
UCLA
UCLA Electronic Theses and Dissertations

Title
Improving Hardware Multithreading in General Purpose Graphics Processing Units

Permalink
https://escholarship.org/uc/item/7f40m7jn

Author
Kim, Hyun Jin

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7f40m7jn
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Improving Hardware Multithreading in

General Purpose Graphics Processing Units

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Hyun Jin Kim

2017

c© Copyright by

Hyun Jin Kim

2017

ABSTRACT OF THE DISSERTATION

Improving Hardware Multithreading in

General Purpose Graphics Processing Units

by

Hyun Jin Kim

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Glenn D. Reinman, Chair

General-purpose graphics processing unit (GPGPU) is one of the most popular many-core ac-

celerators that deliver a massive computing power in parallel applications. GPGPUs mainly

rely on the hardware multithreading to hide a short pipeline stall and a long memory la-

tency. Thus, the performance of GPGPU can be significantly affected by how GPGPU’s

hardware multithreading is applied. However, finding the optimal hardware multithreading

is a complex problem since there are many aspects to be considered. This work studies the

mechanisms for improving the effectiveness of hardware multithreading. First, it studies

the various scheduling policies and proposes an adaptive scheduling policy that chooses the

best scheduling policy at runtime. In addition, it proposes simple but effective warp throt-

tling mechanism that can increase the cache locality. Furthermore, it proposes a hardware

prefetching mechanism to extend the memory latency hiding degree of hardware multithread-

ing. Finally, it shows how a limited scalability of the conventional cache miss handling archi-

tecture constrains the degree of hardware multithreading and proposes the highly scalable

cache miss handling architecture.

ii

The dissertation of Hyun Jin Kim is approved.

Luminita Vese

D. Stott Parker

Milos Ercegovac

Glenn D. Reinman, Committee Chair

University of California, Los Angeles

2017

iii

Table of Contents

1 Introduction . 1

1.1 Microarchitecture of GPGPUs . 3

1.1.1 Scoreboard . 4

1.1.2 ALU pipelines . 4

1.1.3 Compiler Optimization . 6

1.2 Cache Miss Handling Architecture . 7

2 Locality-Aware Warp Scheduling Policy . 10

2.1 Limitation of Barrel Processing . 10

2.2 Motivation . 14

2.3 Warp Scheduling Policies . 16

2.4 Warp Scheduling Policy on Different Data Locality 17

2.4.1 Intra-warp Locality . 17

2.4.2 Inter-warp Locality . 19

2.5 Locality-Aware Scheduling . 19

2.5.1 Locality Scoring System . 20

2.6 Experimental Methodology . 22

2.7 Experimental Results . 25

2.7.1 Scheduling Policy Performance . 25

2.7.2 Data Locality Analysis . 27

2.7.3 LAWS Sensitivity . 28

2.7.4 Implementation Complexity . 32

iv

2.8 Related Work . 33

2.8.1 Warp Scheduling Policy . 33

2.8.2 Thread Block Scheduling . 33

2.9 Conclusion . 34

3 Warp Throttling . 35

3.1 Motivation . 35

3.2 Various Warp Throttling . 36

3.3 Throttling Unit . 37

3.3.1 Throttling by Intra-Warp Locality . 38

3.3.2 Throttling by Memory Divergence . 39

3.4 Experimental Methodology . 42

3.5 Experimental Results . 43

3.5.1 Throttling Performance . 43

3.5.2 Data Locality Analysis . 44

3.5.3 LAWS-TH Sensitivity . 45

3.5.4 LAWS-TH Analysis . 48

3.5.5 Implementation Complexity . 49

3.6 Related Work . 51

3.7 Conclusion . 52

4 Hardware Prefetching on GPGPUs . 53

4.1 Introduction . 54

4.1.1 PC-based Stride Prefetching Mechanism 54

4.1.2 Challenges of Hardware Prefetching on GPGPUs 55

v

4.2 Hardware Prefetching for GPGPUs . 57

4.2.1 Single Thread Prefetching Extension within Thread Block 58

4.2.2 Single Thread Prefetching Extension across Thread Blocks 58

4.2.3 Thread-Block basis Prefetch Throttling 60

4.3 Methodology . 62

4.4 Experiments . 64

4.4.1 Hardware Multithreading Performance 64

4.4.2 Evaluation of Single Thread Prefetching Extension 67

4.4.3 Prefetcing vs. Memory Latency . 68

4.4.4 Related Work . 69

4.5 Conclusion . 71

4.6 Acknowledgement . 71

5 Tag Shared Cache Miss Handling Architecture 72

5.1 Tag Shared MSHR Array . 75

5.2 Hybrid Tag Shared MSHR Array . 77

5.3 Experiment Methodology . 78

5.3.1 GPGPU Simulator . 78

5.3.2 Benchmarks . 80

5.4 Experiment Result . 82

5.4.1 Optimal MSHR Size . 82

5.4.2 Analysis Tag Shared MSHR . 85

5.4.3 Sensitivity Study . 87

5.4.4 Comparison to Set Associative MSHR 89

5.5 Power, Area, and Access Time . 94

vi

5.5.1 MSHR, TSMA, and HTSMA . 95

5.5.2 Set Associative MSHR . 96

5.6 Related Work . 98

5.7 Conclusion . 100

6 Conclusion . 102

References . 104

vii

List of Figures

1.1 Overview of GPGPU Architecture . 2

1.2 Conventional MSHR Structure: 4 MSHR entries (8 fileds/entry) 8

2.1 Examples of warps’ execution sequence with RR and 2LEV polices. 11

2.2 Examples of warps’ execution sequence in RR and GTO w/o a scoreboard. . 13

2.3 Performance of various warp scheduling policies normalized to GTO policy in

four different benchmark groups. 15

2.4 Examples of warps’ execution sequence with RR and GTO polices on intra-

/inter-warp data locality. 18

2.5 LAWS Mechanism . 20

2.6 Data Locality Detection Mechanism in L1 Data Cache 21

2.7 MSHR Modification . 22

2.8 Performance of 16 scheduling policy sensitive benchmarks on various schedul-

ing policies and throttling mechanisms normalized to LAWS 26

2.9 Overall performance of various scheduling policies and throttling mechanisms

normalized to LAWS (gmean*: geometric mean except for type-0) 27

2.10 Overall Performance of 2LEV with various policies normalized to LAWS . . 27

2.11 Classification of L1 data cache accesses . 28

2.12 Performance results of five input configurations in MONT, LPS, and SC nor-

malized to LAWS. 29

2.13 LAWS performance with varying the maximum Miss CNT value normalized

to 31 . 30

2.14 Ratio of the execution time with GTLR policy on varying the maximum

Miss CNT value . 31

viii

3.1 Performance of various warp scheduling policies normalized to GTO policy in

four different benchmark groups. 36

3.2 Overview of Throttling Unit on LAWS . 37

3.3 Overall performance of various throttling mechanisms normalized to LAWS . 42

3.4 Perfromance of various throttling mechanisms in Type-II benchmarks normal-

ized to LAWS . 43

3.5 Classification of L1 data cache accesses . 44

3.6 Performance of various throttling normalized to B-SWL with varying L1 data

cache size. 45

3.7 The ratio of throttling due to high memory divergence in LAWS-TH with

varying L1 data cache size . 46

3.8 Performance of LAWS-TH with varying the stabilization period normalized to 8 47

3.9 The execution time ratio of different number of warps in LAWS-TH with

varying L1 data cache size . 48

3.10 The weighted average of Min CNT and Max CNT in LAWS-TH with varying

L1 data cache size . 49

3.11 The ratio of different throttling time length ranges in LAWS-TH with varying

L1 data cache size . 50

3.12 The miss rate (primary miss) of L1 data cache in LAWS-TH with varying

cache size. 50

4.1 State Transition Graph . 55

4.2 An example of PC-stride prefetching . 56

4.3 Pseudo Code . 61

4.4 Performance of different number of threads per SM

(Perfect: always cache hit, T#= # threads per SM 64

ix

4.5 The Effectiveness of prefetching with different number of threads per SM

(MT-HWP:Per-warp training and inter-thread prefetching [LLK10], STPE:

PCST+ITPC+throttling) . 66

4.6 The simulation result with different memory latency

(Average Memory Latency = 30˜ 40 cycles [DRAM latency] + 2 x intecon-

nection latency)

(Perfect:(Always cache hit), STPE: PCST+ITPC+Throttling) 68

5.1 Performance of the optimal MSHR size over baseline (32, 32) MSHR by

varying the minimum DRAM’s latency in 18 MSHR sensitive benchmarks:

#MSHR (L1, L2) . 73

5.2 Tag Shared MSHR Array Structure with N MSHR entries: * are used in

Hybrid Structure . 75

5.3 Performance with varying MSHR size: U*=Unlimited, gmean*=gmean except

type-0 . 83

5.4 TSMA and HTSMA performance over MSHR in MSHR sensitive benchmarks 84

5.5 Cache miss rate of MSHR, TSMA, and HTSMA in MSHR sensitive benchmarks 84

5.6 L1 data cache Stall Cycles normalized MSHR 85

5.7 Access Ratio of s-MSHR and TSMA in HTSMA 86

5.8 MSHRs Performance with varying Cache Configuration 88

5.9 MSHRs Performance with varying DRAM Minimum Latency 88

5.10 Various MSHR Performance normalized to conventional MSHR’s performance 91

5.11 Various MSHRs’ tag comparisons normalized to conventional MSHR’s tag

comparisons . 92

5.12 Power, Area, and Access time of Set Associative MSHRs 98

x

List of Tables

1.1 Latency and Throughput of Arithmetic and Logic Operations [WPS10] . . . 5

1.2 The distribution of single and consecutive loads from 86 kernels’ assembly

codes that have consecutive loads. 6

2.1 Simulator Configuration . 23

2.2 GPGPU Benchmarks Description:Kmeans* = Modified Kmeans from Ro-

dinia [CBM09a] benchmark suite used in CCWS [ROA12] 24

2.3 Five input configuration of MONT, LPS, and SC: MONT(optionData size),

LPS(nx, ny), SC(Number of data points) . 29

3.1 Simulator Configuration . 40

3.2 GPGPU Benchmarks Description:Kmeans* = Modified Kmeans from Ro-

dinia [CBM09a] benchmark suite used in CCWS [ROA12] 41

3.3 Optimal warp number used in B-SWL (*: no significant difference between

B-SWL and no throttling . 45

4.1 A snapshot of the Stride Table in PCST . 57

4.2 Updating inter-PC stride table when a thread block finishes 59

4.3 Simulator Configuration (bold: baseline configuration) 62

4.4 Benchmark Properties (CFD benchmark has six kernels) 63

4.5 The number of threads per SM in the simulator’s baseline configuration . . . 68

5.1 Simulator Configuration . 79

5.2 GPGPU Benchmarks Description . 81

5.3 s-MSHR configuration in HTSMA . 87

5.4 Set Associative MSHR configuration . 90

xi

5.5 Power and Area Estimation . 95

5.6 Access Time Estimation: Tag* is the tag comparison time of s-MSHR 97

xii

Vita

Education

1998–2005 BA in Computer Science & Engineering, SoongSil University, Seoul, South

Korea.

2009–2012 MS in Computer Science, University of California, Los Angeles

2012–Present Ph.D. Candidate in Computer Science, University of California, Los An-

geles

Work Experience

2004–2006 Hardware engineer at Coreriver Semiconductor, Seoul, Korea: RTL Design,

Design Validation, Design Testbench, and Low Yield Analysis

2012–Present Teaching Assistant in Computer Science Department at UCLA: CS33 Com-

puter Organization, CS51A Logic Design of Digital Systems, CS151B Com-

puter System Architecture, and CS180 Algorithms and Complexity

Awards

2003 Gold prize at the Software Competition hosted by SoongSil University

2004 Silver prize at the Software Competition hosted by SoongSil University

2005 Employee of the Year awarded by Coreriver semiconductor

xiii

CHAPTER 1

Introduction

General-purpose graphics processing units (GPGPUs) provide tremendous computing power

in applications with very high thread-level parallelism (TLP) compared to traditional sequen-

tial processors due to GPGPUs’ throughput oriented architecture [LNO08, NVI09, KW12,

KDK11]. Instead of few complicated cores and large caches like conventional CPUs, most

of silicon area is consumed by many simple single-instruction multiple-data (SIMD) cores

in GPGPUs to provide high computing throughput. To exploit this high computing power

of GPGPUs, programming interface such as CUDA [NVI11b] and OpenCL [Mun13] help

programmers develop an application with very high TLP.

Figure 1.1 shows an overview of the GPGPU architecture. A GPGPU has many simple

in-order cores called streaming multiprocessor (SM), and each SM consists of 8 to 32 width

of SIMD unit and on-chip storage. The latency of SIMD unit varies depending on the types

of arithmetic operations and operands data types [WPS10]. Moreover, the SIMD unit is

associated with a scoreboard to detect data dependencies among pipeline stages. Each SM

has on-chip storage consisting of a register file, a scratchpad memory (shared memory),

a private L1 data cache, a private L1 instruction cache, a read-only texture cache, and a

constant caches. Threads within thread block can communicate via shared memory. A piece

of shared L2 cache is connected to a memory controller. The write-evict and write-back

policy is used for L1 and L2 data caches respectively [ROA12]. All the caches have miss

status holding registers (MSHR) [Kro98] to support non-block loads. Each piece of L2 cache

is connected to SMs via interconnection network. Additionally, GPGPUs provide multiple

memory channels to provide high DRAM bandwidth.

1

Figure 1.1: Overview of GPGPU Architecture

To efficiently exploit thousands of active threads, GPGPUs use the Single Instruction

Multiple Thread (SIMT) [LNO08] execution model that groups a fixed number of threads

(typically 32) into a warp (or a wavefront [AMD12]). A warp is a unit of SM’s scheduling,

and threads in a warp are executed together on GPGPU’s SIMD cores. This scalar front

end (fetch and decode units) leads the simplification of the pipeline implementation. A warp

scheduler decides which warp to execute among multiple ready warps.

In CUDA model, a GPGPU executes a CUDA kernel consisting of a grid of threads.

All threads are grouped in multiple thread blocks. A thread block is a unit of thread

communication and synchronization. Threads within a thread block can communicate via

the shared memory (the scratchpad memory) and perform barrier operations. Each SM

can execute multiple thread blocks concurrently, but the maximum number of thread blocks

assigned to each SM depends on the size of SM’s various resources such as the size of the

register file or the size of the shared memory. Multiple thread blocks in a SM are executed

independently of one another.

GPGPUs hide pipeline stall cycles and long memory latencies by warp-based hardware

multithreading commonly with up to 32˜64 warps. However, GPGPU’s performance can be

varied depending on warp scheduling policies because the degree of latency hiding depends

2

on warp scheduling policies.

To reduce long memory latencies, GPGPUs use on-chip storage, such as non-transparent

scratchpad memory and cache. The scratchpad memory significantly reduces the memory

latency as well as the required DRAM bandwidth if the working set of an application fits

the size of the scratchpad memory. Still, the scratchpad memory is ineffective if the working

set size of an application is larger than the size of the scratchpad memory. To deal with

this problem, GPGPUs have brought a two-level cache since NVIDIA’s Fermi [NVI09] ar-

chitecture. The efficiency of cache, however, can be significantly affected by how warps are

scheduled since each warp can compete against other warps in the small size cache. Thus,

warp scheduling policies should consider its impact on caches.

Lastly, GPGPU’s massively hardware multithreading requires a scalable cache miss han-

dling architecture (MHA) that is also called a lock-up free cache [Kro98]. However, the

scalability of conventional MHA is limited in term of an area and a power consumption due

to its fully-associative structure. CPUs support only a small size of MHA due to the MSHR’s

limited scalability. For example, Pentium 4 provides only 8 size of MHA in L1 cache [BBH].

Still, the implementation details of GPGPU’s MHA is not officially released.

This chapter introduces the microarchitecture of GPGPUs that can affect the implemen-

tation of warp scheduling, and provides the explanation of MHA’s mechanism and its limited

scalability.

1.1 Microarchitecture of GPGPUs

This section explains three important features that can influence the effectiveness of hardware

multithreading: a scoreboard, the ALU pipeline latency, and the physical instruction set.

3

1.1.1 Scoreboard

A scoreboard keeps track of data dependencies among pipeline stages, and informs which

warp can be issued (which warp does not have the data dependency in the pipeline) to the

warp scheduler. Then, the warp scheduler can choose the next warp among ready warps.

Without a scoreboard, the only way to avoid the data dependency is to fill each pipeline

stage with different warp’s instructions. Therefore, a warp issued an instruction cannot be

scheduled again until the warp’s issued instruction is committed without a scoreboard.

Hardware multithreading without the scoreboarding is also called barrel processing. Bar-

rel processing was widely used as a baseline warp scheduler [KJK12, JKC13, JKM13, NSL11,

CTY13]. Due to lack of the scorebarding, barrel processing forces the warp scheduler to

choose the round robin (RR) scheduling policy. A warp scheduler with the RR policy switches

another warp (usually the next warp) in every cycle among ready warps to avoid data depen-

dencies among pipeline stages. The RR policy results in similar execution progress rates of

warps. Warps’ similar progress rates can improve the cache data locality if a locality exists

between warps. It also can increase row buffer hits when multiple warps’ memory requests

access the same row in DRAM. However, most of the warps confront a long-latency memory

instructions almost at the same time in the RR policy [JKC13, NSL11]. This results in

a very low degree of long memory latency hiding since only single instruction per warp is

usually used to hide the long memory latency.

On the other hand, the warp scheduler can choose various scheduling policies with the

scoreboarding since it allows to execute instructions from any ready warps that have no data

hazard. Furthermore, it is believed that commercial GPGPUs have a scoreboard [AF].

1.1.2 ALU pipelines

Arithmetic logic units (ALU) in GPGPUs are highly pipelined to increase the computing

throughput. A yypical latency of arithmetic instructions is about 22 cycles [NVI11b], and

instruction latencies are much larger in complex operations such as arithmetic division or

4

Operation Type Exe. Unit Latency Throughput

(clocks) (ops/clock)

add, sub, max, min unit, int SP 24 7.9

mad uint, int SP 120 1.4

mul uint, int SP 96 1.7

div uint - 608 0.28

div int - 684 0.23

rem uint - 728 0.24

rem int - 784 0.20

and, or, xor, shl, shr uint SP 24 7.9

add, sub, max, min float SP 24 7.9

mad float SP 24 7.9

mul float SP, SFU 24 11.2

div float - 137 1.5

add, sub, max, min double DPU 48 1.0

mad double DPU 48 1.0

mul double DPU 48 1.0

div double - 1366 0.063

Table 1.1: Latency and Throughput of Arithmetic and Logic Operations [WPS10]

5

#Loads 1 2 3 4 5 #Kernels

PTX 127 15 1 3 0 16

PTXPlus 164 43 7 11 3 47

Table 1.2: The distribution of single and consecutive loads from 86 kernels’ assembly codes

that have consecutive loads.

transcendental operations [WPS10].

Table 1.1 shows the ALU’s latency and throughput of various arithmetic and logic oper-

ations in GT200 [WPS10]. GT200 is an outdated GPGPU (NVIDIA’s first GPGPU genera-

tion). Thus, less latency and higher throughput are expected in recent GPGPUs, especially

division operations which are processed with multiple operations. Still, most of arithmetic

and logic instructions require more than half of all the warps (32 warps in our GPGPU

model) to fill ALU pipelines. Thus, the warp scheduling should be properly designed to fill

this long ALU pipeline.

1.1.3 Compiler Optimization

In the CUDA model, the NVIDIA’s GPGPU compiler nvcc compiles the GPGPU code

section into the Parallel Thread eXecution (PTX) instruction set that is a virtual instruction

set. Then the assembler ptxas assembles PTX into the native instructions. When the native

instruction is generated, the compiler optimization is applied. Instead of PTX, we used a

PTXPlus [AF] that is a extensive version of PTX. The effect of the compiler optimization

in native instructions is applied to the PTXPlus. Regard to the memory latency hiding, a

noticeable difference between PTX and the native instruction is the number of consecutive

loads. The PTXPlus code has larger number of consecutive loads than the PTX code as

shown in Table 1.2.

From 83 GPGPU kernels, 37 kernels have consecutive loads in the PTXPlus, but only

16 kernels have consecutive loads in the PTX as shown in Table 1.2. The total number of

6

consecutive loads with the PTXPlus is 64, but it is just 19 with the PTX. Most consecutive

loads have no data dependency between them. Thus, memory requests from consecutive

loads can be issued together. Issuing consecutive loads together can overlap each load’s

memory latency. However, it is difficult for barrel processing to exploit the overlapping

memory latency of consecutive loads because the barrel processing switches to the next

warp in each load instruction.

1.2 Cache Miss Handling Architecture

GPGPU’s hardware multithreading requires an efficient cache miss handling architecture

(MHA) that is also called a lock-up free cache [Kro98]. A lock-up free cache supports non-

blocking load misses that enable GPGPUs (or CPUs) to continue executing instructions

upon a load miss until any subsequent instruction has a data dependency on the load miss.

the lockup-free cache keeps the information of a load miss in the miss status holding register

(MSHR) [Kro98] to support non-blocking loads.

When SM executes a memory instruction, fewer wide memory requests can be issued

instead of generating individual memory request per a thread within a warp through the

memory access coalescing (also called intra-warp memory coalescing). The number of mem-

ory requests per a warp varies from a single memory request to 32 memory requests de-

pending on the address distance between threads’ memory requests and the memory block

size of each request. If each thread in a warp accesses diverse range of addresses upon a

single memory instruction, then the single memory instruction can result in issuing multiple

memory requests that is called the memory divergence.

GPGPUs also support inter-warp memory coalescing [BYF09] to reduce the memory

traffic via MSHRs. When multiple warps access the same address and miss a cache, then

only a single memory request is issued by the inter-warp memory coalescing instead of

issuing multiple memory requests with the same address. To support the inter-warp memory

coalescing, each MSHR entry maintains multiple fields. The total number of in-flight memory

7

 WID Dest. Format Addr.ValidValid Tag

MSHR Fields

=

Hit

Figure 1.2: Conventional MSHR Structure: 4 MSHR entries (8 fileds/entry)

requests is limited by the number of ready MSHR entries.

Figure 1.2 shows the conventional MSHR structure that supports non-blocking loads.

MSHRs consists of many MSHR entries. Each MSHR entry has a valid bit, a tag, and

multiple MSHR fields. It also has its own tag comparator that is used in a fully-associative

search upon a load miss. A MSHR field consists of a valid bit, a warp ID, destination that is

the target register number, a format of load instruction, and the address in the cache block.

The GPGPU’s MSHR structure is almost identical to MSHR used in CPUs except for the

WID tag in the MSHR field. We assume the WID tag in the MSHR field from the fact

that GPGPUs access the registers for a warp by a warp ID and register ID[NSL11]. We also

assume that the destination includes the register ID as a target register number and 32-bit

valid bit for each thread’s register. Since all the 32 registers are accessed together in a warp,

10 bit address (5 bit from warp ID and 5-bit from register ID) is used for 32K size register

file. Thus, the size of an MSHR field is 1 (valid) + 5 (warp ID) + 5 (register ID) + 32 (valid

for each register) + 6 (format) + 7 (address in a block) = 55-bit in our assumption. We use

the explicily addressed MSHR [FJ94].

Load misses are categorized into primary misses and secondary misses in non-blocking

loads. A primary miss is the first cache miss to a cache block. When a primary miss occurs,

8

one of ready MSHR entries is consumed. The primary miss sets the value bit and tag in

the MSHR entry and fill the first MSHR field. A secondary cache miss is any subsequent

cache miss on the cache block that already has a primary miss. The secondary misses can be

merged in the MSHR entry that handled the corresponding primary miss. A MSHR entry

has multiple fields to support non-blocking loads for many secondary misses. If there is no

available MSHR entry or MSHR field on a primary miss or a secondary miss, respectively,

the cache is locked-up and it rejects further load misses. When the cache is locked-up, the

processor has to stall upon further load miss.

A memory request issued by a non-blocking load consumes one MSHR entry. Thus, the

number of MSHR entries decides the maximum number of memory requests that can be

issued. GPGPUs need many MSHR entries to fully exploit the hardware multithreading

since each warp can issue multiple memory requests, but MSHRs are not scalable in term

of area and power due to the MSHRs’ fully-associative structure; all the MSHR entries are

searched associatively upon a load miss [TCT06]. CPUs support only few number of MSHRs

due to the MSHR’s limited scalability. For example, Pentium 4 provides only 8 MSHRs in

L1 cache [BBH]. C. Nugteren [NBC14] claimed that L1 data cache has 64 MSHR entries in

NVIDIA’s GTX470. GPGPU-Sim [BYF09] uses 32 MSHRs in both L1 and L2 data caches

though the number of MSHRs in GPGPUs is not officially released.

9

CHAPTER 2

Locality-Aware Warp Scheduling Policy

This chapter studies the effects of various warp scheduling policies in general-purpose graph-

ics processing units (GPGPUs). The performances of warp scheduling policies can vary

depending on the characteristics of a workload’s data locality. This study proposes Locality-

Aware Warp Scheduling (LAWS) to improve the performance of GPGPUs by adaptively

changing the warp scheduling policy depending on a workload’s data locality characteris-

tics. An evaluation shows that LAWS results in a geometric mean of 18% performance

improvement over GTO in 16 scheduling sensitive benchmarks. Overall, LAWS improves

the performance by 7% over GTO scheduling policy in 42 benchmarks including scheduling

policy insensitive benchmarks.

2.1 Limitation of Barrel Processing

Barrel processing forces the warp scheduler to switch to the next warp in every cycle due to

the lack of a scoreboard. Thus, the RR warp scheduling policy naturally fits in the barrel

processing. The warps’ execution progress rates in a SM are similar in the RR policy, and

these similar progress rates can be helpful to catch the data locality between warps in the

cache and the DRAM (row buffer hits). However, the RR policy provides a limited latency

hiding degree because of the warps’ similar progress rates.

To increase the limited latency hiding degree in the barrel processing, many two-level

based barrel processing (2LEV) were proposed in the literature [JKC13, JKM13, NSL11,

CTY13]. The 2LEV forms a few groups of warps that each group has the same number of

10

F
ig

u
re

2.
1:

E
x
am

p
le

s
of

w
ar

p
s’

ex
ec

u
ti

on
se

q
u
en

ce
w

it
h

R
R

an
d

2L
E

V
p

ol
ic

es
.

11

warps. A warp-group in 2LEV can be a fixed number of warps [NSL11] or single thread

block [JKC13, JKM13, CTY13]. Instead of selecting the next warp from all ready warps like

the normal barrel processing, the 2LEV gives higher priority to warps within the same warp-

group until the scheduler has to switch to the next warp-group due to out of ready warps.

The scheduler switches to the next warp-group when there is no ready warps in the current

warp-group. The scheduling policy is still the RR in both the warp scheduling and the warp-

group scheduling. The 2LEV can provide much higher degree of latency hiding than the

barrel processing by exploiting most of other warp-groups’ instructions to hide the current

warp-group’s latency. However, 2LEV did not consider the GPGPU’s highly-pipelined ALU

that takes many warps to fill as discussed in section 1.1.2. The highly-pipelined ALU’s long

latency requires frequent warp-group switches in 2LEV; it diminishes the effectiveness of

2LEV.

Figure 2.1 shows the 2LEV’s improved latency hiding degree over the normal barrel pro-

cessing and limited latency hiding degree by a long latency instruction. For simplicity, it

assumes 4 warps (2 warps per a warp-group), the 2-stage pipeline, and 8-cycle memory la-

tency. As shown in Figure 2.1(a) and (b), the barrel processing hides only 3 cycles from

8-cycle memory latency while the 2LEV hides all the latency by the other warp-group’s

instructions. However, 2LEV’s latency hiding degree can be limited by a long latency in-

struction as shown in Figure 2.1 (c). We assume that c2 is 4-cycle latency instruction in

Figure 2.1 (c). The warp scheduler has to switch to the next warp-group upon the long

latency instruction. This c2’s long latency reduces the 2LEV’s latency hiding cycles from 8

to 3 cycles, same as the barrel processing.

A warp scheduler with the scoreboard can choose various scheduling policies unlike the

barrel processing. Consecutive loads are also an important factor in the scheduling policy

decision since more overlapping long-memory latency is required to hide consecutive loads’

long-latency. Figure 2.2 shows the effects of the scoreboard and consecutive loads. For

simplicity, it assumes 4 warps, the 4-stage pipeline, and 8-cycle memory latency. The RR

with a scoreboard can provide a higher degree of latency hiding than the barrel processing

12

F
ig

u
re

2.
2:

E
x
am

p
le

s
of

w
ar

p
s’

ex
ec

u
ti

on
se

q
u
en

ce
in

R
R

an
d

G
T

O
w

/o
a

sc
or

eb
oa

rd
.

13

by exploiting more instruction-level parallelism as shown in Figure 2.2 (a) and (b). The

RR with a scoreboard overlaps m0 and m1 instructions’ memory latency that results in the

half stall cycles of the RR without a scoreboard. The warp scheduler can choose various

scheduling policies as shown in Figure 2.2 (c) and (d): a greedy-then-RR (GTRR) policy

and a simple fixed priority policy (SFP), respectively. The GTRR tries to keep scheduling

the same warp until it detects a data hazard, then it switches to the next warp like the RR.

In the SFP, warps are prioritized based on the warp ID (the warp0 has the highest priority).

SFP tries to scheduler a higher priority warp’s instructions until it detects the data hazard

between them.

As shown in Figure 2.1 and 2.2, simple barrel processing and modified scheduling policies

based on the barrel processing [JKC13, JKM13, NSL11, CTY13] have limitations to provide

a high long-latency hiding degree for GPGPUs. To devise better warp scheduling policies,

the effects of a scoreboard, long-latency ALU, and consecutive loads are considered to devise

a better warp scheduling policy.

2.2 Motivation

The effectiveness of the warp scheduler can be significantly affected by underlying microar-

chitecture (a scoreboard and an ALU pipeline) and an compiler optimization (consecutive

loads). Still, a warp scheduling policy is an important factor to decide the performance of

the warp scheduler including the three factors.

The warp scheduler with fair policies, such as the RR policy, leads to almost even exe-

cution rates of warps. Thus, fair policies can efficiently capture both cache locality among

warps (inter-warp locality) and row-buffer locality in DRAM [NSL11, JKC13]. However, it

results in a low degree of memory latency hiding. On the other hand, a warp scheduler can

pick an unfair scheduling policy. A warp scheduling with an unfair policy can try to keep

executing a higher priority warp than a lower priority warp until it has to switch. This

unfairness results in varying the progress rates of warps that can provide more instructions

14

Figure 2.3: Performance of various warp scheduling policies normalized to GTO policy in

four different benchmark groups.

to hide long memory latency than fair scheduling policies. It can also capture more cache

locality within a warp (intra-warp locality) than fair policies [ROA12] in the L1 data cache.

The data locality in the L1 data cache can be classified in two types of localities in

GPGPUs: intra-warp locality and inter-warp locality [ROA12, ROA13]. When a warp hits

a cache block hits that is filled by the same warp, the cache block is said to have intra-warp

locality. If the cache block is hit by another warp, then it is considered to have inter-warp

locality.

Figure 2.3 shows the performance with three fair scheduling policies (RR, GTRR, and

GTLR) over an unfair scheduling policy, GTO [ROA12]. Section 2.2 explains these scheduling

policies in detail. Benchmarks are classified into four difference groups in Figure 2.3. If

a benchmark’s performance is not significantly affected by scheduling policies, then it is

classified in the insensitive group. Otherwise, a benchmark is categorized based on its L1

data cache locality characteristics. A benchmark with high cache miss rate is classified in

the little data locality group. The rest of the benchmarks are classified in the intra-warp or

inter-warp locality group based on the majority of data localities.

GTO shows slightly higher performance than fair policies in the little data locality group

since GTO’s unfairness can provide a higher degree of memory latency hiding than fair

15

policies. Moreover, GTO shows significantly higher performance than fair policies in the

intra-warp locality group. However, fair scheduling policies show better performance than

GTO in the inter-warp locality group. This result motivates us to devise an adaptive warp

scheduling that effectively captures both intra- and inter-warp data locality .

2.3 Warp Scheduling Policies

This study makes use of the following scheduling policies: 3 fair scheduling policies (RR,

GTRR, GTLR), a unfair policy (GTO), two-level scheduling policies (2LEV), and the pro-

posed locality-aware warp scheduling (LAWS).

RR Simple round-robin warp scheduling policy. The priorities of warps are ordered in

round-robin fashion.

GTRR A greedy then round-robin policy. The scheduler keeps executing a warp until it

detects a data hazard. If a data hazard is detected in the scoreboard, then the scheduler

switches to another ready warp.

GTLR A greedy then round-robin on a memory instruction. This is similar to GTRR

except that if a warp issues an load instruction, the scheduler switches to the next

ready warp. GTLR is a hybrid of RR and GTRR. It uses the greedy policy, but

the scheduler switches to next ready warp upon a memory instruction to capture the

inter-warp data locality.

GTO A greedy then oldest scheduling policy [ROA12]. The scheduler keeps executing a

warp until it detects a data hazard then it switches to the oldest (the highest priority)

ready warp. The age of warp (priority) is determined with the assignment time of the

thread block and the warp ID number. Within a thread block, a warp with smaller

warp ID has a higher scheduling priority. Between thread blocks, all warps in a thread

block assigned earlier have higher priority than all warps in a thread block assigned

later.

16

2LEV A two-level warp scheduling [NSL11]. The scheduler divides the entire warps into

few fetch groups, and puts higher priorities on warps in a selected fetch group than

warps in other fetch groups. Thus, the scheduler keeps scheduling the warps in the

fetch group, and then switches to the next ready fetch group if all warps in the fetch

group are stalled. In our experiment, we use 8 warps as the fetch group size, same as

the original study [NSL11]. All four scheduling policies described above are applied

to schedule warps in a fetch group. We examined two policies (RR and GTO) for the

fetch group selection policy.

LAWS Our locality-aware adaptive warp scheduling that changes its scheduling policy based

on the locality score system.

2.4 Warp Scheduling Policy on Different Data Locality

The degree of data locality captured in the L1 data cache can be significantly affected by

warp scheduling policies. Figure 2.4 compares the effectiveness of the fair warp scheduling

policy (RR) and the unfair warp scheduling policy (GTO) on different types of data localities.

We assume the followings for the simplicity in Figure 2.4: 4-stage pipeline, 3-cycle memory

latency on a cache miss, two cache blocks, and two MSHR entries. The two cache blocks are

initially filled by warp0’s m0 and warp1’s m0.

2.4.1 Intra-warp Locality

Cache blocks with the intra-warp locality can be easily evicted by interference of other

warps. This intra-warp locality loss is usually larger in fair scheduling policies than in unfair

scheduling policies because fair policies switch between warps more frequently than unfair

policies as shown in Figure 2.4 (a) and (b). In Figure 2.4 (a) and (b), we assume that there

are intra-warp locality between m0 and m1 in all warps over loop iterations. In the RR

policy, warp0 and warp1 hit the cache when they execute m0 instructions, then the intra-

17

F
ig

u
re

2.
4:

E
x
am

p
le

s
of

w
ar

p
s’

ex
ec

u
ti

on
se

q
u
en

ce
w

it
h

R
R

an
d

G
T

O
p

ol
ic

es
on

in
tr

a-
/i

n
te

r-
w

ar
p

d
at

a
lo

ca
li
ty

.

18

warp localities are lost because the cache blocks are replaced by warp2’s m0 and warp3’s m0.

Thus, warp0’s m1 and warp1’s m1 cause cache misses as shown in Figure 2.4 (a). However,

the GTO policy captures the intra-warp locality better than the RR policy since the initial

cache blocks are kept longer due to the higher priority of warp0 and warp1 over warp2 and

warp3 as shown in Figure 2.4 (b). Furthermore, if the scheduler reduces the number of warps

to 2 (warp0 and warp1), then the two cache misses in Figure 2.4 (b) would not occur. This

explains how throttling can keep more intra-warp locality than simple unfair policies.

2.4.2 Inter-warp Locality

Fair scheduling policies can capture the inter-warp locality more than unfair scheduling

policies since the progress rates of warps are similar in fair policies. In Figure 2.4 (c) and

(d), we assume that there is an inter-warp locality in m0 and m1 instructions among even

numbered warps (warp0, warp2) and odd numbered warps (warp1, warp3) respectively. All

warps hit the L1D cache in RR policy when they execute m0 instructions due to the inter-

warp locality. Then, warps miss the cache when they execute m1 instructions. However,

only two memory requests are issued for all four m1 instructions because memory requests of

warp2’s m1 and warp3’s m1 are merged in memory requests of warp0’s m1 and warp1’s m1

respectively via MSHR due to the inter-warp locality. On the other hand, m0’s inter-warp

localities are lost in the GTO policy because the initial cache blocks are evicted by warp0’s

m1 and warp1’s m1 before warp2’s m0 and warp3’s m0 are executed. Moreover, there is no

inter-warp memory coalescing in the GTO policy due to the variance of the warps’ progress

rates.

2.5 Locality-Aware Scheduling

This section describes our locality-aware warp scheduling (LAWS). The warp scheduler has

the locality score system (LLS) as shown in Figure 2.5. The LLS delivers the type of the

data locality that is abundant. Based on the data locality characteristics measured in the

19

Locality Score

Sign

MSHR L1D$

LSS

L1D$
Locality
Type

Warp Scheduler

MSHR
Locality
Type

Miss_CNT

Figure 2.5: LAWS Mechanism

LSS, the warp scheduler chooses its scheduling policy.

2.5.1 Locality Scoring System

LAWS chooses either a fair or an unfair scheduling policy based on the locality score in the

LSS. The LSS has a 16-bit signed integer as the locality score and 5-bit Miss CNT register

as shown in Figure 2.5. When a kernel is launched, the locality score is initialized to 0. The

locality score increases on a primary miss [Kro98] or a hit by the intra-warp locality detected

in L1 data cache or MSHR. On the other hand, the score decreases on a hit by the inter-warp

locality detected in the L1 data cache and MSHRs. Thus, the locality score can represent

which locality type is dominant in a workload at runtime. A positive locality score indicates

that the workload has a little data locality or a high intra-warp data locality. Otherwise,

a negative locality score means that the workload has a high inter-warp data locality. The

warp scheduler checks the sign bit of the locality score, then it chooses a fair policy if the

sign bit is 1, otherwise it chooses an unfair scheduling policy. LAWS uses the GTO for its

unfair scheduling policy. We choose the GTLR policy for LAWS’s fair policy since the GTLR

shows the best performance in applications with a high inter-warp data locality as discussed

in section 2.6.1. A primary miss or a cache/MSHR hit by the intra-warp locality increases

the locality score by 1. However, we put more weight on the inter-warp locality value to

compensate the locality score increment by primary misses. The LSS counts the number of

20

Figure 2.6: Data Locality Detection Mechanism in L1 Data Cache

primary misses in the Miss CNT. A cache/MSHR hit by the inter-warp locality decreases

the locality score by Miss CNT value+1 and resets the Miss CNT to 0. We choose 31 for

the maximum Miss CNT value (5-bit size) based on its sensitivity experiments in section

2.7.3.2. To detect the data locality type of a cache hit, we add the warp ID tag (WID)

in each L1 data cache block as shown in Figure 2.6. The WID represents the warp ID that

brought in the cache block due to a primary miss. Thus, the WID is updated by a warp’s

primary miss. A cache hit and its WID tag hit indicate the hit by the intra-warp locality.

It sets the locality type signal (LT) to 1. A cache hit and its WID tag miss indicate the hit

by the inter-warp locality. It sets the LT to 0. The 2-bit locality information upon a cache

access (Hit, LT) is delivered from the L1 data cache to the LSS.

A secondary cache miss [Kro98] is any subsequent cache miss on a cache block that

already has a primary miss. The secondary misses can be merged in the MSHR entry (an

MSHR hit) that handled the corresponding primary miss. We also consider the locality types

of MSHR hits for the locality score since they could be cache hits if they are scheduled at

different time. To detect an MSHR hit’s type of the data locality, we compare the warp ID

(WID) of the first MSHR field in an MSHR entry to the warp ID of an MSHR access (a

secondary miss) as shown in Figure 2.7 since the first field in an MSHR entry is filled by a

21

Figure 2.7: MSHR Modification

primary miss. Similar to the L1 data cache, the 2-bit (Hit, LT) is delivered to the LSS. In

MSHRs, we assume the WID tag in the MSHR field from that GPGPUs access registers by

a warp ID and a register number since the warp ID is also used in indexing the register file

in GPGPUs [NSL11].

2.6 Experimental Methodology

We extend GPGPU-Sim 3.2.1 [BYF09] to support various warp scheduling policies and

LAWS. The configuration details are shown in Table 2.1. We study 42 CUDA appli-

cations from six different benchmark suites: CUDA SDK [NVI11a], GPGPU-Sim bench-

mark [BYF09], Rodinia [CBM09a], Parboil [SRS12], SHOC [DMM10], and MAR [HFL08].

These applications are categorized in four groups based on scheduling policy sensitivity and

the characteristics of the data locality in the L1 data cache: type-0(insensitive), type-I(little

data locality), type-II(intra-warp data locality), and type-III (inter-warp data locality).

If a benchmark’s maximum performance difference between various scheduling policies

and the GTO is less than 10%, it is considered type-0. Twenty six benchmarks are classi-

fied type-0, including the following: CUDA SDK(convolutionSeparable, fastWalshTransform,

matrixMul, reduction, scalarProd, scan, sortingNetwork, transpose), GPGPU-Sim bench-

22

Parameter Value

Compute Units 30

SIMD unit width 32

Warp Size 32

Threads / Core max 1024

Registers / Core 32768

Shared Memory / Core 32KB (16 banks)

Constant Cache / Core 8KB (2-way, 64B line, LRU)

Texture Cache / Core 16KB (8-way, 128B line)

L1 Data Cache 32 KB (8-way, 128B line, LRU)

MSHR in L1D cache 32 entries (8 fields / entry)

Shared L2 cache 128KB / MC

(16-way, 128B line, LRU),

MSHR in L2D cache 32 entries (8 fields / entry)

Core Clock 1400 Mhz

Interconnect Clock 1400 Mhz

Memory Clock 924 Mhz

Interconnection crossbar, 32B channel width

Memory Channels 8

Memory Controller FR-FCFS [RDK00]

DRAM request queue size 32

DRAM 16 DRAM banks / MC

GDDR5 Timing tCL=12, tRP=12, tRC=40,

tRAS=28, tRCD=12, tRRD=6

Memory Channel BW 8 (Bytes/Cycle)

Table 2.1: Simulator Configuration

23

Type Name Abbr. #Ker. CTAs T/CTA

AES Crypto- AES 1 256 256

graphy [BYF09]

Coulombic CP 1 256 128

I Potential [BYF09]

Histogram [NVI11a] HIST 4 - -

Hotspot [CBM09a] HS 1 1849 256

Sort [DMM10] SORT 5 - -

Similarity SS 19 - -

Score [DMM10]

StoreCPU [BYF09] STO 1 1536 127

Breadth First BFS 2 256 512

Search [CBM09a]

II Kmeans* [ROA12] KMEAN 1 121 256

Sparse Matrix SPMV-s 1 256 128

Vector Multipli- (scalar

cation [DMM10] version)

Inverted II 17 - -

Index [HFL08]

SRAD ver1 [CBM09a] SRAD1 7 - -

CFD solver [CBM09a] CFD 4 - -

Monte- MONT 2 - -

III Carlo [NVI11a]

3D Laplace LPS 1 2048 128

Solver [BYF09]

stream- SC 1 128 512

Cluster [CBM09a]

Table 2.2: GPGPU Benchmarks Description:Kmeans* = Modified Kmeans from Ro-

dinia [CBM09a] benchmark suite used in CCWS [ROA12]

.

24

mark(LIB, NN), rodinia (backprop, gaussian, heartwall, lud, nw, srad v2), Parboil(cutcp,

lbm, mri-q, sad, sgemm, stencil), and SHOC(FFT, QTC, S3D, SPMV-vector). The remain-

ing 16 benchmarks are categorized based on its L1 data cache locality characteristics as

shown in Table 2.2. Table 2.2 shows the number of kernels (#Ker.), the number of thread

blocks (#CTAs), and the number of threads per a thread block (T/CTA) of a benchmark. If

the primary cache miss rate of an application is more than 95%, the application is classified

into the little data locality group. If the primary cache miss rate is less or equal to 95%, the

application is classified into the intra- or inter-warp locality group based on the majority of

data localities.

2.7 Experimental Results

2.7.1 Scheduling Policy Performance

Various scheduling policies’ performance in the scheduling policy sensitive benchmarks are

shown in Figure 2.8. The GTO shows higher performance than fair scheduling policies

(RR, GTRR, and GTLR) in type-I and type-II as shown in Figure 2.8(a) and (b). On

the other hand, fair policies show higher performance than the GTO in type-III as shown

in Figure 2.8(c). Among three fair policies, we choose the GTLR for LAWS’s unfair policy

since it shows the highest performance in type-III. LAWS reaches the performance of the best

scheduling policies across all types. By adaptively changing the scheduling policy between

the GTO and the GTLR, LAWS closely reaches GTO’s performance in type-I and type-II

and GTLR’s performance in type-III. The overall performance of LAWS outperforms the

GTO by 7% (18% excluding type-0) as shown Figure 2.9.

Performances of the 2LEV with various policy combinations are shown in Figure 2.10.

2R and 2G uses RR and GTO for the fetch group selection policy, respectively. Overall,

all 8 different combinations in the 2LEV reach about 80% of LAWS’s performance. No

combination reaches LAWS’s performance in both type-II and type-III. This indicates that

simply mixing fair and unfair scheduling policy does not effectively capture both intra- and

25

Figure 2.8: Performance of 16 scheduling policy sensitive benchmarks on various scheduling

policies and throttling mechanisms normalized to LAWS

26

Figure 2.9: Overall performance of various scheduling policies and throttling mechanisms

normalized to LAWS (gmean*: geometric mean except for type-0)

Figure 2.10: Overall Performance of 2LEV with various policies normalized to LAWS

inter-warp locality since each policy can offset the other policy’s advantage.

2.7.2 Data Locality Analysis

Figure 2.11 shows the L1 data cache access classification with various scheduling policies:

primary miss (MISS), hit with intra-warp locality (INTRA), hit with inter-warp locality (IN-

TER), secondary miss (or hit on MSHR) with intra-warp locality (INTRA-M), and secondary

miss with inter-warp locality (INTER-M). Overall, the GTO captures more intra-warp lo-

cality than the GTLR, and the GTLR captures more inter-warp locality than the GTO.

27

Figure 2.11: Classification of L1 data cache accesses

Scheduling policies have little impact on the L1 cache locality in STO and SRAD1 since the

L1 data cache size (32K) is enough to hold their memory footprint.

2.7.3 LAWS Sensitivity

2.7.3.1 Input Data Sensitivity

LAWS provides a significant performance improvement over GTO in three type-III bench-

marks: MONT, LPS, and SC as shown in Figure 2.8(c). Still, the performance improvement

can be varied depending on the input data size or input data configuration since they can

28

Figure 2.12: Performance results of five input configurations in MONT, LPS, and SC nor-

malized to LAWS.

Config MONT LPS SC

A 512 2048,128 16K

B 768 1024,256 32K

C 1024 512,512 64K

D 1564 256,1024 128K

E 2048 128,2048 256K

Table 2.3: Five input configuration of MONT, LPS, and SC: MONT(optionData size),

LPS(nx, ny), SC(Number of data points)

affect the data structure of a workload. Figure 2.12 shows LAWS’s performance improve-

ment over GTO in five different input configurations of these three benchmarks. We vary the

option data size of MONT, the combination of nx and ny value of LPS, and the number of

data points (data size) of SC in this experiment. We use the middle input configuration from

the five configurations for LAWS and LAWS-TH experiments. These input configurations

are 1024, (512, 512), and 64K in MONT, LPS, and SC, respectively.

29

Figure 2.13: LAWS performance with varying the maximum Miss CNT value normalized to

31

30

Figure 2.14: Ratio of the execution time with GTLR policy on varying the maximum

Miss CNT value

2.7.3.2 Miss CNT Size Sensitivity

LAWS puts a more weight on the inter-warp locality using Miss CNT. However, if the weight

is too high, then it can hurt the performance of the type-II since LAWS might switch to

GTLR unnecessarily. On the other hand, if the weight is too low, it can hurt the performance

of type-III since LAWS takes more time to switch to GTLR. Figure 2.13 shows LAWS’s

performance with varying the maximum Miss CNT values normalized to the performance

with a maximum value of 31 in type-II and type-III applications. The GTRL execution time

ratios with varying maximum Miss CNT values are also shown in Figure 2.14. In Figure 2.14,

the ratio of STO, KMEAN, SPMV-s, II, MONT, and SC are not shown: the ratio is less

than 1% in STO, KMEAN, SPMV-s, and II, and the ratio is large than 99% in MONT and

SC across all Miss CNT sizes.

Type-II benchmarks’ performances are not significantly affected by varying the maximum

Miss CNT except for BFS. BFS’s performance starts to decrease with 127 since LAWS’s the

ratio of GTRL policy in BFS starts to increases at 127 as shown in Figure 2.14. Still, 127

is too large weight for inter-warp locality. Up to 63, the performance of type-II are not

affected. On the other hand, SS stays its maximum performance while SS’s GTLR ratio is

increased as Miss CNT increases from 32% to 62%. The SS’s performance is barely affected

31

by the GTRL’s varying ratios because SS’s inter-warp locality is not affected by scheduling

policies (L1 data cache size is enough to keep most SS’s inter-warp locality) as shown in

Figure 2.11(a).

In type-III benchmarks, SRAD1 and MONT retain their maximum performances across

all the Miss CNT values since their high GTRL ratios are barely affected by increasing the

Miss CNT value. On the other hand, performances of CFD, LPS, and STM are increased

as the Miss CNT value increases up to 16, then they maintain the maximum performance

after 16. These increasing performances come from the increased GTLR ratios as shown in

Figure 2.14 except for SC. SC’s GTRL ratio reaches more than 99% across all the Miss CNT

values, but it results in 90% of the maximum performance at 4 and 8 Miss CNT values. These

10% performance drops of SC at the small Miss CNT values comes from frequent switching

between GTO and GTLR that increases SC’s entire execution time. In sum, LAWS maintains

type-II and type-III benchmarks’ maximum performances in the wide ranges of Miss CNT

values from 15 to 63. We use 31 for LAWS.

2.7.4 Implementation Complexity

LAWS consists of two main components: a warp scheduler with the locality scoring system

(LSS) and the locality detection unit in the L1 data cache and MSHR. Most of the imple-

mentation cost comes from the 5-bit WID tag in the L1 data cache. The 5-bit WID per

each cache line requires 160 bytes of storage in each SM’s 32K L1 data cache. We believe

the implementation cost of the rest of the components are negligible since they require only

a few bits of storage and few logic gates.

32

2.8 Related Work

2.8.1 Warp Scheduling Policy

Lakshminarayana et al. [LK10] explore various instruction fetch policies based on fair schedul-

ing policies. However, their fair-based policies’ latency hiding degrees are limited compared

to unfair scheduling policies.

Narasiman et al. [NSL11] propose the two-level scheduling policy to increase the degree

of memory latency hiding in a barrel processing. The two-level policy can provide higher

performance than RR policy in barrel processing. However, simple unfair policies can achieve

such high degree of latency hiding in our GPGPU model as discussed in section 2.7.1.

A memory region-based warp scheduling policy is proposed by Chen et al. [CTY13]. Their

scheduling policy shifts warps’ priority based on the analysis of memory regions done by a

compiler. However, their work focuses on memory latency hiding, and does not consider the

effect of scheduling policies on the data locality in the cache. Gebhart et al. [GJT11] propose

a two-level warp scheduling mechanism to reduce the energy consumption for GPGPUs.

2.8.2 Thread Block Scheduling

Kayiran et al. [KJK12] introduce a dynamic CTA (thread block) scheduling to improve

the performance of GPGPUs by reducing the contention on the memory subsystem in the

memory intensive applications. In contrast, our work improves the performance by capturing

more data localities in the L1D cache. Jog et al. [JKC13] propose thread block based

scheduling policies based on a two-level scheduling policy to exploit data locality within

each thread block in the L1 data cache and bank-level parallelism in the DRAM.

Lee et al. [LSM14] present an alternative thread block scheduling policies with GTO as

a warp scheduling policy. Their thread block scheduling policy dynamically controls the

number of thread blocks per core and assign consecutive thread blocks to the same core

to improve performance. However, they only use the GTO policy for warp scheduling that

33

leads to poor performance in applications with high inter-warp data locality.

We remain thread block scheduling with LAWS in the future work. However, we believe

that LAWS can be improved further with more efficient thread block scheduling since warp

scheduling and thread block scheduling are independent of one another.

2.9 Conclusion

This work evaluates the performance of various warp scheduling policies in different types

of GPGPU applications. It classifies GPGPU applications based on the data locality char-

acteristics, and it analyzes the performance of warp scheduling policies based on fairness. It

demonstrates how unfair and fair policies effectively capture intra-warp locality and inter-

warp locality respectively.

Based on this observation, we propose Locality-Aware Warp Scheduling to exploit the

benefits of both fair and unfair scheduling policies. LAWS is a novel technique that dynam-

ically changes its scheduling policy based on the locality characteristics at runtime. In this

work, we implement locality-warp adaptive scheduling with the very small cost.

34

CHAPTER 3

Warp Throttling

Thousands of threads share the small size L1 data cache (L1D) of each core (streaming

multiprocessor) in GPGPUs. The L1D’s data locality can be easily lost by the sever re-

source contention on the L1D. To reduce such data locality loss in the L1D, we propose

a novel throttling mechanism that dynamically decreases the number of warps depending

on the warp-based data locality degree in the L1D. It exploits miss status holding registers

(MSHR) to measure the degree of intra-warp locality in the L1D and the degree of memory

divergence. Based on these measurements, it controls the number of warps for scheduling.

Our evaluation shows that LAWS with throttling results in a geometric mean of 58% per-

formance improvement over GTO scheduling policy in 16 scheduling sensitive benchmarks.

Overall, LAWS with throttling improves the performance by 19% over GTO scheduling

policy respectively in 42 benchmarks including scheduling policy insensitive benchmarks.

3.1 Motivation

A high intra-warp locality can be easily lost by cache misses from other warps. Therefore, the

number of memory requests by cache misses should be minimized to maintain a high intra-

warp locality [ROA12, ROA13]. Furthermore, the intra-warp locality lost in the L1 data

cache becomes worse if a high memory divergence exists that can cause multiple memory

requests to be issued from single warp’s memory instruction [ROA13].

Figure 3.1 shows the effectiveness of throttling in different types of applications. B-SWL,

which schedules statically optimal number of warps, outperforms GTO significantly in the

35

Figure 3.1: Performance of various warp scheduling policies normalized to GTO policy in

four different benchmark groups.

intra-warp locality group by reducing cache interference among warps. However, the B-SWL

does not improve the performance of applications with inter-warp locality unlike LAWS.

This result leads to devise a throttling mechanism coupled with the LAWS that minimizes

the cache locality loss while effectively capturing both intra- and inter-warp data locality.

This study proposes a simple adaptive throttling mechanism based on the measurement of

the intra-warp locality degree and the cache interference degree by exploiting MSHRs. By

coupling with the LAWS, the throttling mechanism does not only capture the inter-warp

locality effectively but also reduces the implementation cost significantly.

3.2 Various Warp Throttling

This study makes use of the following warp throttling methods: best static warp limit-

ing (Best-SWL), cache-conscious wavefront scheduling (CCWS) [ROA12], LAWS-TH, and

LAWS-NDM.

Best-SWL Static Warp Limiting [ROA12, ROA13] uses a fixed number (32 to 1) as the

maximum number of warps for scheduling. Best-SWL runs the full range of warp

limiting numbers then chooses the optimal number that provides the highest perfor-

mance. The GTO used for the scheduling policy in Best-SWL same as the original

36

Locality Score

Sign

Load_CNT

Hit_CNT

MSHR L1D$

LSS

THU

L1D$
Locality
Type

Warp Scheduler

MSHR
Locality
Type

Miss_CNT

BIT VECTOR

MSHR
Full

Min_CNT

Max_CNT

Figure 3.2: Overview of Throttling Unit on LAWS

work [ROA12, ROA13].

CCWS Cache-Conscious Wavefront Scheduling (CCWS) uses the GTO for its warp schedul-

ing policy. However, CCWS reduces the intra-warp locality loss caused by other warps’

cache interference in the L1 data cache. It throttles the number of warps for scheduling

when it detects the eviction of useful cache blocks. It adds a victim tag array in the

L1 data cache to detect the intra-warp locality loss at runtime [ROA12].

LAWS-TH LAWS with our throttling mechanism

LAWS-NMD LAWS-TH without throttling by memory divergence

3.3 Throttling Unit

The throttling unit (THU) shown in Figure 3.2 measures the degree of the intra-warp locality

and the memory divergence. The THU is added on the LAWS, and it reuses the locality

detection units in the L1D and MSHRs. When the MSHRs become full, the THU decides

the number of warps for scheduling. It exploits fully consumed MSHRs for the throttling

decision timing for two reasons. First, it provides the minimum intra-warp locality degree

37

at runtime. Second, the THU can easily measure the memory divergence degree at runtime.

Once throttling is enabled, the THU throttles the number of warps at a minimum of two

warps and maintains the throttling for 1K cycles at least. Then, the THU performs the

throttling decision when the MSHRs become full again. The LAWS-TH is the LAWS coupled

with the THU. In the LAWS-TH, the throttling is not enabled when it is running with a fair

policy (GTRL) since the throttling does not help improve the inter-warp locality degree.

3.3.1 Throttling by Intra-Warp Locality

The THU measures a warp-based intra-warp locality. It has a 32-bit vector to show whether

a warp has the intra-warp locality or not. If a warp has a hit in the L1 data cache by the

intra-warp locality, the corresponding bit in the bit vector is set to 1. The bit is reset to

0, when the corresponding warp misses the cache or finishes its execution. When MSHRs

become full, the maximum number of memory requests (primary cache misses) are issued.

Thus, the bit vector can indicate the minimum intra-warp locality upon the fully consumed

MSHRs. The THU keeps track of the number of 1’s in the bit vector in the Hit CNT, and it

also maintains Hit CNT’s minimum and maximum values in the Min CNT and Max CNT,

respectively. When all MSHR entries are consumed, THU checks Hit CNT, Min CNT and

Max CNT. Then, the THU enables throttling if Hit CNT >0. The calculation of the number

of warps for scheduling is:

#Warp = Hit CNT+1 OR d(Min CNT + Max CNT)/2e

We observed that an average of Min CNT and Max CNT is close to the optimal warp

number for the warp throttling. However, it takes few throttling periods to acquire the

correct Min CNT and Max CNT values. Especially, if warps’ memory accesses interfere

with each warp’s intra-warp locality, then the correct Max CNT value is available when a

proper throttling is enabled. To search the correct Max CNT value, the THU initially uses

Hit CNT+1 as the number of warps for scheduling until the Max CNT value is stabilized. We

add one warp to Hit CNT to find the maximum Hit CNT value of the workload. When the

38

throttling is enabled, the Hit CNT is usually increased if all warps’ intra-warp locality does

not fit the L1D cache. Thus, Hit CNT+1 eventually passes the optimal number of warps,

then starts to consume MSHR entries by cache misses. During this process, if the Hit CNT

becomes larger than the Max CNT value, the Max CNT is updated. If the Max CNT is

not updated during the throttling period, the THU realizes that the throttling enters into

the stabilized phase. We consider Min CNT and Max CNT stabilized if either value is not

updated in 8 previous throttling periods as discussed in section 3.5.3.2. Once Min CNT and

Max CNT are stabilized, the THU uses the ceiling average value for the number of warps.

3.3.2 Throttling by Memory Divergence

A memory divergence degree can be measured in the memory coalescing unit by counting the

number of memory accesses to the L1 data cache. However, it can hurt the intra-warp locality

only if most memory accesses miss the cache. We devise a simple but novel mechanism to

detect a high memory divergence that can hurt the intra-warp locality degree by exploiting

the MSHR. Each cache miss consumes an MSHR entry (a primary miss) or an MSHR field

(a secondary miss). Thus, if many MSHR entries are consumed by a few number of warps,

this indicates that many cache blocks were evicted by the high memory divergence. Based

on this observation, the THU keeps track of the number of warps consuming MSHR entries

at the Load CNT as shown in Figure 3.2. When all MSHRs are consumed, the THU is

notified. The THU, then, decides the throttling degree based on the following:

#Warp = Load CNT if Load CNT <Divergence factor

When MSHRs become full, the THU checks the Load CNT value for the throttling. If

no intra-warp locality is detected (Hit CNT = 0), the THU sets the number of warps for the

scheduling to the Load CNT if the Load CNT is less than the memory divergence factor.

We use 8 for the memory divergence factor since it indicates a high memory divergence (each

warp issues more than 4 memory requests to satisfy the condition). During the throttling by

Load CNT, the Hit CNT can be increased if the workload also has high intra-warp locality.

39

Parameter Value

Compute Units 30

SIMD unit width 32

Warp Size 32

Threads / Core max 1024

Registers / Core 32768

Shared Memory / Core 32KB (16 banks)

Constant Cache / Core 8KB (2-way, 64B line, LRU)

Texture Cache / Core 16KB (8-way, 128B line)

L1 Data Cache 32 KB (8-way, 128B line, LRU)

MSHR in L1D cache 32 entries (8 fields / entry)

Shared L2 cache 128KB / MC

(16-way, 128B line, LRU),

MSHR in L2D cache 32 entries (8 fields / entry)

Core Clock 1400 Mhz

Interconnect Clock 1400 Mhz

Memory Clock 924 Mhz

Interconnection crossbar, 32B channel width

Memory Channels 8

Memory Controller FR-FCFS [RDK00]

DRAM request queue size 32

DRAM 16 DRAM banks / MC

GDDR5 Timing tCL=12, tRP=12, tRC=40,

tRAS=28, tRCD=12, tRRD=6

Memory Channel BW 8 (Bytes/Cycle)

Table 3.1: Simulator Configuration

40

Type Name Abbr. #Ker. CTAs T/CTA

AES Crypto- AES 1 256 256

graphy [BYF09]

Coulombic CP 1 256 128

I Potential [BYF09]

Histogram [NVI11a] HIST 4 - -

Hotspot [CBM09a] HS 1 1849 256

Sort [DMM10] SORT 5 - -

Similarity SS 19 - -

Score [DMM10]

StoreCPU [BYF09] STO 1 1536 127

Breadth First BFS 2 256 512

Search [CBM09a]

II Kmeans* [ROA12] KMEAN 1 121 256

Sparse Matrix SPMV-s 1 256 128

Vector Multipli- (scalar

cation [DMM10] version)

Inverted II 17 - -

Index [HFL08]

SRAD ver1 [CBM09a] SRAD1 7 - -

CFD solver [CBM09a] CFD 4 - -

Monte- MONT 2 - -

III Carlo [NVI11a]

3D Laplace LPS 1 2048 128

Solver [BYF09]

stream- SC 1 128 512

Cluster [CBM09a]

Table 3.2: GPGPU Benchmarks Description:Kmeans* = Modified Kmeans from Ro-

dinia [CBM09a] benchmark suite used in CCWS [ROA12]

41

Figure 3.3: Overall performance of various throttling mechanisms normalized to LAWS

If Hit CNT+1 >Load CNT, then the THU switches to Hit CNT+1 for the warp number for

throttling instead of Load CNT.

3.4 Experimental Methodology

We extend GPGPU-Sim 3.2.1 [BYF09] to support B-SWL, CCWS, LAWS, LAWS-TH, and

LAWS-NDM. The configuration details are shown in Table 3.1. We study 42 CUDA ap-

plications from six different benchmark suites: CUDA SDK [NVI11a], GPGPU-Sim bench-

mark [BYF09], Rodinia [CBM09a], Parboil [SRS12], SHOC [DMM10], and MAR [HFL08].

These applications are categorized in four groups based on scheduling policy sensitivity and

the characteristics of the data locality in the L1 data cache: type-0(insensitive), type-I(little

data locality), type-II(intra-warp data locality), and type-III (inter-warp data locality).

If a benchmark’s maximum performance difference between various scheduling policies

and the GTO is less than 10%, it is considered type-0. Twenty six benchmarks are classi-

fied type-0, including the following: CUDA SDK(convolutionSeparable, fastWalshTransform,

matrixMul, reduction, scalarProd, scan, sortingNetwork, transpose), GPGPU-Sim bench-

mark(LIB, NN), rodinia (backprop, gaussian, heartwall, lud, nw, srad v2), Parboil(cutcp,

lbm, mri-q, sad, sgemm, stencil), and SHOC(FFT, QTC, S3D, SPMV-vector). The remain-

ing 16 benchmarks are categorized based on its L1 data cache locality characteristics as

42

Figure 3.4: Perfromance of various throttling mechanisms in Type-II benchmarks normalized

to LAWS

shown in Table 3.2. Table 3.2 shows the number of kernels (#Ker.), the number of thread

blocks (#CTAs), and the number of threads per a thread block (T/CTA) of a benchmark.

If the primary cache miss rate of an application is more than 95%, even with throttling, the

application is classified into the little data locality group. If the primary cache miss rate is

less or equal to 95%, the application is classified into the intra- or inter-warp locality group

based on the majority of data localities.

3.5 Experimental Results

3.5.1 Throttling Performance

CCWS and LAWS-TH result in the geometric mean of 8% and 35% overall performance

improvement over LAWS in the 16 scheduling sensitive benchmarks as shown in Figure 3.3.

Applications in type-0 and type-I are not affected by the throttling since CCWS and LAWS

are barely enabled. In type-II applications, CCWS and LAWS-TH significantly increase

performance by 1.9x and 2.2x times over LAWS, respectively. In type-III applications,

LAWS-TH’s performance is almost the same as LAWS. However, CCWS shows only 60% of

LAWS’s performance in type-III applications since CCWS does not consider the inter-warp

43

Figure 3.5: Classification of L1 data cache accesses

locality. Section 3.5.3.1 analyzes the throttling performance in different L1 data cache sizes.

3.5.2 Data Locality Analysis

Figure 3.5 shows the L1 data cache access classification with various throttling mechanisms:

primary miss (MISS), hit with intra-warp locality (INTRA), hit with inter-warp locality (IN-

TER), secondary miss (or hit on MSHR) with intra-warp locality (INTRA-M), and secondary

miss with inter-warp locality (INTER-M). Throttling (CCWS and LAWS-TH) significantly

increases the cache hit rate in BFS, KMEAN, SPMV-s, and II over GTO and LAWS as

shown in Figure 3.5. Without throttling (GTO and LAWS), SPMV-s results in a very

high miss rate (94%) due to the high memory divergence. Interestingly, CCWS results in a

lower miss rate (11%) than LAWS-TH (15%) in SPMV-s, but CCWS results in only 55%

of the LAWS-TH performance as shown in Figure 3.4. CCWS’s lower performance with a

lower miss rate demonstrates CCWS’s excessive throttling upon high memory divergence as

discussed in section 3.5.3.1.

44

Figure 3.6: Performance of various throttling normalized to B-SWL with varying L1 data

cache size.

Benchmarks 16K 32K 64K 128K

BFS 3 5 7 8

KMEAN 3 6 6* 6*

SPMV-s 2 3 5 8

II 3 4 6 8*

Table 3.3: Optimal warp number used in B-SWL (*: no significant difference between B-SWL

and no throttling

3.5.3 LAWS-TH Sensitivity

3.5.3.1 Sensitivity to L1 data cache size

Throttling performances in BFS, KMEAN, SPMV-s, and II with varying the L1 data cache

size are shown in Figure 3.6. To show the effect of throttling on a high memory divergence,

Figure 3.6 includes LAWS-NMD, which is LAWS-TH excluding the throttling by high mem-

ory divergence. Optimal warp numbers used in B-SWL are shown in Table 3.3. LAWS-TH

closely reaches B-SWL’s performance across all the cache sizes. It provides 89%, 104%, 99%,

and 98% of B-SWL performance in 16K, 32K, 64K, and 128K, respectively. However, B-

SWL does not always present the best performance. Especially, LAWS-TH and CCWS show

6% and 11% higher performances over B-SWL in II with 32K, and LAWS-TH outperforms

B-SWL by 5% in SPMV-s with 32K. Overall, LAWS-TH also shows the highest performance

among CCWS, LAWS-NMD, and LAWS-TH in all the cache sizes. Overall, the benefit of

throttling decreases as the cache size increases.

45

Figure 3.7: The ratio of throttling due to high memory divergence in LAWS-TH with varying

L1 data cache size

LAWS-TH vs. LAWS-NMD: Comparing LAWS-NMD to LAWS-TH reveals the effect

of throttling by a high memory divergence. A high memory divergence can severely decrease

the degree of intra-warp locality in the L1 data cache since it can evict multiple cache blocks

from a single warp’s memory instruction. LAWS-NMD’s performance is close to LAWS-TH’s

performance in BFS and II. However, LAWS-TH provides a substantially higher performance

than LAWS-NMD in KMEAN with 16K and SPMV-s with 16K, 32K, and 64K due to the

high memory divergence.

Figure 3.7 shows the ratio of throttling by a high memory divergence in LAWS-TH.

The ratio is close to 0% in BFS and II. Thus, there is no noticeable performance difference

between LAWS-NMD and LAWS-TH. In KMEAN with 16K, LAWS-NMD reaches only 68%

of LAWS-TH performance due to the 10% ratio. In KMEAN with larger than 16K, however,

LAWS-NMD reaches LAWS-TH’s performance because larger cache size diminishes most of

KMEAN’s high memory divergence effect. The ratio decreases from 42% to 3% in SPMV-s

as the cache size increases. Thus, LAWS-TH provides a significantly higher performance

than LAWS-NMD in SPMV-s at 32K and 64K cache sizes. Especially, LAWS-NMD shows

no performance improvement in SPMV-s with 16K since no intra-locality is detected due to

a high memory divergence.

LAWS-NMD vs. CCWS: Both LAWS-NMD and CCWS might not properly throttle the

46

Figure 3.8: Performance of LAWS-TH with varying the stabilization period normalized to 8

number of warps when high memory divergence severely affects the intra-warp locality in

the L1 data cache. Thus, CCWS shows low performances in KMEAN with 16K and SPMV-

s with 16K similar to LAWS-NMD. However, LAWS-NMD provides a higher performance

than CCWS in SPMV-s with larger than 16K. Furthermore, LAWS-NMD provides a higher

performance than CCWS in BFS. CCWS’s lower performance than LAWS-NMD comes from

its reactive mechanism. CCWS starts throttling when it detects intra-locality loss in the

victim tag [ROA12]. However, LAWS-NMD (also LAWS-TH) can actively launch throttling

before the intra-warp locality is lost.

3.5.3.2 Sensitivity to stabilization period

LAWS-TH uses the average of Min CNT and Max CNT as the number of warps for schedul-

ing once they are stabilized. We use the number of throttling periods, which does not update

Min CNT and Max CNT as the average stabilization metric. If LAWS-TH takes the average

too early, then the inaccurate average can lead to a sub-optimal performance. On the other

hand, if it takes the average too late, then this long stabilization period can also result in a

sub-optimal performance. Figure 3.8 presents the overall LAWS-TH performance in different

L1 data cache sizes by varying the stabilization period normalized to 8 that shows the best

performance. LAWS-TH shows a stable performance in the range of 6 to 24 across all cache

47

Figure 3.9: The execution time ratio of different number of warps in LAWS-TH with varying

L1 data cache size

sizes. We choose 8 that shows the best performance for the stabilization period.

3.5.4 LAWS-TH Analysis

Figure 3.9 shows the execution time ratios of different numbers of warps in the LAWS-TH

by varying the L1 data cache size. Overall, the number of warps in the throttling increases

as the cache size increases in the throttling. In II, large numbers of warps (>7) are executed

in a large portion of the execution time (about 40%). This comes from the fact that II

consists of 17 different kernels which have different intra-warp locality degrees and different

maximum numbers of warps per SM.

LAWS-TH uses the ceiling average of MIN CNT and Max CNT as the number of warps

for throttling. Figure 3.10 shows the weighted average of the measured Min CNT and

Max CNT values during the entire execution. Min CNT’s weight average stays from 1 to

3 across all cache sizes. On the other hand, Max CNT’s weighted average significantly

increases as the cache size increases. Still, Max CNT’s weighted average stops increasing

when the cache size is enough to hold most of intra-warp locality without throttling: 64K

and 128K in KMEAN, and 128K in II.

Once throttling is enabled, LAWS-TH keeps throttling at a minimum of 1K cycles until

48

Figure 3.10: The weighted average of Min CNT and Max CNT in LAWS-TH with varying

L1 data cache size

the MSHRs become full. Thus, the length of the throttling period depends on the bench-

mark’s memory accesses per instructions and the cache miss rate. The L1 data cache accesses

per instructions are 0.08, 0.09, 0.12, and 0.11 in BFS, KMEAN, SPMV-s, and II respectively.

The miss rates of the L1 data cache are shown in Figure 3.12. The cache primary miss rate

decreases as the cache size increases. Figure 3.11 shows the ratio of various throttling time

lengths from the entire throttling time. Overall, the throttling time length increases as the

cache size increases. Most throttling lengths are less than 128K cycles except for SPMV-s

with 32K, 64K, and 128K cache sizes.

3.5.5 Implementation Complexity

The throttling unit (THU) is the main component of LAWS-TH. It borrows the locality

detection units in the L1 data cache and MSHRs from the LAWS. We believe the implemen-

tation cost of the THU is negligible since they require only a few bytes of storage and few

logic gates.

The implementation cost of THU is far smaller than previous works since LAWS-Th

measures the intra-warp locality and the memory divergence on a warp base, not on an

individual memory access. For example, we use a 5-bit WID in the L1 data cache for

49

Figure 3.11: The ratio of different throttling time length ranges in LAWS-TH with varying

L1 data cache size

Figure 3.12: The miss rate (primary miss) of L1 data cache in LAWS-TH with varying cache

size.

50

locality detection similar to CCWS [ROA12]. However, CCWS adds the victim tag array to

detect intra-warp locality loss. Each tag size is 40 bits, and each warp has 16 tag entries.

Thus, the total storage cost of the victim tag array is 2,560 bytes per core. However, our

throttling mechanism requires only a single bit for each warp’s intra-warp locality and four

5-bit registers: Hit CNT, Min CNT, Max CNT, and Load CNT. Furthermore, LAWS-TH

simply measures the memory divergence by measuring the number of warp issuing memory

requests when the MSHRs are fully consumed. Compared to DAWS [ROA13], LAWS-TH

does not need a compiler support to predict each warp’s data footprint, and it does not

require the dynamic PC-based load instruction analysis at runtime that requires 5% of the

core (SM) area [ROA13]. We believe that the implementation cost of the warp throttling

should be minimized since they are effective only in a small number of benchmarks (4 out

of 42 in our experiment).

3.6 Related Work

Guz et al. [GBK09] shows the ”performance valley” where more threads do not always

increase performance due to contention in a shared resource. Suleman et al. [SQP08] presents

a feedback driven thread scheduling scheme to improve the performance by scheduling the

optimal number of threads in CMPs. Cheng et al. [CLL10] propose a thread throttling

mechanism to reduce the memory latency in multi-threaded CPUs.

Rogers et al. [ROA12] introduce cache-conscious wavefront (warp) scheduling (CCWS)

that limits the number of active warps to prevent intra-warp locality loss in the L1D cache.

CCWS uses a victim tag array to detect intra-warp locality loss, and reduces the number of

active warps to retain more intra-warp locality. Divergent-aware warp scheduling (DAWS)

is also proposed by Rogers et al. [ROA13]. DAWS proactively controls the number of active

warps based on the prediction of each warp’s data footprint with a compiler support. Instead

of directly measuring the intra-warp locality loss like CCWS or the memory divergence

like DAWS, our throttling mechanism reduces the intra-warp locality loss by the warp-

51

based indirect measurement of the degree of intra-warp locality and the degree of memory

divergence. In contrast to our work, CCWS and DAWS do not explore the inter-warp locality

loss by unfair scheduling policies. Regarding to the performance of LAWS-TH, we do not

directly compare the performance of LAWS-TH against DAWS. However, we believe that

the performance of LAWS-TH is close to DAWS based on the performance results against

CCWS and B-SWL.

3.7 Conclusion

This work evaluates the performance of various throttling mechanisms in GPGPU applica-

tions. It explains how throttling reduces the intra-warp locality loss. Based on this observa-

tion, this study devises a throttling mechanism with little cost to improve the performance

of GPGPUs further by reducing the intra-warp locality loss. In this work coupling with the

LAWS, we achieve both locality-warp adaptive scheduling and throttling mechanisms with

the minimum cost by sharing the functionality of the locality detection unit and exploiting

the existing MSHR resources.

52

CHAPTER 4

Hardware Prefetching on GPGPUs

This chapter presents an effective hardware prefetching for general-purpose graphics process-

ing units (GPGPUs). GPGPUs use hardware multithreading as a primary method to deal

with memory latency. Prefetching is another technique to hide memory latency by overlap-

ping memory accesses with computations. Thus, GPGPUs’ memory latency hiding degree

can be increased by prefetching. In current GPGPUs, two software prefetching methods are

available. First one is software prefetching using temporary variables [RRS08]; however, it

increases the instruction count and register usage per thread. This increased register usage

can seriously limit thread-level parallelism [YXK10]. Software prefetching instructions added

in NVIDIA’s Fermi GPGPUs perform prefetching without using temporary variable; still, it

increases instruction count.

Hardware prefetching can avoid such overheads of software prefetching by generating

prefetch requests without temporary varibles or instructions. Various hardware prefetching

mechanisms for conventional CPU systems were proposed in the literature [CB95, FPJ92,

HM94, ISK04, JG97, Jou90, NS04, PK94, NDS04, SKT05]. However, there are some chal-

lenges to apply conventional prefetching mechanisms for GPGPUs due to microarchitectural

differences between CPUs and GPGPUs [LLK10]. On the other hand, GPGPU’s microar-

chitectural differences from CPUs gives us chances to improve prefetching mechanisms by

exploiting the intrinsic characteristics of GPGPUs. Based on these observations, we propose

simple hardware prefetching mechanism that overcome the challenges and utilize GPGPU’s

unique microarchitectural feature. We also propose an efficient prefetch throttling mech-

anisms by exploiting GPGPU’s thread block execution mechanism. Our prefetching and

53

throttling improves the performance 3% to 14% in different dram latency configurations.

4.1 Introduction

This section introduces conventional PC-based stride hardware prefetching mechanism that

is used in our basic prefetching scheme. It also explains the challenges to apply it for

GPGPUs.

4.1.1 PC-based Stride Prefetching Mechanism

Memory access patterns in GPGPU applications are usually more regular than CPU appli-

cations due to GPGPUs’ single-instruction multiple-thread (SIMT) model. All threads are

execution same instructions in SIMT model, and memory addresses are usually specified by

thread ID or based on thread ID in most of GPGPU applications. In other words, each

thread has usually the same memory access pattern though each thread accesses different

memory regions in GPGPU applications.

Because of GPGPU’s common regular memory access patterns, unit and non-unit stride

hardware prefetching mechanisms can be suitable. However, non-unit stride prefetcher is

preferable since it can cover both unit and non-unit stride patterns. We choose PC-based

stride prefetcher [CB95] as a basic scheme for our prefetching mechanism.

The PC-based stride prefetcher detects repeated stride among memory instructions hav-

ing the same PC value. The prefetcher has a PC stride table which is accessed and updated

by all memory operations. Figure 4.1 shows the state transition graph. Two bits are used to

represent the state (0:INIT, 1:TRANSIENT, 2:STEADY, 3:No-Predict). When a memory

instruction is issued, an entry for the memory instruction is searched with its PC value. If

the entry does not exist, the memory operation fills one entry with its PC value, its memory

address, the default stride value(0), and initial state (INIT). If the entry is found, a stride

value is calculated by subtracting the prev addr in the entry from the memory address of the

current memory operation. This current stride value is compared to previous stride value

54

Figure 4.1: State Transition Graph

in the entry. If both of strides matches, the current stride is considered a correct value;

otherwise, it is considered a incorrect value. Then, the state in the entry transits depending

on the current state and the result of the stride comparison shown in figure 4.1, and the

stride value is also replaced with the current stride if the current stride value is incorrect

except for the transition from STEADY to TRANSIENT. When the state is TRANSIENT

or STEADY, prefetching is issued with the prefetching address (prev addr + stride).

Figure 4.2 shows an example code and the PC-stride table entry in first three iterations.

The table was empty before the first iteration in the example. After the first iteration, three

entries are fill with zero stride and INIT state. Then stride(4) is detected in second iteration,

and the prefetcher starts to send prefetching requests with a prefetching address. Finally, the

all states are changed into STEADY state in the third iteration since the strides of second

and third iteration matches

4.1.2 Challenges of Hardware Prefetching on GPGPUs

There are some challenges to apply a hardware prefetching to GPGPUs [LLK10]. First, the

chances of performing hardware prefetching in GPGPUs is much less than in CPUs because

the number of instruction executed by a thread in GPGPUs is usually much less than in

55

Figure 4.2: An example of PC-stride prefetching

CPUs due to GPGPUs’ thread-level parallelism. For example, a CPU codes use a loop for a

vector addition that performs one addition at each loop iteration. Thus, each iteration can

perform the prefetching for next iteration’s data. However, there is no loop in a GPGPU

code for the vector addition because all the additions are distributed to all the threads. Each

thread performs one addition of the vector addition independently in GPGPUs.

Another problem is that memory access pattern of a warp can be interfered by other

warps’ memory access by warp interleaving in GPGPUs. The conventional PC-stride prefetcher

calculates the stride value by checking the address of memory requests. However, this cal-

culation can result in a wrong stride value although all the warps have the same memory

access pattern due to warp interleaving.

To avoid the memory access pattern interference, warp-ID tag can be added to PC-

stride prefetcher. Then, PC-stride with warp-ID tag can detect each warp’s stride correctly.

However, it increases the size of the stride table since it has to include each warp’s stride

values. Since the maximum active number of warps in each GPU core is from 32 (in our

configuration). This huge size of the stride table is not practical for GPGPUs [LLK10]

56

PC Address Stride State #Access

30 306333824 245760 STEADY 25

31 322333824 245760 STEADY 25

32 338333824 245760 STEADY 25

...

Table 4.1: A snapshot of the Stride Table in PCST

4.2 Hardware Prefetching for GPGPUs

To overcome the challenges described in section 4.1.2, our prefetching mechanism exploits the

intrinsic characteristics of GPGPUs, single-instruction multiple-thread (SIMT). All thread

usually has a similar memory access pattern in GPGPUs due to SIMT. Based on this ob-

servation, the prefetching scheme only measures the memory access pattern of only single

thread, then it applies the detected pattern to all other threads. This single thread based

PC-stride prefetching solves the memory interference problem by tracking of only single

thread’s memory requests. Furthermore, it does not require the large stride table for all the

warps.

We also use thread block execution mechanism to increase prefetching opportunities in

GPGPUs. A kernel in GPGPUs consists large number of thread blocks, and only few thread

blocks (up to 8) can be executed concurrently by a SM. Memory access patterns of all threads

can be similar to each other due to SIMT model. It leads to the fact that all thread block’s

memory access patterns can be also similar to each other since thread block is just a group

of multiple threads. We exploits the thread block execution mechanism to build prefetcher

to detect patterns between thread blocks.

The section describes our single thread based prefetching within thread block, and it

explains the prefetching mechanism across thread blocks. Finally, it explains our thread

block based prefetch throttling mechanism.

57

4.2.1 Single Thread Prefetching Extension within Thread Block

To detect strides in repeated memory access patterns like loop iterations, we use PC-based

stride prefetching mechanisms. However, our PC-based stride prefetcher keeps tracks of

memory access patterns of only single thread (thread ID=0), then apply this pattern to

all other threads for prefetching. The thread ID is used for the isolation of single thread’s

memory accesses from other threads, but the stride table does not have thread ID informa-

tion. The mechanism of PC-based stride prefetcher using single thread (PCST) is identical

to conventional PC-based stride prefetcher except that the stride is detected and updated

by single thread and used by all other warps.

Table 4.1 shows a snapshot of the stride table of PCST from one of benchmarks. The

table of PCST is similar to the table of the conventional PC-based stride table except for

one column to count the number of accesses. The number of accesses is used in our another

prefetching scheme, inter-PC stride prefetching discussed in section 4.2.2. All entries in the

table present three different load operations with initial stride value of 245,670 with the

STEADY state. All other warps issue prefetching when each warp performs load operations

with the same PC values (30,31,32). All the stride values in this example are same by chance,

and it shows one example of regularity of memory accesses in GPGPU applications.

4.2.2 Single Thread Prefetching Extension across Thread Blocks

Our PCST cannot detect memory access pattern in applications not having any loops. Ta-

ble 4.2(a) shows the entries of the stride table of PCST when a thread block finishes from

one of our benchmarks. In this table, all memory instructions are executed once due to the

lack of any loops, so there is no stride detected. However, prefetching can be issued for

next instruction in this case if there is a constant pattern between memory instructions. So,

such prefetcher can be built by comparing the stride between memory instructions among

threads. Still, the chances to apply such prefetching are very little since the progress rate of

each thread is similar in GPGPUs. When the stride is detected, most of threads probably

58

Table 4.2: Updating inter-PC stride table when a thread block finishes

finishes their corresponding memory instructions without any loops. Therefore, it is not

efficient to apply such prefetcher within a thread block execution.

We propose inter-PC stride prefetching mechanism (ITPC) to deal with this problem. It

checks memory accesses per thread block basis. When a thread block finishes, ITPC scans

the stride table of PCST and calculates the stride between two addresses of two entries that

have only one access. Table 4.2 shows the updating process of the stride table in ITPC. Each

entry in the PC-based stride table has only one access (table 4.2(a)) after a thread block

finishes, so no stride is detected. ITPC scans the stride table of PCST and calculates the

address differences between each two entries having only one access as shown in table 4.2(c).

Each entry in inter-PC stride table has 64 stride value with INIT state in the inter-PC stride

table after the update as shown in table 4.2(b). When another block finishes later, these

stride between memory instruction are calculated again and compared to the stride values

in the table. The state transition of the inter-PC table is identical to conventional PC-based

stride prefetcher. All stride value in the inter-PC stride table are also same by chance in this

59

example.

ITPC tries to detect memory access pattern across thread blocks, but examines single

thread’s memory access patterns of each thread block. The progress of issuing prefetching

in ITPC is identical to conventional PC-based stride prefetcher though the stride detection

and update mechanism is different. ITPC is accessed only if prefetching is not issued from

PCST. When a prefetching is not issued from PCST, ITPC checks the memory request’s PC

value and search the corresponding entry with the PC value in the inter-PC stride table. If

the entry is found, prefetching is issued using the stride value when the state in the entry

is TRANSIENT or STEADY. Still, the request does not update the entry. The entries are

updated when ITPC scans the stride table of PCST.

If the size of PCST stride table is large, the cost of scanning over the PCST stride table

can be expensive. However, we consider it as an acceptable cost due to two reasons. Firstly,

the cost of the scan is small in most of cases since the size of PCST stride table is usually

small; the table stores only single thread memory access patterns, and the number of load

operation per thread in GPGPU applications is much less than in CPU application because

of thread-level parallelism. Secondly, the frequency of scan is also quite small since scanning

over the PCST stride table is done in the granularity of thread block execution. Therefore,

the number of scans is same as the number of thread blocks which is quite a small number.

4.2.3 Thread-Block basis Prefetch Throttling

Prefetch throttling can be improved by exploiting thread block execution mechanism. Con-

ventional prefetch throttling mechanisms usually uses some interval based on heuristic to

measure the effectiveness of prefetching. Thread block execution provides a good interval to

measure the effectiveness of prefetching since each thread block execute the entire instruc-

tions of the application.

It can provide find-grain control of prefetch throttling because the throttling interval

is decided by an application. Moreover, we can decide the effectiveness of prefetching very

60

Figure 4.3: Pseudo Code

quickly by measuring prefetching accuracies of few blocks since all thread block will show sim-

ilar prefetching accuracy due to the characteristics of SIMT model. For example, prefetching

can be turned off quickly when the accuracy of prefetching is low in few blocks.

Our prefetching throttling mechanism compares the number of useful prefetchings and

the number of useless prefetchings whenever a thread block finishes. If the number of useless

prefetching is larger than the number of useful prefetching, prefetcher resets both of stride

tables and restart the memory pattern detection. When the reset occurs more than twice,

prefetching is completely turned off.

To summarize, our prefetching mechanism, single thread prefetching extension (STPE)

consists of two stride prefetcher(PCST and ITPC) and prefetcher throttling logic. Figure 4.3

61

Number of Cores 14 Streaming Multiprocessors with 8 SIMD Width

MAX # of threads / Core 768 / 1024, up to 8 thread blocks

Core specification 900 Mhz, in-order scheduling, 4 pipeline stage

On-chip Storage Scratchpad memory: 16/32/64 (KB) (16 banks)

Constant Cache: 8KB (2-way set assoc. 64B lines LRU)

Texture Cache: 64KB (2-way set assoc. 64B lines LRU)

L1: 16 KB (8-way set assoc. 64B lines LRU)

Memory Controller out of order (FR-FCFS) scheduling [RDK00]

DRAM 2KB page, 16 banks, 8 channel, 57.6 GB/s bandwidth

tCL = 11, tRCD=11, tRP=13, BurstLength=8

Interconnection Fixed latency: 50 / 100 / 200 / 400 cycles

Table 4.3: Simulator Configuration (bold: baseline configuration)

shows the overall prefetching processes of STPE in pseudo code. In contrast to conventional

stride prefetcher, the procedure of updating stride tables is separated from the procedure

of issuing prefetching request since the subjects of updating stride tables (thread ID=0 and

PCST stride table) are different from the subjects of accessing prefetcher (all warps).

4.3 Methodology

We use the GPGPU-Sim simulator v2.x [BYF09], which is based on NVIDIA’s CUDA pro-

gramming model [NVI11b]. Table 4.3 shows the simulation configuration which is close to

NVIDIA’s 8800GT [NVIb]. Additionally, it can simulate some features of NVIDIA’s Fermi

architecture since it has configurable L1 data cache and all other on-chip storages, such as,

scratchpad memory, register files and texture & constant caches. One of important features

of the simulator used in our prefetcher is inter-warp memory coalescing. The goal of inter-

warp coalescing is to reduce memory traffic by blocking sending read memory requests if

the same memory requests are already in progress. This inter-warp coalescing is extended

62

Benchmark Abr. Suite Grid Thread Block Total

Dimension Dimension Threads

Black-Scholes Black SDK (480,1,1) (128,1,1) 61440

option pricing

Convolution Conv SDK (4,128,1) (16,4,1) 32768

Separable (32,8,1) (16,8,1) 32768

Mersenne Merse SDK (32,1,1) (128,1,1) 4096

Twister (32,1,1) (128,1,1) 4096

MonteCarlo Monte SDK (128,1,1) (128,1,1) 16384

(256,1,1) (256,1,1) 65536

ScalarProd Scalar SDK (128,1,1) (256,1,1) 32768

StreamCluster Stream Rodinia (128,1,1) (512,1,1) 65536

Backprop Backprop Rodinia (1,2048,1) (16,16,1) 524288

(1,2048,1) (16,16,1) 524288

Breadth First BFS Rodinia (128,1,1) (512,1,1) 65536

Search

CFD CFD Rodinia (1212,1,1) (192,1,1) 232704

Table 4.4: Benchmark Properties (CFD benchmark has six kernels)

to prefetching requests to prevent sending on-demand memory requests if the same request

issued by prefetcher is still in progress and vice-versa.

We evaluate our prefetching mechanism with nine memory-intensive benchmarks taken

from CUDA SDK [NVIa], Rodinia [CBM09b]. Table 4.4 shows the list of our benchmarks

with each benchmarks property, such as the number of threads per block, the number of

thread blocks, and total number of threads in a kernel

63

Figure 4.4: Performance of different number of threads per SM

(Perfect: always cache hit, T#= # threads per SM

4.4 Experiments

In this section, we shows our simulation results and evaluations. First, we evaluate GPGPU’s

performance with different degrees of thread-level parallelism to understand the upper-bound

of performance improvement by prefetching. Second, we evaluate our prefetching mech-

anisms with various configurations and compare it to previous work(MT-HWP) [LLK10].

Finally, we measure the performance impact of our prefetching mechanism with regard to

different memory latency.

4.4.1 Hardware Multithreading Performance

The motivation of prefetching in GPGPUs is to hide memory latency that not completely

hidden by hardware multithreading due to not enough thread-level parallelism. Therefore,

there is little room to improve performance by prefetching if there are enough number of

threads to hide memory latency by hardware multithreading.

Our first experiment is to measure the performance improvement by increasing the degree

of hardware multithreading. To change the degree of hardware multithreading in the exper-

iment, we limit total number of threads per SM (128, 512, 1024) by changing the maximum

64

number of thread blocks per SM (1, 4, 8). So, the number of threads per a thread block

is 128 in this experiment. As shown in table 4.4, however, each benchmark has different

number of threads per a thread block (thread block dimension). We modify the thread block

dimension of some benchmarks for this purpose except for Backprop benchmark(256) and

CFD benchmark(192); the thread block dimension of these two benchmark is difficult to

modify since the modification can affect the benchmark’s algorithm.

Figure 4.4 shows that performance (IPC) increases as the number of threads per SM is

increased in most of cases. The performance gap between perfect memory model (the first

bar) and different number of threads per SM (T128, T512, and T1024 with default memory

model(No cache)) presents the upper-bound of performance improvement by prefetching.

This gap decreases as the number of threads per SM increases. Therefore, this experiment

confirms that the benefit of prefetching decreases as thread-level parallelism(the degree of

hardware multithreading) increases.

In Black benchmark and Monte benchmark, however, the performance is decreased with

1024 threads (8 thread blocks) in the figure 4.4 due to thread block imbalance [BYF09].

When the number of thread blocks assigned to each SM is different, it is called thread block

imbalance. For example, there are six thread blocks in a kernel, and two SMs. Each SM can

execute two thread blocks concurrently. In the beginning, four thread blocks are executed

by two SMs, and two thread blocks are left. If each SM finishes the execution of two thread

block at the same time, one thread block assigned to each SM. Let the execution time of

each thread block is T, then the total execution time is 3T in this case. However, if one of

SM finishes the execution of first two thread blocks earlier than the other one. Remaining

two thread blocks are assigned to the SM that finishes the execution early. Soon, the other

SM finished the execution, but it becomes idle since there is no thread block to execute.

Therefore, the total execution time is 4T in this thread block imbalance case. The thread

block imbalance problem worsens as the maximum number of thread blocks per SM increases.

65

Figure 4.5: The Effectiveness of prefetching with different number of threads

per SM (MT-HWP:Per-warp training and inter-thread prefetching [LLK10], STPE:

PCST+ITPC+throttling)

66

4.4.2 Evaluation of Single Thread Prefetching Extension

To evaluate our prefetching mechanism, we run simulation with five configuration: L1 data

cache, MT-HWP prefetching(inter-thread prefetching and per-warp training with stride pro-

motion [LLK10]), PCST, PCST+ITPC, and STPE (PCST+ITPC+Throttling). L1 data

cache is used for a prefetch cache in all of four prefetching configurations, and demand

fetches are not loaded into the prefetch cache. We also simulate those five configurations

with different number of threads per SM.

Figure 4.5 shows the normalized performance of five configuration relative to baseline

configuration (No cache) with different number of threads per SM. Our prefetching increases

performance other 7 benchmarks from 9 benchmarks except for Backprop and BFS. Only

cache increase performance in Backprop and BFS. The number of prefetching in these two

benchmarks is much less than other benchmarks since it is difficult for prefetcher to detect

memory access patterns in these two benchmark.

As we discussed in previous section, the benefit of prefetching decreases as the num-

ber of threads per SM increases. The average speed-up by our prefetching mechanism

(PCST+ITPC+throttling) are 24.4% with 128 threads, 9.1% with 512 threads, and 7.3%

with 1024 threads.

Conv and CFD benchmarks have no loop involving load memory operations. Therefore,

the PCST does not improve performance in these two benchmarks, but the ITPC does.

When prefetch throttling is applied, the performance is not changed significantly in most

of cases. However, it cannot remove the negative effect of prefetching in Backprop and

BFS benchmarks since the number of generated prefetching is only few percentage of total

memory requests without throttling. So, in these benchmarks, throttling reduces the number

of prefetching further, but it is not enough to increase performance.

We do not see a significant performance improvement with MT-HWP mechanism. Their

inter-thread prefetching generates lots of late prefetching in our simulation due to the warp

scheduling policy of GPGPU-Sim. GPGPU-Sim uses a round-robin scheduling policy that

67

Figure 4.6: The simulation result with different memory latency

(Average Memory Latency = 30˜ 40 cycles [DRAM latency] + 2 x inteconnection latency)

(Perfect:(Always cache hit), STPE: PCST+ITPC+Throttling)

Benchmark Black Conv Merse Monte Scalar Stream Backprop BFS CFD

#Thread/SM 512 384/384 512/640 640/512 512 512 512/512 512 192/576/768

Table 4.5: The number of threads per SM in the simulator’s baseline configuration

switches a warp in every instruction. Thus, the time between prefetch and fetch is very short

in our configuration. This leads the poor performance of MT-HWP.

4.4.3 Prefetcing vs. Memory Latency

So far, we simulate with unlimited on-chip storages to evaluate the prefetching performance

with regard to thread-level parallelism. However, the number of threads per SM can be

limited by the usage of on-chip storages such as register file and scratchpad memory. Fur-

thermore, the number of threads per SM can be limited by other constraints (the maximum

number of threads per SM(768, 1024, or 1568) or the maximum number of thread blocks(8)).

Table 4.5 shows the number of threads per SM running concurrently in the simulator’s

baseline configuration that close to NVIDIA’s Telsa architecture. In this section, we simu-

lates benchmarks in this baseline configuration without changing thread block dimension of

benchmarks. We only change the memory latency to measure performance improvement by

68

prefetching with regard to memory latency. The memory latencies are configured by chang-

ing the interconnection network latency. Figure 4.6 shows the simulation result with various

interconnection network latencies. Our prefetching (PCST+ITPC+Throttling) improves the

performance of 7 benchmarks, and L1 cache improves performance in Backprop and BFS

benchmarks in the baseline configuration. The prefetching improves the performance by 3%,

5%, 7%, and 14% in 50, 100, 200, and 400 of the interconnection latency respectively. These

results shows that the performance improvement by prefetching increases as memory latency

increases since more memory stall cycles can be hidden by prefetching.

4.4.4 Related Work

To deal with various data access patterns, lots of hardware prefetching mechanisms for CPUs

are proposed in the literature. The simplest data access pattern is unit-stride access pattern

that the distance of consecutive access is one unit (e.g., an access pattern of A[0], A[1],

A[2],..., of array A). Jouppi [Jou90] proposed prefetcher using stream buffers for unit-stride

pattern. Stream buffers are FIFO buffers, and each buffer has prefetched cache blocks of

one stream. If cache misses, each head entry of all stream buffers are checked to see if any

buffer has that block. If the block is found in a buffer, the block is fetched into cache, and

prefetching issued to fill the last entry of the buffer.

Non-unit stride access pattern, the distance of consecutive accesses is larger than one unit

(e.g., an access pattern of A[0], A[3], A[6],..., of array A), is more complex than unit stride

pattern. Stride prefetchers [CB95, PK94] were proposed for non-unit stride pattern. PC-

based stride prefetcher [CB95] calculates an address difference between memory operations

having the same program counter (PC) value. If it detects a constant stride, prefetching is

issued based on the stride value. Stride prefetcher without PC [PK94] was proposed for off-

chip stride prefetching (e.g., prefetching in disk cache) since the PC values is only available

in on-core prefetcher.

The most complex memory access pattern is non-stride memory access pattern such as a

69

linked list structure traversal or indirect array references. Some hardware prefetching mech-

anisms [HM94, JG97] were proposed for these irregular memory access patterns. However,

most of prefetching mechanisms deal with regular memory access pattern due to design

complexity for detection of irregular memory access patterns.

Lee et. al [LLK10] propose hardware prefetching mechanisms (MT-HWP) for GPGPUs.

They claim three challenges to apply hardware prefetching in GPGPUs: less prefetching

opportunities of GPGPU applications, memory access pattern interference by warp inter-

leaving, and the division of prefetcher storage by multiple active warps. Then, they present

three solutions for those challenges: inter-thread prefetching, per-warp training, and stride

promotion. MT-HWP consists of inter-thread prefetcher and PC and warp ID based stride

prefetcher. The inter-thread prefetcher has inter-thread stride table, and the PC and warp

ID based prefetcher has per-warp stride table and global stride table for promotion. Both

prefetcher detects stride values independently. The prefetcher check the stride tables in

sequence of the global stride table, the inter-thread table, and per-warp stride table. For

example, when stride value is found in global stride table, prefetching is issued and other ta-

bles are skipped. However, the performance of the inter-thread prefetching is sensitive to the

warp scheduling policy which leads a poor performance in our evaluation. Furthermore, our

STPE uses single thread that has a smaller size of the stride table than MT-HWP. Finally,

our STPE does not require the stride promotion.

Prefetching is useless if prefetched block is evicted from the storage (e.g, cache or some

buffer) without any usage. To prevent these useless prefetchings, some feedback mechanism

[EML09, EMP09, SMK07] was proposed in the literature. Basically, these mechanism mea-

sures the accuracy of prefetching by comparing the number of useful prefetching and useless

prefetching. Our prefetch throttling mechanism is also based on this scheme.

70

4.5 Conclusion

This study shows how conventional prefetching mechanism properly applies in GPGPUs

exploiting the property of SIMT programming model. Although we use PC-based stride

prefetcher for the basic scheme, other conventional prefetching mechanisms can be effectively

applied in GPGPUs since memory access patterns of GPGPU applications are more regular

and simpler than the ones of CPU applications. We also proposed a prefetching enhancement

using thread block execution. Detection stride across thread blocks used in ITPC offers

new prefetching opportunities in GPGPU systems. Thread-block basis prefetch throttling

presents the fine-grain control of prefetching throttling.

4.6 Acknowledgement

I would like to thank to Professor Yuval Tamir for his suggestions and feedback on improving

this study.

71

CHAPTER 5

Tag Shared Cache Miss Handling Architecture

General-purpose graphics processing units (GPGPUs) mainly rely on hardware multithread-

ing to deal with a long memory latency. GPGPU’s hardware multithreading requires an effi-

cient cache miss handling architecture (MHA) to support non-blocking loads that can allow

a GPGPU to continue executing instructions upon a load miss. The MHA stores the infor-

mation of a load miss in the miss status holding registers (MSHR) to support non-blocking

loads. However, the scalability of the MHA is limited due to the MSHR’s fully-associative

structure.

This paper presents a tag shared MSHR array (TSMA) that is sufficiently scalable to

support GPGPU’s massive hardware multithreading. The tags (cache block addresses) of

all MSHR entries are removed in the TSMA. Instead of having a tag in an MSHR entry, an

MSHR entry shares the tag of a cache block. The shared tag provides the MSHR entry index

information. By this tag sharing, all the MSHR entries’ tag comparisons upon an access to

MSHR are eliminated. Due to the tag comparison elimination, the TSMA can have an array

structure of MSHR entries that can easily increase the number of MSHR entries without

high implementation cost and high power consumption caused by fully-associative structure.

TSMA, however, has two side effects. First, if all the cache blocks in a cache block set

are used by tag sharing, then a cache miss on the cache block set locks the entire cache until

one of shared tag is released. Second, the tag sharing by the TSMA has the same effect of

evicting the cache block upon a cache miss that is supposed to be evicted when the cache

block is filled. To relieve these side effects, this paper proposes a hybrid MSHR structure

consisting of a small size of a conventional MSHR and a large size of TSMA. Our experiment

72

Figure 5.1: Performance of the optimal MSHR size over baseline (32, 32) MSHR by varying

the minimum DRAM’s latency in 18 MSHR sensitive benchmarks: #MSHR (L1, L2)

shows that the hybrid MSHR provides 99% performance of a conventional fully-associative

MSHR in 28 benchmarks with only 33% and 59% of a conventional MSHR’s power and area

budget, respectively.

Figure 5.1 shows GPGPU’s performance with the optimal MSHR size in each L1 data

cache and each L2 bank in the L2 unified cache over the GPGPU-Sim [BYF09]’s baseline

in 18 MSHR sensitive benchmarks. The baseline uses 32 MSHR entries in L1 and L2 bank

caches. The performance improvements are 7%, 23%, and 70% in 100, 200, and 400 cycles of

DRAM minimum latency, respectively. The optimal numbers of MSHR entries (L1, L2 bank)

are (48, 64), (48, 96), and (64, 128) in 100, 200, and 400 cycles of the latency, respectively.

We find the optimal MSHR size by the sensitivity experiment as discussed in section 5.4.1.

This figure shows commonly used (32, 32) MSHR entries in L1 and L2 bank is not the

optimal MSHR size. More MSHR entries are needed to achieve the maximum performance:

48/64 in L1, 64˜128 in L2 bank depending on the minimum DRAM latency. This result

motivates us to devise scalable MSHR structure since conventional MSHR’s fully associative

structure limits its scalability.

MSHRs can be organized in a unified structure or multiple MSHR banks that each bank

deals with non-blocking loads of each cache bank. A unified structure, however, even with

32 MSHR entries used in the baseline is unlikely feasible with conventional fully-associative

73

structure [TCT06]. On the other hand, banked MSHRs divide the total MSHR entries into

each cache bank. Thus, banked MSHRs provide higher bandwidth and scalability than a

unified structure since only MSHR entries in a bank are searched upon a load miss. Each

cache bank is locked up when MSHR entries of the bank are fully consumed. However, when

load misses occur only in few cache banks due to access imbalance [TCT06], these cache

banks can be easily locked-up by consuming all MSHR entries though other cache banks

have ready MSHR entries.

To overcome the low utilization of banked MSHRs due to the access imbalance, Tuck et

al. proposed a hierarchical cache miss handling architecture (HMHA) [TCT06]. However,

HMHA was designed for L1 cache in CPUs. However, it is not suitable to GPGPUs. Many

GPGPU applications have a regular streaming data access pattern which also have very

high cache miss rate (e.g., more than 90%). GPGPUs are design to distributed these data

accesses to each L2 bank (each memory channel). Thus, the imbalance accesses are rarely

observed. Furthermore, HMHA’s shared MSHR can be bottleneck in such high cache miss

rates. The section 5.6 discusses HMHA in detail.

Based on this observation, we propose a tag shared MSHR array (TSMA) that is highly

scalable to maximize GPGPUs’ hardware multithreading. The TSMA shares the tags of

cache blocks to remove fully-associative search in conventional MSHRs. This tag sharing,

however, brings two side effects. First, if all the cache block’s tags in a cache set are shared,

then a cache miss in the cache set locks the entire cache until one of the shared tags is

released. Second, sharing the cache tag evicts the corresponding cache block. This cache

block eviction is earlier than a normal cache block eviction in conventional MSHRs that evict

a cache block when it is filled. This early eviction can hurt the performance by decreasing

the cache data locality degree. To relieve these problems, we also present a hybrid TSMA

(HTSMA) consisting of a small size of a conventional MSHR and a large size of TSMA.

HTSMA prevents the cache lock-up and relieves the early cache block eviction via the small

conventional MSHR.

74

Bit Vector (n bit)

Priority Encoder (n bit)

n

log n

update

MSHR IDX

IDX

MSHR index
genenrator

Data Cache

Secondary
Miss

Valid

MSHR Fields

Hit

DataTag
Share

IDX

Memory Request

Primary
Miss

IDX

Memory Response

IDX

Hit*

Share CNT*

Figure 5.2: Tag Shared MSHR Array Structure with N MSHR entries: * are used in Hybrid

Structure

5.1 Tag Shared MSHR Array

The tag shared MSHR array (TSMA) provides a high degree of scalability by sharing the

tag and tag comparator in the cache. TSMA consists of the MSHR index generator, an

IDX register, and a tagless MSHR array as shown in Figure 5.2. The IDX register provides

the available MSHR index. An MSHR entry in the tagless MSHR array is the same as a

conventional MSHR entry without a tag and tag comparator. TSMA also adds an MSHR

array index (IDX) and a share-bit tag in each cache block.

Upon a cache miss (a primary miss), the MSHR array is accessed with the IDX register.

Then, it sets the valid bit of target MSHR entry, fills the first field, and generates a memory

request with the IDX to fetch the data from lower level memory. At the same time, a cache

block is chosen by the replacement policy for tag sharing. Then, TSMA replaces the tag with

the cache miss’s tag, sets the share-bit to 1, and updates the IDX value. Upon a secondary

75

miss, it actually hits the cache but the share-bit is 1. A cache hit on the shared tag, which

the share-bit value is 1, indicates that it is a secondary miss. Thus, a cache miss is always

a primary miss in TSMA. TSMA accesses the MSHR array with the IDX value of the cache

block, and fills an MSHR field in the target MSHR entry. When a memory response arrives,

it accesses the MSHR array with IDX. Then, it releases the target MSHR entry, and fills the

data in the corresponding (pending) registers and the target cache block.

The MSHR index generator generates an index of one of available MSHR entries and

updates the IDX register as shown in Figure 5.2. The generator consists of a bit vector

and a priority encoder. The length of the bit vector and the input bit width of the priority

encoder are the same as the number of MSHR entries in the MSHR array. The size of the IDX

register is log(the number of MSHR entries). All the bits in the bit vector are initially set to

1, which indicates the corresponding MSHR entry is available. Upon a primary miss, it reads

the IDX register and sets the corresponding bit of the bit vector set to 0, which indicates

the corresponding MSHR entry is consumed by the primary miss. When the processing of

the primary miss is done in the cache and the MSHR array, the generator updates the IDX

register value. When a memory response arrives, the corresponding bit in the bit vector

respect to the IDX of the memory response is reset to 1 since the corresponding MSHR

entry is released.

TSMA requires a simple modification on a cache and a memory request/response. The

MSHR array index (IDX) and a share-bit are added to each cache block. The IDX tag is

updated upon a primary miss. The share-bit sets to 1 upon a primary miss and resets to 0

when the cache block is filled. The IDX is also added to a memory request and a memory

response. Here, we assume that the lower level memory maintains the IDX value. Since

GPGPU has a two-level cache, two IDXs are stored in a memory request/response in our

TSMA.

76

i f shared cnt==s i z e (cache s e t)−1:
a c c e s s s−MSHR

else :
i f Hit Tag==1: // Try to use s−MSHR

a c c e s s s−MSHR
i f s−MSHR i s f u l l :

a c c e s s TSMA
else :

i f Empty−b i t ==0: // s−MSHR i s not empty
a c c e s s s−MSHR // i t can be 2nd miss in s−MSHR
i f s−MSHR i s missed :

a c c e s s TSMA // C r i t i c a l Path
else :

a c c e s s TSMA

Listing 5.1: Pseudo Code for HTSMA

5.2 Hybrid Tag Shared MSHR Array

TSMA can provide a large number of MSHR entries without a high cost in terms of power

and area due to the elimination of the fully-associative tag search. Still, TSMA has two

side effects: the cache lock-up by sharing all the tag in a cache set and the early cache

block eviction. To alleviate the side effects in TSMA, we propose a hybrid TSMA (HTSMA)

consisting of TSMA with a small conventional MSHR (s-MSHR) that is from 1/8 to 1/4 size

of TSMA. HTSMA adds three components to the TSMA: a hit-bit tag in each cache block,

a share-bit counter in each cache set as shown in Figure 5.2, and an single empty-bit flag in

the s-MSHR. A cache hit sets the hit-bit tag to 1, and a cache miss resets the hit-bit to 0.

The share-bit counter counts the number of cache blocks those share-bit values are 1. The

empty bit tag is set to 1 when the s-MSHR is empty.

HTSMA prevents the cache locked-up caused by sharing all the tags in a cache set by

reserving one cache block for s-MSHR. The share-bit counter counts the number of shared

cache blocks in a cache set. HTSMA does not allow the tag sharing and tries to use s-MSHR

if the number of shared cache blocks reaches the cache set’s number of blocks-1.

HTSMA also keeps track of hit cache blocks, then it tries to use the s-MSHR instead of

77

TSMA to reduce the early evictions if the hit cache block is chosen for tag sharing. Upon

a cache miss, HTSMA checks the chosen cache block’s hit-bit tag. If the tag is 1, then it

tries to use normal cache miss handling with s-MSHR if s-MSHR is not fully consumed.

Otherwise, it tries to use TSMA. Yet, unlike TSMA, the distinction of a cache miss type is

unclear in the HTSMA because two MSHRs coexist. A cache miss in HTSMA can be one of

the following cache miss types: a primary miss or a secondary miss in s-MSHR, or a primary

miss in TSMA. If the chosen cache block’s hit tag is 0 upon a cache miss, then HTSMA tries

to use TSMA, but it checks s-MSHR first since the cache miss can be a secondary miss in

s-MSHR if s-MSHR is not empty. Thus, if it misses s-MSHR, then it accesses TSMA as a

primary miss. To reduce unnecessary accesses to s-MSHR, HTSMA checks the empty-bit

flag before it compares the tags in s-MSHR since a cache miss is always a primary miss

in TSMA if s-MSHR is empty. We believe that the empty-bit is worthwhile since there

are many GPGPU applications with very little data locality. The HTSMA mechanism is

explained in Listing 5.1 with a pseudo code.

5.3 Experiment Methodology

This section describes the GPGPU simulator and the benchmark suits used in the experi-

ment. First, it explains the modification applied to the GPGPU-Sim simulator. Then, the

classification rules for benchmark groups is described.

5.3.1 GPGPU Simulator

We extend GPGPU-Sim 3.2.1 [BYF09] to support TSMA and HTSMA. We also add the hash

function for the cache set index [NBC14] in both the L1 and L2 data caches. The baseline

configuration details are shown in Table 5.1. The number of MSHR entries in the baseline

configuration is 32 in the L1 data cache and L2 bank. Each MSHR entry has 8 MSHR

fields. This configuration of MSHRs is the same as the configuration of GTX480 [NVIc] in

the GPGPU-Sim. We use 32K size 8-set associative cache for the L1 data cache and 200

78

Parameter Value

Compute Units 15

SIMD unit width 32

Warp Size 32

Threads / Core max 1024

Registers / Core 32768

Shared Memory / Core 32KB (16 banks)

Constant Cache / Core 8KB (2-way, 64B line, LRU)

Texture Cache / Core 16KB (8-way, 128B line)

L1 Data Cache 32KB (8-way)-default, 16KB (4-way)

(128B line, LRU) 32KB4W (4-way), 48KB (6-way), 64KB (8-way)

MSHR in L1D cache 32 entries (8 fields / entry)

Shared L2 cache 128KB / MC

(8-way, 128B line, LRU),

MSHR in L2D cache 32 entries (8 fields / entry)

Core Clock 1400 Mhz

Interconnect Clock 1400 Mhz

Memory Clock 924 Mhz

Interconnection crossbar, 32B channel width

Memory Channels 6, FR-FCFS [RDK00]

DRAM min latency 100, 200(default), 400 cycles

DRAM request queue size 32

DRAM 16 DRAM banks / MC

GDDR5 Timing tCL=12, tRP=12, tRC=40,

tRAS=28, tRCD=12, tRRD=6

Memory Channel BW 8 (Bytes/Cycle)

Table 5.1: Simulator Configuration

79

cycles for the default minimum DRAM latency for the default configuration.

We use the on fill cache block allocation policy as a default policy. GPGPU-Sim’s default

allocation policy is on miss, which is unnatural. The on miss policy allocates (or reserves)

a cache block on a cache miss, then fills the data later when the memory response arrives.

The cache block allocation acts as a cache block eviction like TSMA. Another problem of

on miss policy is that a cache set can be locked up when all the cache blocks in a cache set

are allocated. However, the on fill policy maintains the cache block until it is filled, and it

does not have the locked up cache set problem of the on miss policy.

5.3.2 Benchmarks

We examine 28 CUDA benchmarks from five different benchmark suites: CUDA SDK [NVI11a],

GPGPU-Sim benchmark [BYF09], Rodinia [CBM09a], Parboil [SRS12], and SHOC [DMM10].

We divide these benchmarks into four groups based on MSHR sensitivity and data locality

in L1 data cache or L2 unified cache: type-0(insensitive), type-I(little locality in L1 and L2),

type-II(data locality in L2), and type-III(data locality in L1 and L2).

If a benchmark performance is not affected by the different number of MSHR entries,

then it is considered type-0. The following 10 benchmarks are grouped in type-0: CUDA SDK

(Histogram, MonteCalro), GPGPU-Sim benchmark (CP, MUM, STO), Rodinia (SRAD ver1),

Parboil (CUTCP, MRI-Q, Stencil), and SHOC (Sort).

The remaining 18 benchmarks are grouped based on a primary cache miss rate in the L1

and L2 data cache. If a benchmark’s primary cache miss rates of both the L1 and L2 data

caches are more than 90%, then it is grouped in type-I. If the primary miss rate is more than

90% only in the L1, then it is grouped in type-II. The remaining benchmarks are grouped

in type-III. Table 5.2 provides the benchmark list and kernel information of these 18 MSHR

sensitive benchmarks: the number of kernels(#K), the number of thread blocks (#CTAs),

and the number of threads per thread block (T/CTA).

80

Type Name Abbr. #K CTAs T/CTA

BlackScholes [NVI11a] BLS 1 480 128

I Reduction [NVI11a] RED 2 256 256

ScalarProd [NVI11a] SP 1 1024 256

Triad [DMM10] TR 1 32768 128

Convolution- CS 2 1024 128

Separable [NVI11a]

FastWalsh- FWT 3 1024 256

Transform [NVI11a]

II MatrixMul [NVI11a] MM 1 600 1024

Scan [NVI11a] SCAN 3 416 256

Sorting- SN 4 256 512

Networks [NVI11a]

LBM [SRS12] LBM 1 18000 120

Transpose [NVI11a] TP 8 4096 256

LPS [BYF09] LPS 1 2048 128

WP [BYF09] WP 1 72 64

Breadth First BFS 2 256 512

III Search [CBM09a]

SRAD ver2 [CBM09a] SRAD2 2 4096 256

StreamCluster [CBM09a] SC 1 128 512

SAD [SRS12] SAD 3 128640 61

SPMV [SRS12] SPMV 1 765 192

Table 5.2: GPGPU Benchmarks Description

81

5.4 Experiment Result

This section is organized as follows. It analyzes the performance with varying MSHR size

over the baseline configurations. It also evaluates the performance of our tag shared MSHR

structures. Finally, it shows the sensitivity study results on different cache configurations

and different DRAM latencies.

5.4.1 Optimal MSHR Size

The performance with varying size of conventional MSHR over the baseline (32 MSHR entries

in L1 and L2 bank) is shown in Figure 5.3. Benchmarks’ performances in type-0 are barely

affected by different MSHRs’ sizes. On the other hand, more MSHR entries usually increase

the performance of the MSHR sensitive benchmarks (type-I, type-II, type-III). However,

the unlimited size of MSHR entries in the L1 data cache (U, 32) over the baseline does

not provide the performance improvement since 32 MSHR entries in the L2 bank are not

sufficient to handle all the memory requests issued from the L1. Among the MSHR sensitive

benchmarks, type-I shows the maximum performance improvement (43%) over the baseline

since type-I has little data locality in both the L1 and L2 cache.

In this experiment, we find the optimal size of MSHR in the L1 data cache and L2 bank

in terms of cost and performance improvement. Finding the optimal MSHR size, we increase

L1 MSHR size with unlimited MSHR in L2 bank from (16, U) to (128, U). The performance

increases up to (48, U), then it saturates with larger than 48 MSHR entries in the L1. With

48 MSHR entries in L1, we also increase L2 bank MSHR size from (48, 64) to (48, 160). The

performance increases up to (48, 96), then it saturates with larger MSHR. Thus, we use (48,

96) MSHR as the optimal MSHR size in default DRAM latency configuration (200 cycles).

In the same way, we find the optimal MSHR size in 100 and 400 cycles of the minimum

DRAM latency configurations. They are (48, 64) and (64, 128), respectively.

82

F
ig

u
re

5.
3:

P
er

fo
rm

an
ce

w
it

h
va

ry
in

g
M

S
H

R
si

ze
:

U
*=

U
n
li
m

it
ed

,
gm

ea
n
*=

gm
ea

n
ex

ce
p
t

ty
p

e-
0

83

F
ig

u
re

5.
4:

T
S
M

A
an

d
H

T
S
M

A
p

er
fo

rm
an

ce
ov

er
M

S
H

R
in

M
S
H

R
se

n
si

ti
ve

b
en

ch
m

ar
k
s

F
ig

u
re

5.
5:

C
ac

h
e

m
is

s
ra

te
of

M
S
H

R
,

T
S
M

A
,

an
d

H
T

S
M

A
in

M
S
H

R
se

n
si

ti
ve

b
en

ch
m

ar
k
s

84

Figure 5.6: L1 data cache Stall Cycles normalized MSHR

5.4.2 Analysis Tag Shared MSHR

Figure 5.4 shows the performance of TSMA and HTSMA over the conventional MSHR in 18

MSHR sensitive benchmarks. In this default configuration, HTSMA adds the size of 4 and 8

conventional MSHR (s-MSHR) in the L1 and L2 TSMA, respectively. The size of s-MSHR in

all HTSMA configuration is shown in Table 5.3. Overall, TSMA and HTSMA provide 93.4%

and 98.5% performance of MSHR, respectively. In type-I, there are no noticeable differences

between the three MSHR configurations. However, only TSMA’s performance is decreased by

9.1% in type-II. In type-III, TSMA and HTSMA show 8.9% and 3.4% performance decrease

over the conventional MSHR, respectively.

MSHR vs TSMA: TSMA’s performance decrease against a conventional MSHR (MSHR)

in type-II and type-III can come from the two side effects: cache lock-ups by fully shared tags

and early cache block evictions. Interestingly, the effect of cache lock-ups by fully shared tags

is much more significant than the effect of early cache block evictions. Figure 5.5 and 5.6

provides the explanation. The miss rate of TSMA is equal or less than the miss rate of MSHR

in most of type-II and type-III benchmarks in Figure 5.5. The increase of miss rate by early

block evictions in TSMA is observed only in BFS. Especially, the miss rates are almost the

same in FWT, SCAN, and SN while TSMA’s provide only 75.7%, 93.7%, and 91.6% of the

conventional MSHR performance. The only explanation for TSMA’s decreased performance

85

Figure 5.7: Access Ratio of s-MSHR and TSMA in HTSMA

is the cache lock-up. Figure 5.6 presents the three MSHR’s L1 data cache’s stall cycles by

load accesses normalized to MSHR. TSMA’s stall cycles are significantly increased in FWT,

LPS, and SC over the conventional MSHR mainly due to the cache lock-ups by sharing

all the tags. Overall, TSMA increases the cache stall cycles by 50% over the conventional

MSHR.

On the other hand, the cache lock-up can result in the increase of data locality since

cache blocks can not be evicted while the cache is locked up. TSMA’s cache miss rate(L1

or L2) is lower than conventional MSHR in CS, LBM, TP, LPS, WP, SRAD2, and SPMV.

However, TSMA’s performance is still lower than the performance of the conventional MSHR

in those benchmarks because the performance gain by increased cache data locality is much

lower than the performance loss by the cache lock-ups.

TSMA vs HTSMA: HTSMA recovers the most performance drops caused by TSMA in

type-II and type-III except for BFS and SPMV. This performance improvement of HTSMA

over TSMA primarily comes from avoiding the cache lock-ups. Figure 5.6 shows that HTSMA

removes most of the extra cache stall cycles from TSMA in the L1 MSHR. Overall, HTSMA’s

stall cycles are almost same as s-MSHR. Avoiding the cache lock-up can result in an increase

in the cache miss rate. Thus, HTSMA’s cache miss rate is equal to or higher than the miss

rate of TSMA. In BFS and SPMV, HTSMA increases performance by 1% over TSMA.

86

Cache TSMA size

Config (48, 64) (48,96) (64,128)

32K (4,8) (4,8) (8,16)

16K (12,8) (12,8) (12,16)

32K4W (8,8) (8,8) (12,16)

48K (8,8) (8,8) (8,16)

64K (4,8) (4,8) (8,16)

Table 5.3: s-MSHR configuration in HTSMA

The small conventional MSHR (s-MSHR) in HTSMA is the source of the performance

gain over TSMA. The access ratios of both MSHRs in HTSMA are shown in Figure 5.7.

Only SP’s L1 HTSMA shows a high s-MSHR access ratio in type-I. This is primarily caused

by avoiding the cache lock-up since the type-I miss rate is close to 100%. HTSMA’s s-MSHR

access ratio varies in type-II. However, there is a pattern that s-MSHR ratio in L2 HTSMA

is usually larger than the ratio in the L1 HTSMA in type-II. Since the L2 cache miss rate is

high in type-II, most s-MSHR accesses in the L2 HTSMA are to avoid the cache lock-ups.

In type-III, all benchmark’s s-MSHR access ratios in both L1 and L2 are more than 40%

because of the type-III higher data locality than type-I and type-II.

5.4.3 Sensitivity Study

Cache size and associativity can affect the performance of TSMA and HTSMA. The data

locality in a small size of the cache can be easily lost by a few early cache block evictions,

and a lower degree associative cache can be locked up more frequently than a higher degree

associative one. Figure 5.8 shows the performance of the three MSHRs with all five L1 data

cache configurations shown in Table 5.1.

There are no noticeable performance differences in type-0 and type-I except for TSMA’s

performance with 16K in type-I. It shows a 5.9% performance drop mainly caused by the

cache lock-up. In type-II, TSMA shows a 9% performance drop over the conventional MSHR

87

F
ig

u
re

5.
8:

M
S
H

R
s

P
er

fo
rm

an
ce

w
it

h
va

ry
in

g
C

ac
h
e

C
on

fi
gu

ra
ti

on

F
ig

u
re

5.
9:

M
S
H

R
s

P
er

fo
rm

an
ce

w
it

h
va

ry
in

g
D

R
A

M
M

in
im

u
m

L
at

en
cy

88

while HTSMA recovers most of the performance drop in all the cache configurations. TSMA’s

performance decrease varies from 24.8% to 5.9% depending on the L1 cache configuration

in type-III. The smaller size and lower degree associative decreases the performance more

significantly. However, HTSMA recovers most of the performance drop from 95.7% to 97.2%

of the conventional MSHR’s performance in type-III.

Overall, the performance of TSMA varies from 89.4% to 96.4% of the conventional

MSHR’s performance, depending on the cache configurations. Unlike TSMA, HTSMA pro-

vides uniform performance that is from 98.8% to 99.4% of the conventional MSHR per-

formance in all the cache configurations. However, the size of s-MSHR used in HTSMA

is different depending on the cache configuration as shown in Table 5.3 since the two side

effects of TSMA becomes worse as the cache size or the associativity decreases.

Figure 5.9 shows the performance of TSMA and HTSMA over the conventional MSHR

with varying DRAM latency. We varied the DRAM latency by changing the minimum

DRAM latency in the simulator. Each result in Figure 5.9 is the geometric mean of results

in all five cache configurations. The performance of TSMA and HTSMA are not significantly

affected by varying DRAM latency though the number of MSHR used in three MSHRs

increases as the latency increases. Overall, TSMA and HTSMA shows 93.5% and 99.0% of

the conventional MSHR’s performance, respectively. The sizes of the conventional MSHR

and TSMA are (48, 64), (48, 96), and (64, 128) in 100, 200, and 400 cycles, respectively. The

sizes of TSMA used in HTSMA are the same as TSMA, and the sizes of s-MSHR used in

HTSMA are shown in Table 5.3. The s-MSHR size in HTSMA is the optimal size considering

the extra cost and performance gain by increasing the size.

5.4.4 Comparison to Set Associative MSHR

Set associative MSHRs are another way to increase the scalability of MSHRs. The access

time, power consumption, and area cost usually decreases as a MSHR’s set associativity

decreases. However, a set associative MSHR cannot handle a cache miss when the corre-

89

Cache Associativity

Config 1xASSOC 2xASSOC 4xASSOC 8xASSOC

L1 (64 MSHR) 32K 8-way 16-way 32-way Fully-assoc

16K 4-way 8-way 16-way 32-way

32K4W 4-way 8-way 16-way 32-way

64K 8-way 16-way 32-way Fully-assoc

L2 (128 MSHR) 128K 8-way 16-way 32-way 64-way

Table 5.4: Set Associative MSHR configuration

sponding set is fully consumed. Therefore, GPGPU’s performance can be decreases as a

MSHR’s set associativity decreases due to imbalance accesses among MSHR’s sets. TSMA

can be also considered as a set associative MSHR because the cache’s associativity can limit

the utilization of TSMA. When all the tags in a cache set are used for TSMA, TSMA can

not handle further cache misses in the cache set although it has available entries. Thus, the

cache’s set associativity can be considered as TSMA’s set associativity in the worst case. To

measure the provided set associativity of TSMA (HTSMA), we compare TSMA (HTSMA)

with different set associative MSHRs.

To properly configure a set associative MSHR with regard to the cache’s associativity for

TSMA, the 400 cycle’s minimum dram latency configuration which has 64 and 128 MSHR

entries in L1 and L2 respectively is used for the comparison. The MSHR’s associativity starts

at the associativity of the cache and increases up to eight times of the cache associativity.

The L1 with 48K configuration is since its associativity is six. Table 5.4 shows set associa-

tive MSHR configurations. The configuration of both L1 and L2 MSHR’s set associativity

starts from the corresponding cache’s set associativity (1xASSOC) up to 8 times higher set

associativity (8xASSOC) as shown Table 5.4.

The performances of various set associative MSHRs, TSMA, and HTSMA against a

conventional MSHR are shown in Figure 5.10: (a) based on L1 cache configuration and (b)

based on the benchmark group. The performance decreases as the MSHR’s set associativity

90

Figure 5.10: Various MSHR Performance normalized to conventional MSHR’s performance

decreases. Overall, the set associative MSHRs from 8xASSOC to 1xASSOC configurations

reach 99%, 97%, 87%, and 73% of the conventional MSHR’s performance respectively. There

is no noticeable performance drop in 8xASSOC MSHRs since since 8xASSOC is the highest

set associative MSHR and the fullly associative MSHR in some L1 configurations(32K and

64K). However, the performances are significantly dropped from 2xASSOC to 1xASSOC.

Set associative MSHRs with 16K and 32K4W L1 configurations result in more performance

drop than 32K and 64K L1 configurations as shown in Figure 5.10(a) since 16K and 32K4W

L1 MSHR’s associativities are half of 32K and 64K L1 MSHR’s associativities that causes

more imbalance accesses among MSHR sets.

91

Figure 5.11: Various MSHRs’ tag comparisons normalized to conventional MSHR’s tag com-

parisons

92

TSMA’s performance can be same as 1xASSOC in the worst case since its associativity

limits by the cache’s associativity. However, TSMA performance (94% of the conventional

MSHR) is higher than all the 2xASSOC configurations, and it is close to 4xASSOC’s perfor-

mance. We believe that this TSMA high performance comes from the fact that the number

of cache blocks is much higher than the number of MSHR entries. For example, the 32K L1

has 128 cache blocks and 32 cache sets with 8-way set associativity. All the cache accesses

(misses) are distributed over 32 cache sets. Still, 64 MSHR entries have 8 sets with 8-way

associativity in 1xASSOC configuration. All the cache misses are distributed over 8 sets.

Thus, the imbalance accesses among sets in TSMA can be much less than 1xASSOC MSHR.

Figure 5.10(b) shows the performance of the various MSHRs in different benchmark suits.

Type-0 is barely affected by decreasing MSHR’s set associativity. However, the performance

is significantly decreases in other types. The performance drops from type-I to type-III reveal

the relationship between the cache locality and imbalance accesses of set associative MSHRs.

Among type-I, type-II, and type-III, type-I has the least cache locality (miss rate >90% in

L1 and L2), type-II has the medium cache locality (miss rate >90% only in L1), and type-III

has the most cache locality (miss rate ≤ 90% in L1 and L2). However, the performance order

of these three types is inverse to the cache locality: type-I >type-II >type-III as shown in

Figure 5.10(b). Applications with more cache locality can increase the imbalance accesses

among MSHR sets since their memory accesses have a repeated access pattern.

A cache miss that accesses to the MSHR’s fully consumed set is not processed, but it

performs the tag comparison in the MSHR’s set. Thus, the degree of imbalance accesses

in set associative MSHRs can be indirectly measured by counting the number of tag com-

parisons in MSHR sets. Figure 5.11 shows the number of various MSHRs’ tag comparisons

normalized to the number of convention MSHR’s tag comparisons: (a) based on L1 cache

configuration and (b) based on the benchmark group. The result is a sum of L1 and L2

MSHR’s tag comparisons. The number of tag comparisons significantly increases as the

MSHR’s set associativity decreases. These significantly increased tag comparisons in set as-

sociative MSHRs have a negative impact on the performance that matches the performance

93

results shown in Figure 5.10. Similarly, benchmarks with higher cache locality result in more

tag comparisons in set associative MSHRs as shown in Figure 5.11(b). Note that the number

of compared tags in the set associative MSHR’s tag comparison is much less than one in

the conventional MSHR’s tag comparison since set associative MSHRs compares tags only

in the MSHR set, not the entire tags of MSHR.

5.5 Power, Area, and Access Time

We use CACTI v4.0 tool [Dav06] to estimate the power consumption, area, and access time

of conventional MSHR, set associative MSHR, TSMA, and HTSMA with 130nm technology.

The estimation of a s-MSHR with four entries in HTSMA is not shown since it is too small to

run the CACTI tool. (Recent CACTI v5.3 that supports up to 32nm does not work properly

with our MSHR configurations due to MSHR’s small size.) We consider an MSHR entry with

8 MSHR fields as a 56-byte cache block for CACTI simulation. We also use full associativity

and 1-set associativity (direct-map) in conventional MSHR and TSMA, respectively. Unlike

a cache, TSMA does not have tags and tag comparators. However, we did not exclude them

to compensate for the extra components’ costs in TSMA or HTSMA: share-bit tag (share-bit

counter), hit-bit tag, and IDX tag in each cache block, MSHR index generator, and IDX

register.

We calculate the extra cost of TSMA and HTSMA based on the following assumptions:

32-bit tag and tag comparator, 599 transistors for a 64-bit priority encoder in 130nm [AMI15],

1917 transistors for a 32-bit comparator in 150nm[AGP13], and 6 transistors for a 1-bit

SRAM cell. Our calculation shows that the total extra cost is roughly from 29% to 41% of

TSMA’s tag and comparator cost in CACTI. Thus, we believe that our estimation of TSMA

and HTSMA in CACTI is slightly overestimated.

94

MSHR Dyn(mW) Leak(mW) Area(mm2)

(48, 64) 6448.95 1078.31 10.01

(48, 96) 7107.34 1264.31 10.66

(64,128) 8590.49 1682.81 11.95

TSMA Dyn(mW) Leak(mW) Area(mm2)

(48, 64) 805.93 148.00 3.31

(48, 96) 867.44 168.93 3.49

(64,128) 922.49 220.10 4.63

HTSMA

TSMA s-MSHR Dyn(mW) Leak(mW) Area(mm2)

(48, 64) (8, 8) 2207.92 319.51 5.81

(12,8) 2451.88 377.63 6.02

(48, 96) (8, 8) 2269.43 340.44 6.00

(12,8) 2513.39 398.57 6.20

(64,128) (8,16) 2517.49 438.11 7.29

(12,16) 2761.45 496.24 7.49

Table 5.5: Power and Area Estimation

5.5.1 MSHR, TSMA, and HTSMA

The power and area estimations of MSHR, TSMA, and HTSMA are shown in Table 5.5.

The result is the sum of all 15 SM’s L1 MSHRs and 6 L2 banks’ MSHRs. Removing full

associativity decreases the power consumption and the area costs significantly as shown in

the MSHR and TSMA table 5.5. Overall, TSMA’s power consumption (dynamic+leakage)

and area costs are only 12%, and 35% of conventional MSHR’s power consumption and area

costs, respectively. HTSMA’s power consumption and area costs are roughly 33% and 59% of

conventional MSHR’s ones, respectively. Overall, the s-MSHR in HTSMA consumes about

63% and 41% of the entire power and the area in HTSMA, respectively. This result reveals

the fully-associative structure’s expensive cost in terms of power and area.

95

Table 5.6 shows that the access time of the conventional MSHR, TSMA, and HTSMA

(s-MSHR). TSMA’s access time is roughly half (from 50% to 53%) of MSHR’s access time.

HTSMA has three different access times: TSMA access, s-MSHR access, s-MSHR tag com-

parison and TSMA access (the critical path). The access time of HTSMA’s critical path,

however, is increased by 9% and 5% over MSHR’s access time in the L1 and L2, respectively.

This increased access time comes from the fact that the HTSMA’s critical path consists

of a s-MSHR miss then TSMA access that includes the s-MSHR tag comparison time and

the access time of TSMA. On the other hand, the increased access time of HTSMA can be

relieved by the 2-stage pipeline structure. This 2-stage pipeline structure performs (or skips)

s-MSHR’s tag comparison in the first stage, and it access s-MSHR’s entry or TSMA in the

second stage. In the pipelined HTSMA, the access time will be the tag comparison time of

s-MSHR because the tag comparison time of s-MSHR is slightly larger than the access time

of TSMA.

5.5.2 Set Associative MSHR

Figure 5.12 shows the relative power (dynamic and leakage), area, and access time of set

associative MSHRs, TSMA, and HTSMA against the fully-associative conventional MSHR

(MSHR) in the 400-cycle DRAM configuration: 64 and 128 MSHR entries in L1 and L2

respectively. Only few set associative MSHR configurations are estimated in the CACTI tool:

4-way and 8-way set associativity in L1 MSHR, and 8-way set associativity in L2 MSHR. The

tool does not estimate properly in higher set associative configurations. The estimation of

4-way set associative MSHR in L1 corresponds to 1xASSOC configuration of 16K, 32K4W.

The 8-way set associative MSHR estimation in L1 includes 2xASSOC configuration of 16K,

32K4W and 1xASSOC configuration of 32K, 64K as shown in Table 5.4.

Set associative MSHRs take less power, area, and access time than ones of the conven-

tional MSHR as show in Figure 5.12. We expect all the values will be increased as the set

associativity increases further. However, TSMA reduces all of them more than 1xASSOC

MSHR while TSMA provides much higher performance than the performane of 2xASSOC

96

MSHR, TSMA

(L1, L2) L1(ns) L2(ns)

(48, 64) 1.50, 0.79 1.54, 0.80

(48, 96) 1.50, 0.79 1.62, 0.81

(64,128) 1.54, 0.80 1.69, 0.85

s-MSHR Access, Tag*

(L1, L2) L1(ns) L2(ns)

(8, 8) 1.43, 0.85 1.43, 0.85

(12,8) 1.46, 0.88 1.43, 0.85

(8,16) 1.43, 0.85 1.50, 0.91

(12,16) 1.46, 0.88 1.50, 0.91

HTSMA

TSMA s-MSHR TSMA, s-MSHR, Tag*+TSMA

(L1,L2) (L1,L2) L1(ns) L2(ns)

(48, 64) (8, 8) 0.79, 1.43, 1.64 0.80, 1.43, 1.65

(12,8) 0.79, 1.46, 1.67 0.80, 1.43, 1.65

(48, 96) (8, 8) 0.79, 1.43, 1.64 0.81, 1.43, 1.66

(12,8) 0.79, 1.46, 1.67 0.81, 1.43, 1.66

(64,128) (8,16) 0.80, 1.43, 1.65 0.85, 1.50, 1.76

(12,16) 0.80, 1.46, 1.68 0.85, 1.50, 1.76

Table 5.6: Access Time Estimation: Tag* is the tag comparison time of s-MSHR

97

Figure 5.12: Power, Area, and Access time of Set Associative MSHRs

MSHR as shown in Figure 5.10. HTSMA consumes more power and area than TSMA, and

HTSMA’s access time is slightly higher than the conventional MSHR due to the addiction

of s-MSHR. Still, HTSMA power and area consumption is close to 1xASSOC set associative

MSHR configuration.

5.6 Related Work

Kroft [Kro98] introduced a Miss Status Holding Register (MSHR) to support non-blocking

loads. An MSHR supports the non-blocking loads by keeping the information of a memory

request: tag of the target cache block, the target register number, the format of a load

98

instruction, and other information. Scheurich and Dubois [SD88] proposed three MSHR

schemes in multiprocessors and compared their tradeoffs. Sohi and Franklin [SF91] described

the requirement of MSHR implementation in detail. They also evaluated the bandwidth

advantages of banked MSHRs over unified MSHRs.

Farkas and Jouppi [FJ94] analyzed various MSHR implementations in term of the per-

formance and implementation costs. They also mentioned, ”In-Cache MSHR Storage” that

replaces the cache tag and data block with an MSHR’s tag and entry on a cache miss. It

adds a ”transit” bit tag in each cache block that indicates that the cache block is used as an

MSHR entry. Thus, the in-cache MSHR can provide a large number of MSHR entries that

is up to the number of cache blocks. However, it has the following critical problems. First,

it adds many cycles’ delay to the cache fill-time and the pending register fill-time. When

fetch data arrives, the MSHR data must be read first before filling the cache block. Also,

pending registers have to wait during this MSHR reading time. We believe that this delay

is critical to its performance. Second, in-cache MSHR requires extra bit-wise processing to

extract each MSHR data such as warp ID, register ID, and format information, etc., since

MSHR data usually takes few bits. This extra processing adds another delay to fill pending

registers. Furthermore, the in-cache MSHR has the cache lock-up and the early cache block

eviction problems similar to TSMA.

Tuck et al. proposed the hierarchical cache a miss handling architecture (HMHA) [TCT06]

that consists of two-level MSHR structure to improve the scalability of MSHR in CPUs. The

two-level MSHR has a dedicated MSHR in each bank and a shared MSHR by all banks. When

a dedicated MSHR is full and a cache miss occurs in the corresponding cache bank, one of

the MSHR entries is moved to the shared MSHR. Thus, it can reduce the frequency of cache

bank lock-ups due to access imbalance. The goal of HMHA is to increase banked MSHR’s

utilization by reducing the imbalance accesses among banks. However, HMHA is not suit-

able for GPGPUs due to the following reasons. Firstly, HMHA’s shared MSHR can be the

bottleneck in GPGPUs to support GPGPU’s high degree of memory level parallelism. Many

GPGPU applications have very little or no data locality. In such applications, the GPGPU

99

frequently consumes all MSHR entries in each bank due to a high cache miss rate. When

most MSHR entries are consumed by a high cache miss rate, the shared MSHR in HMHA can

be the bandwidth bottleneck since multiple banked MSHRs try to spill their MSHR entries

to the shared MSHR. Secondly, GPGPU’s L2 is already highly banked, but each L2 Bank

requires a large number of MSHR entries. Lastly, the imbalance accesses between MSHR

banks are not very common in GPGPUs’ L2 banks since GPGPUs’ data access patterns are

commonly regular and GPGPUs distribute these accesses well among L2 banks or memory

channels. Thus, more aggressive banking can be applied, but it will increase the cost of the

interconnection network significantly.

C. Nugteren et al. claimed that 64 MSHR entries are used in NVIDIA’s Fermi GPGPU

core (MSHR in L1) based on their experiments [NBC14]. Increasing the number of MSHR

entries increased only two benchmarks out of six in their experiment. However, we find that

the number of MSHR entries in L2 has a more significant impact on the performance than

the number of MSHR entries in L1. Our study also shows that the performance improvement

can be limited by simply increasing the number of MSHR entries only in L1 since the small

size MSHR in L2 can be the performance bottleneck.

5.7 Conclusion

GPGPUs require larger numbers of MSHR entries than CPUs to maximize the effectiveness

of GPGPU’s hardware multithreading. This work identifies the optimal number of L1-MSHR

and L2-MSHR in GPGPUs. However, the optimal MSHR size is not feasible in conventional

MSHRs. Set associative MSHR can be alternative but it hurts the performance significantly

due to the imbalance accesses among MSHR’s sets. Based on this observation, we propose a

TSMA that can provide a sufficient number of MSHR entries for GPGPUs. By eliminating

tags and tag comparators in MSHRs, TSMA easily increases the number of MSHR entries at a

smaller cost than the cost of set associative MSHR while providing much higher performance

than the performance of the corresponding set associative MSHR (1xASSOC). To alleviate

100

the side effects of TSMA, we also propose the hybrid TSMA that includes a small size of

s-MSHRs. HTSMA provides 99% of conventional MSHR’s performance only with 33% and

59% of conventional MSHR’s power and area cost which are close to set associative MSHR’s

power and area cost.

101

CHAPTER 6

Conclusion

This dissertation presents three mechanisms to improve the effectiveness of hardware mul-

tithreading which leads to increase the performance in general-purpose graphics processing

units (GPGPU): an adaptive warp scheduling policy, a warp throttling mechanism, and

scalable cache miss handling architecture.

Firstly, it proposes an adaptive warp scheduling based on the evaluation of various warp

scheduling policies’ performance in different types of GPGPU applications. GPGPU applica-

tions are classified according to the data locality characteristics, and various warp scheduling

policies are evaluated by varying the fairness. This work explains how unfair and fair policies

effectively capture intra-warp locality and inter-warp locality respectively. Unfair policies

can provide higher degree of latency hiding, and they are favorable to capture the intra-warp

data locality. On the other hand, fair policies can capture more inter-warp locality. This

results in the fact that unfair policies provide better performance than fair policies in ap-

plications with little data locality and high intra-warp data locality, but fair policies show

higher performance than unfair policies in applications with high inter-warp data locality.

Based on this observation, it devises locality-aware warp scheduling (LAWS) to exploit both

unfair and fair scheduling policies. LAWS adaptively chooses the scheduling policy by mea-

suring the data locality characteristics in the L1 data cache. Overall, LAWS improves the

performance by 18% over the GTO scheduling policy in 16 scheduling sensitive benchmarks.

Secondly, this work proposes a simple warp throttling mechanism to improve the perfor-

mance by reducing the intra-warp locality loss in the L1 data cache (L1D). Since many warps

share the small size L1D in each streaming multiprocessor, each warp’s data locality can be

102

easily interfered by other warps’ cache accesses. Based on this observation, this study de-

vises a throttling mechanism with little cost to improve the performance of GPGPUs further

by reducing the intra-warp locality loss. In this work coupling with the LAWS, we achieve

both locality-warp adaptive scheduling and throttling mechanisms with the minimum cost

by sharing the functionality of the locality detection unit and exploiting the existing MSHR

resources. This LAWS with throttling improves the performance 58% over GTO scheduling

policy in 16 scheduling sensitive benchmarks.

Thirdly, it studies hardware prefetching mechanism on GPGPUs. It explains the chal-

lenges and solutions to apply the conventional hardware prefetching on GPGPUs, and it

proposes an efficient hardware prefetching mechanism based on PC-based stride prefetcher

exploiting the property of GPGPU’s SIMT programming model. The stride detection

across thread blocks used in ITPC offers new prefetching opportunities in GPGPU sys-

tems. Thread-block basis prefetch throttling mechanism presents the fine-grain control of

prefetching throttling in GPGPUs.

Finally, it presents scalable cache miss handling architecture that can provide enough

number of miss status holding registers (MSHR) to improve the effectiveness of hardware

multithreading. Hardware multithreading on a cache miss has to be stalled when all the

MSHRs are fully consumed. However, the scalability of conventional MSHRs is limited in

terms of power and area due to the fully-associative structure. Based on this observation, we

propose a tag shared cache miss handling architecture (TSMA) that can provide a sufficient

number of MSHRs for GPGPUs. By eliminating tags and tag comparators in MSHRs, TSMA

easily increases the number of MSHRs at a small cost. However, TSMA has two side effects

that can decrease the performance. To alleviate the side effects of TSMA, we also propose

the hybrid TSMA that includes a small size of conventional MSHRs. HTSMA provides 99%

of conventional MSHR’s performance only with 33% and 59% of conventional MSHR’s power

and area cost.

103

References

[AF] Tor M. Aamodt and Wilson W.L. Fung. “GPGPU-Sim 3.x Manual.”
http://gpgpu-sim.org/manual/index.php5/GPGPU-Sim 3.x Manual.

[AGP13] S. Abdel-Hafeez, A. Gordon-Ross, and B. Parhami. “Scalable Digital CMOS
Comparator Using a Parallel Prefix Tree.” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 21(11):1989–1998, Nov 2013.

[AMD12] AMD. “Hegerogeneous Computing: OpenCL and
the ATI RAdeon HD 5870 (Evergreen) Architecture.”
http://developer.amd.com/wordpress/media/2012/10/Heterogeneous
Computing OpenCL and the ATI Radeon HD 5870 Architecture
201003.pdf, 2012.

[AMI15] K. M. Ali, H. Mostafa, and T. Ismail. “High performance layout-friendly 64-
bit priority encoder utilizing parallel priority look-ahead.” In Energy Aware
Computing Systems Applications (ICEAC), 2015 International Conference on,
pp. 1–4, March 2015.

[BBH] Darrell Boggs, Aravindh Baktha, Jason Hawkins, Deborah T. Marr, J. Alan
Miller, Patrice Roussel, Bret Singhal, Ronak; Toll, and K.S. Venkatraman. “The
Microarchitecture of the Intel Pentium 4 Processor on 90nm Technology.” Intel
Technology Journal, 8(1).

[BYF09] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. “Analyz-
ing CUDA workloads using a detailed GPU simulator.” In Proceedings of IEEE
International Symposium on Performance Analysis of Systems and Software, IS-
PASS, pp. 163–174, 2009.

[CB95] Tien-Fu Chen and Jean-Loup Baer. “Effective hardware-based data prefetching
for high-performance processors.” Computers, IEEE Transactions on, 44:609–
623, (May 1995).

[CBM09a] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee, and
K. Skadron. “Rodinia: A benchmark suite for heterogeneous computing.” In
Workload Characterization, 2009. IISWC 2009. IEEE International Symposium
on, pp. 44–54, 2009.

[CBM09b] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee, and
K. Skadron. “Rodinia: A benchmark suite for heterogeneous computing.” In
Workload Characterization, 2009. IISWC 2009. IEEE International Symposium
on, pp. 44–54, (Oct. 2009.

[CLL10] Hsiang-Yun Cheng, Chung-Hsiang Lin, Jian Li, and Chia-Lin Yang. “Memory
Latency Reduction via Thread Throttling.” In Proceedings of the 2010 43rd

104

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’43,
pp. 53–64, Washington, DC, USA, 2010. IEEE Computer Society.

[CTY13] Jianmin Chen, Xi Tao, Zhen Yang, Jih-Kwon Peir, Xiaoyuan Li, and Shih-Lien
Lu. “Guided Region-Based GPU Scheduling: Utilizing Multi-thread Parallelism
to Hide Memory Latency.” In Parallel Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on, pp. 441–451, 2013.

[Dav06] Norman P. Jouppi David Tarjan, Shyamkumar Thoziyoor. “CACTI 4.0 Technical
Report.” In HP Laboratories Palo Alto, 2006.

[DMM10] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. “The Scalable
Heterogeneous Computing SHOC Benchmark Suite.” In Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
GPGPU ’10, pp. 63–74, New York, NY, USA, 2010. ACM.

[EML09] E. Ebrahimi, O. Mutlu, Chang Joo Lee, and Y.N. Patt. “Coordinated control of
multiple prefetchers in multi-core systems.” In Microarchitecture, 2009. MICRO-
42. 42nd Annual IEEE/ACM International Symposium on, pp. 316–326, (Dec.
2009).

[EMP09] E. Ebrahimi, O. Mutlu, and Y.N. Patt. “Techniques for bandwidth-efficient
prefetching of linked data structures in hybrid prefetching systems.” In High Per-
formance Computer Architecture, 2009. HPCA 2009. IEEE 15th International
Symposium on, pp. 7–17, (Feb. 2009).

[FJ94] K. I. Farkas and N. P. Jouppi. “Complexity/Performance Tradeoffs with Non-
blocking Loads.” In Proceedings of the 21st Annual International Symposium on
Computer Architecture, ISCA ’94, pp. 211–222, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[FPJ92] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. “Stride directed prefetching
in scalar processors.” In Proceedings of the 25th annual international symposium
on Microarchitecture, MICRO 25, pp. 102–110, (1992).

[GBK09] Zvika Guz, Evgeny Bolotin, Idit Keidar, Avinoam Kolodny, Avi Mendelson, and
Uri C. Weiser. “Many-Core vs. Many-Thread Machines: Stay Away From the
Valley.” IEEE Comput. Archit. Lett., 8(1):25–28, January 2009.

[GJT11] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J.
Dally, Erik Lindholm, and Kevin Skadron. “Energy-efficient mechanisms for
managing thread context in throughput processors.” In Proceedings of the 38th
annual international symposium on Computer architecture, ISCA ’11, pp. 235–
246, 2011.

105

[HFL08] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong
Wang. “Mars: A MapReduce Framework on Graphics Processors.” In Proceed-
ings of the 17th International Conference on Parallel Architectures and Compi-
lation Techniques, PACT ’08, pp. 260–269, 2008.

[HM94] L. Harrison and S. Mehrotra. “A Data Prefetch Mechanism for Accelerat-
ing General Computation.” Technical report, University of Illinois at Urbana-
Cahmpaing, (May 1994).

[ISK04] Sorin Iacobovici, Lawrence Spracklen, Sudarshan Kadambi, Yuan Chou, and San-
tosh G. Abraham. “Effective stream-based and execution-based data prefetch-
ing.” In Proceedings of the 18th annual international conference on Supercom-
puting, ICS ’04, pp. 1–11, New York, NY, USA, (2004).

[JG97] Doug Joseph and Dirk Grunwald. “Prefetching using Markov predictors.” In
Proceedings of the 24th annual international symposium on Computer architec-
ture, ISCA ’97, pp. 252–263, New York, NY, USA, 1997.

[JKC13] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R.
Das. “OWL: Cooperative Thread Array Aware Scheduling Techniques for Im-
proving GPGPU Performance.” In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pp. 395–406, 2013.

[JKM13] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu,
Ravishankar Iyer, and Chita R. Das. “Orchestrated Scheduling and Prefetching
for GPGPUs.” In Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA ’13, pp. 332–343, 2013.

[Jou90] N.P. Jouppi. “Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers.” In Computer Architecture,
1990. Proceedings., 17th Annual International Symposium on, pp. 364–373, (May
1990).

[KDK11] S.W. Keckler, W.J. Dally, B. Khailany, M. Garland, and D. Glasco. “GPUs and
the Future of Parallel Computing.” Micro, IEEE, 31(5):7–17, 2011.

[KJK12] Onur Kayiran, Adwait Jog, Mahmut T. Kandermir, and Chita R. Das. “Neither
More nor Less: Optimizing Thread-level Parallelism for GPGPUs.” Technical
report, 2012.

[Kro98] David Kroft. “Lockup-free Instruction Fetch/Prefetch Cache Organization.” In
25 Years of the International Symposia on Computer Architecture (Selected Pa-
pers), ISCA ’98, pp. 195–201, 1998.

106

[KW12] D. Kirk and Wen mei. W. Hwu. “Programming Massively Parallel Processors,
2nd edition.”, 2012.

[LK10] Nagesh N. Lakshminarayana and Hyesoon Kim. “Effect of Instruction Fetch
and Memory Scheduling on GPU Performance.” In Workshop on Language,
Compiler, and Architecture Support for GPGPU, pp. 128–138, New York, NY,
USA, 2010.

[LLK10] Jaekyu Lee, N.B. Lakshminarayana, Hyesoon Kim, and R. Vuduc. “Many-
Thread Aware Prefetching Mechanisms for GPGPU Applications.” In Microar-
chitecture (MICRO), 2010 43rd Annual IEEE/ACM International Symposium
on, pp. 213–224, (December 2010).

[LNO08] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. “NVIDIA Tesla: A Uni-
fied Graphics and Computing Architecture.” Micro, IEEE, 28(2):39–55, 2008.

[LSM14] Minseok Lee, Seokwoo Song, Joosik Moon, J. Kim, Woong Seo, Yeongon Cho,
and Soojung Ryu. “Improving GPGPU resource utilization through alternative
thread block scheduling.” In High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on, pp. 260–271, Feb 2014.

[Mun13] Aaftab Munshi. “The OpenCL Specification.”, 2013.

[NBC14] C. Nugteren, G. J. van den Braak, H. Corporaal, and H. Bal. “A detailed GPU
cache model based on reuse distance theory.” In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on, pp. 37–48,
Feb 2014.

[NDS04] Kyle J. Nesbit, Ashutosh S. Dhodapkar, and James E. Smith. “AC/DC: An
Adaptive Data Cache Prefetcher.” In Proceedings of the 13th International Con-
ference on Parallel Architectures and Compilation Techniques, PACT ’04, pp.
135–145, Washington, DC, USA, (2004).

[NS04] K.J. Nesbit and J.E. Smith. “Data Cache Prefetching Using a Global History
Buffer.” In Software, IEE Proceedings-, (February 2004).

[NSL11] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu, and Yale N. Patt. “Improving GPU Performance via Large Warps
and Two-level Warp Scheduling.” In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44, pp. 308–317, 2011.

[NVIa] NVIDIA. “CUDA SDK V2.3.”.

[NVIb] NVIDIA. “Geforce 8800 graphics processors.”
http://www.nvidia.com/page/geforce 8800.html.

107

[NVIc] NVIDIA. “Nvidia GeForce GTX 480 specifications.”
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
480/specifications.

[NVI09] NVIDIA. “Fermi: Nvidia’s next generation cuda compute architecture.”
http://www.nvidia.com/fermi, 2009.

[NVI11a] NVIDIA. “CUDA C/C++ SDK Code Samples v4.0.”, 2011.

[NVI11b] NVIDIA. “NVIDIA CUDA Programming Guide 4.0.”, 2011.

[PK94] S. Palacharla and R. E. Kessler. “Evaluating stream buffers as a secondary cache
replacement.” In Proceedings of the 21st annual international symposium on
Computer architecture, ISCA ’94, pp. 24–33, Los Alamitos, CA, USA, 1994.

[RDK00] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.
Owens. “Memory Access Scheduling.” In Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, ISCA ’00, pp. 128–138, 2000.

[ROA12] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. “Cache-Conscious
Wavefront Scheduling.” In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’12, pp. 72–83, 2012.

[ROA13] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. “Divergence-aware
Warp Scheduling.” In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-46, pp. 99–110, 2013.

[RRS08] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-
Zee Ueng, John A. Stratton, and Wen-mei W. Hwu. “Program optimization space
pruning for a multithreaded gpu.” In Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and optimization, CGO ’08, pp.
195–204, New York, NY, USA, (2008).

[SD88] C. Scheurich and M. Dubois. “The Design of a Lockup-free Cache for High-
performance Multiprocessors.” In Proceedings of the 1988 ACM/IEEE Confer-
ence on Supercomputing, Supercomputing ’88, pp. 352–359, Los Alamitos, CA,
USA, 1988. IEEE Computer Society Press.

[SF91] Gurindar S. Sohi and Manoj Franklin. “High-bandwidth Data Memory Sys-
tems for Superscalar Processors.” In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IV, pp. 53–62, New York, NY, USA, 1991. ACM.

[SKT05] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.
“POWER5 system microarchitecture.” IBM Journal of Research and Develop-
ment, 49:505–521, (July 2005).

108

[SMK07] S. Srinath, O. Mutlu, Hyesoon Kim, and Y.N. Patt. “Feedback Directed Prefetch-
ing: Improving the Performance and Bandwidth-Efficiency of Hardware Prefetch-
ers.” In High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on, pp. 63–74, (Feb. 2007).

[SQP08] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. “Feedback-driven
Threading: Power-efficient and High-performance Execution of Multi-threaded
Workloads on CMPs.” In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS XIII, pp. 277–286, New York, NY, USA, 2008. ACM.

[SRS12] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen
Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. “Parboil:
A Revised Benchmark Suite for Scientific and Commercial Throughput Com-
puting.” In Technical Report IMPACT-12-01, University of Illinois, at Urbana-
Champaign, 2012.

[TCT06] James Tuck, Luis Ceze, and Josep Torrellas. “Scalable Cache Miss Handling for
High Memory-Level Parallelism.” In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 39, pp. 409–422, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[WPS10] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. “De-
mystifying GPU microarchitecture through microbenchmarking.” In Perfor-
mance Analysis of Systems Software (ISPASS), 2010 IEEE International Sym-
posium on, pp. 235–246, 2010.

[YXK10] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. “A GPGPU compiler for
memory optimization and parallelism management.” In Proceedings of the 2010
ACM SIGPLAN conference on Programming language design and implementa-
tion, PLDI ’10, pp. 86–97, New York, NY, USA, (2010).

109

