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ABSTRACT OF THE DISSERTATION

Software Configuration Learning and Recommendation

by

Jiaqi Zhang

Doctor of Philosopy in Computer Science

University of California, San Diego, 2014

Professor Yuanyuan Zhou, Chair

With software systems becoming more and more complex and configurable, fail-

ures due to misconfigurations are becoming a prominent problem. In addition to the

severe consequences such failures can cause, the diagnosis process can be difficult and

costly. Besides, configurations also heavily affect the system performance. The selec-

tion of optimal configuration settings to achieve high performance is thus desired but

usually takes a long time. This paper presents the efforts to help with the system correct-

ness and performance problem by configuration analysis.

To tackle the correctness problem and automatically detect software Misconfig-

xiv



urations, we take into account two important factors that are unexploited before: the

interaction between the executing environment and the configuration file, and the rich

correlations between configuration entries.

We leverage the fact that with the emerging cloud virtual machines, more system

data than just the configuration files are accessible. With the training data enriched with

whole system information, our tool learns multiple aspects of the configuration files

from the whole system stack, and thus is able to deal with a much broader range of

configuration errors. At the same time, our tool provides a highly customizable interface

that helps fully utilize users’ domain knowledge, making the learning phase adaptive

and effective. Results show that EnCore is effective in detecting both injected errors and

known real world problems. In addition, it finds 37 new misconfigurations in 25 existing

Amazon EC2 public images, as well as 24 new configuration problems in 22 images in

a commercial private cloud. These previously undiscovered errors can cause problems

in various aspects such as service unavailability and security issues.

While correctness standard is usually consistent across different platforms and

thus can be learnt with a large data set, different systems usually need different config-

uration settings to achieve high performance according to their specific characteristics.

Therefore only learning the configuration values is not enough. Previous works try to

automatically select the optimal configuration settings by trying out the whole space.

However it usually takes a long time. We significantly reduce the computation time by

analyzing the correlation and constraints of performance settings from source code.

xv



Chapter 1

Introduction

To adapt to different execution environment, and meet different requirements,

software (especially complicated ones) usualy requires the users to configure it before

running. Some examples of such configurations could be the directory to store the data

files in a database system, the number of tasks the system is allowed to run in parallel in

a webserver, and the maximum size of the file that could be uploaded by the users.

However, as software systems become more flexible and feature-rich, their con-

figurations have become highly complicated. For example, MySQL, Apache httpd

server, and Hadoop have over 300, 200, and 200 configuration entries respectively [2,

7, 4]. As a result, correctly and optimally configuring software systems to achieve high

performance or even correctness, has become a highly complex task, and mannual con-

figurations often introduce errors and sub-optimal settings [33, 58, 61]. Without a pro-

priate helper, the complexity has severely affected the data center systems in terms of

both reliability and performace.

1.1 Configuration Correctness

Due to the large amount of configurations the administrators need to deal with,

the chance to make mistakes is very high. For example, a configuration error can be a

non-existing directory set to be the storage path, or two values that break the intended

1
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relations such as equality.

Studies show that configuration errors are both common and highly detrimen-

tal to business [62, 58, 40, 41]. For example, it is reported that misconfigurations are

the second major cause of service-level failures at one of Google’s main services, right

after hardware failures [22]. Many recent system failures from Microsoft Azure, Ama-

zon EC2, and Facebook, are also the consequence of misconfigurations, and affected

millions of their users [49, 36].

The damages of misconfigurations come from two aspects: the lost business due

to system unavailability, as well as the amount of cost spent to fix them. While the first

one seems obvious [6, 30], the second one, althought not equally well recognized, also

brings a signficant burden for a company. In one particular case of a large commercial

corporation, misconfiguration has contributed to as many as 27% of the trouble tickets

in the customer support database, wasting a large amount of development time [62]. The

situation is exacerbated by the fact that many organizations impose security and perfor-

mance policies for best practices. Configuration settings that are otherwise valid from

a functional perspective may not conform to these policies, leading to security flaws

or performance anomalies. Detecting such sub-optimal configurations is also highly

desirable.

Most of the time people rely on the software logs to locate and fix the failures.

However, it is reported that most of the errors caused by configuration settings do not di-

rectly pinpoint the corresponding configuration entries [58]. For example in Figure 1.1,

while (b), (c), and (d) all have some loggings, but they do not show any hint of the

configurations that are their root causes.

Some existing works try to address misconfiguration problem by helping the

users to diagnose the failure [21, 19]. However, these approaches, as troubleshooting

tools, need first have the failure happen, which means the damages are already done,
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Figure 1.1. Examples of misconfigurations from real world. Note that while the first
problem can be directly told from the missing value, it is not applicable to the later three.
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and thus is often avoided as much as possible.

A promising approach for taming the configuration problem (or the configura-

tion hell as described in [61]) is to automatically check a set of configuration settings

for potential errors before deployment, just as one would normally do with application

source code. However, most configuration files used today lack the rich structural and

semantic information available in programming languages, which enable sophisticated

analysis for errors [58, 56].

To overcome the limitation, researchers have tried to attack the problem of mis-

configuration detection by learning, for each configuration entry, the common values

used in a large collection of configurations (i.e. the training set), and flagging those val-

ues that are different from the common ones as potential misconfigurations [59, 58, 47].

They pioneered the approach of learning from other existing configured systems, and

have shown its effectiveness. They typically have a genetic database of the configuration

files. To check a target file, a diffing is performed with the existing ones, and statistical

models or huristics are used to filter out the noise and find the suspicious values.

While proven useful in some scenarios, the potential of these tools [59, 58, 47]

is greatly limited due to the simplistic treatment of each configuration setting as a string

literal in isolation. Configuration settings bridge applications to their operating envi-

ronment. Therefore, the diagnosis and remedation of the misconfigurations requires

reasoning across both sides.

Figure 1.1 shows several real-world misconfigurations, neither of which can be

detected with existing approaches. while the first problem can be directly told from the

missing value, it is not applicable to the later three: (a)the value varies widely in the

training set, (b) this entry does not appear in the software’s configuration file, and (c)

the values are very common in the training set that none are considered to be abnormal.

The root causes of (b), (c) and (d) are hidden in either the environment factors (b and c),
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or the correlation between two configuration entries (d).

In Figure 1.1(b), extension dir specifies the location of the extension libraries.

While it should be a directory, the user incorrectly supplied a regular file. Existing ap-

proaches that detect errors by relying on anomalies in the configuration values cannot

detect this error because the value of extension dir often varies across a set of sam-

ples and hence cannot be meaningfully considered as an anomaly [58]. However, by

analyzing a set of sample values for this setting in the context of the executing system,

one can detect that the value should be a directory and not a file. Figure 1.1(c) shows

the example where the configuration entry is not for the software, but rather the whole

system setting. Detecting it requires the knowledge of the environment instead of the

software itself alone.

In the example shown in Figure 1.1(d), datadir points to the directory where

MySQL stores the table data, and user specifies the system user id with which MySQL

operates on the data. MySQL requires that the user mysql should own the datadir,

while in this example this is not the case in this example. Existing methods that com-

pare the values of these configuration settings across a set of samples cannot detect this

error because detecting this error requires reasoning along two dimensions: (i) correla-

tion between multiple configuration settings – correlating user and datadir, and (ii)

validation of the configuration settings in the context of the system (environment) they

are used – checking in the system if datadir is owned by user mysql.

In order to detect the misconfigurations that are not explicitly reflected in their

text values, we need to broaden the scope of the analysis and look beyond single con-

figuration settings. Based on our observations (described in Section 2.1) we propose to

widen the analysis to include two important factors: (i) multiple configuration settings

and (ii) the execution context or environment.

Cloud computing and related technologies such as virtual machine images have
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made it possible to easily capture and analyze the execution environment of systems.

This ability has enabled researchers to view systems as structured data [28]. Our ap-

proach embraces this view of systems as data and exploits it to extract the environment

information relevant to configuration settings in a system.

1.2 Configuration Performance

Performance is critical to every software users. Especially for the online services,

most of the time, it means the amount of profit they can make from the services [35, 12].

Therefore, maximizing performance is one of the major goals in software deployment,

especially for server softwares, where the resources are always limited compared to the

workloads.

The performance of such softwares heavily depends on appropriate configura-

tions [16, 17, 23, 60]. For example, reports show that even when adjusting only one or

two configuration parameters, the software performance can have a difference of 2 or 3

times [9].

Tuning the software performance is a non-trivial task that costs large amount of

time, even for expert users [37, 24]. It is caused by three major factors: 1) The number

of tunable configuration parameters of a server software is often huge [55]. For exam-

ple, Mapreduce has over 100 parameters, while MySQL has over 300. 2) There are

many possible values for each parameter, and 3) The parameters may have implicit de-

pendencies on each other. For example, the datadir parameter in MySQL corresponds

to an existing directory in the file system, and the value of max wal senders should be

smaller than that of max connections in PostgreSQL.

Automatic performance tuning is an ideal way to save the users from the long-

lasting trial-and-error tuning cycles [17, 23, 24]. However, current automatic tuning

tools usually assume that they already have the target set of parameters to tune as well as
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their value range, and focus on selecting the optimal values from the given configuration

parameters, and do not address the above-mentioned problems. This is largely because

they treat the software as a black box [24], and thus the only way is to perform the trial

cycles.

Treating the software as a black box significantly limits the capability of an

automatic tuning tool in several ways: 1) it cannot perform the first step of selecting

the relevant parameters from hundreds of configurable parameters, leaving the work to

the users. Table 4.1 shows the number of parameters and the performance-related ones.

Without the knowledge, the tuning phase may either waste large amount of time trying

parameters that do not affect the performance, or still requires the experts to select the

tuning candidates. 2) it does not adapt to the software evolution, where the meaning or

even existence of the parameters may change and the old configuration rules may not

apply. 3) The generated configurations may break the dependencies of the parameters,

and may cause the malfunction of the software or wasting time on invalid configurations.

There are a few works that treat the software as a white box [37, 17, 16]. How-

ever, they all focus on just one application which they know all the details in their exe-

cution, and the methods may not be applicable to the others.

1.3 Contributions

The contribution of this dissertation deals with the configuration correctness and

performance problems that are related to software configurations. The misconfiguration

detection is a general four-step methodology that enables the utilization of system con-

text information and learning from peers to automatically analyze configuration files, to

generate rules that are otherwise hidden from the users, and to apply them to the check-

ing of new configuration files. Specifically, this methodology involves the following

contributions:
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1) With a learning set enriched with environment information, we automatically

infer configuration entry types, based on both predefined and user-specified guidelines.

The type inference serves two purposes: inferring type related rules, and providing the

base for correlation rule inference. As far as we know, this is the first work to utilize the

system context to help accurately infer the configuration entry types.

2) We seamlessly integrate the environment information to the configuration files

by extending the eligible configuration entries that carry context semantics. The eligibil-

ity of a configuration entry is decided by its inferred type, depending on which various

possible extensions are appended to the original entry. For example, we add an exten-

sion of permission to entries that are of type FilePath. The benefits of the integration are

twofold: 1) the correctness of a single configuration entry can be examined from multi-

ple dimensions instead of only its value, and 2) the extended information can be further

utilized in later correlation detection. As for as we know, this is the first work to integrate

system information into the original configuration files for correctness checking.

3) We build a highly extensible data analysis framework to learn the correlation

rules from the training set. In addition to a predefined set of templates for the learning

process, it provides a simple and extensible grammar that allows users to freely specify

any other learning templates. It effectively incorporates users’ domain knowledge into

the learning process to significantly improve learning efficiency as well as accuracy. The

grammar allows users to select the entries efficiently, to specify the desired combination

actions, and to choose the comparison methods. The configuration entries are specified

based on their types, which carry rich semantic information. Compared to selecting the

attributes one at a time, it is much more efficient and easier to reason. The results are

further filtered with various metrics.

4) We provide a configuration file checker. It utilizes the type, correlation, and

value information learnt from the previous steps, and apply them to the checking of



9

misconfigurations in the new systems. Similar to the learning step, it also takes the

environment information in the target system into consideration, and compares them

with the training set.

5)We evaluate the prototype of our work with three server applications: Apache

httpd server, MySQL, and PHP, using images crawled from Amazon EC2 as the training

set. The results show that it is effective in detecting both real world misconfigurations

and injected ones. In addition, it detects 37 new misconfigurations in 25 EC2 public

images, as well as 24 new misconfiguration in 22 images in an IT company’s private

cloud. These previously undiscovered problems could harm the systems in different

ways.

6) We describe a framework that generates performance related configuration

parameters and their corresponding constraints, by analyzing the software source code.

These information is to be used by any existing automatic performance tuning tools to

improve their effectiveness, or to users to have a better knowledge of how the parameters

may impact the performance.

Chapter 1, in part, is a reprint of the material as it appears in 19th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems. Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-

anth Bala, Tianyin Xu, and Yuanyuan Zhou. The dissertation/thesis author was the

primary investigator and author of this paper.



Chapter 2

Findings and Design Principles

In this section, we elaborate the findings that motivate and influence the design

choices of EnCore and iOpt . Our design principles derive from observations made in

two exercises: the study of configuration entries, and our experience in applying off-the-

shelf data mining techniques for misconfiguration detection.

2.1 Characteristics of Configuration Parameters

To understand the use and importance of the environment information and cor-

relations between configuration entries, we manually studied the configuration entries

in 4 representative server applications – Apache, MySQL, PHP, and sshd. In this sec-

tion, we describe our key observations on the correlation characteristics, which validate

the prevalence of the phenomena, and motivates EnCore . Together with the examples

in Figure 1.1, they show the benefits of exploiting the environment and correlation in

misconfiguration detection.

Finding 1: Configuration entries are not isolated, but have relation to the execution

environment.

In our study, many configuration entries connect the application functionalities

to its execution environment, and the values of these configuration entries are associated

10
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Table 2.1. Number (percentage) of configuration parameters that are associated

with environment and correlations. Apache includes the entries of two main modules:
core and mpm; PHP includes the core entries; MySQL’s entries are randomly sampled.

Apps Total Studied Env-Related Correlated

Apache 94 29 (31%) 42 (46%)

MySQL 113 19 (17%) 31 (27%)

PHP 53 16 (30%) 20 (38%)

sshd 57 12 (21%) 29 (51%)

with the properties of the environment. In other words, these configuration values should

not be seen as arbitrary strings. Rather, they reflects the system properties, and have rich

semantic information. This is the key characteristic that distinguishes them from other

program variables.

Although neglected by most existing work, the environment information is criti-

cal for detecting a range of configuration errors. Taking the example in Figure 1.1(b), if

a misconfiguration detector catches the fact that extension dir should be a directory in

the file system, it can easily identify the one in Figure 1.1(b) as an anomaly since it is

not a directory.

Table 2.1 shows the statistics of configuration entries whose values refer to sys-

tem environment objects in the studied applications. For sshd, we studied all its con-

figuration settings. For Apache httpd server and PHP, we selected all the settings for

the main module. We also randomly selected over a hundred entries from MySQL. We

studied a total of 317 configuration entries. The second column shows the number of

entries that are related to the environment, and the third column shows the number of

entries that correlate with each other. From the data, it is obvious that a significant por-

tion, more than 20% of the configuration entries, point to environment objects. With the

abundant environment information we can extract from systems, there is great potential
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for exploiting them in misconfiguration detection.

Finding 2: Many configuration entries are correlated.

From Figure 1.1(b), we have seen that the setting of one configuration entry

depends on the setting of the other entries, or the environment objects. Thus, the cor-

relation information is essential for correctly setting these configuration entries and for

detecting errors. Though some types of correlations (e.g., the equality and inequality)

can be observed in the textual values, many correlations are often indirect or even im-

plicit. For example, in Figure 1.1(b), the correlation between datadir and user goes

beyond the textual values and requires one to understand the semantics of the two en-

tries.

As shown in Table 2.1, around one third to half of the configuration entries have

correlation with each other. This indicates that the correlation among configuration

entries should be an important component in a misconfiguration detection tool. Unfor-

tunately, impaired by treating configuration values as textual strings, the state-of-the-art

detection tools are limited and unable to leverage these correlation information.

2.2 Challenges in Applying Data Mining

Since our goal is to extract the configuration correlations, either with the exe-

cuting environment or between different configuration entries, the straightforward idea

is to apply data mining methods to learn the association rules, as proposed in [47] and

shown to be effective in other works [63].

We started out by trying to use off-the-shelf data mining methods (association

rule mining) on our configuration data set. Among the various methods, association rule

detection is suitable for our purpose of Since our target is to learning the configuration

correlations. instead of classifying the systems, the suitable methods for us is the asso-
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ciation rule detection methods. It is used to discover the deterministic relations between

different attributes in the given data. In our case, they are all the values configuration

entries may carry, as well as the integrated environment data. Assuming I is the set of

the items that appear in the data set, the formal definition of an association rule is an

implication of the form X =>Y , where X ⊂ I, Y ⊂ I, and X ∩Y = /0. It has two threash-

old to restrict the generated rules: confidence c% means c% of the instance of the data

(configuration files, in our case) that contain X also contain Y , and support s means the

proportion of the configuration files that have X ∪Y . Increasing s and c helps filter the

noise and produce more accurate results. Therefore, in our case, we want to use the

association rule detection to help identify the possible rules that if some of the attributes

are specified as certain values, other attributes should be specified in certain ways.

We tried standard association rule mining algorithms including Apriori [46] and

FP-Growth [31] provided by two widely used data mining tool sets – Weka [15] and

RapidMiner [11]. They are commercial-strength tools used by both researchers and the

industry. Weka is widely used as a data mining research platform that integrates many

existing algorithms from the preprocessing of the data (such as value format transfor-

mation and filters) to the learning methods. It takes a csv file as input and generates

classification results or learnt rules depending on the algorithms selected by the users.

For each algorithm, it has its limited input format requirements as well as the possible

parameters that could be set by the users. RapidMiner is a commercial-strength data

mining software that is claimed to be deployed in thousands of applications in over 40

countries. Like Weka, it provides various different algorithms from the very front end

that filters the data to the end where user selects the data mining algorithms. It provides

a more elegant user interface that helps the users design and save the analysis flow, and

preview the intermidiate results.

In this section, we describe our experience and findings of applying these data
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mining methods on the configuration data and motivate the design choices of EnCore.

In the discussion, we mainly use the results from FP-Growth as Apriori does not scale

to large data sets [34, 48]).

Finding 3: The state-of-the-art mining algorithms are not scalable to handle the

scale of configuration settings.

Configuration files (especially after augmented with system information) usu-

ally contain a large number of settings, which are turned into attributes in data mining

algorithms. Table 2.2 shows the number of configuration settings (in terms of columns)

in the studied software. “Original” is the number of attributes originated from the con-

figuration files. “Augmented” is the number after environment infomation integration.

“Binomial” is the number after conversion from nominal data to binomial. While the

number of unique configuration entries are limited, the mining algorithms treat each

occurrence of an entry as a different attribute. Further, the addition of environment in-

formation as additional attributes (described in Section 3.2) increases the total number

of attributes. At the same time, Apriori and FP-Growth suffer from the boolean dis-

cretization problem [53] – before the mining process, the nominal attributes need to

be discretized into boolean values, which causes a dramatic growth in the number of

attributes.

Table 2.3 shows the execution time and size of the intermediate frequent item

set for Apache, MySQL and PHP, where the number of settings range from 100 to 200+.

With more than 200 attributes, some experiments are terminated with Out Of Memory

(OOM) exception. The entries are randomly selected. The number of attributes refer to

the scale involved in the mining after adding enviornment attributes and discretization.

The experiments were carried on a server with 8 processors and 16GB of memory. Note

that when the number of settings increase, both the execution time and the size of fre-
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Table 2.2. The number of attributes generated using data mining methods in the

studied software.

Apache MySQL PHP

Original 5773 175 1672

Augmented 9853 555 1942

Binominal 12921 859 2374

quent item set increase exponentially, making it impossible to reason about the results

or even finish the experiments.

Feature selection (and reduction) is a common technique used to attack the

scalability problems of data mining methods. There are two approaches: (i) scheme-

independent selection and (ii) wrapper methods that involve the machine learning meth-

ods themselves to decide the useful attributes. Neither of these two schemes can directly

help reduce the number of attributes in our case. The first method requires the users to

select attributes based on domain knowledge [18]. Although both Weka and RapidMiner

provide interface for such selection, it is not possible for the users to choose from hun-

dreds to thousands of configuration attributes without any clue on what might be a better

combination. The second method, data mining techniques developed to wrap themselves

in the attribute eliminating process [51, 25], are mostly useful for classification purposes

and are not suited for the correlation learning.

In summary, off-the-shelf data mining techniques do not scale well to the large

number of attributes in the configuration data enriched with environment information.

We attack this scalability challenge in EnCore by using a type-based and template-

guided approach to learning. As described in Section 3.3.1, EnCore effectively ad-

dresses the scalability problem by restricting the types of the involved attributes and

limiting the rule types; it also expresses the various correlations by providing different

learning templates.



16

Table 2.3. Time cost (in seconds) and size of frequent item set with different number

of attributes.

entries
Apache MySQL PHP

attrs time(s) freq. attrs time(s) freq. attrs time(s) freq.

100 219 0.15 6K 217 0.13 13.9K 150 0.52 6K

150 436 1.6 173K 286 62 3.8M 235 3.8 542K

175 503 170 14M 315 358 10M 279 106 4.9M

200+ 554 OOM - 343+ OOM - 336+ OOM -

Finding 4: Frequent-item-sets style relations are not expressive enough to describe

domain-specific correlations.

In the data mining community, correlations among different objects are usually

described using frequent item sets or linear regression models. While they are sufficient

in describing co-occurrence (things likely appearing together) and linear relationship of

objects, they cannot capture the complex relations between configurations. For example,

a “directory” configuration entry could be concatenated with another “file name” entry

to form a “file path” entry; the file specified by the “file path” entry can be owned

by the user specified by a “user name” entry. Clearly, these complex domain-specific

correlations cannot be expressed by frequent item sets. This motivates the need for

new techniques to learn the correlations among configuration settings. As described

in Section 3.3.1, EnCore addresses this challenge via rule templates that capture the

complex correlation patterns (not actual correlations, but patterns of correlations).

Chapter 2, in part, is a reprint of the material as it appears in 19th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems. Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-

anth Bala, Tianyin Xu, and Yuanyuan Zhou. The dissertation/thesis author was the

primary investigator and author of this paper.



Chapter 3

Misconfiguration Detection with En-

Core

3.1 System Architecture

Based on the above observations, we propose a framework and tool, called En-

Core , which incorporates both system environment information and the correlations

among multiple configuration entries to effectively and efficiently infer the best-practice

rules from the the configured systems. These inferred rules are further applied by a con-

figuration checker to detect configuration anomalies.

As depicted in Figure 3.1, EnCore has four major steps: data collecting, data

assembling, rule inferencing, and anomaly detection. This section briefly describes each

component.

3.1.1 Data Collector

The data collector gathers the necessary information from the training set (a set

of configured systems). Its output is the raw data including all files relevant for analysis,

as well as additional environment information in text format. Since the input is a set of

systems, the collector works as a crawler that copies data from each of the them. It can

be either a static file system reader that directly reads data from a virtual machine image,

17
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Figure 3.1. The architecture of EnCore . Both of the data assembler and the rule
inference can be customized by users optionally.

or as in our case, a crawler that automatically copies data back from the target system.

Since we assume the users of EnCore are mainly administrators in an enterprise

environment, or can utilize publicly available images such as EC2 like us, privacy is

not of concern. But if needed, techniques such as FTN [57] can be used to alleviate the

issue.

The data collector provides an interface for the users to specify any additional

files to be included or commands to be executed during the crawling. By extending

the crawler, it is easy to include any other environment factors such as environment

variables and other files of interests.

3.1.2 Data Assembler

The data assembler first parses the collector’s output and converts them (both

configuration files and environment data) to uniform key-value pairs. It then infers the

type of each configuration entry, which forms the foundation of the EnCore analysis

framework, as all subsequent analyses incorporate the type information. Each config-

uration entry is then augmented with the additional environment information collected

from the system. The assembler relies on a set of heuristics to infer the predefined types,

but it also accepts an optional user input file that specifies heuristics to infer new types.
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The details are described in Section 3.2.

After data assembly, the environment data and the original configuration entries

are integrated together, and treated equally in the following components. Therefore we

use “attribute” to refer to both of them in the following sections.

One critical step in data assembling is to extend the configurations with the en-

vironment information. , which is one of our key ideas. It happens after inferring the

type of each configuration entry, which provides references for the environment data

integration and is the base of the analysis framework.

3.1.3 Rule Generator

EnCore learns the best-practice configuration rules deployed in the training set

by employing a variant of supervised learning. In order to address the challenges dis-

cussed in Section 2.2 and cater the learning process for the characteristics of configura-

tion files, EnCore utilizes the rule templates, either predefined or user specified, to guide

the learning process.

The templates specify the possible relationships (e.g. association rules or file

ownership) among configuration entry types, not entry values. Thus, a small set of

templates can cover a wide range of concrete rules. Section 5 shows that a total of 79

concrete rules are generated from the 11 predefined templates in 3 applications. They are

aimed to capture the common possible correlations among the augmented configuration

entries, such as the association rules or the file ownership relations, and are tailored to

the concrete rules with specific configurations by learning from the training set. The

semantic meaning of an example template is ’whether an entry of type UserName is

always the owner of another entry of FilePath’, ’whether an attribute of type file path is

always a subdirectory of the other attribute of type file path’.

The template concept is similar to that of [29], but is more formalized with con-
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cise grammar (as shown in Figure 3.6) to facilitate the users if they want to provide their

own templates.

In our system, a template consists of four parts:

• The slots to be filled with concrete configuration names

• The type of each slot

• The combination of different slots

• The relationship between combinations of slots

An instance of the template is a concrete rule that has the slots filled with the entry

names. For example, the following template

[A<FilePath>]=>[B<UserName>] T1

specifies that ‘an entry of type UserName is the owner of another entry of type FilePath’,

where the types are inferred in the previous step. Based on the given templates and

input key-value pairs, the rule generator iterates over all the possible combinations of

attributes and selects concrete rules that best fit the templates. A concrete rule has the

placeholders (e.g. A and B in T1) filled with concrete attribute names.

This step also prunes possible false rules with multiple filters. The output of the

inferences are the rules that can be utilized by the anomaly detector. More details are in

Section 3.3.

3.1.4 Anomaly Detector

The anomaly detector detects the rule violations in the configurations of the tar-

get systems. Its input is the rules, the type information, and the target systems. It outputs

warnings whenever it finds an anomaly, such as a violation of a correlation rule, a wrong

type, or a suspicious value. The results are ranked based on the type of the violation
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Figure 3.2. Use of EnCore.

and the underlying independent statistical model. Since the checking and the learning

are cleanly separated, the learned rules can be reused to check different systems. More

details are in Section 3.4.

3.1.5 Where and how to use the proposed tool

EnCore can be used either after a new system is configured, or after a failure

happens. As shown in Figure 3.2, the user inputs the training set to EnCore together

with the system to be checked. EnCore reports warnings that pinpoint to the potential

problematic configuration entries. The usage scenario is similar to that of other mis-

configuration detection tools [58, 59], except that the user can also optionally provide

EnCore with additional types and templates that are specific to the user’s environment.

to consider, depending on how thoroughly the user wants EnCore to check the system.

3.2 Data Assembler

The data assembler takes the raw system files including the target configuration

files, as well as the system environment information such as metadata of files in the

file system, system configurations, and hardware specifications. It parses these files,

infers the types of configuration entries, and augments each configuration entry with

the environment information according to its type. The output is a set of well formed
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key-value pairs. Figure 3.3 summarizes the process.

3.2.1 Parsing Configuration Files

The data assembler first converts the configuration files from application-specific

format to uniform key-value pairs. We build the parser on top of Augeas [39], a general

configuration file parser supporting various software configuration formats.

It takes the text configuration file as input, and outputs a tree structure, where

each node represents a configuration entry, with the configured value being its value.

Each level of the tree structure in the key corresponds to a section in the configuration

file. If there are multiple occurances of one entry, they are assigned with a serialized

number. By recursively iterating the tree structure, it is trivial to get a set of key-value

pair, where the key is the XPath leading to the node. For example, in Apache, the value

of a Directory entry in the third IfModule section is named /IfModule[3]/Directory/arg.

Entries that carry multiple values are automatically separated into multiple nodes.

The use of Augeas largely eliminates the requirements for the users to parse

the configuration files. However, in case the configurations of certain software are not

covered, Augeas provides an extensible interface to import other parsers, enabling users

to easily import their own configuration parser into EnCore . Some software vendors

also provide tools for the parsing process [13]), and can also be utilized by EnCore as

long as the output format complies to EnCore ’s requirements.

After parsing the configuration files, the assembler stores and organizes all the

data in a .csv file. Each column represents a structured configuration entry generated by

the parser, and each row represents the values of all the entries in a system.
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Figure 3.3. Data assembling. In addition to the configuration files, the assembler also
takes the system environment data and users’ input for type inference and augmenting
the configuration entries.

3.2.2 Inferring Configuration Entry Types

EnCore relies on the type information of each configuration entry for further

environment data integration and correlation detection. Similar to previous work on type

inferring [44], EnCore needs to have the domain knowledge of what the types are and

how to determine them. Unlike inferring the types from source code as in [44], where

the semantics of system and library calls are required, EnCore needs the knowledge of

data format of each type.

Inferring certain data types might involve heavy-weight checking, and can be

computationally expensive. For example, to determine a FilePath type, we have to

check whether the file value exists in the file system or not. To mitigate the cost, the

type inference employed in EnCore is a novel two-step process that leverages both syn-

tactic patterns of data values as well as the environment information of the system. The

first step performs syntactic matching, making a crude guess at the type of the entry

using a predefined syntactic pattern. For example, any string that contains a slash is a

potential FilePath type. This step is followed by a heavy-weight semantic verification

that validates the type by checking the corresponding external resources (such as the

file system). For example, if an entry value is classified as a FilePath type by the first
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Table 3.1. Predefined type and inference methods. Due to space limit, we show here
simplified regular expressions used in syntactic matching. More complicated expres-
sions are used for other values, e.g., IPv6 address, which is not shown in the table.

Types Syntactic Semantic

FilePath /.+(/.+)* File System

UserName [a-zA-Z][a-zA-Z0-9 ]* /etc/passwd

GroupName [a-zA-Z][a-zA-Z0-9 ]* /etc/group

IPAdress [\d]{1,3}(.[\d]{1,3}){3} N/A

PortNumber [\d]+ /etc/services

FileName [\w -]+.[\w -]+ File System

Number [0-9]+[.0-9]* N/A

URL [a-z]+://.* N/A

PartialFilePath /?.+/(.+)* File System

MIME Types [\w/-. ]+ IANA [5]

Charset [ \w]+ IANA

Language [a-zA-Z]{2} ISO 639-1

Size [\d]+[KMGT] N/A

Boolean Values Set N/A

String N/A N/A

step, the verification searches the full file system meta-data to validate the existence of

the path in the file system. The first step prunes away most of the improbable types ,

making the inference efficient; the second step guarantees the inference accuracy. The

combination of the syntactic matching and heavy-weight semantic verification proves to

be both effective and accurate (see Section 5.2). Table 3.1 shows the details of each step

and default types EnCore infers.

Table 3.1 shows the concrete types EnCore infers and how they are determined.

The first step is to use the simple heuristics such as regular expressions to determine the

possible type, and then the type is validated using the source listed in the ’Verification’
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column. For example, a type of FilePath is first recognized by matching the regular

expression. If matched, the system further consults the file system to decide whether

it is a real file path in the system. A second example is GroupName. After matching

the regular expression, the /etc/group file is checked to determine whether it is really a

valid group name in the system. Note that the validation is optional as some of the types

are self-evident (e.g. Boolean), and sometimes system information is not available for

validation.

EnCore is able to infer most configuration entry types in the taxonomy of [44].

Certain types such as TimeInterval and Count, however, are not easily distinguish-

able, due to the identical syntactic patterns and lack of verification methods. Since our

purpose of type inference is to detect type violations and to provide a better foundation

for correlation detection instead of precise type analysis, we consider this limitation ac-

ceptable – missing this information means possible lower rule detection efficiency as it

affects the effectiveness of type-based attribute selection (see Section 3.3), but does not

affect the effectiveness. As described in Section 3.3, we use other ways to accelerate the

detection process.

3.2.3 Environment Information Integration

One of the essential ideas of EnCore is to enrich the original data with additional

environment information, and take them into consideration in the analysis. EnCore se-

lects types inferred in Section 3.2.2 that carry system semantics, and augments them

by attaching new attributes that represent the properties of each type. For example, an

entry type of FilePath can be augmented with a new attribute that tells whether it is a

directory or a regular file. We call these attributes augmented attributes. Certain envi-

ronment data that is independent of the configuration entries are also collected, such as

the system hardware specification.
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Table 3.2. Default augmented environment information.

(a) Augmented attributes for eligible types by default. For each configuration entry type, En-

Core augments it with attributes that reflect system context. Each augmented type is shown with
an example entry, the information source in the system (we call it reference) used to compute
the augmented values, and the values of the example augmented attributes. Each augmented
attribute is assigned with a type.

AttrType/Example/Ref. Augmented Attributes Type Value

datadir.owner UserName mysql

datadir.group GroupName mysql

FilePath datadir.type Enum dir

datadir=/usr/data datadir.permission Permission 664

File System datadir.contents String dirDes

datadir.hasDir Boolean True

datadir.hasSymLink Boolean True

IPAddress AllowFrom.Local Boolean True

AllowFrom=10.0.1.1 AllowFrom.IPv6 Boolean False

RFC 1918, RFC 4193 AllowFrom.AnyAddr Boolean False

UserName user.isRootGroup Boolean False

user=mysql user.isAdmin Boolean False

/etc/group user.isGroup GroupName mysql

(b) Augmented attributes for environment info by default. The attributes are gathered from
corresponding files or commands. EnCore can be easily customized to consider more data.

Env Type Augmented Attributes

Sys Config Sys.IPAddress, Sys.HostName, Sys.FSType, Sys.Users

OS Related OS.DistName, OS.Version, OS.SEStatus

Hw Spec CPU.Threads, CPU.Freq, MemSize, HDD.AvailSpace

Table 3.2a shows the types that EnCore augments by default. For example, for

each entry of type FilePath, we attach seven attributes: the owner and group informa-

tion, whether it’s a directory or file, the permission associated with the object, and if
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it is a directory, the contents of the directory, whether it contains sub directories, and

whether it contains symbolic links. This information is retrieved from the file system

meta-data collected by the collector. Different types have different attributes, whose

values are determined using different sources of information (see Table 3.2a.)

As shown in the examples in Table 3.2a, the augmented attributes are directly

appended to the original entry names with a dot separator. Table 3.2b shows the envi-

ronment information that is independent of the configuration files. These attributes are

appended to the existing csv file as additional columns, and are treated equally as other

attributes in the rule inference process.

As a general data analysis framework, EnCore provides the opportunities for

the users to use their domain knowledge to infer new types, or to enhance the existing

type inference methods. The new types information is placed into a file that is read

into EnCore before the inferencing step starts. To specify a new type, the user provides

1) the name of the new type, 2) the hints to infer the new type, and optionally, 3) the

verification methods. Environment information is also provided to the users to facilitate

the inference methods. The users can also override the inference or validation methods

of the existing types. Section 3.3.3 details how EnCore can be customized to infer new

types and to include new attributes.

3.3 Rules Inference

With the extended configuration data as the training set, EnCore infers rules us-

ing a template-based method, either the predefined templates or those defined by the

users. The inferred rules are then written to a file with detailed description of the at-

tributes involved and the relation type, so that they can be used to perform the checking

against the target systems.
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3.3.1 Template-Guided Inference Based on Types

To overcome the challenges faced by directly applying data mining techniques

(Section 2.2), the rule inference in EnCore adopts a template-guided approach. A tem-

plate aims at capturing the common correlations among the configuration entries and

system information, such as the association rules or the file ownership relations in Fig-

ure 1.1(b). The templates are tailored to the concrete rules with specific configurations

by learning from the training set.

Unlike Lint-like checkers [3, 1] which require hand-written rules, EnCore only

needs a guidance on the type of rules that the users are interested in. It infers concrete

rules automatically from the training set. For example, the user can specify a template

for EnCore to learn the association rules among three boolean configuration entries;

then EnCore checks whether rules of this type exist in the training set, as well as the

involving configuration entries.

Figure 3.4 shows three example templates, their meanings, and the concrete rules

inferred from them in different softwares. For instance, the template in Figure 3.4(a) de-

fines the possible ownership relationship between two entries. Learning from the system

images with MySQL, EnCore infers the concrete rule that describes the ownership rela-

tion between entries DataDir and User, which is used to identify the misconfiguration

described in Figure 1.1(b).

Why use templates? The use of templates brings three benefits to address the

challenges faced by direct data mining. 1) It effectively describes the possible types

of correlations beyond frequent item set relation; 2) It avoids wasting the computation

and resource on patterns that are not likely to exist in the configuration entries; and

3) It makes the learning process “extensible”: the more templates are used, the larger

coverage of possible rules is achieved. Note that the templates can be easily customized,
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[A<FilePath>]+[B<FilePath>] => <FilePath>

(b) Rule Template: the concatenation of two entries (A of type 
FilePath and B of type FilePath) forms a file path

Template:
Rule: ServerRoot + LoadModule/arg2 => <FilePath>

[A<FilePath>] => [B<UserName>]

(a) Rule Template: an entry B of type UserName should be 
the owner of an entry A of type FilePath

Template:
Rule: DataDir => user

[A<Size>] < [B<Size>]Template:
Rule: upload_max_filesize < post_max_size

(c) Rule Template: an entry A of type Size should be smaller than
an entry B of type Size

//Apache

//MySQL

//PHP

Figure 3.4. Examples of templates and the concrete rules generated from them.

as discussed in Section 3.3.3.

The template specification uses data type information to restrict the eligible con-

figuration entries. For example, in Figure 3.4(a), B needs to be of type UserName, which

means when the learning process tries to instantiate the template, it only fills in B with

the attributes of type UserName.

The type information provides an intuitive and effective way of attribute selec-

tion, which is critical to solve the scalability problem in the learning phase. In addition,

it is a natural base for associating environment information. For example, as described

in Section 3.2, the file permission data are only meaningful to a configuration entry of

type FilePath.

EnCore provides several predefined templates that make it readily usable. They

are shown in Table 3.3 with their descriptions. Our evaluations are based on these tem-

plates.

Rule Inference Process. With the type-based templates, EnCore learns rules
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from the training set. Figure 3.5 summarizes the workflow of the learning process. Af-

ter parsing the customization file, the templates and operators are input to the analysis

engine , which then performs the detection of the templates one-by-one. For each tem-

plate, it first searches for the operator evaluation function that is suitable for the given

types. The search is done in the order of customized ones, predefined ones, and the

default one that is used for String. If the operator is not found in the customization file,

the predefined operators are searched. If still not found, the operators that are used for

String is selected.
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Figure 3.5. Workflow of rule inference.

In EnCore , each correlation is associated with a validation method that deter-

mines whether the correlation holds or not. The validation methods are identified by the

relation operators(such as < and ==) together with the types of the participating attribute

placeholders (such as A and B in Figure 3.4; we discuss the correlation interface in detail

in Section 3.3.3 when introducing how to customize correlations).

For each template, EnCore tries to instantiate the template by replacing the place-

holders with eligible attributes that match the data type specified in the template. En-

Core iterates over every possible instance of the template and checks whether it is valid

using the validation method. If the correlation is valid, EnCore regards it as a rule can-

didate, which would further go into the filtering(Section 3.3.2). Note that this process is

highly parallelizable because there is zero state sharing between each instance compu-

tation. As a result, we implement EnCore as a multi-process program to achieve high

performance.

3.3.2 Rule Filtering

As accurately as the templates may be defined, like any data-driven method,

there are false positives in the resulting rules. EnCore use three metrics to filter them.

The first two metrics are support and confidence, which are typical metrics used in

association rule detection. Support means how many times the frequent item set (in our
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context, the attributes involved in the rules) occurrs in the data set, and confidence means

the percentage that the rule is valid.

Configuration entries have a unique characteristic: values of certain attributes

are stable in many systems. For example, the warning level in PHP has consistently

been set to 10 in our training set. If an entry seldomly changes, the values it carries are

not interesting, and the rules involving this entry are likely to be noise. To take this into

account, we use a third metric: entropy [50]. It measures the diversity of the dataset:

its value increases when more diverse values are seen for a given entry. The value of

entropy is defined as

H =−
n

∑
i=1

pi ln pi, pi = Ni/N,

where n is the number of different values, pi is the probability of taking the ith value, N

is the times this entry appears in the training set, and Ni is the times it is assigned with

ith value. We set a threshold value for each of the three metrics. The threshold for the

entropy is denoted by Ht . When there are two values, each having a probablility of of

90% and 10% respectively, it is set to Ht = 0.325. For an attribute to be included, it

needs to have H > Ht , meaning it is more diverse than the minimum threshold. For a

rule to be included, all the involved attributes need to be included.

Some other works use other metrics. For example, [47] uses Google’s search

results to measure how strong two entries are related. It makes sense when the entries

are from different components. However, it is often difficult if they are from the same

software, as they are likely to appear together on the same page.

3.3.3 Customization

EnCore is a fully customizable framework. Users can extend it with different

levels of customization using different interfaces. Specifically, users can 1) specify new

templates to infer new types of rules; 2) define new types in addition to the default types;



34

Template := Expression '--' Confidence

ExtendedSlot := Slot | Slot '::' EnvVar | NULL

Slot := '[' SlotName Type ']'

SlotName := CapitalLetter | DEF.Letter

Type := '<' DefinedTypes '>'

DefinedTypes := 'Types.AnyType'|
                           'Types.FilePath' |
                           'Types.PartialFilePath' |
                           'Types.Number' |
                           'Types.UserName' |
                           'Types.GroupName' |
                            …. |
                            CustomTypes

Operator := ' == ' | ' != ' | ' ~= ' | … |
                   CustomOperators

EnvVar := 'Env_FS_Type' |
                 'Env_FS_Owner' |
                 'Env_FS_Permission' | ...

Expression := Generating | Relation | Concat

Generating := Concat '=>' Type

Relation := Concat Operator Concat '|' Type':'Type

Concat := ExtendedSlot |
                 ExtendedSlot '+' Concat

Confidence:= [1-9][0-9]*'%'
                       

Figure 3.6. Grammar of template specification.
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and 3) tag new environment information for the environment data integration.

Template definition is the core of the customizable rule generation. It composes

of two major parts:the slots (the capitalized letter and the type in square brackets in

Figure: 3.4) and the relations (the plus and arrow symbols in Figure: 3.4). A slot is a

place holder to be filled in the rule detection process, and has two parts: the name and

the type.

The name will be filled with the concrete entry name after a rule is found; while

the type is usually specified with a concrete type name by the users, and is used by the

rule detector to select the eligible attributes.

There are also two types of relations. The first relation defines how different

attributes can be aggregated. It can be the simple concatenation of strings, the algo-

rithmatic addition, or any other aggregation methods that users want to specify. It is a

generalization of the ’logical and’ operation in association rules. The second type is a

comparison operator, which defines how values are compared such as ’greater than’ or

’equal to’. It can be viewed as a generalization to the definition of the ’implication’ in

association rule.

As shown in the example templates in Figure 3.4, a name-type pair in a square

bracket forms a complete slot. The name slots are filled with place holders names such

as ’A’. If the place holders have the same name, the entries to be filled in the rule are the

same. Users can also specify the name slot with a concrete entry name by appending the

’DEF.’ prefix. The names in the angle brackets specify the type of the slot, starting with

a ’Types.’ prefix. It also allows users to use ’Types.AnyType’ when all the types should

be considered.

The comparison relation operator divides a template into two parts. The left

part is always a combination of slots. Depending on what can appear on the right side,

there are two kinds of relation templates: generating template, and comparison template.
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$$TypeDeclaration
        <NewType>
$$TypeInference
         <NewType> (value): { return True }
$$TypeValidation
         <NewType> (value):{ return True }
$$TypeAugmentDeclaration
          <NewType>.Group
$$TypeAugment
          <NewType>.Group (value):{ return '' }
$$TypeOperator
          <NewType>:<NewType> Operator '<' (v1,v2): { return True }
$$Template
          [A<Types.NewType>] < [B<Types.NewType>] -- 90%

Figure 3.7. Format of the customization file.

Generating template has a type specified on the right side, meaning the aggregation of

the attributes on the left side could produce some values of another type. The com-

parison template has another combination of attributes on the right, meaning the left

combination relates to the right combination by comparison. Figure 3.4(a) specifies a

template where the concatenation of an attribute of ’FilePath’ and another one of ’Par-

tialFilePath’ may generate a value of type ’FilePath’. The ’+’ operator simply means

string concatenation. Figure 3.4(b) is a template of a typical boolean value association

rule where two boolean values may indicate another one. The ’+’ operator here means

’logical and’. The semantics of all the operators can be reloaded depending on the types

that they operate on. EnCore provides a set of predefined operators with certain types.

Figure 3.6 shows the template grammar. Note that besides the expression for the

relation, users are also allowed to specify the confidence for the rules, which is used to

filter those that are unlikely to be true.
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Customization File Format

EnCore uses a single file to gather all the user-customizable input. The file has

seven sections, each specifying a customizable aspect of the system. Figure 3.7 shows

the format of the file and some sample input. Note that EnCore provides predefined

types, operators, and templates as described in Table 3.1 and Section 3.3.1. Therefore

the customization file is optional.

As illustrated in Figure 3.7, each section’s name is determined, and is prefixed

with ’$$’ symbol. New type information is specified in the top 3 sections including its

name declaration, how to infer them, and how to verify them. Users need to implement

the hint and verification methods, which are written in Python currently. The methods

are given the values to be inferred, and a bool value is returned to indicate whether the

value is this type. While the verification method is optional, the hint function is required

for each new type. In the case that an attribute can be inferred with multiple types, the

priority is given to customized types over predefined ones, and to the order they appear

in the customization file. The following two sections define the extra attribute extensions

besides predefined ones in Table 3.2. The extensions are first declared, and followed by

the methods to compute their values. The types to extend can be both predefined types

or customized types declared in the first section.

The type operator section defines the operators used in the templates, including

both aggregation and comparison ones.To declare an operator, users need to provide the

types involved in the operators, as well as the operator symbol, which will be used in the

templates. The system feeds the operator functions with values to be analyzed, and the

system information which is under analysis. For the aggregation operators, the returned

value should be a pair that contains both the value and its type.

The template section lets the users to specify the kinds of rules that they want to
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try in the detection. There can be multiple templates, each in one line. The grammar of

the template follows Figure 3.6. These templates will be attempted one-by-one after the

predefined ones.

Environment Information for Customization

EnCore provides the users with the environment information already gathered by

the framework in the crawling phase, in the form of global variables. They are accessible

in any place in the customization file where users’ program is needed. Table 3.4 shows

the data structures accessible by the users, as well as the sources where the system gets

the information. They are organized in either array lists or maps. For example, with

the FS.FileList, the user can get all the file names (including their paths) in the system,

and with FS.FileMetaMap, the file path is used as a key, and the meta information of

the file can be retrieved. The contents of the data structures are refreshed with the data

in the new system when processing different systems. They are also available when

performing the checking of new image.

3.4 Anomaly Detector

With the learned rules, EnCore looks for potential anomalies in the target sys-

tems. It goes through the same data assembling process for the new system as in the

learning phase, including parsing, type inferencing, and environment information inte-

gration. Then, it checks the following aspects of the target configuration and produces a

ranked list of errors.

1. Entry Name Violation. Previous studies show that misspelling is an important source

of misconfigurations [44]. Since we have the knowledge of all the already examined

configuration entries, if the new system includes entries not seen before, it is likely a

misspelled one. Note if the configuration file has nested sections, it is only prioritized if



39

Table 3.4. Data structures for accessing environment information. *Only available
when collecting data from running instances; **The hardware specifications are not
available for newly instantiated virtual machine images such as those from Amazon
EC2.

Category Data Structure Sources

Files Data
FS.FileList

File System
FS.FileMetaMap

Account Info

Acct.UserList
/etc/passwd
/etc/groupAcct.GroupList

Acct.UserGroupMap

Service
Service.Ports

/etc/services
Service.PortServMap

Env Variables* Env.VarValueMap env

Security Sec.SELinux /selinux/*

Hardware**

HW.Cores

/proc/*HW.Memory

HW.DiskSize
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the inner-most entry name is suspicious. The unseen combination of section nesting is

given the lowest priority in ranking.

2. Correlation Violation. EnCore checks if the target system follows the correlation

rules learned from the training set. Since each rule is an expression, the detector of En-

Core evaluates the expression with the values from the target configuration and reports

warnings when violation is found. The rule is ignored if the involved entries are absent

in the target configuration file.

3. Data Type Violation. For each entry to be checked, the checker reads its type

information inferred from the training set, and gets the corresponding syntactic matching

function and semantic verification function. The two functions are used to match and

verify the target configuration value. A type violation is reported if the verification

or matching fails. Another possible way is to also infer the entry types of the new

configuration file. However, since the detector has only one instance, it may produce

inaccurate type inference results.

4. Suspicious Values. The detector compares the values of configuration entries from

the new system with the values in the training set. It reports a warning if the new value is

different from all the previous ones. When multiple entries have unseen values, we adopt

the Inverse Change Frequency method [59] that gives higher ranks to entries with less

diverse values in the training set. Note that the statistical method used here is orthogonal

to how rules are learned in EnCore : other methods (e.g., those in PeerPressure) can

also be adopted here. We chose this simple design and found it satisfy our need. In

fact, with more environment information integrated, more aspects of the configuration

entries can be checked against suspicious values. For example, the detection of the error

in Figure 1.1(a) is directly attributed to the extended attribute of extension dir.type – all

the values in the training set have type directory, but the value in the target system has
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type regular file. This warning is ranked much higher than other possible suspicious

values since its value set in the training set has a cardinality of only 1.

3.5 Related Work

Misconfiguration troubleshooting and detection. There are generally two ap-

proaches to detect and troubleshooting misconfigurations: one is to learn from the peers’

behavior and settings, and apply them to the target systems, and this is usually a black-

box approach; the other is to analyze the code of the application to infer the reasons that

lead to the incorrect behavior, i.e. a white-box approach. Both white-box and black-box

approaches are used for the misconfiguration troubleshooting and detections.

PeerPressure [58], Strider [59], and [47] all utilize existing systems for configu-

ration values comparison. Strider uses classified working/failing configurations, as well

as heuristic based on changing frequency to shrink the suspicious entries set. PeerPres-

sure advances it by deploying a statistic model and thus eliminates the need of manual

labeling. [47] uses both frequency and googling results as ranking heuristics, and tries

to discover the substring dependency between the entries across different components.

FTN [57] focuses on addressing integrity and privacy issues when seeking for peer con-

tents. AutoBash [54] and [20] learn from the peers’ steps of problem solving, and ap-

ply them to the target systems. CODE [63] learns the configuration access pattern for

anomaly detection. Our work utilizes the environment information and various entry

correlations that were unexploited before, and is able to help discover a much broader

types of misconfigurations.

ConfAID [21] and X-Ray [19] rerun the program in the given environment and

use dynamic information flow tracking to find the possible root causes in the configura-

tion file. The applications need to be rerun in the given environment, and with the failure

point, they help track back to the place where the error begins to propagate, thus decide
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which configuration entry may have caused the problem. [43] precomputes the mapping

between source code lines and the corresponding configuration options using program

analysis, and when the software crashes with source code information, users could use

them as a hint to search for the database and find the root cause in the configuration file.

EnCore both help and complement troubleshooting works, as detecting the errors is the

first step to guard against misconfigurations.

Configuration Entry Analysis. [44] analyzes source code to infer configuration

entry types.EnCore does not need the source code, and also leverages the information

for more efficientn misconfiguration detection.

Configuration Testing. ConfErr [38] and KLEE [26] generate both realistic

and high-coverage test cases to test the softwares’ robustness against misconfiguration.

Both testing and detection reduce users time to deal with configuration error. Besides,

EnCore benefits the testing work by exploiting new opportunities for error injection such

as environment errors, and the correlation rule violations, and help with more targeted

injection.

Chapter 3, in full, is a reprint of the material as it appears in 19th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems. Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-

anth Bala, Tianyin Xu, and Yuanyuan Zhou. The dissertation/thesis author was the

primary investigator and author of this paper.



Chapter 4

Accelerating Automatic Performance

Tuning with iOpt

4.1 Performance Impact of Software Coniguration

Settings

Different from EnCore , which detects correctness issues in systems, iOpt fo-

cuses on the configuration tuning for the performance optimizations. Studies show that

configurations impact heavily on how the system performs in a certain system. For exam-

ple, tuning two configuration settings in Hadoop could result in two times performance

difference [16].

Figure 4.1 shows our experimental results of Hadoop MapReduce, with 6 differ-

ent set of configuration settings. The testing environment consists of 1 master node and

10 slave nodes. he job is a 10GB terasort which we split into 20 map tasks and 20 reduce

tasks by default. We also set the block size on hdfs to 512M. Each node is IBM RC2

virtual machine with 6 vCPUs and 32GB memory.

We configured 6 different settings. The first set is the default configurations from

MapReduce. With all default hadoop configuration, the job finishes around 392s. The to-

tal number of records in the job is 107374128, and the number of spilled records is about

3 times of that. In the second set, we adjust two parameters and set to ”mapred.child.java.

43
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Figure 4.1. Configurations impact on Hadoop performance. With the changes of
configuration settings, Hadoop has varied performance.

opts = 16G io.sort.mb = 2046M”, the execution time now reduces to about 274s. When

further setting ”io.sort.record.percent = 0.15”, the execution time is now around 224s,

the number of spilled records now is just 2x of the total record number as we avoid

spilling in the map phase. In the forth set, we set ”mapred.inmem.merge.threshold =

0” and ”mapred.job.reduce.input.buffer.percent = 1.0”, the execution time reduces to

around 186s as we now also avoid spilling in the reduce phase. When setting ”io.buffer.

size” to 128k, we further reduce the execution time to 174s. (the default io buffer size

is just 4k, however, it is a cluster parameter rather than a map-reduce one). Finally,

if we increase the map slots to 4 and reduce slots to 2 (default is 2 map slots and 1

reduce slots) per slave node to fully leverage the 6 vCPUs, and split the job into 40

map tasks and 20 reduce tasks, we can reduce the execution time to about 147s. The

above resulting setting may not be the absolute optimal, but it should be fairly close to

that. For really large jobs, further experiments show that a couple of other parameters
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(a) performance with maintence_work_mem (b) performance with shared_buffer

(c) performance with temp_buffers (d) performance with max_prepared_transactions

(e) performance with work_mem

Figure 4.2. Configurations impact on Hadoop performance. Performance variation
with the change of different single configuration parameters in PostgreSQL.
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are also important, such as ”mapred.map.tasks” and ”mapred.reduce.tasks” (the number

of map/reduce tasks) and ”mapred.reduce.slowstart.completed.maps” (how long should

reduce tasks wait after map tasks start).

Figure 4.2 shows the performance change when changing different performance-

related configuration parameters. The experiment is carried on a single node machine.

It shows that for PostgreSQL, even with only single paramter change, the performance

can be improved by 10% to 36%.

4.2 Helping Automatic Performance Tuning

Automatic performance tuning tries to involve as less human efforts as possible

in the tuning process, saving the administrators from the manual burdens. It usually

goes through a fail-and-try cycle: adjust a paramter, run the workload, measure the

performance. The process continues until an optimal setting is found [42, 27].

However, this tuning process itself takes a long time to complete. This is usually

because there are often a large number of tunable parameters for each application (as

described in the previous chapters), and the set of legal values of each parameter is large

as well [52, 17, 23]. For example, the configurations that specify the memory usage in

Hadoop usually takes the input as a percentage (from 0 to 1.0), thus it could take many

rounds of parameter adjustments and workload running profiling to reach to an optimal

configuration.

4.2.1 Existing Approaches to Help Performance Tuning

A traditional way of finding the optimal configuration parameter settings is to use

a recursive search algorithm. When performing different experiments, the algorithms

try to search for the next best experiment to conduct, in order to reach a local optimal

solution. To accelerate this process, the searching can use many heuristic search algo-
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rithms, such as Simulated annealing, genetic algorithms, and Tabu search, to name a

few. [24] is one of them, and developed a smart climbing-hill algorithm using the ideas

of importance sampling and Latin Hypercube sampling, to reduce the amount of needed

experiments.

iTuned [52] targets on finding an optimal setting of configurations for high per-

formance. It tries to accelerate performance tuning by deciding which experiment to

conduct. From an existing set of experiments, it constructs a response surface, and pre-

dicts the upcoming experiment with adaptive sampling, instead of randomly selecting

the next experiment.

SARD [23] tries to rank the database configuration parameters based on their

impact on performance with a statistical approach. It first needs to conduct a set of ex-

periments, where each experiment has the configurations set to different values. With

the result, it analyzes how each parameter impact the overal performance. In order to

reduce the number of experiments needed, it only considers two extreme values for each

parameter, and thus utilizes a P&B design methodology to estimate their effects. How-

ever, experiments in the above sections show that the optimal performance is usually not

at the parameters’ extreme values.

Some work assumes the specific knowledge of a particular system, and provides

more specific guide in their tuning. STMM [17] focuses on automatically tuning the

memory arrangement of the DB2 data base management system, to achieve an overal

better performance. Since it is built into a database system itself, in each tuning cycle,

it directly monitors the system memory distribution, and determines if the performance

can be improved by database memory redistribution with a cost-benefit analysis of each

memory pool used in the system. Since it is a database built-in feature, it assumes all

the knowledge of the target system, and does not apply to others. With the same spirit,

Oracle 11g introduced the SQL Performance Analyzer to help the admistrators analyze
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the impact of the system parameter changes [37]. Starfish [16] concentrates on the

performance tuning of Hadoop MapReduce. It assumes the knowledge of MapReduce

architecture and performs the tuning according to each work phase.

Different from the above approaches of conducting experiments and selecting

the optimal configuration settings, MassConf [60] utilizes the crowdsourcing method to

find a better configration for the target system. It asks the vendor to collect the informa-

tion from the existing users - including their configuration goals, system environment

information, and their configuration selections. When a new user wants to deploy the

system, based on the new user’s environment and goal, MassConf gives a ranked list of

the paramters to tune.

4.3 Observations

In order to help reduce the amount of time spent on the automatic performance

tuning, we propose iOpt, to help reduce the amount of experiments the automatic tuning

approaches need to perform in order to reach to an optimal settings.

In order to get the insight of the configurations that could impact the application

performance, we studied the configurations of seven popular server applications, in-

cluding MapReduce, STORM, PostgreSQL, MySQL, HBase, HDFS, and Hadoop core

libraries.

Finding 5: While the number of all configuration entries are large, the performance

related configuration entries are few.

Table 4.1 shows the number of performance related configuration entries for each

application. All the configuration entries are examined manually. We did our best to find

the semantic of each entry from both the application manual and the whole Internet, to

decide whether they relate to the software performance.
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Table 4.1. Number (percentage) of configuration parameters that are related to

performance. “Total” is the number of all the configuration entries for each application.
“Performance” is the number of configuration entries related to performance tuning.

Apps Total Performance Related

MapReduce 126 22 (17.5%)

STORM 80 11 (13.8%)

PostgreSQL 115 15 (13%)

MySQL 252 31 (12.3%)

HBase 157 10 (6.4%)

HDFS 74 8 (10.8%)

Hadoop-Core 73 3 (4.1%)

Compared to the total number of configuration settings each application pro-

vides, they only occupy around 10%. Among the studied applications, MapReduce has

a higher rate of performance-related configurations. This is due to the nature that all

the purpose of MapReduce is to improve the performance. There are many other con-

figuration entries serving the purposes of connecting the software to the environment,

such as the datadir entry shown in Figure 1.1, which is used to specify the directory

to store the database files. That means, if we blindly choose all the configuration entries

as candidates, the actual time used for the tuning could be at least 10 times longer than

it should have.

Finding 6: Most performance related configuration entries control three behaviors

of the application: computing resource usage, memory resource usage, and I/O

usage.

By further observing the configurations in the target applications, we find that

most of the parameters usually fall to 3 categories: memory usage, computing resource

(CPU) usage, and I/O behavior. Table 4.2 shows the number of performance-related con-
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figuration paramters in each category.The first column is the total number of performance-

related parameters. The rest columns show the number of the parameters in each cate-

gory. Note that the numbers in the three categories may not add up to the total number

for some applications, because a few parameters may not fit into any of the three cate-

gories.

Memory resource usage usually means how much memory space can the func-

tionality take. It can indicate the amount of memory to allocate to certain usage, for

example, io.sort.mb in MapReduce indicates the percentage of memory to use for sort-

ing files; it may also specify the caching capability, for example, query cache size in

MySQL puts a boundary on how much memory can be used to cache the query, so that

it doesn’t need to be re-evaluated next time. Usually a higher value of the paramter of

this kind means higher memory usage, and often result in higher performance.

Computing resource usage mostly means how many concurrent tasks the target

functionality can be run at the same time. For example, thread concurrency in MySQL

specifies how many concurrent threads can be run in the system; max connections

in PostgreSQL specifies the maximum number of connections can be accepted at the

same time. Since higher number of concurrent executing tasks ususally indicates higher

throughput, if the resource limitation allows, these parameters are usually set higher to

achieve better performance.
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Another important performance category is the I/O behavior, this is because com-

pared to computation, I/O usualy takes a lot of time to complete. Some configuration

paramters allow the users to specify the behaviors in order to reach an optimal perfor-

mance. For example, fsync in PostgreSQL shows whether to enforce the synchronized

write operation for every write on disk; dfs.datanode.readahead.bytes in HDFS speci-

fies the behavior of pre-mapping the unread disk data to system memory, thus increasing

the disk read performance.

Many applications use the configurations from all the three categories to provide

the users the opportunities to fine tune it according to their systems and workloads. A

few applications may also use other configurations to control some adhoc performance-

related functionalities, such as HDFS and Hadoop-Core as shown in Table 4.2. In this

work, we only focus on the three major categories.

4.4 iOpt Design

The goal of iOpt is to help automatic performance tuning reduce the necessary

number of experiments. It’s approach contains two major parts: 1)select the perfor-

mance related configuration entries, and 2) find the constraints of the entries. The

first part filters out the parameters that are not to be considered in the experiments, and

the second part filters the impossible values to be used in the experiments. As described

in the above sections, they could significantly reduce the number of experiments needed

for the tuning, and also make sure the generated experiments are valid, i.e. the configu-

rations used in the experiments are eligible and meaningful.

4.4.1 iOpt Usage

iOpt helps any automatic performance tuning method save time. Figure 4.3

shows the position of iOpt in the process of software performance tuning. The gray
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Code Analysis 
with iOpt

Runtime Profiling

Automatic TuningEnvironment 
Information

Automatice 
Tuning 

Algorithm

Guided Automatic 
Performance 

Tuning Method
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Developer Site

User Site

Optimal 
Configuration 

Settings

Figure 4.3. Using iOpt in performance tuning. The gray boxes are the elements of
iOpt. The upper side of the figure needs to be done in the software developer side, while
the lower part is in the software user site.

boxes show the two components of iOpt: the software static code analysis to find all

the performance-related configurations as well as the constraints, and the environment

information integration to utilize the analyzed data and merge with the running system.

With the iOpt output as well as any automatic tuning algorithm such as those

found in [52, 17, 23, 42, 27], a guided automatic performance tuning method is formed,

where the original algorithms would have a automatically generated limited set of tun-

able parameters (so as their value set). With the generated tuning method, the user uses

it in the same way as the original one: applying it to the runtime profiling, and finally

generate the optimal configuration settings.

Note that iOpt itself is not targeted to be a stand-alone automatic performance

tuning tool. It doesn’t include the profiling and testing framework, nor it provides the
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evaluation or selection algorithm. Its goal is to reduce the input size of the existing

performance tuning methods.

Although iOpt is designed to be working with other performance tuning tools,

it’s output could offer a significant help to the users who tune the software by themselves:

it reveals the performance related parameters, their constraints and relations, as well as

their expected values. A user can utilize these information to help them in the process

of tuning.

4.4.2 Architecture Design

Figure 4.3 shows two components of iOpt: the environment information integra-

tion and the configuration entry analysis. The environment information part is largely

the same as the one described in EnCore, and will not be duplicated here. In this sec-

tion, we mainly focus on how to analyze the configuration entries to achieve the goal

of configuration parameter selection and constraints analysis. For the C/C++ analysis,

iOpt largely reuses the methods of SPEX, as described in [55].

In order to achieve the goal of suggesting the parameters, iOpt needs to under-

stand the semantic meanings of the configuration entries to some extend. Unlike in En-

Core where we study from the configurations of other systems, in iOpt we start the anal-

ysis from the source code. This is mainly because while correctness is usually assured

by all the systems in the same way, but different systems may require different settings

to achieve an optimal performance according to the whole system settings, therefore it’s

not reliable to consult the other systems’ setting to optimally configure the target system.

Note however, the source code analysis does not mean the users should have the

source code at hand. Instead, the analysis could be done on the software developer side:

whenever there is a major release that has modifications to the configuration parameters,

the analysis could be run again (automatically), so that it does not bring much burden
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Figure 4.4. iOpt configuration parameter analysis architecture.

to the developers This is because although the final settings could be different between

different target systems, the information of configuration entries are the same for one

software.

Figure 4.4 describes the whole architecture of iOpt. iOpt firstly needs to find

all the configuration entry reading sites in the source code, in order to start the analysis.

It then performs a forward slicing analysis for each of the found configuration reading

site. With the hints on how the read value is used, iOpt first decides whether the target

configuration is related to performance. Further, it tries to analyze their types, their

value constraints, and the dependency between different configuration entries. Finally,

with all the information gathered in the previous steps, iOpt generates the configuration

parameter hints to provide to the performance tuning methods.
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Configuration Entry Mapping

To begin with the analysis, iOpt needs to first identify the starting points - the

source code locations where the configuration entries are read. There are two choices

for us to locate the configuration reading sites:

• annotating all the configuration entry names

• annotating the configuration reading classes/methods.

The first approach is the easiest one for the iOpt implementation. However, there

are three problems with this approach: 1) there are too many configuration entries, as

shown in Table 4.1, thus bringing a huge burden to the developers; 2) the configuration

entries set needs to be validated with each software update in order to keep the cor-

rectness; and 3) some of the configuration names are seperated into several parts, and

combined dynamically in the software - the analysis cannot find the appearance of the

configuration entry even if it knows the configuration entry names.

Given the considerations, we take the second approach: to annotate the configu-

ration reading methods or classes. The insight is that the developers usually develope a

set of reusable configuration reading structures in order to use for the hundreds of con-

figuration entries, and a well-structured piece of code could provide a clean interface to

manage them more easily.

Figure 4.5 shows three configuration reading sites in both Hadoop (written in

java) and PostgreSQL (written in C++). For the mapping functions in Java programs,

especially Hadoop related projects, a standard way is to use a well-defined set of APIs,

as described in [45]. As shown in Figure 4.5, they usually use the getXXX() functions

such as getInt(), getFloat(), getBoolean() etc. As a fact, in total we only need

to annotate 6 functions for the Hadoop applications.
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final int sortmb = job.getInt(“io.sort.mb”, 100);

final float recper = job.getFloat(“io.sort.record.percent”, (float)0.05);

Configuration reading in Hadoop

static struct config_int ConfigureNamesInt[] = 
{{{ 
     “deadlock_timeout”,

     gettext_noop(“Sets the time to wait on a lock before …”),

     &DeadlockTimeout, 1000, 1, INT_MAX, …,
    }, …
}

Configuration reading in PostgreSQL

Figure 4.5. iOpt configuration parameter analysis architecture.

However, C/C++ programs may use other ways to conduct the task of configura-

tion entry reading. We studied the mapping of 20 widely-used software and found that

the majority of them manifests through 3 programming abstractions: structure, branch,

and container [55]. Figure 4.5 shows an example of the structure-based mapping in Post-

greSQL: the ”deadlock timeout” configuration is mapped to DeadlockTimout global

variable. iOpt can find the reading site if the structure and the corresponding field are

annotated. The other two types are further described in our paper [55], and is not dupli-

cated here.

Recognizing Performance Related Parameters

After iOpt finds all the configuration reading sites of a given parameter, it checks

whether the target parameter is related to the software performance. This checking

utilizes our observation in Table 4.2, that the performance related configurations are
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usually used for the purpose of three categories: computing resource, memory resource,

or I/O behaviors.

In order to find the usage of the parameters, iOpt conducts an inter-procedure

data flow analysis on each of them. Figure 4.6 shows three examples of how iOpt recog-

nizes the parameters of the three performance related categories. Note that all the source

code in the examples are greatly simpliefied, and they may not necessarily reside in the

same function. However, it does not affect the inter-procedure analysis.

For each category, iOpt uses the corresponding hints to find the related parame-

ters. For the memory usage related parameters, iOpt outputs a configuration entry when

if it is used as an argument of a memory related system calls. The system calls in Java

are usually the new keyword with the array identifier. Sometimes it could also appear

in the jvm arguments to specify the size of the total memory the application could use.

For C/C++, they are malloc, calloc, alloc, or new. Figure 4.6(a) shows how

”io.sort.mb” is recognized as a memory related parameter.

The computing resource related parameters are recognized by the hints of thread-

ing. Figure 4.6(b) shows how ”mapred.tasktracker.map.tasks.maximum” is recognized

as a performance paramter: the number of the created threads has control dependency

on the parameter. In Java the thread creation is done either with a class that extends

Thread or a class that implements Runnable. In the example shown in the figure, the

Handler can be threaded, and thus the related parameter is recognized. In C/C++, the

thread creation is usually done with pthread create, or fork if it relates to process

creation. Note that for Java applications, we don’t recognize process creations as it is

done from the console when starting the jvm.

Similar to the previous two mentioned categories, the I/O related parameters are

recognized via their respective system calls. The example shown in Figure 4.6(c) shows

the recognization of ”mapred.min.split.size” by tracing its usage to the class FileSplit,
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final int sortmb = job.getInt(“io.sort.mb”, 100);

int maxMemUsage = sortmb << 20;

kvbuffer = new byte[maxMemUsage];

(a) Recognizing memory related parameters

maxMapSlots = conf.getInt(“mapred.tasktracker.map.tasks.maximum”, 2);

int max = maxMapSlots > maxReduceSlots?
                                           maxMapSlots:maxReduceSlots;

handlerCount = max;

for (int i = 0; i < handlerCount; i++){

        handlers[i] = new Handler(i);
}

(b) Recognizing computing related parameters

long minSize = Math.max(job.getLong(“mapred.min.split.size”, 1),
                          minSplitSize);

long splitSize = computeSplitSize(goalSize, minSize, blockSize);

new FileSplit(path, length-bytesRemaining, splitSize, splitHosts);

(c) Recognizing I/O related parameters

Figure 4.6. iOpt configuration parameter recognizing.
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which conducts I/O operations with the classes of DataOutput and DataInput. In

C/C++, we recognize the system calls of read/write/send/recv.

Type Inference

it performs the type inference, in order to make the tuning phase aware of what

kinds of values to set to a specific parameter. Note that iOpt only focuses on the per-

formance related parameters, which makes the type inference simpler than the one de-

scribed in [45]. This is because those parameters are usually only members and boolean

values.

As mentioned in the above section, Hadoop related Java applications usually

use a set of defined functions to read the parameter, and iOpt can infer the type of the

parameter mostly from the function names, such as getBoolean (bool type), getInt

(integer type), and getFloat (float type). For C/C++ programs, it can also be inferred

from the target variables that store the read values.

Constrains Analysis

Many configuration parameters have their own constraints on tha values they

could take. For example, a number describing the percentage needs to be a floating

number between 0 to 1. Figure 4.7 shows an example of the value constraint in MapRe-

duce. iOpt first identifies the reading sites of the parameter ”io.sort.record.percent”, and

does a forward slicing. Along the analysis, it finds that there are value comparisons that

has control dependency to an exception site. Therefore, we can conclude that the target

parameter should fall into the range specified in the branch statement.

Note that some other constraints may not be included in the source code. Instead,

they are implicitely limited by the executing environment. For example, the memory us-

age is limited by the system virtual memory, and the number of threads are usually
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final float recper = job.getFloat(“io.sort.record.percent”, (float)0.05);

if (recper > 1.0 || recper < 0.01 ){
        
        throw new IOException();
}

Figure 4.7. iOpt value constraints recognization

bounded by the number of processing units in the system. iOpt considers this by recog-

nizing the relevant parameters and correlate them to the environment information.



Chapter 5

Experimental Measurements

We test the effectiveness of EnCore with the rules learnt from public images

crawled from Amazone EC2. In the evaluation we only use the predefined types and

templates. The experiments are carried out with 3 software including Apache httpd

server, MySQL, and PHP. For each software, we have different amount of training set

according to the availability of the software on the EC2 public images: 127 images for

Apache, 187 images for MySQL, and 123 images for PHP.

The rules EnCore infers from the training set include two parts: the type rules

and correlation rules. The rule-based checking is in addition to the value comparison

checking as in existing works, which also takes advantage of EnCore’s integration of

environment information.

5.1 Misconfiguration Detection Effectiveness

To test EnCore’s effectiveness against misconfigurations, we perform three ex-

periments. In the first experiment, random errors are injected to correctly configured sys-

tems, and EnCore is used to detect them. In the second experiment, we apply EnCore to

check against known real-world misconfiguration problems. In the last experiment, we

directly use the anomaly detector to the public images from EC2 and the virtual machine

images in a commercial company’s private cloud, to look for possible new configuration

62
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Table 5.1. The number of injected misconfigurations detected by EnCore in the

injection experiment.

App Total Baseline Baseline+Env EnCore

Apache 15 4 9 14

MySQL 15 5 14 15

PHP 15 9 12 15

errors.

5.1.1 Injected Misconfigurations

To inject misconfigurations, for each software, we randomly pick an image that is not in

the training set, and inject 15 random errors to the configuration file with ConfErr [38].

ConfErr is a misconfiguration injection tool to test and quantify the resilience of soft-

ware systems to human-induced configuration errors. It uses human error models rooted

in psychology and linguistics to generate realistic configuration mistakes; it then injects

these mistakes and measures their effects, producing a resilience profile of the system

under test.

After the injection, we use EnCore to check against the tinted systems. The re-

sults are compared with two other approaches: 1)the Non-Correlation and Environment-

Unaware (NCEU) one, which is used by existing works and does not consider envi-

ronment information nor correlation, and 2) Non-Correlation but Environment-Aware

(NCEA), which is enhanced by the type-based environment information integration pro-

vided by EnCore, so that not only configuration values, but the environment information

is also taken into consideration. As shown in Table 5.1, there is a significantly larger

coverage of EnCore. In the table, “Baseline” is the non-correlation and environment-

unawared approach, adopted in most existing work. “Baseline+Env” is non-correlation
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but environment-aware, i.e., only using the type-based environment infomation inte-

grated by EnCore. It further shows that with the environment information integration

and type detection, the existing value comparison approaches could also gain huge ben-

efits, and discover more problems.

Among the 26 injected errors that are detected by EnCore but not NCEU, we

find 9 of them are due to the lack of correlation detections, and the rest 17 of them are

because of the lack of environment information(20) or the type detection(1). There is

one error not detected in Apache, where the value is a pure string that specifies a format,

which various in the training set and at the same time not having any hint from other

sources. In this experiment, we assume all the approaches are able to detect unseen

directive entries, as it is a trivial extension to any configuration error detection work.

However, note that the misconfiguration injection itself is environment-unaware,

and only injects in the configuration files but not the other related places in the system.

For example, it does not try to change the permission or the ownership of a file specified

in the configuration. This limitation of the injection tools also limits the significance of

the benefits brought by EnCore in the experiment.
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5.1.2 Real Misconfigurations Problems

To test how the system reacts to real world misconfigurations, we used the prob-

lem set described in [62]. he problems are manually reproduced in a new testing image.

Table 5.2 shows the problem description as well as the detection results. The “Info” col-

umn describes the information needed to detect the misconfigurations: “Corr” refers to

correlation, and “Env” refers to environment infomation. The “Rank” column shows the

rank of the real misconfiguration in the warning report, with the total number of warn-

ings shown in “()”. “-” means the misconfiguration is missed by EnCore. Note that the

majority of them require both environment and correlation information. Due to space

limit, we skipped the problems with similar root causes, and only show 8 problems of

different kinds. In addition, we show two real cases caused by the configuration errors

we found in EC2 image as described in Section 5.1.3.

EnCore does not detect problem #8 in Table 5.2. The root cause of the problem is

that the max heap table size is set to be equal to the system memory size, but the system

cannot allocate all the space to MySQL. In fact, detecting this problem is a typical usage

of environment information and correlation. EnCore misses it only due to the lack of

hardware information in the training set. The hardware data is avoided intentionally

when we are crawling images. Because they can be chosen arbitrarily when instantiating

the images on EC2, and could not reflect the real usage scenario when the images are

created and deployed. It is trivial to extend the data with this information in real usage.

When checking Apache httpd server, some other warnings are generated mostly

from configuration entry name checking. This is because Apache allows embedded dire-

cives in arbitrary levels of sections, and if the combination of the sections and directives

are not seen in the training set, a warning is reported. Problem #10 has the root cause

of the problem ranked No.2 due to another misconfiguration in the file, which violates a
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Table 5.3. Categories of new detected misconfigurations. “FilePath” means the path
setting is missing or set wrongly. “Permission” means the permission setting is wrong.
“ValueCompare” shows the misoncifugraions violating value comparison rules.

Source FilePath Permission ValueCompare Total

EC2 3 10 24 37

PrivateCloud 10 3 11 24

rule with a higher confidence.

5.1.3 Detecting New Misconfigurations

In addition to the images in the training set, we collected 120 images from EC2

for testing, and use EnCore to directly check them against the generated rules. It is to

our surprise to find a total of 37 configuration errors in 25 images. This was not expected

because the public images are mostly used as templates to produce other images, and

considered to be correct. We also check 300 images in the commercial private cloud

of an IT company, and find 24 problems in 22 images. Table5.3 shows their categories.

All of them are manually verified to be vulnerable configurations that either affect the

security of the systems, or cause unexpected behaviors.

Three of them has file path specified in the configuration files while the corre-

sponding file should but does not exist. For example, one image has MySQL’s configu-

ration file to include another file which does not exist, causing MySQL unable to start.

Another example is in Apache, the aliased directory does not exist, causing the website

visiter unable to view certain contents.

We find that many of these misconfigurations cannot be detected by the software

itself, and the related rules are not enforced in the source code. But they can cause un-

desired behavior or security problems after deployed. These configuration errors have

caused real problems that are already encountered by the other software users [10, 8].
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For example, the log file in MySQL is not supposed to be accessible by other users

because it may contain sensitive data [8]. However, even with the detrimental exces-

sive privilege, MySQL executes normally with the security issue that is difficult to be

discovered. In total, we find 4 images having this security problem.

Another example is in PHP, the size of the uploaded file is limited by two entries:

post max size and upload max filesize, and the first one has higher priority. Thus for the

later one to take effect, it needs to be smaller than the first one, otherwise the upload of a

file larger than post max size fails even if the file size is smaller than upload max filesize.

It can be noticed that the ratio of problematic images in the commercial private cloud is

lower than that of EC2. This is expected because they have been deployed in real usage

for quite some time, and should have most problems discovered already.

It is interesting to notice that none of these misonfigurations can be detected

without the use of environment information and correlation detection. For example, the

permission violation is detected by the rule found from the 8th template in Table 3.3,

where file path permission is correlated with user names. In this particular case, it

checks the accessiblity of the Linux system user ’nobody’. The experiments illustrate

the effectiveness and neccessarity to integrate these two important factors when dealing

with misconfiguration issues.

5.2 Type Inference Accuracy

Table 5.4 shows the type inference results as described in Section 3.2.2.The “En-

tries” column is the total number of configuration entries. The “NonTrivial” column

refers to the types with semantic meanings that are not regarded as “string” or “number.”

“FalseTypes” / “Undetected” show the number of entries with wrongly detected or un-

detected types. For the entries that do not match any hint or do not pass verification, we

assign them with the type String or Number(trivial), which may include the configura-
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Table 5.4. Data type detection results.

Apps Entries NonTrivial FalseTypes Undetected

Apache 371 207 14 20

MySQL 131 86 3 11

PHP 249 164 13 8

tions that specify string format, a regular expression, or a count number. For the rest of

them, we infer them according to Table 3.1.

To verify the results, we manually check the semantics of all the entries and com-

pare them with the inference output. We have both false positives and false negatives. A

major reason of the false inference is the use of regular expression and wildcards in the

configuration files to specify the file names or paths. Another reason is that the specified

file names or paths may not necessarily exist in the system, and they are used just as

a optional hints to the software. For example, in Apache users could specify the index

file to serve a directory. But the file may actually not exist, and the software handles its

absence automatically. Another example is the log files of MySQL that will be created

when the software is running. For PHP, the wrong detection mostly come from the in-

teger values mistakenly determined as Boolean, when all the training images are using

the values of 0 or 1. Note however, these happen because we are using the data set of

template images from Amazon EC2, which means they are usually the clean systems to

start with. The results will be improved with the snapshots of working systems as they

already have all the needed files in place, and more customized configuration values.

It is obvious that the configuration entries in our study do not cover all the possi-

ble configuration options in the software, because they need to be present in our training

set. However, less obviously, we may have additional configuration entries recorded in

addition to those specified in the manual. This is because certain configuration entries
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have multiple segments. For example, the LoadModule directive in Apache constitutes

two parts: the module name, as well as the module file. The parser separates them to

form two individual entries. It makes sense to our EnCore as the two parts have different

meanings and thus different types.

Also note that the number of configuration entries here is different from the

number of columns specified in Table 2.2, The reason is that Table 2.2 represents the

number of the tree nodes in the data set, and different instances of the same configuration

entries are treated as different columns because we need to provide the original data to

the rule generator. However, it makes sense to aggregate the types inferred from different

instances of the same configuration entry together.

5.3 Correlation Rule Inference

Table 5.5 shows the number of rules generated by applying the predefined tem-

plates (described in Table 3.3) to each software. For each software, we measure the

number of rules found for the template, as well as the number of false positives. We

use the confidence of 90%, support number of 10% of the total number of images in

the training set, and entropy of 0.325 (described in Section 3.3.2). The threshold is se-

lected according to the nature of our training set. EC2 images are often used as general

’template’ images for the users to customize them to their own needs. Therefore many

of the images’ configuration entries are the default values. In this case, the entropy is

usually small. For the same reason, the possibility of the occurences of certain config-

uration entries, especially those that are not in the sample configuration files provided

by the software, is also small. Therefore we use a small support number for the purpose

of filtering. A significant source of false rules is the undetected types, which causes

the comparison of unrelated entries. For example, in Apache, both MinSpareServers

and Timeout are inferred as Numeric type. Thus they are compared although being not
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Table 5.5. Detected correlation rules with the filters.

Apps Detected Rules False Positives

Apache 42 9

MySQL 29 4

PHP 31 10

correlated. Since MinSpareServers are mostly smaller than Timeout numerically, it is

reported as a rule.

The detected correlations in Table 5.5 is the results after applying the filters.

As described in Section 3.3.2, besides the standard filters of confidence and support

number, we also use entropy. To evaluate the effectiveness of entropy filter in our data

set, Table 5.6 shows the number of false rules filtered in each software. “Original” shows

the number of rules after applying the confidence and support filters. FP (False Positive)

Reduced is the number of false rules filtered by entropy filter. FN (False Negative)

Introduced is the number of true rules that are filtered. The number of original detected

rules are the results after only applying the confidence and support filters.

In our experiments, entropy is mostly effective against the false positives in the

correlations related to numeric rules, as well as binomial association rules. The reason

is that some of these values are directly derived from the sample configuration files and

not changed by the image developers. For example, the HostnameLookups directive in

Apache is always set to Off ; and the min server severity directive in PHP is always set

to 10. The high number of originally reported rules in PHP are mostly contributed by

the comparison of numeric entries. Since many of these settings are not changed much,

the filter could effectively rule them out.

However, for the same reason, entropy also inevitable filters some true correla-

tions. For example, while net buffer length should be smaller than max allowed packet
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Table 5.6. Effectiveness of the entropy filter.

Apps Original FP Reduced FN Introduced

Apache 113 71 7

MySQL 52 23 1

PHP 567 536 1

in MySQL, since all the values of net buffer length is 8K, this rule is filterd by mis-

take. Although we think exposing more correlations is more critical than suppressing

the false reports when detecting misconfigurations, given the false positive and false

negative number introduced by the filter, we consider the trade-off worthwhile and ben-

eficial to the end users.

For the two parts that are involved in the comparison of numeric values, it is pos-

sible that one part is usually within a range that is much smaller than the other part. Thus

although they may not have direct logical relation, our tool still reports them. Currently

we allow these reports because even if the software logically allows the comparison or-

der to be reversed, this anomaly is likely to have problem as it violates the rule found

from most other peers. For example, although they have no semantic relation, we re-

port the correlation of thread stack < max binlog size in MySQL, as the former one is

usually within hundreds of KB while the later is usually within hundreds of MB. We

consider it beneficial as if the user mistakenly set the thread stack value too large that

is even larger than max binlog size, it might be harmful. Indeed the MySQL manual

states that the default value of 192KB is large enough for normal operation. However,

if this behavior is not desired by the users, a more complicated filtering rule based on

clustering algorithms such as k-means [32] can be used. With the help of clustering,

the numeric configuration entries can be first divided into several groups based on their

values, and correlation rules are filtered if the involved entries fall into different groups.
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Table 5.7. Performance related parameters found with iOpt.

application
Memory Related Computing Related I/O related

Original Found Original Found Original Found

MapReduce 13 11 5 3 4 3

PostgreSQL 10 8 3 3 2 2

We leave the choice of additional filters to our future work.

5.4 Finding Performance Parameters with iOpt

The Java detector in iOpt is implemented with IBM Wala Java program analysis

framework [14], and the C/C++ version SPEX is implemented with LLVM. To test the

effectiveness of iOpt in finding performance related parameters, we conduct an analysis

of both MapReduce and PostgreSQL. Table: 5.7 shows the the results of performance

related parameters detection. In total, 77% of performance related parameters in MapRe-

duce and 86.7% in PostgreSQL are found.

One major reason for the false negative is that for some of the memory related

parameters, they do not take control at the places where memory is created (with alloc

etc.). For example, maintainece mem in PostgreSQL is referred only when using the

memory, and controls the upper limit of the memory usage in a given pool. Therefore

there is not a general hint on whether it relates to the memory usage.

At the same time, iOpt analysis can suffer from false positives - meaning the

parameter is reported as performance related but actually not. Due to the scalability

issue with Wala, we tested 30 parameters in MapReduce, and found 7 false positives.

In PostgreSQL we also found 3 false positives. Interestingly, they all come from mem-

ory related paramters. The major reason is that they participated in deciding how much

memory should be allocated at certain memory allocation sites. However, these places
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Table 5.8. The constraints and dependencies inference and their accuracy.

application
Data Range Contrl Dependency Value Relation

Found Accuracy Found Accuracy Found Accuracy

Apache 42 94.6% 1 100% 9 81.8%

MySQL 213 99.1% 35 94.7% 10 71.4%

PostgreSQL 186 97.3% 44 91.7% 6 85.7%

OpenLDAP 20 73.1% 0 N/A 2 50%

VSFTP 84 100.0% 68 63.9% 1 100%

Squid 120 100% 14 77.8% 9 100%

actually do not consume the major part of the memory, and is used only to keep meta

information instead of the large amount of memory used to store data to affect the per-

formance. For example, while max connections in PostgreSQL is recognized as com-

puting resource related, it is also recognized as memory related, due to the fact that its

value also participates in deciding how many semaphores to allocate with the memory

allocation method.

To test the constraints analysis, we run Spex with 6 C/C++ applications with

all the configuration parameters. It is obvious that there are significant amount of con-

straints specified in the software source code. The accuracy is valideted by manually

examining all the inferred constraints. It shows an overall accuracy of over 90%. One

of the major cause of inaccuracy is caused by the aliased pointers in configuration pa-

rameter parsing.

5.4.1 iOpt Case Study

While iOpt is targeted at providing a filtered input to the automatic performance

tuning tools, it could help other users understand more about how the configuration

parameters are used in the system, and thus providing an insight help on tuning the
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Figure 5.1. MapReduce memory usage inferred from iOpt results.

parameters more efficiently.

Figure 5.1 shows how the memory pools are arranged in MapReduce. The whole

memory is mainly split by the IO sort buffer, the reduce buffer, and the shuffle buffer,

and the IO sort buffer is further split by a meta buffer and record buffer. iOpt first lo-

cates that the parameter of mapred.child.java.opts controls the whole jvm memory

usage with the parameter of Xmx, and thus we know it is the first-level memory - any

memory allocated is part of it. Next, iOpt recognizes the three parameters io.sort.mb,

mapred.job.reduce.input.buffer.percent, and mapred.job.shuffle.input.buffer.percent are

memory related. What’s more, from their allocation sites, we find they are all allocating

memory from the whole memory pool. Therefore iOpt inform that these parameters are

splitting the whole memory in the same second level. Thus the user can consider these

parameters together - increasing one parameter while decreasing another.

Further, when analyzing the paramter of io.sort.record.percent, iOpt finds

that this parameter is a percentage, and multiplies the memory denoted by io.sort.mb,

thus it occupies a part of memory from IO sort buffer. In the same way, it also reports
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Figure 5.2. Performance tuning results with iOpt memory hierarchy reports.

io.sort.spill percent also occupies IO sort buffer. Therefore, these two parame-

ters are considered together at the 3rd level. Figure 5.2 shows the performance improve-

ment with the parameter adjustment on each memory level.

Chapter 5, in part, is a reprint of the material as it appears in 19th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems. Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-

anth Bala, Tianyin Xu, and Yuanyuan Zhou. The dissertation/thesis author was the

primary investigator and author of this paper.
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