogeneity is TupleToTable match rule that matches a TupleType

c in the config schema to a TablePattern p in the unit definition. For example, the bars attribute

of BarChart unit is a table (line E of Figure 1.14) according to the unit definition. But bars is a

tuple in the config schema since an XML element in the page configuration is always translated

to a tuple (line F of Figure 1.14). Therefore the TupleToTable match rule tries to match the

content of the bars tuple c in the config schema to the pattern of the bars table p in BarChart

unit definition. Its pseudo-code is listed in Figure 1.19. The rule iterates each attribute of c and

then (1) matches a TupleType attribute to the TuplePattern of p, since a TupleType corresponds to

a hardcoded tuple in XML configuration (e.g., line A for BarChart unit), (2) matches a TableType

attribute’s TupleType to the TablePattern p recursively, since a table in config schema comes

from a fstmt:for tag in XML configuration, whose semantics says it should be replaced by the

evaluation of the for loop (e.g., line D for markers of Maps unit), or (3) matches each case of a

SwitchType attribute to p recursively for a similar reason to the table case. At the end of this

rule, sub-matching result for each attribute of c are checked for compatibility such that all of

38

them should lead to the same visual schema v. Finally, the mappings in different branches are

merged using a union, which is then returned with v as the result of the current rule firing.

function matchTupleToTable
input :TupleType c, TablePattern p
Output :Visual schema subtree v and Mapping subset m
begin

subResults← empty list of (v,m) pairs.;
foreach attribute ca of c do

if ca is annotated as logical-only then
continue;

else if ca is a TupleType then
pt ← the TuplePattern of p;
(v′,m′)← matchTupleToTuple(ca, pt);
subResults← subResults+(v′,m′);

else if ca is a TableType then
ct ← the TupleType of table ca;
(v′,m′)← matchTupleToTable(ct ,v);
subResults← subResults+(v′,m′);

else if ca is a SwitchType then
foreach case tuple ct of ca do

(v′,m′)← matchTupleToTable(ct ,v);
subResults← subResults+(v′,m′);

if all matching results in subResults are compatible then
(v,m)← merge (union) subResults;
return v,m;

else
Fail;

Figure 1.19. Unit match rule for matching a tuple in page configuration to a table pattern in unit
definition

Unit match also leads to type resolution in config schema. As the non-resolved config

schema is matched against the unit definitions, concrete types are created in the visual schema,

which are applied back to the config schema and result into precise type assignments to scalar

nodes and tables. For example, the float type of bar value (line A) in config schema is

propagated from the visual schema. Some types in config schema may exist for logical page only

39

and hence not matched against any units4. These types will remain non-resolved until later steps

of the page compilation.

1.3.7 Page.complete and Page.context Builders

As introduced earlier, page.complete and page.context data objects are part of the unified

application state that developers can access from page and action configurations, unlike other data

objects which are not exposed. Figure 1.16 shows that the page.complete and the page.context

data objects are computed from the config page state using page-to-complete and complete-

to-context mappings. These happen during the action-page cycle and after the data updates to

visual page state has been propagated back to the config page state. Update propagation from

visual to configuration is achieved by mapping inversion of config-to-visual mapping provided

by FORWARD’s mapping framework. To make it possible, mapping framework automatically

plugs in provenance IDs in the target data so that nodes updated in the target can be traced back to

their corresponding source nodes. The details of mapping inversion is explained in Appendix A.

The page.complete schema of a page can be defined as a projection of the config schema

that retains attributes that correspond to (a) named expressions, (b) named form-collected data

and (c) their enclosing tables and primary keys. Those unnamed non-table tuples are projected

away and hence do not appear in the page.complete schema. The page.complete schema of the

running example is shown in Figure 1.7, where save comment etc. correspond to form field

values, while save pid corresponds to the primary key of the restaurants. The page.complete

schema builder takes as inputs the half-resolved config schema after unit match and its name

annotations, and produces the page.complete schema and a config-to-complete mapping that

transforms data from the config page state to the page.complete. To do so, the builder traverses

the config schema and copies the named attributes as well as their ancestors to the page.complete

schema which is built on-the-fly. At the same time, the builder establishes config-to-complete

mapping lines from the config schema to the page.complete schema.

4Such types are hidden from visual page and carry information for actions to access

40

Notice that the page.complete schema produced at this stage may still have non-resolved

attributes, since they may be copied from non-resolved attributes in the config schema. The

reason for inferring the page.complete schema before the config schema is fully resolved is

that query in the XML page configuration may use the page.complete as part of the unified

application state, and therefore the framework architecture needs the page.complete to be at least

partially defined in order to compile queries in next step, while type resolution will be completed

at the end.

The page.context data object with respect to a page action is defined to be part of the

page.complete that is in the context of the page action. Its computation from page.complete is

defined as follows. Let x be the tuple corresponding to the context of the action invocation. Then

for any ancestor of x (including x itself) that is a table tuple, its sibling tuples are removed from

request data object. Furthermore, the tables from root to x which are left with only one tuple

are flattened out, leaving the singleton tuples pushed up and merged into their ancestor tuple.

The same applies to switch nodes as well. That is, all switches from root to x are flattened out

with the content of the switch case that contains x pushed up to its ancestor. For example, the

page.context schema for the “SaveReview” action is shown in Figure 1.8. Comparing it to the

page.complete schema, one can see that the table of restaurants is replaced by the exact single

tuple corresponding to the invocation context. The page.context schema builder is in charge of

inferring the page.context schemas and the complete-to-context mappings for every action in

the page. The builder works by consulting the page.complete schema and config-to-complete

mapping produced by the page-complete builder to decide their page.context counterparts.

1.3.8 Page Query

So far we have seen how various page data objects are computed around the config data

object during an action-page cycle. The remaining question is how the config data object is

computed at the first place. Recall that an XML page configuration contains embedded snippets

of SQL++ queries and expressions. The page query builder, being part of the page compiler,

41

extracts these snippets and composes them into the page query with proper nesting. The builder

constructs the page query by piecing together (a) the queries that appear in the queries of the

fstmt:for statements, (b) the conditions of the fstmt:switch statements and (c) computations

in the expressions.

The page query builder is also in charge of creating a query-to-config mapping that

transforms the page query result to the config page state data object. To do so, the builder

needs to deal with the heterogeneity in the database-to-visual direction. In that respect, the

config schema’s types are mostly decided by the visual unit definitions, therefore incurring

heterogeneity with the query results that are driven by the database’s types. In particular, the

query-to-config mapping coerces the query results into the types needed by the config schema,

or resolves the config schema types if they are still non-resolved. For example, the query snippet

of line 64 produces an integer for the bar value but the query-to-config mapping converts it into a

float expected by the BarChart unit (line G of Figure 1.14).

A complexity in type resolution and key inference is present here as the page query may

access the page.complete data object which is part of the unified application state. This means

that there may be a circular dependency of types and keys among the page query result, the

config page state, and the page.complete. For key inference, recall that the framework tries to

automatically infer keys for the visual page state. Consequently, in the current architecture and

implementation, the framework needs to be able to infer keys for the precursors of the visual

page state, including the page query result and the config page state. To limit the complexity of

such circular dependency, the page compiler requires that once page query builder is run, the

resulting page query should have all types resolved and keys successfully inferred. The page

compilation process then ends with propagating this information to the previously non-resolved

data objects (e.g., the config page state).

Chapter 1 contains material from “The SQL-based all-declarative FORWARD web appli-

cation and development framework” by Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou,

and Michalis Petropoulos, The Fifth Biennial Conference on Innovative Data Systems Research,

42

2011. The dissertation author was the primary investigator and author of this paper.

43

Chapter 2

ID-Based Incremental View Maintenance

2.1 Introduction

Materialized views are widely used to speed up query evaluation by storing the results of

commonly asked queries. Being materialized, these views have to be brought up to date when

the underlying data change. This is typically done through Incremental View Maintenance (IVM).

Abstracting out the details of different IVM approaches, a typical IVM algorithm takes as input

three diff tables D+
R , D−R and Du

R per base relation R, containing the tuples that were inserted,

deleted and updated in R and computes the corresponding diff tables D+
V , D−V and Du

V for the

view V , containing the changes that have to be performed on V to bring it up to date.

In prior IVM work, each diff table D+
V , D−V and Du

V contains one diff tuple for each view

tuple that has to be inserted, deleted and updated, respectively. This is why we refer to such diffs

as tuple-based diffs (in short t-diffs). In this work we show that if the base tables contain keys,

one can represent the view modifications in a much more compact way through a novel type

of diffs, called ID-based diffs (in short i-diffs), which identify the to-be-modified view tuples

through their IDs. In contrast to t-diff tuples, a single i-diff tuple can represent modifications

to multiple view tuples. This difference is crucial, as i-diffs are more efficient to compute than

t-diffs, requiring in general fewer base table accesses as we will explain next. This leads to

more efficient ID-based IVM algorithms, under common assumptions. The following example

demonstrates the difference between t-diffs and i-diffs. To differentiate between the two types

44

devices(did, category)

parts(pid, price)

devices parts(did, pid)

(a) Database schema

CREATE VIEW V AS
SELECT did, pid, price
FROM parts NATURAL JOIN
devices parts NATURAL JOIN
devices

WHERE category = "phone"

(b) View definition

Figure 2.1. Database schema and view for running example

devices'

did# category#

D1' phone'

D2' phone'

D3' tablet'

devices_parts'

did# pid#

D1' P1'

D2' P1'

D1' P2'

V'

did# pid# price#

D1' P1' 10'

D2' P1' 10'

D1' P2' 20'

Ini/al#Database#Instance#DB#

Ini/al#View#Instance#V(DB)#

D'''''''''#!

pid# price_#
old#

price_#
new#

P1' 10' 11'

D''''#####!

did# pid# price_#
old#

price_#
new#

D1' P1' 10' 11'

D2' P1' 10' 11'

Initial Instances (b) ID-based diffs (a) Tuple-based diffs

Δ'''''''''!

pid# price_#
old#

price_#
new#

P1' 10' 11'

Δ'''''''''''''!

pid# price_#
old#

price_#
new#

P1' 10' 11'

parts'

pid# price#

P1' 10'

P2' 20'

SELECT *

FROM Δ
SELECT did, pid, price_old, price_new

QΔ QD #'

u
V

u
parts

u
V

u
parts

u
parts FROM D INNER JOIN devices_parts

 INNER JOIN devices
u
parts

Figure 2.2. Example of tuple-based and ID-based IVM

of diffs, in the rest of the paper we will be using the standard symbol ∆ to refer to the newly

introduced i-diffs and the symbol D to refer to traditional t-diffs.

Example 2.1.1. Consider the database of an electronic device manufacturer, storing a list of

devices and their parts. Figure 2.1a shows the respective database schema, consisting of the

relations devices, parts and devices parts. The key attributes of each relation are shown

underlined. Also consider the view V of Figure 2.1b returning the list of parts for devices of type

‘phone’.

Figure 2.2 shows an example of tuple-based and ID-based incremental maintenance

of V. The initial database and view instance are shown on the left and t-diffs and i-diffs for a

sample change in relation parts on the right in Figures 2.2a and 2.2b, respectively. Consider

the action of updating the price of part “P1” from $10 to $11. This modification is represented

through identical t-diff and i-diff tuples, as seen in the t-diff table Du
parts and i-diff table ∆u

parts,

45

respectively. However, this is no longer true when we look at the diffs that represent the resulting

updates that have to happen to the view. Note that the change of the “P1” price in parts has to be

propagated as updates of all “P1” tuples in the view (which in this case are the first two tuples).

While the t-diff table Du
V describes these changes by two diff tuples, each describing an entire

view tuple that has to be updated, the i-diff table ∆u
V describes the same modifications through a

single diff tuple (which intuitively instructs updating all “P1” tuples in the view).

Obviously ID-based diffs are more compact than their tuple-based counterparts. More

importantly though i-diffs are in general more efficient to compute than t-diffs. Intuitively,

the performance gains come from the fact that in contrast to t-diffs, i-diffs do not need to

recreate the entire view tuples to be modified and thus can avoid some base table accesses. We

use this observation to design an ID-based IVM algorithm, which is shown both analytically

and experimentally to perform in most cases fewer base-table and view accesses than prior

tuple-based approaches.

Example 2.1.2. Queries QD and Q∆ show how the diffs for the view can be computed from

the base tables and the diff for base relation parts. While computing the t-diff requires joining

Du
parts with the base tables devices parts and devices (see QD) to find all devices containing

part “P1”, producing the i-diffs simply amounts to finding the modified parts (and not the devices

in which they are contained) and can therefore be accomplished by accessing only ∆u
parts and

avoiding all joins with the base relations (see Q∆).

Note that the fewer base table accesses of i-diff computations are not, just by themselves,

an absolute proof of superior performance of the i-diffs, as maintaining the view should also

count the cost of applying the i-diffs to the view. While both the ID-based and tuple-based

approaches will have to join the resulting view diffs with the view, the ID-based approach has the

drawback of potentially trying to join more diff tuples by creating dummy i-diff tuples, i.e., i-diff

tuples describing changes for tuples that do not even exist in the view. For example, assume

that parts included a tuple (P3, 20) and ∆u
parts included a change of P3’s price. Then ∆u

V would

46

include a dummy P3 tuple, i.e., the system would pay the price of attempting to update the P3’s

in V , albeit there would be no P3 in V . We call this effect overestimation. Nevertheless, our

theoretical and experimental analysis show that under common circumstances the i-diff approach

is indeed superior. Furthermore, we show that the advantage of ID-based IVM grows as the

queries become more complex.

Contributions. This paper makes the following contributions:

(a) An ID-based IVM system, called idIVM, applicable when the base relations have

primary keys. The idIVM is based on a modular, algebraic approach, allowing one to extend the

supported view definition language simply by adding one relational algebra operator at-a-time

and providing i-diff propagation equations describing how ID-based changes are propagated

through it.

(b) A set of i-diff propagation equations for a large subset of SQL (denoted by QSPJADU)

that includes the algebraic operators select, project, join, grouping and aggregation with associa-

tive functions, generalized projection involving functions, antisemijoin1 and union. Although the

framework can be easily extended to more expressive view definition languages as described

above, our analytical and experimental results focus on QSPJADU , as it is expressive enough to

cover a large number of practical use cases.

(c) An efficient 4-pass algorithm that creates an IVM plan for a given algebraically-

expressed view and a given set of modification types in four passes that are polynomial in the

size of the view expression: The first pass computes the IDs of intermediate results. The second

pass instantiates the operator IVM equations to the specifics of the view’s operators. The third

pass composes individual equations into the queries of the IVM plan. Finally, the fourth pass

applies minimization and other optimizations particular to the IVM problem. Unlike general

purpose minimization the considered minimization is polynomial.

(d) An algorithm that given a view expression decides what types of i-diffs should be

mined from the modification log or captured from triggers. The problem is non-trivial since,

1Therefore capturing queries with negation. The difference operator is a special case of antisemijoin.

47

as we will see, the number of types of i-diffs that are applicable, given a base schema and a

view schema, is exponential in the size of the schemas. The presented algorithm uses the view

definition to decide the much smaller number of sufficient and efficient i-diffs.

(e) A formal analysis proving that for QSPJADU views in many use cases the ID-based

IVM with the i-diff propagation equations described in the paper is more efficient than tuple-

based IVMs. The analysis is based on a fine-grained cost model counting data accesses and

includes a discussion under the specific conditions under which tuple-based IVMs can perform

better.

(f) An experimental evaluation of the proposed IVM system for QSPJADU views indi-

cating that in most cases it significantly outperforms traditional tuple-based approaches. The

experimental results show speedups of 2 to more than 50 over tuple-based IVMs.

Note that ID-based IVM optimization is orthogonal and can be combined with many

of the other IVM issues studied in the literature [28, 15], such as materialized view selection

[6, 51, 41], self maintenance [9, 27] and compilation into code [2]. We briefly describe these

prior IVM works and their synergies in Section 3.1.

Outline. The chapter is structured as follows: Section 2.2 defines ID-based diffs (i-

diffs). Section 2.3 presents the architecture of idIVM. It consists of two main parts: The first

transforms base table modifications to i-diffs and the second, given a set of i-diffs, creates a

DML script for maintaining the view. For ease of exposition, we present them in the reverse

order, i.e. Section 2.4 describes the algorithm for the DML script generation and Section 2.5

describes the transformation of changes to i-diffs. Sections 2.6 and 2.8 compare analytically

and experimentally the efficiency of the generated script to those produced by tuple-based IVM

approaches. Finally, Section 2.9 and later sections introduce the extension of idIVM to SQL++

query language.

48

2.2 ID-based diffs

For the following discussion we consider a relational database DB whose base tables

contain keys and a relational view V (Ī, Ā) over DB, containing a set of key attributes (which we

will refer to as IDs) Ī and a set of non-key attributes Ā.

Example 2.2.1. The view V of our running example contains IDs Ī = {did, pid} and non-ID

attributes Ā = {price}. In the following we will be using the initial instance of V of Figure 2.2.

View definition language. Although, as we will see, the framework can be easily

extended to more expressive view definition languages, unless otherwise stated, we consider

views from the language QSPJADU , which contains all SQL queries that can be formulated using

the algebraic operators Selection, Projection (involving functions), Join (with arbitrary join

conditions), Aggregation with associative functions sum, avg and count, Antisemijoin (and thus

Difference), and Union2.

General Structure of an i-diff. Let V (Ī, Ā) be a view with IDs Ī and non-ID attributes

Ā. An ID-based diff (in short i-diff) of type t ∈ {+,−,u} for relation V is in its most general

form a relation ∆t
V (Ī
′, Ā′pre, Ā′′post) satisfying the following properties:

• It contains a subset Ī′ of the view’s IDs Ī. These are used to identify the tuples to be

modified.

• It may contain two sets Ā′pre and Ā′′post of attributes, such that Ā′, Ā′′ are sets of non-ID

attributes of V . An attribute Apre and Apost intuitively stores the pre-state value (i.e., initial

value before the change) and respectively post-state value (i.e., new value after the change)

of attribute A of V .

Depending on their type, i-diffs may not contain both pre-state and post-state attributes.

In particular, insert i-diffs (i.e, of type t = +), do not contain pre-state attributes, since they
2To maintain the IDs for the bag union, we employ a special union all operator, outputting a special attribute b,

denoting which child branch (b = 0/1 for left and right, resp.) a tuple came from.

49

represent insertions of tuples that did not exist before. Similarly, delete i-diffs (i.e., of type t =−)

do not contain post-state attributes. Only update diffs (i.e., of type t = u) may contain both old

and new attribute values. We next describe the semantics for each i-diff type:

Update i-diff. An update i-diff instance ∆u
V for view V (Ī, Ā) is a relation instance with

schema ∆u
V (Ī
′, Ā′pre, Ā′′post), where Ī′ is a subset of the IDs Ī of V and Ā′, Ā′′ are potentially

different subsets of the non-ID attributes Ā of V (with Ā′ being potentially the empty set).

Intuitively, each tuple (ī′, ā′pre, ā
′′
post) in ∆u

V specifies that all tuples in V with values ī′

for their Ī′ attributes should have the values of their Ā′′ attributes updated to ā′′post . Formally,

applying ∆u
V on an instance IV of V is equivalent to applying the following DML statement on IV :

APPLY ∆u
V : UPDATE V

SET Ā′′ = Ā′′post

FROM ∆u
V

WHERE V.Ī′ = ∆u
V .Ī
′ 3

In the rest of the paper, the instance IV will be implied from the context and therefore for

simplification we will simply refer to a diff as being applied on the view V .

Note, that although not affecting its semantics, an update i-diff may also contain pre-state

values of some non-ID attributes of V . As we will see later, this additional information is

leveraged by the IVM algorithm to reduce the number of accesses to the database.

Example 2.2.2. Applying the following update i-diff

∆u
V pid pricepre pricepost

P1 10 11

leads to the update of the price of both tuples in V with pid = “P1” from 10 to 11.

3Note that for conciseness the UPDATE statement is written using PostgreSQL’s special UPDATE FROM syntax.
However, it could be equivalently written using standard SQL syntax.

50

Remark. In the following we consider only i-diffs where Ī′ forms a primary key of the

i-diff. The reason is that if Ī′ is not a key, then update i-diffs are not well-defined and insert i-diff

applications may lead to primary key violations.

Insert i-diff. An insert i-diff instance ∆
+
V for a view V (Ī, Ā) is a relation instance with

schema ∆
+
V (Ī, Āpost), or in other words a relation containing the post-state values for all attributes

of the view and no pre-state values.

Intuitively, an insert i-diff instance ∆
+
V contains a set of tuples that should be inserted

into V . Formally, applying ∆
+
V has the same effect as applying the following DML statement on V :

APPLY ∆
+
V : INSERT INTO V

SELECT Ī, Āpost AS Ā FROM ∆
+
V

WHERE ROW(Ī, Āpost) NOT IN

(SELECT Ī, Ā FROM V)

Example 2.2.3. Applying the following insert i-diff

∆
+
V did pid pricepost

D3 P2 20
D4 P3 30

inserts tuples 〈D3, P2, 20〉 and 〈D4, P3, 30〉 in V .

Remark. The WHERE clause in the above DML statement ensures that an attempt is

made to insert a tuple into V only if it is does not already exist in V in the exact same form. This

allows multiple insert i-diffs to try to insert the same tuple.

Delete i-diff. A delete i-diff instance ∆
−
V for a relation V (Ī, Ā) is a relation instance with

schema ∆
−
V (Ī
′, Ā′pre), where Ī′ is a subset of the IDs Ī of V and Ā′ is a potentially empty subset

of the non-IDs Ā of V .

Intuitively, ∆
−
V specifies the tuples that should be deleted from V based on the values

of the Ī′ attributes. Formally, applying ∆
−
V has the same effect as applying the following DML

51

statement on V :

APPLY ∆
−
V : DELETE FROM V

WHERE ROW(Ī′) IN (SELECT Ī′ FROM ∆
−
V)

Note that, similarly to update i-diffs, a delete i-diff may also specify the pre-state values

of the deleted tuples, which are used to create more efficient IVM solutions.

Example 2.2.4. Applying the following delete i-diff

∆
−
V pid pricepre

P1 10

leads to the deletion of both tuples with pid = “P1” from V .

Effective i-diff instances. Given a set of i-diff instances ∆̄ for a relation V , applying

them on V leads in general to different results depending on the order of application. However,

in this work we only look at sets of i-diffs where any order of applying them on V yields the

same result. To this end, we define the notion of effective i-diff instances. Given the pre-state

V pre and post-state V post of a relation V , an i-diff instance ∆t
V is said to be effective w.r.t. V pre

and V post if for each value of a tuple of V it reflects its final value. Formally, it is effective iff it

satisfies the following properties:

• If ∆t
V is an insert i-diff: Every tuple inserted by the i-diff exists in the post-state (i.e.,

∆
+
V ⊆V post).

• If ∆t
V is a delete i-diff over schema ∆

−
V (Ī
′, Ā′pre): Every tuple deleted by the i-diff does not

exist in the post-state relational instance (i.e., πĪ′∆
−
V ∩πĪ′V

post = /0).

• If ∆t
V is an update i-diff over schema ∆u

V (Ī
′, Ā′pre, Ā

′′
post): Every tuple updated by ∆u

V that

exists in the post-state instance, has all updated attributes Ā′′post set to the corresponding

values in that instance (i.e., πĪ′,Ā′′post
∆u

V nĪ′V
post ⊆ πĪ′,Ā′′V

post).

52

It can be shown that a set of effective i-diffs lead to the same result regardless of the order

in which they are applied. In the following the i-diff instances we consider are assumed to be

effective. We will discuss in Sections 2.4 and 2.5 how idIVM makes sure that it always operates

on effective i-diff instances.

i-diff schemas. It should be obvious that a single modification could be represented

through i-diffs of different schemas. In particular, one can include pre-state or post-state values

for different sets of attributes. More importantly, different base table i-diffs may lead to IVM

solutions of different efficiencies. For instance, an update of a t tuple of relation R(Ī,A1,A2) on

attribute A1 can be represented by either an i-diff that contains only the post-state of A1, or both

the post-state of A1 and A2 (even though the value of A2 did not change). However, the first i-diff

will in general lead to a more efficient solution, since for the second i-diff the IVM algorithm

will have to account also for the change of A2, although this is not needed. This generates a

novel challenge of selecting which base tables i-diff schemas to create, as explained next.

IDs and functional dependencies. As discussed earlier, the set Ī of ID attributes of a

view V forms a key of that view. Moreover, any i-diff ∆V for the view V identifies the tuples of

V to be updated, deleted or inserted through a subset of that key. However, this cannot be an

arbitrary subset of the key. The key Ī of a view is split into components (Ī1, Ī2, . . . Īn), such that

for each component of the key there is a functional dependency Īi→ Āi from this component Īi

to a subset Āi of non-key attributes of the view. The i-diff can identify the tuples of the view to

be modified through a subset of these key components.

Example 2.2.5. For instance, in our running example, V has ID/key Ī = {did, pid}, which

can be decomposed into two components Ī1 = did and Ī2 = pid, since there is the functional

dependency pid→ price (in a more general view V ′ containing also attributes of the devices

relation there would also be a functional dependency from did to those attributes). Thus the

tuples of V can be identified by an i-diff either through did or through pid (as is the case in our

example).

53

Modification
Logger

Base table
i-diff schema

generator

Δ-script
generator

Modification
log

Base table
i-diff schema

repository

Δ-script
repository

Base table
i-diff instance

generator

Δ-script
executor

View
definition

Base table
instances

View
instance

Cache
instances

Data modification time View definition time View maintenance time

Figure 2.3. idIVM architecture

2.3 System Architecture

Figure 2.3 depicts the architecture of idIVM; an ID-based IVM system based on i-diffs

and built on top of a relational DBMS. The modules of the system are shown as rounded boxes,

while the system’s data structures are depicted as white rectangles. idIVM can be setup to

maintain the view either eagerly (i.e., whenever the base data change, known as eager IVM

[10, 13, 26]) or lazily at some later point in time (known as deferred IVM [16, 31, 38]). In either

case, the modification logging module of the idIVM remains the same. Furthermore, the only part

of the architecture that is substantially different in the two approaches is the i-diff propagation

rules and cache maintenance rules (see Figure 2.4). This paper describes the deferred IVM rules.

idIVM contains modules executed at three different times (shown through color-coding in Figure

2.3): (a) when the views are defined (orange), (b) whenever the data in the underlying database

change (green), and (c) whenever the views are maintained (blue). We present next briefly each

of these stages:

View definition time. The most interesting and novel computations happen when a

view is added to the system. At that point idIVM precomputes in the form of DML scripts how

to translate i-diffs on the base tables to view updates. This computation happens through the

synergy of two components: First, it employs a base table i-diff schema generator to decide

54

which i-diff schemas to generate for the base tables. As we have discussed in Section 2.2, this is

a non-trivial problem, as the same update could be modelled through i-diffs of different schemas.

Once the base table i-diff schemas have been decided, idIVM invokes the ∆-script generator

creating a DML script that accesses the generated i-diffs, the base tables and the potential caches

(which as we will see can be used to speedup the IVM) to maintain the view. The resulting

∆-script is stored in a repository to be used at view maintenance time.

Data modification & view maintenance time. Given this offline computation, the

system’s online component is simple: When the base data are modified, a modification logger

logs these changes for later use. When the time comes to maintain the view, the base table

i-diff instance generator consults the modification log and converts it to instances of the base

table i-diff schemas precomputed at view definition time. A ∆-script executor then retrieves the

∆-script corresponding to the view from the ∆-script repository and executes it to propagate the

changes represented by the base table i-diff instances to the view instance.

We next describe the ∆-script generation, leaving the discussion of how to convert base

table modifications to i-diffs for Section 2.5.

2.4 ∆-script Generation Algorithm

Given a view definition and a set of base table i-diff schemas, the ∆-script generation

algorithm creates a DML script that includes (a) queries over the base table i-diffs, the base

tables and the auxiliary caches (which as we will see are used by idIVM to speed up the IVM)

that compute the corresponding view i-diffs and (b) UPDATE / INSERT / DELETE statements

of the form described in Section 2.2 that apply these i-diffs on the view.

The ∆-script generator is based on the algebraic IVM approach [46, 26, 47]: Each

relational operator type (e.g., selection, projection, join, etc.) is annotated with a set of rules,

describing how to transform an (effective) i-diff over its input schema to an (effective) i-diff

55

Operator Rule
Instantiation

Operator
ID inference rules

Operator
i-diff propagation rules &
cache maintenance rules

Rule Composition

ID Inference

Minimization

Operator extensibility layer Δ-script generator

Figure 2.4. ∆-script generator architecture

over its output schema. Given this information, the ∆-script for a view V can be composed from

the individual rules for each operator that appears in an algebraic plan of V . Intuitively, the

algorithm is computing how to maintain the entire view by first computing how to maintain all

intermediate subviews in the algebraic plan. This approach enables a modular implementation

in which the supported view definition language can be easily extended by adding rules for

additional relational algebra operators. In this work we present the rules for all operators

included in QSPJADU (i.e., selection, join, generalized projection involving functions, grouping

with aggregation, antisemijoin, and union). Similarly to prior algebraic IVM approaches, we

assume that the algebraic plan of the view on which the algorithm operates is given as input.

Example 2.4.1. To showcase the algorithm, we extend the view of our running example to also

perform an aggregation, returning the total cost of the parts for each device. Figures 2.5b and

2.5a show the view definition V ′ and a corresponding algebraic plan, respectively. The shaded

components are annotations inserted by the algorithm, which we explain below.

idIVM performs the 4 efficient passes of Figure 2.4.

Pass 1: Inferring ID information for intermediate views. Since i-diffs determine the

view tuples that have to be modified through their IDs, the view and all intermediate subviews

should contain as part of their output schema a set of ID attributes that form a key of the

corresponding view. idIVM determines the ID attributes that should be contained in the output

schema of each subview through the use of ID inference rules. An ID inference rule is supplied

for each operator type supported by the system and describes how the IDs of the view rooted at

56

SCAN%parts&

�%did&

SCAN%devices_parts&

γ%did;&sum(price)&→&cost&

SCAN%devices&

σ%&category&=&"phone"&�%pid&

Δ&u&parts&

Δ&u&�%1& Δ&u&=& parts&

Δ&u& 2& Δ&u&=&�% 1&�%

pid& did,&pid& did&

did,&pid&

did,&pid&

did&

did&

Δ&u&γ& Δ&u&=& 2&�%

Δ&

�%π&cost&Cache&

Δ&u&γ& Δ&u&=& 2&�% �%π&did&&Cache&

π did,totalprice→cos tpre ,totalprice+cΔ→cos tpost
(V_

Δ)

Δ&u&γ& =&f(Δ&&&&&&,&Input,&Output)&
u&

2&�%

(a) Algebraic plan (annotated by the ∆-script generator)

CREATE VIEW V’ AS
SELECT did, sum(price) AS cost
FROM parts NATURAL JOIN

devices parts NATURAL JOIN
devices

WHERE category = "phone"
GROUP BY did

(b) View definition

Figure 2.5. View definition and plan for extended running example

an operator p can be computed from the IDs of the subviews rooted at p’s children. Table 2.1

shows the ID inference rules for operators in QSPJADU .4 idIVM uses these rules to perform a

postorder traversal of the plan checking at each operator whether the IDs inferred by these rules

exist in the operator’s output schema. If this is not the case, idIVM automatically extends the

plan to include the required ID attributes.

Example 2.4.2. Figure 2.5a shows the set of IDs for each operator in a shaded oval on the top

right side of the operator.

Note that extending the view with additional ID attributes simply increases the width of

the view instance (i.e., the number of columns) but does not affect its cardinality (i.e., the number

of tuples). In particular, if Vorig is an original view with attributes Ā and VID is the view inferred

4 Union refers to the union all operator described in Section 2.2.

57

Table 2.1. Operator ID inference rules

Operator Output ID attributes
SCAN(R) key(R)
σφ(R) ID(R)
πD̄(R) ID(R)
R×S ID(R)∪ ID(S)
R onφ S ID(R)∪ ID(S)
R.φ S ID(R)
bag union R∪S ID(R)∪ ID(S)∪{b}
group by γḠ, f (M̄)...(R) Ḡ

by the ID-inference algorithm, then for all instances of the base tables the original view can be

computed from the original view simply by projecting out the additional attributes introduced by

the ID-inference algorithm (i.e., Vorig = πĀVID). Given that the number of additional ID attributes

is usually small compared to the number of attributes already in the view, we do not expect

the extension of the view schema with ID attributes to significantly affect the query evaluation

performance. Importantly, the above observations hold not only for operators in QSPJADU but

for any SQL operator (for the reader wondering how this can be the case for the duplicate

elimination operator δ, given that in general δ(πA,B(R)) is different from δ(πID,A,B(R)), consider

an implementation where the duplicate elimination operator δ above is replaced by the group by

operator γA,B).

Pass 2: Instantiating rules for each intermediate operator. To construct the ∆-script

for the view, the algorithm employs operator rules that describe how each operator can propagate

i-diffs over its input to i-diffs over its output.

Operator rules. An operator describes how to transform an i-diff ∆t
input over one of its

input schemas to an i-diff ∆t
out put over its output schema through a set of queries known as i-diff

propagation rules. These queries can access (a) the operator’s input i-diff ∆t
input and (b) the

data corresponding to the subview rooted at the operator or at one of its child operators. The

latter is the way in which idIVM allows operator rules to access data from the base tables. Since

an operator does not have knowledge of the exact place in the query plan where it appears to

58

ask for a query result over the base tables, it can access the base table data only indirectly by

asking for the subview rooted at one of its children through the use of the Inputi=l,r (standing

for left and right input, resp. for binary operators) or for the subview rooted at itself using the

Out put keyword, respectively. The input subviews can be requested either in their pre-state

form (i.e., using the instances of the base tables before the diffs were applied to them) or in the

post-state (i.e., using the final instances of the base tables after the diffs were applied to them).

An i-diff propagation rule can specify which of the two versions of the input it needs through the

subscripts pre and post. The output is always provided in pre-state.

Example 2.4.3. For instance, a general grouping and aggregate operator V = γḠ, f (X̄)→c(Input)

contains among others the i-diff propagation rule: ∆u
V = γḠ, f (X̄)→c(Inputpost nḠ ∆

+
Input), which

semijoins the post-state of the subview rooted at the operator’s child with an input insert i-diff to

find all tuples that belong to groups affected by the insertions and use them to recompute the

value of the aggregate function for these groups. The Inputpost keyword is the way in which the

operator asks for the (post-state of) some base data (in this case the base data defined by the

subview rooted at the operator’s child, which for the aggregate operator of Figure 2.5a is the

subview parts ./pid devices parts ./did σcategory=“phone” devices).

There are two different classes of operators in idIVM: The first consists of operators

which can produce an output effective i-diff by looking at one input i-diff at a time. These

operators are called non-blocking operators, in contrast to blocking operators which need to

inspect the entire set of input i-diffs before creating an effective output i-diff. The operator type

affects how the operator’s i-diff propagation rules are expressed. For non-blocking operators,

each rule is expressed over a single input i-diff, while for blocking operators, a rule is expressed

over all input i-diffs.

Example 2.4.4. The general aggregate operator γ of Example 2.4.3 is a non-blocking operator,

since it can decide how to propagate an input insert i-diff without looking at other input i-diffs

(e.g., delete or update i-diffs). The reason is that for each insert i-diff tuple it recomputes the

59

entire affected group from the base data thus reflecting indirectly also the changes incurred by

other input i-diffs. On the other hand, imagine a more efficient aggregate operator designed

specifically for the SUM aggregate function. This operator avoids recomputing entire groups by

combining all input i-diffs to figure out the amount by which the aggregate value of each group

has changed. While it avoids some base table accesses, it requires knowledge of all input i-diffs

and is thus a blocking operator.

Tables C.1-C.10 show the i-diff propagation rules for the operators considered in this

work, including join, union, generalized projection involving functions, antisemijoin and aggre-

gation. Rules for aggregation are provided in four different versions (see Tables C.4, C.6, C.8,

and C.9); one for general aggregation functions and others for specialized functions, such as

SUM, COUNT and AVG.

Some operator rules may also benefit from special caches to speed up IVM. For instance,

an aggregate AVG operator in the presence of a COUNT and SUM cache can incrementally

maintain its output without accessing the base tables. To accomodate such cases, idIVM allows

operators to declare special operator caches and associated cache maintenance rules, describing

how to compute the i-diffs that maintain the caches. The i-diff propagation rules can then be

expressed also over the operator cache schemas and the operator cache i-diffs. Table C.9 shows

the cache maintenance rules and i-diff propagation rules for the AVG operator.

Rule instantiation. In its second pass, the ∆-script generator algorithm employs the

predefined operator rules to compute how each base table i-diff is propagated from operator to

operator in the view plan. This is done as follows: For each base table i-diff schema ∆t
R, the

algorithm starts from the scan operator of the corresponding base table R and in a bottom-up

fashion instantiates the rules for all operators in the path from the scan operator to the root of the

plan.5 The rule instantiation simply consists in selecting from all rules for the particular operator

the ones that apply in the particular case (based on the input i-diff schema and other conditions)

5If the base table R appears with multiple aliases, this process is repeated for every scan operator of R.

60

SCAN%R" SCAN%S"

π%

�%

Δ"u"R"

Δ"+"

Δ"u"π" Δ"+"π"

Δ"u"

Δ"u"π" Δ"+" Δ"–"π"

��

γ" [non*blocking]%

γ%
sum"

Δ"u"γ" Δ"+"γ"

[non*blocking]%

[blocking]%

Figure 2.6. Rule DAG structure

and replacing the abstract schema used in the rules with the concrete schema of the particular

operator instance (e.g., for an operator V = πx(R) the general projection i-diff propagation rule

∆
+
V = πā, f (X̄)→c∆

+
R becomes ∆

+
V = πx∆

+
R).

Example 2.4.5. Consider an update i-diff schema ∆u
parts(pid, pricepre, pricepost) modeling

updates on the price attribute of table parts of our running example. Figure 2.5a shows on

the left the corresponding instantiated rules generated by the algorithm. The exact rule for the

aggregate operator is omitted due to lack of space. However, it is important to note that it is a

rule that mentions the input i-diff and the input and the output of the operator, respectively.

Note that for a single input i-diff an operator may create multiple output i-diffs. For

instance, an update i-diff going through a selection operator may lead to insert, update and

delete i-diffs, depending on whether a tuple satisfied the condition before and after the change.

Whenever the rules of an operator create multiple output i-diffs, the above computation continues

conceptually in parallel for each generated i-diff schema. This leads to a directed rule DAG,

whose nodes are instantiated rules and whose edges point from a rule to all rules that were

created using its output schema. Figure 2.6 shows such a structure. Note how blocking rules

convert the structure that would otherwise be a tree into a DAG.

Pass 3: Composing operator-level instantiated rules into a ∆-script. Each rule in the

DAG is a query expressed over the output schema of its parent rules (note that the DAG in Figure

2.6 is shown inverted with its root shown at the bottom). Thus each i-diff for the view (which

corresponds to a leaf) can be computed by composing the instantiated rules of its ancestors. The

61

exact order in which these compositions are performed does not matter, since all considered

i-diffs are effective. This is guaranteed by the fact that (a) the base table diff instance generator

creates effective diffs (as we will discuss in Section 2.5) and (b) i-diff propagation rules transform

effective input i-diffs to effective output i-diffs.

To make the generated plan more efficient, idIVM employs also additional caching, other

than the caching used internally by operators. In particular, for aggregate operators, whose rules

typically ask for the base data corresponding to their input/output (through the Inputi and Out put

keywords, resp.), idIVM attempts6 to create an intermediate cache in which it materializes this

result. This cache is treated as any other view and maintained during the IVM process. In

particular, idIVM first composes all rules that create the i-diffs for the cache and then using them

as input, composes the rest of the rules up to the next cache until it reaches the view.

Example 2.4.6. For instance, as we have seen in Figure 2.5a, the instantiated rule for the

aggregation mentions both the input and the output of the operator. Thus, idIVM tries to generate

two intermediate caches; one before the aggregate and another after the aggregate. Since however

the output of the aggregate coincides with the view (which is already materialized), idIVM creates

only the first cache and utilizes the already existing view as the second.

The result of this composition is a ∆-script, containing queries that compute i-diffs for an

intermediate cache/view and APPLY operators that use the DML statements corresponding to

each i-diffs type (shown in Section 2.2) to apply these i-diffs to the cache/view.

Example 2.4.7. In our running example idIVM employs an intermediate cache below the

aggregate operator. Thus, it composes the rules up to that point, updates the cache and then uses

it as input to compose the rules up to the view, which is subsequently updated. This leads to the

∆-script of Figure 2.7.

6Intermediate caches are not generated when they are expected to contain multi-valued dependencies (for
instance due to a many-to-many join), since in that case reading the result from the cache would incur more tuple
accesses than simply recomputing it on the fly from the base tables. idIVM exploits foreign key constraints to infer
the absence of multi-valued dependencies.

62

1 ∆u
Cache = ∆u

parts;
2 APPLY ∆u

Cache;
3 ∆u

V ′ = πdid,cost→costpre,cost+cost∆→costpost (V
′ on

γdid,sum(price∆)→cost∆(
πdid,pid,(pricepost−pricein)→price∆

(

∆u
Cache on πprice→priceinCache)));

4 APPLY ∆u
V ′;

Figure 2.7. ∆-script for running example

Pass 4: Optimizing the generated ∆-script. As a last step, idIVM optimizes the ∆-

script by performing semantic optimization, which minimizes each individual query included in

the plan. In contrast to general minimization, this minimization takes into account the special

semantics of i-diff tables. As described in Section 2.2, given a base table R(Ī, Ā) in its post-

state and i-diffs ∆
+
R (Ī, Āpost), ∆

−
R (Ī, Ā

′
pre), and ∆u

R(Ī, Ā
′
pre, Ā

′′
post) over this table, the following

constraints hold: (a) C1 : ∆
+
R ⊆ R, (b) C2 : πĪ∆

−
R ∩πĪR = /0, and (c) C3 : πĪ,Ā′′post

∆u
R nĪR⊆ πĪ,Ā′′R.

idIVM minimizes w.r.t. constraints C1 - C3 by employing on top of the standard relational

rewrite rules also the rewrite rules presented in Figure 2.8. Semantic minimization is crucial in

eliminating inefficiencies introduced by composing individual operator rules, improving in some

cases performance by more than 50%.

Designing operator i-diff propagation rules. The efficiency of the ∆-script obviously

depends on the provided i-diff propagation rule definitions. Reasoning about the efficiency of

individual rules is hard, as rules affect each other (e.g., a rule avoiding base table accesses may

not bring in some information that could be used by rules later in the plan, thus leading to higher

access cost later).

However, in this work we show that we do not have to get into this reasoning process.

Simply creating rules that individually avoid accessing the base tables when possible leads to

efficient ∆-scripts, as shown by our analytical and experimental results. To avoid data accesses,

the rules are even allowed to overestimate, i.e. skip some filtering that would require base table

63

For semijoin
∆
+
R nR.Ī σφ(X̄)R→ σφ(X̄post)∆

+
R

RnR.Ī σφ(Ȳ)∆
+
R → πĪ,Āpost→Āσφ(Ȳ)∆

+
R

∆u
R nR.Ī σφ(X̄)R→ σφ(X̄post)∆

u
R, if X̄ ⊆ Ā′′

RnR.Ī σφ(Ȳ)∆
u
R→ πĪ,Ā′′post→Āσφ(Ȳ)∆

u
R, if Ā′′ = Ā

∆
−
R nR.Ī σφ(X̄)R→ /0

RnR.Ī σφ(X̄)∆
−
R → /0

For antisemijoin
∆
+
R .R.Ī σφ(X̄)R→ σ¬φ(X̄post)∆

+
R

∆u
R .R.Ī σφ(X̄)R→ σ¬φ(X̄post)∆

u
R,

if X̄ ⊆ Ā′′

∆
−
R .R.Ī σφ(X̄)R→ ∆

−
R

R.R.Ī σφ(X̄)∆
−
R → R

For join
∆
+
R ./R.Ī R→ ∆

+
R

∆u
R ./R.Ī R→ ∆u

R
∆
−
R ./R.Ī R→ /0

* up to renaming

Figure 2.8. Rewrite rules for semantic optimization

accesses and propagate to their output i-diffs dummy tuples that do not affect the view.

Example 2.4.8. For instance, the selection operator allows a delete input i-diff to pass through

the operator unmodified. However, this means that the output i-diff will also instruct the deletion

of tuples that do not satisfy the selection conditions and thus do not exist in the view. Although

this is an overestimated i-diff, it does not affect the correctness of the generated ∆-script, since

the latter will simply try to delete some tuples from the view that do not exist. On the other hand,

this rule locally minimizes the base table accesses, as it avoids accessing the base tables to filter

out the tuples that do not satisfy the selection condition.

2.5 From modifications to i-diffs

We saw above how given a set of base table i-diffs, idIVM maintains the view. In this

section we explain how these base table i-diffs are generated from base table modifications.

This is a non-trivial problem, since as explained in Section 2.2, a single modification can be

represented through i-diffs of different schemas, each leading potentially to ∆-scripts of different

efficiencies.

64

idIVM solves the i-diff generation problem through the synergy of three components

shown in Figure 2.3: (a) a modification logger recording the base table modifications at data

modification time, (b) a base table i-diff schema generator deciding at view definition time which

base table i-diff schemas to generate, and (c) a base table i-diff instance generator, translating at

view maintenance time the modifications recorded in the log to instances of the pre-computed

i-diff schemas. Logging changes to the base tables can be easily performed through known

techniques, such as DBMS log inspections, timestamp queries or triggers (currently used by

idIVM). Therefore we focus next on the other two components.

Generating i-diff schemas. Given a view definition V , idIVM generates suitable base-

table i-diff schemas for all base tables mentioned in V . Insertions and deletions are straightfor-

ward cases: Consider a base table R(Ī, Ā) with key attributes Ī and non-key attributes Ā. For

each such table, the i-diff schema generator creates a single insert i-diff schema ∆
+
R (Ī, Āpost)

(containing all attributes of R) and a single delete i-diff schema ∆
−
R (Ī, Āpre) (containing all non-ID

attributes of R in pre-state form). This is based on the observation that pre-state values can lead

only to a more efficient ∆-script as they may reduce overestimation and the respective view index

lookups. For instance, as shown in Table C.3 with blue, a selection operator can exploit pre-state

attributes to filter out the tuples of an incoming delete i-diff that do not satisfy the condition.

The same does not hold though for post-state attributes included in update i-diffs. In-

cluding more post-state attributes in an update i-diff schema leads to a generally less efficient

∆-script, as it has to account also for changes in these attributes. Creating one update i-diff

schema for each subset of attributes of each base table is obviously not an option, due to the

exponentiality involved.

In idIVM we solve this problem by observing that the base table attributes can be divided

into sets of attributes whose updates lead to the same ∆-script and can thus be grouped together in

a single i-diff schema. For each operator op in the algebraic view plan, let Cop, be the set of (non-

key) base table attributes involved in any condition (e.g., selection, join etc)7. We refer to Cop as

7Base table key attributes do not need to be considered for updates as they are immutable.

65

the set of conditional attributes for op. The set of (non-key) base table attribute not included

in any Cop for any operator op in the view’s plan is referred to as the set of non-conditional

attributes NC. Non-conditional attributes may still affect the view (since they could be included

in the view’s output), but intuitively they do not affect the generated ∆-script (up to projections).

Updates on each set of conditional attributes Cop on the other hand may lead to a different

∆-script, since the updated values may affect whether the i-diffs make it past op’s condition.

Therefore for each base table R(Ī, Ā), the i-diff schema generation algorithm creates (a) for each

set Cop an update i-diff ∆u
R(Ī, Āpre, Ā′post), s.t. Ā′ = Ā∩Cop and (b) an additional update i-diff

∆u
R(Ī, Āpre, Ā′′post), containing the non-conditional attributes of R (i.e., Ā′′ = Ā∩NC).

Populating i-diff instances. Every time idIVM is invoked to maintain the view, the i-diff

instance generator simply populates the i-diff tables created at view definition time. This is done

by extracting the changes since the last view maintenance from the modification log and adding

them as diff-tuples to all i-diff tables that contain at least one of the modified attributes (in the

case of updates) and to the single insert and delete i-diff tables (in the case of inserts and deletes,

respectively). Note, that when extracting the modifications from the log, the algorithm combines

multiple modifications to the same tuple to a single modification, so as to generate effective diffs.

As discussed in Sections 2.2 and 2.4, this is crucial for the algorithm’s correctness.

2.6 Performance Analysis

We next analytically compute the speedup ratio of ID-based over tuple-based IVM (i.e.,

the ratio tuple-based cost
ID-based cost). A speedup ratio greater than 1 signifies that the ID-based approach has

a lower cost than the tuple-based approach and thus is more efficient than the latter, while a

speedup ratio lower than 1 signifies the opposite.

To compute the speedup we first compute the individual cost of each IVM approach. The

cost of the ID-based/tuple-based approach is measured in the combined number of tuple accesses

and index lookups incurred by the ∆/D-script, generated by the corresponding approach. For the

66

purposes of this analysis, we assume that both approaches have access to view indices on the view

IDs and additionally the tuple-based IVM has access to appropriate base table indices (which

are not required by the ID-based approach). We also try to be as general as possible regarding

the query plan that the DBMS might choose to execute a particular ∆/D-script. However, since

DBMSs employ complex optimizations that cannot be comprehensively accounted for in an

analytical model, the computed cost and the associated speedups reported in this Section should

only be used as rough estimates of the actual cost of performing IVM that illustrate the difference

in performance between the two approaches. For an experimental comparison of the two IVM

approaches, please refer to Section 2.8.

We next present the speedup for two representative cases: (a) SPJ views, which by default

do not involve intermediate caches and (b) Aggregate views involving grouping and associative

functions, which (by default) are supported by caches. For a detailed analysis explaining how

this speedup was computed, please refer to Section 2.7.

2.6.1 SPJ Views

Consider the SPJ view Vspj:

SELECT S̄ FROM R,R1, . . . ,Rn WHERE c

whose FROM clause involves a single alias of a table R, (b) a t-diff DR on R and (c) a corre-

sponding i-diff ∆R. 8

Parameters affecting speedup. The speedup of the ID-based approach over the tuple-

based approach can be expressed in terms of two parameters: the i-diff compression factor p

and the tuple-based computation cost per base table diff tuple a. The i-diff compression factor

p = |DVspj |/|∆Vspj | is the ratio of the size of the tuple-based diff to the size of the ID-based diff for

the view. p may be less than 1 (when i-diffs summarize the modifications to the view in a more

8Recall that we use the symbols ∆ and D to represent i-diffs and t-diffs, respectively.

67

compact way than t-diffs, as shown in Figure 2.2) but may also be greater than 1 (when i-diffs

are overestimating and trying to modify tuples that do not exist in Vspj). The second parameter is

the number of accesses a that the tuple-based approach has to perform on average to compute

the t-diff tuples for the view that result from a given t-diff tuple for the base table. This cost will

typically vary, depending on the plan chosen by the DBMS to evaluate the tuple-based D-script.

Speedup ratio. The speedup ratio of the ID-based approach over the tuple-based ap-

proach is given by the following formula:

(a) if ∆R/DR is an update i-diff/t-diff on attributes of R that are not involved in selection or

join conditions in Vspj, then

A: Speedup ratio = a+2p
1+p

(b) else (i.e., if ∆R/DR is any other update i-diff/t-diff or it is an insert or delete i-diff/t-diff)

B: Speedup ratio≥ min
(

a+2p
1+p ,1

)
Discussion. Let us first explain why update diffs on attributes of R that are non-

conditional may lead to a different speedup ratio than other types of diffs. Since the updates do

not affect how a tuple behaves w.r.t. selections or joins, they are guaranteed to lead to updates

(i.e., neither inserts, nor deletes) on the view. When this is the case (case (a) above), the ID-based

IVM algorithm can simply propagate the base table i-diffs to the view without accessing the base

tables, leading to a speedup ratio of a+2p
1+p . This speedup is in most practical cases greater than 1

(meaning that the ID-based is more efficient than the tuple-based approach). For the tuple-based

approach to perform better, it should be the case that a < 1− p, which can be satisfied only in

the corner case when the following conditions simultaneously hold: (a) the tuple-based approach

incurs a < 1 tuple accesses for each tuple in Du
R on average (which can only happen if many

tuples of Du
R share the same join attribute values and thus the joined tuples can be retrieved once

and reused for all of them) and (b) the ID-based approach is severely overestimating (i.e., p� 1).

68

We have experimentally verified that by following this pattern it is possible to create contrived

scenarios in which the tuple-based IVM outperforms the ID-based approach. However, in all

other cases, the ID-based approach performs better (with a difference that raises proportionally

to p).

When the base table diffs are insert or delete diffs or they are updates on attributes

involved in conditions (case (b) above), then they will lead in general to updates, inserts and/or

deletes on the view. If they lead to updates and deletes only, then the resulting speedup is the

same as in the first case (i.e., a+2p
1+p) and thus the ID-based approach is expected to perform better

in most cases. However, if they lead to inserts, then the two approaches will perform identically

and hence exhibit a speedup of 1. Finally, if the base table diffs lead to a combination of updates,

deletes and inserts, then the speedup will be a linear combination of the above two speedups and

thus will be greater than the smaller of the two (hence the use of inequality and the min function

in the above formula).

Thus for SPJ queries the ID-based IVM will always (up to the corner case described

above) perform at least as good as the tuple-based IVM and in most cases better then the latter.

The two approaches will only perform identically if the IVM workload is heavy on modifications

that lead to insertions to the view.

2.6.2 Aggregate Views

Consider the aggregate view Vagg:

SELECT Ḡ, f (X̄) AS g FROM R,R1, . . . ,Rn

WHERE c GROUP BY Ḡ

whose FROM clause involves a single alias of R, and f is an associative aggregation function

such as sum (b) a t-diff DR on R and (c) a corresponding i-diff ∆R.

To ease exposition, we isolate the aggregation operator of the query, expressing it through

the plan Vagg = γḠ, f (X̄)→gVspj, where Vspj is the plan for the SPJ query presented in Section 2.6.1.

69

We study the interesting case, where the ID-based IVM has identified that an intermediate cache

storing the input of the aggregate operator, which is the result of the SPJ query, is beneficial

(since without cache both approaches would perform identically). The tuple-based approach

does not use a cache, since it cannot benefit from it.

Both approaches operate in two two stages: They first compute the diff to maintain the

SPJ subview Vspj and then use it to maintain the final aggregate view Vagg. The second step is the

same in both cases. Thus the difference in performance comes from computing the diff for the

Vspj, which in the case of the ID-based approach is also used to maintain the cache. Let a and p

be defined as above for the subview Vspj (i.e., let p = |DVspj|/|∆Vspj | and let a be the average cost

incurred by the tuple-based diff to compute for each base table diff tuple the corresponding diff

tuples for the view Vspj).

Speedup ratio. The speedup ratio of the ID-based approach over the tuple-based ap-

proach is given by the following formula:

(a) if ∆R/DR is an update i-diff/t-diff on non-conditional attributes of R, then

Speedup ratio = a+x
1+p+x

(b) else

Speedup ratio≥ min
(

a+x
1+p+x ,

a+x
a+k+x

)
where x is a cost related to grouping that is shared by both approaches and thus can be safely

ignored for the purposes of our discussion and k is a parameter concerning insert diffs that we

will explain later.

Discussion. Similarly to SPJ views, we differentiate between cases where the base table

diffs lead to update or delete diffs on the view Vspj and cases where they lead to insert diffs on

Vspj.

In the first case the speedup ratio is s1 =
a+x

1+p+x . This speedup is always going to be

at least 1, meaning that the tuple-based approach can never perform better than the ID-based

approach. This happens because the cost a incurred by the tuple-based approach for each diff

70

tuple in DR is at least 1+ p, since for each such tuple it will have to incur at least one index

access (to find the tuple of the other relations it joins with) and p tuple accesses (to read the tuples

it joins with to create the corresponding p tuples in the view). Note that these are lower bounds

that apply when the view Vspj contains only one join. If it contains more joins, the speedup ratio

and thus the performance benefit of ID-based IVM will be even higher.

On the other hand when base table diffs lead to insert diffs on the view Vspj, the ID-based

approach will be performing the same plan with the tuple-based approach but will also be

inserting tuples into the cache. Thus if k is the number of tuples created in Vspj on average as a

result of a single diff in DR, then the speedup will be s2 =
a+x

a+k+x . This speedup is less than 1

(meaning that the tuple-based approach will be performing better), but now the loss is bounded,

as it is always 1 per tuple inserted into Vspj.

Similarly to SPJ views, when the base table diffs are updates on non-conditional attributes

(case (a) above), the generated diffs on the view Vspj are guaranteed to be update or delete diffs

and thus the speedup ratio will be equal to s1. In any other case (case (b)), the generated view

diffs will in general be combinations of update, delete, and insert diffs and thus the speedup will

be a linear combination of s1 and s2 (and thus bounded by the smaller of them).

To summarize, for all base table diffs that do not lead to inserts in the cache, the ID-based

approach is guaranteed to perform not worse (and the more complex the query the better) than

the tuple-based approach. It only performs worse in workloads heavy on modifications that lead

to insertions to the view, because it has to maintain a cache, so that the update and delete diffs

can benefit from it. However, even this loss is bounded and we expect it to not be significant in

practice. Moreover, this loss will be balanced out by the speedup on diffs that lead to deletes and

updates in the view, which benefit from the cache.

71

2.7 Detailed Performance Analysis

We next describe the detailed performance analysis of the ID-based and tuple-based

approaches that led to the equations of Section 2.6. The analysis covers two representative cases:

(a) SPJ views, which by default do not involve intermediate caches and (b) Aggregate views

involving grouping and associative functions, which (by default) are supported by caches. In

the following we assume that both approaches have access to view indices on the view IDs and

additionally the tuple-based IVM has access to appropriate base table indices (which are not

required by the ID-based approach).

2.7.1 SPJ Views

Consider (a) the SPJ view Vspj:

SELECT S̄ FROM R,R1, . . . ,Rn WHERE c

whose FROM clause involves a single alias of a table R, (b) a t-diff DR on R and (c) a corre-

sponding i-diff ∆R on R. We distinguish between two cases, depending on the type of the diff

DR/∆R.

Update diffs on non-conditional attributes

We first study base table update diffs on attributes of R that do not participate in any join

or selection condition in Vspj. Consider such an update t-diff/i-diff on attributes Ā′′ of R:

Du
R = ∆

u
R(Ī, Ā′pre, Ā′′post)

where Ī is the key of R.

Since we are interested in the IVM of an update on R, we decompose the condition

c into 3 subconditions cR, crest , cR−rest in conjunctive normal form, s.t. every one of their

72

conjuncts involves only attributes of R, only attributes of R1, . . . ,Rn and both attributes of R

and R1, . . . ,Rn, respectively. It is easy to see that Vspj can be computed through the algebraic

expression πS(σcRR oncR−rest E), where E = σcrest (R1× . . .×Rn).

In general, the i-diff ∆u
R (resp. t-diff Du

R) will lead to ∆u
Vspj

, ∆
+
Vspj

and ∆
−
Vspj

in the ID-based

approach (resp. Du
Vspj

, D+
Vspj

and D−Vspj
in the tuple-based approach). However, since the updated

attributes Ā′′ of R do not participate in the join condition cR−rest or the selection condition cR,

the update diff on R will only lead to an update diff on Vspj. Furthermore, since the selection

σcR simply filters out tuples of Du
R, it has the same effect as using a smaller initial diff, and is

therefore ignored in the rest of the analysis.

D/∆-script. The scripts returned by the IVM algorithms are in Table 2.2. The ID-based

Table 2.2. Scripts returned by the IVM algorithms

ID-based approach Tuple-based approach
∆u

Vspj
= Du

R Du
Vspj

= πS̄Du
R oncR−rest E

APPLY ∆u
Vspj

APPLY Du
Vspj

approach simply propagates the base table diff by exploiting the fact that no tuples need to be

inserted or deleted from the view, since the modified attributes Ā′′ do not participate in the join

condition.

Cost analysis. Both the ID-based IVM cost and the tuple-based IVM cost are the sum of

the diff computation cost of ∆u
Vspj

(respectively Du
Vspj

) and the view modification cost, which is the

cost of applying the modifications dictated by ∆u
Vspj

(respectively Du
Vspj

) on the materialized view.

We measure both costs in terms of block accesses to indices and tuples. Employing common

assumptions on the index structures9, the cost of retrieving (using an index) the m tuples whose

X̄ attributes have given x̄ values can be approximated by 1+m (i.e., 1 index lookup and m tuple

accesses). We next analyze each of the cost components.
9 We assume that indices satisfy the following conditions:

1. An index is either a hash index, or a B-tree with leaf nodes in secondary storage and non-leaf nodes in memory.
2. The retrieved tuples, if any, are not clustered together.
3. Caching of index leaves and/or tuples has minimal effects on the overall cost, as the cache is significantly smaller
than the database.

73

Diff computation cost. Since the ID-based approach simply propagates ∆u
R to the view

as is, its diff computation cost is zero. On the other hand, the cost of the tuple-based IVM varies

widely depending on the computation of Du
Vspj

= πS̄Du
R oncR−rest E.

We consider the common case where the join condition cR−rest is a conjunction of

equalities of the form R.J = Ri.Ji. Furthermore, we assume that the database is optimized for

tuple-based IVM, having all necessary indices for the efficient computation of Du
Vspj

= Du
R oncR−rest

E. Since the diff-table Du
R is considered in the IVM literature to be smaller than the base tables,

the DBMS will typically execute the above query through a diff-driven loop plan: For each tuple

t of Du
R it executes the subplan σc′R−rest

E, where c′R−rest is an instantiation of the cR−rest condition

where the attributes of R have been replaced with their values in t. Let us name a the average

number of accesses performed for each tuple of Du
R, i.e., the average number of accesses in each

execution of σc′R−rest
E. Then the diff computation cost of the tuple-based approach is |Du

R|a. The

DBMS may also choose to evaluate the query with a plan other than a diff-driven loop, but this

is expected to happen only when the diff tables are very large, when the use of an IVM approach

becomes questionable.

View modification cost. To apply ∆u
Vspj

(resp. Du
Vspj

) to the view, the DBMS will typically

utilize the view index to locate the view tuples that need to be modified. In either of the

approaches there will be as many view index lookups as tuples in the view diff (i.e., |∆u
Vspj
|= |Du

R|

lookups for the ID-based and |Du
Vspj
| lookups for the tuple-based approach, respectively). Once

the to-be-modified view tuples have been identified (which are in both cases equal to |Du
Vspj
|),

both approaches will incur |Du
Vspj
| view tuple accesses to update them. Table 2.3 shows the view

index lookups and view tuple accesses for each approach utilizing the i-diff compression factor

p = |Du
Vspj
|/|∆u

Vspj
|.10

Discussion. Table 2.3 summarizes the costs for the tuple-based and ID-based approach.

Combining them leads to the following speedup ratio of the ID-based over the tuple-based

10In the unlikely case, where the DBMS chooses to identify the to-be-modified tuples by performing a full scan
of the view instead of using the index, the view modification cost becomes the same for both approaches. In this
case, the difference between the two approaches reduces to the difference between their computation costs.

74

Table 2.3. Costs of ID-based and tuple-based IVM on Vspj

Costs ID-based Tuple-based
Diff-driven Other
loop plan plan

Diff computation 0 |Du
R|a E

View index lookups |Du
R| |Du

R|p |Du
R|p

View tuple accesses |Du
R|p

approach (assuming a diff-driven loop plan for the tuple-based approach):

Speedup ratio for Vspj =
|Du

R|(a+ p+ p)
|Du

R|(1+ p)
=

a+2p
1+ p

(2.1)

The relative performance difference between the two approaches varies depending on the

value of the compression factor p. When p≥ 1, the ID-based approach is guaranteed to be more

efficient with its absolute gain (i.e., the difference of accesses from the tuple-based approach)

raising proportionally to p. When 0 < p < 1, the ID-based approach is also more efficient in the

typical case when the tuple-based approach has to do at least one access for each tuple in Du
R

(which means that a > 1). For the tuple-based approach to perform better it should be the case

that a < 1− p, which can be satisfied only if the following conditions simultaneously hold: (a)

the tuple-based approach incurs a < 1 tuple accesses for each tuple in Du
R on average (which

can only happen if many tuples of Du
R share the same join attribute values and thus the joined

tuples can be retrieved once and reused for all of them) and (b) the ID-based approach is severely

overestimating (i.e., p� 1).

Other diffs

Consider now insert and delete i-diffs/t-diffs on the base relation R, as well as update

i-diffs/t-diffs on attributes of R that are involved in some join or selection condition in Vspj. Such

base table diffs will lead in general to a combination of ∆u
Vspj

, ∆
+
Vspj

and ∆
−
Vspj

in the ID-based

approach (resp. Du
Vspj

, D+
Vspj

and D−Vspj
in the tuple-based approach). For the cases in which a base

table diff is translated into an update or delete i-diff/t-diff on the view, the ID-based and tuple-

75

based algorithms will behave as described in Section 2.7.1 and thus the speedup ratio will be

a+2p
1+p . On the other hand, in the case when a base table diff is translated into an insert i-diff/t-diff

on the view, the ID-based and tuple-based algorithm will produce identical scripts, leading to a

speedup of 1 (i.e., the ID-based algorithm will degenerate to the tuple-based algorithm but will

not behave worse than the latter).

2.7.2 Aggregate Views

Consider (a) the aggregate view Vagg:

SELECT Ḡ, f (X̄) AS g FROM R,R1, . . . ,Rn

WHERE c GROUP BY Ḡ

whose FROM clause involves a single alias of a table R, and f is an associative aggregation

function such as sum, (b) a t-diff DR on R and (c) a corresponding i-diff ∆R on R.

To ease exposition, we isolate the aggregation operator of the query, expressing it through

the plan Vagg = γḠ, f (X̄)→gVspj, where Vspj is the algebraic plan for the SPJ query presented in

Section 2.7.1.

We consider the case where the ID-based algorithm has determined that it is beneficial

to create an intermediate cache storing the result of the SPJ subview Vspj, since otherwise both

approaches will be performing identically. The tuple-based does not employ a cache, as it cannot

benefit from it.

Similarly to the case of SPJ views, we distinguish between two cases depending on the

type of the base table diff DR/∆R.

Update diffs on non-conditional attributes

Consider an update t-diff/i-diff on attributes Ā′′ of R that are not involved in any condition

in Vagg:

Du
R = ∆

u
R(Ī, Ā′pre, Ā′′post)

76

where Ī is the key of R.

Cache diff computation / modification cost. The ID-based approach maintains an

intermediate cache, which is equivalent to Vspj. The cache incurs cache diff computation cost and

cache modification cost, which are also equivalent to the diff computation and view modification

cost of Vspj. There is no intermediate cache for the tuple-based approach.

View diff computation cost. We consider the case where f is incrementally computable.

That is, there is an incremental function fD that inputs Du
Vspj

(S̄, X̄pre, X̄post) where S̄ is the key

of Vspj, and outputs Du
Vagg

(Ḡ,gpre,gpost). For example, when f is the sum function, fD is also f ,

since sum is an associative aggregation function. Given fD , the tuple-based approach computes

Du
Vagg

= γḠ, f∆(X̄)→gDu
Vspj

.

Given that |Du
R| is much smaller than base tables, the number of groups in Du

Vagg
will

be smaller than the number of groups in Vagg. The efficient implementation for γ is thus hash

aggregation with in-memory buckets, which can be pipelined. Due to pipelining, no additional

block accesses are incurred for γ. Thus, the tuple-based approach has the same diff computation

cost for Vspj and Vagg.

As an optimization, the ID-based approach uses the UPDATE RETURNING statement

to update the cache and return the result of the update in a single step. Thus, ∆u
Vspj

is obtained

without additional accesses over cache modification costs. Similar to the tuple-based approach,

∆u
Vagg

= γḠ, f∆(X̄)→g∆u
Vspj

, and the γ uses pipelined hash aggreation. Thus, the ID-based approach

also has the same diff computation cost for Vspj and Vagg.

View modification cost. To apply ∆u
Vagg

(resp. Du
Vagg

) to the view, both approaches will

incur an index lookup and a tuple access per tuple in the i-diff (resp. t-diff). We denote the

grouping compression factor g = |Du
Vagg
|/|Du

Vspj
| in Table 2.4. Discussion. For Vagg, Table 2.4

summarizes the costs for both ID-based and tuple-based approaches. Combing them leads to the

following speedup ratio of the ID-based over the tuple-based approach (assuming a diff-driven

77

Table 2.4. Costs of ID-based and tuple-based IVM on Vagg

Costs ID-based Tuple-based
Diff-driven Other
loop plan plan

Cache diff computation 0 –
Cache index lookups |Du

R| –
Cache tuple accesses |Du

R|p –
View diff computation 0 |Du

R|a E
View index lookups |Du

R|pg
View tuple accesses |Du

R|pg

loop plan for the tuple-based approach):

Speedup ratio for Vagg =
a+2pg

1+ p+2pg
(2.2)

For the tuple-based approach to perform better on Vagg, it should be the case that

a+2pg
1+p+2pg < 1, which implies that a < 1+ p. However, we will show that this is never pos-

sible. The average cost a spent by the tuple-based IVM for each diff tuple in Du
R will always

be at least 1+ p, as for each such tuple t the algorithm would have to perform (a) at least one

index access to check whether t joins with some of the other relations in the FROM clause and

(b) at least p tuple accesses to retrieve the tuples it joins with from the other relations to create

p diff tuples in Du
Vspj

. Note that these are the lower bounds for a that happen when the query

contains just a single join R ./ R1. For longer join chains the tuple-based IVM will have to

perform additional index and tuple accesses, yielding even worse performance compared to the

ID-based approach.

Note that the above analysis exploits the absence of multivalued dependencies in Vspj

(which is a necessary condition for idIVM to create a cache). If there was a multivalued

dependency, multiple tuples in Du
R could share the same computation (and thus it would not be

the case that each of them would incur at least 1+ p accesses).

78

Other diffs

Similarly to the SPJ views, an insert and delete base table diff or an update diff on an

attribute of R involved in a condition, might lead to insert, update and delete diffs on Vspj. For

the cases that lead to deletes and updates on Vspj the cost will be the same as the one outlined in

Section 2.7.2.

On the other hand when base table diffs lead to insert diffs on the view Vspj, the ID-based

approach will be performing the same plan with the tuple-based approach but will also be

inserting tuples into the cache. Let k be the number of tuples created in Vspj on average as a result

of a single diff in DR. Then the cost of the tuple-based and ID-based approach is |DR|(a+2pg)

and |DR|(k+ a+ 2pg), respectively. Thus the speedup ratio is a+2pg
a+k+2pg . This speedup is less

than 1 (meaning that the tuple-based approach will be performing better). However, this loss is

bounded, as it is always 1 per tuple inserted into Vspj.

2.8 Experimental Evaluation

To compare the performance of ID-based and tuple-based IVM, we ran two sets of

experiments. In our first set of experiments we studied the performance of both approaches on a

diverse workload of views, by applying them on views commonly used in social networks. In

our second set of experiments we studied the effect of varying different parameters on both the

view and the data (such as selectivity, fanout, number of joins and base-table diff size).

In all cases we used idIVM to generate the ∆-script and D-script (the latter was produced

using our implementation of idIVM with tuple-based diff propagation rules instead of the standard

ID-based propagation rules). We then measured the times to run each script in PostgreSQL. All

experiments were run using Ubuntu LTS 12.04, OpenJDK JRE 7 and PostgreSQL 9.1, on top of

an Amazon Web Services (AWS) m1.large dedicated instance configured with 1,200 input/output

operations per sec (IOPS) for 16KB blocks. The configured IOPS provide predictable throughput

for random block accesses. Each experiment was run with cold PostgreSQL page buffers and

79

Relation Tuples
User 1M
FriendList 100M
Microblog (i.e. tweets) 20M
Retweets 4M (#tweets × 10% × 2 retweets per tweet)
Mentions 8M (#tweets × 20% × 2 mentions per tweet)
Rel Event Microblog 16M (#tweets × 40% × 2 events per tweet)

(a) BSMA relation sizes

Query Description
Q7 Mentioned users within a time range
Q10 Users who are retweeted within a time range
Q11 Pair of retweeting users, grouped by retweeting times
Q15 Users talking about events within a time range
Q18 Pairwise count of mentions
Q*1 Aggregate of friends of friends within the same city
Q*2 Aggregate of retweeters for every user
Q*3 Aggregate of users who tweet about topics

(b) BSMA queries and additional Queries

Figure 2.9. Configuration of social analytics experiments

Linux disk buffers, which is the common case when large number of views need to be maintained.

2.8.1 IVM in social analytics

To study the relative performance of ID-based and tuple-based IVM on a diverse set of

real queries, we applied both IVM approaches to a workload of analytics views over social media.

Maintaining analytics over social media is a primary use case for IVM techniques because: (a)

large base tables are produced by social media such as Twitter and Facebook, (b) rapid, frequent

ID#IVM#(sec) 0.07 0.07 0.09 0.73 0.16 14.24 0.64 0.43
Tuple#IVM#(sec) 2.04 3.98 2.26 3.23 2.15 364.50 4.56 3.75

29x#

54x#

26x#

4x#
14x#

26x#

7x# 9x#

0#
10#
20#
30#
40#
50#
60#

Q7# Q10# Q11# Q15# Q18# Q*1# Q*2# Q*3#

Speedup&&

Figure 2.10. Speedup & IVM time for extended set of BSMA queries

80

updates occur on the base tables, and (c) analytic views that monitor metrics and trends need to

be updated continuously.

To generate the workload, we utilized the Benchmark for Social Media Analytics (BSMA)

[56]. Figure 2.9a shows the size of the relations generated, while Figure 2.9b provides a summary

of the workload, which comprises:

• 100 update diffs on the User table for attributes tweetsnum (i.e number of tweets) and

f avornum (i.e. number of favorites)

• Views corresponding to queries Q7, Q10, Q11, Q15 and Q18 from BSMA, which exhibit

join chains and aggregates, hence resulting in high cost for view re-computation. These

queries are also minimally extended to: (a) extend the SELECT clause with attributes

tweetsnum and f avornum (b) remove the ORDER BY and LIMIT and the ID parameter in

the WHERE clause in order to create larger views where the benefit of the IVM becomes

apparent.

• An additional 3 aggregate views over the BSMA schema, labeled as Q*1, Q*2 and Q*3.

Whereas queries Q7, Q10, Q11, Q15 and Q18 include aggregation, this aggregation is not

affected by the updated attributes. Since, as we have discussed in Section 2.6 the ID-based

and tuple-based approaches behave differently in the presence of aggregates affected by

the updates, we designed views Q*1, Q*2 and Q*3 to include such aggregates.

Figure 2.10 shows the speedup ratio of the ID-based over the tuple-based approach for

each of the views. The speedup varies widely between the 8 different views and its value does

not seem to be determined by whether a view contains an aggregate affected by an update or not.

From the reported views, it is interesting to look at the extreme cases with either very high or low

speedup. Queries Q10 and Q*1 create a huge benefit for the ID-based IVM due to the fact that

the tuple-based IVM has to incur a large number of data accesses, which can be avoided by the

ID-based IVM. Interestingly, this need for data accesses is created in different ways by each of

81

Relation Tuples Size
parts 5M 170MB
devices 5M 170MB
devices parts 50M 3GB

(a) Relation sizes

Parameter Defaults
d: Diff size 200
s: Selectivity 20%
f : Fanout 10
j: Joins 2

(b) Parameters

∆u
parts = Du

parts(pid, pricepre, pricepost)

(c) Base-table Diff

Figure 2.11. Configuration of varying parameter experiments

the two queries. In Q10 it is created by a long join chain (Q10 joins 4 relations), while in Q*1 it is

created by a combination of a long join chain with a high selectivity that appears at the end of the

join chain (so that the tuple-based has to perform a lot of data accesses before it can decide that a

tuple will be dropped). Finally, Q15 displays a relatively low speedup because the resulting view

and the number of tuples that need to be updated in the view is very large. This makes the view

update time component (which is shared by both the ID-based and the tuple-based approaches)

dominate the IVM cost, thus leading to a relatively small speedup. However, it should be noted

that even in this case the ID-based approach outperforms the tuple-based approach by a factor of

4.

2.8.2 Effect of data & query parameters

To study in a more controlled fashion how the structure of the view and the data affects

the ID-based and tuple-based IVM, we next ran a second set of experiments, in which we

picked a single view and measured the performance of both ID-based and tuple-based IVM on

maintaining the view, while varying different parameters of both the view definition and the

underlying data. For ease of exposition we employed the view used in our running example and

shown in Figure 2.5a.

Experimental setup. Figure 2.11 shows the properties of the dataset and the view used

in the experiments. Figure 2.11a shows the sizes of the relations, Figure 2.11c presents the

employed base-table diff (which captures updates on the prices of parts) and Figure 2.11b lists the

82

d 100 200 300 400 500
Speedup 5.5 4.1 3.9 4.0 3.9

D*

D*

D*

D*

D*

B*

B*

B*

B*

B*

A*

A*

A*

A*

A*

C*

C*

C*

C*

C*

100* 200* 300* 400* 500*
0*
2*
4*
6*
8*

10*
12*
14*
16*
Secs(

d:(Diff(size((#(of(tuples)(

(a) Varying Diff Size

j 2 3 4 5 6
Speedup 1.2 1.7 2.2 2.8 3.3

2* 3* 4* 5* 6*
0*

5*

10*

15*

20*

25*

30*

35*
Secs(

j:(Number(of(joins(

(b) Varying Number of Joins

s 6 12 25 50 100
Speedup 15.9 6.6 3.3 1.9 1.2

6) 12) 25) 50) 100)
0)
1)
2)
3)
4)
5)
6)
7)
8)
9)
Secs(

s:(Selec+vity((%)(

(c) Varying Selectivity

f 5 10 15 20 25
Speedup 5.0 4.3 4.1 4.1 3.9

5) 10) 15) 20) 25)
0)
2)
4)
6)
8)
10)
12)
14)
16)
18)
Secs(

f:(Fanout(

(d) Varying Fanout

A ID#based)IVM B Tuple#based)IVM C SDBT#fixed D SDBT#streams Cache)Update View)Diff)Computation View)Update

Figure 2.12. View maintenance time of ID-based IVM vs tuple-based IVM and two DBToaster-
inspired systems for varying parameters

parameters that we varied in the experiments and their default values. We varied four parameters:

(a) The size d of the base-table diff (i.e., the number of price updates that happened), (b) the

number of joins performed by the view (as we will explain later we extended the view that by

default performs two joins with additional joins), (c) The selectivity s of the selection condition

category=“phone” (i.e., the percentage of devices tuples that satisfy the condition), and (d)

the fanout f from parts to devices parts, i.e. the number of parts for each device. (Note that

the fanout from association table devices parts to entity table devices is always 1.) For each

experiment varying a parameter, we used for all other parameters their default values shown in

83

Figure 2.11b.

Figure 2.12 shows the view maintenance times for ID-based IVM versus tuple-based

IVM and the resulting speedup of ID-based over tuple-based IVM. The cost of each approach

is broken down to its components. Column A represents ID-based IVM, with the top stack

(diagonally striped) corresponding to cache update time (recall that the input of an aggregate

is materialized as an intermediate cache), and the bottom stack (solid colored) corresponding

to view update time. No stack is shown for the cache/view diff computation time as both are

negligible. Column B represents tuple-based IVM, with the top stack (horizontally striped)

corresponding to view diff computation time, and the bottom stack (solid colored) corresponding

to view update time. No stack is shown for cache update time, since as we have explained

the tuple-based approach does not use a cache as it cannot benefit from it. Columns C and D

correspond to simulations of DBToaster [2], which we discuss in Section 2.8.3. We next explain

the effect of varying each of the parameters.

Varying the base-table diff size. Figure 2.12a illustrates the effects of varying the diff

size d linearly from 100 to 500 tuples11. As shown on the figure, the speedup stays within

4-5. The experiment also shows a slight downward trend on the speedup. This is because as d

increases, the chance also increases for reading a block of the devices table (out of its 20k blocks)

from PostgreSQL’s page buffers. In the running example, this buffering benefits tuple-based

IVM, but not ID-based IVM.

Varying the number of joins. Figure 2.12b illustrates the effect of joins on the speedup.

For this experiment we consider more complex views by augmenting the original view definition

with j additional joins as follows: (i) devices parts is joined with tables R1 . . .R j, such that each

join is 1-to-1 on (pid, did). This simulates joins across vertically-decomposed tables, which is

common practice in data warehousing. (ii) The selection σcategory=“phone” is disabled in order

to focus on the effects of each additional join. Figure 2.12b shows that the total running time

11Similar trends can be observed for diff sizes up to 15,000 tuples. This is the point where it is beneficial to
recompute the view rather than apply IVM, as discussed in prior work [29].

84

of ID-based IVM is unaffected by linearly varying j between 2 (i.e., the original view with no

additional joins) to 6 (the view with four additional joins). On the other hand, the total running

time of the tuple-based IVM increases with each additional join, making the speedup of ID-based

IVM arbitrarily high, as the complexity of the query increases. This happens due to the fact that

tuple-based IVM has to perform all joins in order to compute the entire view tuples that have to

be modified, in contrast to the ID-based IVM that can simply propagate the base-table diff to the

view and avoid performing any joins.

Varying the selectivity of the selection condition. Figure 2.12c shows how the speedup

is affected by the selectivity s (i.e., the number of devices tuples that satisfy the condition). We

vary s on a log scale from 6% to 100%. Allowing more tuples to pass through the selection

adversely affects the performance of ID-based IVM. The reason is that more tuples of the devices

table join with the other tables and thus the size of the intermediate cache employed by the

ID-based approach increases. This in turn leads to a higher cost of updating the cache. It should

be noted however that even at 100% selectivity, ID-based IVM is faster than tuple-based IVM,

albeit at a lower speedup of 1.2. Thus, ID-based IVM is at least on par with tuple-based IVM,

and performs better in the common case where the selection filters a subset of the base table

tuples.

Varying the fanout. Finally, Figure 2.12d illustrates the effects of varying the fanout

f of the join (parts, devices parts) linearly between 5 to 25. For all values of the fanout, the

ID-based IVM performs better than the tuple-based IVM by a factor of 4-5 times.

We highlight that the ID-based approach consistently outperforms the tuple-based ap-

proach. This is the case even though the experimental conditions were designed to explicitly

benefit the tuple-based IVM. In particular, (a) we assumed the existence of appropriate base table

indices to speedup tuple-based joins (without counting the associated index maintenance cost)

and (b) we did not use a cache for the tuple-based IVM, to avoid the cache maintenance cost,

since tuple-based maintenance of associative aggregate functions does not benefit from caches.

When these optimizations are inadmissible, ID-based IVM will exhibit an even higher speedup.

85

2.8.3 Comparison to the state of the art

Finally, we compared idIVM to DBToaster [2]; the current state of the art IVM system,

which, while being essentially a tuple-based system, has been shown to significantly outperform

prior IVM approaches. DBToaster’s performance is the result of five major optimizations: (a)

performing IVM one diff tuple at a time (which leads to reducing D-script joins with a diff table

into selections), (b) compiling the D-script into code, instead of SQL statements, (c) utilizing an

in-memory implementation, (d) aggressively pushing aggregations down, and (e) materializing a

large number of intermediate views (i.e., caches) that are used to maintain the original view and

each other. On the other hand, idIVM benefits most from using (a) ID-based diffs and (b) update

diffs (in contrast to DBToaster, where updates are simulated through inserts and deletes).

These differences make the two systems not directly comparable. Since idIVM could in

principle also benefit from DBToaster’s optimizations a-d, we next focus on comparing idIVM to

the intermediate view materialization strategy used by DBToaster. To this end, we designed a

DBToaster-inspired implementation (denoted as Simulated DBToaster or SDBT) that runs on

top of a DBMS and uses the same intermediate views as the original DBToaster implementation

(up to aggregation push-down). We then executed SDBT on all scenarios considered in Section

2.12. Since, in contrast to idIVM, DBToaster creates different intermediate views depending

on the types of allowed base-table diffs, we ran two different versions of SDBT: one assuming

that only diffs to the parts table are possible (referred to as SDBT-fixed) and one assuming that

all base tables may change (referred to as SDBT-streams). Columns C and D in Figure 2.12

show the times of SDBT-fixed and SDBT-streams, respectively. We observe that idIVM in all

cases significantly outperforms SDBT-streams, while it is in most cases slightly slower then

SDBT-fixed. It should be noted however that we allowed both SDBT-fixed and SDBT-streams to

employ update t-diffs. Had they simulated updates through inserts and deletes, as is the case in

DBToaster, their performance would have been worse.

Note that SDBT captures only one of the optimizations used in DBToaster. Furthermore,

86

SDBT (alike idIVM and tuple-based IVM) operates on large data, residing in secondary storage

and managed via a database (PostgreSQL in this case). Due to the mix of optimizations involved

and its main memory orientation, DBToaster behaves differently from SDBT. Experiments we

conducted with DBToaster showed for instance that the compilation to code and in-memory

implementation lead to 50-300 times faster execution than the PostgreSQL-based SDBT-fixed.

On the other hand, the in-memory execution severely limits DBToaster’s scalability (allowing it

to scale only up to 2% of the data size used in our experiments when diffs are allowed on all

base tables). Moreover, the lack of set-processing makes DBToaster’s performance deteriorate

much faster than SDBT with increasing diff sizes (e.g, DBToaster’s speedup over SDBT-fixed

drops from 300x for a diff size of 100 tuples to 50x when the diff size becomes 500).

2.9 Generalization to SQL++

In subsequent sections, we generalize idIVM to handle SQL++, a nested and schema-less

data model and query language. The main extensions and contributions are:

• Handling nested data: The i-diff format, system architecture and i-diff propagation rules

are generalized to handle nested data structures in SQL++ with the inferred schema

information from view definition. SQL++ data model is described in Section 2.10 and the

generalized i-diff format is described in Section 2.12.

• Generalized provenance: Since SQL++ data model is schema-less and therefore has no

notion of IDs, the ID-based information in early sections has been generalized as built-in

provenance in SQL++ data model and query language (see Section 2.11).

• i-diff propagation rules for SQL++ operators: For the scope of SQL++ operators that we

consider, i-diff propagation rules are listed. In particular, we show that rules for equivalent

SQL++ query plans behave equivalently. This is described in Section 2.13.

• Schema vs schema-less: Although the SQL++ data model may not have any schema-

87

level information declared, from the view definition there is still information regarding

the schema that can be statically inferred. idIVM utilizes this information to improve

performance of IVM, including building indexes and delta scripts at view definition time,

while at view maintenance time it also dynamically handles any i-diffs that show up deeper

than the inferred schema. Finding and applying i-diffs deeper than the inferred schema are

discussed in Section 2.14 and 2.15.

We use the following example to demonstrate how the extended idIVM handle nested

data and view in SQL++.

Example 2.9.1. Consider the Yelp Open Dataset [33] that stores businesses, reviews and users.

The businesses table stores data of businesses (restaurants). An example businesses tuple is as

follows:

{

business_id: ’tnhfDv5Il8EaGSXZGiuQGg’,

name: ’Garaje’,

neighborhood: ’SoMa’,

address: ’475 3rd St’,

city: ’San Francisco’,

categories: [

’Mexican’,

’Burgers’,

’Gastropub’

],

// ...

}

The reviews table stores data of business reviews and references the businesses table and the

users table by ID. An example reviews tuple is as follows:

88

{

review_id: ’zdSx_SD6obEhz9VrW9uAWA’,

user_id: ’Ha3iJu77CxlrFm-vQRs_8g’,

business_id: ’tnhfDv5Il8EaGSXZGiuQGg’,

stars: 4,

date: ’2016-03-09’,

text: ’Great place to hang out after work...’,

// ...

}

The users table stores data of users and has nested data including friends for friends list and

elite for elite years. An example users tuple is as follows:

{

user_id: ’Ha3iJu77CxlrFm-vQRs_8g’,

name: ’Sebastien’,

fans: 1032,

friends: {{

’wqoXYLWmpkEH0YvTmHBsJQ’,

’KUXLLiJGrjtSsapmxmpvTA’,

’6e9rJKQC3n0RSKyHLViL-Q’

}},

elite: {{

2012,

2013

}},

// ...

}

89

Note that friends and elite were originally JSON arrays in Yelp Open Dataset. Since we restrict

the scope of data model in this work to exclude arrays, we have changed arrays in the example

to bags (e.g., {{...}}). Formal description of the data model and scoping can be found in

Section 2.10.

Consider the following view V returning list of businesses in ‘San Francisco’ and their

reviews in a nested bag by using SQL++ GroupBy operator:

CREATE VIEW V AS

SELECT business_id, (

SELECT *

FROM reviews NATURAL JOIN users

WHERE business_id=businesses.business_id

) AS full_reviews

FROM businesses

WHERE city = "San Francisco"

A base table diff ∆b that modifies an elite year of a user

<users: {type: update,

diff: {{

#(uid=Ha3i) {

type: update,

diff: {

elite: {

type: update,

diff: {{

#(eid=9kjb) { type: update, post: 2014 }

}}

}

}

90

}

}}

}>

is transformed to the following view i-diff ∆V by idIVM

{{

#() <

type: update,

diff: {

full_reviews: {

type: update,

diff: {{

#(uid=Ha3i) {

type: update,

diff: {

elite: {

type: update,

diff: {{

#(eid=9kjb) { type: update, post: 2014 }

}}

}

}

}

}}

}

}

>

}}

Notice that in the above i-diff, the provenance of the first level (i.e., the businesses) is left uncon-

91

strained as #(), which makes the i-diff applicable to multiple businesses and multiple reviews in

V as the user can review a business multiple times. Such i-diffs can be applied efficiently because

idIVM employs a smart provenance-based index, to be described in Section 2.15.1, which can

target directly into the second level. Also notice that the diff to elite years is deeper than the view

definition of V and therefore is unknown from any inferred schema of V, whereas idIVM can

handle such i-diffs automatically.

The above view V has an equivalent view V1 as follows:

CREATE VIEW V1 AS

SELECT business_id, full_reviews

FROM businesses NATURAL LEFT OUTER JOIN (

reviews NATURAL JOIN

users

)

WHERE city = "San Francisco"

GROUP BY business_id INTO full_reviews

Notice that V uses a sub-query to create the nested full reviews table, whereas V1 uses a

combination of JOINs and GROUP BY. We will show in this work that idIVM can handle

both views equivalently well by transforming base table diff ∆B to view diff ∆V with partial

provenance.

2.10 SQL++ data model

In this section we describe SQL++ data model and query language, which idIVM is

generalized to handle.

2.10.1 Data model

We adopt the SQL++ data model of [42], which is a superset of both SQL relational

tables and JSON. Figure 2.13 shows the BNF grammar for SQL++ values. The provenance part

92

1 value → provenance null
2 | provenance missing
3 | provenance scalar
4 | provenance complex
5 provenance → #(key = value (, key = value)*)
6 scalar → primitive
7 | enriched
8 primitive → ’ string ’
9 | number

10 | true
11 | false
12 enriched → type (primitive (, primitive)*)
13 complex → tuple
14 | array
15 | bag
16 tuple → { (name : value (, name : value)*)? }
17 array | [(value (, value)*)?]
18 bag → {{ (value (, value)*)? }}

Figure 2.13. BNF Grammar for SQL++ Values

of the BNF is an extension of idIVM and is discussed in Section 2.11.1.

A SQL++ database generally contains one or more SQL++ top-level named values. A

name is a string and is unique. A value is a scalar, complex, missing or null. A complex value is

either a tuple or a collection. A tuple is a set of attribute name/value pairs, where each name is a

unique string with the tuple (as in SQL).

A collection is either an array or a bag. Both arrays and bags may contain duplicate

elements. An array is ordered (similar to a JSON array) and each element is accessible by its

ordinal position. In contrast, a bag is unordered (similar to a SQL table) and its elements cannot

be accessed by ordinal position.

A scalar value is either primitive or enriched. Primitive values are the scalar values of

the JSON specification, i.e. strings, numbers or booleans. Enriched values are extensions over

JSON, and are specified using a type constructor over primitives.

The elements of an array/bag can be any kind of value and can be heterogeneous. That is,

there are no restrictions between the elements of an array/bag. Furthermore, unlike SQL where

the values are tables that have homogeneous tuples that have scalars, SQL++ allows arbitrary

composition of complex values.

93

Scope

In this work, we restrict the scope of data model to exclude arrays, missing and enriched

values.

2.10.2 Algebra of query language

Table 2.5. SQL++ Operators

Novel Semi-Structured
Operators

1 ScanCollection ≫C

2 ScanTuple ≫T

3 Ground
4 NavArray []
5 NavTuple •
6 FunctionCall λ

7 ReturnArray
8 ReturnBag
9 ReturnTuple

10 ReturnSingle
11 ApplyPlan α

12 Assign
13 InnerCorrelate
14 LeftCorrelate
15 ConstructArray
16 ConstructBag
17 ConstructTuple

Extensions of
Relational Operators
18 Select σ

19 Project π

20 InnerJoin on
21 LeftJoin on
22 FullJoin on
23 GroupBy γ

24 Sort
25 OffsetLimit
26 Union d
27 Intersect e
28 Except \
29 Distinct δ

30 Exists
31 SemiJoin n
32 AntiJoin B

By first translating a SQL++ query into an algebraic plan comprising SQL++ operators,

idIVM is able to take an algebraic approach to rewrite each operator in the view query into

operators that comprise the i-diff query. Table 2.5 lists the algebraic operators of SQL++. Since

SQL++ is a superset of SQL, SQL++ operators include extensions of relational operators (e.g.,

Select, Project, Join operators and Set operators) as well as novel operators for semi-structured

query processing (e.g., Return operators, Construct operators, ApplyPlan and InnerCorrelate).

These include a class of operators e.g., set operations, join operators, returns, constructs, correlate,

apply etc. The semantics of these operators can be found in Appendix D. Although this paper

94

focuses on the algebraic level of operators, there is a corresponding query language with syntax

that can be found in [42].

One important note is that unlike classical relational operators that require source tables

to have fixed schemas, SQL++ operators impose no schema requirements on the source data.

A SQL++ operator inputs/outputs a collection of binding tuples. A binding tuple is a tuple

of various variables. All variables can be inferred exclusively from the SQL++ query without

accessing the source data. There are two exceptions regarding operators: (a) the Return operators,

which input a collection of binding tuples and output an array/bag/tuple value, and (b) the ground

operator which is used to bootstrap the query evaluation process by outputting a single binding

tuple without receiving anything in its input.

An environment in SQL++[42] is also a binding tuple and used to model the data that

is used by the query. Suppose Γ is the environment of a plan P. Consider an operator within

P that inputs a bag of binding tuples B. For each input binding tuple b ∈ B, the operator will

be evaluated in the environment b‖Γ. In case of a nested plan that is attached to an operator

(e.g., ApplyPlan and InnerCorrelate), its environment is the concatenation of the outer plan’s

environment and the new context introduced by the operator (e.g., input binding tuples to

ApplyPlan and InnerCorrelate). In idIVM, environment Γ is available to every query by having

the Ground operator produce Γ as the single binding tuple in its output. Since Ground is the only

allowed leaf node of an algebraic plan, in this way Γ becomes available throughout the query.

Each SQL++ operator can be specified with one or more terms, denoted as ẍ, that are

evaluated in the environment of the operator. For example, σc̈ is specified with a term c̈ that is a

boolean condition. A term is a SQL++ expression that is restricted to:

• A value literal (i.e constant)

• A variable

• A boolean logic expression (i.e. ∧, ∨, ¬) of terms

95

• An equality condition of two terms

• An inequality condition (i.e. <, ≤, >, ≥) of two terms

For ease of exposition, we also use ẍ to denote the result of evaluating ẍ within the environment

of its operator, wherever the meaning is unambiguous.

Scope

For SQL++ operators, we restrict the scope to a subset of SQL++ denoted by QSPJADU

that includes SPJ, Scan, Navigate, InnerCorrelate, ApplyPlan, ConstructTuple, GroupBy and

Aggregate (as function calls), which are colored in brown color in Table 2.5.

2.11 Extension of IDs to Provenance

To efficiently maintain a view, idIVM needs to know how data in the view is computed by

keeping around the provenance of the data. In earlier sections, we have shown that idIVM uses

IDs to track provenance. Since SQL++ data model is schema-less and IDs are not available, the

generalized idIVM needs to extend both the data model to add provenance to the data, and the

algebraic operators so that they can propagate provenance from input to output. The following

subsections describe extensions to data model and then to algebraic operators.

2.11.1 Provenance extension to data model

To guarantee efficient incremental maintenance of a view, idIVM needs to be able to

identify view tuples based on their provenance. To this end, we extend the SQL++ data model by

attaching to each (nested) SQL++ value some provenance, as defined below:

Provenance. The provenance #(k1=u1, . . .,km=um) of a SQL++ value is a set of one

or more key-value pairs, where each unique key ki maps to value ui. Within a tuple value

{n1:v1, . . .no:vo} (resp. array value [v1, . . .,vo], bag value {{v1, . . .,vo}}), each value vi has

a provenance which is distinct from the provenance of all other values in the tuple (resp., bag or

96

array). That is, provenance is locally unique within a tuple/array/bag. Note that values within a

tuple (resp., bag or array) do not need to have the same provenance keys.

Figure 2.13 shows the resulting BNF grammar for SQL++ values extended with prove-

nance.

2.11.2 Provenance extension to query operators

Since idIVM i-diffs identify view data to be modified by its provenance, the view and

any subview has to have provenance computed. Each supported operator is extended with

provenance propagation logic, which is described as provenance inference rules in Appendix D.3.

Table 2.6(a) shows the main idea of the provenance inference rules of each operator for inferring

the provenance of output binding tuples from the provenance of input data. Here Prov(R) stands

for the provenance of R data, key(R) stands for the key attribute and values of R when R is

a relational base table, and Prov(R)∪Prov(S) means concatenating the provenance of R and

the provenance of S from the input to form the provenance of the output. For most operators,

provenance of nested data is simply propagated from input to output. Some operators have

specific provenance inference rules for nested data, which is shown in Table 2.6(b). Given an

SQL++ query plan, the provenance extension to the operators allows provenance to be computed

for each operator’s output from the bottom up.

Provenance keys may have name conflicts when an output provenance is combined

from multiple input provenance. The solution to such conflicts, which is not described in each

individual rule, is to rename the keys based on where they come from.

2.11.3 Additional operators for i-diff queries

The i-diff queries for idIVM may need to join values on their provenance, which cannot be

done using existing SQL++ operators. Therefore several new operators are required in addition

to those in Section 2.10.2.

97

Table 2.6. Operator provenance inference rules

Operator Provenance of output
binding tuples

Ground #()
σc̈(B) Prov(B)
πx1 ,...,xn (B) Prov(B)
≫C

c̈7→(x,y) (B) Prov(B)∪Prov(c) if c is
a variable, or
Prov(B)∪ key(c) if c is a
relational base table

•(ẍ,ÿ)7→z(B) Prov(B)
onc̈ (Bl ,Br) Prov(Bl)∪Prov(Br)
onc̈(Bl ,Br) Prov(Bl)∪Prov(Br)

Note: if there is no match
from Br , then Prov(Br)
values will be null

γ(ẍ1 7→y1 ,...,ẍn 7→yn),g(B) #(y1 : v1, . . . ,yn : vn)
where vi is the value
of variable yi

Assignẍ 7→y(B) Prov(B)
InnerCorrelateP(Bl) Prov(Bl)∪Prov(P)
ConstructTuple(ẍ1:ÿ1 ...ẍn:ÿn)7→z(B) Prov(B)

(a) Provenance for binding tuples

Operator Nested Data Provenance
≫C

c̈7→(x,y) (B) x Prov(c̈)
•(ẍ,ÿ)7→z(B) z Prov(ẍ.ÿ)
γ(ẍ1 7→y1,...,ẍn 7→yn),g(B) tuples of g Prov(B)
Assignẍ 7→y(B) y Prov(ẍ)

(b) Provenance for nested data

ProvenanceSemiJoin

The ProvenanceSemiJoin operator n̂(Bl,Br) semijoins Bl and Br using provenance at-

tributes in them. A tuple bl ∈ Bl is kept in the output if and only if there exists a tuple br ∈ Br

so that all provenance attributes of br exist in the provenance of bl with the same values. An

example usage of this operator is to semijoin potential i-diffs with their corresponding data.

ProvenanceJoin

The ProvenanceJoin operator ôn(Bl,Br) is the InnerJoin version of ProvenanceSemiJoin.

It joins Bl and Br using provenance attributes in them. For each input binding tuple bl ∈ Bl,br ∈

Br, the operator outputs bl‖br if all provenance attributes of br exist in the provenance of bl with

the same value, or vice versa. An example usage of this operator is to join input i-diff with input

data. In this case, the operator effectively retains i-diffs for future use while appending the post

98

state of the data to the i-diff tuple.

ProvenanceUnion

The ProvenanceUnion operator ∪̂(Bl,Br) unions Bl and Br and eliminates duplicates

using provenance. For each input binding tuple b ∈ Bl or b ∈ Br, if the provenance of b is unique

across Bl and Br, the operator outputs b. If b has the same provenance as other input binding

tuples, the operator picks only one of them and output it. An example usage of this operator is in

the i-diff queries for aggregate functions including SUM and COUNT.

2.12 SQL++ i-diff format & semantics

idIVM represents view maintenance time and view definition time diff information using i-

diff instances and i-diff signatures respectively. This section discusses their format and semantics.

Notice that even though Section 2.11 has extended ID-based information to provenance for

SQL++ setting, in the IVM context we will still use the name ID-based diff (i-diff) for continuity.

2.12.1 i-Diff instance format

An i-diff instance describes changes that will happen to a value x, and in general is of the

following form:

#(p) {pre: ..., post: ..., diff: ..., type: ...}

where p matches the provenance of x, pre and post correspond to x’s pre-state and post-state,

diff corresponds to the nested i-diffs (i.e., i-diffs of nested data of x), and type can be one of

insert, delete, update, which are explained later in this section. An i-diff instance may match

multiple values and be applicable to them, as long as its provenance p matches the provenance

of the values.

For certain i-diff types, the pre and/or post can be optional as they are not required to

update the final view. The optionality will be specified later in each i-diff type’s section. For

99

i-diffs of intermediate results, post can be required to compute i-diffs of certain operators

like Select or FunctionCall. If they are required by a per-operator IVM rule but absent in the

i-diffs, the idIVM framework will automatically add post by joining the i-diffs with the original

data (i.e., the view query). For example, for an operator that takes B as input, if its i-diff query

requires post state of variable a that is not included in the input i-diff ∆B, the framework of

idIVM will automatically replace ∆B with the following query snippet:

πV ConstructTuple(post:apost,diff:adiff)7→a(

πV\{a}(πa7→apost(B)ôn•(a,diff)7→adiff (∆B)))

where V stands for the set of all variables. In some other cases, using the pre and post in an

i-diff query is not required, but can improve IVM efficiency by reducing overestimation. The

per-operator IVM rules in Section 2.13 mark such optional uses of pre or post in blue color so

that the framework can instantiate these parts in the i-diff query only when pre or post exist.

The nesting structure of i-diff instances in idIVM is designed to follow the nesting struc-

ture of the corresponding values. At a particular level, the i-diff describes how the corresponding

level of the value is changed. Among the different types of i-diffs, only update i-diffs for bag and

tuple values can have nested i-diffs. Insert and delete i-diffs do not have nested i-diffs because

their corresponding values are inserted or deleted in their entirety. Update i-diffs of scalar values

do not have nested i-diffs either since scalar values have no nested data.

We will next describe update i-diff instances of bag and tuple values where nested i-diffs

can exist. The i-diff semantics is defined using SQL++ DML, which can be found in [44].

Update i-diff instance of bags and tuples

An update i-diff instance ∆u of a bag value b describes that the content of b is updated,

where pre and post are optional and correspond to the pre and post-state of b. diff is a

nested bag of i-diffs, each describing modifications to some of the values inside bag b. The

100

semantics of applying the update i-diff instance has the same effect of applying the following

DML statement:

Apply ∆u (to a bag value b):

FROM b as bc

FROM ∆u.diff as dc

WHERE PROVENANCE MATCH(bc, dc)

Apply dc to bc

An update i-diff instance ∆u of a tuple value t contains optional post and pre, similar

to the update i-diff instance of a bag value. diff is a nested tuple of key-value pairs, where each

value is a nested i-diff describing modifications to the corresponding attribute in the original

tuple. The semantics of applying an update i-diff has the same effect of applying the following

DML statement:

Apply ∆u (to a tuple value t):

Apply ∆u.diff.a1 to t.a1

...

Apply ∆u.diff.an to t.an

When post-state exists in the i-diff, an alternative way to apply update i-diffs to either a

bag or a tuple x is to apply the post-state to x directly as follows:

Apply ∆u (to a tuple value t):

update(x, ∆u.post)

Here we assume that the i-diff is well-formed, meaning that the two ways of applying i-diffs will

101

always lead to the same result. In other words, applying post-state should not produce a different

result than applying the nested data.

As can be seen from the above update i-diffs, the nested format makes the i-diffs struc-

turally similar to the original values. Compared to non-nested formats, the nested one can lead to

simpler i-diff queries being generated. In many cases, an i-diff query with nested i-diff format

will have a symmetry to the original view query.

Another benefit of nested i-diffs is that the i-diff can have finer grain information describ-

ing what is changed in the nested data. This leads to smaller i-diffs to be computed and to be

applied to the final view. Also for i-diff propagation, diff queries can work with a smaller amount

of data.

The other types of i-diff instances do not have nested i-diffs and are explained next.

Insert i-diff instance

An insert i-diff instance ∆+ describes a newly inserted value x under its parent. It does

not have pre because x dost not exists in pre-state. There is no nested diff either since the

entire x is newly inserted. When x is a child of a bag b, applying the insert i-diff ∆+b has the

same effect as applying the following DML statement:

Apply ∆+b (to a bag value b):

insertbag(b, ∆+b.post)

When x is the value of an attribute a under a tuple t, applying the insert i-diff ∆
+t
V is

equivalent to applying the following DML statement:

Apply ∆+t (to a tuple value t):

inserttuple(t, a, ∆+t .post)

102

Delete i-diff instance

A delete i-diff instance ∆- describes that x is removed from its parent, where pre is

optional and corresponds to the pre-state of (possibly part of) x. The semantics of applying the

delete i-diff has the same effect of applying the following DML statement:

Apply ∆-:

delete(x)

In case x is an attribute a under a tuple t, then the corresponding attribute-value pair is

deleted from the parent tuple.

Update i-diff instance of scalars

An update i-diff instance ∆u of a scalar value x describes that x is updated, where pre

is optional and describes some pre-state of the updated values, post must exist and carry the

post-state of the value. The semantics of applying the update i-diff has the same effect of applying

the following DML statement:

Apply ∆u:

update(x, ∆u.post)

Binding tuple update i-diffs

For a view query that outputs a bag v of binding tuples {{t1, . . . , tn}}, its i-diff query

outputs a bag d of binding tuples {{d1, . . . ,dm}}, where each di describes nested i-diffs to one or

more binding tuples of t’s. The semantics of applying the bag of binding tuple i-diffs has the

same effect of applying the following DML statement:

103

FROM v as vc

FROM d as dc

WHERE PROVENANCE_MATCH(vc, dc)

#apply dc.a_1 to vc.a_1#

...

#apply dc.a_n to vc.a_n#

Effective i-diff instances

Given a set of i-diff instances ∆̄ for a view V , applying them on V leads in general to

different results depending on the order of application. However, in this work we only look at

sets of i-diffs where any order of applying them on V yields the same result. To this end, we

define the notion of effective i-diff instances. Given the pre-state V pre and post-state V post of

a view V , an i-diff instance ∆V is said to be effective w.r.t. V pre and V post if for each value of

V it reflects its final value. Formally, an i-diff instance is effective iff it satisfies the following

properties:

• If an i-diff instance is an insert i-diff ∆+b inserting a value under a parent value b: the

value inserted by the i-diff exists in the post-state of b (i.e., ∆+b.post ∈ bpost).

• If an i-diff instance is a delete i-diff ∆- deleting a value x from a parent value b: The value

deleted by the i-diff does not exist in the post-state of b (i.e., x /∈ bpost).

• If an i-diff instance is an update i-diff ∆u updating a scalar value x: The value set by the

i-diff is equal to the post-state of x (i.e., ∆u.post = xpost).

• If an i-diff instance is an update i-diff ∆u updating a bag or a tuple x: First of all, the same

properties of effectiveness shall apply recursively to the nested i-diffs ∆u.diff. Also, if the

i-diff contains the post-state part, then it is equal to the post-state of x (i.e., ∆u.post = xpost).

It can be shown that a set of effective i-diffs lead to the same result regardless of the

order in which they are applied. In the following the i-diff instances we consider are assumed to

104

be effective. We will discuss in Sections 2.4 how idIVM makes sure that it always operates on

effective i-diff instances.

2.12.2 i-Diff signatures

An i-diff signature is created at idIVM view definition time and statically describes what

components (including any optional pre and post) an i-diff instance should have. Similar to

an i-diff instance, an i-diff signature is recursively defined and can have nested i-diff signatures.

An i-diff instance satisfies an i-diff signature when the former has all the components the latter

declares, and every nested i-diff instance satisfies the corresponding nested i-diff signature

recursively.

Example 2.12.1. Section 2.9 describes an i-diff instance ∆V of the view V in our running

example. One diff signature S1 that ∆V satisfies is as follows:

#() {

type: update,

diff: {

#(uid) full_reviews: {

type: update,

diff: {

user_id: { post }

}

}

}

}

However, the following i-diff instance ∆V
2 will not satisfy the above signature since the diff type

does not match:

{{

#() <

105

type: update,

diff: {

full_reviews: {

type: update,

diff: {{

#(uid=U4n7) {

type: delete

}

}}

}

}

>

}}

Although i-diff instances in general need not have homogeneity, when they satisfy the

same i-diff signature, they are homogeneous up to the level where the signature ends. In particular,

when an update i-diff signature targeting a bag, its diff, if exists, is a single signature describing

the nested i-diffs, which means that any i-diff instance that satisfies this signature should have its

nested i-diff instances be homogeneous at the next level. This homogeneity requirement allows

IVM i-diff queries to batch process i-diffs of the same type.

Example 2.12.2. Consider the following i-diff instance ∆V
3 which combines both update and

delete i-diffs of full reviews.

{{

#() <

type: update,

diff: {

full_reviews: {

type: update,

106

diff: {{

#(uid=U4n7) {

type: delete

},

#(uid=Ha3i) {

type: update,

diff: {

elite: {

type: update,

diff: {{

#(eid=9kjb) { type: update, post: 2014 }

}}

}

}

}

}}

}

}

>

}}

Notice that ∆V
3 is considered as a valid i-diff instance according to the semantics defined for i-diff

instances. However, ∆V
3 does not satisfy the diff signature S1 due to the homogeneity requirement

imposed by the signature.

An i-diff signature may not have certain nested i-diff signature for i-diff instances that

appear at view maintenance time, simply because information about such nested i-diffs cannot be

inferred at view definition time. In this case, IVM i-diff queries will not assume any knowledge

of the nested i-diffs, but propagate them as is to the view.

107

Example 2.12.3. Consider the i-diff instance ∆V and i-diff signature S1 defined in Exam-

ple 2.12.2. Notice that S1 does not have any information regarding elite years which ∆V is

about, since the existence of such data and hence its diffs may not be known at view definition

time. Nonetheless, ∆V still satisfies S1 and can be applied to V by idIVM as valid instances of S1.

Although structurally an i-diff signature tree from the root can bundle i-diffs of various

values together, architecturally idIVM limits each i-diff signature from the root to be about a

single bag. This means that each intermediate i-diff up to the bag has one nested i-diff which

targets an ancestor of the bag, and the i-diff of the bag has no nested i-diffs for any further nested

bags. The propagation of i-diff signatures is discussed in Section 2.3. The process of generating

base table i-diff signatures is described in Section 2.14.1.

Example 2.12.4. The following i-diff signature, although valid by definition, will not be gen-

erated or handled by idIVM. Instead, idIVM would generate two separate i-diff signatures for

categories and full reviews in this case.

#() {

type: update,

diff: {

$(cid) categories: {

type: update,

diff: {

type: delete

}

},

#(uid) full_reviews: {

type: update,

diff: {

user_id: { post }

}

108

}

}

}

2.12.3 i-Diffs deeper than view definition

Although the SQL++ data model may not have any schema-level information declared,

from the view definition there is still information regarding the schema that can be statically

inferred. The following pseudocode describes an idIVM algorithm that traverses the logical plan

of the view definition query from the root and infers for each base table what are the attributes

including nested ones that are accessed by the view definition query.

function markBaseTables(op, attrs):

if op is a ScanCollection operator on a base table b:

mark b as a base table referenced by the view;

mark attrs as attributes in b;

else

let s_attrs = attributes (a) from child operator(s) that correspond to any

of attrs or (b) referenced in op;

for each child operator c:

let c_attrs = part of s_attrs that come from c;

markBaseTables(c, c_attrs);

endfor

endif

end

Section 2.14.1 describes how to generate base table i-diff signatures using an extended version

of the above algorithm.

In actual instances of the base tables, there may be values that are not covered by the

inferred attributes from the view definition and hence do not affect computation of the view since

109

they are not referenced by the query. However, throughout the view computation, some of these

values may be propagated along with their ancestor values and end up in the view.

Similarly for i-diffs, while i-diff signatures are statically inferred from the view definition,

at runtime there could be i-diffs to values that are not covered by by the inferred attributes. We

call such i-diff instances i-diffs deeper than view definition. As to be shown in Section 2.15, such

i-diff instances need not be explicitly handled by i-diff queries, but can be applied to the view as

part of their ancestor i-diff values. Furthermore, Section 2.16 discusses the cost of applying such

i-diffs to the view.

2.13 i-Diff Propagation Rules for SQL++

This section describes the algorithm and examples of instantiating i-diff propagation rules

for SQL++. Table E.1 to Table E.14 show the i-diff propagation rules for the SQL++ operators

considered in this work.

The rule instantiation algorithm applies rules for all operators in a botoom-up fashion,

and then composes operator-level instantiated rules into an i-diff query. This is very similar to

relational idIVM as discussed in Section 2.4. However, the algorithm also needs to deal with

nested plans which are unique to SQL++ algebra as follows. For an operator x that applies a

nested plan in the context of each input binding tuple (e.g., ApplyPlan and InnerCorrelate), the

algorithm invokes rule instantiation recursively into the nested plan with (a) the i-diffs of the

input binding tuple as the triggering i-diff of the nested plan, and (b) the i-diffs of the base tables

accessed by the nested plan. The i-diff queries of the nested plan are then incorporated in the

i-diff query of x, according to the specific rules of x.

As described in Section 2.12, an i-diff instance has potentially three different parts: pre,

post and diff. In case of binding tuple i-diffs, the three parts correspond to three variables

under each binding tuple. As Table E.1 to Table E.14 show, an input i-diff signature can lead to

one or more output i-diff signatures of the same type and/or different types. As a result, a typical

110

i-diff query operates on one particular part of the i-diff format that corresponds to the input i-diff

type (i.e., post for insert, pre for delete, and diff for update as described in Section 2.12)

and produces part of the i-diff format that corresponds to the output i-diff type. For example,

for a π operator, since an input binding tuple update i-diff may lead to an output binding tuple

update i-diff, an i-diff query that does this transformation will operate on the diff variable in

the input which contains the input update i-diffs, and produce output update i-diffs under the

diff variable in the output i-diffs. In addition, a binding tuple update i-diffs may also have the

full pre-state and/or post-state of the binding tuple under the optional pre and post variables.

In such case, the input pre and post can usually be transformed to the output pre and post

respectively, similar to how binding tuple insert and delete i-diffs are transformed.

For simplicity of presentation, an IVM rule that only accesses one part of the i-diff (either

pre, post or diff) uses a shortcut format assuming that each i-diff binding tuple directly

carries the value of that particular part of i-diff, getting rid of one level of nesting in the original

i-diff format. For an i-diff query to work on the actual i-diff format in practice, idIVM wraps

the i-diff query with (a) a pre-transformation step that pulls the value of the variable of interest

in the input i-diff binding tuple to the top level, and (b) a post-transformation step that wraps

the result of the transformation as a tuple value that is assigned to the variable of interest in the

output i-diff. The pre-transformation step can be achieved using a combination of • operators

that navigates all attributes a1, . . . ,an of the variable u:

•(u,a1)7→a1 . . .•(u,an)7→an

whereas the post-transformation step can be achieved using the ConstructTuple operator that

creates a variable w from variables w1, . . . ,wn as follows:

ConstructTuple(w1:w1,...,wn:wn)7→w

111

SCANusers

α
P	→ full_reviews

SCAN reviews

SCAN businesses

σ city=	”San	Francisco"
� user_id

Δuusers

Δu
� 1 Δu= users

Δu
Δu=α 1�

Δ u
γ Δ u= 2�

Δ

� πcostCache

Δ u
γ Δ u= 2� � πdid	 Cache

π did,totalprice→cos tpre ,totalprice+cΔ→cos tpost
(V_

Δ)

σ business_id=	
businesses.business_id

α
→	full_reviews

P	:

Figure 2.14. Algebraic plan of V (annotated by the ∆-script generator for ∆u
users)

SCAN reviews

⟕ bussiness_id

SCAN users

γ business_id,	 full_reviews

SCAN businesses

σ city=	”San	Francisco" ⟕ user_id

Δuusers

Δu
� 1 Δu= users

Δu
2 Δu=� 1�

Δ u
γ Δ u= 2�

Δ

� πcostCache

Δ u
γ Δ u= 2� � πdid	 Cache

π did,totalprice→cos tpre ,totalprice+cΔ→cos tpost
(V_

Δ)

Δu
γ = γ(),	full_reviews Δu

2�

Figure 2.15. Algebraic plan of V1 (annotated by the ∆-script generator for ∆u
users)

We use the above transformation to simplify the following examples. The first example

shows how rules are instantiated for two equivalent plans.

Example 2.13.1. Consider an update i-diff signature ∆u
users modeling updates on the fans attribute

of table users of our running example. Figures 2.14 and 2.15 show the algebraic plans for V and

V1 respectively, and on the left the corresponding instantiated rules generated by the algorithm.

In Figure 2.14, ∆u
on1 is the i-diff query for the nested plan P. Since ∆u

on1 does not depend

on the input of the outer ApplyPlan operator α, the i-diff query of the α operator is therefore

α∆u
on1→ f ull reviewsGround according to its rules specified in Table E.5. This i-diff query effectively

runs the i-diff query of P as a nested query, and puts the i-diffs of the nested plan in a nested

bag named f ull reviews. Since the ApplyPlan operator in the i-diff query is on top of a Ground

operator, the top-level i-diff is an update with empty provenance.

In Figures 2.15, the two outer join operators propagate ∆u
users as is according to rules

in Table E.9. Therefore the input i-diffs to the GroupBy operator γbusiness id, f ull reviews does not

112

contain the grouping attribute business id. Then according to the rules of GroupBy operator in

Table E.11, the i-diff query for γbusiness id, f ull reviews is effectively grouping input i-diffs into a

singleton group under nested bag f ull reviews using empty grouping attribute. Since the rules

of GroupBy operator uses overestimation, the resulting top-level i-diff is a singleton update with

empty provenance, which applies to all businesses.

Based on the rule instantiation in 2.14 and 2.15, idIVM composes the rules up to the

views V and V1 respectively. The resulting i-diff queries, simplified for presentation purpose,

are as follows:

V : α∆u
users→ f ull reviews

V 1 : γ(), f ull reviews∆
u
users

The two i-diff queries are equivalent as they both return a singleton binding tuple that has a

nested bag f ull reviews that holds ∆u
users. This demonstrates that idIVM is able to efficiently

handle views that create nested data, no matter they are using ApplyPlan or GroupBy.

Example 2.13.2. To illustrate how i-diff propagation rules work for conditional updates and

nested plans, consider an update i-diff signature ∆u
businesses modeling updates of table businesses

in our running example, including updates to the business id and city attributes. Here we assume

that the provenance of businesses table is independent of the business id attribute, so that the

latter is free to change without affecting provenance.

Figure 2.16 shows the algebraic plan for V and corresponding instantiated rules generated

by the algorithm with respect to updates of business id. First, the diff query ∆u
σ1

for the select

operator in the outer plan simply propagates ∆u
businesses as is according to the rules in Table E.3

since ∆u
businesses is considered a non-conditional update for the operator. Then at the ApplyPlan

operator, the diff propagation algorithm is applied recursively to the nested plan P with the

modification to business id in the environment of the nested plan as the triggering i-diff. Since

∆u
business id is a conditional i-diff to the nested select operator, the rules for the select operator

113

SCAN users

α
P	→ full_reviews

SCAN reviews

SCAN businesses

σ city=	”San	Francisco"
� user_id

σ business_id=	
reviews.business_id

P	:

Δ+σ2= σ
post.b_id =	b_id
AND pre.b_id !=	b_id

ΔuSCAN2

Δ+

�
Δ � SCAN+= σ2 users

GroundΔubusiness_id

ΔuSCAN2=Δ
u
Ground

ΔuSCAN1Δ =u
σ1

Δu
Δ+=α
�

α
→	diff.full_reviews Δuσ1

ΔuSCAN1=Δ
u
businesses(bid)

Figure 2.16. Algebraic plan of V (annotated by the ∆-script generator for ∆u
businesses Part 1)

SCAN users

α
P	→ full_reviews

SCAN reviews

SCAN businesses

σ city=	”San	Francisco"
� user_id

σ business_id=	
reviews.business_id

P	:

Ground

ΔuSCAN1=Δ
u
businesses(city)

Δ+σ1 = σ
post.city =	“SF”	
AND pre.city !=	“SF”

ΔuSCAN1

Δ+
P=α α Δ+σ1

Figure 2.17. Algebraic plan of V (annotated by the ∆-script generator for ∆u
businesses Part 2)

turns ∆u
business id into insert, delete, and update output i-diffs. For simplicity of presentation, only

∆+
σ2

is illustrated in Figure 2.16, while the handling for delete and update i-diffs are similar. Next,

∆
+
on joins the insert i-diffs ∆+

σ2
with the users table to produce the output insert i-diffs of the

InnerJoin operator, which also becomes a diff query for the nested plan. At the end, according to

the rules of the ApplyPlan operator in Table E.5, the i-diff query for the ApplyPlan operator ∆u
α

takes ∆u
σ1

as input and runs the nested i-diff query ∆
+
on as the nested plan.

Figure 2.17 shows the same algebraic plan and instantiated rules with respect to updates

of city. Since the update i-diff is a conditional i-diff to the select operator in the outer plan, the

rules of the select operator in Table E.3 turns ∆u
businesses into insert, delete, and update output

114

i-diffs. For simplicity of presentation, only ∆+
σ1

is illustrated in Figure 2.17, while the handling

for delete and update i-diffs are similar. Then according to the rules of ApplyPlan operator in

Table E.5, ∆+
α takes ∆+

σ1
as input and runs the same P as the nested plan to produce output insert

i-diffs for the view.

2.14 Generation of SQL++ base table i-diffs

To generate base table i-diffs, idIVM needs to generate the i-diff signatures at view

definition time, and generate i-diff instances that correspond to the i-diff signatures at view

maintenance time. This section describes these two tasks in detail.

2.14.1 Generation of base table i-diff signatures

Given a view definition V , idIVM generates suitable base table i-diff signatures as follows.

This section assumes that top-level base tables are bags of tuples (e.g., Users, Reviews tables

from the running example). The i-diff signature generator analyzes the view query to infer

attribute names (including nested ones) in each base table and its nested collections. This is

explained by the pseudocode below. In the pseudocode, the i-diff signature generator recursively

traverses the view query’s logical plan from top down. At each operator it tracks the set of

attributes (including nested attributes) from output to input. Among the attributes, some are

inferred as nested collections from the query, such as being the target of a ScanCollection

operator. Such attributes are referred to as the set of collection attributes. Some attributes are

involved in conditions of some operators in the view’s plan, such as Select and Join. For an

operator op, attributes involved in its condition are referred to as the set of conditional attributes

Cop. The set of attributes not included in any condition for any operator in the view’s plan is

referred to as the set of non-conditional attributes. Such non-conditional attributes can appear in

operators including Project and NavTuple.

115

function markBaseTables(op, col_attrs, attrs,

cond_attrs):

if op is a ScanCollection operator on a base

table b:

mark b as a base table referenced by the view;

mark col_attrs as (nested) collections of b;

mark cond_attrs as conditional attributes of b;

let nc_attrs = attrs minus cond_attrs;

mark nc_attrs as the non-conditional attributes of b;

else

let s_col_attrs = attributes from child operator(s) that correspond to any

of col_attrs or referenced in op as a collection;

let s_cond_attrs = attributes from child operator(s) that correspond to any

of cond_attrs or involved in any conditions in op;

let s_attrs = attributes from child operator(s) that correspond to any

of attrs or referenced in op;

for each child operator c:

let c_col_attrs = part of s_col_attrs that come from c;

let c_attrs = part of s_attrs that come from c;

let c_cond_attrs = part of s_cond_attrs that come from c;

markBaseTables(c, c_attrs, c_cond_attrs);

endfor

endif

end

function generateBaseTableDiffSigs(view_query)

let op = root operator of view_query;

markBaseTables(op, emptySet, emptySet);

116

for each marked base table b:

for each marked collection c of b, including b itself:

create an insert diff signature for c;

create a delete diff signature for c;

let cond_attrs be conditional attributes of b whose closest collection

ancestor is c;

let nc_attrs be non-conditional attributes of b whose closest collection

ancestor is c;

create an update diff signature for c including pre and post-states

of cond_attrs;

create an update diff signature for c including post-state of nc_attrs;

endfor

endfor

end

Notice that the top-down propagation of attributes between output and input of an operator

may involve transformation. Possible transformation includes renaming (e.g. Project) and

consolidation of multiple attributes in the output into one in the input due to construction/copying

of values (e.g. NavTuple, ConstructTuple).

For each base table and each of its nested collections R inferred from the view, the i-diff

signature generator creates an i-diff signature of insert type on the elements of R containing the

post-state of the element, and a single i-diff signature of delete type on R’s elements containing

the pre-state of all attributes. To generate update i-diff signatures, for each base table and each

of its nested collections R, the i-diff signature generator creates (a) an update i-diff signature

containing non-conditional attributes of R and (b) for each set Cop an update i-diff containing the

pre and post-state of conditional attributes of R.

Furthermore, as an optimization not shown in the pseudocode, the i-diff signature gen-

erator records a set of base-table collections, including top-level and nested ones that have a

117

wildcard projection in the view. This information can be used later to determine whether some

base table i-diff instances shall trigger IVM or not, which is discussed in Section 2.14.2.

Example 2.14.1. Consider V in the running example. The above algorithm will take the view

query of V as input, and generates one insert, one delete, and one update i-diff signature for each

of the three base tables businesses, reviews, and users. The algorithm will also find the city

and business id attributes of businesses base table as conditional attributes, and that users and

reviews table are accessed by a wildcard projection in the view. Also notice that there is no i-diff

signatures generated for the nested elite collection in users since the existence of it cannot be

inferred from the view definition. Applying the algorithm to the equivalent view V1 will lead to

the same results as above.

2.14.2 From modification logs to base table i-diff instances

At run time, a modification log records changes happening to base tables. An imple-

mentation of modification log should provide the following functionality: (a) listing values that

have been inserted, deleted or updated between the pre and post-state of the base tables, and

(b) optionally capturing the post-state of the affected value. Notice that (b) is optional since the

post-state of a value can always be retrieved from the base table.

When IVM is invoked for a view, changes from modification logs are converted to base

table i-diff instances. Note that since different views can be maintained at different interval

and therefore have different base table i-diff instances, the algorithm in this section applies this

conversion for each view independently. The following pseudocode shows how this conversion

is done for a base table b and its modification log m:

function conversion(b, m):

for each modification d recorded by m:

let p = path of target value of d;

if p is not referenced in any diff signature of b:

118

if p is not projected in the view, either explicitly or through a wildcard:

skip d as it does not affect the view;

else:

let x = the closest ancestor of p that has an update diff signature;

let ds = non-conditional update diff signature of b;

let di = diff instance of ds;

put p into di;

endif

else if p is a conditional-attribute of b:

let ds = conditional update diff signature of b that contains p;

let di = diff instance of ds;

put p into di;

else:

let ds = diff signature of b that corresponds to modification d;

let di = diff instance of ds;

put p into di;

endif

endfor

end

As shown in above pseudocode, at view maintenance time, there can be i-diff instances to

part of a base table that is not known from the view definition. These include i-diffs to attributes

and nested collections that are not mentioned by the view query. idIVM does not create new

i-diff signatures for such i-diff instances. Instead, such i-diff instances are described at view

maintenance time by i-diff signatures of the closest ancestor value that can be inferred from the

view at view definition time. Also, these i-diffs are treated as i-diffs to non-conditional attributes

since their target values are not mentioned by the view. Furthermore as an optimization, certain

i-diff instances may not be relevant to the view and can be safely discarded. Such i-diff instances

119

could be targeting a base table value on a path across a collection attribute that is not projected in

the view either explicitly or by a wildcard. This test can be done using the information collected

by the i-diff signature generator as described in 2.14.1.

Example 2.14.2. Following the running example, consider view V and a modification to busi-

nesses base table that changes a business’s city from “San Francisco” to “Palo Alto”. The above

algorithm will find that city is a conditional attribute for V, and convert this modification to the

following update i-diff instance for businesses base table:

<businesses: {

type: update,

diff: {{

#(bid=tnhf) {

type: update,

diff: {

city: {

type: update,

pre: ’San Francisco’,

post: ’Palo Alto’

}

}

}

}}

}>

Consider another modification that inserts an elite year to a user. The above algorithm

will find that the elite attribute is not referenced by any diff signature of the users base table

for V. However, users base table is previously found to be projected with a wildcard in V, and

therefore elite attribute will end up in V. As a result, the algorithm will convert this modification

to the following i-diff instance, which belongs to the update i-diff signature of users table:

120

<users: {

type: update,

diff: {{

#(uid=Ha3i) {

type: update,

diff: {

elite: {

type: update,

diff: {{

#(eid=9kjb) { type: insert, post: 2014 }

}}

}

}

}

}}

}>

2.15 Application of SQL++ i-diffs to the view

In idIVM, ∆-script needs to be executed as efficiently as possible. To this end, we describe

in this section what are the indexes that are beneficial for applying i-diffs to the view, which is in

Section 2.15.1. Then Section 2.15.2 describes how to select indexes to build for this purpose,

and Section 2.15.3 explains how to apply i-diffs using these indexes. Finally, Section 2.15.4

proves an upper bound on the number of selected indexes.

2.15.1 Global provenance index

In a SQL++ document, a value x can be identified by the provenance along the path from

the root of the document to x, which includes x’s provenance and all its ancestors’ provenance.

121

uid eid
Ha3i 9kjb
l6eA ds8q
... ...

...

...

#(bid: ‘tnhf’)
name: ‘Garaje’
neighborhood: ‘SoMa’,
full_reviews:

...

#(uid: ‘Ha3i’, rid: ‘zdSx’)
text: ‘Great place to ...’
name: ‘Sebastien’
elite:

...

#(eid: ‘9kjb’)
2014

#(bid: ‘ghpk’)
name: ‘Big Bear’
neighborhood: ‘Mission’,
full_reviews:

...

#(uid: ‘Ha3i’, rid: ‘7nyz’)
text: ‘Favorite spot ...’
name: ‘Sebastien’
elite:

...

#(eid: ‘9kjb’)
2014

...

...

Document:

Global	provenance	index:

Figure 2.18. Global provenance index example

The global provenance of x is the concatenation of all provenance attributes of x and its ancestors.

A global provenance index is an index of values on their global provenance attributes or a subset

of them. A SQL++ value matches an index key if at each step its provenance attributes matches

the key’s provenance attributes that are present. Any provenance attributes not present in the

index are considered wildcard and match unconditionally. Therefore, it is possible for a key in a

global provenance index to point to multiple values in the document.

Example 2.15.1. Figure 2.18 shows the view instance of V (and equivalently V1) in our running

example and a global provenance index built on uid and eid that point to nested elite values. The

index can be used when applying the view i-diff ∆V as described in Section 2.9 to the view, by

looking up targeted elite values using the provenance attributes uid and eid that are present in

∆V . Recall that bid and rid are not specified in ∆V so that a concise i-diff about a single user and

elite value can be applied to possibly many businesses and nested reviews in the view. Therefore,

even though bid and rid are part of the global provenance of elite values, they are not included in

122

the global provenance index, which makes this index a most suitable data structure for applying

i-diffs.

Recall that a local provenance value in general may not be globally unique, which can

happen for derived data or due to other nature of data source. Therefore, global provenance

indexes are designed to consider the path of provenance from document root as a value’s global

identity and index on it. Should the underlying query engine be extended to capture constraints

that some local provenance can be globally unique, it is possible to further simplify and improve

certain global provenance indexes, which we leave to future work.

Example 2.15.2. Notice that the running example makes no assumption that eid is globally

unique (e.g., two elite values under different users may have identical eid). Therefore, the global

provenance index in Figure 2.18 is built on provenance attributes uid and eid, instead of eid

alone. This is necessary to make sure the index can work correctly for applying ∆V to the view.

Global provenance indexes provide an efficient data structure for applying view i-diffs

produced by idIVM to the view instance. The rest of this section describes how indexes are

selected and used, whereas Section 2.16 discussed the IVM cost model based on the use of global

provenance indexes.

2.15.2 Index selection algorithm

Given a view definition and base table i-diff signatures, the index selection algorithm

determines which global provenance indexes to build. Its pseudocode is as follows.

function indexSelection(view):

run IVM algorithm with base table diff signatures to get i-diff signatures

to the view;

for each i-diff signature d to the view:

let c be the target collection of d;

if there does NOT exist a global provenance index of the elements of c on

123

d’s provenance attributes:

Build a global provenance index of the elements of c on d’s provenance

attributes;

endif

endfor

end

The index selection algorithm is designed to build indexes for elements of each collection

in the view. For i-diffs to values that are not elements of a collection, navigation is needed to

apply them to the view. An alternative approach which would save the navigation is to build

indexes for all kinds of values in the view, but would lead to many more indexes being created

and maintained.

At view maintenance time, there could be view i-diff instances to part of the view

not known at view definition time. idIVM does not build indexes for them, but apply such

i-diff instances without using indexes. The alternatives are: (a) build indexes after the view is

populated by inspecting the view data; (b) build indexes on the fly at view maintenance time by

inspecting the i-diff instances. Both alternatives can lead to as many indexes to be created as the

combination of base table i-diffs. Therefore, we consider building indexes for i-diffs deeper than

view definition as a future optimization.

Example 2.15.3. Consider V in the running example. Based on the inferred i-diff signatures per

Section 2.14.1, the above index selection algorithm will build five global provenance indexes as

follows: a global provenance index on the root collection of V with bid as provenance attribute,

four global provenance indexes on the nested collection full reviews with uid, rid, (uid,rid)

and (bid,uid,rid) respectively as provenance attributes. Notice that no index is built for the

nested elite collection which is deeper than the view definition.

124

2.15.3 i-Diff application using index

The semantics of i-diff instances has been defined in Section 2.12 as DML statements

that apply i-diffs to the view. Here we describe how to apply i-diffs to the view using the global

provenance indexes described earlier in this section.

Given an i-diff instance, idIVM traverses the tree and works on i-diff nodes that corre-

spond to collection elements. For each such node d, idIVM tracks its global provenance during

traversal, and matches it against the corresponding global provenance index. For each matched

element value t in the view, idIVM then applies nested i-diffs under d that are not crossing a

nested collection to t. The applied nested i-diffs include insert and delete i-diff instances, as well

as update i-diff instances to primitive values. Notice that only leaf i-diffs are applied, whereas

intermediate i-diffs are not.

During the traversal, idIVM may also come across i-diffs that are deeper than the view

definition. Such i-diff nodes in an i-diff instance are not captured by any i-diff signature and

therefore do not have corresponding indexes built. idIVM will start from the closest node to the

i-diff that can be accessed through an index, and then use path navigation to apply the rest of the

i-diff instance.

2.15.4 Upper bound on number of indexes

The number of indexes required for a view is upper-bounded by the number of provenance

components from all view i-diffs, which is in turn upper-bounded by the number of provenance

components from all i-diffs in the entire plan (including view i-diffs, intermediate result i-diffs,

and base table i-diffs).

Notice that during i-diff propagation, if an input i-diff and an output i-diff have the same

provenance component, then we need not count the output i-diff’s provenance component as new.

Therefore the problem becomes finding and counting all new provenance components that can

be created during i-diff propagation. This number plus the number of provenance components

125

from base table i-diffs can serve as an upper bound on the number of view indexes.

From the rule tables, it turns out that for the majority of the operators, output i-diffs

have the same provenance components as input i-diffs. The exceptions are (a) the select, join,

inner-correlate operators, which may create output i-diffs that use the full provenance of the

original output as the provenance component, and (b) the group-by operator, which may create

output i-diffs that use the grouping attributes as the provenance component.

Therefore an upper bound to the number of indexes required for a view is:

number of provenance components from

base table i-diffs

+ number of selects

+ number of joins

+ number of inner-correlate

+ number of group-bys

Note that when all base tables are relational, “number of provenance components from

base table i-diffs” can be replaced by the number of base tables, which leads to a static upper

bound at view definition time.

2.16 SQL++ IVM Cost model

In this section we analyze the cost model of idIVM extended for SQL++ with several

common queries. We focus on update i-diffs and uses the following assumptions: (a) data of a

tuple (excluding nested collections) shall fit into one page, (b) if the data of a tuple including its

nested collections is small enough to fit in one page, they are stored physically together inside

a page, and (c) view tuples affected by the same i-diff are not clustered together, and caching

has minimal effects on the overall cost, same as the assumptions made in Section 2.7. Note

that in AsterixDB [3], data of a tuple including nested collections should always fit into one

page. Therefore the assumptions (a) and (b) here cover the AsterixDB setting and are more

126

general. Later in this section, we will comment on how the cost model can be simplified under

the AsterixDB setting.

2.16.1 Application of nested i-diffs to the view

We first consider the cost of applying nested i-diffs to the view where the i-diff signature

is known at view definition time. In this case, idIVM builds global provenance indexes for the

view i-diff signature as described in Section 2.15.1. Here we do not assume any particular view

queries, which will be considered in later sections.

Let R1, . . .Rn be the collections that have i-diffs. Notice that each Ri can have multiple

instances in the i-diff or in the view. Let Xi be the total number of i-diff tuples for Ri. Let pi be

the compression factor for i-diff tuples of Ri. Notice that i-diffs of different collections can have

different compression factor because they can have different set of wildcard in the provenance.

Let q be the page size. Let mi be the maximum size of the parent collection tuple of Ri, including

nested data. When q is larger than mi, applying i-diffs to an Ri tuple can be done during applying

i-diffs to an ancestor of Ri (because of assumption (b)) and hence cause no extra page access.

Each i-diff tuple of Ri corresponds to an average of pi tuples in the view. Looking up the

pi tuples in the index requires one page access to the index, followed by pi accesses for each

view tuple. Therefore, the tuple access cost is:

H =
n

∑
i=1

(1+ pi)ciXi

where

ci =

0 if mi ≤ q

1 otherwise

127

2.16.2 Application of i-diffs deeper than view definition

Here we consider the cost of applying i-diffs that are deeper than the view definition and

therefore not known at view definition time. Following the notation in Section 2.16.1, let Rk be

one such collection that has nested i-diffs that are deeper than the view. Then for each of the Xk

i-diff tuples of Rk, there are pk matching tuples in the view that the i-diff should be applied to.

Since the i-diffs deeper than the view are from native i-diffs of base tables, for each of the pk

matching tuples in the view, a nested i-diff value will match exactly one value under the view

tuple. That is, the provenance of the i-diff that is deeper than the view will be full provenance

without any wildcard. Assuming that a single R i-diff tuple including nested i-diffs can fit in

memory, there are several ways to apply such i-diffs to the view, leading to different cost models.

One way to apply i-diffs is for each matching Rk tuples, to sequentially scan its nested

data and apply i-diffs accordingly. Let the size of an Rk tuple be sk (in terms of number of page

accesses), then the cost becomes:

H = pkXksk

The above method serves as a bottom-line approach since it is not always necessary to scan the

entire nested data of each matching Rk tuple. An improved way is to traverse the nested data

of Rk using the provenance information in the i-diffs and thus scan only the nested data that is

relevant to the i-diffs. For each Rk tuple, let s1
k , . . . ,s

nk
k be the size of the nested collections that

have to be scanned to apply the i-diffs, where each such collections in the view would correspond

to a collection in the i-diff instance. Then the cost becomes:

H = pkXk

nk

∑
j

s j
k

A different approach is to build indexes at view maintenance time when i-diff instances

are observed, and then apply the i-diffs using the same way as in Section 2.16.1. However, the

cost of this approach depends on the number of different indexes to be built, which is in turn

128

decided by the actual i-diff instances.

2.16.3 SPJ views

For an SPJ view, let D be the number of updated base table tuples (top-level) in the i-diff,

p be the compression factor. Tuple access cost for maintaining the SPJ view is:

(1+ p)D+H

Here (1+ p)D is the cost of top-level tuple lookup & access, and H stands for nested-level tuple

lookup & access should the base table i-diffs have any nested i-diffs, as defined in Section 2.16.1

and 2.16.2.

Note that under the AsterixDB setting that nested data always fits in one page, the entire

second term can be dropped and the cost becomes:

(1+ p)D

This simplification also applies to the following types of view. Also notice that the above cost

model is the same as the cost model for idIVM to maintain a relational SPJ view discussed in

Section 2.7.

Example 2.16.1. Consider the SPJ part of the query in the running example V1 as a new view

V2:

CREATE VIEW V2 AS

SELECT business_id, reviews.*, users.*

FROM businesses NATURAL LEFT OUTER JOIN

reviews NATURAL JOIN

users

WHERE city = "San Francisco"

129

Consider update i-diffs instances to the users base table that update the fans attribute as well as

inserting new elite years. The cost of IVM on V2 depends on the characteristics of the data and

has two main cases:

1. If the data of a users tuple including its nested collections can fit into one page (which is

also the AsterixDB setting):

(1+ p)D

Notice that here applying nested diffs can be done when accessing the corresponding

top-level tuple for applying fans diff, and hence does not incur additional cost.

2. If the elite data of each user tuple is stored in a separate page:

(1+ p)D+ pD = (1+2p)D

Compared to the first case, this case requires 2pD additional page accesses because for

each of the pD top-level tuples in the view that has update diffs, a separate page that stores

its elite data has to be accessed to apply nested diffs.

3. If the elite data of each user tuple is stored in m separate pages:

(1+ p)D+mpD = (1+ p+mp)D

This case serves as a generalization of the second case, though in practice it is unlikely that

elite data will be so big to span multiple pages. Here for each of the pD top-level tuples in

the view that has update i-diffs, since the elite diffs are deeper than the view, idIVM will

scan the pages of elite data to apply its diffs due to lack of indexes, incurring mpD extra

page accesses compared to case 1.

130

2.16.4 Group-by views

In SQL++ setting, GroupBy and Aggregate are two separate operators, each of which

can exist on its own. For a view that has a GroupBy on top of SPJ (but without any aggregation),

let D be the size of base table i-diffs (i.e., number of updated tuples), G be the number of groups

created by the group-by, p be compression factor (due to join). Tuple access cost (with global

provenance index) for maintaining this view is

(1+ p)D+H

Notice that the above cost is identical to the cost for maintaining an SPJ view in Section 2.16.3.

This is because the SQL++ GroupBy rearranges input tuples into groups (i.e., nested collections)

whereas a global provenance index can directly locate the tuples after grouping without any extra

cost. In contrast, the tuple access cost without using global provenance index would be:

(G+ p)D+H

since for each i-diff tuple, all G groups need to be accessed to find possible matching tuples.

2.16.5 Aggregate views

Here we consider aggregate view queries that do not come with a GroupBy. Since there

is no GroupBy, we assume the nested data that is being aggregated is from base tables. Also, we

assume the aggregate function is incrementally maintainable (e.g., distributive functions such as

sum and count). Let D be the number of updated nested tuples. Let g be grouping compression

factor. Then gD is the number of affected groups, assuming gD� G. Tuple access cost for

maintaining such views becomes:

2gD

131

Note that the multiplier 2 consists of a view index lookup and a view tuple access. Also, in the

presence of aggregate, we do not consider the cost of maintaining and applying any nested i-diffs.

Should there be any nested i-diffs that are propagated to the view, their cost can be modeled

separately per Section 2.16.1 and 2.16.2.

2.16.6 GroupBy + Aggregate views

To maintain a GroupBy + Aggregate view, we first have to choose what to cache. Possible

options are:

• To cache output of GroupBy. This is architecturally clean since GroupBy and Aggre-

gate/FunctionCall are separate. For performance reasons, this would require global prove-

nance indexes.

• To cache output of SPJ. In this way cost analysis is similar to relational counterpart.

For architecture cleanness, we proceed with caching the output of GroupBy. Let D be size of

base table i-diffs (i.e., number of updated tuples), p be compression factor (because of join).

Then pD is the number of updated nested tuples after group-by but before aggregate. Let g be

grouping compression factor. Then gpD is the number of affected groups, assuming gpD� G.

Tuple access cost for maintaining the view is:

(1+ p)D+2gpD

The first part (1+ p)D is for maintaining the cache, which is effectively the result of SPJ and

Group-By. The second part 2gpD is for maintaining the final view, which is similar to the cost

of maintaining an Aggregate-only view.

2.16.7 Comparison to relational IVM cost model

From Section 2.16.3 and Section 2.16.6, it can be seen that in idIVM, the cost for

maintaining SPJ and GroupBy + Aggregate views in SQL++ is in line with the cost of maintaining

132

their relational counterparts. In particular, for a SPJ view in SQL++, when there is no nested i-diff,

or when the nested data fits in one page, the view maintenance cost is identical to the ID-based

IVM cost for a relational SPJ view in Table 2.3. The same also applies to maintaining Group-

By + Aggregate views in SQL++ (Section 2.16.6) and in relational (Table 2.4). Furthermore,

Section 2.16.4 shows that maintaining a GroupBy in isolation view, which only exists in SQL++,

leads to no more cost than maintaining an SPJ view thanks to global provenance index. As a

result, the performance analysis of relational ID-based approach versus tuple-based approach in

Section 2.7 could be carried over to the SQL++ extension.

2.17 Conclusions

We have shown how to exploit IDs and provenance towards an IVM algorithm that is

more efficient than existing tuple-based approaches under common assumptions. We also have

extended this approach to SQL++ data model and query language using a theoretical model of

indexing and data structures. Finding the appropriate data model is a working progress by the

industry, and corresponding application will be evaluated in an appropriate context.

Chapter 2 contains material from “Utilizing IDs to Accelerate Incremental View Mainte-

nance” by Yannis Katsis, Kian Win Ong, Yannis Papakonstantinou, and Kevin Keliang Zhao,

ACM SIGMOD Conference, 2015. The dissertation author was the primary investigator and

author of this paper.

133

Chapter 3

Related Work

In this chapter we discuss existing tools and libraries for simplifying Ajax programming.

We also discuss related database research work about web application and incremental view

maintenance. Their contributions to simplifying Ajax programming are discussed.

3.1 Existing Ajax Frameworks

In this section we examine existing tools and frameworks that are related to Ajax pro-

gramming. Section 3.1.1 describes JavaScript libraries. Section 3.1.2 discusses Ajax frameworks

that allow web application to be written using object oriented languages without JavaScript code.

3.1.1 JavaScript Libraries

A JavaScript library is a pre-written collection of JavaScript subroutines and classes

that componentize common JavaScript implementation for client-side web applications in a

modular fashion. The main purpose of JavaScript libraries is to allow web developers to reuse

the implementation provided by those libraries, so that they can write less code and concentrate

more upon more distinctive applications of Ajax. This goal has become more important since

Ajax techniques take JavaScript as a major option for client-side programming language. The

common implementation and components provided by JavaScript libraries include UI widgets

(from labels, text fields to maps and calendars), asynchronous calling using XMLHttpRequest,

events handling, RSS parsing and DOM traversing. jQuery [37], Prototype [45], YUI [60], and

134

Dojo [52] are some of the currently most popular JavaScript libraries.

Another important advantage of using JavaScript libraries is the cross-browser ability

provided by most of the libraries. Due to various interfaces and implementations of different

browsers (as well as different versions of browsers), compatibility issues arise in some essential

parts of client-side programming, including style sheets, XMLHttpRequest calling, and DOM

manipulation. It is therefore tedious and error-prone for web developers to accommodate different

possible user browsers. Many JavaScript libraries provide web developers with a single interface

that contains different implementations to incorporate with various browsers, hence hiding the

complexity from the developers.

JavaScript libraries made an important contribution to Ajax programming by providing

reusable JavaScript implementations and componentizing them into modules. As a result, the web

developers can write less JavaScript code for the client-side programming. However, JavaScript

programming cannot be completely avoided by just using JavaScript libraries.

3.1.2 Ajax Frameworks

This category is represented by two frameworks: Google Web Toolkit (GWT) and Echo2,

which are described next.

Google Web Toolkit (GWT)

GWT [25] is a set of tools that allows developers to build and maintain client-side

JavaScript applications using only Java language. The key idea is to use the GWT Java-to-

JavaScript compiler to translate Java code to JavaScript code, so that JavaScript programming is

completely avoided. In order to achieve the translation, GWT implements in JavaScript some

common classes in the Java standard class library, including most of the java.lang package classes

and a subset of the java.util package classes. Also, GWT provides a library for web page widgets

and the interfaces for creating customized ones. Furthermore, GWT offers a hosted-mode web

browser which runs and execute GWT applications directly as Java programs in the JVM. This

135

allows the developer to debug web application in Java where more powerful and complete

debugging tools are available.

GWT also tries to tackle the distributed programming challenge of Ajax by supporting a

simple RPC mechanism for client-sever communication. Web developers can use the provided

interface to transparently make calls between client and server side Java code, and let GWT take

care of low-level details like object serialization.

Echo2 and similar frameworks

Echo2 [20] is an Ajax framework that provides to web developers the ease of program-

ming in a single language (typically Java) and exclusively at the server. It allows developers to

create web application like creating desktop application, in a model similar to Java Swing [34].

This is achieved by Echo2 automatically maintaining a complete and synchronized mirror of

the client side page state on the server side, so that user actions are transferred to the server and

translated to events which can be followed up by programs. Similarly, the server’s modifications

to the mirrored copy of the page are translated back to the client-side browser page by the

Echo2 framework. In this way, web developers do not need to be aware of the client and server

distinction, but can instead assume that users are interacting directly with the server-side mirror.

Therefore Echo2 is able to solve the first challenge of Ajax, namely the requirement of one more

language on client side and distributed programming. Similar frameworks like Echo2 include

ASP.NET [55], ZK [61], Backbase [5] and ICEfaces [32].

Echo2’s approach to maintaining a complete and synchronized mirror of the client

page state on the server also creates problems. It is assumed that in this approach most of the

computation is done on the server side, while the web developers are not given the power to

customize the client-side computation. As a result, the power of client-side computation is

limited and becomes captive to the framework’s power. Moreover, maintaining the perfectly

synchronized mirror requires frequent communication between the client-side web browser and

the server-side framework. Sometimes when the mirror is not well modeled, the communication

136

cost can become significant. For example, styling properties and implementation details are

modeled as part of the page state in Microsoft’s ASP.NET, a pure server-side framework that

provides mirroring of page state by always sending the page state from the browser to the server

in a hidden form field. This would lead to a high memory footprint and slow mirroring.

Finally, the language for specifying the page initialization and update using frameworks in

this category is still imperative rather than declarative. Therefore, Echo2 and similar frameworks

cannot address the challenge of Ajax that requires web developers to write codes to update

different parts of the page depending on different user actions and possibly actions from multiple

users.

3.2 Related Database Research

This section discusses two lines of database research related to the FORWARD frame-

work. Section 3.2.1 surveyed database-driven declarative frameworks for web applications.

Section 3.2.2 gives a summary of incremental view maintenance that is leveraged by incremental

page update of the FORWARD framework.

3.2.1 Declarative Web Application Specifications

The data management research community has influenced the FORWARD framework by

database-driven frameworks for web site [21] and application [17, 14, 58] development. Three

related projects are presented next in detail.

Specification of Data-Driven Web Services

Web services, viewed broadly as interactive web applications providing access to informa-

tion as well as transactions, are typically powered by databases. They are governed by protocols

of interaction with users or programs, ranging from the low level input-output signatures used in

WSDL [54], to high-level workflow specifications like BPML[12]. [53, 17] models the structure

of the web pages using relational schemas, and the content of a web page as the dynamic result

137

of querying the underlying database and the application state. This subsection in particular

describes how the WAVE project [17] models web applications.

In the scenario considered in WAVE, a web service is provided by an interactive web

site that posts data, takes input from the user, and responds to the input by posting more data

and/or taking some actions. The web site can access an underlying database, as well as state

information updated as the interaction progresses. The structure of the web page the user sees at

any given point is described by a web page schema. The contents of a web page is determined

dynamically by querying the underlying database as well as the state. The actions taken by the

web site, and transitions from one web page to another, are determined by the input, state, and

database. The main purpose of declaratively specifying web services and pages in a relational

model in WAVE is to facilitate static analysis and verifications. For example, in a web service

supporting an e-commerce application, it may be desirable to verify that no product is delivered

before payment of the right amount is received.

Figure 3.1 shows the specification of an example page using WAVE. In this page a list of

proposals are shown to the reviewer user who can recommend any of them to committee chairs

and then be navigated to Recommended Proposals (RP) page. The proposal relation is part

of the database. All the remaining relations in the specification are used by the framework of

WAVE to manage user input, input options, application states, external actions, and target pages.

The modification to the above-mentioned relations are through rules in first-order logic which

can be translated to SQL queries and modification commands.

The Posted Data block specifies the content of the page as a result of a query, which

in this example is the proposal relation. The Input Rules block specifies what options are

available to each actions. Here any proposal can be the option of the recommend action as shown.

Notice that clicking logout button is also a valid action, but since there is no option associated

with it there is no rule needed either. The State Rules block describes how the input can

trigger transition to the application state. In particular, a recommended proposal will be put

into the recommend state relation. The Action Rules block specifies what external actions

138

1 %[Proposals Page]
2

3 Posted Data:
4 proposal(pid,title,plan)
5

6 Input Rules:
7 Options@recommend(pid, title, plan) := proposal(pid,title,plan)
8

9 Input:
10 recommend(pid, title, plan);
11 clickbutton("logout")
12

13 State Rules:
14 recommend_state(pid,title,plan) := recommend(pid, title, plan)
15

16 Action (side effect) Rules:
17 clean_session_action():= clickbutton("Return")
18

19 Target Webpages: RP, HP
20

21 Target Rules:
22 RP := recommend(pid, title, plan);
23 HP := clickbutton("Return")

Figure 3.1. Example of declarative page specification in WAVE

139

or side effects would be fired. The actions are modeled as relations so that a record put into an

action relation indicates that the associated action should be fired externally. Finally, the Target

Webpages and Target Rules blocks decides which are the possible next pages to navigate to

and how they are decided using data from other relations.

WAVE gives a general approach to declaratively specifying web services and pages using

relational model. As we discussed earlier, declarative specifications lead to rapid programming,

much fewer bugs and easy application maintenance and evolution. Section 3.2.2 shows that using

relational model opens the gate to years of database research on incremental view maintenance

that can significantly improve the performance of re-rendering a page specified using this model.

Web Modeling Language (WebML)

WebML [53, 14] considers the specification of web sites in more perspectives, including

the logical layer and presentational layer, in addition to the data layer. Its main idea is to enable

designers to express the core features of a web site at a high level, without committing to detailed

architectural details. The specification of a web site in WebML is divided into the following four

layers:

1. Structural Model: This is the data layer which expresses the data content of a web site,

in terms of the relevant entities and relationships. It uses an E/R-like language and is

expected to be specified by the data experts.

2. Hypertext Model: This is the logical layer of pages that is supposed to be specified by the

application architects. It consists of two parts:

• Composition Model: It specify how a page is composed of units. WebML offers six

types of content units: data, multi-data, index, filter, scroller and direct units. Data

units are used to publish the information of a single Object (e.g., a proposal), whereas

the remaining types of units represent alternative ways to browser a set of object

140

(e.g., the set of reviews of a proposal). The units are defined on top of the entities or

relationship in the data layer.

• Navigation Model: It expresses how pages and units are linked to form the hypertext.

Links can be non-contextual, when they connect semantically independent pages

(e.g., the page of a proposal to the home page of the site), or contextual, when the

content of the destination unit of the link depends on the content of the source unit.

For example, the page showing a proposal’s data is linked by a contextual link to the

page showing the information of the proposal’s applicant. Contextual links are based

on the relationships in the data layer.

Figure 3.2 shows a high-level graphical representation of the logical layer of two web

pages in WebML. The solid boxes are units which include data, index and direct units, and

edges show the connections between pairs of units.

3. Presentation Model: It expresses the layout and graphic appearance of pages, independently

of the output device and of the rendition language, by means of an abstract XML syntax.

Presentation specifications are either page-specific or generic, and they are designed by

style architects.

4. Personalization Model: This layer considers user and personalization options, as well as

business logics, and is orthogonal to the other layers. User and user groups are explicitly

modeled in the data layer in the form of predefined entities. The features of these entities

can be used for storing group-specific or individual content, like suggestions, favorites,

and resources for graphic customization. Then, derived content can be added based on the

profile data stored in the user and group entities. This personalization content can be used

both in the composition of units or the definition of presentation specifications. Moreover,

high level business rules can be defined for reacting to site-related events, like user clicks

and content updates. This layer is supposed to be managed by site administrators.

141

WebML does not take Ajax into account since it is created before the Web 2.0 era. However, the

idea of logical units that bind to data and describe the composition of web pages inspires the

design of logical layer of the FORWARD framework.

ProposalInfo ToApplicant ApplicantInfo

ApplicationBio

ReviewIndex

ReviewsPage ProposalPage

Biography

Figure 3.2. An example of unit logical layer in WebML

Hilda

The Hilda projected described in [58, 57] provides a domain-specific language for

developing web applications, where all application logic is declaratively specified using SQL-like

queries. All application state is captured exclusively in the relational model, while customizable

code by users involving arbitrary computation are allowed.

The basic building block in Hilda is the application unit, or AUnit which is a essentially

a single-entry single-exist programming construct. The AUnits specify both the logical layer of

the page and the application logic. In many ways, an AUnit resembles a class in conventional

object-oriented (OO) programming languages. There are primitive AUnits provided by the

language framework, as well as user-defined AUnits. An Aunit can be instantiated; the life cycle

of AUnit instances involve both instance creation and deletion. AUnits are arranged into a tree

142

structure so that an AUnit can have child AUnits. At run time, an AUnit instance can activate

multiple child AUnit instances of the same type by using an activator (a rule) in terms of an

SQL query, so that each tuple in the query result guides the creation of a child unit instance.

Furthermore, Hilda also supports inheritance for extending the functionality of AUnits. The

inheritance can be used to add new application logic and/or logical structure of the web site.

Unlike OO classes, however, AUnits store all state within relations. Each AUnit instance

declares a local schema of relations, and data stored in the local schema is private to the instance.

Since the database state is also stored as a schema of relations in the RDBMS, populating local

schemas with data can occur using queries as an uniform mechanism, regardless whether the

data comes from transient application state or persistent database state.

In keeping with the declarative model, Hilda does not have conventional OO methods.

To effect state transitions, each AUnit instance has instead a set of handlers. Each handler has a

condition and an action. The condition is a query that returns zero or more tuples; the action is an

update to the local schemas of the AUnits. For each user action, the conditions of all handlers are

evaluated, and an action is executed if its corresponding condition evaluates to true (i.e. at least

one tuple). In Hilda, if more than one condition is true, only one action is arbitrarily executed. In

many ways, this style of programming is reminiscent of trigger programming in databases.

In Hilda, an entire web application is specified by a single AUnit tree with a distinguished

node being the root of the tree. For example, Figure 3.3 shows an example of simplified AUnit

tree of our running example. This tree applies to all users of various roles. At run time, different

user session would activate different instance of AUnit trees, which form the activation forest of

the application. Hilda tries to automatically partition the computation between client and server

by making a cut in an activation tree so that the side containing the root node instance belongs

to the server and runs as Java servlets, while the other side belongs to the client and runs as

Java applets. The cut is dynamic and can change at run time, and the Hilda framework offers an

algorithm for deciding the cut.

Presentation is cleanly separated from application logic through presentation units

143

W b iWebsite

Reviewer Applicantpp

Show
l

Input
l

Other
i

Show overall
dproposal proposal AUnits…

Input

grade

Other Show
Review AUnits…barchart

Figure 3.3. An example of an AUnit tree in Hilda

(PUnits). Each AUnit has a corresponding PUnit; each tree of AUnit instances therefore has

a corresponding tree of PUnit instances. Each PUnit has embedded HTML code that renders

the appropriate HTML fragment for its corresponding AUnit. Furthermore, each PUnit can

recursively invoke its children PUnits to build up the entire HTML page.

The combined AUnit structure for both logical page structure and application logic does

not have a clear concept model like MVC architecture, and creates a limit that is not friendly

towards Ajax-style partial page update. In Hilda, if certain user action would affect part of a page,

the AUnit node corresponding to the acted part needs to return and the AUnit node corresponding

to the changed part needs to be reactivated. For example, in Figure 3.3, the Input Review

node will cause the control flow return to its parent once the reviewer types in and submit a

review. A return handler at the node Show proposal will process the data passed from the child

node, and in this case reactivate all child units. In this way, the bar chart on the page can be

properly refreshed to reflect the changed grade distribution. However, suppose there is an overall

grade shown on the page that is represented by node Show overall grade. To refresh the

overall grade, a web developer needs to specify rules on AUnit nodes all the way to the lowest

common ancestor to guide the reactivation. At run time, the reactivation of the entire branch of

144

the activation tree also creates efficiency problem and possibly loss of state.

3.2.2 Incremental View Maintenance

IVM is a long studied problem with a lot of influential works [10, 9, 13, 46, 29]. idIVM

falls under the category of IVM works that employ the algebraic [46, 26, 47, 39] approach. Due

to the vast amount of related work in IVM, we focus next on approaches that are particularly

related to the main aspects of our work, which are: (a) exploiting primary key information

together with the associated (b) overestimation and (c) caching. Note that we cover all works in

these areas, even if they do not follow the algebraic approach. For comprehensive surveys on

IVM, the reader is referred to [28, 15].

Exploiting primary key constraints. The idea of exploiting primary key constraints

to speed up IVM was first presented in [27, 48]. However, in contrast to our work, [27, 48]

study only self-maintenance (potentially together with some auxiliary views) and not general

view maintenance where some data from the base relations may be required to maintain the

view. Furthermore, they are limited to maintenance of SPJ (including outer-join) views and their

algorithms are not easily extensible to more general classes of queries as they operate by looking

holistically at the view definition, in contrast to our modular algebraic approach. The first work

that exploited primary keys in an extensible algebraic setting and introduced the notion of partial

diffs, is [36]. However, the partial diffs of [36] always contain the entire primary key of the

view. Thus, they are not true ID-based diffs, but instead (relaxed) tuple-based diffs, that may

lack some of the (non-key) attributes of the view but will still incur the same number of accesses

as tuple-based approaches. Finally, primary key information has also been used to optimize

the rules for maintaining the output of particular operators (e.g., outer-join in [39]) within a

tuple-based approach. However, these approaches do not look at exploiting the keys to avoid

tuple-based diffs altogether, as done in this work.

Overestimation. Our definition of overestimation is similar to safe overestimation

described in [7] and ineffective updates in [36]. While overestimation in these works appears

145

only because of selection conditions, idIVM exploits also overestimation that arises because of

joins, which do not appear in the former, since they are both (relaxed) tuple-based approaches.

Caching. Several works looked at the problem of materializing additional results to

speed up IVM. These can be classified into two broad categories. The first category includes

approaches where the cached results are operator-specific. Examples of such works include

the IVM of aggregation under the assumption that previous aggregation results are available

[47, 43] and of top-k results by caching additional view tuples that are beyond the top k in

order to reduce the frequency of accessing the base tables [59]. These caches correspond to our

notion of operator caches and can thus be incorporated in our framework as part of an operator

definition. The second category contains approaches where the cached results are not tied to a

particular operator, but are additional views that are then exploited holistically during the IVM of

the original view [49, 41, 48, 2]. In contrast to our work that uses only caches that correspond to

subplans of the original plan, these works benefit by employing caches that may not be subplans

of a single plan. This aggressive materialization allows more efficient IVM, though at the cost of

maintaining an increased number of intermediate views. A prime example of such approaches is

DBToaster [2], which is discussed extensively in Section 2.8.3. However, by not being ID-based

such approaches always access at least one materialized view, in contrast to our approach, which

in some cases can avoid accessing base tables or cached views altogether. Finally, a related area

to caching in IVM is view selection, consisting of works that decide which views to materialize

to speed up query evaluation [1, 30]. Such approaches can be used in the context of idIVM to

decide which intermediate caches to materialize.

XML Views Maintaining XPath views has been studied in [50, 8]. [50] considers

maintaining XPath views in an IVM system that is loosely coupled with the base data system

where incremental maintenance is not always possible, and focuses on updates that are irrelevant

to the view or self-maintainable. [8] proves the upper bounds on time and space for checking

whether an XPath expression is satisfied or not after an update, where the update is inserting,

deleting, or relabeling (renaming) a single node.

146

XQuery view maintenance has been studied in [18, 23, 11]. [18] studies the IVM of

order-sensitive XQuery views using XAT algebra. It extends bag semantics with LexKeys

(lexicographical order encoding) to support IVM with ordered data. Although LexKeys can

serve as IDs, a LexKey always identifies a value (XML node) and there is no notion of partial

provenance or IDs. Even though the paper takes an algebraic approach to handle each operator,

it does not transform diffs using algebraic plan to form diff queries. Instead, the IVM rules are

expressed in a calculus format and implemented in the query processor specific to in-memory

storage.

In [23], views are expressed in the Galax tree algebra and a core set of Galax operators

are considered for IVM. It takes an interesting approach of transforming update statements

(also expressed in Galax algebra) from input to output of each operator in the set. Although the

paper listed IVM rules for operators including concatenation, XPath navigation, conditional,

ApplyPlan, it misses rules for some important operators including select and join/product.

Without employing partial provenance/IDs, this approach is limited to the same performance

characteristics as tuple-based IVM.

[11] focuses on a subset and dialect of XQuery including for, let, return, string comparison

and XPath{/,//,∗,[]}, and translates them to a decorrelated tree pattern algreba for IVM. Rather

than handling each individual operator for IVM and constructing a diff query, it takes a holistic

approach that handles the tree pattern query and focuses on pruning optimizations. The algorithm

does not employ partial provenance or IDs and has to compute tuple-based diffs. It considers

insert and delete diffs and is limited to monotonic scenarios, where insert and delete diffs can

only lead to diffs of the same type.

147

Appendix A

FORWARD Mapping Framework Specifi-
cation

Given two schemas S and T , a mapping configuration M from S to T expresses some

query logic that turns any instance of S to an instance of T . In execution, M is translated to an

equivalent query that inputs S and outputs T .

A.1 Motivation

FORWARD mapping framework can express common translations of data from a source

schema to a target schema in FORWARD’s SQL++ extension. It is used extensively in FOR-

WARD page layer, where data needs to be transformed from one page schema to another page

schema of the same page. It represents the translation as mapping lines from source type nodes

to target type nodes, and turns a valid mapping into a SQL++ query which takes input in the

source schema and produces output in the target schema. The main motivation for building

the mapping framework (instead of writing queries directly) is that the computation needed for

FORWARD to automatically transform and integrate data is more limited than the full power of

SQL++ queries. In particular, this includes translation of data between different schemas of a

page (see Section 1.2.4). Therefore, the core mapping framework which is designed to produce

just the right amount of computation power greatly simplifies implementation and maintenance

of the framework. Currently the mapping framework is used internally in FORWARD and not

148

exposed to application developers.

A.2 Syntax

The syntax of a mapping configuration is shown in Figure A.1. The basic building block

of core mapping language is a conjunctive mapping that consists of a group of atomic mappings,

each of which can be a scalar mapping, a tuple mapping, an expression mapping, or a union

mapping.

A scalar mapping (or tuple mapping) maps a source scalar type (or tuple type) to a target

scalar type (or tuple type). For a scalar mapping or tuple mapping s→ t, if there exists an s′ that

is the closest tuple ancestor of s such that there is a tuple mapping s′→ t ′, then s′ is called the

closest mapped tuple ancestor (cmta) of s. If there is no such s′ then the cmta is the root of the

source.

MappingConfiguration → source-schema, target-schema,
ConjunctiveMapping

ConjunctiveMapping → AtomicMapping+ [SelectionCondition]
SelectionCondition → Expression(SourceNodes+)
AtomicMapping → ScalarMapping

| TupleMapping
| UnionMapping, UnionRootMark
| ExpressionMapping

ScalarMapping → SourceScalarNode→ TargetScalarNode
TupleMapping → SourceTupleNode→ TargetTupleNode
UnionMapping → ConjunctiveMapping+2

ExpressionMapping → Expression(SourceNodes+)→ TargetNode

Figure A.1. The syntax of mapping tree

We allow a conjunctive mapping to have multiple scalar mappings pointing to a single

target scalar type, where the source types in those scalar mappings have to be mutually exclusive

in the sense that at run time at most one of them can be evaluated to be non-null. To generated

the corresponding SQL++ query, CASE WHEN ...THEN ... statement is applied.

Union of source tuples is supported by union mapping. A union mapping consisted of

149

two or more conjunctive mappings, all of which must contain a tuple mapping towards a target

tuple type called the union root. During the construction of target data tree, each conjunctive

mapping of a union mapping is first evaluated independently, and then their generated tuples are

unioned together to become the target output.

Expression mapping allows a target scalar type to be mapped by an expression of SQL++

functions. The expression can be composed from SQL++ functions in a tree structure, while the

leaves can be either source types or constant literals.

A.3 Validity Check of Mapping Configuration

A mapping configuration needs to be internally compiled and checked for validity before

it can be translated to a query. We do the following validity checks of a mapping configuration.

• Within a single conjunctive mapping, a tuple in the target schema is involved in at most

one tuple mapping or union mapping.

• Every table tuple type and switch case tuple type in the target schema is mapped.

• A scalar type in the target schema can be mapped by zero, one, or multiple scalar mappings

or expression mapping.

• Descendant and ancestor relationship must be preserved through tuple mappings. In

particular, we check that for a scalar mapping or tuple mapping s→ t, the cmta of s should

be mapped to an ancestor of t.

• If a mapped target tuple type is not a table tuple, then either

– Its corresponding source tuple type and its cmta has no table type in between, or

– The conjunctive mapping has a selection condition that is under the target tuple type.

150

A.4 Query Generation

The query generation algorithm is a recursive descent driven into the target tree and

resulting into a query tree that populates the target. Due to page space limit, the pseudo-code is

separated into three parts and shown in Figure A.2, Figure A.3, and Figure A.4.

function generateQuery(S, T , conjunctive mapping CM) return Query begin
// S is the source schema
// T is a subtree of the target schema
// CM is the current conjunctive mapping node, not necessarily the

root
// the following procedures help in query writing
// the procedure path(s1,s2) writes the query path from the tuple

node s1 to the node s2
// the procedure closestVar(s) writes the variable or data object name

associated with the cmta of the node s in S
// the procedure merge(e1, . . . ,en) writes the CASE expression that

returns the only one of the ei expressions that is not null.
Whenever used it is expected that at most one will be not null.
If they are all null then return null.

t is the root of T ;
if t is a tuple marked as UnionRootMark by a union mapping in CM then

/* Merge of non-table tuple -- use CASE WHEN */
U ← the union mapping that corresponds to t in CM;
foreach conjunctive mapping Mi, i = 1, . . . ,n of U do

qi← generateQuery(S,T,Mi) ;
return merge(q1, . . . ,qn) ;

else if t is a tuple NOT marked by UnionRootMark in CM then
/* t can be mapped by one or zero tuple mapping. Both are valid.

*/
foreach attribute a j, j = 1 . . .m of t whose schema tree is c j

T do
q j← generateQuery(S,c j

T ,CM) ;
return TUPLE(q1 AS a1, . . . ,qm AS am) ;

. . . ;

Figure A.2. Query Generation from Mappings Configuration - Part 1

151

function generateQuery(S, T , conjunctive mapping CM) returns Query begin

. . . ;
else if t is a scalar targeted by more than one mappings in CM then

foreach mapping si→ t, i = 1 . . .n in CM that targets t do
ei← closestVar(si).path(cmta(si),si) ;

return merge(e1, . . . ,en) ;
else if t is a scalar targeted by exactly one scalar mapping in CM then

return closestVar(s).path(cmta(s),s) ;
else if t is a scalar targeted by exactly one expression mapping in CM then

/* Construct the expression */
else if t is a scalar targeted by no mapping at all then

return default value (constant) of type t
. . . ;

Figure A.3. Query Generation from Mappings Configuration - Part 2

A.5 Selection Condition

We add selection condition to mapping configuration because we need the feature of

pinpointing a particular table tuple in the source schema to fill a single (non-table) tuple in

the target schema. This use case arises during transforming data from a page’s page.complete

schema to one of its page.context schemas.

An optional selection condition can be added to a conjunctive mapping. With this

selection condition added, we can then allow a tuple mapping to “skip” an arbitrary number of

table tuples in the source schema, leaving them unmapped. The selection condition is used to

navigate across those tables. Figure A.5 gives the updated pseudocode of the mapping-to-query

translation to handle selection condition. It becomes the mapping creator’s responsibility to

ensure that at run time, exactly one tuple value under each of those tables will meet the selection

condition. In FORWARD’s page compiler, this is enforced by design during the building of the

page.complete schema, the page.context schema, and their mappings.

152

function generateQuery(S, T , conjunctive mapping CM) return Query begin
. . . ;
else if t is a table and its tuple tc is NOT a UnionRootMark then

Find the tuple mapping (s, tc);
foreach Not registered table tuple type si where (i = 1, · · · ,n) from root to s do

produce a fresh variable name vi ;
associate the variable vi with si ;
T ′ is the subtree of T rooted at tc ;

foreach attribute a j, j = 1 . . .m of t whose schema tree is c j
T do

q j← generateQuery(S,c j
T ,CM) ;

return SELECTq1 AS a1, . . . ,qm AS am FROM
closestVar(s1).path(cmta(s1),s1) AS v1, · · · ,
closestVar(sn).path(cmta(sn),sn) AS vn ;

else if t is a table and its tuple tc is marked as UnionRootMark then
U ← the union mapping that corresponds to tc ;
foreach conjunctive mapping Mi, i = 1, . . . ,n of U do

qi← generateQuery(S,T,Mi) ;
return q1 UNION . . . UNION qn ;

else if t is a switch type then
foreach case a j, j = 1 · · ·m of t whose schema tree is c j

T do
q j← generateQuery(S,c j

T ,CM) ;
d j← the condition that leads to a j;
/* Notice that the above condition can be disjunctive if case

tuple a j is the root of a union mapping. */
return SWITCH WHEN d1 THEN q1 · · · WHEN dm THEN qm;

Figure A.4. Query Generation from Mappings Configuration - Part 3

153

function generateQuery(S, T , conjunctive mapping CM) return Query begin
. . . ;
else if t is a table and its tuple tc is NOT a UnionRootMark then

Find the tuple mapping (s, tc);
unmappedSrcColTuple← Not registered table tuple type si where (i = 1, · · · ,n)
from root to s;

requireSelection← unmappedSrcColTuple is not empty;
foreach si in unmappedSrcColTuple do

produce a fresh variable name vi ;
associate the variable vi with si ;
T ′ is the subtree of T rooted at tc ;

foreach attribute a j, j = 1 . . .m of t whose schema tree is c j
T do

q j← generateQuery(S,c j
T ,CM) ;

if requireSelection then
exists← translate CM’s selection condition to an EXISTS clause;
return SELECTq1 AS a1, . . . ,qm AS am FROM
closestVar(s1).path(cmta(s1),s1) AS v1, · · · ,
closestVar(sn).path(cmta(sn),sn) AS vn WHERE exists;

else
return SELECTq1 AS a1, . . . ,qm AS am FROM
closestVar(s1).path(cmta(s1),s1) AS v1, · · · ,
closestVar(sn).path(cmta(sn),sn) AS vn ;

Figure A.5. Updated Query Generation from Mappings Configuration with Selection Condition

154

A.6 Mapping Provenance ID and Mapping Inversion

Mapping inversion is a feature that propagates changes to scalar values of a taget data tree

back to its corresponding source data tree. To make it possible, we need to establish connections

between source and target values. This is done by adding mapping provenance IDs to the

target schema and adding corresponding computation logic as mapping lines to the mapping

configuration. Mapping provenance inferrer is in charge of this process. It can work with any

base mapping configuration to add provenance IDs. The challenge here is that we need to deal

with union mappings, which means that a target type may be mapped by several source types.

Consequently, at run time, we need to figure out given a particular target value, which union

branch the value corresponds to, and hence which source value populated it.

A.6.1 Mapping Provenance Inferrer

We first present the algorithm of mapping provenance inferrer. Figure A.6 gives the

pseudo-code of it. The algorithm traverses the mapping configuration from top down, and for

each union branch, it keeps track of the branch index number. When a tuple mapping is visited,

the algorithm creates an ID attribute (named “id”) in the target tuple type. This ID attribute is then

filled by an expression mapping of the form “id$(keys[1])$(keys[2])$. . .$(keys[x])$”. This value

captures both the current union branch index and the global primary key of the corresponding

source table tuple. Later during mapping inversion, the union branch index is used to guide

mapping inversion process, while the source global primary key serves as a signature for values.

A.6.2 Mapping Inversion Algorithm

At run time, when a target data tree originated from a source data tree through a mapping

configuration gets updated, the mapping inversion engine can propagate the changes from the

target data tree back to the source data tree. Figure A.7 and Figure A.8 show the pseudo-code of

this process. It first builds a map from signatures of source scalar values to the values themselves.

155

function inferProvenanceMappings(S,T,M, id) begin
input :source schema S, target schema T , conjunctive mapping M, and branch id bid
output : this algorithm updates T and M in place

foreach union mapping UM in M do
foreach i-th conjunctive mapping CM in UM do

inferProvenanceMappings(S,T,CM, i)
foreach tuple mapping tm in M do

target tuple← target type of tm;
Add a new string type attribute named “id” to target tuple;
if targettuple is a table tuple then

Declare “id” as the primary key attribute of targettuple’s table;
source coll← lowest ancestor of source type of tm;
keys← global primary key attributes of source coll;
Create an expression mapping to “id” attribute in target schema of the form
“id$(keys[1])$(keys[2])$. . .$(keys[x])$”;

Figure A.6. Inferring mapping provenance IDs

Then it traverses the target data tree, and at the same time keeps track of the current conjunctive

mapping by using the branch index number stored in ID attributes added by mapping provenance

inferrer. When the traversal comes to a target scalar value, the algorithm manages to construct

the signature of the source value that mapped to this target value. Therefore we can locate the

source value using the signature map and hence update the source value using the new target

value.

Optimization with list of target changes

The baseline solution shown in Figure A.7 and Figure A.8 works without the knowledge

of which part of the target data tree has been updated. This means that mapping inversion has to

traverse the entire target data tree to see which nodes need to be propagated back to the source

data tree, which leads to a running time linear to the size of the data tree. In practice, when

mapping inversion is used to propagate user input on a page’s visual data object back to its

page.complete data object, the number of changes on visual data object (i.e., the target) is usually

small. In our full algorithm and implementation, we utilize the list of target changes (provided

by the visual layer) to guide mapping inversion so that only the part of the target tree which

156

function mappingInversion(s, t,MC) begin
input :old source data tree s, new target data tree t, mapping configuration MC
output : this algorithm updates s in place

hash map← a hash map from a string to a source value ;
foreach Source value sv do

if sv is a scalar value or a null value then
st← path expression of type of sv;
keys← primary key attribute values of sv;
s← build a string of the form “st$(keys[1])$(keys[2])$ · · ·$(keys[x])$”;
Add (s→ sv) to hash map;

MC← root conjunctive mapping of M;
recursivelyInverse(s, t,MC, “”)

Figure A.7. Mapping Inversion - Part 1

function recursivelyInverse(t,M,sig,hash map) begin
input : target value t, conjunctive mapping M, primary key part of signature sig,

signature to source value map hash map
output : this algorithm updates s in place

if t is a tuple then
id← the “id” attribute value of t;
(bid,src key)← break id into branch index part and source key part;
if t is marked as union root then

CM← the bid-th conjunctive mapping of the union mapping rooted at t;
foreach child attribute c of t do

mappingInversion(c,CM,src key,hash map)
foreach child attribute c of t do

mappingInversion(c,M,src key,hash map)
else if t is a scalar value or null value then

if t is mapped by a scalar mapping sm then
st← path expression of the source type of sm;
f ull sig← st + sig;
sv← the source value that f ull sig points to in hash map;
Update sv’s value to t’s value;

else
/* t is a table type or switch type. */
Call this function recursively with the children types of t;

Figure A.8. Mapping Inversion - Part 2

157

involves changes is traversed. This improves runtime performance of mapping inversion, since

the running time now becomes linear to the size of the data diff.

158

Appendix B

Key Inference and Retouching Specifica-
tion

The key inference module infers keys for the output of a logical plan. If a key cannot

be found for certain table, it tries to change (“retouch”) the logical plan (e.g., to include more

attributes in the output) so that keys can be found.

In our design, an inferred key is guaranteed to be unique, but not necessarily minimal

(i.e., it may not be a candidate key).

B.1 Motivation

Keys as one form of unique IDs serve as a crucial piece of information for achieving

Ajax effects of partial page update. In typical Ajax web development, developers have to mark

parts of page with HTML id attributes, so that Ajax actions can return responses of page updates

addressing each part using their IDs. It follows that developers have to come up with unique

values of the ID attribute for each part of the page. This can become tricky with dynamically

generated pages of nested structure. If a developer made a mistake and ID’s become not unique,

incorrect behaviors may come up during runtime and it is hard to debug.

To relieve developers from this burden and its associated risk, we designed and built the

key inference module as part of the FORWARD framework to automate key creation (and hence

HTML ID creation) in FORWARD pages.

159

Besides the above main motivation, key inference (or its variants) also serve the pattern-

based incremental view maintenance module, which uses keys to describe functional dependency

in patterns (see Chapter 2), and SQL++ DML statements, which use keys to identify and change

values in originating data sources.

B.2 Main Workflow

We do per-operator analysis and retouching to figure out output keys of an operator given

the inferred keys of the inputs. The pseudocode of the main function is listed in Figure B.1.

function inferAndRetouch(op) begin
Analyze op to decide which children need to have key information ;
foreach child operator c of op required to have key information do

inferAndRetouch (c) ;
Refresh input schema of op since it may have changed ;
Apply per operator rule to infer output keys and retouch op if needed ;

Figure B.1. Main flow of key inference and retouching

Notice that not every operator in a logical plan needs to have keys inferred. For instance,

to infer the keys of a semijoin operator, we only need the keys of its left child, but not the right

child.

B.2.1 Tables with Unknown Keys

Tables with unknown keys may come up during key inference for the following possible

reasons:

• Primary key constraints are naturally missing for tables in certain data sources.

• Some black-box operator or UDF (user-defined function) do not provide key inference

rules or custom routines to infer keys.

• There is a circular dependency that keys of the input table cannot be determined until the

keys of the query are inferred. This scenario may happen in page compilation.

160

The appearance of tables of unknown keys does not mean that key inference for the entire

query plan should fail right away. It is possible that such tables do not appear in the query output

or affect the key inference of tables that do appear in the query output. For instance, we have

mentioned that for semijoin operator, the key information for the right child of the operator is

never needed. Indeed, according to the above pseudo-code, the entire sub-tree rooted at the right

child will not be visited for key inference at all. However, sometimes we cannot decide easily

whether a sub-tree of query plan needs to be analyzed for key inference based on per-operator

rules.

αs

π R.*, CAST(s as integer) → v

…

R

Scan

Figure B.2. An example of key inference that can tolerate intermediate tables with unknown
keys.

Example B.2.1. Consider a query logical plan illustrated in Figure B.2. The apply plan create

a nested table s, which is intended to be a singleton table that contains a single scalar attribute.

With this intent, the apply plan is followed by a projection that transforms the nested table to a

scalar attribute v. In reality, this plan can appear when translated from a query AST where the

attribute v is specified by a sub-query in select clause1. Now the nested table s may fail to have

keys inferred. But it is acceptable since it does not affect the key inference for the final output of

the query.

To handle the use cases represented by the above example, we design rules to accept

unknown keys of intermediate result, only failing when any tables in the eventual query output
1supported by FORWARD SQL++

161

has unknown keys. This logic is contained in each per-operator rule, and therefore not showing

in Figure B.1. We have considered the alternative design that tracks from top down which tables

requires key information and only infer when it is necessary. However, this design implies

passing around extra information among key inference rules, which we do not want because of

higher implementation and maintenance complexity.

B.3 Key Information and Annotation

In the output schema of an operator, every table (either the root or any nested one) can be

associated with either of the following kinds of key information:

• Singleton flag “SINGLETON”. For instance, the output of a Ground operator is a singleton

(and empty) table.

• Key attributes. In the simplest version, it is a set of attributes that form a composite key.

E.g., tuple/alias1/did, tuple/alias2/eid. As a standard and convention in FORWARD, we

use path expression to represent attributes since there might be intermediate tuples.

We can arrange the inferred result as a map, called key annotation, from a table to either

SINGLETON flag of key attributes, called key information.

Example B.3.1. Consider the simple logical plan accessing an Applicants table that has a nested

Schools table, as shown in Figure B.3. Here the scan operator reads tuples from the input table,

and for each input tuple x, it attach it to an output tuple under an alias. In this example, the alias

is simply “a”.

db.Applicants

Scana

Figure B.3. Example of a single scan operator

The key annotation for the output is as follows:

162

{Root: {tuple/a/aid},

tuple/a/Schools: {tuple/sid}}

B.3.1 Equivalent Key Attribute Groups

Sometimes Project and Navigate2 operators create copies of a key attribute, and in the

output of the operator, either the original copy or a new copy can serve as the key attribute. We

want to keep track of equivalent copies of key attributes because later on in the query plan, one

copy may be projected out, but we can still use a remaining copy to serve as the key attribute.

Notice that an alternative approach is to keep track of not all equivalent copies, but a

single copy only. This would require that the designated copy has to be preserved. It would

possibly lead to more retouching and bigger output, which we consider non-preferable.

With equivalent groups, the key attributes of a table become a set of key attribute groups.

Example B.3.2. Consider a logical plan shown in Figure B.4. The following table shows key

annotations for each of its operators.

db.Departments

Scand

db.Employees

Scane

Navigate e.eid → eid_copy

⋈ e.eid = d.did

π eid_copy, d

Figure B.4. Example of a query plan that has equivalent key attributes

2A project-like operator in SQL++

163

Table B.1. Example query plan with inferred keys

Project eid copy, d Root: [tuple/d/did],
[tuple/eid copy]

Join (e.did = d.did) Root: [tuple/d/did],
[tuple/e/eid, tuple/eid copy]

Scan db.Departments as d Root: [tuple/d/did]
Ground Root: SINGLETON

Navigate e.eid as eid copy Root: [tuple/e/eid,
tuple/eid copy]

Scan db.Employees as e Root: [tuple/e/eid]
Ground Root: SINGLETON

B.4 Per Operator Rules

B.4.1 Ground

The only empty root table returned by the ground operator is marked as SINGLETON.

B.4.2 Scan (Access Path)

The child operator is analyzed first for key annotation. Then we infer the keys of scan

operator in two steps. First, we get the key annotation for the scanned data. Second, we merge

the key annotation of the scanned data with the key annotation of the child operator to get the

key annotation of the output of scan.

Considering the scanned data, there are two scenarios:

1. If the scanned term is an absolute variable, then we construct the key annotation of the

term by using the local primary key constraint of each table under the scanned term.

2. If the scanned term is a relative variable, then we get the key annotation of the term from

the input key annotation.

When we merge the two key annotations together:

1. We preserve everything from the input key annotation, except for the key information for

the root table.

164

2. We preserve everything from the key annotation of the scanned term, except for the key

information for the root of the term (if the root of the term is a table and therefore has key

information; notice that a scanned term can be a tuple or even a scalar value).

3. We merge the key information for the input root and the key information for the scanned

term’s root to get the key information for the output root. In detail:

(a) The scanned term’s root may be a tuple, in which case we consider it as SINGLETON.

(b) If both input root and scanned term’s root are SINGLETON, then the output root is

SINGLETON.

(c) Otherwise, the output root has the key information as the combination of the two

roots’ key information.

B.4.3 Operators that Preserve Key Annotation as Is

A class of operators that preserves input schema to the output has a very simple rule

for key inference. That is, key annotation of the input is used as key annotation for the output

without changes. Therefore, we only needs to analyze its child operator for key inference and

propagate the input keys as is to the output. No retouching is needed.

Such operator includes Select, Sort, and Exists3. Notice that Exists does have an output

schema that is slightly different from the input schema as the output has an additional boolean

attribute representing whether the table to be tested is empty. Since this additional new attribute

is not a table, Exists operator can therefore falls in this class.

B.4.4 Navigate

First, the child operator is required to be inferred with keys. The output key annotation is

basically the input key annotation.

3Unlike the SQL Exists function, the SQL++ Exists logical operator takes a sub-plan and outputs a new boolean
attribute (in addition to the input attributes) deciding whether the sub-plan evaluates to empty result.

165

There is only one additional handling regarding the root table. When the navigated term

is a key attribute (of the root table), we add the new attribute created by the navigate to the

equivalent group where the navigated term is in.

B.4.5 Project

The handling of project is based on that of navigate. Please refer to the handling of

navigate first. Similar to Navigate, the child of Project needs to be inferred with keys.

Since project cannot change anything across a nested table, so the key information of any

nested table will be preserved as is, if the nested table is in the projection list.

The main difference between project and navigate is about root table, since project may

project out some attributes that happen to be key attributes of the root table. When this happens,

it is still fine if a projected out key attribute has at least one equivalent copy that is preserved by

the project. If an equivalent group becomes empty because every copy is projected out. Then we

need to retouch.

Retouching

When an equivalent group of the root table becomes empty, we add an extra project item

that preserves one input attribute in the equivalent group to the output. We make the new attribute

a top level one (i.e., not under any intermediate tuple) and assign it a globally unique name.

Example B.4.1. Consider the following logical plan that needs retouching.

Project d.dname as dname

Scan db.Departments as d

Ground

After retouching, the logical plan becomes

Project d.dname as dname, d.did as prov 102

Scan db.Departments as d

166

Ground

And the key annotation is {Root: {[prov 102]}}.

B.4.6 Product (Inner Join and Outer Join)

Product, Inner Join and Outer Join operators require all child operators be analyzed for

key inference first. After that, the handling is simple. For non-root (i.e., nested) tables, we

preserve the key information from its corresponding input key annotation to the output key

annotation.

For the root table, if both children’s root tables are SINGLETON, then the output root

table is SINGLETON too. Otherwise, we combine the lists of key attributes (groups) of both

input root tables to form the key information of the output root table.

No retouching is needed.

B.4.7 Semijoin and Anti-Semijoin

For these two operators, only the left child needs to be inferred with keys, since the

schema of the output is the schema of the left child. After that, the handling is simple: Input key

annotation of the left child becomes the output key annotation.

No retouching is needed.

B.4.8 ApplyPlan

We need to infer keys with the child operator. Also we need to run the inference and

retouch procedure for the nested plan. And before we start call key inference routine with the

nested plan, we need to have the key annotation sorted out for the ApplyPlan’s input because the

nested plan may access (through parameter) some outer context provided by the operator’s input.

The output key annotation is basically the input key annotation, except for the sub-tree

rooted at the new nested table created by ApplyPlan. We copy from the nested plan’s output key

annotation for the new nested table and any tables that are further nested under it.

167

No retouching is needed.

B.4.9 Distinct (Any Set Operator with DISTINCT Quantifier)

We assume there is a Distinct operator. If not, what is discussed here can be applied to

every set operator that has a DISTINCT quantifier.

We also assume that input of distinct (and hence the output of it) does not have any nested

table.

For the distinct operator, we do not need to visit its children for key inference. In fact,

key retouching should be disallowed for children, because it may change the input schema and

affect the correctness of distinct. Also since there is no nested table, we do not need to do key

inference either with the children. The output key information (of the root table) is the entire list

of attributes.

B.4.10 Union All and Outer Union All

Here we discuss Union and Outer Union with bag semantics. First, child operators need

to be visited first for key inference and retouching. If there is any nested table in both input

branches (if it appears in only one input branch it is trivial to handle), its type and inferred key

information has to be the same from both input branches. Otherwise we will fail.

We describe the key inference rule with retouching steps, as they turn out to be very

related.

Retouching

Retouching may be needed to infer key information of the root table. The steps are as

follows.

168

Changing union to outer union

After retouching that happens to a union’s two child branches, the type of the two

branches may no longer match. Therefore we may need to transform a union to outer union4.

Adding branch index attribute

The output key is basically the combination of the input keys from both branches. In

addition, we add a branch index attribute to both input branches (using an extra project) before

they are unioned or outer unioned. This branch index attribute will be filled with constant 1 for

first branch and constant 2 for the second branch. This attribute will be added to output root

table’s key information. This implies that the output root table will never be SINGLETON.

It is possible to not require this branch index attribute. But it would require non-trivial

analysis of the input. For instance, even if the two input branches have different key information

for root table, we may still need the branch index attribute.

Merging key groups for root table

Key groups are tricky concept and probably does not survive across unions or set operators.

Therefore we grab the first element from each group and combine those singleton groups, as

opposed to potentially merge groups.

NULL value for key attribute

The NULL value we use to fill the key attributes of one branch in another branch of outer

union has different equality semantics than the normal relational NULL value. We call it NULL*

and two NULL* values are considered equal. Notice that this is similar to how SQL handles

NULL value in grouping attributes of Group By.

Example B.4.2. Consider the following logical plan that needs retouching.

Union ALL

Project ename as name

4Outer union is a FORWARD extension in SQL++.

169

db.employees

Project cname as name

db.contractors

After retouching, the logical plan becomes

Outer-Union ALL

Project ename as name, eid as prov 100, 1 as union branch

db.employees

Project cname as name, cid as prov 101, 2 as union branch

db.contractors

And the key annotation for the output is {Root: {[prov 100], [prov 101], [union branch]}}.

B.4.11 Group-By

Group-by operator can always have its top-level key inferred as exactly the list of group-

by attributes. However, we may do better if the group-by list contains all input key attributes. In

that case, the input key attributes serve as a smaller, and better, choice of output key.

No retouching is needed since keys can always be inferred.

Group-By with Nest

In order to have keys inferred with the nested table created by NEST aggregate, the NEST

aggregate has to include all input key attributes that are not included in the group-by attributes.

The included key attributes minus the group-by attributes can serve as the inferred key of the

nested table.

For nested tables that are preserved from input to output, either as part of the outer table

or the NEST aggregate, their keys are carried over as is.

170

Appendix C

i-diff Propagation Rules

Table C.1. Rules for ×

For ∆
+
Inputl(Ī, Ā

′′
post)

∆
+
V = ∆

+
Inputl × Input post

r

For ∆
+
Inputr(Ī, Ā

′′
post)

∆
+
V = Input post

l ×∆
+
Inputr

For ∆
−
Inputl(Ī, Ā

′
pre)

(∆−Inputr is symmetric)
∆
−
V = ∆

−
Inputl

For ∆u
Inputl(Ī, Ā

′
pre, Ā

′′
post)

(∆u
int pur

is symmetric)
∆u

V = ∆u
Inputl

Table C.2. Rules for ∪

For ∆
+
Inputl(Ī, Āpost)

(For ∆
+
Inputr replace 0 by 1)

∆
+
V = π∗,b→0∆

+
Inputl

For ∆
−
Inputl(Ī, Ā

′
pre)

(For ∆
−
Inputr replace 0 by 1)

∆
−
V = π∗,b→0∆

−
Inputl

For ∆u
Inputl(Ī, Ā

′
pre, Ā

′′
post)

(For ∆u
Inputr replace 0 by 1)

∆
−
V = π∗,b→0∆u

Inputl

171

Table C.3. Rules for σφ(X̄)

For ∆
+
Input(Ī, Āpost)

∆
+
V = σφ(X̄)∆

+
Input

For ∆
−
Input(Ī, Ā

′
pre)

∆
−
V = σφ(X̄pre)∆

−
Input

For ∆u
Input(Ī, Ā

′
pre, Ā

′′
post)

if X̄ ⊆ Ī∪ Ā′′post then
∆u

V = σφ(X̄pre)σφ(X̄)∆
u
Input

else
∆u

V = ∆
−
Input

if X̄ ∩ Ā′′post = /0 then
∆
+
V = not triggered

else if X̄ ⊆ Ī∪ Ā′′post then
∆
+
V = Input post nĪ σ¬φ(X̄pre)σφ(X̄)∆

u
Input

else
∆
+
V = σ¬φ(X̄pre)σφ(X̄)(Input post n∆u

Input)

if X̄ ∩ Ā′′post = /0 then
∆
−
V = not triggered

else if X̄ ⊆ Ī∪ Ā′′post then
∆
−
V = πĪ,Ā′pre

σφ(X̄pre)σ¬φ(X̄)∆
u
Input

else
∆
−
V = πĪ,Ā′pre

σφ(X̄pre)σ¬φ(X̄)Input post n∆u
Input

Blue portion applies when pre-state attributes present.

Table C.4. Rules for γḠ, f (X̄)→c

For ∆
−
Input(Ī, Ā

′
pre) where Ī ⊆ Ḡ

∆
−
V = ∆

−
Input

For any ∆t
Input(Ī, Ā

′) and f , we can recompute groups
if Ḡ⊆ (Ī∪ Ā′) then

∆u
V = γḠ, f (X̄)→c(∆

t
Input oḠ Input post)

else
∆u

V = γḠ, f (X̄)→c(∆
t
Input oĪ Input post oḠ Input post)

(Do not handle group creation/deletion)

172

Table C.5. Rules for πD̄, f (X̄)→c

For ∆
+
Input(Ī, Āpost)

∆
+
V = πD̄, f (X̄)→c,Ī∆

+
Input

For ∆
−
Input(Ī, Ā

′
pre)

if X̄ ⊆ Ī∪ Ā′pre then
∆
−
V = π(D̄∩(Ī∪Ā′pre))∪ f (X̄pre)→cpre,Ī∆

−
Input

else
∆
−
V = πD̄∩(Ī∪Ā′pre),Ī

∆
−
Input

For ∆u
Input(Ī, Ā

′
pre, Ā

′′
post)

if (Ī∪ Ā′′post)∩ X̄ = /0 then
∆u

V = σisupdπD̄′,Ī∆
u
Input

else if X̄ ⊆ Ī∪ Ā′′post then
∆u

V = σisupdπD̄′, f (X̄)→cpost , f (X̄pre)→cpre,Ī∆
u
Input

else
∆u

V = σisupdπD̄′, f (X̄)→cpost , f (X̄pre)→cpre,Ī
(Input post nĪ ∆u

Input)

where σisupd selects tuples corresponding to actual
updates (i.e., where cpre 6= cpost or apre 6= apost for some
attribute a), D̄′ = (D̄∩ (Ī∪ Ā′′post))∪ (D̄pre∩ Ā′pre),
and D̄pre is the pre-state counterpart of D̄.
Blue portion applies when pre-state attributes present.

Table C.6. Rules for γḠ,sum(X̄)→c

For ∆u
Input(Ī, Ā

′
pre, Ā

′′
post), and Ḡ∩ Ā′′post = /0

∆i
1 = πĪ,xpost−xin→x∆

(∆u
Input on πx→xinInput pre)

For ∆
−
Input(Ī, Ā

′
pre)

∆
j
2 = πĪ,0−xin→x∆

(∆−Input on πx→xinInput pre)

For ∆
+
Input(Ī, Ā

′′
post)

∆k
3 = πĪ,x→x∆

(∆+
Input . Input pre)

For converting ∆ to output update i-diffs
Happens after all ∆i

1,∆
j
2,∆

k
3 are computed.

∆u
V = πḠ,c→cpre,c+c∆→cpost

(Out put on
γḠ,sum(x∆)→c∆

(∆i
1∪∆

j
2∪∆k

3))

(Do not handle group creation/deletion)

173

Table C.7. Rules for onφ(X̄)

For ∆
+
Inputl(Ī, Āpost)

∆
+
V = ∆

+
Inputl onφ(X̄) Input post

r

For ∆
+
Inputr(Ī, Āpost)

∆
+
V = Input post

l onφ(X̄) ∆
+
Inputr

For ∆
−
Inputl(Ī, Ā

′
pre) (∆−Inputr is symmetric)

∆
−
V = σφ(X̄pre)∆

−
Inputl

For ∆u
Inputl(Ī, Ā

′
pre, Ā

′′
post) (∆u

Inputr is symmetric)
if X̄ ⊆ Ī∪ Ā′′post then

∆u
V = σφ(X̄pre)σφ(X̄)∆

u
Inputl

else
∆u

V = ∆u
Inputl

if Ī∩ Ā′′post = /0 then
∆
+
V = not triggered

else if X̄ ⊆ Ī∪ Ā′′post then
∆
+
V = (Input post

l nĪ σ¬φ(X̄pre)σφ(X̄post)∆
u
Inputl)

onφ(X̄) Input post
r

else
∆
+
V = πInputl ,Inputrσ¬φ(X̄pre)σφ(X̄post)

(Input post
l on ∆u

Inputl onφ(X̄) Input post
r)

if Ī∩ Ā′′post = /0 then
∆
−
V = not triggered

else if X̄ ⊆ Ī∪ Ā′′post then
∆
−
V = πĪ,Ā′pre

σφ(X̄pre)σ¬φ(X̄post)∆
u
Inputl

else
∆
−
V = πĪ,Ā′pre

σφ(X̄pre)σ¬φ(X̄post)Input post
l

on ∆u
Inputl onφ(X̄) Input post

r

Blue portion applies when pre-state attributes present.

174

Table C.8. Rules for γḠ,count(X̄)→c

For ∆u
R(Ī, Ā

′
pre, Ā

′′
post), and Ḡ∩ Ā′′post = /0

∆i
1 = /0

For ∆
−
R (Ī, Ā

′
pre)

∆
j
2 = πĪ,−1→x∆

(∆−R on πx→xinInput)
For ∆

+
R (Ī, Ā

′′
post)

∆k
3 = πĪ,1→x∆

(∆+
R . Input)

For converting ∆ to output update i-diffs
Happens after all ∆i

1,∆
j
2,∆

k
3 are computed.

∆u
V = πḠ,c→cpre,c+c∆→cpost

(Out put on
γḠ,sum(x∆)→c∆

(∆i
1∪∆

j
2∪∆k

3))

(Do not handle group creation/deletion)

Table C.9. Rules for γḠ,avg(X̄)→c

Operator cache schemas:
Cachesum(Ḡ,csum), Cachecount(Ḡ,ccount)
Cache maintenance rules:
For ∆u

Cachesum
: Use rules of γḠ,sum(X̄)→c (Table C.6)

For ∆u
Cachecount

: Use rules of γḠ,count(X̄)→c (Table C.8)
i-diff propagation rules:
∆u

V = πḠ,csum
pre /ccount

pre →cpre,csum
post/ccount

post →cpost
(

∆u
Cachecount

onḠ ∆u
Cachesum

)

175

Table C.10. Rules for .φ(Inputl .X̄ ,Inputr.Ȳ) first part

For ∆
+
Inputl(Ī, Ā

′′
post)

∆
+
V = ∆

+
Inputl .φ Input post

r

For ∆
−
Inputl(Ī, Ā

′
pre)

∆
−
V = ∆

−
Inputl

For ∆u
Inputl(Ī, Ā

′
pre, Ā

′′
post)

∆u
V = ∆u

Inputl
if X̄ ∩ Ā′′post = /0 then

∆
+
V = not triggered

if X̄ ⊆ Ī∪ Ā′′post then
∆
+
V = Input post

l nĪInputl
(∆u

Inputl .φ(X̄post ,Ȳ) Input post
r)

else
∆
+
V = (Input post

l nĪInputl
∆u

Inputl).φ(X̄post ,Ȳ) Input post
r

if X̄ ∩ Ā′′post = /0 then
∆
−
V = not triggered

if X̄ ⊆ Ī∪ Ā′′post then
∆
−
V = πĪ(∆

u
Inputl nφ(X̄post ,Ȳ) Input post

r)

else
∆
−
V = πĪ((Input post

l nĪInputl
∆u

Inputl)

nφ(X̄post ,Ȳ)Input post
r)

For ∆
+
Inputr(Ī, Ā

′′
post)

∆
−
V = πĪ(Input post

l nφ(X̄post ,Ȳ) ∆
+
Inputr)

For ∆
−
Inputr(Ī, Ā

′
pre)

if Ȳ ⊆ Ī∪ Ā′pre then
∆
+
V = (Input post

l nφ(X̄pre,Ȳ) ∆
−
Inputr)

.φ(X̄post ,Ȳ)Input post
r

else
∆
+
V = (Input post

l nφ(X̄pre,Ȳ) (Input pre
r n∆

−
Inputr))

.φ(X̄post ,Ȳ)Input post
r

176

Table C.11. Rules for .φ(Inputl .X̄ ,Inputr.Ȳ) second part

For ∆u
Inputr(Ī, Ā

′
pre, Ā

′′
post)

Treat input update as combination of insert and delete
if Ȳ ∩ Ā′′post = /0 then

∆
−
V = not triggered

else
∆
−
V = πĪ(Input post

l nφ(X̄post ,Ȳ) (Input post
r n∆u

Inputr))

if Ȳ ∩ Ā′′post = /0 then
∆
+
V = not triggered

else if Ȳ ⊆ Ī∪ Ā′pre then
∆
+
V = (Input post

l nφ(X̄pre,Ȳ) ∆
−
Inputr)

.φ(X̄post ,Ȳ)Input post
r

else
∆
+
V = (Input post

l nφ(X̄pre,Ȳ) (Input pre
r n∆

−
Inputr))

.φ(X̄post ,Ȳ)Input post
r

177

Appendix D

SQL++ Algebra Semantics

Most SQL++ operators are the direct correspondence of the SQL++ core semantics. The

remaining operators support optimizations of special cases. For example, since INNER JOIN

is a special case of the core INNER CORRELATE, SQL++ also provides the classical on operator,

which is amenable to join re-ordering due to its commutativity and associativity.

D.1 Novel Semi-Structured Operators

1. The ScanCollection operator ≫C
c̈7→(x,y) (B) is the algebraic counterpart of

FROM c̈ AS x AT y. It inputs a bag of binding tuples B, and outputs a bag of

binding tuples. For each input binding tuple b ∈ B, for each element v ∈ c̈, the operator

outputs a binding tuple 〈x : v, y : p〉. As specified by SQL++ semantics, p is the ordinal

position of v when c̈ is an array, or the value specified by @from.bag order when c̈ is a

bag. The cases when c̈ is not a collection are also as specified by config options. Since

config options apply to SQL++ operators identically as they apply to SQL++ language

semantics, we omit config options from subsequent definitions for ease of exposition.

2. The ScanTuple operator ≫T
ẗ 7→(x,y) (B) is the algebraic counterpart of FROM ẗ AS {x:y}.

It inputs a bag of binding tuples B, and outputs a bag of binding tuples. For each input

binding tuple b ∈ B, wherein ẗ evaluates to {a1:v1, . . .,an:vn}, the operator outputs

binding tuples 〈x : ai, y : vi〉, for i = 1, . . . ,n.

178

3. The Ground operator is the only accepted leaf node of an algebraic plan. It has no input,

and always outputs a bag comprising a single empty binding tuple 〈 〉, so that its parent

operator (such as ≫Cand ≫T) has exactly one binding tuple to iterate over. In idIVM

we use Ground to implement the environment tuple Γ such that instead of outputting an

empty binding tuple, Ground will output Γ as a single binding tuple. Due to its trivial

nature, Ground is omitted from example plans and further discussions.

4. The NavArray operator [](ẍ,ÿ)7→z(B) is the algebraic counterpart of ẍ[ÿ]. It inputs a bag

of binding tuples B, and outputs a bag of binding tuples. For each input binding tuple

b ∈ B, the operator outputs a binding tuple b‖〈z : v〉, where v is the result of navigating

into array ẍ by ordinal position ÿ.

5. The NavTuple operator •(ẍ,ÿ)7→z(B) is the algebraic counterpart of ẍ.ÿ. It inputs a bag of

binding tuples B, and outputs a bag of binding tuples. For each input binding tuple b ∈ B,

the operator outputs a binding tuple b‖〈z : v〉, where v is the result of navigating into tuple

ẍ by attribute name ÿ.

6. The FunctionCall operator λ(f , ẍ1...ẍn)7→y(C) is the algebraic counterpart of invoking func-

tion f (ẍ1 . . . ẍn). It inputs an array (resp. bag) of binding tuples C, and outputs an array

(resp. bag) of binding tuples. For each input binding tuple b ∈ B, the operator outputs

a binding tuple b‖〈y : v〉, where v is the result of evaluating function f with arguments

ẍ1 . . . ẍn.

7. The ReturnArrayẍ(A) operator is the algebraic counterpart of SELECT ELEMENT ẍ, when

the SFW query has an ORDER BY clause. It inputs an array of binding tuples A, and outputs

an array value. For each input binding tuple b ∈ A, the operator outputs an array element ẍ.

8. The ReturnBagẍ(B) operator is the algebraic counterpart of SELECT ELEMENT ẍ, when

the SFW query does not have an ORDER BY clause. It inputs a bag of binding tuples B,

179

and outputs a bag value. For each input binding tuple b ∈ B, the operator outputs a bag

element ẍ.

9. The ReturnTupleẍ,ÿ(B) operator is the algebraic counterpart of SELECT ATTRIBUTE ẍ:ÿ.

It inputs a bag of binding tuples B, and outputs a tuple value. For each input binding tuple

b ∈ B, the operator outputs a tuple attribute ẍ:ÿ.

10. The ReturnSingleẍ(B) operator is the algebraic counterpart of a restricted expression ẍ. It

inputs a bag B that has exactly one binding tuple, and outputs the value ẍ.

11. The ApplyPlan operator αP7→x(B) is the algebraic counterpart of subqueries, i.e. SFW

queries enclosed within (. . .). Since a subquery can appear anywhere within a SQL++

query, an α operator can appear anywhere within a plan. The operator inputs a bag of

binding tuples B, and outputs a bag of binding tuples. Suppose the operator’s environment

is Γ. For each input binding tuple b ∈ B, the operator evaluates plan P in an augmented

environment Γ‖b to a value v, and outputs the binding tuple b‖〈x : v〉.

12. The Assignẍ 7→y(B) operator inputs an array (resp. bag) of binding tuples C, and outputs

an array (resp. bag) of binding tuples. For each input binding tuple b ∈C, the operator

outputs b‖〈y : ẍ〉.

13. The InnerCorrelateP(Bl) operator is the algebraic counterpart of

FROM l INNER CORRELATE r, where Bl is the bag of binding tuples output by the

algebraic counterpart of query l, and plan P is the algebraic counterpart of query r. The

operator inputs a bag of binding tuples Bl , and outputs a bag of binding tuples. Suppose

the operator’s environment is Γ. For each input binding tuple bl
i ∈ Bl , the operator

evaluates plan P in an augmented environment Γ‖b to a bag of binding tuples Br
i . The

operator outputs all binding tuples bl
i‖br

i, j for bl
i ∈ Bl,br

i, j ∈ Br
i .

14. The LeftCorrelateP(Bl) operator is the algebraic counterpart of

FROM l LEFT CORRELATE r, where Bl is the bag of binding tuples output by the

180

algebraic counterpart of query l, and plan P is the algebraic counterpart of query r.

The operator inputs a bag of binding tuples Bl , and outputs a bag of binding tuples.

Suppose the operator’s environment is Γ. For each input binding tuple bl
i ∈ Bl , the

operator evaluates plan P in an augmented environment Γ‖b to a bag Br
i of binding tuples

〈x1 : v1, . . . ,xn : vn〉. The operator outputs all binding tuples bl
i‖br

i, j for bl
i ∈ Bl,br

i, j ∈ Br
i .

In addition, for each bl
i ∈ Bl such that Br

i is an empty bag, the operator also outputs a

binding tuple bl
i‖〈x1 : @from.no match, . . . ,xn : @from.no match〉.

15. The ConstructArray(ẍ1...ẍn)7→y(C) operator is the algebraic counterpart of the array con-

structor [ẍ1, . . .,ẍn]. It inputs an array (resp. bag) of binding tuples C, and outputs an

array (resp. bag) of binding tuples. For each input binding tuple b∈C, the operator outputs

b‖〈y : v〉, where v is an array value [ẍ1, . . .,ẍn].

16. The ConstructBag(ẍ1...ẍn)7→y(C) operator is the algebraic counterpart of the bag constructor

{{ẍ1, . . .,ẍn}}. It inputs an array (resp. bag) of binding tuples C, and outputs an array

(resp. bag) of binding tuples. For each input binding tuple b ∈C, the operator outputs

b‖〈y : v〉, where v is a bag value {{ẍ1, . . .,ẍn}}.

17. The ConstructTuple(ẍ1:ÿ1...ẍn:ÿn)7→z(C) operator is the algebraic counterpart of the tuple

constructor

{ẍ1:ÿ1, . . .,ẍn:ÿn}. It inputs an array (resp. bag) of binding tuples C, and outputs an array

(resp. bag) of binding tuples. For each input binding tuple b ∈C, the operator outputs

b‖〈z : v〉, where v is a tuple value {ẍ1:ÿ1, . . .,ẍn:ÿn}

D.2 Extensions of Relational Operators

Except for Sort and OffsetLimit, all SQL++ extensions of relational operators input and

output a bag of binding tuples.

181

18. The Select operator σc̈(B) is the algebraic counterpart of WHERE c̈. For each input binding

tuple b ∈ B, the operator outputs b if c̈ is true.

19. The Project operator πx1...xn(B) retains only the specified variables. For each input binding

tuple b ∈ B, the operator outputs a binding tuple b′ that retains variables x1 . . .xn of b and

input variables that belong to the environment, and omits all other variables.

20. The InnerJoin operator onc̈ (Bl,Br) is the algebraic counterpart of

FROM l INNER JOIN r ON c, where Bl (resp. Br) is the bag of binding tuples

output by the algebraic counterpart of query l (resp. r). For each input binding tuple

bl ∈ Bl,br ∈ Br, the operator outputs bl‖br if c̈ is true.

21. The LeftJoin operator onc̈(Bl,Br) is the algebraic counterpart of

FROM l LEFT JOIN r ON c, where Bl (resp. Br) is the bag of binding tuples out-

put by the algebraic counterpart of query l (resp. r). For each input binding tuple

bl ∈ Bl,br ∈ Br, the operator outputs bl‖br if c̈ is true. In addition, for each bl such

that there is no br for which c̈ is true, the operator also outputs a binding tuple

bl‖〈x1 : @from.no match, . . . ,xn : @from.no match〉, where x1 . . .xn are the variables

defined by query r.

22. The FullJoin operator on c̈(Bl,Br) is the algebraic counterpart of

FROM l FULL JOIN r ON c, where Bl (resp. Br) is the bag of binding tuples out-

put by the algebraic counterpart of query l (resp. r). For each input binding tuple

bl ∈ Bl,br ∈ Br, the operator outputs bl‖br if c̈ is true. In addition, for each bl such

that there is no br for which c̈ is true, the operator also outputs a binding tuple

bl‖〈x1 : @from.no match, . . . ,xn : @from.no match〉, where x1 . . .xn are the variables

defined by query r. Conversely, for each br such that there is no bl for which c̈ is true, the

operator also outputs a binding tuple 〈y1 : @from.no match, . . . ,yn : @from.no match〉‖br,

where y1 . . .yn are the variables defined by query l.

182

23. The GroupBy operator γ(ẍ1 7→y1,...,ẍn 7→yn),g(B) is the algebraic counterpart of:

GROUP BY ẍ1 AS y1, . . ., ẍn AS yn INTO g. It inputs a bag of binding tuples B, and

outputs a bag of binding tuples. The input binding tuples of B are partitioned into the

minimal number of binding bags B1 . . .Bm, such that any two binding tuples b,b′ ∈ B are

in the same binding bag B j (1≤ j ≤ m) if and only if ẍ1 . . . ẍn evaluate to identical values

v1 . . .vn for both b and b′. Also note that before an input binding tuple b is put into a

binding bag, its variables that belong to the input environment Γ are removed. Then for each

binding bag B j, the operator outputs a binding tuple 〈y1 : v1, . . . , yn : vn, g : bag(B j)〉‖Γ.

The function bag(B j) inputs a bag of binding tuples, and outputs the equivalent bag of

tuples: each binding tuple 〈a1 : u1, . . . ,ap : up〉 has equivalent tuple {a1:u1, . . .,ap:up}.

D.3 Operator provenance inference rules

This section describes the provenance inference rules for selected operators in detail. First

of all, some operators simply propagates input provenance to the output, and their provenance

inference rules are trivial. Such operators include Select and Project.

Ground The output single binding tuple of a Ground operator has empty provenance.

ScanCollection For a ScanCollection operator ≫C
c̈7→(x,y) (B), for each input binding tuple

b ∈ B, for each element v ∈ c̈, the provenance of the output binding tuple is the combined

provenance from b and v. The provenance of variables in b stays the same from input to output.

The provenance of the x variable which corresponds to v ∈ c̈ and its descendants stay the same

from c̈ to the output. When c̈ is a relational base table, it is considered part of the environment

Γ of the plan, and the provenance of v in the plan is inferred from its primary key in the base

table. The tuples of c̈ and every attribute of the tuple have the same provenance in the form of

#(pk1 = v1, . . . , pkn = vn) where pki are the primary key attributes of c̈.

NavTuple For a NavTuple operator •(ẍ,ÿ)7→z(B) where both x and y are constants, each

output binding tuple and every variable that comes from the input binding tuple have the same

183

provenance as their input counterparts. The provenance of z and its descendants are the same as

the provenance of ẍ.ÿ and its descendants.

InnerJoin For an InnerJoin operator onc̈ (Bl,Br), for each pair of input binding tuple bl ∈

Bl,br ∈ Br where c̈ is true, the output binding tuple has the combined provenance from bl and

br. The provenance of variables from bl and br stay the same from input to output.

LeftJoin For a LeftJoin operator onc̈(Bl,Br), for each pair of input binding tuple bl ∈ Bl,br ∈

Br where c̈ is true, the corresponding output binding tuple has the same handling of provenance

as that of an InnerJoin. For each bl such that there is no br for which c̈ is true, the provenance

of the corresponding output binding tuple and its variables from bl is the same as the input

provenance from bl .

GroupBy For a GroupBy operator γ(ẍ1 7→y1,...,ẍn 7→yn),g(B), each output binding tuple (i.e.,

group) 〈y1 : v1, . . . , yn : vn, g : vg〉 has the provenance as #(y1 : v1, . . . ,yn : vn). Each tuple in

variable g has the same provenance as its counterpart binding tuple from the input. Same for its

descendants.

Assign The new variable y introduced by the Assignẍ 7→y(B) operator has the same provenance

as ẍ. The provenance for the rest of the output is the same as its input counterpart.

InnerCorrelate For an InnerCorrelateP(Bl) operator, for each output binding tuple that

corresponds to bl
i‖br

i, j, where bl
i is from Bl and br

i, j is from the evaluation of plan P, its provenance

is the concatenated provenance of bl
i and br

i, j. The provenance of variables in the output is the

same as the provenance of its input counterpart from bl
i and br

i, j.

ApplyPlan For an ApplyPlan operator αP 7→x(B), each output binding tuple and every variable

that comes from the input binding tuple have the same provenance as their input counterparts. For

each input binding tuple b ∈ B, the operator evaluates plan P to a value v, infers the provenance

of v recursively when evaluating P, and outputs the binding tuple b‖〈x : v〉. The provenance of

variable x and its descendants are the same as the provenance of v and its descendants.

184

Appendix E

SQL++ i-diff Propagation Rules

Table E.1. Rules for V =≫C
c̈7→(x,y) (B)

For ∆u
B

∆u
V = ∆u

B
∆V = πx,y ≫C

z̈ 7→(x,y) •(c,di f f)7→z •(di f f ,c̈)7→c (∆
u
B)

Note: Top-level output i-diff type is same as the
i-diff type of the element of c̈.

Table E.2. Rules for V = •(ẍ,ÿ)7→z(B)

For ∆
+
B

∆
+
V = •(ẍ,ÿ)7→z(∆

+
B)

For ∆-
B

if ∆-
B.ẍ exists

∆-
V = •(ẍ,ÿ)7→z(∆

-
B)

else
∆-

V = ∆-
B

For ∆u
B

if ∆u
B.ẍ.diff.ÿ exists

∆u
V = πV •(diff,y)7→y •(ẍ,diff)7→diff(∆

u
B)

else
∆u

V = ∆u
B

185

Table E.3. Rules for V = σc̈(B)

For ∆
+
B

∆
+
V = σc̈(∆

+
B)

For ∆-
B

if {c1, . . . ,cn} ⊆ ∆-
B

∆-
V = σc̈(∆

-
B)

else
∆-

V = ∆-
B

For ∆u
B

∆u
V = πBσcpreσcpost

•(c̈1,pre)7→c 1 pre . . .•(c̈n,pre)7→c n pre

•(c̈1,post)7→c 1 post . . .•(c̈n,post)7→c n post(∆
u
B)

For ∆u
B if any of c1, . . . ,cn has diff in ∆u

B
∆
+
V = πc 1 post7→c̈1,...,c n post7→c̈n

σ¬cpreσcpost

•(c̈1,pre)7→c 1 pre . . .•(c̈n,pre)7→c n pre

•(c̈1,post)7→c 1 post . . .•(c̈n,post)7→c n post (∆
u
B))

∆-
V = πc 1 pre7→c̈1,...,c n pre 7→c̈n

σcpreσ¬cpost

•(c̈1,pre)7→c 1 pre . . .•(c̈n,pre)7→c n pre

•(c̈1,post)7→c 1 post . . .•(c̈n,post)7→c n post (∆
u
B))

Note: Let c1, . . . ,cn be variables mentioned in c̈.
cpre is c with c1, . . . ,cn replaced by
c 1 pre, . . . ,c n pre.
cpost is c with c1, . . . ,cn replaced by
c 1 post, . . . ,c n post.
Blue portions are skipped if the pre-state values are
not available.

186

Table E.4. Rules for V = InnerCorrelateP(B)

For ∆
+
B

∆
+
V = InnerCorrelateP(∆

+
B)

For ∆-
B

∆-
V = ∆-

B
For ∆u

B
∆u

V = ∆u
B

For each i-diff query Pdiff of P triggered by ∆u
B

if Pdiff produces update i-diffs
∆u

V = πP InnerCorrelatePdiff(∆
u
B)

else if Pdiff produces delete i-diffs
∆-

V = πP InnerCorrelatePdiff(∆
u
B)

else if Pdiff produces insert i-diffs
∆
+
V = πV InnerCorrelatePdiff(∆

u
B)

Independent of ∆B
For each i-diff query Pdiff of P
if Pdiff produces update i-diffs

∆u
V = πP InnerCorrelatePdiff(B)

else if Pdiff produces delete i-diffs
∆-

V = πP InnerCorrelatePdiff(B)
else if Pdiff produces insert i-diffs

∆
+
V = πV InnerCorrelatePdiff(B)

Note: πP keeps only variables output by P.
πV keeps all variables in V .

Table E.5. Rules for V = αP7→x(B)

For ∆
+
B

∆
+
V = αP 7→x(∆

+
B)

For ∆-
B

∆-
V = ∆-

B
For ∆u

B
∆u

V = ∆u
B

For each i-diff query Pdiff of P triggered by ∆u
B

∆V = ConstructTuple(‘diff’:t)7→x αPdiff 7→t(∆
u
B)

Independent of ∆B
For each i-diff query Pdiff of P
if Pdiff depends on data from B

∆V = ConstructTuple(‘diff’:t)7→x αPdiff 7→t(B)
else

∆V = ConstructTuple(‘diff’:t)7→x αPdiff 7→t(Ground)

187

Table E.6. Rules for V = λ(f , ẍ1...ẍn)7→y(B)

For ∆
+
B

∆
+
V = λ(f , ẍ1...ẍn)7→y(∆

+
B)

For ∆-
B

∆-
V = ∆-

B
For ∆u

B
if none of x1, . . . ,xn has diff in ∆u

B
∆u

V = ∆u
B

else
∆u

V = πV ConstructTuple(‘pre’:pre,‘post’:post)7→y
λ(f , x 1 pre...x n pre)7→preλ(f , x 1 post...x n post)7→post

•(ẍ1,pre)7→x 1 pre . . .•(ẍn,pre)7→x m pre

•(ẍ1,post)7→x 1 post . . .•(ẍn,post)7→x m post (∆
u
B)

Table E.7. Rules for V = πx1...xn(B)

For ∆
+
B

∆
+
V = πx1...xn(∆

+
B)

For ∆-
B

∆-
V = π{x1...xn}∩∆-

B
(∆-

B)

For ∆u
B

∆u
V = π{x1...xn}∩∆u

B
(∆u

B)

Table E.8. Rules for V =×(Bl,Br)

For ∆
+
Bl

∆
+
V =×(∆+

Bl ,Br)

For ∆-
Bl

∆-
V = ∆-

Bl

For ∆u
Bl

∆u
V = ∆u

Bl

Note: ∆Br is symmetric.

188

Table E.9. Incomplete rules for V = Bl onp Br

For ∆
+
Bl

∆
+
V = ∆

+
Bl onp Br

For ∆-
Bl

∆-
V = ∆-

Bl

For ∆u
B

∆u
V = ∆u

B
Note: The above rules are incomplete because insertion
and deletion of V tuples that have no match from Br

are outside the scope of this work.
Note: Rules for on are symmetric.

Table E.10. Rules for V = ConstructTuple(x1:ÿ1...xn:ÿn)7→z(B)

For ∆
+
B

∆
+
V = ConstructTuple(x1:ÿ1...xn:ÿn)7→z(∆

+
B)

For ∆-
B

if ÿ1, . . . , ÿn exists in ∆-
B

∆-
V = ConstructTuple(x1:ÿ1...xn:ÿn)7→z(∆

-
B)

else
∆-

V = ∆-
B

For ∆u
B

Let xw1 . . .xwm be the subset of x1 . . .xn that are in ∆u
B

∆u
V = πV

ConstructTuple(‘pre‘:pre,‘post‘:post,‘diff‘:diff)7→z
ConstructTuple(xw1 :ÿw1 ...xwm :ÿwm)7→diff

ConstructTuple(x1:ypre
1 ...xn:ypre

n)7→pre

ConstructTuple(x1:ypost
1 ...xn:ypost

n)7→post

•(y1,pre)7→ypre
1

. . .•(yn,pre)7→ypre
n

•(y1,post)7→ypost
1

. . .•(yn,post)7→ypost
n

(∆u
B)

Note: Assume all the ÿ-s are variables.
Note: Both pre- and post-states are optional in the
output i-diff.

189

Table E.11. Rules for V = γ(x1 7→y1,...,xn 7→yn),g(B)

For ∆B of any type
∆u

V = πV ConstructTuple(diff:z)7→g
ConstructTuple(post:ypost

1)7→y1

. . .
ConstructTuple(post:ypost

n)7→yn

γ(xpost
1 7→ypost

1 ,...,xpost
n 7→ypost

n),z
•(x1,post)7→xpost

1
. . .•(xn,post)7→xpost

n
(∆B)

Note: The type of nested i-diff g is the same as the
top-level i-diff ∆B.
Note: Does not handle group creation/deletion.
Note: If an x does not appear in ∆B it is skipped
in the group-by diff query (i.e., a group in the i-diff can
match multiple groups in data).

Table E.12. Rules for V = λ(sum,ẍ)7→y(B)

For ∆u
B that updates elements of ẍ

∆1 = αP1 7→x1
∆

∆u
B

P1 : ReturnSinglew λ(−,post,pre)7→w
•(w,post)7→post•(w,pre)7→pre

≫C
ẍ 7→w Ground

For ∆u
B that deletes elements of ẍ

∆2 = αP2 7→x2
∆

∆u
B

P2 : ReturnSinglew λ(−,0,pre)7→w
•(w,pre)7→pre ≫

C
ẍ 7→w Ground

For ∆u
B that inserts elements into ẍ

∆3 = αP3 7→x3
∆

∆u
B

P3 : ReturnSinglepost
•(w,post)7→post ≫

C
ẍ 7→w Ground

For converting ∆ to output update i-diffs
Happens after all ∆1,∆2,∆3 are computed.
∆u

V = ConstructTuple(post:post,pre:y)7→y
λ(+,y,y∆)7→postλ(sum,x∆)7→y∆

αPu 7→x∆

ProvJoin(B,ProvOuterJoin(∆1,∆2,∆3))
Pu : x1

∆
∪̂x2

∆
∪̂x3

∆

(Do not handle group creation/deletion)

190

Table E.13. Rules for V = λ(count,ẍ)7→y(B)

For ∆u
B that deletes elements of ẍ

∆2 = αP2 7→x2
∆

∆u
B

P2 : ReturnSinglec π−17→c ≫C
ẍ 7→w Ground

For ∆u
B that inserts elements into ẍ

∆3 = αP3 7→x3
∆

∆u
B

P3 : ReturnSinglec π17→c ≫C
ẍ 7→w Ground

For converting ∆ to output update i-diffs
Happens after all ∆1,∆2,∆3 are computed.
∆u

V = ConstructTuple(post:post,pre:y)7→y
λ(+,y,y∆)7→postλ(sum,x∆)7→y∆

αPu 7→x∆

ProvJoin(B,ProvOuterJoin(∆1,∆2,∆3))
Pu : x1

∆
∪̂x2

∆
∪̂x3

∆

(Do not handle group creation/deletion)

Table E.14. Rules for V = λ(avg,ẍ)7→y(B)

Operator caches:
Cachesum, Cachecount
Cache maintenance rules:
For ∆u

Cachesum
: Use rules of λ(sum,ẍ)7→y(B) (Table E.12)

For ∆u
Cachecount

: Use rules of λ(count,ẍ)7→y(B) (Table E.13)
i-diff propagation rules:
∆u

V = ConstructTuple(post:ypost ,pre:ypre)7→y
λ(/,ysum

pre ,ycount
pre)7→ypreλ(/,ysum

post ,ycount
post)7→ypost (

•(y,post)7→ycount
post
•(y,pre)7→ycount

pre
∆u

Cachecount
ôn

•(y,post)7→ysum
post
•(y,pre)7→ysum

pre
∆u

Cachesum
)

191

Bibliography

[1] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of
materialized views and indexes in sql databases. In VLDB, 2000.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. Dbtoaster: Higher-order
delta processing for dynamic, frequently fresh views. PVLDB, 5(10):968–979, 2012.

[3] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak R.
Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram
Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim, Chen
Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis J. Tsotras, Rares
Vernica, Jian Wen, and Till Westmann. Asterixdb: A scalable, open source BDMS. PVLDB,
7(14):1905–1916, 2014.

[4] Asp.net, 2009. http://www.asp.net/.

[5] Backbase enterprise ajax framework, 2009. http://www.backbase.com/products/
enterprise-ajax/.

[6] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized views selection in a
multidimensional database. In VLDB, 1997.

[7] Andreas Behrend and Thomas Jörg. Optimized incremental etl jobs for maintaining data
warehouses. In IDEAS, pages 216–224, 2010.

[8] Henrik Björklund, Wouter Gelade, and Wim Martens. Incremental xpath evaluation. ACM
Trans. Database Syst., 35(4):29, 2010.

[9] José A. Blakeley, Neil Coburn, and Per-Åke Larson. Updating derived relations: Detecting
irrelevant and autonomously computable updates. ACM Trans. Database Syst., 14(3):369–
400, 1989.

[10] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently updating materialized
views. In SIGMOD Conference, pages 61–71, 1986.

[11] Angela Bonifati, Martin Hugh Goodfellow, Ioana Manolescu, and Domenica Sileo. Al-
gebraic incremental maintenance of XML views. ACM Trans. Database Syst., 38(3):14,
2013.

192

http://www.backbase.com/products/enterprise-ajax/
http://www.backbase.com/products/enterprise-ajax/

[12] Business process modeling language, 2009. http://www.bpmi.org.

[13] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In
VLDB, 1991.

[14] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language (webml): a
modeling language for designing web sites. Computer Networks, 33(1-6):137–157, 2000.

[15] Rada Chirkova and Jun Yang. Materialized views. Foundations and Trends in Databases,
4(4):295–405, 2012.

[16] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick, and Howard
Trickey. Algorithms for deferred view maintenance. In SIGMOD, 1996.

[17] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-driven
web services. In PODS, pages 71–82, 2004.

[18] Katica Dimitrova, Maged El-Sayed, and Elke A. Rundensteiner. Order-sensitive view
maintenance of materialized xquery views. In ER, 2003.

[19] Echo web framework, 2009. http://echo.nextapp.com/site/.

[20] Echo web framework, 2009. http://echo.nextapp.com/site/.

[21] Mary F. Fernández, Daniela Florescu, Alon Y. Levy, and Dan Suciu. Declarative specifica-
tion of web sites with strudel. VLDB J., 9(1):38–55, 2000.

[22] Forward web application framework, 2012. http://forward.ucsd.edu.

[23] J. Nathan Foster, Ravi Konuru, Jérôme Siméon, and Lionel Villard. An algebraic approach
to view maintenance for xquery. In PLAN-X, 2008.

[24] Yupeng Fu, Keith Kowalczykowski, Kian Win Ong, Kevin Keliang Zhao, and Yannis
Papakonstantinou. Ajax-based report pages as incrementally rendered views. In SIGMOD
Conference, 2010.

[25] Google web toolkit, 2009. http://code.google.com/webtoolkit/.

[26] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with duplicates. In
SIGMOD, pages 328–339, 1995.

[27] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data integration using self-
maintainable views. In EDBT, pages 140–144, 1996.

[28] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Eng. Bull., 1995.

[29] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In SIGMOD, pages 157–166. ACM Press, 1993.

193

http://www.bpmi.org
http://echo.nextapp.com/site/
http://code.google.com/webtoolkit/

[30] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize in a data
warehouse. IEEE Trans. Knowl. Data Eng., 17(1):24–43, 2005.

[31] Hao He, Junyi Xie, Jun Yang, and Hai Yu. Asymmetric batch incremental view maintenance.
In ICDE, pages 106–117, 2005.

[32] Icefaces, 2009. http://www.icefaces.org/main/home/.

[33] Yelp Inc. Yelp open dataset. https://www.yelp.com/dataset.

[34] Java swing, 2009. http://java.sun.com/javase/6/docs/technotes/guides/swing/.

[35] Javaserver pages standard tag library, 2010. http://java.sun.com/products/jsp/jstl/.

[36] Thomas Jörg and Stefan Deßloch. View maintenance using partial deltas. In Datenbanksys-
teme für Business, Technologie und Web, 2011.

[37] jquery javascript library, 2009. http://jquery.com/.

[38] Harumi A. Kuno and Goetz Graefe. Deferred maintenance of indexes and of materialized
views. In DNIS, pages 312–323, 2011.

[39] Per-Åke Larson and Jingren Zhou. Efficient maintenance of materialized outer-join views.
In ICDE, pages 56–65, 2007.

[40] Samek Miro. Who moved my state? Dr. Dobb’s, 2003.

[41] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. Materialized view
selection and maintenance using multi-query optimization. In SIGMOD Conference, pages
307–318, 2001.

[42] Kian Win Ong and Yannis Papakonstantinou. The SQL++ query language: Configurable,
unifying and semi-structured, 2015. https://arxiv.org/abs/1405.3631.

[43] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid Pirahesh. Incremental
maintenance for non-distributive aggregate functions. In VLDB, pages 802–813, 2002.

[44] Yannis Papakonstantinou, Kian Win Ong, and Romain Vernoux. SQL++: Semi-structured
data models and query capabilities in the nosql and newsql era, 2015.

[45] Prototype javascript framework, 2009. http://prototypejs.org/.

[46] Xiaolei Qian and Gio Wiederhold. Incremental recomputation of active relational expres-
sions. IEEE TKDE, 3(3):337–341, 1991.

[47] Dallan Quass. Maintenance expressions for views with aggregation. In VIEWS, pages
110–118, 1996.

194

http://www.icefaces.org/main/home/
https://www.yelp.com/dataset
http://java.sun.com/javase/6/docs/technotes/guides/swing/
http://jquery.com/
https://arxiv.org/abs/1405.3631
http://prototypejs.org/

[48] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, and Jennifer Widom. Making views
self-maintainable for data warehousing. In 4th International Conference on Parallel and
Distributed Information Systems, 1996.

[49] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized view maintenance and
integrity constraint checking: Trading space for time. In SIGMOD, pages 447–458, 1996.

[50] Arsany Sawires, Jun’ichi Tatemura, Oliver Po, Divyakant Agrawal, Amr El Abbadi, and
K. Selçuk Candan. Maintaining xpath views in loosely coupled systems. In Proceedings of
the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September
12-15, 2006, pages 583–594, 2006.

[51] Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized view selection for
multidimensional datasets. In VLDB, 1998.

[52] The dojo toolkit, 2009. http://www.dojotoolkit.org/.

[53] The web modeling language, 2009. http://www.webml.org/.

[54] Web services description language (wsdl) 1.1, 2009. http://www.w3.org/TR/wsdl.

[55] Wikipedia. Asp.net, 2009. Accessed Nov 04 2009. http://en.wikipedia.org/w/index.php?
title=ASP.NET&oldid=323456166.

[56] Fan Xia, Ye Li, Chengcheng Yu, Haixin Ma, and Weining Qian. BSMA: A benchmark for
analytical queries over social media data. PVLDB, 7(13), 2014.

[57] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan J. Demers, Johannes Gehrke, and
Jayavel Shanmugasundaram. A unified platform for data driven web applications with
automatic client-server partitioning. In WWW, pages 341–350, 2007.

[58] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald, and Johannes Gehrke. Hilda: A
high-level language for data-drivenweb applications. In ICDE, page 32, 2006.

[59] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, and Yuguo Chen. Efficient maintenance of
materialized top-k views. In ICDE, pages 189–200, 2003.

[60] Yui library, 2009. http://developer.yahoo.com/yui/.

[61] Zk direct ria, 2009. http://www.zkoss.org/.

195

http://www.dojotoolkit.org/
http://www.webml.org/
http://www.w3.org/TR/wsdl
http://en.wikipedia.org/w/index.php?title=ASP.NET&oldid=323456166
http://en.wikipedia.org/w/index.php?title=ASP.NET&oldid=323456166
http://developer.yahoo.com/yui/
http://www.zkoss.org/

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	FORWARD Web Application Framework
	Introduction
	FORWARD's Declarative Solution

	Creating an Application
	Example Application
	Unified Application State: Sources and Schemas
	The Page Configuration
	Page Data Objects in the Unified Application State
	The Action Configuration

	Internal Architecture and Implementation
	Action-Page Cycle in Detail
	Rendered View Approach and Visual Schema
	Unit definitions and DTD
	Overview of Page Compilation
	Page Config Parser
	Visual Schema Builder
	Page.complete and Page.context Builders
	Page Query

	ID-Based Incremental View Maintenance
	Introduction
	ID-based diffs
	System Architecture
	-script Generation Algorithm
	From modifications to i-diffs
	Performance Analysis
	SPJ Views
	Aggregate Views

	Detailed Performance Analysis
	SPJ Views
	Aggregate Views

	Experimental Evaluation
	IVM in social analytics
	Effect of data & query parameters
	Comparison to the state of the art

	Generalization to SQL++
	SQL++ data model
	Data model
	Algebra of query language

	Extension of IDs to Provenance
	Provenance extension to data model
	Provenance extension to query operators
	Additional operators for i-diff queries

	SQL++ i-diff format & semantics
	i-Diff instance format
	i-Diff signatures
	i-Diffs deeper than view definition

	i-Diff Propagation Rules for SQL++
	Generation of SQL++ base table i-diffs
	Generation of base table i-diff signatures
	From modification logs to base table i-diff instances

	Application of SQL++ i-diffs to the view
	Global provenance index
	Index selection algorithm
	i-Diff application using index
	Upper bound on number of indexes

	SQL++ IVM Cost model
	Application of nested i-diffs to the view
	Application of i-diffs deeper than view definition
	SPJ views
	Group-by views
	Aggregate views
	GroupBy + Aggregate views
	Comparison to relational IVM cost model

	Conclusions

	Related Work
	Existing Ajax Frameworks
	JavaScript Libraries
	Ajax Frameworks

	Related Database Research
	Declarative Web Application Specifications
	Incremental View Maintenance

	FORWARD Mapping Framework Specification
	Motivation
	Syntax
	Validity Check of Mapping Configuration
	Query Generation
	Selection Condition
	Mapping Provenance ID and Mapping Inversion
	Mapping Provenance Inferrer
	Mapping Inversion Algorithm

	Key Inference and Retouching Specification
	Motivation
	Main Workflow
	Tables with Unknown Keys

	Key Information and Annotation
	Equivalent Key Attribute Groups

	Per Operator Rules
	Ground
	Scan (Access Path)
	Operators that Preserve Key Annotation as Is
	Navigate
	Project
	Product (Inner Join and Outer Join)
	Semijoin and Anti-Semijoin
	ApplyPlan
	Distinct (Any Set Operator with DISTINCT Quantifier)
	Union All and Outer Union All
	Group-By

	i-diff Propagation Rules
	SQL++ Algebra Semantics
	Novel Semi-Structured Operators
	Extensions of Relational Operators
	Operator provenance inference rules

	SQL++ i-diff Propagation Rules
	Bibliography

