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The Journal of Infectious Diseases

S U P P L E M E N T A R T I C L E

Cytomegalovirus and HIV: A Dangerous Pas de Deux
Sara Gianella and Scott Letendre

Department of Medicine, Division of Infectious Disease, University of California–San Diego, La Jolla

Human immunodeficiency virus (HIV)–infected adults who take stable antiretroviral therapy (ART) are at risk for early onset of age-
related diseases. This is likely due to a complex interaction between traditional risk factors, HIV infection itself, and other factors,
such as underlying immune dysfunction and persistent inflammation. HIV disrupts the balance between the host and coinfecting
microbes, worsening control of these potential pathogens. For example, HIV-infected adults are more likely than the general pop-
ulation to have subclinical bursts of cytomegalovirus (CMV) replication at mucosal sites. Production of antigens can activate the
immune system and stimulate HIV replication, and it could contribute to the pathogenesis of adverse outcomes of aging, like car-
diovascular disease and neurocognitive impairment. Further investigation of the relationships between CMV, immune dysfunction,
and unsuccessful aging during chronic HIV infection is warranted.
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Antiretroviral therapy (ART) improves health, prolongs life, and
reduces the risk of human immunodeficiency virus (HIV) trans-
mission [1]. Nevertheless, adult ART recipients living with HIV
have greater morbidity and mortality than the general population
[2].Morbidities include metabolic and vascular disorders, frailty,
malignancies, and neurocognitive impairment, which have been
linked in part to persistent inflammation during long-term sup-
pressive ART [3]. Multiple mechanisms underlie the persistent
inflammation, including coinfection with cytomegalovirus
(CMV) and other human herpesviruses (HHVs) that lead to im-
mune dysregulation and senescence [4, 5].

As HIV-infected adults age into their sixth decade and beyond,
better understanding and management of aging-associated mor-
bidities is an urgent priority in HIV research and clinical care.
Successful aging is a multidimensional concept encompassing
the avoidance of disease and disability, maintenance of high phys-
ical and cognitive function, and sustained engagement in social
and productive activities [6]. Research has identified factors pre-
dictive of successful aging for HIV-infected and uninfected indi-
viduals [7–11]. Here, we review the existing literature on how
CMV influences the course of HIV disease, and we summarize
steps that may influence disease outcomes in adults aging with
HIV disease, particularly those related to cardiovascular and neu-
rocognitive complications.

EPIDEMIOLOGY AND PATHOGENESIS OF CMV

Human CMV is a member of the β-herpesvirus family and is com-
mon worldwide, particularly among those who have receptive

sexual intercourse (women and men who have sex with men)
[12, 13] or are of low socioeconomic status [13]. Primary CMV in-
fection elicits robust innate and adaptive immune responses and
can cause a febrile mononucleosis and hepatitis but is subclinical
for most healthy individuals [14].Reactivation can cause life-threat-
ening complications in immunocompromised hosts [15].The most
common manifestation in HIV-infected subjects with advanced
disease is CMV retinitis, which accounted for 85% of all CMV
complications, leading to blindness in many patients [15]. Gastro-
intestinal tract manifestations accounted for 10% of CMV disease
in AIDS patients, followed by neurological disorders, pneumonitis,
hepatitis, and adrenalitis [15]. The introduction of combination
ART in 1995–1996 substantially reduced the incidence of AIDS-
related, CMV-associated end-organ diseases [15]. CMV still con-
tributes to morbidity and mortality in patients who initiate ART
with low CD4+ T-cell counts, occasionally as a result of immune
reconstitution inflammatory syndrome [16].

Many adults are initially infected with CMV during childhood
or early adulthood, although the incidence continues to rise
throughout adulthood, by approximately 1% annually [17].
About 70% of adults under good socioeconomic conditions and
90% under poor conditions become infected with CMV [13]. Fol-
lowing primary infection, the virus persists in a true latent form or
in a state of low-level replication made possible by multiple im-
mune evasion mechanisms [18, 19]. Latent CMV can reactivate
in response to inflammatory stimuli and other physiologic stress-
ors, releasing intact virions that can infect new cells, including
cells in the central nervous system (CNS) [20–23]and the vascular
endothelium [24,25]. Such episodic bursts of CMV replication are
typically asymptomatic, appear to occur repeatedly at unpredict-
able intervals, and are self-limited [13]. Subclinical shedding of
CMV has been described in genital secretions, saliva, urine,
blood, stool, and breast milk [13]. The frequency of CMV shed-
ding at mucosal sites varies and is dependent on the geographical
location, cohort characteristics, and detection methods [19].
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When the immune system is compromised, CMV shedding can
increase dramatically. We recently showed that nearly all sexually
active HIV-infectedmenwho have sex withmen (94%) in southern
California have detectable DNA from ≥1 HHV over 48 weeks [26].
The most common virus was CMV (85%), followed by Epstein-
Barr virus (EBV; 81%), HHV-7 (35%), HHV-6 (29%), HHV-8
(26%), and herpes simplex viruses (HSVs; 23%) [26]. Viral shed-
ding was associated with younger age but not with CD4+ T-cell
count, HIV RNA levels, duration of HIV infection, or ART use.
Less is known about CMV shedding in HIV-infected women.
One recent study measured vaginal shedding of CMV DNA longi-
tudinally in Uganda [27]. Vaginal CMV was detected in over three
quarters (78%) at ≥1 assessment and was the highest shortly after
ART initiation, which may occur because immune reconstitution
increases the number of target cells for CMV.

Such asymptomatic CMV shedding is important for the hor-
izontal transmission and for the interplay between CMV, reac-
tivation of other viruses, differentiation of naive T cells, and
monocyte/macrophage activation.

CMVAND THE HOST IMMUNE SYSTEM

Like other viruses causing chronic infection, CMV coevolved with
its host over millennia, developing complex strategies to allow viral
persistence and facilitate transmission [13].CMV is one of the larg-
est and most immunogenic viruses to infect humans [28].A recent
study using ribosome profiling and transcript analysis demonstrat-
ed that 751 unique viral messenger RNAs are translated in CMV-
infected fibroblasts, suggesting an even more complex biology than
previously recognized [28]. Many CMV-encoded proteins are not
essential for viral replication but allow the virus to avoid immune
recognition, protecting infected cells from destruction by host de-
fenses [19]. As part of this complex host-virus relationship, CMV
stimulates and maintains a high frequency of virus-specific T cells
that work to control CMV replication and prevent life-threatening
end-organ complications [29]. CMV-specific T cells can comprise
upward of 50% of circulating CD8+ T cells and 30% of CD4+ T cells
inHIV-uninfected donors [29],proportions that are higher inHIV-
infected adults [30, 31]. Epitopes recognized by these T cells are
present for CMV proteins expressed at all stages of the viral repli-
cation cycle [29], consistent with repeated exposure of the host im-
mune response to viral antigens. While some individuals also
develop clonal expansion against EBV, this is much smaller in
size [32].CMVappears to be unique among chronic viral infections
in its profound effect on the T-cell repertoire [33]. Two reasons for
this may be its ability to upregulate the expression of several inflam-
matory mediators [34–37]while encoding its own cytokine and cy-
tokine receptor homologs, allowing it to create an environment that
favors its persistence and transmission [34, 38, 39].

CMV’s effects in immune-competent hosts seem to be age
dependent. The effects of CMV infection on host immunity
are not always deleterious, and CMV might have a beneficial ef-
fect on the immune system by providing immune protection

against other pathogens (so-called heterologous immunity
[40]) in younger healthy people. This could explain why humans
(and many other species) tolerate the very high prevalence of this
infection, and it is consistent with the notion of antagonistic plei-
otropy [41–43]. Certain biological features can be selected as fa-
vorable during youth but become harmful with age (ie, during a
stage of life that is neutral in terms of evolutionary selection)
[44]. Improved survival over the past century has revealed a set
of CMV-associated changes in the aging immune system that
might be associated with multiple disorders, including cardiovas-
cular disease and neurodegenerative disorders.

CMV, IMMUNOSENESCENCE, AND AGING

The progressive expansion of the T-cell repertoire committed to
CMV (referred to as CMV-specific CD8+ T-cell memory infla-
tion [29]) can deplete naive T cells and is associated with the
immune risk phenotype in the general population [45]. The im-
mune risk phenotype includes expansion of late-differentiated
CD8+ T cells and an inverted CD4+/CD8+ T-cell ratio; is a
strong predictor of mortality; and is rarely seen in centenarians
[46]. The predominant senescent phenotype of CMV-specific
CD8+ T cells (CD28−CD57+) has altered function, including
poor proliferative response and relative resistance to apoptosis,
which can in turn lead to adverse clinical outcomes [47]. The
accumulation of peripheral T cells lacking CD28 contributes
to inflammation and aging by producing large amounts of in-
terferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleu-
kin 1β, and interleukin 6 (IL-6) upon antigenic stimulation [48].
CMV infection together with elevated IL-6 dramatically in-
creases the risk for frailty, a state associated with increased mor-
bidity and mortality in older adults [49, 50].CMV infection may
also be important for telomere and telomerase dynamics, by in-
creasing the number of highly differentiated T cells with shorter
telomeres and decreased telomerase activity [51]. Aging and
chronic inflammatory conditions are associated with oxidative
stress, which may increase CMV reactivation [52]. In turn,
CMV replication can increase oxidative stress [53, 54], setting
up a possible positive feedback loop. Taken together, there is
strong evidence that CMV is implicated in immunosenescence
and aging [55, 56], but this is still a very dynamic topic, and the
exact clinical implications remain to be defined.

HIV VERSUS CMV

HIV-infected individuals are almost universally coinfected with
CMV [13], and both viral infections are associated with inflam-
mation and aging [44]. CMV seems to exert a more dramatic ef-
fect than HIV (in HIV RNA–suppressed individuals) and might
be the so-called “smoking gun” of immunosenescence among co-
infected persons [57–59]. The main differential effect between
CMV and HIV seems to be their impact on CD8+ T cells [33].
A recent study found elevated numbers of CD8+ T cells and a
low CD4+/CD8+ T-cell ratio in individuals coinfected with
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both viruses but not in persons infected with HIV alone or
CMV alone [60]. Along the same line, HIV-infected individuals
who are seronegative for CMV show greater resilience and bet-
ter immune recovery following ART [61]. HIV infection seems
to also exert a distinct effect on the CD8+ T-cell phenotype. Un-
like CMV and aging, which are associated with terminal differ-
entiation and proliferation of effector memory CD8+ T cells,
HIV inhibits this process, expanding less well-differentiated
CD28−CD8+ T cells and decreasing the proportion of
CD28−CD8+ T cells that express CD57 [62, 63].

CMV is well known to induce high levels of multiple cytokines
(particularly IFN-γ) [64], which seem to be much higher and
broader than that induced by HIV in vitro (Dr Rachel Schrier, un-
published observation). Blood plasma levels of IFN-γ–inducible
protein 10, TNF-RII, and D-dimer are higher in people coinfected
with CMV and HIV as compared to those in HIV-monoinfected
subjects, suggesting that CMV might specifically drive expression
of these biomarkers [65]. No difference was observed for IL-6,
interleukin 18, or soluble CD14 between the 2 groups (ie, HIV-
monoinfected versusHIV/CMV-co-infected) [65].While the com-
plex effects of CMV and HIV on immunosenescence continue to
beuntangled, existingfindings implicateCMVasan important con-
tributortoT-cellactivationandadverseoutcomesintreatedHIVdis-
ease and an attractive target for therapeutic interventions (Figure 1).

CMV, HIV, AND CLINICAL OUTCOMES

In the setting of underlying immune deficiency, CMV is associated
with more-rapid HIV disease progression, more AIDS-related
events [66, 67], and a wide range of serious end-organ diseases
[13] . The incidence of life-threatening complications has decreased
dramatically with suppressive combination ART, likely due to res-
toration of CMV-specific immune responses that limit CMV reac-
tivation [68].While the clinical importance of CMV in the setting
of ART-treated HIV disease is less clear, emerging evidence links
CMV to suboptimal immune response to ART [61] and increased
risk of non–AIDS-related complications [69]. Interestingly, CD8+

T-cell activation was reduced by valganciclovir treatment in a
small clinical trial, suggesting that treatment of CMV (and other
valganciclovir-susceptible viruses) might be a viable strategy to re-
duce immune activation in HIV-infected adults [70].

A large, longitudinal study recently established CMV as a risk
factor for severe, non–AIDS-related adverse clinical events in
HIV disease [69]. The event most frequently associated with
CMV was cardiovascular disease, which has been described fol-
lowing organ transplantation [71, 72] and with HIV disease [73,
74].Given its ubiquity as a human pathogen and its ability to in-
fect endothelial cells and smooth-muscle cells [75], CMV is an
ideal candidate pathogen for atherosclerosis [76]. Several epidemi-
ologic and animal studies support this conclusion [59, 77–81], but

Figure 1. Proposed model connecting cytomegalovirus (CMV), human immunodeficiency virus (HIV), immune dysfunction and worse disease outcome. HIV infection induces CD4+

T cell loss and dysfunction, thereby failing to provide help to CD8+ T cells and permitting more CMV replication. Both viral infections contribute to inflammation, immune senescence
and promote the expansion of CD8+ T cells. Such CD8+ T cell expansion, coupled with a loss of CD4+ T cells (leading to a lower CD4/CD8 T cell ratio) are linked to morbid outcomes of
CMV and HIV infections. Additionally, CMV might cause direct cellular damage to endothelial cells and other cell types further contributing to end organ damage.
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the search for causal links is ongoing. CMV has been isolated
from atherosclerotic plaques [82] and predicts mortality in pa-
tients with coronary artery disease [83]. Among heart trans-
plant recipients, higher levels of anti-CMV immunoglobulin
G (IgG) and CMV DNA correlate with development of cardiac
allograft vascular disease and acute graft rejection [84]. When
prophylaxis was given to heart transplant recipients, the inci-
dence of posttransplantation CMV disease declined, along
with the incidence of acute and chronic graft rejection [85,
86]. CMV may also contribute to coronary artery restenosis
after coronary angioplasty [87].

In response to CMV infection, endothelial cells express proangio-
genic factors and proinflammatory molecules (eg, IL-6 and vascular
endothelial growth factor) [82, 88]. This promotes enhanced prolif-
eration and migration of monocytes and smooth-muscle cells into
the intima of the vascular wall, as well as lipid accumulation and
expansion of the atherosclerotic lesion [89]. Also, CMV-infected
smooth-muscle cells within vascular lesions have greater prolifer-
ation and impaired apoptosis (perhaps mediated by the CMV
US28 protein [90]),which may contribute to intima media thick-
ening, plaque formation, and restenosis [88, 89].When peripher-
al blood cells from persons with strong anti-CMVT-cell response
are incubated with CMV antigens, an immune cascade results in
endothelial damage and increased expression of CX3CL1 and
other cytokines [91, 92]. CMV-specific T cells frequently express
the CX3CL1 receptor (CX3CR1), and a study linked CD4+ T cells
expressing CX3CR1 to carotid intimamedia thickness [93].Thus,
both CMV replication and the immune response to CMV may
promote changes in endothelial cells that contribute to the ath-
erogenesis [58, 91]. Similar immune-viral interactions might also
underlie increased levels of inflammation linking CMV to other
age-associated diseases.

CMVAND NEUROCOGNITIVE COMPLICATIONS

Similar to cardiovascular disease, multiple clues about the impact
of CMV infection on the CNS come from outside the HIV field.
For example, older adults with higher levels of anti-CMV IgG an-
tibodies or CMV-specific CD4+ T cells in blood had worse perfor-
mance on the mini–mental status examination and worse activities
of daily living [94]. Consistent evidence also came from the Sacra-
mento Area Latino Study on Aging, a population-based study of
>1200 adults aged >60 years. Again, those who had the highest
anti-CMV IgG levels had the highest rate of cognitive decline
over 4 years, after accounting for the effects of age, sex, education,
income, and chronic health conditions [95]. In contrast, no asso-
ciation was found with anti–HSV-1 IgG concentrations. In a sep-
arate analysis from this cohort, higher serum anti-CMV IgG levels
were associated with all-cause and cardiovascular disease–related
mortality, and 2 proinflammatory cytokines, IL-6 and TNF-α, stat-
istically mediated part of this relationship [96].

Consistent with these findings, CMV has been recently implicat-
ed in the pathogenesis of Alzheimer disease. In one study of >800

adults followed for an average of 5 years, CMV seropositivity was
associated with a faster rate of cognitive decline, including a >2-fold
increased risk of developing Alzheimer disease, when accounting
for the influence of age, sex, race, vascular risk factors, and apolipo-
protein E genotype [97]. In a study of autopsy brain tissue donated
by Catholic clergy with few confounding conditions, higher serum
IgG levels in life against CMV but not those against HSV-1 were
associated with the presence of neurofibrillary tangles at death [98].

The direct effect of CMVonAlzheimer disease remains contro-
versial [99, 100]. Even though CMV can infect glia, neurons, and
neural precursor cells [20–23], CMV replication is rarely found
within the CNS in immune-competent hosts. Distinguishing the
effects of CMV from HSV-1 is important since prior studies have
also linked HSV-1 to Alzheimer disease [101–103] and because
the immune responses to these 2 viruses can overlap [104].

While HIV-associated neurocognitive disorder (HAND) is not
a primary amyloidopathy, recent evidence has identified amyloid
accumulation in brain tissue of adults dying with HIV disease
[105] and low amyloid β1–42 levels in cerebrospinal fluid from
HIV-infected adults who have a family history of dementia
[106].Amyloid accumulation is also associated with vascular dis-
ease, which has been in turn linked to HAND [107, 108].Consis-
tent with these findings, stronger CMV-specific, IFN-γ CD8+ T-
cell responses have been linked to worse carotid intima media
thickness [73], and higher anti-CMV IgG levels have been linked
to carotid atherosclerotic lesions in HIV-infected adults [74].
More recently, a large nationwide population-based cohort
study in Taiwan including >22 000 people living with HIV
found a significant association between CMV end-organ disease
and risk of ischemic stroke [109].

Our own data from the CNS HIVAntiretroviral Therapy Ef-
fects Research cohort identified consistent results in HIV-infected
adults [110]. Even though the 138 participants in this analysis
were younger than in the published analyses from the general
population (median age, 43 years), higher anti-CMV IgG levels
were associated with worse neurocognitive performance, but
only among those taking suppressive ART. In addition, the com-
bination of higher serum anti-CMV IgG titers and higher plasma
levels of the monocyte activation biomarker, soluble CD163, were
strongly associated with global neurocognitive impairment (odds
ratio, 5.7; positive predictive value, 83%). Another recent study of
91 HIV-infected adults taking suppressive ART found a consis-
tent association between higher anti-CMV IgG levels and worse
neurocognitive performance, although this weakened when age
was included in the model [111].

In summary, there is evidence that CMV could be associated
with adverse neurocognitive outcomes. CMV could injure the
CNS in multiple ways, including replication-mediated cell injury
and resulting inflammation, cerebrovascular disease, and perhaps
neurotoxic viral proteins. Larger observational and interventional
studies are needed to determine how CMV and other chronic in-
fections influence neurocognitive health.
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CMVAND HIV PERSISTENCE

The conclusion that chronic inflammation and immune activa-
tion drives HIV persistence during ART is supported by strong
evidence [112, 113]. To link CMV replication, systemic inflam-
mation, and maintenance of the HIV reservoir, recent studies
have identified that the presence of subclinical CMV replication
is associated with higher levels of HIV DNA in both ART-naive
adults [114] and in those taking long-term suppressive ART
[115]. More recently, in a longitudinal study of 108 individuals
followed since the earliest phase of HIV infection, intermittent
CMV and EBV replication in blood cells was associated with
more HIV DNA in blood over time [116]. A recent study of 6
HIV-infected adults undergoing cytoreductive chemotherapy
demonstrated that the majority of HIV DNA after immune re-
constitution was detected in circulating CMV- and EBV-specific
CD4+ T cells (as compared to those responding to αCD3/αCD28
stimulation or not expressing interleukin 2/IFN-γ) [117]. Al-
though the observational design of these studies does not allow
causality to be inferred and they did not specifically evaluate the
replication competent HIV DNA subset, the findings support the
theory that asymptomatic CMV replication (especially during im-
mune reconstitution) could drive local and systemic immune ac-
tivation with a subsequent increase in the HIV DNA reservoir.
The effect of latency-reversing agents and immune-modulatory
therapies on CMV reactivation is currently unknown and should
be evaluated in the setting of ongoing clinical trials. Activation of
latent HIV DNA with immune modulatory interventions could
affect replication of CMV and other HHVs, which might in
turn limit HIV clearance.

CONCLUSIONS

Through millions of years of coexistence, CMV has developed
multiple strategies to coexist with the human immune system
[118]. The extended lifetime provided by medical and socioeco-
nomic advantages has revealed a set of CMV-associated changes
in the immune system, which are associated with multiple age-
related disorders and decreased survival. These relationships are
even more prominent in the setting of HIV infection. The mech-
anisms by which CMV raises the risk of age-related morbidities
may be accelerated and more intense in the setting of HIV infec-
tion (Figure 1). A detailed knowledge of the interactions between
CMV, HIV, and host immune responses is necessary to under-
stand the complex mechanisms underlying aging-related compli-
cations during HIV infection and to develop new strategies to
prevent the premature occurrence of end-organ diseases that
may be linked to CMV. Also, because the prevalence of CMV in-
creases with age and varies according to socioeconomic factors
[13], distinguishing the effects of CMV on aging-related compli-
cations from the effects of other confounding variables is difficult.

Future studies should evaluate the relative contributions of
CMV reactivation, CMV-specific T-cell response, and immune
dysregulation to determine the best targets for intervention.

Anti-CMV therapy in transplant recipients prevents long-
term complications, improves graft function, and reduces the
risk of other infections and overall mortality [119]. Whether
this will be true for other populations, including HIV-infected
people, is unclear. Clinical trials of newer, less toxic anti-CMV
drugs (eg, letermovir [120]) should evaluate the effects of CMV
suppression on immune activation and inflammation in the
HIV-infected population. This might be particularly true dur-
ing immune reconstitution in late presenters initiating ART.
Similarly, clinical trials should evaluate whether CMV control
during long-term suppressive ART might also prevent neuro-
cognitive and cardiovascular complications. As these agents
will not eradicate CMV, prolonged courses of therapy may be
needed, particularly when effects on clinical outcomes are the
end points.

Another important factor to be considered in designing fu-
ture studies is the timing of each viral infection. Since CMV in-
fluences aging-related changes of the immune system, the
duration of chronic CMV infection before acquisition of HIV
could influence the T-cell repertoire and affect other immune
system characteristics during ART.

HIV-coinfected individuals who have the strongest CMV-
specific immune response may be at greater risk for adverse
health outcomes, compared with those with less robust respons-
es. Additional analyses of the quantity and quality of the CMV
response and their relation to CMV replication will be needed
to explore this issue. In this regard, whether strategies to enhance
CMV-specific immune responses (eg, therapeutic immunization)
will (1) decrease viral expression and be beneficial or (2) enhance
CD8+ T-cell expansion, inflammation, and non–AIDS-associated
comorbidities remains to be determined. Carefully designed clin-
ical trials targeting CMV replication and immune responsiveness
will be crucial to understand the complex relationships between
CMV and HIV pathogenesis and to direct the design of clinical
strategies that will have a positive effect on HIV disease progres-
sion and aging-related complications.
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