
UC Merced
UC Merced Electronic Theses and Dissertations

Title

Optimization for machine learning: Memory-efficient and tractible solutions to large-scale 
non-convex systems

Permalink

https://escholarship.org/uc/item/7fr7t0q8

Author

Ranganath, Aditya

Publication Date

2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-ShareAlike 
License, available at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fr7t0q8
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, MERCED

Optimization for machine learning: Memory-efficient and tractible
solutions to large-scale non-convex systems

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Aditya Ranganath

Committee in charge:

Dr. Mukesh Singhal, Chair
Dr. Roummel F. Marcia, Co-Chair
Dr. Meng Tang
Dr. Harish Bhat

2023



Copyright

Chapter 2 © IEEE

Portion of Chapter 5 © IEEE

All other chapters © Aditya Ranganath, 2023

All rights are reserved.



The dissertation of Aditya Ranganath is ap-

proved, and it is acceptable in quality and form

for publication on microfilm and electronically:

(Dr. Meng Tang)

(Dr. Harish Bhat)

(Dr. Roummel F. Marcia, Co-Chair)

(Dr. Mukesh Singhal, Chair)

University of California, Merced

2023

iii



DEDICATION

I dedicate this thesis to my family - my brother Narayanan

Ranganath, my mother Pavana Ranganath, my father Ranganath

Kaushik Raghavan, my grandfather Nadamuni Ramaswamy

Srinivasan and my grandmothers Sasi Srinivasan and Lakshmi

Raghavan.

iv



EPIGRAPH

The only true wisdom is in knowing you know nothing.

—Socrates

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . xvii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . xviii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 First-order Methods . . . . . . . . . . . . . . . . . 5
1.2.2 Second-order Methods. . . . . . . . . . . . . . . . 6
1.2.3 Quasi-Newton Methods . . . . . . . . . . . . . . . 7

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . 8
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Hessian-Free Trust-Region methods . . . . . . . . . . . . . . . 11
2.1 Related Methods . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . 14
2.3 Limited-Data Experimental Setup . . . . . . . . . . . . . 20
2.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 Adaptive-Regularized Cubics using Symmetric Rank-one up-
dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 Adaptive Regularization using Cubics with L-SR1 Updates 26
3.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . 35
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Experiment I: Image classification . . . . . . . . . 38
3.3.2 Experiment II: Image reconstruction . . . . . . . 41
3.3.3 Experiment III: Natural language modeling . . . . 41

vi



3.3.4 Experiment IV: Comparison with Stochastically
Damped L-BFGS . . . . . . . . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 4 Quasi-Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Exponential moving average methods . . . . . . . . . . . 50
4.3 Quasi-Newton methods . . . . . . . . . . . . . . . . . . . 51
4.4 Proposed approach . . . . . . . . . . . . . . . . . . . . . 53
4.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.2 Models . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.4 Experiments . . . . . . . . . . . . . . . . . . . . . 69

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 5 Applications in deep learning . . . . . . . . . . . . . . . . . . 72
5.1 Image Disambiguation . . . . . . . . . . . . . . . . . . . 73

5.1.1 Problem Statement . . . . . . . . . . . . . . . . . 74
5.1.2 Proposed Approach . . . . . . . . . . . . . . . . . 76
5.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . 79
5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Novel defense techniques for White-Box Adversarial At-
tacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1 Related Works . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Proposed Approach . . . . . . . . . . . . . . . . . 83
5.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . 87
5.2.4 Abalation Study . . . . . . . . . . . . . . . . . . . 88
5.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Multi-Stage Gaussian Denoising . . . . . . . . . . . . . . 92
5.3.1 Problem Formulation . . . . . . . . . . . . . . . . 93
5.3.2 Proposed Approach . . . . . . . . . . . . . . . . . 94
5.3.3 Numerical Experiments . . . . . . . . . . . . . . . 96
5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 101

5.4 Multi-Stage Mixed-Poisson-Gaussian Denoising . . . . . . 101
5.4.1 Problem Formulation . . . . . . . . . . . . . . . . 102
5.4.2 Proposed Approach . . . . . . . . . . . . . . . . . 104
5.4.3 Numerical Experiments . . . . . . . . . . . . . . . 108

vii



5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 6 Summary Of Contributions . . . . . . . . . . . . . . . . . . . . 111

Appendix A Supplemental Material . . . . . . . . . . . . . . . . . . . . . . 115
A.1 Deep learning models . . . . . . . . . . . . . . . . . . . . 115

A.1.1 Feedforward Neural Networks (FNNs). . . . . . . 116
A.1.2 Convolutional Neural Networks (CNNs). . . . . . 117
A.1.3 Recurrent Neural Networks (RNNs). . . . . . . . 118
A.1.4 Autoencoders. . . . . . . . . . . . . . . . . . . . . 118
A.1.5 Transformer Models. . . . . . . . . . . . . . . . . 118

A.2 Optimization Techniques and derivation . . . . . . . . . . 118
A.2.1 Second-order Methods: . . . . . . . . . . . . . . . 120
A.2.2 First-order Methods: . . . . . . . . . . . . . . . . 122

viii



LIST OF FIGURES

Figure 2.1: Illustration of the CG-Steihaug approach in two dimensions.
(a) When Qk(p) is convex and its unconstrained minimizer lies
within the trust-region radius, then the CG iterates will con-
verge to the unconstrained minimizer. (b) When Qk(p) is con-
vex but its unconstrained minimizer is outside the trust region,
then the minimizer pk is defined where the CG iterate crosses
the boundary. (c) When Qk(p) is not convex, i.e., Hk is not pos-
itive definite, then the CG-Steihaug method terminates when a
direction of curvature is detected and the minimizer pk is de-
fined where Qk(p) is minimized along the last computed CG
iterate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.2: A comparison of our method to Stochastic Gradient Descent
(SGD) with limited datasets. Here we report the accuracy error
for datasets of 20, 100, 500, 1000 and 10000 images. Results
are also shown for various numbers of epochs. The proposed
approach was only trained for 1 epoch while SGD was allowed
to run for 1, 100, and 1500 epochs and SGD Max, which refers
to the number of epochs of SGD allowed to run within the time
our proposed method runs 1 epoch. . . . . . . . . . . . . . . . . 22

Figure 3.1: The classification accuracy results for Experiment I. (a)
Training loss of the network. The y-axis represents the neg-
ative log-likelihood loss and the x-axis represents the number of
epochs. (b) The classification accuracy for each method, i.e., the
percentage of testing samples correctly predicted in the testing
dataset for each method is presented. Note that the proposed
method (ARCs-LSR1) achieves the highest classification accu-
racy within the fewest number of epochs. . . . . . . . . . . . . . 36

Figure 3.2: Experiment I.B: MNIST classification. (a) Training accu-
racy of the network. The y-axis represents the percentage of
samples predicted correctly. (b) The classification accuracy of
the testing samples correctly predicted. Note that the proposed
method (ARCs-LSR1) achieves the highest classification accuracy. 39

Figure 3.3: The classification results for Experiment I.C: CIFAR10. (a)
Training accuracy of the network. The y-axis represents the
negative log-likelihood loss, and the x-axis represents the num-
ber of epochs. (b) The classification accuracy of the testing sam-
ples correctly predicted. The proposed method (ARCs-LSR1)
achieves the lowest training loss and highest classification accu-
racy within the fewest number of epochs. . . . . . . . . . . . . . 40

ix



Figure 3.4: The image reconstruction results for Experiment II.A: MNIST.
(a) Initial training loss. The y-axis represents the Mean-Squared
Error (MSE) loss from the first four epochs. (b) Final training
loss from epochs 43 to 50. Note that the proposed method
(ARCs-LSR1) achieves the lowest training loss. . . . . . . . . . 42

Figure 3.5: The image reconstruction results for Experiment II.B: FMNIST
(a) Initial training loss. The y-axis represents the Mean-Squared
Error (MSE) loss in the first three epochs. (b) Final training
loss from epochs 42 to 50. Note that the proposed method
(ARCs-LSR1) achieves the lowest training loss. . . . . . . . . . 43

Figure 3.6: The prediction loss for Experiment III: Penn Tree Bank.
The y-axis represents the cross-entropy loss, and the x-axis rep-
resents the number of epochs. Note that the proposed method
(ARCs-LSR1) achieves the lowest loss. . . . . . . . . . . . . . 44

Figure 3.7: The prediction loss for Experiment IV: Comparison with
stochastically damped L-BFGS. The x-axis represents the num-
ber of epochs and the y-axis represents the accuracy of predic-
tion. (a) Accuracy for epochs 0-5. (b) Accuracy for epochs
16-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.8: Timing analysis for Experiment 3: CIFAR10. The x-axis is
time in seconds, and the y-axis is the accuracy of prediction
in percentage. Note that the proposed method (ARCs-LSR1)
achieves the highest accuracy within the shortest amount of time. 46

Figure 4.1: Experiment I: MNIST image classification results for Adam
and the proposed method, quasi-Adam. (a) Testing accuracy
for batch-size of 256. (b) Testing accuracy for batch-size of 512.
The y-axis represents the classification accuracy and the x-axis
represents the batch-iteration. Note that for both batch-sizes,
quasi-Adam outperforms Adam. . . . . . . . . . . . . . . . . . . 63

Figure 4.2: Experiment II: Fashion-MNIST image classification results
for Adam and the proposed method, quasi-Adam. (a) Testing
accuracy for batch-size of 256. (b) Testing accuracy for batch-
size of 512. The y-axis represents the classification accuracy
and the x-axis represents the batch-iteration. Note that for
both batch-sizes, quasi-Adam outperforms Adam. . . . . . . . . 64

Figure 4.3: Experiment III: SVHN image classification results for Adam
and the proposed method, quasi-Adam. (a) Testing accuracy
for batch-size of 256. (b) Testing accuracy for batch-size of 128.
The y-axis represents the classification accuracy and the x-axis
represents the batch-iteration. Note that for both batch-sizes,
quasi-Adam outperforms Adam. . . . . . . . . . . . . . . . . . . 64

x



Figure 4.4: Experiment IV: Autoencoder MNIST Reconstruction for
Adam and the proposed method, quasi-Adam. (a) Training
loss. (b) Testing response. The x-axis represents the number
of epochs and y-axis represents the average mean-squared er-
ror loss for each epoch. Note that in both training and testing
responses, quasi-Adam outperforms Adam. . . . . . . . . . . . . 65

Figure 4.5: Experiment V: Autoencoder FMNIST Reconstruction results
for Adam and the proposed method, quasi-Adam. (a) The train-
ing loss. (b) Testing response. The x-axis represents the number
of epochs and the y-axis represents the average mean-squared
error loss for each epoch. Note that in both training and testing
responses, quasi-Adam outperforms Adam. . . . . . . . . . . . . 65

Figure 4.6: Experiment VI: CIFAR10 classification. (a) Batch-size = 256
images. (b) Batch-size = 512. The x-axis represents the num-
ber of iterations (batches) and the y-axis represents the average
mean-squared error loss after each iteration. The proposed ap-
proach is able to outperform Adam with a batch-size of 256
images and has a comparable performance with a batch-size of
512 images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.7: Experiment VII: Pentree-Bank text prediction. (a) Training
loss (b) the Testing loss. The x-axis-represents the number of
iterations for each batch of sentences. The y-axis represents the
loss for each batch of sentences. We note that the proposed
approach is able to find a model with a lower training response
than Adam. However, in the presence of overparametrization,
overfitting can happen, which is evident in this case (see (b)). . 66

Figure 5.1: Schematic of the imaging system. Two images (A and B) are
superimposed using a beam splitter observed at the detector of
a low-resolution camera, resulting in a downsampled measure-
ment with additive white Gaussian noise. . . . . . . . . . . . . 74

Figure 5.2: The above diagram shows the two proposed approach. (a) The
ConvSep model, which contains an encoder, a decoder, an ex-
pander, separator 1 (S1) and separator 2 (S2). (b) The model
architecture of the transformer-based LiGT model, which com-
prises a compressor, a transformer and an expander. Each col-
ored box represents the output from a convolutional operator . 75

Figure 5.3: The above figure shows the collective results for the proposed
approaches. Fig. (a). shows the distribution of Mean-Squared
error and Fig. (b). shows the distribution of Structural similarity
index metric (SSIM) values. . . . . . . . . . . . . . . . . . . . . 77

xi



Figure 5.4: This is training and testing procedure for the ConvSep model.
(a) During training, the superimposed and clean images are
available to the ConvSep network to perform the separating
operation. (b) During this stage, the the superimposed, clean
images are not available to the network. Instead the output
from the decoder is fed to the separators S1 and S2 . . . . . . . 78

Figure 5.5: Numerical experiments on 5 images from the MNIST dataset.
Row 1: Noisy input images y. Rows 2 and 3: Final recon-
structions x̂1, x̂1 using Method II (LiGT). Rows 4 and 5: Final
reconstructions x̂1, x̂1 using Method I (ConvSep). Rows 6 and
7: Ground truth images x1, x1. MSE values for both Methods
I (ConvSep) and II (LiGT) are presented for each image. . . . . 80

Figure 5.6: The effect of DCT with a subset of coefficients zeroed out on
a sample image from MNIST. (a) Original image. (b) DCT
coefficients computed by applying the DCT to the entire image
along each dimension. (c) DCT coefficients with the lower left
16x16 block selected to be clipped. (d) Inverse DCT of the
clipped coefficients from (c). Note that although there are some
slight image artifacts, the main features of the digit remain the
same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.7: Accuracy of Baseline Model and Our Model on data samples
with varying ε values, starting with clean data at ε = 0. The
baseline CNN and Embedded CNN were trained on clean (left
two plots) and adversarial (right two plots) MNIST data. . . . . 86

Figure 5.8: Accuracy of Baseline Model and Our Model on data samples
with varying ε values, starting with clean data at ε = 0. The
baseline CNN and Embedded CNN were trained on clean (left
two plots) and adversarial (right two plots) FMNIST data. . . . 87

Figure 5.9: The unrolled recurrent neural network (RNN) used for denois-
ing. (a) During training, the output of each hidden layer is
compared to the target using the mean squared error (MSE).
The input at each hidden state is the target of the previous hid-
den state. (b) During testing, the output of each hidden layer
is used as input in the next hidden state. . . . . . . . . . . . . 97

Figure 5.10: Noisy realizations of an image at various noise variance. (a)
Ground truth. (b)-(d) Noisy realizations with increasing noise
intensities for increasing values of the variance σ2

t . . . . . . . . 98

xii



Figure 5.11: Performance metrics for Method I (Autoencoder) and Method
II (Recurrent Neural Network) for 10,000 test images using the
mean squared error (MSE) and the structural similarity index
(SSIM). (a) MSE(I) and MSE(II) represent the MSE corre-
sponding to Methods I and II, respectively. (b) SSIM(I) and
SSIM(II) represent the SSIM corresponding to Methods I and
II, respectively. Note that Method II has lower MSE and higher
SSIM values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.12: Numerical experiments on 5 images from the CIFAR-10
dataset. Row 1: Noisy input images y. Row 2: Reconstructions
x̂AE using Method I. Rows 3 and 4: Intermediate reconstruc-
tions within Method II. Row 5: Final reconstructions x̂RNN us-
ing Method II. Row 6: Ground truth images x. MSE and SSIM
values for both Methods I (AE) and II (RNN) are presented for
each image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 5.13: Different realizations of an image at various stages of the ob-
servational process. (a) Ground truth. (b) Downsampled real-
ization of (a). (c) Downsampled realization with Poisson noise.
(d) Downsampled realization with mixed Poisson and Gaussian
noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.14: The unrolled recurrent neural network (RNN) used for denois-
ing. (a) During training, the output of each hidden layer is
compared to the target using the mean squared error (MSE).
The input at each hidden state is the target of the previous hid-
den state. (b) During testing, the output of each hidden layer
is used as input in the next hidden state. . . . . . . . . . . . . 105

Figure 5.15: Numerical experiments on 5 images from the CIFAR-10
dataset. Row 1: Noisy input images y. Row 2: Reconstruc-
tions x̂AE using Method I. Row 3: Final reconstructions x̂RNN

using Method II. Row 4: Ground truth images x. MSE values
for both Methods I (AE) and II (RNN) are presented for each
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.16: Testing mean squared error for the recurrent neural network
(RNN) and the autoencoder methods. Note the better perfor-
mance for the RNN approach both in mean and variance. . . . 108

Figure A.1: Fully Connected Neural Network (FCNN). Each white
circle is considered as a neuron, black lines represent the weights
of the neural networks w. The left most layer is the input layer,
the middle column is the hidden layer and the rightmost layer
is the output layer. . . . . . . . . . . . . . . . . . . . . . . . . . 115

xiii



Figure A.2: Convolutional Neural Network (FCNN). Each square is
an image output after the filter is applied. The box in the
middle of the squares is the filter operation being applied. . . . 117

xiv



LIST OF TABLES

Table 2.1: Error table corresponding to the testing error/loss of the neural
network for our proposed method in comparison to SGD over
various epochs and for different dataset sizes. For our proposed
method, the dataset is fed as a batch to the network. For SGD,
the data are fed in mini-batches of 20 images. SGD Max cor-
responds to SGD trained over the same GPU run time as our
proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 5.1: Results from model trained on clean MNIST data, and evalu-
ated on clean and adversarial MNIST data. Accuracy of Baseline
Model and Our Model on non-adversarial data and full sets of
adversarial data with varying epsilon values refers to the overall
percentage of correctly classified samples. On clean data, De-
tector Accuracy refers to the percentage of the dataset that the
detector classifies as clean. On adversarial samples, it represents
the percentage of the data that is classified as adversarial. Since
the detector determines which samples are sent to each classi-
fier embedded in our model, and this varies from run to run, we
present the relative accuracy of each classifier on only the data
that it received in that run. . . . . . . . . . . . . . . . . . . . . . 89

Table 5.2: Results from model trained on adversarial MNIST data, and
evaluated on clean and adversarial MNIST data. . . . . . . . . . 89

Table 5.3: Results from model trained on clean FMNIST data, and evalu-
ated on clean and adversarial FMNIST data. . . . . . . . . . . . 89

Table 5.4: Results from model trained on adversarial FMNIST data, and
evaluated on clean and adversarial FMNIST data. . . . . . . . . 90

xv



List of Symbols

g Gradient information

H Hessian Matrix

B Hessian Approximation

x Input sample

y Output labels

� Elementwise Product sum for vectors

L Risk of estimation

Θ Neural network parameterization

η Learning rate

ε Small scalar value

Q Quadratic approximation of L
∆ Trust-region radius

E Encoder

D Decoder

Adam Adaptive Moment estimation algorithm

ReLU Rectified Linear Unit

RMSProp Root-Mean-Square Propagation

SGD Stochastic Gradient Descent

SR1 Limited Symmetric Rank-1 update

CG

xvi



ACKNOWLEDGEMENTS

I would like to acknowledge the efforts of my advisors Dr. Mukesh Singhal and

Dr. Roummel F. Marcia for giving me the opportunity to work on the projects

elaborated in this thesis. They have shared my joy and celebrations during my

achievements and have offered strength and wisdom in failures. Their guidance

has been steady and strong through my journey and I hope I can carry on this

legacy. My sincerest regards to both of you.

I would like to thank my committee member Dr. Harish Bhat, whose support

has been really strong throught my association with him. I am appreciative of

all the wisdom he has imparted on me over the years and all the discussions on

deep learning and machine learning. I am extremely grateful to have served as a

Graduate Research Assistant under the grant NSF DMS-1723272 guided by Dr.

Bhat. It was an enriching experience in a fresh domain of Time-dependent Density

Functional Theory. It was his special topics course that motivated some of the ideas

that we will see later in this thesis.

I would like to thank Dr. Meng Tang for readily agreeing to be on my com-

mittee. His rich research experience will hopefully guide my research in a new

direction during my future endeavours.

Moving on to my academic family, I would like to extend my wishes to Dr.

Omar Deguchy, Jacqueline Alvarez, Irabiel Romero, Azar Alizadeh and Jocelyn

Ornelas Munoz for their collaborative efforts and support. I appreciate all the

conversations we have had and the ideas we have exchanged with each other.

I would like my collaborators from Lawrence Livermore National Laboratory

(LLNL) - Jason Van Tuinen and Dr. Goran Konjevod.

In addition, I would like to thank Cindy Gonzalez, Brian Gallagher, Dr.

Suzanne Sindi and Dr. Mikkel Landajuela, for the opportunity to work at LLNL

during the summer of 2023. The experience of participating at LLNL data science

was nothing short of fantastic.

Finally, I would like to extend my gratitude and appreciation to my family

members - Narayanan Ranganath, Pavana Ranganath and Ranganath Kaushik

Raghavan for their unwavering support and guidance through the years.

xvii



VITA

2010-2014 B. E. in Electrical and Electronics Engineering,
Loyola-ICAM College of Engineering and Technology,
Chennai, Tamil Nadu.

2016-2018 M. S. in Electrical Engineering and Computer Science,
University of California, Merced, CA

2018-current PhD. in Electrical Engineering and Computer Science,
University of California, Merced, CA

PUBLICATIONS

Aditya Ranganath, Omar Deguchy, Mukesh Singhal, Roummel F. Marcia.
Multi-Stage noise reduction with recurrent neural networls. In 2021 55th Asilo-
mar Conference on Singals, Systems, and Computers, pages 135-139, 2021b,
doi:10.1109/IEEECONF53345.2021.9723266

Aditya Ranganath, Omar DeGuchy, Fabian Santiago, Mukesh Singhal, and
Roummel Marcia. Recurrent neural imaging: An evolutionary approach for mixed
possion-gaussian image denoising. In 2022 21st IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 484-489, 2022. doi:
10.1109/ICMLA55696.2022.00078.

Aditya Ranganath, Omar DeGuchy, Mukesh Singhal, and Roummel F. Marcia.
Multi-stage gaussian noise reduction with recurrent neural networks. In 2021 55th
Asilomar Conference on Signals, Systems, and Computers, pages 135-139, 2021b.
doi: 10.1109/IEEECONF53345.2021.9723266.

Jason Van Tuinen, Aditya Ranganath, Goran Konjevod, Mukesh Singhal, and
Roummel Marcia. Novel adversarial defense techniques for white-box attacks. In
2022 21st IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 617-622, 2022. doi:10.1109/ICMLA55696.2022.00095.

Aditya Ranganath, Mukesh Singhal, Roummel Marcia, Stochastic Adaptive
Regularization Using Cubics with L-SR1 Updates for Deep Neural Networks,
Manuscript under review, Association for Advancement of Artificial Intelligence
(AAAI)

Aditya Ranganath, Robert Smith, Jocelyn Ornelas Munoz, Mukesh Singhal,
Roummel Marcia, Image Separation using Transformer attention models, Manusr-
cript under review, IEEE International Conference on Acoustics, Speech and Signal
Processing.

xviii



Aditya Ranganath, Irabiel Romero, Mukesh Singhal, Roummel Marica, Quasi-
Adam: Improving Adam using quasi-Newton approximation. Manuscript under
review, Internaltional Conference on Artificial Intelligence and Statistics (AIS-
TATS)

Boaz Ilan, Aditya Ranganath, Jacqueline Alvarez, Shilpa Khatri, and Roummel
Marcia. Interpretability of relu for inversion. In 2022 21st IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 1190-1195,
2022. doi: 10.1109/ICMLA55696.2022.00192.

Azar Alizadeh, Mukesh Singhal, Vahid Behzadan, Pooya Tavallali, and
Aditya Ranganath. Stochastic induction of decision trees with applica-
tion to learning haar trees. In 2022 21st IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 825-830, 2022b. doi:
10.1109/ICMLA55696.2022.00137.

Azar Alizadeh, Pooya Tavallali, Vahid Behzadan, Aditya Ranganath, and
Mukesh Singhal. A novel approach for synthetic reduced nearest-neighbor
leveraging neural networks. In 2022 21st IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 831-836, 2022a. doi:
10.1109/ICMLA55696.2022.00138.

Azar Alizadeh, Mukesh Singhal, Vahid Behzadan, Pooya Tavallali, and
Aditya Ranganath. Stochastic induction of decision trees with applica-
tion to learning haar trees. In 2022 21st IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 825-830, 2022b. doi:
10.1109/ICMLA55696.2022.00137.

xix



ABSTRACT OF THE DISSERTATION

Optimization for machine learning: Memory-efficient and tractible

solutions to large-scale non-convex systems

by

Aditya Ranganath

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2023

Dr. Mukesh Singhal, Chair

Neural networks generally require large amounts of data to adequately model the

domain space. In situations where the data are limited, the predictions from these

models, which are typically obtained from stochastic gradient descent (SGD) mini-

mization algorithms, can be poor. In addition, the data is commonly corrupted due

to poor imaging appatus. In these cases, the use of more sophisticated optimiza-

tion approaches and model architectures becomes crucial to increase the impact of

each training iteration. Second-order methods can capture curvature information,

providing a more informed guess on the direction and step length. However, they

require vast amounts of storage and can be computationally time demanding.

To address the computational issue, we propose an optimization algorithm that

uses second-derivative information, exploiting curvature information for avoiding

saddle points. We utilize a Hessian-free approach where we do not explicitly store

the second-derivative matrix, by applying a conjugate gradient method. The al-

gorithm uses a trust-region method, which does not require the Hessian to be

positive definite. We present numerical experiments which demonstrate the im-

provement in classification accuracy using our proposed approach over a standard

SGD approach.

We propose using a limited-memory symmetric rank-one quasi-Newton ap-

proach which further addresses the time and space computational complexity. The

xx



approach allows for indefinite Hessian approximations, enabling directions of nega-

tive curvature to be exploited. Furthermore, we use a modified adaptive regularized

using cubics approach, which generates a sequence of cubic subproblems that have

closed-form solutions with suitable regularization choices and investigate the per-

formance of our proposed and compare our approach to state-of-the-art first-order

and other quasi-Newton methods.

To incorporate the benefits of an exponential moving average algorithm to a

quasi-Newton approach, we propose a quasi-Adam approach. Judicious choices of

quasi-Newton matrices can lead to guaranteed descent in the objective function

and improved convergence. In this work, we integrate search directions obtained

from using these quasi-Newton Hessian approximations with the Adam optimiza-

tion algorithm. We provide convergence guarantees and demonstrate improved

performance through an extensive experimentation on a variety of applications.

Finally, to mitigate the issue of data corruption, we propose a variety of archi-

tectures for various applications in image processing. We propose a blind source

signal separator, which involves separating image signals which have been super-

imposed by a common observing apparatus. We propose novel deep learning ar-

chitectures for low photon count image denoising, which contains Gaussian noise

in a low-photon count setting. Then we propose a novel architecture for low-

photon count and downsampled imaging, where the signal is interfered with some

Gaussian noise, Poisson noise and then downsampled. Finally, we propose a novel

adversarial detection method for white-box attacks using Radial basis function and

Discrete Cosine Transforms.
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Chapter 1

Introduction
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Optimization, in the context of deep learning, is the process of fine-tuning a

neural network’s parameters to minimize the loss function, which measures the dis-

parity between the model’s predictions and the target values. This crucial aspect

of deep learning aims to improve a model’s performance by adjusting weights and

biases using various optimization algorithms. Effective optimization not only helps

deep learning models generalize better to unseen data but also plays a pivotal role

in training deep neural networks with millions of parameters, making them capa-

ble of solving complex real-world problems in fields like computer vision, natural

language processing, and reinforcement learning.

First-order optimization methods such as Gradient Descent, form the founda-

tion of many of mordern optimization algorithms in the field of deep learning.

It computes the gradient of the loss function with respect to the model param-

eters and iteratively adjusts the model parameters in the direction of steepest

descent. This simplicity makes it accessible and easy to implement. Each iteration

involves computing gradients, which is a relatively inexpensive operation. This

efficiency is crucial when working with large datasets and deep neural networks.

More advanced optimization techniques like Adam, RMSprop, and stochastic gra-

dient descent (SGD) with momentum enhance convergence speed and stability.

However, it can be challenging to tune the hyperparameters of an gradient-based

optimization scheme, which signficantly impacts the training process. In addi-

tion, the convergence of these schemes can be slow depending on the shape of the

manifold.

Second-order optimization methods, utilize information from the second deriva-

tive of the loss function with respect to model parameters. These methods are em-

ployed to enhance the efficiency and convergence properties of optimization algo-

rithms. While first-order methods rely solely on gradient information, second-order

methods incorporate curvature information to navigate the optimization landscape

more efficiently. This leads to faster convergence, better adaptation to varying

learning rates, and improved stability during training. Despite these advantages,

second-order methods face several limitations in the context of deep learning. Deep

neural networks often have millions of parameters, making the computation and
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storage of the Hessian highly demanding. Additionally, the non-convex nature

and the prevalence of saddle points can sometimes cause second-order methods to

converge to undesirable solutions.

Quasi-Newton methods are a family of optimization algorithms, which are

used to approximate the Hessian information. These methods are designed to

extract information from the Hessian matrix without the need to compute it. The

most well-known quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) and the Symmetric Rank-one (SR-1) algorithms, but there are several

other variants as well, including the Limited-Memory BFGS (L-BFGS) method

and the Limited-Memory SR-1 (LSR-1) method. However, in deep learning and

large-scale machine learning problems, quasi-Newton methods are less commonly

used due to their high computationally complex nature. Quasi-Newton methods

are not inherently designed to work with stochastic gradients and do not adapt

well to the inherent noise in the gradients when using mini-batches. In addition,

the non-convex nature of these manifolds can cause the method to converge to

sub-optimal solutions. In Sec. 1.1, we briefly discuss about deep learning and their

architectures. In Sec. 1.2, we discuss about different optimization techniques with

their advantages and disadvantages. In Sec. 1.3, we identify the problems associ-

ated with these optimization techniques. In Sec. 1.4, we discuss the advantages of

these different approaches and how to exploit these advantages in a deep learning

setting.

1.1 Deep learning

Neural networks, are a foundational concept in the field of machine learning and

artificial intelligence. They are computational models inspired by the structure and

function of the human brain, designed to process information and make predictions.

Neural networks have become a critical component of a wide range of applications,

from image and speech recognition to natural language processing and autonomous

vehicles.

At their core, neural networks consist of interconnected nodes, or "neurons",
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organized into layers. These layers typically include an input layer, one or more

hidden layers, and an output layer. Neurons within the network are analogous to

biological neurons, processing and transmitting information through weighted con-

nections. The power of neural networks lies in their ability to learn from data and

adapt their internal parameters, known as "weights," to make accurate predictions

or classifications.

The process of training a neural network involves presenting it with a dataset

containing input-output pairs. During training, the network adjusts its weights

using optimization techniques to minimize the difference between its predictions

and the actual target values, typically quantified by a loss function. This iterative

learning process allows neural networks to generalize from the training data, mak-

ing them capable of handling new, unseen data and making predictions or decisions

based on the patterns they have learned.

Neural networks come in various architectures, with feedforward neural net-

works (FNNs) being the simplest, where information flows in one direction, from

the input layer to the output layer. More complex architectures include convolu-

tional neural networks (CNNs), designed for image and spatial data, and recurrent

neural networks (RNNs), which excel in sequential data processing, making them

suitable for tasks like natural language understanding and time series analysis. For

more information on the types of models used in this thesis, please refer to the

Appendix Sec. A.1.

Neural networks have achieved remarkable success in recent years, especially in

deep learning, where models with many hidden layers, known as deep neural net-

works, have demonstrated exceptional performance in a wide range of applications.

This resurgence of interest in neural networks, fueled by advances in hardware and

large datasets, has made them a key technology in modern artificial intelligence,

revolutionizing fields like computer vision, speech recognition, and natural lan-

guage understanding. As the field of neural networks continues to evolve, it holds

the promise of even more breakthroughs in machine learning and AI applications.
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1.2 Optimization

Optimization is of paramount importance in deep learning. Deep learning

involves training neural networks with a vast number of parameters (weights and

biases) to make predictions or classifications. It is the process of finding the optimal

values for these parameters, leading to a model that performs well on the given task.

The core objective in deep learning is to minimize a loss function, which estimates

the disparity between the model’s predictions and the actual target values. This

disparity, often referred to as loss, is minimized by the neural network, enabling the

model to make accurate predictions. The optimization setup for a neural network

is defined as

minimize
Θ∈Rn

L(Θ) ≡ 1

m

j=m∑
j=1

Lj(Θ; xj,yj) ≡
1

m

m∑
j=1

Lj(Θ), (1.1)

where Lj is a function that depends on the jth observation in the training set

{(xj, yj)}nj=1. These objective functions are generally large-scale (the dimension of

Θ, n, and the number of data points, m, are typically in the order of millions),

non-linear (the function L often involves nonlinear activation functions), and non-

convex (L is a composition of functions that can result in non-convexity [1]). An

optimized model is not only good at fitting the training data but also at generalizing

its knowledge to new, unseen data. Effective optimization helps improve a model’s

ability to generalize, reducing overfitting and enhancing its performance on real-

world data. For the methods discussed in this thesis, the optimization techniques

are broadly divided into two categories - First-order methods, Second-order

methods and Quasi-Newton methods.

1.2.1 First-order Methods

First-order methods involve computing the gradients of the objective function

with respect to the parameterization of the function. In this thesis, the gradient,

unless otherwise specified, is referred to as gi, where g = ∇ΘL at the ith iteration.

The gradient based method is an iterative process, where for each jth input batch
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or input of the dataset xj, the gradients are computed and the the parameters are

adjusted according to the following update scheme:

Θi+1 = Θi − ηgi. (1.2)

This −gi is the negative gradient direction and η is referred to as learning-rate.

For more details on origin and usage, see A.1. The iterate update 1.2 forms the

foundation of most mordern gradient-based first-order approaches. One of the first

optimization schemes to be used in a deep learning setting is the Batch-Gradient

Descent method and Stochastic-Gradient Descent (SGD) method. In a

Batch-Gradient Descent method, the objective function L is evaluated over a batch

instead of the entire dataset. Each batch is iteratively fed to the network and the

gradients are calculated over each batch. In a SGD setting, the dataset is di-

vided into batches, with the caveat that only select sampled datapoints are used

to evaluate the gradient of that batch. We discuss SGD in more detail in Sec 2.1.

Advantages:

1. gi is fairly easy to compute. It is asymptotically equal to one forward-pass

through the neural network.

2. gi is fairly easy to store. It requires only O(n) memory.

3. In practice, first-order approaches always converge to the minimizer even-

tually.

Disadvantages:

1. First-order methods suffer from slow and linear-convergence.

2. These methods get stuck at saddle-points.

For more details on saddle-points and linear-convergence, see Sec. A.2.2.

1.2.2 Second-order Methods.

Second order approaches use the second derivative of the objective function L
with respect to their parameters Θ. Often referred to as a Newton method, the
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second-order approaches use the Hessian matrix H = ∇2
ΘL, where H ∈ Rn×n. The

iterative algorithm for a Newton method is given by

Θi+1 = Θi − [Hi]
−1gi. (1.3)

For more information on how this update is derived and formulated, see Ap-

pendix Sec. A.2.

Advantages:

1. The Newton’s method enjoys quadratic convergence.

2. The step exploits curvature information of the function.

Disadvantages:

1. For large-scale non-convex problems like neural-networks, it is computation-

ally difficult to store the Hessian information.

2. The matrix inversion operation can be computationally expensive.

3. Since L is highly non-convex and nonlinear, the Hessian can be singular or

negative-definite.

For more details on convergence and computational budget, see Sec. A.2.1.

1.2.3 Quasi-Newton Methods

Quasi-Newton methods use the secant-equation to approximate the Hessian

information. Given Θi,Θi−1, and their corresponding gradients gi,gi−1, the secant

equation is defined by

yi = Bi+1si, (1.4)

where yi = gi − gi−1, si = Θi − Θi−1 and Bi+1 ≈ Hi+1 is the Hessian approxi-

mation. Quasi-Newton method became popular in a deep-learning setting due to

their ease in computation and limited memory requirements. There are a variety

of quasi-Newton approaches such as Broyden-Fletcher-Goldfarb-Shanno (BFGS),
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Symmetric-Rank-1 (SR-1) methods, which approximate this Hessian information

B. The update strategy for a quasi-Newton approach is given by

Θi+1 = Θi − [Bi]
−1gi. (1.5)

Advantages:

1. These methods are computationally economic and enjoy a linear memory

depenence.

2. The steps are easy to compute and require very few matrix-vector products.

3. They approximate the Hessian information such that the curvature informa-

tion is induced.

Disadvantages:

1. The quasi-Newton matrix is only an approximation of the Hessian matrix.

This means, the curvature information is only approximated under this set-

ting.

2. Some quasi-Newton matrices such as BFGS always stay postive-definite. This

may be an issue in regions where the true Hessian is negative-definite or

singular.

3. The method has not been explicitly proven to enjoy a superlinear conver-

gence.

1.3 Problem Statement

Optimization in deep learning is extremely crucial. However, due to limited

memory constraints and highly non-convex nature of the objective functions, this

task becomes intractible.

• First-order methods are cheap to compute and easy to store. However, due

to lack of curvature information, their convergence can be slow and infficient.
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• Second-order methods contain curvature information. However, storing and

inverting a Hessian can be expensive, and in some cases, non-invertible.

• Limited memory Quasi-Newton methods are approximations to the second-

order derivative and still remain a first-order method as they do not store

the full-rank Hessian information, but merely a low-rank approximation to

it.

• The current literature does not adequately address the optimization of neural

networks using these Quasi-Newton approaches This is often attributed to the

noisy nature of the gradients and highly non-convex nature of the objective

functions.

• In addition, the architecture of the neural networks and their corresponding

objective functions play a major role.

• In addition, neural networks are large-scale parameterized methods which

require adequate data and a good optimzation scheme will prevent a network

from overfitting, but allows the network to generalize well on unseen data.

The mark of a good neural network is a good network model with adequate

parameterization and architecture, which allows the network to train without

bias.

1.4 Motivation

In this chapter, we have discussed the different deep learning neural networks

used depending on the task. We have identified the optimization setup for these

neural networks and specified the algorithm used for different methods. We have

discussed the advantages and disadvantages of these approaches. The motivation

of the thesis is presented as follows:

1. Exploit curvature information without explicitly storing or inverting the Hes-

sian.
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2. Approximate the Hessian information with appropriate safeguards and limited-

memory strategies.

3. Maintain a positive definite matrix and influence the step to pull away from

saddle-points.

4. Design networks which can expedite the training process with a smaller com-

putational and memoryfootprint.

This thesis is orgaized as follows: In Chapter 2, we propose a Trust-region

based second-order Hessian-Free approach. In Chapter 3, we discuss an Adaptive-

Regularized Cubics methods which uses the Limited-Memory Symmetric-Rank-

one method. In Chapter 4, we discuss a quasi-Newton and exponential moving

average method. In Chapter 5, we propose various deep learning architectures

across different image processing applications and how their performance improves

over existing architectures. In Chapter 6, we summarize the contributions of the

work presented here.
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Chapter 2

Hessian-Free Trust-Region methods

11



The recent success in the application of neural networks to a variety of fields

can be mostly attributed to two driving factors: improvements in network ar-

chiteccture and the optimization techniques used during the learning process [2–

4]. Since the inception of the back-propagation algorithm made the optimization

of the network parameters viable, methods using first-derivative information have

dominated the field (see e.g., [5–11]). With an increased access to powerful compu-

tational resources, there is greater potential for the field to shift toward considering

more sophisticated algorithms. This is particularly true for data-limited inference,

where the availability of data is limited, i.e., n in (1.1) is relatively small. In the

case of an image classifier, this translates to a limited number of training images

for classification.

The novelty of the proposed approach is as follows: we exploit second-

derivative information to improve the predictive capabilities of artificial

neural networks for data-limited inference. Our method combines the effi-

cient computation of a true Hessian-vector product in a trust-region setting, thus

allowing us to solve the trust-region subproblem using a conjugate based method.

The chapter is organized as follows. In Sec. 2.1, we describe existing and

commonly used algorithms and then discuss some of the recent techniques which

approximate second-order information. In Sec. 2.2, we describe the novelty of our

proposed approach, which is based on trust-region methods, which are alternatives

to the more commonly-used line-search methods in optimization. We describe our

numerical experiments in Sec. 2.3 and the main results in Sec. 2.4. Finally, we

summarize the chapter with concluding remarks in Sec. 2.5.

2.1 Related Methods

Hessian-Free Methods. Hessian-free methods look to improve on gradient-

descent methods by using higher-order information. by capitalizing on approxima-

tions of second-derivative information or in some cases using the true Hessian itself.

In either regime, the explicit storage of the associated matrix can be quite expen-

sive when considering the large-scale optimization problem associated with training
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a neural network. In order to minimize this cost, Hessian-free methods focus on

the matrix vector product of the Hessian or Hessian approximation (H) and an

n-dimensional vector (d). To minimize the cost of storing second-derivative (Hes-

sian) matrices (which can be potentially too large to store in memory), Hessian-free

methods only require them for matrix-vector multiplication. In [12], the Hessian-

free optimization method is implemented using the finite difference approximation

of the matrix vector product: The approach by Martens [12] uses the finite differ-

ence approximation of the matrix vector product:

Hd = lim
ε→0

∇L(Θ + εd)−∇L(Θ)

ε
, (2.1)

where the operation is used in a conjugate gradient (CG) setting in order to provide

the descent direction to the next iterate. Pearlmutter [13] offers an alternative

approach which computes the actual Hessian-vector product as

Hd =
∂

∂ε
∇L(Θ + εd)

∣∣∣∣
ε=0

. (2.2)

For details on implementation, see [14–17]. To calculate Hd for a simple back-

propagation network, see [14, 15], and for recurrent backpropagation networks, see

[16, 17]. One requirement when using either operation in the context of typical CG

methods is that H be positive definite. This is a requirement to ensure that the

CG method or any linesearch methods result in a descent direction. A related ap-

proach utilizes Gauss-Newton approximations [18]. For example, the approach in

[19] extends the approximation for use with a cross-entropy loss and a framework

similar to [13].

H is often required to be positive definite to guarantee that the computed search

direction is a descent direction. As they are stated, the matrix-vector products in

(2.1) and (2.2) do not provide any guarantees that the matrix H is positive definite.

One commonly used technique to guarantee to avoid the problems associated with

an indefinite matrix is to shift or “dampen" the eigenvalues of H as B = H + λI,

where λ ≥ 0. The Hessian-vector product is now expressed as Bd = Hd + λd,

where Hd is evaluated using the previously described techniques.

Gauss-Newton approximations have also been proposed as an alternative to the

previous two methods. The Gauss-Newton approximation, G, also known as the
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squared Jacobian, is an outer product of the Hessian, typically used in least-squares

problems. In [19], they extend the approximation for use with a cross-entropy loss

using a similar framework to that presented in [13]. The author notes that as

long as G is positive semi-definite, descent is guaranteed, but to overcome the

possibility of indefiniteness, a similar dampening approach must be taken. In later

sections, we will make use of Pearlmutter’s method while relaxing the requirement

that the Hessian be positive definite.

Stochastic Gradient Descent (SGD). First-derivative algorithms have emerged

as the standard optimization techniques used for training deep neural networks.

In particular, methods based on stochastic gradient descent (SGD) are preferred

for their low computational cost and ease of implementation [5, 20]. This method

differs from a classic gradient descent approach in that the gradient is computed

based on a sample of the dataset. In the context of deep learning, the gradient is

computed based on a sample batch. Specifically, at iteration k in SGD, a sample

batch Sk ⊆ {1, 2, . . . , n} is randomly chosen and the current iterate wk is updated

using

Θk+1 = Θk − ηk
1

|Sk|
∑
j∈Sk

∇Lj(Θk),

where ηk known as the learning rate.

2.2 Proposed Approach

In the methods described above, the Hessian H is often required to be positive

definite to guarantee that the computed search direction is a descent direction. For

non-convex problems, this requirement is not always satisfied. In [12], the eigen-

values of H are shifted by adding λI to H, where λ > 0 is obtained heuristically.

Here, we propose using a trust-region approach that does not require modifying

the eigenvalues of H. As they are stated, the matrix-vector products in (2.1) and

(2.2) do not provide any guarantees that the matrix H is positive definite. One

commonly used technique to guarantee to avoid the problems associated with an

indefinite matrix is to shift or “dampen" the eigenvalues of H as B = H + λI,
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Figure 2.1: Illustration of the CG-Steihaug approach in two dimensions. (a)
When Qk(p) is convex and its unconstrained minimizer lies within the trust-region
radius, then the CG iterates will converge to the unconstrained minimizer. (b)
When Qk(p) is convex but its unconstrained minimizer is outside the trust region,
then the minimizer pk is defined where the CG iterate crosses the boundary. (c)
When Qk(p) is not convex, i.e., Hk is not positive definite, then the CG-Steihaug
method terminates when a direction of curvature is detected and the minimizer pk
is defined where Qk(p) is minimized along the last computed CG iterate.

where λ ≥ 0. The Hessian-vector product is now expressed as Bd = Hd + λd,

where Hd is evaluated using the previously described techniques.

The proposed method presents a novel optimization routine designed to min-

imize (1.1). Unlike the previous methods described, the goal is computing fast

Hessian-vector products within a trust-region setting. This allows us to approx-

imately solve the trust-region subproblem using CG while allowing for negative

curvature. By incorporating second-derivative information, we improve the im-

pact of each iteration and avoid certain local minima and saddle points. The

increase in the quality of the optimization routine will increase the value of each

data point and allow us to reach better optima with fewer training instances. In

the following subsections we describe the proposed approach in more detail.

Fast Exact Hessian-Vector Products. As stated in the previous section, com-

puting the second-derivative or Hessian can be computationally intensive. Fur-

thermore, in the context of neural networks, storing the Hessian can be infeasible.

Using exact second derivative information allows us to create an accurate local-

ized model of the true objective function which is used in the trust-region setting

15



Algorithm 1 Proposed Second-Order Trust-Region Method
Given: For some ∆max > 0,∆0 ∈ (0,∆max), η ∈ [0, 1

4
),

and ε > 0

while ‖∇L(Θk)‖2 > ε do

Obtain pk from CG-Steihaug in [21]

Perform line search using Wolfe conditions

Evaluate the ratio given by

ρk = (L(Θk)− L(Θk+1))/(Qk(0)−Qk(pk))
if ρk < 1

4
then

∆k+1 = 1
4
∆k

else

if ρk > 3
4
and ‖pk‖2 = ∆k then

∆k+1 = min(2∆k,∆max)

else

∆k+1 = ∆k

end if

end if

if ρ > η: then

Θk+1 = Θk + pk

else

Θk+1 = Θk

end if

end while
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described in the next section. At the same time we require this information to be

available for use in the CG method. In both cases, a Hessian-vector multiplication

is required, and so we chose to use Pearlmutter’s algorithm, commonly referred to

as Rop [13]. While we are not the first to use Rop in a CG setting, our approach is

novel in that we no longer require dampening of the Hessian to guarantee positive

definiteness.

The motivation for avoiding damped Hessian approximations comes in two

parts. The first is that it requires the choice of another hyperparameter, λ. The

choice of λ can greatly affect the convergence of the optimization routine and should

be chosen for each update of the Hessian vector product. The second motivation

is that the perturbation to the true Hessian imposed by λ results in an approxi-

mation of the second derivative and thus less accurate curvature information. The

proposed algorithm relaxes the requirement of the Hessian to be positive-definite

and compensates for the possibility of negative curvature by using a trust-region

setting.

Trust-Region Methods. Trust-region methods [22] are alternative approaches

to line-search methods for solving optimization problems. While line-search meth-

ods first compute a search direction and then determine a step length along that

direction at each iteration, trust-region methods determine a quadratic model to

the true objective function and a corresponding region over which the quadratic

model can be trusted to be accurate. Specifically, trust-region methods solve a

sequence of quadratic subproblems with a single constraint of the following form:

pk = arg min
p∈<n

Qk(p) ≡ ∇L(Θk)
>p +

1

2
p>∇2L(Θk)p

subject to ‖p‖2 ≤ ∆k (2.3)

where ∆k is a scalar parameter referred to as the trust-region radius. The trust-

region subproblem solution pk is used to compute the next iterate given by Θk+1 =

Θk + pk, provided pk satisfies a certain property discussed below.

Conjugate Gradient (CG)-Steihaug Approach. An important component

of the algorithm facilitates solving the trust-region subproblem in (2.3) to provide

the directional step pk to the next iteration. In a similar approach to [12], we use
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Algorithm 2 CG-Steihaug
Given: Tolerance εk > 0

Set: p0 = 0, r0 = gk,d0 = −r0 = −gk

if ‖r0‖2 < εk then

return pk = z0 = 0

end if

for j ∈ 0,1,2,3,4.. do

if d>jHkdj ≤ 0 then

Find τ such that pk = zj + τdj minimizes

Qk(p) in (2.3) with ‖pk‖2 = ∆k

return pk

end if

Set αj = r>j rj/ d>jHkdj

Set zj+1 = zj + αjdj

if ‖zj+1‖ ≥ ∆k then

Find τ ≥ 0 such that pk = zj + τdj satisfies

‖pk‖2 = ∆k

return pk

end if

Set rj+1 = rj + αjHkdj

if ‖rj+1‖2 < εk then

return pk = zj+1

end if

Set βj+1 = r>j+1rj+1/r
>
j rj

Set dj+1 = −rj+1 + βj+1dj

end for

a conjugate gradient method with the fast exact Hessian-vector product in (2.2).

Our algorithm uses a modified CG method known as the CG-Steihaug approach

[21], or as the Steihaug-Toint truncated conjugate gradient method [22]. which we

outline in Algorithm 1.

If the minimizer lies within the trust-region radius, then the CG iterates con-
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verge to the unconstrained minimizer (see Fig. 2.1(a)). If the minimizer is outside

of the trust region, then the CG iteration terminates where the iterate crosses

the boundary 2.1(b)). Finally, if the Hessian is not positive definite, then CG-

Steihaug terminates the algorithm and the minimizer is detected at the boundary

of the trust region in the direction of the last computed CG iterate (see Fig. 2.1(c)).

We re-iterate that the proposed method does not require the Hessian to be positive

definite. Therefore, we do not have to use a dampening scalar λ, and consequently,

the method allows directions of negative curvature to be detected to avoid saddle

points. We describe our proposed approach in Algorithm 2. We note that the final

iterate pk in Algorithm 2 satisfies the following decrease in the quadratic model:

Qk(0)−Qk(pk) ≥ c1‖gk‖2 min

(
∆k,
‖gk‖2

‖Hk‖2

)
, (2.4)

where c1 is a constant with c1 ∈ (0, 1]. Also, we note that the direction pk satisfies

the trust-region constraint, i.e., ‖pk‖2 ≤ ∆k, which will be used for convergence

results.

Summary of Proposed Approach. In summary, the proposed approach has

three major components: (i) a trust-region method (outlined in Algorithm 2, which

allows for indefinite Hessians that avoid saddle points; (ii) a fast and exact Hessian-

vector product (2.2) which efficiently provides true second-derivative information

at the current iterate; and (iii) the CG-Steihaug approach, which solves the trust-

region subproblem without storing the Hessian matrix. To guarantee that the

search direction provided by the CG-Steihaug method sufficiently decreases the

value of the quadratic subproblem, we implement a Wolfe line search in the direc-

tion of pk [21]. Furthermore, we evaluate the accuracy of the quadratic model of

the objective function within the trust region using the ratio ρk in Algorithm 2 to

determine whether the update is acceptable or not. The result is an algorithm that

considers second derivative information and allows for the possibility of negative

curvature. As such, the impact of each iteration is more valuable when compared

to those of first-order methods.

Convergence. We conclude with the following convergence guarantee for our

proposed method. We first define the level set S = {Θ: L(Θ) ≤ L(Θ0)}, where Θ0
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is the initial point, and an open neighborhood of S by S(R0) = {Θ: ‖Θ − Θ∗‖ <
R0 for some Θ∗ ∈ S}, where R0 is a positive constant. Then we have the following

result.

Theorem 1. Let η = 0 in Algorithm 2. Suppose that ‖Hk‖ ≤ β for some constant

β > 0, that L(Θ) is bounded below on the level set L and Lipschitz continuously

differentiable in the neighborhood L(R0) for some R0 > 0, and that all feasible

solutions pk of (2.3) satisfy (2.4). Then we have

lim inf
k→∞

‖gk‖2 = 0.

The proof follows directly from Theorem 4.5 in [21].

2.3 Limited-Data Experimental Setup

To validate the effectiveness of the proposed algorithm, we implemented Al-

gorithm 1 with the intent to train a neural network to perform a well established

classification task. However, we imposed a limitation on the amount of data avail-

able for training to simulate data-starvation. Here, we describe our experimental

setup.

Neural Network Architecture. In each of these experiments, we used a type of

architecture known as a Multi-Layer Perceptron (MLP), which are a class of feed-

forward artificial neural networks with the ability to separate data with a non-linear

decision boundary [23]. The MLP used in our experiments was implemented using

the deep learning package Theano and consisted of three layers of nodes/neurons.

The input layer consisted of the vectorized version of the input image (784 nodes),

where each node corresponds to each pixel in the sample image. The hidden

layer contained 500 neurons and was followed by the non-linear hyperbolic tangent

function (tanh) used as a non-linear activation on the output of the layer. Finally,

the output layer consisted of 10 neurons corresponding to the 10 classes present

in the the dataset. This layer was also followed by the same activation function

as the previous layer. The softmax activation function was applied to the output

of the neural network in order to provide a probability distribution of the possible
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classes. The probability distribution was compared to the true one-hot encoding

of the target class using a cross entropy loss function. The architecture was kept

simple to demonstrate the effectiveness of the optimization method on the intended

task rather than the complexity of the MLP.

Dataset. The dataset used for these experiments is known as the MNIST dataset

[24], which consists of rasterized 28 × 28 pixel images of handwritten digits from

0-9 (10 classes). The collection of images is partitioned in a training set of 60,000

images and a test set of 10,000 images.

Hardware. Experiments were carried out on GPUs housed in a high-performance

cluster. The cluster consists of 95 computer nodes with a total of 2116 cores and

2301 Mhz processing power. The GPUs include 4 NVIDIA Tesla K20 graphics

cards and 2 Nvidia p100s with a total operating capacity of 62 TFLOPS.

Testing Procedure. The goal of our experiments is to show that the proposed

approach can improve on SGD when training a neural network with limited data.

The 70,000 images in the MNIST dataset were partitioned in the following manner:

50,000 images in the training set, 10,000 images in the validation set and 10,000

images in the testing set. From the training set, we randomly sampled subsets with

sizes of 20, 100, 500, 1000 and 10,000 images. When implementing our algorithm,

the entire subset is used in a single batch over a single epoch. The algorithm

terminates when the norm of the gradient of the objective function reaches a

sufficient tolerance (in our case, this was set to 10−5). When using SGD, we

approached training using the standard practice of using mini-batches. We chose

a mini-batch size of 20 images for all data subsets

2.4 Main Results

The results of our experiments are presented in Fig. 2.2 and Table 1, which

presents the average of 10 runs each with each run using a different initial point.

When compared to SGD for various training times and various dataset sizes, the

proposed method improves on the accuracy of the classification task. In particular,

after a single pass (1 epoch) through the available data the proposed method is
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Figure 2.2: A comparison of our method to Stochastic Gradient Descent (SGD)
with limited datasets. Here we report the accuracy error for datasets of 20, 100,
500, 1000 and 10000 images. Results are also shown for various numbers of epochs.
The proposed approach was only trained for 1 epoch while SGD was allowed to run
for 1, 100, and 1500 epochs and SGD Max, which refers to the number of epochs
of SGD allowed to run within the time our proposed method runs 1 epoch.

almost twice as accurate as SGD. This confirms the notion that the iterations of the

proposed method have a greater impact than that of the first-order method. As we

continued to allow the network to train we can see that after almost 1500 epochs of

SGD (which may be considered overtraining) we do not see a great improvement in

the level of accuracy. In fact, we even allowed the SGD algorithm to run in

the same GPU time as our method, we still improve on the performance

of SGD. The results in Table 1 show that the improvement on SGD in the case

of a 20 image dataset is less than 2%. In this case, 20 images might approach the

lower limit on the minimum size of the data set you need in order for the network

to learn. We can see that as we increase the number of images in the dataset, SGD

still underperforms in comparison to our proposed method.
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Percent Error

Dataset SGD SGD SGD SGD Proposed

size 1 epoch 100 epochs 1500 epochs Max Method

20 79.39 58.45 44.45 44.01 43.68

100 69.49 33.50 32.17 32.12 25.58

500 41.10 16.70 16.23 16.23 14.23

1000 31.98 13.01 13.71 13.57 11.64

10000 16.35 6.57 4.21 3.97 3.38

Table 2.1: Error table corresponding to the testing error/loss of the neural net-
work for our proposed method in comparison to SGD over various epochs and for
different dataset sizes. For our proposed method, the dataset is fed as a batch
to the network. For SGD, the data are fed in mini-batches of 20 images. SGD
Max corresponds to SGD trained over the same GPU run time as our proposed
algorithm.

2.5 Concluding Remarks

In this chapter we proposed a novel algorithm for training neural networks

using second-order information for data-limited inference. In particular,

our algorithm improves on first-order methods by allowing the use of curvature

information to improve the quality of each iteration in the optimization method.

This is accomplished by using a fast exact Hessian operation, which allows us to

efficiently compute matrix-vector multiplication with the exact second-derivative

matrix. Unlike previous algorithms that have used this type of algorithm in a

conjugate gradient setting, by using the CG-Steihaug approach in a trust-region

setting it allows us to relax the requirement that the Hessian be positive definite.

This allows the algorithm to detect negative curvature information and avoid sad-

dle points. We provided numerical results in a standard implementation of an MLP

classification problem where the training dataset was limited. In all cases, the pro-

posed method improves upon a standard implementation of Stochastic Gradient

Descent trained over various epochs.
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Chapter 3

Adaptive-Regularized Cubics using

Symmetric Rank-one updates
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Gradient and adaptive gradient methods are the most widely used for solving

(1.1). The most common approach is stochastic gradient descent (SGD) which,

despite its simplicity, performs well over a wide range of applications. However, in

a sparse training data setting (as can be seen in chapter 2), SGD performs poorly

due to limited training speed [25]. To address this problem, adaptive methods such

as AdaGrad [7], AdaDelta [26], RMSProp [27] and Adam [28] have been proposed.

These methods take the root mean square of the past gradients to influence the

current step.

In contrast, Newton’s method has the potential to exploit curvature informa-

tion from the second-order derivative (Hessian) matrix (see e.g., [29]). Generally,

the iterates are defined by Θk+1 = Θk − αkη
2
kL(Θk)

−1∇L(Θk), where ηk > 0 is

a steplength defined by a linesearch criterion ([21]). In a DNN setting, the num-

ber of parameters (n) can be of the order of millions. Thus storing the Hessian,

which takes O(n2) memory units, and inverting it, which requires O(n3) opera-

tions, become impractical. Thus, full Hessians are rarely ever computed. Instead,

Hessian-vector products and Hessian-free methods are used (see e.g., [12]) which

reduce the cost of storing the Hessian and inverting it. However, the computational

cost remains expensive.

Alternatively, quasi-Newton methods compute Hessian approximations, Bk ≈
∇2L(Θk), that satisfy the secant condition given by yk−1 = Bksk−1, where

sk−1 = Θk −Θk−1 and yk−1 = ∇L(Θk)−∇L(Θk−1).

The most commonly used quasi-Newton method, including in the realm of deep

learning, is the limited-memory BFGS update, or L-BFGS (see e.g., [30]), where

the Hessian approximation is given by

Bk = Bk−1 +
yk−1y

>
k−1

y>k−1sk−1

−
Bk−1sk−1sk−1B

>
k−1

s>k−1Bk−1sk−1

. (3.1)

One advantage of using an L-BFGS update is that the Hessian approximation can

be guaranteed to be positive definite, which is highly suitable in line-search settings

because the update sk is guaranteed to be a descent direction, meaning there is

some step length along this direction that results in a decrease in the objective

function (see [21], Algorithm 6.1).
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Because the L-BFGS update is positive definite, it does not readily detect direc-

tions of negative curvature for avoiding saddle points. In contrast, the Symmetric

Rank-One (SR1) quasi-Newton update is not guarateed to be positive definite and

can result in ascent directions for line-search methods. However, in trust-region

settings where indefinite Hessian approximations are an advantage because they

can capture directions of negative curvature, the limited-memory SR1 (L-SR1) has

been shown to outperform L-BFGS in DNNs for classification (see [31]). We dis-

cuss this in more detail in Sec. 3.1 but in the context of Adaptive Regularization

using Cubics.

Dedication

We dedicate this paper to Oleg P. Burdakov, whose work on shape-changing

norms and quasi-Newton methods inspired this work.

3.1 Adaptive Regularization using Cubics with L-

SR1 Updates

Here, we describe our proposed approach by first discussing the L-SR1 update.

Limited-memory symmetric rank-one updates. Unlike the BFGS update

(3.1), which is a rank-two update, the SR1 update is a rank-one update, which is

given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

>

s>k (yk −Bksk)
(3.2)

(see [32]). As previously mentioned, Bk+1 in (3.2) is not guaranteed to be definite.

However, it can be shown that the SR1 matrices can converge to the true Hessian

(see [33] for details). We note that the pair (sk,yk) is accepted only when

|s>k (yk −Bksk)| > ε‖sk‖2‖yk −Bksk‖2, (3.3)

for some constant ε > 0 (see [21], Sec. 6.2, for details). The SR1 update can be
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defined recursively as

Bk+1 = B0 +
k∑
j=0

(yj −Bjsj)(yj −Bjsj)
>

s>j (yj −Bjsj)
. (3.4)

In limited-memory settings, only the last m � n pairs of (sj,yj) are stored and

used. For ease of presentation, here we choose k < m. We define

Sk = [ s0 s1 · · · sk−1 ] and Yk = [ y0 y1 · · · yk−1 ].

Then Bk admits a compact representation of the form

Bk = B0 +

Ψk


[

Mk

][
Ψ>k

]
, (3.5)

where Ψk = Yk −B0Sk and

Mk = (Dk+Lk+L>k −S>kB0Sk)
−1,

where Lk is the strictly lower triangular part, Vk is the strictly upper triangular

part, and Dk is the diagonal part of S>k Yk = Lk + Dk + Vk (see [34] for further

details).

Because of the compact representation of Bk, its partial eigendecomposition

can be computed (see [35]). In particular, if we compute the QR decomposition of

Ψk = QR and the eigendecomposition RMR> = PΛ̂kP
>, then we can write

Bk = B0 + U‖Λ̂kU
>
‖ ,

where U‖ = QP ∈ Rn×k has orthonormal columns and Λ̂k ∈ Rk×k is a diagonal

matrix. If B0 = δkI (see e.g., Lemma 2.4 in [31]), where 0 < δk < δmax is some

scalar and I is the identity matrix, then we obtain the eigendecomposition

Bk = UkΛkU
>
k =

[
U‖ U⊥

] [
Λ̂k + δkI 0

0 δkI

] U>‖

U>⊥

 (3.6)

where Uk = [ U‖ U⊥ ] is an orthogonal matrix and U⊥ ∈ Rn×(n−k) is a matrix

whose columns form an orthonormal basis orthogonal to the range space of U‖.
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Here,

(Λk)i =

δk + λ̂i if i ≤ k

δk if i > k
. (3.7)

Adaptive Regularization using Cubics. Since the SR1 Hessian approxima-

tion can be indefinite, some safeguard must be implemented to ensure that the

resulting search direction sk is a descent direction. One such safeguard is to use a

“regularization" term. The Adaptive Regularization using Cubics (ARCs) method

([36–38]) can be viewed as an alternative to line-search and trust-region methods.

At each iteration, an approximate global minimizer of a local (cubic) model,

min
s∈Rn

mk(s) ≡ g>k s +
1

2
s>Bks +

µk
3

(Φk(s))3, (3.8)

is determined, where gk = ∇L(Θk), µk > 0 is a regularization parameter, and Φk is

a function (norm) that regularizes s. Typically, the Euclidean norm is used. In this

work, we use an alternative “shape-changing" norm that allows us to solve each

subproblem (3.8) exactly. Proposed in [39], this shape-changing norm is based

on the partial eigendecomposition of Bk. Specifically, if Bk = UkΛkU
>
k is the

eigendecomposition of Bk, then we can define the norm

‖s‖Uk

def
= ‖U>k s‖3.

It can be shown using Hölder’s Inequality that

n−1/6‖s‖2 ≤ ‖s‖Uk
≤ ‖s‖2.

Closed-form solution. Applying a change of basis with s̄ = U>k s and ḡk = U>k gk,

we can redefine the cubic subproblem as

min
s̄∈Rn

m̄k(s̄) = ḡ>k s̄ +
1

2
s̄>Λks̄ +

µk
3
‖s̄‖3

3. (3.9)

With this change of basis, we can find a closed-form solution of (3.9) easily. Note

that m̄k(s̄) is a separable function, meaning we can write m̄k(s̄) as

m̄k(s̄) =
n∑
i=1

{
(ḡk)i(s̄)i +

1

2
(Λk)i(s̄)2

i +
µk
3
|(s̄)i|3

}
.
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Consequently, we can solve (3.9) by solving one-dimensional problems of the form

min
s̄∈R

m̄(s̄) = ḡs̄+
1

2
λs̄2 +

µk
3
|s̄|3, (3.10)

where ḡ ∈ R corresponds to entries in ḡk and λ ∈ R corresponds to diagonal entries

in Λk. To find the minimizer of (3.10), we first write m̄(s̄) as follows:

m̄(s̄) =

m̄+(s) = ḡs̄+ 1
2
λs̄2 + µk

3
s̄3 if s̄ ≥ 0,

m̄−(s̄) = ḡs̄+ 1
2
λs̄2 − µk

3
s̄3 if s̄ ≤ 0.

The minimizer s̄∗ of m̄(s̄) is obtained by setting m̄′(s̄) to zero and will depend

on the sign of ḡ because ḡ is the slope of m̄(s̄) at s̄ = 0, i.e., m̄′(0) = ḡ. In

particular, if ḡ > 0, then s̄∗ is the minimizer of m̄−(s̄), namely s̄∗ = (−λ +√
λ2 + 4ḡµ)/(−2µ). If ḡ < 0, then s̄∗ is the minimizer of m̄+(s̄), which is given by

s̄∗ = (−λ+
√
λ2 − 4ḡµ)/(2µ). Note that these two expressions for s̄∗ are equivalent

to the following formula:

s̄∗ =
−2ḡ

λ+
√
λ2 + 4|ḡ|µ

,

In the original space, s∗ = Uks̄
∗ and gk = Ukḡk. Letting

Ck = diag(c̄1, . . . , c̄n), where c̄i =
2

λi +
√
λ2
i + 4|ḡi|µ

, (3.11)

then the solution s∗ in the original space is given by

s∗ = Uks̄
∗ = −UkCkU

>
k gk. (3.12)

Practical implementation. While computing U‖ ∈ Rn×k in the matrix Uk =

[ U‖ U⊥ ] is feasible since k � n, computing U⊥ explicitly is not. Thus, we

must be able to compute s∗ without needing U⊥. First, we define the following

quantities
s̄‖ = U>‖ s and s̄⊥ = U>⊥s,

ḡ‖ = U>‖ gk and ḡ⊥ = U>⊥gk.

Then the cubic subproblem (3.9) becomes

minimize
s̄∈Rn

m̄k(s̄) = minimize
s̄‖∈Rk

m̄‖(s̄‖) + minimize
s̄⊥∈Rn−k

m̄⊥(s̄⊥), (3.13)

29



where

m̄‖(s̄‖) = ḡ>‖ s̄‖ +
1

2
s̄>‖ Λ̂ks̄‖ +

µk
3
‖s̄‖‖3

3, (3.14)

m̄⊥(s̄⊥) = ḡ>⊥s̄⊥ +
δk
2
‖s̄⊥‖2

2 +
µk
3
‖s̄⊥‖3

3. (3.15)

We minimize m̄‖(s̄‖) in (3.14) similar to how we solved (3.10). In particular, if we

let

C‖ = diag(c1, . . . , cn), where ci =
2

λi +
√
λ2
i + 4|(ḡ‖)i|µ

, (3.16)

then the solution is given by

s∗‖ = −C‖ḡ‖. (3.17)

Minimizing m̄⊥(s̄⊥) in (3.15) is more challenging. The only restriction on the

matrix U⊥ is that its columns must form an orthonormal basis for the orthogonal

complement of the range space of U‖. We are thus free to choose the columns of

U⊥ as long as they satisfy this restrction. In particular, we can choose the first

column of U⊥ to be the normalized orthogonal projection of gk onto the orthogonal

complement of the range space of U‖, i.e.,

(U⊥)1 = (I−U‖U
>
‖ )gk/‖(I−U‖U

>
‖ )gk‖2.

If gk ∈ Range(U‖), then ḡ⊥ = U>⊥gk = 0 and the minimizer of (3.15) is s̄∗⊥ = 0

(since δk > 0 and µk > 0). If gk /∈ Range(U‖), then (U⊥)1 6= 0 and we can choose

vectors (U⊥)i ∈ Range(U‖)⊥ such that (U⊥)>i (U⊥)1 = 0 for all 2 ≤ i ≤ n − k.
Consequently, U>⊥(U⊥)1 = κe1, where κ is some constant and e1 is the first column

of the identity matrix. Specifically,

κe1 = U>⊥(U⊥)1 = U>⊥
(
U⊥U>⊥gk

)
= U>⊥gk = ḡ⊥,

which implies κ = ‖ḡ⊥‖2. Thus ḡ⊥ has only one non-zero component (the first

component) and therefore, the minimizer s̄∗⊥ of m̄⊥(s̄⊥) in (3.15) also has only one

non-zero compoent (the first component as well). In particular,

(s̄∗⊥)i =

−α
∗‖ḡ⊥‖2 if i = 1

0 otherwise
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where

α =
2

δk +
√
δ2
k + 4µ‖ḡ⊥‖2

. (3.18)

Equivalently, s̄∗⊥ = −α∗ḡ⊥. Note that the quantity ‖ḡ⊥‖2 can be computed without

computing ḡ⊥ from the fact that ‖g‖2
2 = ‖ḡ‖‖2

2 + ‖ḡ⊥‖2
2.

Combining the expressions for s̄∗‖ in (3.17) and for s̄∗⊥, the solution in the original

space is given by

s∗ = U‖s
∗
‖ + U⊥s∗⊥

= −U‖C‖U
>
‖ g − α∗(In −U‖U

>
‖ )g

= −α∗g + U‖(α
∗I−C‖)U

>
‖ g.

Note that computing s∗ neither involves forming U⊥ nor computing ḡ⊥ explicitly.

Termination criteria. With each cubic subproblem solved, the iterations are

terminated when the change in iterates, sk, is sufficiently small, i.e.,

‖sk‖2 < ε̃‖yk −Bksk‖2, (3.19)

for some ε̃, or when the maximum number of allowable iterations is achieved.

The proposed Adaptive Regularization using Cubics with L-SR1 (ARCs-LSR1)

algorithm is given in Algorithm 3.

Convergence. Here, we prove convergence properties of the proposed method

(ARCs-LSR1 in Algorithm 2). The following theoretical guarantees follow the

ideas from [37, 40]. First, we make the following mild assumptions:

A1. The loss function f(Θ) is continuously differentiable, i.e., f ∈ C1(Rn).

A2. The loss function f(Θ) is bounded below.

Next, we prove that the matrix Bk in (3.4) is bounded.

Lemma 3.1.1. The SR1 matrix Bk+1 in (3.4) satsifies

‖Bk+1‖F ≤ κB for all k ≥ 1

for some κB > 0.
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Algorithm 3 Adaptive Regularization using Cubics with Limited-Memory SR1

(ARCs-LSR1)
1: Given: Θ0, γ2 ≥ γ1, 1 > η2 ≥ η1 > 0, σ0 > 0, ε̃ > 0, k = 0, and kmax > 0

2: while k < kmax and ‖sk‖2 ≥ ε̃‖yk −Bksk‖2 do

3: Obtain Sk = [ s0 · · · sk ] and Yk = [ y0 · · · yk ]

4: Solve the generalized eigenvalue problem S>k Yku = λ̂S>k Sku and let δk =

min{λ̂i}
5: Compute Ψk = Yk − δkSk
6: Perform QR decomposition of Ψk = QR

7: Compute eigendecomposition RMR> = PΛP>

8: Assign U‖ = QP and U>‖ = P>Q>

9: Define C‖ = diag(c1, . . . , ck), where ci = 2

λi+
√
λ2i +4µ|(ḡ‖)i|

and ḡ‖ = U>‖ g

10: Compute α∗ in (3.18)

11: Compute step s∗ = −α∗g + U‖(α
∗I−C‖)U

>
‖ g

12: Compute mk(s
∗) and ρk=(f(Θk)−f(Θk+1))/mk(s

∗)

13: Set

Θk+1 =

Θk + s∗ if ρk ≥ η1

Θk, otherwise
, and

µk+1 =


1
2
µk if ρk > η2,

1
2
µk(1 + γ1) if η1 ≤ ρk ≤ η2,

1
2
µk(γ1 + γ2) otherwise

14: k ← k + 1

15: end while
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Proof: Using the limited-memory SR1 update with memory parameter m in

(3.4), we have

‖Bk+1‖F ≤ ‖B0‖F +
k∑

j=k−m+1

‖(yj −Bjsj)(yj −Bjsj)
>‖F

|s>j (yj −Bjsj)|
.

Because B0 = δkI with δk < δmax for some δmax > 0, we have that ‖B0‖F =
√
nδmax. Using a property of the Frobenius norm, namely, for real matrices A,

‖A‖2
F = trace(AA>), we have that ‖(yj − Bjsj)(yj − Bjsj)

>‖F = ‖yj − Bjsj‖2
2.

Since the pair (sj,yj) is accepted only when |s>j (yj−Bjsj)| > ε‖sj‖2‖yj−Bjsj‖2,

for some constant ε > 0, and since ‖sk‖2 ≥ ε̃‖yk −Bksk‖2, we have

‖Bk+1‖F ≤
√
nδmax +

m

εε̃
≡ κB,

which completes the proof. �

Given the bound on ‖Bk+1‖F , we obtain the following result, which is similar to

Theorem 2.5 in [37].

Theorem 3.1.2. Under Assumptions A1 and A2, if Lemma 3.1.1 holds, then

lim inf
k→∞

‖gk‖ = 0.

Finally, we consider the following assumption, which can be satisfied when the

gradient, g(Θ), is Lipschitz continuous on Θ.

A3. If {Θti} and {Θli} are subsequences of {Θk}, then ‖gti − gli‖ → 0 whenever

‖Θti −Θli‖ → 0 as i→∞.

If we further make Assumption A3, we have the following stronger result (which

is based on Corollary 2.6 in [37]):

Corollary 3.1.3. Under Assumptions A1, A2, and A3, if Lemma 3.1.1 holds,

then

lim
k→∞
‖gk‖ = 0.

Stochastic implementation. Because full gradient computation is very expen-

sive to perform, we impement a stochastic version of the proposed ARCs-LSR1
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method. In particular, we use the batch gradient approximation

g̃k ≡
1

|Bk|
∑
i∈Bk

∇Li(Θk).

In defining the SR1 matrix, we use the quasi-Newton pairs (sk, ỹk), where ỹk =

g̃k+1 − g̃k (see e.g., [31]). We make the following additional assumption (similar

to Assumption 4 in [31]) to guarantee that the loss function L(Θ) decreases over

time:

A4. The loss function L(Θ) is fully evaluated at every J > 1 iterations (for

example, at iterates ΘJ0 ,ΘJ1 ,ΘJ2 , . . . , where 0 ≤ J0 < J and J = J1 − J0 =

J2 − J1 = · · · ) and nowhere else in the algorithm. The batch size d is increased

monotonically if L(ΘJ`) > L(ΘJ`−1
)− τ for some τ > 0.

With this added assumption, we can show that the stochastic version of the pro-

posed ARCs-LSR1 method converges.

Theorem 3.1.4. The stochastic version of ARCs-LSR1 converges with

lim
k→∞
‖gk‖ = 0.

Proof: Let Θ̂i = ΘJi . By Assumption 4, L(Θ) must decrease monotonically

over the subsequence {Θ̂i} or d→ |D|, where |D| is the size of the dataset. If the

objective function is decreased ιk times over the subsequence {Θ̂i}ki=0, then

L(Θ̂k) = L(Θ̂0) +

ιk∑
i=1

{
L(Θ̂i)− L(Θ̂i−1)

}
≤ L(Θ̂0)− ιkτ.

If d→ |D|, then ιk →∞ as k →∞. By Assumption A2, f(Θ) is bounded below,

which implies ιk is finite. Thus, d → |D|, and the algorithm reduces to the full

ARCs-LSR1 method, whose convergence is guaranteed by Corollary 3.1.3. �

We note that the proof to Theorem 3.1.4 follows very closely the proof of Theorem

2.2 in [31].

Complexity analysis. SGD methods and the related adaptive methods require

O(n) memory storage to store the gradient and O(n) computational complexity to

update each iterate. Such low memory and computational requirements make these
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methods easily implementable. Quasi-Newton methods store the previousm gradi-

ents and use them to compute the update at each iteration. Consequently, L-BFGS

methods require O(mn) memory storage to store the gradients and O(mn) com-

putational complexity to update each iterate (see [39] for details). Our proposed

ARCs-LSR1 approach also uses O(mn) memory storage to store the gradients,

but the computational complexity to update each iterate requires an additional

eigendecomposition of the m × m matrix RMR>, so that the overall computa-

tional complexity at each iteration is O(m3 + mn). However, since m � n, this

additional factorization does not significantly increase the computational time.

3.2 Numerical Experiments

To empirically compare the efficiency of the proposed method with widely-used

optimization methods, we focus on three broad deep learning problems: image clas-

sification, image reconstruction and language modeling. We choose these tasks due

to their importance and availability of reproducible model architectures. We run

each experiments on an average of 5 times with a random initialization in each

experiment. We performed experiments in three categories: (1) classification, (2)

image reconstruction, and (3) language modeling. We define the network achi-

tecture for each experiment and present both the training and testing results for

all methods. All experiments were conducted using open-source software PyTorch

[41], SciPy [42], and NumPy [43]. We use an Intel Core i7-8700 CPU with a clock

rate of 3.20 GHz and an NVIDIA RTX 2080 Ti graphics card.

Optimization approaches. We list the various optimization approaches to which

we compared our proposed method. For the numerical experiments, we empirically

fine-tuned the hyperparameters and select the best for each update scheme.

1. Stochastic Gradient Descent (SGD) with Momentum (see e.g., [44]).

A gradient-descent algorithm that uses (i) an estimate of the gradient cal-

culated from a randomly selected subset of the dataset, and (ii) a moving

average of these gradient approximations . For the experiments, we used a

momentum parameter of 0.9 and a learning rate of 1.0× 10−1.
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(a) IRIS trainset

(a) IRIS testset

Figure 3.1: The classification accuracy results for Experiment I. (a) Training loss
of the network. The y-axis represents the negative log-likelihood loss and the x-axis
represents the number of epochs. (b) The classification accuracy for each method,
i.e., the percentage of testing samples correctly predicted in the testing dataset for
each method is presented. Note that the proposed method (ARCs-LSR1) achieves
the highest classification accuracy within the fewest number of epochs.
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2. Adaptive Gradient Algorithm (Adagrad) An algorithm similar to SGD

but with an adaptive learning rate for each dimension at each iteration [7].

In our experiments, the initial accumulator value is set to 0, the perturbation

ε is set to 1.0× 10−10, and the learning rate is set to 1.0× 10−2.

3. Root Mean Square Propagation (RMSProp) An algorithm similar to

Adagrad but decays the contribution of older gradients at each iteration [27].

For our experiments, the perturbation ε is set to 1.0×10−8. We set α = 0.99,

and used a learning rate of 1.0× 10−2.

4. Adam Related to RMSProp, this algorithm generates its parameter updates

using a running average of first and second moment of the gradient [28]. For

our experiments, we apply an ε perturbation of 1.0× 10−6. The momentum

parameters β0 and β1 are chosen to be 0.9 and 0.999, respectively. The

learning rate is set to 1.0× 10−3.

5. Limited-memory BFGS (L-BFGS): We set the default learning rate to

1.0. The tolerance on function value/parameter change is set to 1.0×10−9 and

the first-order optimality condition for termination is defined as 1.0× 10−9

6. ARCs-LSR1 (Proposed method): For the experiments, we choose the

same parameters as those used in L-BFGS.

Dataset. We measure the performance of each optimization method on the fol-

lowing four commonly-used datasets for training and testing in machine learning:

(1) IRIS [45], (2) MNIST [24], (3) CIFAR10 [46], and (4) Fashion-MNIST [47].

1. IRIS: A dataset consisting of 50 samples from each of three species of the iris

flower (iris setosa, iris virginica, and iris versicolor). The features correspond

to the length and width of the sepals and petals for each sample [45].

2. MNIST: A database of 28× 28 grayscale images of handwritten digits from

0 to 9, containing 60,000 training images and 10,000 testing images [24].

3. CIFAR10: A dataset consisting of 32 × 32 color images of 10 mutually

exclusive classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
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and truck) with 6,000 images per class, 50,000 training images, and 10,000

testing images [46].

4. Fashion-MNIST: A database of 28 × 28 grayscale images of articles of

clothing associated with a label from 10 classes, containing 60,000 training

images and 10,000 testing images [47].

3.3 Results

3.3.1 Experiment I: Image classification

Experiment I.A: IRIS. The IRIS dataset consists of 50 samples of three species

of the iris flower. The features correspond to the length and width of the sepals

and petals for each sample. This dataset is relatively small; consequently, we only

consider a shallow network with three fully connected layers and 2953 parameters.

We set the history size and maximum iterations for the proposed approach and

L-BFGS to 10. Fig. 3.1(a) shows the comparative performance of all the methods.

Note that our proposed method (ARCs-LSR1) achieves the highest classification

accuracy in the fewest number of epochs.

Experiment I.B: MNIST. The MNIST classifier is a shallow networks as well,

with 3 fully connected layers and 397510 parameters. We train the network for

20 epochs with a batch size of 256 images, keeping the history size and maximum

iterations the same as the IRIS experiments for the proposed approach and L-

BFGS. Fig. 3.2(b) shows that the proposed ARCs-LSR1 outperforms the other

methods.

Experiment I.C: CIFAR10. Because the CIFAR10 dataset contains color im-

ages (unlike the MNIST grayscale images), the network used has more layers com-

pared to the previous experiments. The network has 6 convolutional layers and

3 fully connected layers with 62006 parameters. For ARCs-LSR1 and L-BFGS,

we have a history size of 100 with a maximum number of iterations of 100 and a

batch size of 1024. Fig. 3.3(a) represents the training loss (cross-entropy loss). Fig.

3.3(b) represents the testing accuracy, i.e., number of sample correctly predicted
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(a) Training accuracy for MNIST dataset

(b) Testing accuracy

Figure 3.2: Experiment I.B: MNIST classification. (a) Training accuracy of the
network. The y-axis represents the percentage of samples predicted correctly. (b)
The classification accuracy of the testing samples correctly predicted. Note that
the proposed method (ARCs-LSR1) achieves the highest classification accuracy.
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(a) Cross-entropy training loss for CIFAR10 dataset

(b) Classification accuracy

Figure 3.3: The classification results for Experiment I.C: CIFAR10. (a) Training
accuracy of the network. The y-axis represents the negative log-likelihood loss,
and the x-axis represents the number of epochs. (b) The classification accuracy
of the testing samples correctly predicted. The proposed method (ARCs-LSR1)
achieves the lowest training loss and highest classification accuracy within the
fewest number of epochs.

in the testing set. As can be seen, the proposed approach is able to outperform

the other methods.
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3.3.2 Experiment II: Image reconstruction

The image reconstruction problem involves feeding a feedforward convolutional

autoencoder model a batch of the dataset. The loss function is defined between the

reconstructed image and the original image. Additional details on the type of loss

function and parameters of the model are described in the following experiments.

Experiment II.A: MNIST. An image x ∈ Rn is fed to the network, compressed

into a latent space z ∈ Rl, where l� n, and reconstructed back to its original image

size x̄ ∈ Rn. We compute the mean-squared loss error between the reconstruction

and the true image. The network is shallow, with 53415 parameters, which are

initialized randomly. We considered a batch size of 256 images and trained over 50

epochs. Each experiment has been conducted 5 times. We provide the training loss

results for the early (Fig. 3.4(a)) and late epochs (Fig. 3.4(b)). This is empirical

evidence that the method converges to the minimizer in fewer steps in comparison

to the adaptive methods.

Experiment II.B: FMNIST. In this experiment, we follow the same approach

as Experiment II.A and chose batch sizes of 256. Figs. 3.5(a) and 3.5(b) show the

training response for the early and late epochs, respectively, and Figs. 3.5(a) and

3.5(b) show the testing response for the early and late epochs, respectively. We note

that the convergence behavior of the methods are similar to those in Experiment

II.A. The iterates generated by the proposed approach significantly decreases the

objective function. Even after 50 epochs, we can see that the proposed approach

has significantly reduced the objective loss function (see Fig. 3.5(b)). The network

is capable of generalizing on a testing dataset as well in comparison to all other

adaptive and quasi-Newton methods. For more details, please refer Fig. 3.5.

3.3.3 Experiment III: Natural language modeling

We conducted word level predictions on the Penn Tree Bank (PTB) dataset [48].

We used a state-of-the-art Long-Short Term Memory (LSTM) network which has

650 units per layer and its parameters are uniformly regularized in the range [-0.05,

0.05]. For more details on implementation, please refer [49]. For the ARCs-LSR1
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(a) MNIST training loss for early epochs

(b) MNIST training loss for late epochs

Figure 3.4: The image reconstruction results for Experiment II.A: MNIST. (a)
Initial training loss. The y-axis represents the Mean-Squared Error (MSE) loss
from the first four epochs. (b) Final training loss from epochs 43 to 50. Note that
the proposed method (ARCs-LSR1) achieves the lowest training loss.
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(a) Early epoch FMNIST training loss

(b) Late epoch FMNIST training loss

Figure 3.5: The image reconstruction results for Experiment II.B: FMNIST (a)
Initial training loss. The y-axis represents the Mean-Squared Error (MSE) loss in
the first three epochs. (b) Final training loss from epochs 42 to 50. Note that the
proposed method (ARCs-LSR1) achieves the lowest training loss.
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Figure 3.6: The prediction loss for Experiment III: Penn Tree Bank. The
y-axis represents the cross-entropy loss, and the x-axis represents the number of
epochs. Note that the proposed method (ARCs-LSR1) achieves the lowest loss.

method and the L-BFGS, we use a history size of 5 over 4 iterations. The prediction

loss results are shown in Fig. 3.6. In contrast to the previous experiments, here,

both quasi-Newton methods (L-BFGS and ARCs-LSR1) outperform the adaptive

methods, with the proposed method (ARCs-LSR1) achieving the lowest cross-

entropy prediction loss.

3.3.4 Experiment IV: Comparison with Stochastically Damped

L-BFGS

In the experiments above on image classification and reconstruction, the L-

BFGS approach performs poorly, which can be attributed to noisy gradient esti-

mates and non-convexity of the problems. To tackle this, a stochastically damped

L-BFGS (SdLBFGS) approach has been proposed [50], which adaptively generates

a variance reduced, positive definite approximation of the Hessian. We compare

the proposed approach to L-BFGS and SdLBFGS on the MNIST classification

problem. As can be seen from Fig. 3.7(a), we are able to achieve a comparable

performance to the stochastic version. In fact, in later epochs (see Fig. 3.7(b)), we
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are able achieve higher accuracy.

(a) Epochs 0-5

(b) Epochs 16-20

Figure 3.7: The prediction loss for Experiment IV: Comparison with stochasti-
cally damped L-BFGS. The x-axis represents the number of epochs and the y-axis
represents the accuracy of prediction. (a) Accuracy for epochs 0-5. (b) Accuracy
for epochs 16-20.
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Computational time analysis. We understand that the proposed approach

performs competitively against all existing methods. We now analyze the time-

constraints of each method. We choose to clock Experiment 3. We chose a max-

imum iterations of 100 with a history size of 100 for L-BFGS and ARCs-LSR1,

with a batch size of 1024 images. Fig. 3.8 shows the time required by each of the

methods to reach a non-overtrained minima. Note that the proposed approach

reaches the desired minima in much less time than the other algorithms. L-BFGS

does not converge perhaps due to a very noisy loss function and a small batch size,

thus causing the algorithm to break. (see e.g., [51]). argue that a large batch size

is required for quasi-Newton methods to perform well. However, the ARCs-LSR1

method performs well even with a small batch size.

Figure 3.8: Timing analysis for Experiment 3: CIFAR10. The x-axis is time in
seconds, and the y-axis is the accuracy of prediction in percentage. Note that the
proposed method (ARCs-LSR1) achieves the highest accuracy within the shortest
amount of time.

3.4 Conclusion

In this chapter, we proposed a novel quasi-Newton approach in an adaptive

reguliarization using cubics (ARCs) setting using the less frequently used limited-

46



memory Symmetric Rank-1 (L-SR1) update and a shape-changing norm to define

the regularizer. This shape-changing norm allowed us to solve for the minimizer

exactly. We have provided convergence guarantees for the proposed ARCs-LSR1

method and analyzed its computational complexity. In a set of experiments in

classification, image reconstruction, and language modeling, we demonstrated that

ARCs-LSR1 achieves higher accuracy in fewer epochs than a variety of existing

state-of-the-art optimization methods.
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Chapter 4

Quasi-Adam
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4.1 Introduction

Gradient-based optimization methods are one of the most commonly used ap-

proaches in deep learning. This is owing to their fast computational nature (com-

puting the gradient is asymtotically equal to a forward pass through the neural

network) and stochastic nature (the gradients are evaluated only at certain input

points). Due to these factors, it was able to propel research advances in the inter-

section of deep learning and optimization (see [52]). In recent years, a mutlitude

of exponentially moving average and moment approaches have been proposed to

optimize neural networks (see e.g. [7, 28, 53, 54]). The main objective of exponen-

tially moving average is to limit the reliance of the update on the past gradient

information instead of recent gradient information.

Quasi-Newton approximations, on the other hand, explicitly use information

from the past (steps and change in gradients) to build an approximation of the

Hessian. This approximation induces the curvature information using the secant

information. We discuss this in detail in Sec. 4.3. However, computing a step using

quasi-Newton updates can be expensive due to its size and operations required.

To overcome this, a limited-memory approach is generally used. Limited-memory

BFGS (L-BFGS) is a very common approach where the Hessian approximation

always stays positive-definite. We discuss this further in Sec. 4.3. In recent work,

quasi-Newton approaches have proven to be more deep learning friendly (see [55]).

In this chapter, we propose quasi-Adam, a combination of an exponentially

moving average and moment approach with the L-BFGS quasi-Newton update.

The chapter is divided into the following sections: In Sec. 4.2, we discuss expo-

nential moving average methods such as Adam and AdaGrad. In Sec. 4.3, we

discuss the quasi-Newton approaches, and their compact-representations. In Sec.

4.4, we provide the pseudo-code of the proposed approach and discuss the space

and time-complexity of it. In Sec. 4.6, we discuss the experimental setup, testbed,

datasets we will be using and models used for each dataset and the results of these

experiments. In Sec. 4.7, we discuss the results obtained in Sec. 4.6 and provide

explanation and hypotheses based on the results. In Sec. 4.8, we finally provide

our concluding statements.
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Notation. We denote the gradient of f(Θ) in (1.1) at the tth iteration by gt =

∇f(Θt) and the Hessian approximation by Bt ≈ ∇2f(Θt) ∈ Rn×n. We denote the

exact inverse of Bt by Ht, i.e., Ht = B−1
t . The learning rate is denoted by αt, and

the scalar g2
t corresponds to g2

t = ‖gt‖2
2. The matrix I is the n×n identity matrix.

4.2 Exponential moving average methods

Given a loss function f(Θ), gradient-based optimization approaches generate a

sequence of iterates {Θt} that are computed using the following update:

Θt+1 = Θt + ηtpt,

where ηt is the learning rate and pt is the search direction. For gradient-descent

methods, pt = −gt. For highly nonlinear and nonconvex functions, such as the

typical neural network loss function, large learning rate (or step sizes) do not

guarantee a reduction in the loss function, causing a non-monotone behavior within

the loss function. Likewise, a small learning rate leads to slow convergence. To

tackle this problem, the concept of momentum and moment was introduced.

Momentum is the process of weighted averaging the gradients gt over time

t. Given the initial momentum vector m0 be initialized as a vector of zeros, the

expression for mt can be written as

mt = Ψ(gt,mt−1),

where t ∈ [1, T ] and Ψ computes the weighted average between gt and mt−1. This

was first introduced by [56] and adapted by [7] and [Sutskever, unpublished 2012]

in a deep learning setting, with some minor modifications. The motivation was to

damp the non-monontone behaviour in regions of high curvature by averating over

gradients with conflicting directions.

Hinton further improved upon the momentum based approach (see [27]) by em-

ploying a Root-Mean-Square (RMS) moving average which computes the weighted

sum of g2
t over t. Given the initial moment v0 = 0, the expression for vt can be

written as

vt = Φ(g2
t ; vt−1),
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where Φ is a weighted sum of vt−1 and g2
t . The generalized expression for an

exponential moving average update is written as

pt = −Ψ(gt,mt−1)

Φ(g2
t , vt)

. (4.1)

This moment term allows for the gradient to be normalized (in some way), helping

the learning rate to work better. This propelled the use of momentum and moments

in most mordern deep learning optimization algorithms.

The first major breakthrough was brought out by [28] who proposed Adam.

The authors introduced an exponential decaying approach to the gradient update

and the exponential moving average update employing and employed different

weighted averages on the momentum and their moments.

Given β1, β2 ∈ (0, 1), the momentum vector mt is defined as

mt =
1

(1− βt1)

(
β1mt−1 + (1− β1)gt

)
, (4.2)

and vt is defined as

vt =
1

(1− βt2)

(
β2vt−1 + (1− β2)g2

t

)
. (4.3)

Using (4.2) and (4.3), the Adam update is given by

pAdam = − mt√
vt + ε

, (4.4)

where ε = 10−8 is a scalar.

Thus, Adam uses an exponential moving average of the momentum and mo-

ments. Through the remainder of the chapter, we explore the questions - Can

we imporove upon an exponential moving average algorithm by inducing an ap-

proximation to the curvature information ? In Sec. 4.3, we explore quasi-Newton

appraoches to answer these questions.

4.3 Quasi-Newton methods

Second-order approaches have the potential to exploit curvature information

from second-order (Hessian) matrices. The iterate updates are defined using

pt = −[∇2f(Θt)]
−1gt.
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We note that the Hessian matrix [∇2f(Θt)]
−1 is n × n, which is computationally

infeasible to form when n is very large. To tackle with the dimensionality problem,

users generally resolve to a finite difference method (see [12]) or the Pearlmutter

technique (see [13]). These methods can be used in conjunction with a trust-region

type approach (see [57]), which safeguards the step size, and a conjugate-gradient

method which requires only Hessian-vector products without explicitly forming

the Hessian. However, using the true Hessian can give rise to other issues, such as

matrix singularity and non-positive definiteness.

Quasi-Newton approaches, on the other hand, only use approximations to the

Hessian, which satisfy the secant equation given by

yt−1 = Btst−1, (4.5)

where

yt−1 = ∇L(Θt)−∇L(Θt−1) and st−1 = Θt−Θt−1.

The L-BFGS method (see [58]) is one of the most commonly used quasi-Newton

updates for Bt due to the guaranteed positive-definiteness of Bt. Since we only

work with the inverse of the Hessian to find the direction of descent, we will be

only working with Ht = B−1
t .

The matrix Ht is recursively defined as

Ht=

(
I−

st−1y
>
t−1

y>t−1st−1

)
Ht−1

(
I−

yt−1s
>
t−1

y>t−1st−1

)
+

st−1s
>
t−1

y>t−1st−1

, (4.6)

with

H0 =
y>0 s0

y>0 y0

I.

We observe here that Ht represents an n×n matrix, which can get computationally

expensive to store. Hence, this matrix is never stored explicitly. Rather, we only

store the steps st−1 and the change in gradients yt−1. Since (4.6) is only a two-rank

update, it can be written as

Ht = γt−1I + Γt−1Mt−1Γ
>
t−1, (4.7)

where γt−1 = y>t−1st−1/y
>
t−1yt−1,

Γt−1 =
[
st−1 γt−1yt−1

]
,
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and

Mt−1 =

[
ρt−1 + γt−1ρ

2
t−1‖yt−1‖2

2 −ρt−1

−ρt−1 0

]
,

with ρt−1 = (s>t−1yt−1)−1. The search direction computed using the L-BFGS update

is given by

pL-BFGS = −Htgt. (4.8)

The steps are only accepted when Ht is positive definite, which is imposed when

s>t−1yt−1 > 0. Thus the matrix is invertible and provides a direction of descent.

The L-BFGS method is presented in Algorithm 4.

Algorithm 4 L-BFGS Method
Require: s0,y0 (First step and first change in gradient)

for t ∈ 1, 2, . . . do

Compute γt−1 =
s>t−1yt−1

y>t−1yt−1

Compute st−1 = Θt −Θt−1

Compute yt−1 = ∇L(Θt)−∇L(Θt−1)

if s>t−1yt−1 > 0 then

Compute pL-BFGS using (4.7)

Replace st−1 = st and yt−1 = yt

end if

end for

Recently, practical L-BFGS methods have been proposed in a deep learning

setting (see [50, 55, 59]). However, it is a common problem that L-BFGS performs

very poorly on a variety of stochastic problems because of the use of stochastic

gradients.

4.4 Proposed approach

From Sec. 4.2 and Sec. 4.3, we take motivation from both approaches and

define our new update rule called quasi-Adam. We present the update step

in Algorithm 5. The approach uses a combination of both directions pAdam and
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Algorithm 5 Quasi-Adam Method
Require: α, β1, β2 ∈ [0, 1), f(Θ),Θ0, m0 ← 0, v0 ← 0, t← 0

while Θt 6= Θ∗ do

Compute pAdam step using (4.4).

Compute pL-BFGS step using (4.8).

Update Θt+1 ← Θt − ηt(pAdam + pL-BFGS).

end while

pL-BFGS to improve the current step. In particular, the update step is given by

Θt+1 = Θt − ηt
(

m̂t√
v̂t + ε

+ Htgt

)
. (4.9)

For the proposed approach, we use a memory size of 1. In the following sections,

we discuss the space and time complexity of the proposed approach. The space

and time complexity is presented as a modification to Adam - we only discuss the

additional overhead for the proposed approach to Adam.

Space Complexity: Since we are only using 1 memory from the past, the space

complexity is limited to O(n). We consume O(n) memory for saving the previ-

ous iterates weights from the model and O(n) for saving the gradients from past

iterates, which gives us O(2n) ≈ O(n) asymptotically.

Time complexity: We need to perform the matrix vector product Htgt in (4.8).

The matrix Γ>t−1 is 2 × n, which means Γ>t−1gt requires O(2n) operations. Each

element in Mt−1 is a scalar, which means Mt−1 is a 2×2 matrix. Thus Mt−1Γ
>
t−1gt

can be computed in O(4 + 2n) operations. Finally Γt−1Mt−1Γ
>
t−1gt can be com-

puted in O(4 + 4n) operations.

4.5 Convergence

We analyze the convergence of the proposed approach using the framework by

[60]. Given an arbitrary sequence of convex functions C = {c1, c2, . . . , cT}, the

goal is to predict the parameter Θt by optimizing it over the previous function

ct−1. This process of identifying an optimal Θt over ct−1 is defined as an online

algorithm. If Θt is selected by an algorithm A, we define the cost incurred by the
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algorithm A as

LA(T ) =
T∑
t=1

ct(Θt). (4.10)

In order to define the offline algorithm, we define a feasible convex set F .

Definition 1. A set F ⊆ Rn is convex if for all Θ,Θ′ ∈ F , rΘ + (1 − r)Θ′ ∈ F
for all r ∈ [0, 1].

When the information on C and the convex subset F is available, the process of

identifying the optimal Θ ∈ F is defined as offline algorithm (often also described

as a static feasible solution).

Now, we formally introduce and define the regret function RA(T ).

Definition 2. Given an algorithm A and a convex programming problem (F , C),
if {Θ1,Θ2 . . .} are vectors selected by algorithm A, then the cost of A until time

T is given by (4.10). The cost of a static feasible solution Θ ∈ F until time T is

given by

LΘ(T ) =
T∑
t=1

ct(Θ).

The regret of an algorithm A until time T is defined as

RA(T ) = LA(T )−min
Θ∈F

LΘ(T ).

The goal is to prove that the average regret RA(T )/T approaches 0 as T →∞.

For this, we begin by expanding the proposed update in (4.9):

Θt+1 = Θt −
αt

1− βt1

(
β1,t√
v̂t

m̂t−1 −
β1,t√
v̂t

gt + Hgt

)
,

where β1,t = β1λ
t−1, λ ∈ (0, 1). Here, v̂t is the exponential moving average, defined

as

v̂t =
vt

1− βt2
,

with β2 ∈ (0, 1], m̂t is the bias-corrected first moment estimate defined as

m̂t =
mt

1− βt1
,
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where β1 ∈ (0, 1], mt is the biased first moment estimate given by

mt = β1mt−1 + (1− β1)gt,

vt is the biased second moment update given by

vt = (1− β2)
t∑
i=1

βt−i2 g2
i ,

We now make some mild assumptions for the iterates and their corresponding

gradients.

Assumption 1. The distance between any Θt generated by the proposed approach

is bounded. This means that ‖Θm −Θn‖2 ≤ D.

Assumption 2. The gradients of function ft are bounded. This means, ‖∇ft(Θ)‖2 ≤
G.

For the L-BFGS update, a step is acceptable if the condition s>t yt > 0 holds.

We formally state this as a theorem below.

Theorem 4.5.1. For a convex set F and sequence of convex functions C =

{c1, c2, . . .}, and for some step st = Θt+1 − Θt, where Θt,Θt+1 ∈ F , and change

in gradient yt = ∇ct(Θt+1) −∇ct(Θt), where ct ∈ C computed using a symmetric

positive definite L-BFGS approximation, st and yt will always satisfy the curvature

condition s>t yt > 0.

In practice, the condition s>t yt > 0 (please refer Sec. 4.3) is enforced by re-

quiring s>t yt ≥ ε for some small ε > 0. It follows from Theorem 4.5.1 that

‖st‖, ‖yt‖ 6= 0 and that there exists some cl ∈ R such that 0 < cl ≤ y>t yt.

Given αt = α/
√
t, we state the following theorem:

Theorem 4.5.2. Given Assumptions 1 and 2 hold, we get and upper bound on the
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regret as

R(T ) ≤
D2

2α(1− β1)

n∑
i=1

√
T v̂T +

(β1 + 2)αG

(1− β1)
√

1− β2(1− γ)2

n∑
i=1

‖g1:T,i‖+

n

(1− β1)(1− λ)2

[
D2G

2α
+
D2G

2
+

2D2G5

c2
l

+
4αD2G5

c2
l

]
.

From Theorem 4.5.2, the corollary follows:

Corollary 4.5.3. Quasi-Adam achieves the following guarantee:

R(T ) = O(
1√
T

).

Thus, lim
T→∞

R(T )→ 0.

In order to understand the convergence properties, we will use the framework

laid out by [60]. We revisit the definition of regret for the readers convenience. We

modify the parameters such that it matches the notations section.

Lemma 4.5.4. If a function f: Rn → R is convex, then ∀Θ,Θ′ ∈ Rn,

f(Θ′) ≥ f(Θ) +∇f(Θ)>(Θ′ −Θ)

We introduce the notation gt,i as the ith component of the vector gt. Thus,

g1:t,i ∈ Rt is the ith component of the gradient, which means g1:t,i = [g1,i,g2,i, · · · ,gt,i].
Similarly, we define the ith dimension of Θt as Θ1:t,i ∈ Rt, which means Θ1:t,i =

[Θ1,i,Θ2,i, · · · ,Θt,i]

Lemma 4.5.5. Let γ =
β2
1√
β2
. For β1, β2 ∈ [0, 1) that satisfy β2

1√
β2
< 1 and bounded

gt, ‖gt‖∞ ≤ ‖gt‖2 ≤ G, the following inequality holds

T∑
t=1

m̂2
t,i√
tv̂t
≤ 2G

(1− γ)2
√

1− β2

‖g1:T,i‖2.
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The proof can be found in [28].

From the definition of L-BFGS quasi-Newton matrices, if s>t yt > ε, the Hessian

approximation Ht remains positive-definite. Thus, for the two-rank update in (4.7),

given 0 < λ1 ≤ λ2 and γ > 0, the inequality γ < λ1 + γ ≤ λ2 + γ, holds. This

means 1
γ
> 1

λ1+γ
≥ 1

λ2+γ
. Thus, we can write the following bound:

Lemma 4.5.6. Given ct has bounded gradients, ‖∇ct(Θ)‖∞ ≤ ‖∇ct(Θ)‖2 ≤ G for

all t, Θ ∈ Rd and distance between any Θt generated by quasi-Adam is bounded,

‖Θn −Θm‖ ≤ D for any n,m ∈ {1, · · · , T}. The following inequality holds∣∣∣∣ 1

γt

∣∣∣∣ ≤ 2DG

cl
.

Proof. By construction, we know that y>t yt ≥ cl. This implies

1

y>t yt
≤ 1

cl
.

Thus it follows that∣∣∣∣ 1

γt

∣∣∣∣ =

∣∣∣∣y>t st
y>t yt

∣∣∣∣ ≤ |y>t st|
cl
≤ ‖yt‖2‖st‖2

cl

≤ (‖∇ct(Θt+1)‖+ ‖∇ct(Θt)‖)D
cl

≤ 2GD

cl
.

�

Lemma 4.5.7. Let Ht be defined in (4.6). Under the assumptions of Lemmas

4.5.5 and 4.5.6, the following inequality holds:

|(Htgt)i| ≤
2DG2

cl
.

Proof. Using vector- and matrix-norm inequalities,

|(Htgt)i| ≤ max
i
|(Htgt)i| = ‖Htgt‖∞

≤ ‖Htgt‖2 ≤ |λmax|‖gt‖2 ≤ λmaxG

(see [61]).
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Since Bt is always positive-definite, for λ ∈ {λ1, λ2}, λ + γt > γt which means
1

λ+γt
< 1

γt
. Thus, |λmax| = 1

γt
. By Lemma 4.5.6, we get

|(Htgt)i| ≤
G

γt
≤ 2G2D

cl
.

Theorem 4.5.8. Given Assumptions 1 and 2 hold, the upper bound on the regret

is given by

R(T ) ≤
D2

2α(1− β1)

n∑
i=1

√
T v̂T +

(β1 + 2)αG

(1− β1)
√

1− β2(1− γ)2

n∑
i=1

‖g1:T,i‖+

n

(1− β1)(1− λ)2

[
D2G

2α
+
D2G

2
+

2D2G5

c2
l

+
4αD2G5

c2
l

]
.

Proof. Using Lemma 4.5.4, we have,

ct(Θt)− ct(Θ∗t ) ≤ gTt (Θt −Θ∗) =
n∑
i=1

gt,i(Θt,i −Θ∗,i)

We rewrite the proposed update from (4.9),

Θt+1 = Θt − αt(m̂t/
√
v̂t + Htgt)

= Θt−αt
(

β1,t

(1− βt1)

mt−1√
v̂t

+
1− β1,t

(1− βt1)

gt√
v̂t

+Htgt

)
.

Thus, for each

(Θt+1,i−Θ∗,i)
2 = (Θt,i −Θ∗,i)

2

− 2αt(Θt,i −Θ∗,i)
β1,tmt−1

(1− βt1)
√
v̂t

− 2αt(Θt,i −Θ∗,i)
(1− β1,t)gt,i

(1− βt1)
√
v̂t

− 2αt(Θt,i −Θ∗,i)(Hgt)i

+ α2
t

(
m̂t,i√
v̂t

)2

+ α2
t (Htgt)

2
i

+ 2α2
t

m̂t,i√
v̂t

(Htgt)i .
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Rearranging the above equation and using Young’s inequality ab ≤ a2/2 + b2/2, it

can be shown that
√
v̂t =

√∑t
j=1(1− β2)βt−j2 g2

j,i/
√

1− βt2 ≤ ‖g1:t,i‖2 ≤ G
√
t, and

β1,t ≤ β1. Using these inequalities and Lemma 4.5.4, we get the following bound

for gi(Θt,i −Θ∗,i):

gi(Θt,i −Θ∗,i)

=
(1− βt1)

√
v̂t

(1− β1,t)2αt

(
(Θt,i −Θ∗,i)

2 − (Θt+1,i −Θ∗,i)
2
)

− β1,t

(1− β1,t)

v̂
1/4
t−1√
αt−1

(Θt,i −Θ∗,i)
√
αt−1

mt−1,i

v̂
1/4
t−1

− (1− βt1)
√
v̂t

1− β1,t

(Θt,i −Θ∗,i)(Htgt)i

+
(1− βt1)

1− β1,t

αt
2

m̂2
t,i√
v̂t

+
(1− βt1)

1− β1,t

αt
√
v̂t

2
(Htgt)

2
i

+ αt
(1− βt1)

1− β1,t

m̂t,i√
v̂t

(Htgt)i

≤
√
v̂t

(1− β1,t)2αt

(
(Θt,i −Θ∗,i)

2 − (Θt+1,i −Θ∗,i)
2
)

+
β1,t

2(1− β1,t)

αt−1m
2
t−1√

v̂t−1

+
β1,t

√
v̂t−1

2(1− β1,t)αt−1

(Θt,i −Θ∗,i)
2

+
(1− β1,t)

√
v̂t

2(1− β1,t)
[(Θt,i −Θ∗,i)

2 + (Htgt)
2
i ]

+
(1− βt1)αt

1− β1,t

m̂2
t,i√
v̂t

+
(1− βt1)αt

√
v̂t

1− β1,t

(Htgt)
2
i .

Using Lemma 4.5.5 and Lemma 4.5.7, we obtain the following regret bound:
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R(T ) ≤ 1

2α1(1− β1)

n∑
i=1

(Θ1,i −Θ∗,i)
2
√
v̂1+

n∑
i=1

T∑
t=2

1

2(1− β1)
(Θt,i −Θ∗,i)

2

(√
v̂t
αt
−
√
v̂t−1

αt−1

)

+
β1αG

(1− β1)
√

1− β2(1− γ)2

n∑
i=1

‖g1:T,i‖2

+
n∑
i=1

T∑
t=1

β1,t

√
v̂t

2(1− β1,t)αt
(Θt,i −Θ∗,i)

2

+
n∑
i=1

T∑
t=1

(1− β1,t)
√
v̂t

2(1− β1,t)
(Θt,i −Θ∗,i)

2

+
2D2G4

c2
l

n∑
i=1

T∑
t=1

√
v̂t

1− β1,t

+
2αG

(1− β1)
√

1− β2(1− γ)2

n∑
i=1

‖g1:T,i‖2

+
4D2G4

c2
l

n∑
i=1

T∑
t=1

αt
√
v̂t

1− β1,t

.

Using Assumption 1 and definition αt = α/
√
t, the bound on the regret is simplified

to the following:

R(T ) ≤ D2

2α(1− β1)

n∑
i=1

√
T v̂t

+
(β1 + 2)αG

(1− β1)
√

1− β2(1− γ)2

n∑
i=1

‖g1:T,i‖2

+

First-term︷ ︸︸ ︷
D2

2α

n∑
i=1

T∑
t=1

β1,t

√
tv̂t

(1− β1,t)
(4.11)

+

Second-term︷ ︸︸ ︷(
D2

2
+

2D2G4

c2
l

) n∑
i=1

T∑
t=1

√
v̂t

(1− β1,t)

+

Third-term︷ ︸︸ ︷
4αD2G4

c2
l

n∑
i=1

T∑
t=1

√
v̂t√

t(1− β1,t)
.
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Using the upper bound for the geometric series
√
v̂ ≤ G

√
t, we find the upper

bound of the three terms in (4.11) separately. The bound for the first-term is

given by

T∑
t=1

β1,t

√
tv̂t

(1− β1,t)
≤ G

T∑
t=1

t

(1− β1,t)

≤ G
T∑
t=1

tλt−1

(1− β1)

≤ G

(1− β1)(1− λ)2
,

the bound for the second-term is given by

T∑
t=1

√
v̂t

(1− β1,t)
≤ G

T∑
t=1

√
t

(1− β1,t)

≤ G
T∑
t=1

t

(1− β1,t)

≤ G

(1− β1)(1− λ)2
,

and the bound for the third-term is given by

T∑
t=1

√
v̂t√

t(1− β1,t)
≤ G

T∑
t=1

1

1− β1,t

≤ G

1− β1

T∑
t=1

λt−1

≤ G

1− β1

T∑
t=1

λt−1t

≤ G

(1− β1)(1− λ)2
.
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(a) Batch-size = 256 (b) Batch-size = 512

Figure 4.1: Experiment I: MNIST image classification results for Adam and the
proposed method, quasi-Adam. (a) Testing accuracy for batch-size of 256. (b)
Testing accuracy for batch-size of 512. The y-axis represents the classification
accuracy and the x-axis represents the batch-iteration. Note that for both batch-
sizes, quasi-Adam outperforms Adam.

Thus, the final expression for the regret bound is given by

R(T ) ≤
D2

2α(1− β1)

n∑
i=1

√
T v̂T +

(β1 + 2)αG

(1− β1)
√

1− β2(1− γ)2

n∑
i=1

‖g1:T,i‖+

n

(1− β1)(1− λ)2

[
D2G

2α
+
D2G

2
+

2D2G5

c2
l

+
4αD2G5

c2
l

]
.

�

4.6 Experimental Setup

We evaluate the proposed approach over two datasets - CIFAR10 ([46]) and

MNIST. We compare the proposed approach against Adam and SGD. We use

these datsets due their reproducibiliy and ease of usage. We use a 2 convolutional
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(a) Batch-size = 256 (b) Batch-size = 512

Figure 4.2: Experiment II: Fashion-MNIST image classification results for Adam
and the proposed method, quasi-Adam. (a) Testing accuracy for batch-size of 256.
(b) Testing accuracy for batch-size of 512. The y-axis represents the classification
accuracy and the x-axis represents the batch-iteration. Note that for both batch-
sizes, quasi-Adam outperforms Adam.

(a) Batch-size = 256 (b) Batch-size = 128

Figure 4.3: Experiment III: SVHN image classification results for Adam and
the proposed method, quasi-Adam. (a) Testing accuracy for batch-size of 256.
(b) Testing accuracy for batch-size of 128. The y-axis represents the classification
accuracy and the x-axis represents the batch-iteration. Note that for both batch-
sizes, quasi-Adam outperforms Adam.

networks (one shallow and one deep) to train over CIFAR10 and MNIST. We

describe these datasets in Sec. 4.6.3. We use a small shallow network for the MNIST
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(a) Training loss (b) Testing loss

Figure 4.4: Experiment IV: Autoencoder MNIST Reconstruction for Adam and
the proposed method, quasi-Adam. (a) Training loss. (b) Testing response. The
x-axis represents the number of epochs and y-axis represents the average mean-
squared error loss for each epoch. Note that in both training and testing responses,
quasi-Adam outperforms Adam.

(a) Training loss (b) Testing loss

Figure 4.5: Experiment V: Autoencoder FMNIST Reconstruction results for
Adam and the proposed method, quasi-Adam. (a) The training loss. (b) Testing
response. The x-axis represents the number of epochs and the y-axis represents
the average mean-squared error loss for each epoch. Note that in both training
and testing responses, quasi-Adam outperforms Adam.

and FMNIST classification. Similarly, we use a small shallow network for the image

reconstruction . We use two popular models: ResNet34 and DenseNet121, which
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(a) batch-size = 256 (b) batch-size = 512

Figure 4.6: Experiment VI: CIFAR10 classification. (a) Batch-size = 256 images.
(b) Batch-size = 512. The x-axis represents the number of iterations (batches) and
the y-axis represents the average mean-squared error loss after each iteration. The
proposed approach is able to outperform Adam with a batch-size of 256 images
and has a comparable performance with a batch-size of 512 images.

(a) Training loss (b) Testing loss

Figure 4.7: Experiment VII: Pentree-Bank text prediction. (a) Training loss (b)
the Testing loss. The x-axis-represents the number of iterations for each batch of
sentences. The y-axis represents the loss for each batch of sentences. We note that
the proposed approach is able to find a model with a lower training response than
Adam. However, in the presence of overparametrization, overfitting can happen,
which is evident in this case (see (b)).

66



are described in further detail in Sec. 4.6.2.

4.6.1 Testbed

All the experimenst were conducted using PyTorch (see [41]) libraries using two

NVIDIA 1080 Ti graphics cards over an Intel i7-7700K CPU. For Adam, we con-

ducted a variety of experiments to choose the hyperparameter based on the applica-

tions. The experiments included different batch size {256, 512, 1, 024, 2, 048, 8, 192},
with different learning rates {10−5, 10−4, 10−3, 10−2, 10−1, 0.9}. We present results

with the best hyperparameters for Adam and the proposed approach for each ex-

periment. To understand the performance change between the proposed approach

and Adam, we present the results where this change is most prominent. This is re-

flected in the first half of the training response. We observe that both the methods

eventually converge to the same result after a large number of epochs.

4.6.2 Models

We use three different types of networks - an MNIST classifier for classifying

MNIST and Fashion-MNIST dataset, ResNet34 to classifiy images in the SVHN

dataset and an Autoencoder for MNIST and Fashion-MNIST reconstruction.

MNIST classifier: We design a shallow neural network to classify the MNIST

dataset. The model has two convolutional layers, and three fully-connected dense

layers. Each convolutional layer is followed by a maxpooling layer and ReLU

activation function. Fully connected layers are followed by a ReLU activation

function.

Resnet34: Resnet34 ([62]) is a deep learning model with 34 blocks, which contain

two convolutional layers with skip connections between blocks and ReLU activation

layers in between. The network contains approximately 21.8 million parameters.

The network was designed to train over the ImageNet dataset. Since we are using

SVHN here, the network has been modified accordingly.

Autoendcoder: we use a convolutional neural network. The network is comprised

of two submodules - an encoder and a decoder. The encoder has a shallow 3
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layer convolutional architecture and the decoder has a shallow 3 convolutional

tranpose layer. The main purpose of the network is to reconstruct the images

from its original image. The images are fed to the encoder, which compresses the

image. This is then inflated/expanded by the decoder. The network has 87,125

parameters. We use the same network architecture for FMNIST reconstruction.

DenseNet121: The DenseNet121 network contains densely connected blocks fol-

lowed by a transition layer. For more details on this network, see [63]. The network

has 7,978,856 parameters and has been modified to operate on CIFAR10 dataset.

Language LSTM model: The language model contains an encoder, a decoder

and an LSTM network. The embedding layer converts the input word tokens to

embeddings. The LSTM contains 2 layers with 650 hidden units each. The network

19,780,400 parameters.

4.6.3 Datasets

We use three different datasets for two types of tasks - MNIST, FMNIST and

SVHN. We provide a very brief description of these datasets below.

MNIST: MNIST is a dataset of 28 × 28 pixel handwritten digits from (0-9).

These images are greyscaled single channel images with 5,000 training examples,

1,000 validation examples and 1,000 testing examples per class.

Fashion-MNIST: The Fashion-MNIST dataset (see [64]) consists of 28 × 28

pixel black-and-white images of clothing items such as shirt, automobile, shoes

etc. The dataset has 10 classes and 6,000 images per class. This is further parted

into 4,000 training examples, 2000 testing examples and 1,000 testing examples

per class.

Street View House Number: The Street View House Number (SVHN)

(see [65]) is a dataset with of street view images (numbers in addresses) extracted

from Google Street View images. The dataset contains 32 × 32 RGB images of

these street view images, cropped and separated into individual numbers ranging

from (0-9). It can be viewed as the same flavor as MNIST, but significantly more

relevant to mordern machine learning problems (recognizing digits and numbers in

natural scene images). The training set contains 73,257 images while the testing
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set contains 26,032 images.

CIFAR10: The CIFAR-10 dataset (Canadian Institute for Advanced Research,

10 classes) is a subset of the Tiny Images dataset and consists of 60,000 32 × 32

color images. The images are labelled with one of 10 mutually exclusive classes:

airplane, automobile (but not truck or pickup truck), bird, cat, deer, dog, frog,

horse, ship, and truck. There are 6000 images per class with 5,000 training and

1,000 testing images per class.

Penn Treebank: The English Penn Treebank (see [66]) corpus, and in particular

the section of the corpus corresponding to the articles of Wall Street Journal (WSJ),

is the most common corpus used for evaluation of models for sequence labelling.

The task consists of annotating each word with its Part-of-Speech tag. The corpus

is split into sections for training, validataion and testing - sections from 0 to 18

are used for training (38,219 sentences, 912,344 tokens), sections from 19 to 21 are

used for validation (5,527 sentences, 131,768 tokens), and sections from 22 to 24

are used for testing (5,462 sentences, 129,654 tokens). The corpus is also commonly

used for character-level and word-level Language Modelling.

4.6.4 Experiments

Experiment I: MNIST image classification. We use the MNIST classifier to

classify the MNIST dataset and use cross-entropy as the loss function. We train the

network with a batch-size of 256 and 512 images and a cross-entropy loss function.

We use a learning rate of 1 × 10−2 for Adam and quasi-Adam. We present the

testing response after each batch-iteration in Fig. 4.1.

Experiment II: Fashion-MNIST image classification. We use FashionM-

NIST dataset with the MNIST classifier. This is possible since the dimensions of

the images are the same. We use a learning rate of 1 × 10−2 for both Adam and

quasi-Adam, and a cross-entropy loss function. We present the testing accuracy

for each batch-training iteration with a size of 256 and 512 images in Fig. 4.2.

Experiment III: SVHN image classification. For this task, we use the

ResNet34 neural network. We train with a batch size of 256 and 128 images.

We use the negative log-likelihood loss function with a learning rate of 1×10−2 for
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both Adam and quasi-Adam. The results presented in Fig. 4.3 show the testing

accuracy after each batch-training iteration.

Experiment IV: MNIST image reconstruction. For this task, we use the

autoencoder to reconstruct the images. We use a batch-size of 256 images and the

Mean-Squared Error (MSE) loss function with a learning rate of 10−2 for Adam and

quasi-Adam. We observe both the training loss and the testing loss for each of the

tasks. The results in Fig. 4.4 show the testing accuracy after each batch-iteration.

Experiment V: FMNIST image reconstruction. For the autoencoder recon-

struction experiment, we use the autoencoder from Experiment IV (the images are

of the same dimensions). We use the same learning rate of 1× 10−3 for Adam and

the proposed approach and the MSE loss function. We present the training and

the testing response in Fig. 4.5.

Experiment VI: CIFAR10 image classification. We classify the images in

CIFAR10 dataset (see [46]) with a DenseNet121 network (see [63]). We train a

network with a batch-size of 256 images and 512 images. We report the testing

accuracy in Fig. 4.6 (a). As can be seen from the testing reponses for both the

batch sizes, the proposed approach is able to improve upon Adam.

Experiment VII: Language modelling. We use the Language LSTM model

for the language modelling experiment. We run the experiment for 30 epochs.

The results are presented in Fig. 4.7. From the training response depicted in Fig.

4.7 (a), it can be seen that the proposed approach is able to outperform Adam.

However, the experiment reflects some form of overfitting under the effect of the

proposed algorithm, which can cause the testing loss to diverge from the training

response.

4.7 Discussion

The results from Sec. 4.6 elucidates the performance improvement of quasi-

Adam over Adam. This can be attributed to both participating approaches -

Adam and L-BFGS. The Adam approach uses an exponential moving momentum

mt and a exponential moving moment vt. This allows for the learning rate to work
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better at providing an adequate descent in the loss function in addition to treating

the non-monotone behaviour of the loss function. However, it only exploits the

gradient information, which is still a steepest descent direction. This may cause

the iterates to dampen in a plateau region of the manifold, commonly referred

to as saddle points. The L-BFGS approach, on the other hand, is able to pro-

vide a descent direction which exploits the curvature information using the secant

equation. Since the Hessian information is induced in this matrix Ht in (4.8), the

iterate potentially escapes this saddle point and addresses the sadle point problem

more effectively. However, computing a large memory Hessian approximation can

be computationally expensive.

The proposed approach was able to tackle both the problems - escpaing sad-

dle points and containing computational expense. This combination of methods

yielded an improvement in training performance across a variety of applications.

Thus, convergence can be expedited with a very small computational overhead.

4.8 Conclusion

In this chapter, we proposed a new algorithm which uses a quasi-Newton update

in conjunction with a moment estimation update. We show that the curvature

information from the quasi-Newton approach improve upon an exponential moving

average method. Through thorough experimentation, we were able to show that

the the proposed approach was able to outperform Adam. We provided concrete

convergence proofs and discuss the complexity analysis for space and time. We

found quasi-Adam to be robust and suited across a variety of applications in the

field of machine learning.
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Chapter 5

Applications in deep learning
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In this chapter, we will be exploring different applications of deep learning and

suggest novel models for improving upon current architectures. In Sec. 5.1, we

will explore Image disambigution. In Sec. 5.2, we will explore adversarial attacks

and defense strategies against them. In Sec. 5.3, we discuss a Mult-stage denoising

approach for Gaussian noisy images. In Sec. 5.4, we discuss a Multi-Stage mixed

noise image denoising strategy.

5.1 Image Disambiguation

Signal recovery often involves separating and realizing multiple superimposed

signals at once. Separating multiple images that have been superimposed is a

challenging signal recovery problem. This situation arises when a detector, such

as a microphone, receives multiple signals simultaneously. In order to recover the

original signals, a signal separator needs to be applied. In this section, we will

explore machine learning techniques for separating such signals. In particular,

we investigate two approaches: an autoencoder approach and a transformer-based

approach, and test their accuracy in recovering two separate images from noisy

low-resolution superimposed measurements.

Image separation is a common signal separation problem in the domain of signal

processing. Commonly referred to as ‘blind source separation’ (BSS), the problem

involves separation of source signals with very little information about the sources

or the multiplexing operation [67, 68].

Much of the early literature focuses on separation of temporal signals such as

audio [69, 70] or video [71]. However, BSS has gained momentum in the field on

images and tensors, which may have no temporal component whatsoever (see [72]).

There is also literature which uses deep learning for blind source separation [73].

In contrast, for practical applications in digital imaging, noises can be caused by

sudden change in light intensity, increase in temperature of the imaging apparatus

or electrical fluctuations during transmission of the signal. Typically this type

of noise is modeled as additive white Gaussian noise (AWGN). In the event that

the imaging apparatus records the images with low resolution, the images may be
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Figure 5.1: Schematic of the imaging system. Two images (A and B) are superim-
posed using a beam splitter observed at the detector of a low-resolution camera,
resulting in a downsampled measurement with additive white Gaussian noise.

compressed as well. Thus, in addition to BSS, the image noise and compression

need to be tackled.

In this section, we will explore two deep learning strategies to address all of

these issues simultaneously. The secion is organized as follows: In Sec. 5.1.1, we

discuss the blind source problem formulation, in Sec. 5.1.2, we discuss the proposed

approaches for separting the signals, in Sec. 5.1.3, we describe the numerical ex-

periments of the proposed apporaches and in Sec. 5.1.4 and Sec. 5.1.5, we discuss

the results and conclude respectively.

5.1.1 Problem Statement

The blind source multiplexed problem can be formulated as

y = D(z) + g, (5.1)

where D(z) is the downsampling operator, z is the resulting image of superimposing

two images x(1) an x(2), i.e., z = x(1) + x(2), and g ∼ N (0, σ2) is AWGN with zero

mean and variance σ2. These operations describe the linear model of observing

noisy low-resolution images that are superimposed at the detector stage (see Fig.

5.1).
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(a) Convolutional Separator (ConvSep) model.

(b) Limited informed Generative Transformer

(LiGT) model.

Figure 5.2: The above diagram shows the two proposed approach. (a) The ConvSep
model, which contains an encoder, a decoder, an expander, separator 1 (S1) and
separator 2 (S2). (b) The model architecture of the transformer-based LiGT model,
which comprises a compressor, a transformer and an expander. Each colored box
represents the output from a convolutional operator
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Related Work: In [74], the authors use a stacked autoencoder with fully con-

nected layers. However, the size of the network can get prohibitively expensive for

larger images. Also, the authors focus on weighted multiplexing problem without

denoising and downsampling. There has been some work done using a convolu-

tional neural network (see [75, 76]) for denoising images. They use two approaches

to denoise the images - an autoencoder with convolutional layers and a recurrent

neural network with convolutional layers as hidden units. This was able to tackle

the problem of reducing the footprint of the network by replacing the linear layers

with convolutional layers. In addition, the authors were able to realise the noise

in the images as a temporal component. Our first method (ConvSep) is based on

this approach.

Attention-based transformers have gained much momentum in the last few

years. The concept of transformers was introduced by Vaswani et. al (see [77]) for

natural language processing (NLP) [78, 79]. With increased improvement in NLP

applications, the use of transformers was pervasive in many different fields such as

image denoising [80, 81], protein structure prediction [82], and sentiment analysis

[83]. Our second method (LiGT) is based on this approach.

5.1.2 Proposed Approach

In this section, we describe the two approaches and their respective datasets.

Loss function: We optimize the network parameters using HuberLoss, which is

defined as

Lδ(x̂,x) =


1
2
‖x̂− x‖2

1 if ‖x̂− x‖1 < δ,

δ(‖x̂− x‖1 − 1
2
δ) otherwise,

(5.2)

where δ ∈ R helps in smoothing out the loss function at prohibitively small values

of the absolute difference, x̂ ∈ Rn×n is the reconstructed realization and x ∈ Rn×n

is the true image. We choose a value of δ = 1 for our experiments.

Method I (ConvSep): ConvSep is a convolutional network which denoises, ex-

pands and separates the compressed noisy realization back to its original parent

observations. In this approach, we take the compressed, noisy realization, and
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(a). (b).

Figure 5.3: The above figure shows the collective results for the proposed ap-
proaches. Fig. (a). shows the distribution of Mean-Squared error and Fig. (b).
shows the distribution of Structural similarity index metric (SSIM) values.

expand the dimensions using an Encoder (E)-Decoder (D) operation. Then we

use two separators - S1 and S2 - that separate the image into two their two parent

images. For more information on the networks, please see Fig. 5.2.

During the training operation, the superimposed image is available to perform

the image expansion step. For more details on how this model operates, please

refer Fig. 5.4. The loss function for ConvSep is given by

LConvSep = L(ẑ, z) + L(x̂1,x1) + L(x̂2,x2), (5.3)

where L(z, ẑ) is the loss between the denoised and upsampled superimposed ground

truth and reconstructed images, L1(x̂1, x̂1) is the loss between the reconstructed

image x̂ and the ground truth image x1. This model has a total of 2,846,224

parameters.

Method II (LiGT): LiGT is a transformer based model which expands, cleans
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(a) ConvSep training procedure (b) ConvSep testing procedure

Figure 5.4: This is training and testing procedure for the ConvSep model. (a)
During training, the superimposed and clean images are available to the ConvSep
network to perform the separating operation. (b) During this stage, the the super-
imposed, clean images are not available to the network. Instead the output from
the decoder is fed to the separators S1 and S2

and separates the mutliplexed signal at once. Unlike Method I, this model does

not have access to the upsampled denoised superimposed realization. For more

details on how the model works, please refer Fig. 5.2. The loss function for LiGT

is given by

LLiGT = L(x̂1,x1) + L(x̂2,x2). (5.4)

This model has a total of 2,301,865 parameters.

Dataset: We use the MNIST dataset [24] in our experiments. To generate our

data, we randomly choose two images x
(1)
i ,x

(2)
i ∈ R28×28 from the MNIST data

and superimpose them to obtain zi ∈ R28×28, which is then downsampled by

a factor of 2 and to which AWGN is added to yield the noisy low-dimensional

superimposed images yi ∈ R14×14. For Method I, the dataset is given by D1 =

{x(1)
i ,x

(2)
i , zi,yi}Ni=1. For Method II, the noisy, downsampled and superimposed

observation is directly mapped to the two clean realizations and the intermediary

data zi is not used. The dataset is thus given by D2 = {x(1)
i ,x

(2)
i ,yi}Ni=1.
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5.1.3 Experiments

In this section we describe the testbed and the training procedures for bot the

models. All the architectures were implemented using PyTorch [84]. Training and

testing were performed using two NVIDIA 1080 Ti GPUs. The networks were

trained using the Adam optimizer [28].

Training: During training, the superimposed, compressed and noisy images are

fed to both the models. For the LiGT model, these images are directly mapped

to the clean and separated images. For the ConvSep model, the downsampled and

noisy superimposed observation is fed to the encoder E for the D to yield the clean,

upsampled superimposed construction ẑ. The clean, upsampled superimposed im-

age z is then fed to the separators S1 and S2 to yield x̂1 and x̂2.

Testing: During testing, the operation of LiGT matches the training procedure.

However, for the ConvSep model, the upsampled superimposed construction ẑ is

directly fed to separators S1 and S2 (see Fig. 5.4 for illustration).

5.1.4 Results

In this section, we present the results from the two approaches. Fig. 5.5 shows

the results from both the approaches. The first row shows the superimposed im-

ages, downsampled with added noise. The second and third row show the separated

images using the LiGT model, the fourth and fifth row show the images separated

using the ConvSep model. The last two images show the ground truth images.

We can notice that the MSE for the LiGT model is much lower than the ConvSep

model. It can also be noticed that the LiGT model was able to keep a lot of the

structural integrity of the image better than the ConvSep model. Fig. 5.3 presents

the overall MSE and SSIM results. The average MSE loss for the ConvSep model

was 4.66× 10−2, and the average MSE loss for the LiGT model was 3.00× 10−2

5.1.5 Conclusion

In this section, we presented two approaches for image disambiguation. In the

first approach, we presented ConvSep, which uses an RNN inspired convolutional
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Figure 5.5: Numerical experiments on 5 images from the MNIST dataset. Row 1:
Noisy input images y. Rows 2 and 3: Final reconstructions x̂1, x̂1 using Method
II (LiGT). Rows 4 and 5: Final reconstructions x̂1, x̂1 using Method I (ConvSep).
Rows 6 and 7: Ground truth images x1, x1. MSE values for both Methods I
(ConvSep) and II (LiGT) are presented for each image.

neural network to denoise and upsample in one stage and disambiguate the images

in another stage. In the second approach, we presented LiGT, a Transformer based

model which denoised, upsampled and cleaned the image simultaneously. Experi-
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ments and results show that the transformer based model was able to outperform

the RNN inspired approach with a smaller model footprint.

5.2 Novel defense techniques for White-Box Ad-

versarial Attacks

Szegedy et. al [85] demonstrated that small perturbations to an image can fool

deep neural networks into misclassifying the image. These perturbations, small

enough that the perturbed image is indistinguishable from the originals to the

human eye are often called “adversarial perturbations”, or adversarial attacks.

Generally, adversarial attacks are categorized as either white-box or black-box

attacks. In a black-box attack [86, 87], the attacking model has no knowledge

of the predicting model. However, the output probabilities of a sample belong-

ing to different classes may be available to the attacking model. Some examples

of black-box attacks include gradient estimation, transferability, local search and

combinatorics.

In a white-box attack [88, 89], the attacking model has knowledge of the weights

and the neural network. Most white-box adversarial attacks are based on the Fast

Gradient Sign Method (FGSM) [90], which adds to the input a (very small) vector

in the direction of the gradient of the loss function with respect to the data. In

FGSM’s multistep variant, Projected Gradient Descent (PGD), the noise is added

by taking multiple steps in the direction of the gradients and is often target at

different classes in the dataset.

In this section, we explore adversarial defense mechanisms again white-box

attacks, mainly PGD. For the reader’s convenience, we have included a taxonomy

of terms here.

5.2.1 Related Works

Defense against adversarial attacks has been an active area of research since the

original paper [90].
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Adversarial training: In 2015, Goodfellow et. al [90] proposed an adversarial

training solution that attempts to solve a min-max optimization problem by train-

ing adversarial examples until the model learns to classify them. Given a dataset

X , with its corresponding labels y, some parameterization for the neural network

Θ and some radius vector δ, the optimization setup can be written as

Θ∗ = arg min
Θ

E
(x,y)∈X

[
max
δ∈[−ε,ε]

L(x + δ; y;FΘ)

]
.

Gao et. al [91] proved the convergence of these methods. However, the assumption

here is that we know the noise level ε. A variety of related methods have been

proposed since then ([92–96]). However, in a practical scenario, this information is

not always available. In addition, depending on the size of the network and the size

of the image, this method can get computationally expensive and time consuming.

Randomization: Another common method to defend a deep network against

attacks is to randomize the input to the neural network [97]. This method uses

two randomization layers in the neural network: a. The first layer randomly resizes

the input image using a random scaling layer. b. The second layer adds a padding

layer which is assigned around the boundary of the image at random. Zantedeschi

et. al [93] showed that, by using a modified ReLU (called BReLU), and adding

noise to the origin input to augment the training data, the learned model will gain

some stability to adversarial examples. However, Carlini and Wagner [98] found

that these defense mechanisms do not hold against strong attacks such as FGSM

and PGD.

Projection: In this approach, a generative model is trained to classify on clean/-

natural examples. The adversarial sample is fed to the generative model, an au-

toencoder which is trained on natural samples, before it is fed to the classifier.

The idea here is that the network will “project” the adversarial sample to a point

closely to the projection of the corresponding original image.

An extension to the above method is Generative Adversarial Networks (GANs)

which aims at learning the distribution of the clean training data and attempts

to project the adversarial sample onto this clean learned manifold [90]. The opti-

mization setup, which is very similar to the adversarial training approach, is given
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by

min
G

max
D
{Ex∼pdata(x)[log(D)(x)]+

Ez∼pz(z) [log(1−D(G(z)))]},

where G is the generator, D is the discriminator which predicts if x came from

training data or G, pdata is the distribution of the clean data, z is the Numerous

adversarial defense schemes have been proposed using the above optimization setup

(see [99, 100]). However, the drawback here is the similar to the adversarial training

method—it may take a lot of time to train the GAN itself. In addition, GANs are

much harder to train owing to their continual learning nature [101].

Detection: This approach only involves identifying an adversarial sample. A

small binary classifier is built to separate the adversarial examples from the clean

data [102]. However, this method suffers from a generalization limitation. Another

way of detection commonly used isKD-detection [103], where a kernel K predicts

whether a sample data xi belongs to the same distribution as the dataset X . The
probability is given by

p̂Xx =
1

n

n∑
i=1

Kσ(x,xi),

where Kσ(·, ·) is a kernel function. Many recent works fall under this category,

where either they compute the Gaussian discriminant analysis of features (Lee et.

al [104]), view the features of the hidden layers between original and adversarial

samples (Ma et. al [105]) or perform a joint statistical pooling amongst all the layers

to detect adversarial samples (Raghuram et. al [106]). All of these methods have

the ability to produce very reasonable results. However, applying kernel functions

in the input space directly can be time-consuming depending on the dimensionality

of the image. In addition, extracting the features of images from the layers of the

neural network may cause some loss of information from the images itself.

5.2.2 Proposed Approach

We take inspiration from kernel based methods which use feature space informa-

tion to train a kernel function. However, we also understand the motivation of
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using a downsampled space—training a kernel function can be computationally

inexpensive.

In addition to CNNs, our proposed approach uses a Discrete Cosine Transform

(DCT) for dimensionality reduction and two Support Vector Machines, one each

in the input and output space of the CNN classifier. In the following section, we

refer to the CNN used by the proposed approach as an ‘embedded’ CNN.

Discrete Cosine Transform

Discrete Cosine Transform (DCT) is a form of matrix factorization and decom-

position which generates a set of basis vectors of a class of Chebyshev polynomi-

als [107, 108]. The DCT of some data xi ∼ X , where xi ∈ <n is given by

Gx(k) =
2

M

M−1∑
m=0

xi(m) cos
(2m+ 1)kπ

2M
,

k = 1, 2 . . . (M − 1),

where Gx(k) is the kth DCT coefficient. The above form is for a single dimensional

sequence. For a 2-dimensional matrix, where xi ∈ <n1×n2 the DCT takes the form

Gx(k1, k2) =
n1∑

m1=0

n2∑
m2=0

xm1,m2cos
[
π
n1

(
n1+ 1

2

)
k1

]
cos
[
π
n2

(
n2+ 1

2

)
k2

]
.

The time complexity of this method is O(n log n), where n is the number of el-

ements in the vector or matrix. Once the DCT is performed on the image, the

resulting coefficients indicate the eigenvalues and their corresponding eigenvectors.

In order to reduce the dimensionality, we remove the coefficients which are close

to 0. This ends up being close to one-third of the entire image. To illustrate this,

we show the example in figure. We use and MNIST ([109]) image, create the DCT

transform of the image, remove a subsection of the image

Support Vector Machine (SVM)

We rely on the standard Support Vector Machine (SVM) [110] with a Radial

Basis Function (RBF) kernel as an auxiliary classifier. An RBF is a strictly positive
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(a) (b)

(c) (d)

Figure 5.6: The effect of DCT with a subset of coefficients zeroed out on a sample
image from MNIST. (a) Original image. (b) DCT coefficients computed by apply-
ing the DCT to the entire image along each dimension. (c) DCT coefficients with
the lower left 16x16 block selected to be clipped. (d) Inverse DCT of the clipped
coefficients from (c). Note that although there are some slight image artifacts, the
main features of the digit remain the same.

definite functions whose values depends on some input and a central point. Given

some dataset X = {x0,x1 . . .xm} where xi ∈ Rn and some central point xc, an

RBF yields a positive value φ(‖xi − xc‖). Here φ is the radial basis function that

yields a radius about a central point xc. This function is often shape modified

using a parameter ε. The Gaussian form of an RBF (which we have used in this

section) is of the form

φ(r) = e−εr
2

,
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Figure 5.7: Accuracy of Baseline Model and Our Model on data samples with
varying ε values, starting with clean data at ε = 0. The baseline CNN and Embed-
ded CNN were trained on clean (left two plots) and adversarial (right two plots)
MNIST data.

where ε is a shape tuning parameter, r is the radial parameter defined by ‖x−xi‖,
where xi is an instance of a dataset X . In the following sections, we elucidate

the proposed approach by combining the discrete cosine transform, support vector

machine and the neural networks.
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Figure 5.8: Accuracy of Baseline Model and Our Model on data samples with
varying ε values, starting with clean data at ε = 0. The baseline CNN and Embed-
ded CNN were trained on clean (left two plots) and adversarial (right two plots)
FMNIST data.

5.2.3 Experiments

For our experiments, we choose two very common dataset - MNIST and FMNIST.

We train an input-space SVM using the full training dataset, with an RBF kernel

and a C value of 100. We preprocess the data by normalizing it to 0 mean and unit

variance, then applying the DCT transform to the entire image, removing the 16

highest-frequency coefficients along each dimension. The remaining coefficients are
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then flattened into a single vector for training. The same preprocessing is applied

during testing.

We train another, output-space SVM on the outputs of our target model (CNN)

for natural (non-adversarial) data. We assume the target model applies a log

softmax in its final layer and outputs a vector of size n_classes, in our case 10.

No preprocessing is done to these vectors before they are sent to the SVM for

training or testing.

At test time, input to our model is classified by an RBF SVM in the input space and

independently run through a CNN. After we receive CNN outputs, we also classify

those with a different RBF SVM in our output space. If the SVM classification of

the output disagrees with the SVM classification of the input, we flag this input

as potentially adversarial and use its input space SVM classification to predict its

class. If the data is not flagged as adversarial, we use the CNN’s prediction.

The CNN architecture we use is a modified VGG [111] with 6 convolutional layers,

each followed by a batch normalization and a ReLU layer. The convolutional

layers have 64, 128, 256, 256, 512, and 512 filters, respectively. After the first,

second, and fourth convolutional layers, maxpooling with a 2x2 filter is performed.

Following the convolutional layers are three linear layers, each followed by a ReLU

and dropout layer. The linear layers have 4096, 4096, and 10 units, respectively.

We then take the log softmax of the output.

5.2.4 Abalation Study

We test our model alongside a normally trained CNN and an adversarially trained

CNN, on both clean and adversarial data. The CNN used in our model is the same

as the model we compare it to, since we treat the adversarial detector and input

space classifier as supplementary to an existing model. To generate adversarial

data, we apply a white-box attack to the CNN using PGD with 5 steps and a

step-size of .01, using different total ε values. We tested on adversarial data with

total ε ∈ [0.1, 0.3, 0.6, 1, 1.5, 2, 3]. The adversarially trained CNN was trained

on data with an ε of 0.3. We record the overall accuracy for each of the models

(baseline CNN, our model), and the relative accuracies for our model’s adversarial
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Model Trained with Clean MNIST Data

Data (ε) clean 0.1 0.3 0.6 1 1.5 2 3

Baseline Accuracy (%) 98.98 98.42 97.54 94.92 83.69 65.01 48.18 27.41

Our Model’s Accuracy (%) 98.14 97.68 97.30 95.98 89.68 76.96 59.61 33.02

Detector Accuracy (%) 98.44 2.17 2.78 4.46 12.42 36.60 60.10 84.80

Input Cluster Relative Accuracy (%) 19.87 30.92 44.30 60.44 74.74 63.38 49.81 29.89

CNN Relative Accuracy (%) 99.38 99.17 98.82 97.64 91.80 84.81 74.36 50.49

Table 5.1: Results from model trained on clean MNIST data, and evaluated on
clean and adversarial MNIST data. Accuracy of Baseline Model and Our Model on
non-adversarial data and full sets of adversarial data with varying epsilon values
refers to the overall percentage of correctly classified samples. On clean data,
Detector Accuracy refers to the percentage of the dataset that the detector classifies
as clean. On adversarial samples, it represents the percentage of the data that is
classified as adversarial. Since the detector determines which samples are sent to
each classifier embedded in our model, and this varies from run to run, we present
the relative accuracy of each classifier on only the data that it received in that run.

Model Trained with Adversarial MNIST Data

Data epsilon clean 0.1 0.3 0.6 1 1.5 2 3

Baseline Accuracy (%) 99.37 99.36 99.30 99.13 98.14 81.90 50.70 20.01

Our Model’s Accuracy (%) 98.40 98.17 98.13 97.91 96.32 84.19 64.86 34.88

Detector Accuracy (%) 98.48 1.85 1.92 2.22 4.63 30.95 67.13 98.38

Input Cluster Relative Accuracy (%) 17.11 18.99 19.89 21.38 30.03 53.65 51.06 34.25

CNN Relative Accuracy (%) 99.65 99.66 99.66 99.65 99.54 97.87 93.04 72.94

Table 5.2: Results from model trained on adversarial MNIST data, and evaluated
on clean and adversarial MNIST data.

Model Trained with Clean FMNIST Data

Data epsilon clean 0.1 0.3 0.6 1 1.5 2 3

Baseline Accuracy (%) 92.96 59.37 49.33 42.58 35.39 27.67 22.29 18.89

Our Model’s Accuracy (%) 89.63 85.09 84.04 81.87 76.41 64.63 53.65 24.92

Detector Accuracy (%) 89.66 39.08 49.84 59.72 67.80 75.23 81.28 94.80

Input Cluster Relative Accuracy (%) 33.56 85.18 87.54 86.28 80.11 66.46 54.73 24.12

CNN Relative Accuracy (%) 96.10 85.04 80.57 75.34 68.62 59.08 49.00 39.68

Table 5.3: Results from model trained on clean FMNIST data, and evaluated on
clean and adversarial FMNIST data.
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Model Trained with Adversarial FMNIST Data

Data epsilon clean 0.1 0.3 0.6 1 1.5 2 3

Baseline Accuracy (%) 91.29 88.80 87.69 82.18 64.17 38.70 21.69 11.12

Our Model’s Accuracy (%) 89.02 86.53 85.39 81.84 75.55 62.03 49.21 24.41

Detector Accuracy (%) 91.32 12.14 13.35 18.55 38.98 61.89 73.35 92.62

Input Cluster Relative Accuracy (%) 33.99 40.22 39.74 45.98 60.17 55.41 48.40 24.51

CNN Relative Accuracy (%) 94.25 92.93 92.42 90.00 85.37 72.78 51.43 23.12

Table 5.4: Results from model trained on adversarial FMNIST data, and evaluated
on clean and adversarial FMNIST data.

data detector, SVM, and embedded CNN. To make this abalation study a little

rigrous, we have used the same CNN architecture for the proposed approach and

the adversarially trained model. All the methods have been trained on the same

machine with the same conditions.

5.2.5 Results

For each ε value tested, we ran each version of our model and the baseline model 10

times, recording the overall accuracy for each, as well as the relative accuracies for

the components of our model. Our model consists of a detector that first classifies

the output data as adversarial or clean. The data that is flagged as adversarial

is classified by the SVM, and we record the accuracy of the SVM on only that

subset of the data. The data that is not flagged as adversarial is classified by the

embedded CNN, and we record the accuracy of that model on that subset of the

data. We refer to these accuracies as the relative accuracies for our model. We

also record the accuracy of the adversarial data detector, and the time it takes for

our model and the baseline CNN to make their predictions.

In the (a) portion of each plot in Figures 5.7 and , 5.8, we observe that our model

has relatively high accuracy at low ε values, though it is often slightly less accurate

than the baseline model on clean or lower ε data. We can consistently see, how-

ever, that as the magnitude of adversarial noise increases, our model’s accuracy

suffers with both the naturally trained and adversarially trained models. Further,

by the threshold of ε = 1.5, our model is consistently more accurate than a stan-
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dalone CNN. The ability of our detector to accurately detect adversarial samples

increases dramatically as ε increases, meaning that our model falls back on return-

ing SVM predictions for the adversarial data rather than the CNN predictions,

circumventing the target of the attack.

An interesting result to observe is in the disparity between the accuracy of a

standalone CNN compared with the relative accuracy of the CNN embedded in

our model at high ε values. In the (b) portion of each plot in Figure 5.7 and 5.8, for

ε > 1, the relative accuracy of the CNN embedded in our model is over 15% higher

than the CNN on its own. Since the output space SVM boundaries are based on

the outputs of clean data for the embedded CNN, we expect that this is a result of

the output space SVM detecting erroneous predictions on the adversarial data that

successfully receives an incorrect prediction from the CNN, but remains relatively

similar in the input space.

In Tables 5.1–5.4, we observe that the input cluster relative accuracy is often

very low compared to the embedded CNN relative accuracy. In principle, the

input cluster SVM’s prediction should only be used when the incoming data is

adversarial, in which case we would expect CNN predictions to be unreliable while

input images are relatively normal, so despite its low relative accuracy, we still see

higher accuracies for the encompassing model. From our model’s prediction times

in Tables 5.1–5.4, we also observe that the model’s inference is much slower than

the baseline’s, especially on FMNIST data. This likely comes down to the SVM

inference time, which doesn’t handle images or larger inputs as well as CNNs. As a

supplement to a standalone CNN, our model offers some protection against white-

box attacks, at the cost of the extra inference time to detect adversarial images.

5.2.6 Conclusion

In this section, we proposed two methods for defense agains adversarial attacks

on image classifiers. In the first method, we adversarially trained the convolu-

tional neural network model over adversarial samples generated from a distribu-

tion. In the second method, we downsampled the images to a lower dimension
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using Discrete Cosine Transform and cluster those samples using a support vector

machine (RBF). We investigated the robustness and training/testing response of

these methods over various perturbation (ε) values on the MNIST and FMNIST

datasets. We conclude that with some efficiency trade-off , we are able to achive a

higher accuracy of prediction.

5.3 Multi-Stage Gaussian Denoising

In this section, we explain the model that we use to describe the noisy obser-

vations. Because we are operating under the assumption of adequate light levels

during image acquisition, we use the AWGN model given by

y = x + g

where y ∈ Rn
+ is the noisy observation vector, x ∈ Rn

+ is the true or clean signal

and g ∈ Rn refers to the vector of AWGN with g ∼ N (0, σ2) where σ2 denotes

the variance of the Gaussian distribution. Our interest is in recovering the true

noiseless signal x from the noisy observation y.

Related work. Traditional denoising methods removing AWGN from images

involve techniques which rely on operating in a different domain, such as the fre-

quency domain [112, 113]. Baysian based approaches have also been very popular

requiring not only the modeling of image priors but in many cases the hand tuning

of parameters effecting the reconstruction quality [114–116]. In addition to param-

eter tuning, these algorithms are iterative and require computationally intensive

optimization routines to arrive at a solution. As an alternative to optimization-

based algorithms, deep neural networks have emerged as a viable alternative for

solving the image denoising problem. A variety of architectures have been pro-

posed, including convolutional neural networks (CNNs), residual neural networks,

autoencoders, and multilayer perceptrons (MLPs) [117–120]. These methods are

based on feed forward neural network architectures.

Diffusion models are probabilistic models designed to learn a data distribution

p(x) by gradually denoising a normally distributed variable, which corresponds to
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learning the reverse process of a fixed Markov Chain of length T (see [121]). The

authors of [122] designed an autoencoder and diffusion model where the images

are downsampled by the encoder. This dowsampled space is denoised using the

U-NET network. Once the denoising is done in the latent space, the decoder is

used to upsample the image back to the original pixel space.

This work seeks an alternative to traditional optimization-based methods as

well as typical feedforward based deep learning architectures by using a recurrent

neural network (RNN) to approximate a mapping from the noisy observation y

to the clean signal x. The novelty of our approach is that we reformulate the

Gaussian denoising problem as a multi-step denoising process allowing us to apply

the RNN architecture.

5.3.1 Problem Formulation

In this section, we explain the model that we use to describe the noisy obser-

vations. Because we are operating under the assumption of adequate light levels

during image acquisition, we use the AWGN model given by

y = x + g

where y ∈ Rn
+ is the noisy observation vector, x ∈ Rn

+ is the true or clean signal

and g ∈ Rn refers to the vector of AWGN with g ∼ N (0, σ2) where σ2 denotes

the variance of the Gaussian distribution. Our interest is in recovering the true

noiseless signal x from the noisy observation y.

Related work. Traditional denoising methods removing AWGN from images

involve techniques which rely on operating in a different domain, such as the fre-

quency domain [112, 113]. Baysian based approaches have also been very popular

requiring not only the modeling of image priors but in many cases the hand tuning

of parameters effecting the reconstruction quality [114–116]. In addition to param-

eter tuning, these algorithms are iterative and require computationally intensive

optimization routines to arrive at a solution. As an alternative to optimization-

based algorithms, deep neural networks have emerged as a viable alternative for

93



solving the image denoising problem. A variety of architectures have been pro-

posed, including convolutional neural networks (CNNs), residual neural networks,

autoencoders, and multilayer perceptrons (MLPs) [117–120]. These methods are

based on feed forward neural network architectures. This work seeks an alter-

native to traditional optimization-based methods as well as typical feedforward

based deep learning architectures by using a recurrent neural network (RNN) to

approximate a mapping from the noisy observation y to the clean signal x. The

novelty of our approach is that we reformulate the Gaussian denoising problem as

a multi-step denoising process allowing us to apply the RNN architecture.

5.3.2 Proposed Approach

In this section we describe the models implemented for image recovery from

noisy observations. In particular we discuss two different architectures (labeled

Methods I and II), both of which take advantage of the denoising properties of

autoencoders. The first method attempts to directly map the noisy observation to

the clean image, while the second method takes advantage of a specialized dataset

which will be discussed in section 5.3.3 and reformulates the problem as an RNN.

Method I (Autoencoder). The first method is a direct approach using a con-

volutional autoencoder [123, 124]. This type of architecture has been successful

in a variety of applications addressing different types of signal recovery applica-

tions [125, 126]. The encoder of the architecture, E, consists of eight convolutional

layers each followed by the leaky rectified linear unit (Leaky ReLU) [127, 128].

The result is a latent variable representation of the noisy image. The decoder, D,

then consists of eight convolutional transpose layers to bring back the image to the

appropriate dimension. The output (x̂) is then compared to the target or clean

image (x) using the mean squared error (MSE) loss function given by

MSE(x̂,x) =
1

|S|

|S|∑
i=1

‖x̂i − xi‖2
2, (5.5)

where S is the dataset and |S| is its cardinality.

Method II (Recurrent Neural Network). The second method incorporates
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the autoencoder of Method I in conjunction with the structure of a recurrent

neural network. Recurrent neural networks have been shown to be effective in

time dependent applications such as speech recognition, music transcription scene

labeling and a variety of other applications requiring sequence learning [129–132].

As far as the authors of this work know, this is the first time that this type of

architecture is being applied to the problem of denoising. The typical sequence to

sequence RNN can be described by the following equations:

at = b + Wht−1 + Uyt,

ht = tanh(at),

ot = c + Vht,

ŷt+1 = softmax(ot),

(5.6)

where b and c are bias vectors and U, V and W are weight matrices that map

the input yt to the approximation ŷt using the hidden state ht from times t = 0

to t = τ (see [23, 133] for details).

We modify and adapt the standard formulation (5.6) to a stage-wise denois-

ing approach by treating the noise as a pseudo-temporal component. Given the

noisy realization y with AWGN of intensity variance σ2, we create a sequence of

realizations {y0,y1 . . .yτ} with their associated values of σ2 {σ2
0, σ

2
1, . . . , σ

2
τ} ar-

ranged in a monotonically decreasing fashion. We initialize y0 = y with σ2
0 = σ2

and train the RNN to denoise the current realization to the next noisy realiza-

tion in the sequence. For denoising at each stage, we use the Autoencoder from

Method I. The following equation represents this model: a sequence of variances

σ2
0 > σ2

1 > · · · > σ2
τ > 0, we create a sequence of noisy realizations {y0,y1 . . .yτ}

of the ground truth image x and train the RNN through a sequence of denoising

steps. We use the autoencoder from Method I for denoising at each step, which is

modeled by the following equations:

ẑt = Et(yt,h
e
t ),

ŷt+1 = Dt(ẑt,h
d
t ),

(5.7)

where Et and Dt are the encoder and decoder from Method I with corresponding

weights he
t and hd

t , respectively, ẑt is the latent space representation of the image,

95



and ŷt+1 is the approximation to yt+1. for a given noise σt+1. During Training,

we feed an input yt with some noise variance σ2
t through a hidden state at that

step of the sequence ht = [he
t ,h

d
t ] to approximate the true realization yt+1 in the

next step with σ2 = σ2
t+1. The approximation (ŷt+1) is then compared against the

true realization using MSE. The weights ht = [he
t hd

t ] are then propagated to the

next step, and the process is repeated mutatis mutandis. We illustrate this RNN

in Fig. 5.9. The last noisy realization in the sequence yτ (with the least amount

of noise with variance σ2
τ ) is then mapped to an approximation of the clean image

x̂ (see Fig. 5.9(a)). In a similar manner to the standard RNN, the approximations

are all compared to their target using the MSE. All MSEs are summed and the

loss is used to calculate the gradient across time with respect to the autoencoder

weights. During testing, we no longer have access to this series of noisy realizations.

In this scenario, we only provide the network with the initial noisy realization y0.

The reconstructions from the previous input is used as input to create the next

approximation (see Fig. 5.9(b)). The final output in the sequence corresponds to

the denoised image.

5.3.3 Numerical Experiments

The architectures in Method I (AE) and in Method II (RNN) were all imple-

mented using Pytorch. Training and testing were performed using an NVIDIA

RTX 2080Ti. The networks were trained using the ADAM optimizer [28].

Dataset. We evaluate the effectiveness of the proposed methods on a modified

version of the CIFAR-10 dataset [134], which we use as a very large comprehensive

denoising test set. In particular, for our experiments, we converted the 50,000

training images with a size of 32× 32 into single channel grayscale images. Three

noisy realizations were created of each image. The noisiest realization contained

AWGN with σ2
0 = 9.0 × 10−3 while each subsequent realization was created with

σ2
1 = 6.0× 10−3 and σ2

2 = 3.0× 10−3 (see Fig. 5.10). The test set is comprised of

10,000 images created in a similar manner to the training set. We note that we

only use the noisiest realization (σ2
0 = 9.0× 10−3) during testing (see Fig. 5.9).

Performance. Both methods were trained for 100 epochs using the MSE in (5.5)
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(a) Network configuration during training

(b) Network configuration during testing

Figure 5.9: The unrolled recurrent neural network (RNN) used for denoising. (a)
During training, the output of each hidden layer is compared to the target using
the mean squared error (MSE). The input at each hidden state is the target of the
previous hidden state. (b) During testing, the output of each hidden layer is used
as input in the next hidden state.

as a loss function. After reconstructing the test set images using both methods,

two metrics were identified to evaluate the quality of the reconstructions. We first

report the MSE between the reconstructed image and the original target. We also
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(a) Ground truth (b) σ2
2 = 3.0× 10−3

(c) σ2
1 = 6.0× 10−3 (d) σ2

0 = 9.0× 10−3

Figure 5.10: Noisy realizations of an image at various noise variance. (a) Ground
truth. (b)-(d) Noisy realizations with increasing noise intensities for increasing
values of the variance σ2

t .

report the structural similarity index (SSIM) given by

SSIM(x̂,x) =
(2µx̂µx + c1)(2σxy + c2)

(µ2
x̂ + µ2

x + c1)(σ2
x̂ + σ2

x + c2)

where µx̂ and µx are the averages of each input respectively, σx̂ and σx are their

associated variances, and c1 and c2 are variables used to stabilize the quotient.
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The metric is a way to capture perceptual differences in the reconstruction (see

[135] for details).

Complexity. Method I (AE) takes in the image once and denoises it in one for-

ward and one backward propagation. Hence, the upper bound order of complexity

is O(kn), where k is the number of features extracted (equal to the number layers

in the network) from the image and n is the number of pixels in the image. On

the other hand, our proposed method, Method II (RNN), forward and backward

propagates each image in three stages, thus increasing the complexity order to

O(3kn), which is still an O(n) method, ignoring constants coefficients.

5.3.4 Results

(a) MSE(I) = 1.446× 10−3 (b) SSIM(I) = 9.478× 10−1

MSE(II) = 1.394× 10−3 SSIM(II) = 9.485× 10−1

Figure 5.11: Performance metrics for Method I (Autoencoder) and Method II
(Recurrent Neural Network) for 10,000 test images using the mean squared er-
ror (MSE) and the structural similarity index (SSIM). (a) MSE(I) and MSE(II)
represent the MSE corresponding to Methods I and II, respectively. (b) SSIM(I)
and SSIM(II) represent the SSIM corresponding to Methods I and II, respectively.
Note that Method II has lower MSE and higher SSIM values.

The results of our experiments are presented in Figs. 5.11 and 5.12. The av-

erage test error of Method I (Autoencoder) is 1.446× 10−3 while the average test
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Figure 5.12: Numerical experiments on 5 images from the CIFAR-10 dataset. Row
1: Noisy input images y. Row 2: Reconstructions x̂AE using Method I. Rows 3 and
4: Intermediate reconstructions within Method II. Row 5: Final reconstructions
x̂RNN using Method II. Row 6: Ground truth images x. MSE and SSIM values for
both Methods I (AE) and II (RNN) are presented for each image.

error of Method II (Recurrent Neural Network) is lower, with MSE = 1.394×10−3.

However, one must note that the MSE, by itself, may not be the best compara-
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tive measure of reconstruction accuracy. Hence, in addition to the MSE, we also

consider the SSIM and compare the performance of both methods. We notice that

the SSIM accuracy for Method I (AE) is 9.478 × 10−1 while the SSIM accuracy

for Method II (RNN) is higher, with SSIM = 9.485× 10−1. We illustrate this dif-

ference in performance with five sample images in Fig. 5.12. The reconstructions

using Method I (AE) are labeled xAE, and the reconstructions using Method II

(RNN) are labeled xRNN. The input images are labeled y2. Method I (AE) tends

to smooth some of the edges of the primary object of the images. In contrast,

Method II (RNN) is able to recover some of the finer details of the image. The

images ŷ1 and ŷ0 are the intermediate reconstructions at σ2
1 = 6.0 × 10−3 and

σ2
2 = 3.0× 10−3, respectively.

5.3.5 Conclusions

In this section we implemented two different deep learning architectures to

recover signals under a Gaussian noise model. The first method, Method I (AE),

is a convolutional autoencoder which maps the noisy realization directly to the

denoised image. The second method, Method II (RNN), reformulates the image

denoising problem as a multi-stage denoising process where the variance of the noise

is gradually decreased using a recurrent neural network. Numerical experiments

show a tendency for the autoencoder to produce smoother reconstructions. In some

cases the RNN shows an improvement on the ability to capture detail producing

an improved average test error using the MSE and a higher average SSIM.

5.4 Multi-Stage Mixed-Poisson-Gaussian Denois-

ing

The amount of data being collected about our lives is increasing as a result

of advances in the technology used to record these digital signals. Although the

precision of these recording devices is becoming increasingly sophisticated, they

are still susceptible to sources of noise during acquisition. This is especially true
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in digital imaging where noise can be caused by sudden changes of light intensity,

increase in temperature of the imaging apparatus or electrical fluctuations during

the transmission of the signal. Typically this type of noise is modeled as additive-

white-Gaussian-noise (AWGN) which is signal-independent [136, 137]. In contrast,

for applications in a photon-limited or low-light setting, the measurements at the

detector are corrupted by Poisson or one-shot noise and thus modeled using a

Poisson model [138]. This type of regime is typically found in medical imaging,

including but not limited to MRI reconstruction and microscopy (see e.g.,[139–

141]). Denoising under this regime is particularly difficult owing to the fact that the

noise is signal-dependent unlike AWGN. Further complicating the signal recovery

process is the signal degradation by AWGN [142]. The section organization is as

follows - In sec. 5.3.1, we discuss the problem formulation, in sec. 5.3.2, we discuss

the proposed approach, in sec. 5.3.3, we discuss the numerical experiments of the

proposed approach and in sec. 5.3.4, we discuss the results.

5.4.1 Problem Formulation

The Poisson-Gaussian noisy signal problem is an extension of the Poisson pro-

cess model given by

y = P(A(x)) + g, (5.8)

where y ∈ Rm
+ is the noisy, downsampled observation vector, P(·) denotes the

operator which imposes the signal dependent Poisson noise, x ∈ Rm
+ is the noiseless

signal of interest, g ∈ Rn refers to the vector of AWGN with g ∼ N (0, σ2) where

σ2 denotes the variance of the Gaussian distribution, and A(·) is a downsampling

operator projecting the signal of interest to the observation space Rm. The goal of

this work is to estimate x, denoted x̂, from the observational vector y.

Related work. Traditionally, the problem of removing AWGN from images has

been approached using least squares approximations and filters in the frequency

domain [112]. Because of the signal dependent nature of Poisson corruption, more

sophisticated algorithms use statistical based methods in conjunction with numer-

ical optimization to maximizing the probability of observing the noisy realization
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(a) Ground truth (x) (b) Downsample (y2)

(c) Poisson noise (y1) (d) Mixed noise (y0)

Figure 5.13: Different realizations of an image at various stages of the observational
process. (a) Ground truth. (b) Downsampled realization of (a). (c) Downsampled
realization with Poisson noise. (d) Downsampled realization with mixed Poisson
and Gaussian noise.

given the true signal or clean image. With the increased interest of deep learning

as a result of the success in applications related to computer vision, the field of

deep learning as a tool for image processing has grown substantially in the past

ten years. Residual neural networks as well as deep convolutional autoencoders

have emerged as viable methods for denoising in a variety of applications as well
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as a variety of types of noise [117, 118, 143]. There has been some work done using

RNNs for image denoising (see e.g., [144, 145]) and image restoration (see e.g.,

[146]). However, to the best of the authors’ knowledge, this is the first time they

are used to denoise and upsample images with mixed Gaussian-Poisson noise.

In this section, we proposed a recurrent neural network in order to denoise

images which have been corrupted by Poisson-Gaussian noise. The novelty of this

method is two fold. First, we are applying deep learning techniques to solve the

mixed Poisson-Gaussian denoising problem. While other methods have solved each

denoising problem separately, we aim to solve both problems within the context

of a recurrent neural network. Secondly, while most applications consider a direct

mapping from the noisy representation to the noiseless reconstruction, we choose

to use a recurrent neural network (RNN). The motivation for using an RNN comes

from viewing the denoising of the Poisson-Gaussian realization as a temporal pro-

cess. The network then attempts to trace back the steps that create the noisy

realization in order to arrive at the noiseless reconstruction.

5.4.2 Proposed Approach

In this section we describe the models implemented for image recovery from

noisy downsampled realizations. In particular we discuss two different architec-

tures (labeled Methods I and II), both of which take advantage of the denoising

properties of autoencoders. The first method directly maps the noisy observa-

tion to the clean image, while the second method takes advantage of a specialized

dataset which will be discussed in section 4 and reformulates the problem as an

RNN.

Method I (Autoencoder). The first method is an existing direct approach us-

ing a convolutional autoencoder [123, 124]. This type of architecture has been

successful in a variety of applications addressing different types of signal recov-

ery applications [125, 126]. The encoder of the architecture, E, consists of eight

convolutional layers each followed by the leaky rectified linear unit (Leaky ReLU)

[127, 128]. The result is a latent variable representation of the noisy image. The

decoder, D, then consists of eight convolutional transpose layers to bring back the
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(a) Network configuration during training

(b) Network configuration during testing

Figure 5.14: The unrolled recurrent neural network (RNN) used for denoising. (a)
During training, the output of each hidden layer is compared to the target using
the mean squared error (MSE). The input at each hidden state is the target of the
previous hidden state. (b) During testing, the output of each hidden layer is used
as input in the next hidden state.

image to the appropriate dimension.The output (x̂) is then compared to the target

or clean image (x) using the mean squared error (MSE) loss function given by

MSE(x̂,x) =
1

|S|

|S|∑
i=1

‖x̂i − xi‖2
2, (5.9)

where S is the dataset and |S| is its cardinality.

Method II (Recurrent Neural Network). The second method incorporates
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the autoencoder of Method I in conjunction with the structure of a recurrent

neural network. Recurrent neural networks have been shown to be effective in

time dependent applications such as speech recognition, music transcription, scene

labeling and a variety of other applications requiring sequence learning [129, 147].

As far as the authors of this work know, this is the first time that this type of

architecture is being applied to the problem of denoising. The typical sequence to

sequence RNN can be described by the following equations:

at = b + Wht−1 + Uyt,

ht = tanh(at),

ot = c + Vht,

ŷt+1 = softmax(ot),

(5.10)

where b and c are bias vectors and U, V and W are weight matrices that map

the input yt to the approximation ŷt+1 using the hidden state ht from times t = 0

to t = τ .

We modify and adapt the standard formulation (5.6) to a stage-wise denoising

approach by treating the noise as a pseudo-temporal component. For a given signal

of interest (x) we create a sequence of noisy realizations {y0,y1,y2} where y0 is

the observation vector y, y1 is the realization with Poisson noise and y2 is the

downsampled realization without noise. We train the RNN through a sequence of

denoising steps. We use the autoencoder from Method I for denoising at each step,

which is modeled by the following equations:

ẑt = Et(yt,h
e
t ), and ŷt+1 = Dt(ẑt,h

d
t ),

where Et and Dt are the encoder and decoder from Method I with corresponding

weights he
t and hd

t , respectively, ẑt is the latent space representation of the image,

and ŷt+1 is the approximation to yt+1. The weights ht = [he
t hd

t ] are then

propagated to the next step, and the process is repeated. We illustrate this RNN

in Fig. 5.9.

The last noisy realization in the sequence y2 (the clean downsampled image)

is then upsampled to an approximation of the clean image x̂ using fully connected
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Figure 5.15: Numerical experiments on 5 images from the CIFAR-10 dataset. Row
1: Noisy input images y. Row 2: Reconstructions x̂AE using Method I. Row 3:
Final reconstructions x̂RNN using Method II. Row 4: Ground truth images x. MSE
values for both Methods I (AE) and II (RNN) are presented for each image.

layers. In a similar manner to the standard RNN, the approximations are all

compared to their target using the Mean-Squared Error (MSE). All MSEs are

summed and the loss is used to calculate the gradient across time with respect to

the autoencoder weights. During testing, we no longer have access to this series

of noisy realizations. In this scenario, we only provide the network with the initial

noisy realization y0. The reconstructions from the previous input is used as input

to create the next approximation (see Fig.5.9(b)). Once again, the final output in

the sequence is considered the clean downsampled approximation.
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Figure 5.16: Testing mean squared error for the recurrent neural network (RNN)
and the autoencoder methods. Note the better performance for the RNN approach
both in mean and variance.

5.4.3 Numerical Experiments

The architecture in Method I (AE) and in Method II (RNN) were all imple-

mented using Pytorch. Training and testing were performed using an NVIDIA

RTX 2080Ti. The networks were trained using the Adam optimizer [28]. In order

to evaluate the effectiveness of Methods I (AE) and II (RNN), we used a modified

version of the CIFAR-10 dataset [46]. This modification can be accurately viewed

from Fig. 5.13. The explanation of each realization in Fig. 5.13 is given in detail
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in Sec. 5.3.4.

The ground truth image is a modified CIFAR-10 32×32 pixel image. We modify

the image by representing the RGB image as a grayscale image. This image is then

downsampled to a 16×16 space using the convolution operator in Pytorch using

average pool operation. Then the Poisson noise is added, followed by the Gaussian

noise with a standard deviation of σ = 0.01.

We reiterate the procedure aforementioned for the reader’s convenience and illus-

trate it in Fig. 5.9.

Training: The images from each realization are fed as an input, and the realization

from the next image is used as a comparison for the MSE metric. For example, in

Fig. 5.13, the noisy and downsampled image y0 in Fig. 5.13(d) is fed as an input

and compared to y1 in Fig. 5.13(c) to obtain ŷ1 as output. Then ŷ1 is fed as an

input in the next cell of the RNN, whose output ŷ2 is compared to the noiseless

downsampled image y2 in Fig. 5.13(b). Finally, the ouput ŷ2 is upsampled and

compared to the ground truth image x in Fig. 5.13(a). This results in a final loss

function as

L = ‖x− x̂‖2 + ‖y1 − ŷ1‖2 + ‖y2 − ŷ2‖2.

Testing: A new image y0 is fed to the first cell, whose output ŷ1 is directly fed

to the next cell to obtain the downsampled but denoised image ŷ2. This image

is then upsampled using fully-connected layers to obtain the denoised upsampled

image x̂.

In contrast to the proposed approach, we feed the downsampled image with Poisson

and Gaussian noise to the autoencoder and achieve an upsampled image which is

directly compared against the ground truth. The reader should note that the

upsampling is done before the encoder procedure.

5.4.4 Results

Fig. 5.13 illustrates the various stages of the observation model described in

eq. (5.8). Fig. 5.13(a) is the ground truth image. Fig. 5.13(b) is the downsampled

clean realization of the ground truth. Fig. 5.13(c) represents the downsampled
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images with the Poisson image. Lastly, Fig. 5.13(d) represents the downsampled

image with Poisson image and added Gaussian noise.

In Fig. 5.12, we present representative results of our proposed RNNmethod (Method

II) in comparison to Method I, which is based on autoencoders. The first row

contains the noisy and downsampled input images for both Method I (AE) and

Method II (RNN). The second row of the figure represents the reconstructions

using Method I (AE). The third row represents the reconstructions using our pro-

posed method, Method II (RNN). The last row contains the the ground truth

images. Note that the independent MSE loss of the images using Method I (AE)

are noticeably higher than those of our method. Specifically, the average MSE loss

of the Method I (AE) is 1.2 × 10−2, while the average MSE loss of our method

is 7.9 × 10−3. For more details, see Fig. 5.16. The reader can additionally notice

that the structural integrity of the image is stronger in the reconstructions from

Method II (RNN) than from Method I (AE).

5.4.5 Conclusion
In this section, we proposed two architectures for image recovery from noisy

downsampled realizations. To the best of our knowledge, recurrent neural net-

works have not been used for image denoising and upsampling. The motivation

for its use comes from viewing the denoising of the Poisson-Gaussian realization

as a temporal process. The network traces back the steps that created the noisy

realization to arrive at the reconstruction. Experimental results show that the pro-

posed method outperforms classical methods in terms of MSE loss and can recover

more information from the downsampled realization. The proposed approach is

very intuitive in design and simple to implement with comparable space and time

complexity as the Autoencoder approach.
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Chapter 6

Summary Of Contributions
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Through this thesis we have explored various second order techniques in deep

learning and machine learning. We will now highlight the main contributions of

these approaches in this chapter.

In chapter 2, we proposed a Hessian-Free Trust-Region approach which uses

the Hessian information to minimize an approximation of the objective function.

The main contribution of this approach was to improve the minimizing iterates

without explicitly storing or inverting the Hessian information, but still using the

true Hessian information. using fast-exact Hessian-Vector products. We compare

the proposed approach to Stochastic Gradient Descent (SGD) and realize - even

with the same computational budget, the Trust-region Hessian-Free approach is

able to perform better in a range of data limited tasks, where the input dataset is

limited to fewer data points.

In chapter 3, we proposed an Adaptive-Regularized Cubics approach, which

uses a quasi-Newton approximation. In this approach, even thought we use an

approximation of the Hessian, the Limited-Symmetric Rank one (L-SR1) approach

is able to capture negative-curvature information, which is absent in other quasi-

Newton methods. In addition, due to the special-norm structure, we are able to

solve the cubic-regularized subproblem exactly. through rigourous experiment and

theoretical proofs, we have shown that the method is able to outperform many

state-of-the-art approaches.

In chapter 4, we combined the benefits of both, the quasi-Newton approxima-

tion and the exponential moving average moments and momentum of Adam, and

propose a quasi-Adam approach. The exponential moving average stabilizes the di-

rection by averaging over all the gradient directions at each iteration. At the same

time, the L-BFGS approximates the Hessian matrix, which contains the curvature

information. This motivates the iterate from getting stuck at saddle-points. The

computational overhead is also bounded since we only use 1 step and change in

gradient in the past to approximate the Hessian. Through experiments with differ-

ent datasets, deep learning models and with a comparable computational budget,

we were able to show the method is able to perform better in comparison to Adam.
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In addition to good optimization strategies, a well designed deep learning model

is just as important. We discuss a variety of these tasks Chapter 5.

In Sec. 5.1, we proposed a novel deep learning architecture to separate two

superimposed images. The chapter addresses a signal recovery problem - two

signals are multiplexed due to a common measuring instrument, which need to be

separated into the original signals. To address this issue, we proposed two deep

learning architectures - convoution based neural network model and a transformer

based model. Through experimentation, we were able to show that the proposed

approach was able to outperfom the convolutional neural network well, with a

smaller network footprint than the convolutional network. This demonstrates the

networks robust capabilities against the task.

In Sec. 5.2, we proposd a novel adversarial defense technique, to defend against

a white-box attack. We used a Radial-Basis Function to cluster the input space

and the output space. Given the input-space classes lie in a distribution, the true

images get clustered together while the different classes get separated from each

other. We detect the adversarial sample if the sample lies in one cluster in the

input class, but is classified into a different cluster once it is passed into a neural

network. To tackle the computational overhead induced by the clustering meth-

ods, the images are downsampled using a Discrete Cosine Transform. Through

experimentation, we were able to show that the proposed method was able to

significantly outperform an adversarially trained neural network.

In Sec. 5.3, we proposed a recurrent neural network architecture to address

the limited photon imaging problem. The main contribution of this approach is

to denoise a Gaussian-noisy images in stages instead of direct denoising, which

is more commonly adopted in an Autoencoder setting. This method is not only

able to denoise the images in stages, but also renders the intermediate stages of

the noisy images, which provides an additional depth in information while training

the networks. Through experiments, we were able to show the method is robust

against various levels of noise.

In Sec. 5.4, we proposed a recurent neural network architecture which is simi-

lar to the method proposed in Sec. 5.3. The network addresses a limited-photon
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setting for imaging with a low-resolution imaging apparatus. The recurrent neural

network addresses the denoising task in stages - it first tackles the limited pho-

ton imaging problem, followed by the low-resolution imaging apparatus. Through

extensive experimentation, we were able to show that the proposed approach is

robust against different noisy and compressed targets and was able to improve

upon an Autoencoder approach.
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Figure A.1: Fully Connected Neural Network (FCNN). Each white circle is
considered as a neuron, black lines represent the weights of the neural networks w.
The left most layer is the input layer, the middle column is the hidden layer and
the rightmost layer is the output layer.

Appendix A

Supplemental Material

A.1 Deep learning models

Deep learning encompasses a variety of neural network architectures and mod-

els, each tailored for specific tasks and data types. The concept of artificial neural
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networks (ANNs) dates back to the 1940s and 1950s, but interest waned in the

1960s. During this period, researcher Stuart Dreyfus (see [148]) explored the idea

of designing a these cascaded parameterized architecture, which is now referred

to as neural network. These networks had the capability of propagating errors

through the layers using computational methods.

A.1.1 Feedforward Neural Networks (FNNs).

Also known as Multi-Layer Perceptrons (MLPs), FNNs are the foundation of

deep learning. They consist of an input layer, one or more hidden layers, and

an output layer. They are used for tasks like image classification, regression, and

more. The network has a cascaded architecture of fully connected hidden layers,

which are followed by an activation function. An example of the neural network is

presented in Fig. A.1. Given the input dataset in (1.1), the following operations

are performed by the network:

zj =
d∑
i=1

wij · [xk]i + bj,

where [xj]i is the ith element of the kth observation, w ∈ Rl1×l2 is the weight

matrix, represented by the arrows from layer l1 going into l2, b ∈ Rl2 is the bias

vector for layer l2 and z ∈ Rl2 is the resulting output vector. This operation is

then followed by an activation function

aj = activation(zj).

Popular activation functions include tanh, ReLU, sigmoid etc. The number of

hidden layers l can be changed as per the requirements of the task.

MLPs were amongst the first networks in the deep learning space to have done

image classification. However, their use became limiting due to dense parameteri-

zation schemes and computational constraints. This gave way to a new variant of

deep neural networks called Convolutional neural networks.
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Figure A.2: Convolutional Neural Network (FCNN). Each square is an image
output after the filter is applied. The box in the middle of the squares is the filter
operation being applied.

A.1.2 Convolutional Neural Networks (CNNs).

Designed for image and spatial data, CNNs employ convolutional layers to

automatically learn features from data. They excel in tasks like image recognition,

object detection, and image segmentation. An example of CNN type architecture

is presented in Fig. A.2. Similar to FCNN in terms of construction, the network

has a cascaded architecture. However, the spatial information is extracted using

the convolutional operators. This operation is given by
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

 ∗
[
w1,1 w1,2

w2,1 w2,2

]
=

[
z1,1 z1,2

z2,1 z2,2

]
.

For input x ∈ Rw×h, and a weight matrix (also referred to as kernels in the context

of convolutional operations) w ∈ Rw′×h′ , the convolution operator ∗ performs

the operation zi,j =
∑
m

∑
n

xi+m,j+m.wm,n. The double summation over m and n

indicates over all positions in the input feature map that the convolution kernel

covers, and for each position, multiply the input value by the corresponding kernel
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value and accumulate the results to compute the output at position (i, j).

A.1.3 Recurrent Neural Networks (RNNs).

Tailored for sequential data, RNNs have connections that loop back on them-

selves, allowing them to capture temporal dependencies. They are widely used

in natural language processing, speech recognition, and time series analysis. Two

most commonly used neural networks are Long Short-Term Memory (LSTM)

and Gated Recurrent Unit (GRU) networks. We will be discussing about

LSTM networks below.

Long Short-Term Memory (LSTM) Networks.

A specialized type of RNN, LSTMs address the vanishing gradient problem

and are particularly effective for long-range dependencies in sequential data. They

find applications in language modeling, speech recognition, and more.

A.1.4 Autoencoders.

Autoencoders are unsupervised models used for dimensionality reduction and

feature learning. They consist of an encoder and decoder and are employed in

tasks like image denoising, anomaly detection, and data compression.

A.1.5 Transformer Models.

Transformer models, with architectures like BERT and GPT, have revolution-

ized natural language processing. They use self-attention mechanisms to capture

dependencies in text data and are applied in tasks like language understanding,

translation, and generation.

A.2 Optimization Techniques and derivation

Gradient descent’s history can be traced back to the early 19th century when

the French mathematician Augustin-Louis Cauchy first introduced the concept of
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gradient. However, it gained widespread recognition in the 20th century, par-

ticularly due to its application in numerical analysis, engineering, and machine

learning. The popularity of gradient descent in deep learning increased after the

advent of backpropagation in the context of neural networks.

The key innovation of backpropagation is often attributed to Paul Werbos, who

introduced the algorithm in his 1974 Ph.D. dissertation (see [149]). His work laid

the foundation for error backpropagation in neural networks. Through backpropa-

gation, users were able to efficiently compute the gradients of the loss function with

respect to the network’s parameters, enabling the iterative adjustment of weights

and biases to minimize the loss.

So why is the gradient information important in minimizing the loss and ad-

justing the weights ? To answer this, we look at the Taylor series expansion of L
in (1.1). With a slight abuse of notation, the loss function may be rewritten as

L(xi,yi, ŷi; Θi) ≡ L(Θi). For some step s ∈ Rn in the parameter space Θi ∈ Rn,

we can write the Taylor series expansion as

L(Θi + s) = L(Θi) + s>gi +
1

2
s>His +O(ξ3),

where gi ∈ Rn is the first-order derivative (gradient) of L with respect to Θ

∇ΘL, Hi ∈ Rn×n is the second-order derivative (Hessian) of L with respect to Θ

∇2
ΘΘL. The O(ξ3) term represents all higher order terms. With some replacement

of terms ∇2
ΘΘ = ∇2 and ∇Θ = ∇, we define Taylor’s theorem below.

Theorem A.2.1. For a continuously differentiable function L : Rn → R and some

step sn,

L(Θ + s) = L(Θ) + s>∇L(Θ + ts),

where t ∈ [0, 1], holds. Moreover, if L is twice continuously differentiable,

∇L(Θ + s) = g>s +

∫ 1

0

∇2L(Θ + ts)ds

and

L(Θ + s) = L(Θ) + g>s +
1

2
s>∇2L(Θ + ts)s, (A.1)

where t ∈ [0, 1].
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The iterative strategy for updating the weights of the neural networks, given

by

Θi+1 = Θi + s, (A.2)

where s is the step taken such that L(Θi + s) < L(Θi). In order to do this,

we define the first-order and second-order conditions about the behaviour of the

function L at Θ + s. We make the following mild assumption:

Assumption 3. We assume L to be continuous and twice differentiable. This

means, ∀Θ ∈ Rn, there exists L(Θ) ∈ R, ∇L(Θ) ∈ Rn and ∇2L(Θ) ∈ Rn×n.

Theorem A.2.2. If Θ∗ is a local mimizer of L, and if L is continuously differen-

tiable in an open neighbourhood of Θ∗, then ∇L(Θ∗) = 0.

Theorem A.2.3. If Θ∗ is a local minimizer of L and assumption 3 holds, then

∇L(Θ∗) = 0 and ∇2L(Θ∗) is positive-semidefinite.

Theorem A.2.4. Suppose ∇2L(Θ) is continuous in the neighborhood of Θ∗ and

∇L(Θ∗) = 0 and ∇2L(Θ∗) is positive-definite, then Θ∗ is a strict local minimizer

of L.

The proofs of these theorems can be found in [21].

A.2.1 Second-order Methods:

Using theorem A.2.4, if we define Θ∗ = Θ + s, the expression of s by applying

A.2.3 in the Taylor series expansion given in theorem A.2.1 is given by

s = −[∇2L(Θi + s)]−1gi. (A.3)

It can be a daunting process to find ∇2L(Θi + ts), especially when the value of

t is not available beforehand. To reduce this difficulty, we substitue t = 0 in A.1

and use the qudratic approximation of the function L, which is given by

L(Θi + s) ≈ L(Θi) + g>i s +
1

2
s>His. (A.4)
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For this approximation, the step s is given by

s = −[Hi]
−1gi. (A.5)

This step is most commonly referred to as Newton’s step or Newton’s direction.

Thus, the iterative step definition of a Newton’s method is given by

Θi+1 = Θi − [Hi]
−1gi,

Based on this step definition in (A.5), we list the potential advantages and

disadvantages of using this Hessian information.

Advantages:

• The Newton’s method enjoys quadratic convergence. This means, the gradi-

ent at the new iterate ‖∇L(Θi+1)‖2 ≤ 2L‖[∇2L(Θi)]
−1‖‖∇L(Θi)‖. For more

details on this proof, see [21]. Hence, the norms of the gradients converge to

0 quadratically.

• The step exploits curvature information of the function. The curvature in-

formation suggests if the function Hessian information is positive-definite

or non-positive definite. Hence, the step is able to exploit this curvature

information to arrive to the minimizer.

Disadvantages:

• For large-scale non-convex problems like neural-networks, it is computation-

ally difficult to store the Hessian information. Most of the mordern neural

networks are of size n = 1× 106 parameters. This would mean, the Hessian

matrix would have entries of the order O(n2) (n = 1 × 1012). Thus, this

quadratic dependence of the Hessian matrix on the model parameters makes

storing it intractible.

• The matrix inversion operation can be computationally expensive. The com-

putational complexity of a network with n parameters is of the order O(n3).

Hence, computing this inverse is also very costly.
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• Since L is highly non-convex and nonlinear, the Hessian can be singular or

negative-definite. This means, the inverse of the Hessian may yield highly

sub-optimal solutions.

Since the disadvantages outweigh the advantages, researchers resorted to sim-

pler techniques for optimizing neural networks. We will see the foundation for this

approach in Sec. A.2.2

A.2.2 First-order Methods:

First-order methods use the gradient information to optimize the objective

function (1.1). Also commonly known as Gradient Descent and Steepest descent,

gradient-based appraches are one of the most common approaches of optimizing

neural networks in a deep learning setting. The usage of these methods became

widespread after backpropogation was introduced to a deep learning setting (see

[150, 151]).

So what is gradient descent ? And how is it derived from (A.4) ?

If we replace the Hessian information with an identity matrix, the update (A.5)

is reformed as

Θi+1 = Θi − η[I]−1gi,

where I ∈ Rn×n is the identity matrix. Thus,

Θi+1 = Θi − ηgi. (A.6)

Here η is referred to as the learning rate of the optimization scheme.

The update defined in (A.6) is the foundation for most gradient-based opti-

mization techniques. Almost every mordern first-order approach has evolved from

(A.6). The gradient descent approach can be viewed as analogous to a line-search

approach, where −gi yields the direction of steepest descent and η is predeter-

mined.

Now, let’s understand the advantages and disadvatages of using this approach.

Advantages:
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• gi is fairly easy to compute. It is asymptotically equal to one forward-pass

through the neural network.

• gi is fairly easy to store. It requires only O(n) memory.

• In practice, first-order approaches always converge to the minimizer even-

tually.

Disadvantages:

• The method suffers slow and linear convergence. Let assumptions 3 hold, and

the iterates be defined by (A.6). Given the Hessian matrix at the minimizer

L(Θ∗) is positive definite, λ1 ≤ λ2 ≤ λ3 · · ·λn, where λj for j ∈ [0, n] are the

eigenvalues of the Hessian matrix Hi, we define

r ∈
(
λn − λ1

λn + λ1

, 1

)
.

For sufficiently large i, L(Θi+1)− L(Θ∗) ≤ r2[L(Θi)− L(Θ∗)]

• The gradient-based approaches are always susceptible to saddle-points. Sad-

dle points are not minimizers (either local or global) of a function. These

point are just locations on the contour of the manifold where the norm of

gradient ‖gi‖ is zero or approaching zero.

This motivates the question - Is there a way to combine the advantages of a

first-order approach and a second-order approach ?

In the next section, we will be discussing Quasi-Newton approaches
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