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ABSTRACT OF THE DISSERTATION

Essays in asset pricing and forecasting

by

Ritong Qu

Doctor of Philosophy in Management

University of California San Diego, 2021

Professor Allan Timmermann, Chair

My thesis has two themes: The first theme is about studying investors’ expectations and

the relation to asset prices; while the second theme is about evaluating forecasting performance.

Both themes focus on what we can learn from a panel of data. The first chapter of my dissertation

studies rational investors’ expectation of consumption growth at the presence of structure breaks

and asset pricing implications. While the first chapter studies how rational individuals should do,

the second and third chapters focus on forecasters’ behavior in real world, by developing tools to

evaluate forecasters’ performance about multiple variables, across many forecasters and at single

time periods.

In Chapter 1, we use data on multiple consumption goods to identify infrequent, but

xiii



persistent breaks to consumption growth dynamics. Over a sixty-year sample, we find four

breaks, all of which are associated with major macroeconomic and financial market events such

as oil price shocks, the Great Moderation, the end of the tech stock market bubble, and the Covid

pandemic. The impact of the breaks on consumption growth is highly uncertain and heterogeneous

across consumption goods. We explore the asset pricing implications of our novel empirical

evidence in the context of a Lucas tree model in which investors use information on multiple

consumption goods to learn about model parameters. We find that break risk in consumption

growth, combined with investor learning, helps resolve a number of asset pricing puzzles such as

high risk premium and volatility of market returns, as well as cross-sectional anomalies such as

momentum.

Chapter 2 is joint work with Allan Timmermann and Yinchu Zhu. Forecasting skills

are often identified by comparing predictive accuracy across large numbers of forecasts. This

generates a multiple hypothesis testing problem that can trigger many false positives. We develop

a new bootstrap test approach for identifying superior predictive accuracy that applies to multi-

dimensional panel settings with arbitrarily many forecasts, outcome variables, horizons, and time

periods. Our approach controls the family-wise error rate while retaining the ability to identify

truly skilled forecasters. An empirical analysis of the IMF’s World Economic Outlook forecasts

across 185 countries, five variables and several forecast horizons shows how our approach can be

used to identify variables and countries for which the IMF’s forecasts improve significantly at

shorter horizons as well as cases where they fail to improve.

Chapter 3 is also joint work with Allan Timmermann and Yinchu Zhu. We develop new

methods for pairwise comparisons of predictive accuracy with cross-sectional data. Using a

common factor setup, we establish conditions on cross-sectional dependencies in forecast errors

which allow us to test the null of equal predictive accuracy on a single cross-section of forecasts.

We consider both unconditional tests of equal predictive accuracy as well as tests that condition on

the realization of common factors and show how to decompose forecast errors into exposures to

xiv



common factors and idiosyncratic components. An empirical application compares the predictive

accuracy of financial analysts’ short-term earnings forecasts across six brokerage firms.
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Chapter 1

Breaks in Consumption Growth and Asset

Prices

1



1.1 Introduction

Consumption growth dynamics is a key determinant of discount rates in the canonical asset

pricing model, and many studies have attempted to explain puzzles such as the high equity risk

premium and excess market volatility through the time series dynamics of aggregate consumption

growth. One strand of the literature explores shocks to consumption growth that are highly

persistent (Bansal and Yaron, 2004 and Hansen, Heaton and Li, 2008). These types of shocks

make it difficult for agents to smooth their consumption intertemporally and lead to high risk

premia and volatility of asset returns. A second strand of the literature explores large but rare

disasters, which have a sudden and sharp but short-lived effect on consumption growth (Barro,

2006 and Wachter, 2013).

This paper investigates a new type of consumption growth dynamics which takes the

form of infrequent, but moderately-sized and persistent regime shifts in consumption growth.

In common with the long-run risk model, our consumption growth process is quite persistent.

However, we recognize that economic growth is not steady or continuous and identify infrequent

shifts in consumption growth dynamics, which is distinctly different from the long-run risk model.

These shocks are also much smaller than the disaster breaks identified by authors such as Barro

and Ursúa (2012) and can affect consumption growth both positively and negatively.

Our analysis uses a multivariate specification that includes major types of consumption

goods. The multivariate dimension has two advantages. First, it allows for a richer set of asset

pricing implications, as shocks can stem from a subset of major type of goods, i.e., the recent

Covid-19 pandemic hit transportation services and recreation services especially hard. Second,

by using a panel of consumption growth series, our approach gains power in identifying regime

changes that are common across different types of goods. By construction, breaks that affect

multiple consumption series are more likely to be identified than breaks that only affect one or

just a few series. Such common breaks are more likely to have strong asset pricing implications

2



because they cannot easily be hedged against. The statistical power gained from pervasive breaks

is especially important when breaks occur infrequently and the historical data is relatively short.

We rely on recent development in identifying common breaks using a Bayesian framework

as in Smith and Timmermann (2020) and Smith (2017). We model conditional consumption

growth of each series as an MA process whose conditional mean and volatility are subject to

breaks. Each break can affect all or a subset of consumption series. We identify 4 breaks in the

sample period from 1959Q2 to 2020Q3. Coinciding with major economic events: our model

captures the oil crisis, the monetary experiment in the early eighties, the burst of tech bubble and

the recent Covid-19 pandemic. The average regime length is around 15 years. The annualized

expected aggregate consumption growth is highest in the regime between 1959 and 1972, reaching

2.25%, and lowest in the regime between 2000 and 2019, reaching 1.3%. For the most recent

regime starting in 2020Q1, expected aggregate consumption growth further decreases to -1.5%

though the estimation error is large given limited data. In contrast to the sharp result based on 11

types of goods, the model only identify 2 breaks when using a single time series of aggregate

consumption and the locations of breaks are uncertain.

We find that breaks affect different goods unevenly. On average, each break affects 7

out of the 11 goods. The breaks in the early 1970s and 1980s affect the nondurable goods more

strongly, led by the oil and energy goods. The break in the early 2000s affect the services more

strongly, especially for financial services. While the recent Covid-19 break is the most pervasive:

with the exception of housing and utility services, and financial services, all the major types of

goods are affected. Due to lockdowns, the Covid-19 break hits transportation, recreation, and

food services and accomodation especially hard: personal consumption in the three catagories is

only around 80% of their levels before the pandemic.

Having established that the consumption growth process is subject to infrequent but

pervasive breaks, we next develop an asset pricing model with an infinite-dimensional set of

non-recurring consumption growth states using a Lucas-tree model with breaks in consumption
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dynamics. We assume investors observe the timing of the breaks, but need to learn the conditional

mean in the new regime as new consumption data arrives. The ensuing parameter uncertainty

combined with investors’ dynamic learning leads to persistent changes in investors’ beliefs about

long-run consumption growth. Under recursive preferences, investors are averse to long-run risks

and pay a premium for the risk embedded in equity returns. We show that our model can explains

asset pricing puzzles like the high equity risk premium and low risk free rate discovered by Mehra

and Prescott (1985), as well as the high equity market volatility found by Shiller (1981) and

LeRoy and Porter (1981).

Parameter uncertainty is highest following a break. As a result, investors adjust their

belief more actively by putting a higher weight on coming consumption signals, which leads to

higher price of consumption risk. Under reasonable assumptions about investors’ risk aversion

and EIS, breaks and ensuing changes in investors’ beliefs of parameters explain more than 80%

of the variance in the pricing kernel. Consistent with data, the price-dividend ratio is procyclical,

and decreases with the degree of parameter uncertainty, whereas a higher level of parameter

uncertainty increases both the risk premium and volatility. Parameter uncertainty plays a key

role in driving price-dividend ratios. The model can also explain predictable excess returns and

unpredictable consumption growth by price-dividend ratios, as found in Campbell and Shiller

(1988) and Beeler and Campbell (2012).

In the cross section, types of goods affected by breaks are more informative about long

run aggregate consumption growth and attract more investor attention. The resulting pricing

kernel is tilted away from aggregate consumption growth and overweights types of goods whose

dynamics are more fragile to breaks. To adjust for the information heterogeneity across goods,

we extend the CCAPM with an additional fragility factor defined by consumption growth in types

of goods with higher parameter uncertainty relative to types of goods with lower uncertainty.

Using the extended CCAPM model with the fragility factor, we explore sources of risk underlying

widely used risk factors such as size, value, and momentum, as discovered in Fama and French
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(1992) and Jegadeesh and Titman (1993). Empirical tests with Fama-French portfolios and

momentum portfolios show aggregate consumption growth accounts for value premium, while

relative consumption growth accounts for momentum premium.

This paper is related to a large literature that use various features in consumption dynamics

to explain asset pricing puzzles. For example, Bansal and Yaron (2004) model expected growth of

aggregate consumption as driven by an AR(1) process with small, frequent, and persistent shocks.

Wachter (2013) models consumption growth as subject to rare disasters: large, infrequent shocks

with short term effects. We estimate a model that nests long-run risk and breaks. The model

estimates show that the persistent component is subject to infrequent and discontinuous shifts,

while the long-run risk component is less persistent than perceived in Bansal and Yaron (2004).

The break model complements the rare disaster model: we demonstrate that rare macroeconomic

events can be break points when the long-term expected consumption growth shifts.

Both rare disasters or long run risk (small but persistent changes) are difficult to identify

when the sample length is small1: Hansen, Heaton and Li (2008) and Beeler and Campbell (2012)

show the persistence of the long-run component is not high enough to explain the risk premium

puzzle under reasonable risk aversion, while Mehra and Prescott (1988) and Ju and Miao (2012)

that show the magnitude of rare disasters estimated from century-long US data is not large enough

to fit the data without additional assumptions of ambiguity aversion. To improve the fit of models,

Bollerslev and Todorov (2011), Wachter (2013), Bansal et al. (2014), Campbell et al. (2018),

and Gallant, Jahan-Parvar and Liu (2019) use consumption data reinforced by equity data and

other financial variables to measure disaster probabilities and the persistence of the long-run

component. The methodology depends on assumptions about investors’ preference and may

generate endogeneity issues given other risk factors are also embedded in asset prices. Exploiting

the panel structure for more statistical power, we find strong evidence for persistent shocks in

1Barro (2006) and Barro and Ursúa (2012) use international data to measure frequency and magnitude of rare
disasters. Recently, Schorfheide, Song and Yaron (2018) find long-run risk by modeling measure errors as an MA
process in monthly aggregate consumption data.
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consumption growth by solely examining consumption data.

Large and infrequent breaks of persistent effects naturally imply that investors are

uncertain about regimes’ parameters. Our paper is related to a large literature of model uncertainty

and investor learning. Recently Collin-Dufresne, Johannes and Lochstoer (2016) and Johannes,

Lochstoer and Mou (2016) show that subjective parameter uncertainty implies high price of

risk under recursive preference. We emphasize that our model uncertainty is not Knightian, but

objective, generated by recurring breaks in model parameters.

This paper is also related to solving asset pricing puzzles using multiple goods. Accounting

for other types of goods in addition to the combination of nondurables and services can increase

the volatility of the pricing kernel. For example, Ait-Sahalia, Parker and Yogo (2004) examine

luxury goods; Yogo (2006) examines durable goods; Piazzesi, Schneider and Tuzel (2007)

examine housing. Recently, Belo and Donangelo (2020) introduce unobserved consumption

components. Instead of introducing new consumption components, we disaggregate the aggregate

consumption of nondurable goods and services into 11 major types of goods. We explore the

channel that various types of goods serves as economic signals for the persistent component in

consumption growths.

The paper proceeds as the following. Section 1.2 summarizes consumption data of

major types of goods. Section 1.3 examine breaks in consumption growth dynamics. Building

on the empirical evidence, Section 1.4 constructs a Lucas tree model to derive and test asset

pricing implications on market returns. Section 1.5 extends the Lucas tree model to account for

multiple goods and test asset pricing implication on cross-sectional returns of characteristic-sorted

portfolios. Section 1.6 concludes.
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1.2 Consumption growth dynamics: Empirical evidence

In this section, we examine persistent shocks to consumption growth in major types of

product by summarizing statistics and figures.

1.2.1 Data

The consumption data of various nonduarble goods and services are from the US national

accounts. From NIPA Table 1.2.3.3 “Real Personal Consumption Expenditures by Major Type of

Product, Quantity Indexes,” we collect real personal consumption expenditures of 11 types of

nondurable goods and services including:

1. Food and beverages purchased for off-premises consumption

2. Clothing and footwear

3. Gasoline and other energy goods

4. Other nondurable goods

5. Housing and utilities

6. Health care

7. Transportation services

8. Recreation services

9. Food services and accommodations

10. Financial services and insurance

11. Other services.
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Quarterly data for major types of goods is from 1959Q2 to 2020Q3. Annual data starts earlier in

1929 and ends in 2019. Aggregate consumption is the sum over the 11 types of nondurable goods

and services. Figure 1.1 presents shares of consumption expenditures overtime. Food, housing

and utility services, and health care services have the highest expenditure shares. Their aggregate

accounts for more than half of consumption expenditures. Over the sample period, the share of

services increased relative to nondurables: the ratio of services over nondurables was one in 1960,

while the ratio is three in 2020.

Summary statistics for the 11 series are provided in Table 1.1. The top panel presents

statistics based on quarterly data. The mean and standard deviation reported at an annual rate.

The mean of log aggregate consumption growth is 1.81%. Clothing, health care, recreation, and

financial service have a higher mean growth rate, ranging from 2.43% to 2.64% while energy,

food and, food services and accomodation have a lower growth rate, ranging from -0.05% to

1.14%. The large skewness and kurtosis are due to the severe effect of Covid-19 when aggregate

consumption drops more than 10% and transportation, recreation, and food and accomodation

services drop more than 40% in 2020Q2. To exclude the effect of Covid-19, the middle panel

of Table 1.1 presents the same set of statistics using data from 1959Q2 to 2019Q4. The 2020

data greatly affect higher order moments, while the mean of consumption growth changes little.

The volatility of aggregate consumption is 0.87, less than half of the one computed based on

1959Q2 to 2020Q3. The autocorrelations are positive based on data before 2020, while they are

negative when including the Covid-19 period. The skewness and kurtosis are also much smaller

after excluding the Covid-19 data. The bottom panel of Table 1.1 summarizes statistics that are

estimated from annual data from 1929 to 2019. It is worth noting that volatility estimated from

the longer annual sample is generally higher due to the war.
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1.2.2 Consumption growth dynamics

To examine the long-run component in expected consumption growth, we present the

20-year moving average of consumption growth of selected series in Figure 1.2. To expand our

sample period, we use annual data from BEA that starts in 1929. The numbers are presented

at an annual rate, and shaded areas represent 95% confidence interval of the estimates. Panel

(a) presents the moving average of aggregate consumption growth. The twenty-year moving

average of aggregate consumption growth is highest in 1954, reaching 2.8%. Starting in 1980,

it gradurally decreases to 1.2% in 2020. Similar long-term swings are also present for major

types of goods as presented in panels (b)-(f) in Figure 1.2. The growth rate of gasoline and

other energy goods gradually decreased to -1% in the twenty-year window that ends in 2019.

Long-term growth rate of housing and utilities services were increasing from 1950 to 1960, and

then gradually decreased to 0.8%. Long-term growth rate of health care peaks at 4.5% in 1975

and decreased to 1.5% in 2000. Long-term growth rate of financial services and insurance peaks

at 2000 at 4.5% and then decreased to 0.5%.

Figure 1.3 examines the long-run component in volatility of consumption growth using

a sample standard deviation within 20-year moving windows. The numbers are presented at an

annual rate. For the aggregate consumption, as well as major types of goods, volatility is high

in the interwar period and decreases sharply after the war. Volatility started to stablize in the

twenty-year window that ends after 1960. The aggregate volatility is highest in the beginning

of the sample, reaching 4%. After 1965, it is lower than 1.5%. The post 1965 peak is in 1980,

reaching 1.5%. The volatility of consumption growth in major types of goods follow similar

patterns.

In summary, our 20-year rolling window analysis of consumption growth suggests

persistent changes in conditional means and volatility of aggregate consumption growth, as

well as its major components.
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1.3 Modeling breaks in consumption growth

Dynamics of consumption growth is subject to shocks of a spectrum of frequencies,

among which investors are especially averse to low-frequency shocks with persistent effects

and attach high price to the risk. According to Gordon (2017), “It has long been recognized

that economic growth is not steady or continuous.” To investigate the nature of discontinuous

and persistent changes in consumption dynamics, we build a model for consumption growth of

multiple goods featuring infrequent changes in conditional mean and volatility. Structural break

models are especially suitable for capturing infrequent breaks in model parameters. By setting

the priors of regime durations to long periods, we allow the model to focus on those infrequent

shocks with persistent effects.

Consider a panel of growth rates for i = 1, ...,N consumption goods observed over t =

1, ...,T time periods. Let ∆cit denote log consumption growth of good i. Log consumption growth

are driven by

∆cit = git + γi0 ft + γi1 ft−1 +σitεit , i = 1, ...,N. (1.1)

The common component ft are i.i.d. N
(

0,σ2
f t

)
and idiosyncratic innovations εit , i = 1, ...,N, are

i.i.d. standard normal.

We model the mean and volatility of consumption growth,
(
git ,σit ,σ f t

)
, as a regime

switching process of infinite number of states states. A total of K breaks happen at times

(τ1, ...,τK). When a break happens, the data generating processes of a subset of N goods and their

common component shift to a new regime. Let the indicator function 1ik be equal to 1 if the kth

break hits goods i, and 0 otherwise. The parameters of the dynamics of ∆cit and the common

component are governed by:

(git ,σit) =


(gik,σik) if t = τk and 1ik = 1

(git−1,σit−1) if 1ik = 0
(1.2)
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σ f t =


σ f k if t = τk and 1 f k = 1

σ f t−1 if 1 f k = 0
(1.3)

Regime durations

Regime durations characterize the persistence of breaks, which is especially important

when investors have recursive utility as in many asset pricing models (Hansen, Heaton and

Li, 2008, Bansal and Yaron, 2004, Wachter, 2013, Collin-Dufresne, Johannes and Lochstoer,

2016). Because investors prefer early resolution of uncertainty, persistent shocks bear higher risk

premium.

Let lk denotes the duration of kth regime, τk− τk−1. We follow Koop and Potter (2007)

and Smith and Timmermann (2020) by assuming that the length of regime k follow a Poisson

distribution of parameter λk

p(lk|λk) =
λ

lk
k

lk!
exp(−λk) , k = 1, ...,K, (1.4)

where λk is drawn from a conjugate Gamma distribution

p(λk) =
dc

Γ(c)
λ

c−1
k exp(−λkd) , , k = 1, ...,K. (1.5)

As Koop and Potter (2007) point out, when modeling regimes of long durations, the Poisson-

Gamma distribution is more preferable to the Geometric distribution used in Chib (1998), which

implies a declining probability on regime duration so that higher weight is placed on shorter

durations.
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Pervasiveness of breaks

Breaks of different nature affect different sets of goods. Oil crises hit gasoline and

transportation services especially hard, and the recent lockdowns due to the Covid-19 pandemic

affect transportation, recreation, and food and accommodation services more than other goods.

We allow for each break to hit a subset of types of goods randomly drawn from N goods.

Once an uncommon break k happens at t, the joint distribution of
(
11k, ...,1Nk,1 f k

)
are

truncated i.i.d. Bernoulli distribution with parameter π where the point of all zeros are excluded

from the support. We assume π is generated from a uniform distribution on [0,1].

Expected growth rate and volatility

We assume regression coefficients and volatility of a new regime are drawn from a Normal-

Gamma distribution following Geweke and Jiang (2011) and Smith and Timmermann (2020)

to preserve conjugacy and improve computation speed. Let Ki( f ) denotes the set of indices of

breaks that hit series i (F) and |Ki( f )| denote the number of breaks in set Ki( f ) for i = 1, ...,N.

The idiosyncratic variances of N consumption series and the common component have an inverse

gamma distribution

p
(
σ

2
ik
)
=

vu

Γ(u)

(
σ

2
ik
)−(u+1)

exp
(
− v

σ2
ik

)
, k ∈ Ki, i = 1, ...,N or f . (1.6)

The intercept and regression coefficients have a Gaussian distribution conditional on σ2
ik:

p
(
gik|σ2

ik
)
=
(
2πσ

2
ik
)−1/2 |Vβ|−1/2 exp

(
−
(gik− ḡi)

′V−1
β

(gik− ḡi)

2σ2
ik

)
, k ∈ Ki, i = 1, ...,N,

(1.7)

Vβ = σ
2
β
,

where σ2
β
·σ2

ik chanracterizes the variance of gik conditional on σ2
ik.
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1.3.1 Model estimation

We estimate the model under Bayesian framework. The Appendix B presents details of

priors of parameters and how to implement the MCMC algorithm.

Location of Breaks

Using quarterly data from 1959Q2 to 2020Q3, the model identified 4 breaks, which

coincide with major economic events. Panel (a) of Figure 1.4 shows the posterior locations of

breaks. The first break is around 1972 coinciding with the first oil crisis. The second break is

around 1981 when the Fed tightened monetary policy and shifted its goal to maintain low inflation.

The third break is around 2000 coinciding with the dotcom crisis. The most recent break is in

2020 due to the Covid-19 pandemic.

To illustrate the statistical power from using multiple goods, we apply the same approach

to aggregate consumption only. Panel (b) of Figure 1.4 shows the posterior of locations of breaks.

In contrast to posteriors based on multiple goods (Panel (a)), we only identify 2 breaks. The

estimation errors in locations of breaks are much larger when using aggregate consumption alone.

Except for year 2020, posterior probability that a break happens in each year is below 0.5.

We examine the pervasiveness of breaks in Figure 1.5 . Panel (a) of Figure 1.5 presents

the expected number of goods (including common factor) affected by each break. Each break

affects 6-10 series. Panel (b) of Figure 1.5 presents a heat map of the posterior probability of

break across years and types of goods. Certain types of goods are more prone to breaks than

others: energy, health care, transportation, and food and accommodation services are affected by

all of the 4 breaks, while financial services is only affected by the break in 2000. Notably, the

break in 2000 only affects services. The recent Covid-19 break is the most pervasive: with the

exception of housing and utilities and financial services, all major types of goods are affected.
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Regime parameters

We define that a series is hit by a break if the posterior probability exceeds 0.5. Conditional

on the location of breaks, Table 1.2 presents estimates of git of each regime at an annual rate. If a

series is not affected by a break, the corresponding values are left blank. The top panel presents

the estimates, and corresponding standard errors are in parenthesis. The bottom panel presents

summary statistics including the mean absolute changes in parameters and the three most-affected

types of goods by each break.

For the first three breaks, the mean absolute changes in regimes’ expected growth rates

are around 1 to 2 percent. The 2020 break is much larger in magnitude, with mean absolute

changes of 9.89%. Breaks have heterogeneous effects on the expected growth rate of different

goods. Energy goods and transportation services are affected most by the break in early 1970s

and early 1980s: the expected growth of energy goods is 2.75% before 1972Q4, drops to -2.06%

in the regime from 1972Q4 to 1981Q1, and then bounces back to 0.36%. Expected growth in

consumption of financial services is affected most by the break in 2000. In the regime from

1959Q2 to 1999Q4, expected consumption growth in financial services is at 4.21%, while, post

2000Q1, the expected growth rate is -0.65%. The Covid-19 break sees unprecedented shocks

to transportation services, recreation services, and food services and accommodation due to

lockdowns and fear of contracting the disease. Expected consumption growth rate of the three

types of goods is -28.8%, -25.97%, and -8.36%, respectively. The estimates are based on three

quarters of data in 2020 and the resulting estimation errors are large. But the sheer magnitude of

the shock is striking and demonstrates that changes in parameters can be large and abrupt.

Table 1.3 presents estimates of σik and σ f k for each regime. The volatility estimates are

at an annual rate by multiplying quarterly estimates by a factor of 2. For the first three breaks,

the mean absolute changes in regimes’ volatility are in the range of 0.5 to 1.5 percent. The 2020

break is much larger in magnitude with a mean absolute change of 15.53 percent. As expected,

consumption growth in energy goods is affected the most in the breaks of 1972 and 1981. The
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volatilty of energy consumption growth increased dramatically to 7.09% in the regime from 1972

to 1981 from 3.7 in the previous regime and then decreased to 3.72% after the break in 1981. The

break in 1981 is a negative shock to volatility for all series affected. The result is consistent with

the effect of Great Moderation as documented in Stock and Watson (2002) and the finding of

Lettau, Ludvigson and Wachter (2008) that consumption growth volatility is especially low in the

1990s, leading to higher price dividend ratios. The break in 2020 is an unprecedented positive

shock to volatility for all series affected. Due to lockdowns, the types of goods affected most are

transportation and recreation services whose volatility increases to 48.8 and 39.64, respectively.

The caveat is the volatility estimates of the last regime are based on only 3 quarters of data in

2020, and we don’t know how long the regime will last.

We proceed to analyze the combined effect of major components’ breaks on aggregate

consumption. We calculate expected growth in aggregate consumption as

gt =
N

∑
i=1

witgit , (1.8)

where wit is the expenditure share of goods i. The volatility of aggregate consumption growth is

calculated as the combined effect of idiosyncratic components and the common component

σt =

√√√√w2
itσ

2
it +

(
N

∑
i=1

witγi0

)2

σ2
f t +

(
N

∑
i=1

witγi1

)2

σ2
f t−1. (1.9)

Figure 1.5 plot time series of gt and σt before 2020. The estimates are at annual rates by

multiplying the quarterly estimates by a factor of 4 for mean and 2 for volatility. The parameters

of the regime starting in 2020Q1 is not shown given the values are extreme ralative to paths of

historical estimates. gt is highest in the early 1970s, reaching around 2.2%, and decreased to

around 1.3% in the regime between 2000 and 2019. gt is lowest in the latest regime starting from

2020Q1, reaching -1.5%. The volatility of aggregate consumption growth is highest in the 1970s,
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reaching 1.05%, and then decreased following breaks in 1980 and 2000. In the regime between

2000 and 2019, the volatility of aggregate consumption growth is 0.75%. Covid-19 is a huge

positive volatility shock to aggregate consumption, σt is highest in the regime that starts from

2020Q1, reaching 4%.

In summary, the model identifies infrequent, pervasive and persistent breaks in

consumption growth of major types of goods. The impact of the breaks on consumption growth

is highly uncertain and heterogeneous across consumption goods, leading to unevenly distributed

parameter uncertainty across different goods.

1.3.2 Comparison with long-run risk model in Bansal and Yaron (2004)

and rare disaster model in Barro (2006)

Comparison with long-run risk

Similar to our break model, the long-run risk model proposed in Bansal and Yaron (2004)

also characterizes a persistent component in expected consumption growth. Bansal and Yaron

(2004) model aggregate consumption growth as

∆ct+1 = µt + xt +σtηt+1, (1.10)

xt+1 = ρxt +ϕeσtet+1, (1.11)

σ
2
t+1 = σ̄

2 +ν
(
σ

2
t − σ̄

2)+σwwt+1, (1.12)

and calibrate monthly persistence ρ at 0.979, implying a half-life of around 3 years. Because the

predictable component xt is highly persistent and involves high observation error σt , it is difficult

to measure ρ accurately. Using quarterly data, Schorfheide, Song and Yaron (2018) estimate

that shocks to xt have a half-life of around 5 months. Hansen, Heaton and Li (2008) show the

persistence of long-run component is not high enough to explain the risk premium puzzle under
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reasonable risk aversion. Beeler and Campbell (2012) show that the variance ratios of long-run

consumption growth over short-run consumption growth is lower than the implication of Bansal

and Yaron (2004).

To compare long-run risk model with the break model, we revise the equation (1.1) to

introduce a the long-run risk, xt , into the break model:

∆cit = git + γi0 ft + γi1xt−1 +σitεit , i = 1, ...,N. (1.13)

ft is the short-run common component, and xt is the long-run component driven by

xt = ρxt−1 + εx,t ,

where εx,t is i.i.d. standard normal. The regime parameters
(
git ,σit ,σ f t

)
follow the same dynamic

as in equations (1.2) and (1.3). The estimated break locations of model (1.13) is the same to the

estimates of (1.1). With a uniform prior of ρ, the posterior mean of ρ is 0.81 at a quarterly rate,

with 95% confidence interval of (0.71,0.90). The estimate implies a half-life of around 3 quarters,

with 95% confidence interval of (1.9,6.6) quarters. Hence, the persistent component in expected

consumption growth features infrequent and discontinuous breaks, rather than continuous long-run

risk.

Comparison with rare disaster model

The rare disaster model characterizes sudden and large drops in consumption. The theory

was first proposed by Rietz (1988). Barro (2006) and Barro and Ursúa (2008) use an NBER-style

peak-to-trough measurement of the sizes of macroeconomic contractions: “Starting from the

annual time series, proportionate decreases in C and GDP were computed peak to trough over

one or more years, and declines by 10% or greater were considered.” Based on the definition, US

experienced one rare disaster after 1929: a trough in 1933 with consumption declining 21%. As
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shown by a strand of literature (Mehra and Prescott, 1988; Cecchetti, Lam and Mark, 2000; Ju

and Miao, 2012), the magnitude and probability of US disasters is not large enough to account

for asset-pricing puzzles.

The break model complements the rare disaster model by incoporating persistent effects of

macroeconomic events. Gordon (2017) states “Reseach conducted half a century ago concluded

that American growth was steady but relatively slow until 1920, when it began to take off.

Scholars struggled for decades to identify the factors that caused the productivity growth to

decline significantly after 1970.” The year 1973 is generally accepted as the starting date of

a pronounced slowdown in productivity growth2. Using the Great Depression and the 1973

Oil Crisis, we separate the sample period into three parts: 1890-1929, 1934-1972, and 1980-

20193. The average consumption growth during the three periods are 2.04%, 2.66% and 1.48%

respectively. Such large and persistent shifts in expected consumption growth have significant

implications on asset prices, as will be shown in the next few sections.

1.4 Implications for market returnsn

The following two sections explore the asset pricing implications of infrequent, persistent

shocks to consumption growth in a setting of investors with Epstein-Zin preferences and parameter

uncertainty. We consider both implications on aggregate (market) prices and cross-sectional

asset returns. For computation reasons, we simplify our model to a single good when analyzing

aggregate returns and use a multiple goods model when explaining cross-sectional risk premium.

2See, e.g., Jorgenson, Ho and Samuels (2014)
3The annual consumption data from 1989 to 1929 is from Gordon (2007)
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1.4.1 Preference, information and asset prices

Investors’ utility is governed by Epstein-Zin preferences

Vt =
{
(1−β)C1−ρ

t +βRt (Vt+1)
1−ρ
} 1

1−ρ

, (1.14)

where the function Rt function characterize investors’ risk aversion

Rt (Vt+1) = Et

{
V 1−γ

t+1

} 1
1−γ

. (1.15)

Let πt denote the price level of consumption bundle Ct , the pricing kernel satisfies

Mt+1 = β

(
Ct+1

Ct

)−ρ( Vt+1

Rt (Vt+1)

)ρ−γ

. (1.16)

For computation reasons, we ignore short run serial correlations of aggregate consumption

growth and focus on the break component, which is economically more significant when investors

have a recursive preference. The log consumption consumption growth, denoted as ∆ct =

logCt− logCt−1, is governed by

∆ct = gk +σkεt , if τk ≤ t < τk+1. (1.17)

We model log dividend growth of aggregate market as leveraged aggregate consumption growth

plus idiosyncratic component

∆ logDt = ḡd +L(∆ct− ḡ)+σdkεdt , if τk ≤ t < τk+1. (1.18)

The error terms εt and εdt are i.i.d. standard normal.

At each period, a break happens with probability λ. Parameters, (gk,σk,σdk), are randomly
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generated when regimes shift. (gk− ḡ)/σk is independently drawn from a truncated normal

distribution N (0,Σ0) with support
[
G, Ḡ

]
. The truncation is introduced to ensure price-dividend

ratio converge. For computation reasons, we simplify the volatility regime to 2 states: the scaled

conditional volatility σk/σ̄c and σdk/σ̄d in equations (1.17) and (1.18) are generated from a

discrete distribution of two outcome
{

σLow,σHigh
}

with probability πLow and 1−πLow.

We assume investors observe historical consumption growth, the timing of breaks,

and volatility. Without the assumption of observing the timing of breaks, investors’

posterior distribution has infinite dimensions, which makes calculation of price-dividend ratios

computationally infeasible. Investors learn gKt by Bayes rule from the data. Investors’ information

set is defined as zt = {cτ,τk,σk,σdk, |τ≤ t,τk ≤ t}. The posterior of gk follows a truncated

normal with N
(
µt ,Σtσ

2
k

)
when τk ≤ t < τk+1. The dynamics of parameter uncertainty Σt is driven

by

1
Σt

=


1

Σ0
if t ∈ {τ1, ...,τK} ,

1
Σt−1

+1 otherwise.
(1.19)

The µt is driven by

µt =


ḡ if t ∈ {τ1, ...,τK} ,

µt−1 +Σt (∆ct−µt−1) otherwise.

Let vt denote the log value-consumption ratio vt ≡ ln(Vt/Ct). From the definition of

Epstein-Zin preference (1.14) and (1.15), we have

vt =
1

1−ρ
ln{(1−β)+βexp [(1−ρ)Qt (vt+1 +∆ct+1)]} , (1.20)

where Q(xt+1)≡ ln(Rt (exp(xt+1))). vt is a function of v(µt ,Σt ,σKt). The pricing kernel can be

20



expressed as

Mt+1 =
βexp [−γ∆ct+1 +(ρ− γ)vt+1]

exp [(ρ− γ)Qt (∆ct+1 + vt+1)]
. (1.21)

Market portfolio price Pt can be expressed as

Pt = Et (Mt+1 (Dt+1 +Pt+1)) . (1.22)

Let ϕt denote price dividend ratio Pt
Dt

. ϕt follows

ϕt = Et (Mt+1 (1+ϕt+1)exp(∆ lnDt+1)) . (1.23)

We are able to solve the ϕ(µt ,Σt ,σKt) with numerical methods. Appendix A presents the

details of numerical methods.

1.4.2 Model Calibration

We calibrate the model parameters and study its performance in reproducing moments of

market returns as observed in the data.

The model is solved with time unit of one quarter. To match the mean and volatility of

the annual log consumption growth from 1929 to 2019 (1.8% and 2.2% respectively), we set ḡ

to 0.45% and σ̄c to 1. The empirical results in Section 1.3 shows that parameter σ2
β

in equation

(1.7) is around 0.1. Hence we set Σ0 equal to 0.1. The probability of regime shifts, λ, is set

to 1.67% to match the average duration of regimes which is around 15 years. Based on the

time series of volatility of aggregate consumption growth presented in Figure 1.5, we find two

high-volatility regimes covering 1959-1981, which constitutes a third of the sample. Hence, we

set πLow = 2/3 with σH = 1.13 while σL = 0.91 such that the volatility of high volatility regime

is 25% higher than during the low-volatility regime, while the unconditional volatility is still σ̄c.

Following Bansal and Yaron (2004), we set the leverage parameter to L = 3. The unconditional
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quarterly volatility of idiosyncratic component in dividend growth is set to 4.5 percent to match

the unconditional volatility in dividend growth.

The preference parameters are set consistent with recent work in explaining market risk

premiums (Collin-Dufresne, Johannes and Lochstoer 2016 and Bansal and Yaron, 2004). We

use EIS equals to 2 and set the risk aversion parameter γ to be 6 in our benchmark calibrations.

As in Bansal and Yaron (2004), we set β to 0.994. Table 1.4 presents list of parameters for the

benchmark break model.

1.4.3 Unconditional moments

We test our model by evaluating model-implied moments of asset returns. Table 1.5

analyzes the relation between the parameters governing consumption dynamics and key asset

price moments by perturbing the frequency and magnitude of breaks around the ones used in the

benchmark break model. The first row presents average log excess market returns, market return

volatility, average real risk-free rates, and the Sharpe ratio estimated from the data. The second

row shows asset price moments implied by our benchmark break model. Our model fits the data

well, with model-implied risk premium of 5.41% and model-implied market return volatility of

17.82%. The model-implied price of risk is 0.51 higher than the Sharpe ratio of market portfolio,

0.30.

The third panel in Table 1.5 analyzes the effect of varying magnitudes of breaks while

holding λ constant at 0.017 (average regime length of 15 years), as suggested by the empirical

analysis. Larger break magnitude in expected consumption growth leads to a higher risk premium,

price of risk, and volatility in market returns and lower level of risk free rates.

The bottom panel in Table 1.5 holds
√

Σ0 constant to 0.3 and varies the magnitude of

λ from 0.05 to 0.012, which corresponds to the expected length of regimes of 20 years and 5

years. We find that the risk premium and the price of risk increases with the persistence of shocks,

consistent with investors’ aversion to long-run risk.
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Table 1.6 presents the effect of preference parameters γ and ρ on long-term moments

while holding parameters of consumption dynamics to constant. The top panel holds EIS to 2 and

varies risk aversion from 4 to 8. Rising risk aversion increases price of risk and risk premium but

decreases volatility of returns. The bottom panel repeats the similar exercise with EIS fixed to 1.5,

which leads to higher risk free rate and lower risk premium. Higher EIS reduces risk premium

by lower risk exposure of market returns: for a large value of the EIS, higher growth prospects

decrease price-dividend ratios through a higher discount rate.

To analyze the source of price of risk, we decompose the log pricing kernel Mt in

(1.21) into the idiosyncratic component of consumption growth, sudden changes to belief when

observing new breaks, gradual changes in investors’ beliefs due to learning:

∆ logMt −Et−1 (∆ logMt) =−γ(∆ct −Et−1 (∆ct))︸ ︷︷ ︸
consumption growth

+(ρ− γ) [v̄−Et−1 (vt)]1(t ∈ {τ1, ...,τK})︸ ︷︷ ︸
sudden structural break

+(ρ− γ) [∆vt −Et−1 (∆vt)]1(t /∈ {τ1, ...,τK})︸ ︷︷ ︸
gradual learning

. (1.24)

Variance of each component can be estimated by simulation. The first term is same to the log

pricing kernel under power utility without breaks and the resulting model uncertainty. Under

parameters of the benchmark break model, the variance of first term is only 11% of the variance

of log pricing kernel. The second term accounts for 2% of total variance in pricing kernel. The

number seems small because breaks are infrequent events and investors can’t observe the each

regime’s conditional mean of consumption growth. Breaks generate most of the variance in

pricing kernel through subsequent learning: 87% of the variance of pricing kernel comes from

the changes in investors’ beliefs due to learning and its covariance with the consumption growth.

1.4.4 Predictability of excess returns and consumption growth

Our consumption model implies that the price-dividend ratio is driven by investors’ beliefs

about future consumption growth. It is natural to test the model by evaluating the ability of
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price-dividend ratio in predicting excess returns and consumption growth.

As documented in Campbell and Shiller (1988), log dividend price ratios predict multi-

horizon returns. Let rex
t+1:t+H denotes rex

t+1:t+H = ∑
H
h=1 rex

t+h. We estimate the predictive regression

rex
t+1:t+H = αH +βH pdt + εt+1:t+H (1.25)

of different values of H. The top panel in Table 1.7 presents regression results of long-horizon

excess return forecasts of horizons 1 quarter, 1 year, 2 years, 3 years, and 5 years. Our model

captures positive relation between dividend yields and risk premium: The magnitude of slope

coefficients and R2 increases with forecast horizons as in the data.

Beeler and Campbell (2012) find little predictive power of price-dividend ratios in

predicting consumption growth. Let ∆ct+1:t+H denotes ∆ct+1:t+H = ∑
H
h=1 ∆ct+h. The bottom

panel in Table 1.7 presents estimates of the predictive regression

∆ct+1:t+H = αH +βH pdt + εt+1:t+H (1.26)

of different values of H. Consistent the data, the break model generates little predictability in

consumption growth.

To explore why price the dividend ratio is able to predict excess returns but not

consumption growth, we plot model implied price-dividend ratios, risk premia, and volatility of

market returns against state variables, namely investors’ beliefs of expected consumption growth

rate, µt , and uncertainty around it, Σt . Figure 1.7 presents the relation between the price dividend

ratio and various state variables. The left panel plots price-dividend ratios against µt while fixing

Σt at 3.5%, which is roughly 5 years after a break. The red line is the low volatility regime,

and the blue line is the high volatility regime. Both lines increase with expected conditional

consumption growth, suggesting procyclical price dividend ratios. The right panel plots price

dividend ratio against
√

Σt holding µt to 1.8 percent. For both volatility regimes, price dividend
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ratio decreases with parameter uncertainty.

Figure 1.8 presents the relation between risk premium, return volatility, and state variables.

Panel (a) plot risk premia against µt (left) and
√

Σt (right). The risk premium is non-monotonic in

µt and increasing in
√

Σt . This is consistent with our hypothesis that both the price of risk and

risk exposures are increasing in
√

Σt . Panel (b) plots conditional volatility against µt (left) and
√

Σt (right). It is evident that volatility of equity returns is decreasing in expected consumption

growth and increasing in uncertainty.

Figure 1.7 and 1.8 suggest that predictable excess returns and unpredictable consumption

growth can be explained by the dominant effect of parameter uncertainty on price-dividend

ratios and the price of risk, in line with theoretical implications of Jahan-Parvar and Liu (2014)

and Collin-Dufresne, Johannes and Lochstoer (2016). The driver behind the negative relation

between risk premium and price dividend ratio is that high parameter uncertainty decreases the

price-dividend ratio while increasing the risk premium. The explanation for little predictability in

consumption growth is that while the price dividend ratio is increasing in expected consumption

growth, it also contains information of parameter uncertainty, as demonstrated in Figure 1.8. As a

result, the price-dividend ratio is a noisy predictor of expected consumption growth.

1.4.5 The Covid shock

The Covid-19 pandemic is a sharp example of breaks and offers a good test of the model:

In 2020Q2, log aggregate consumption growth is -11%, with 44%, 62% and 41% decline in log

consumption of transportation, recreation services, and food services and accomodation. The

resulting posterior of a break happening in 2020Q1 is 1 and all types of goods, with the exceptions

of other nondurables and houting and utility services, are affected by the break.

Figure 1.9 plots forecasts of excess returns (top panel) and market volatility (bottom

panel) in forecast horizons of 1 to 5 years. The forecasts are made at 2020Q3, assuming that a

break happened on 2020Q1 and the mean of investors’ beliefs of consumption growth is -1.5% in
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annual units and the regime is of high volatility. The model predicts a risk premium of 20% in the

immediate year after the break and gradually decreases to 12% in five years. This is consistent

with the 30% plunge of S&P500 index in March 2020 and the subsequent recovery of loss. The

model predicts market volatility of 65% in the immediate year after the break and gradually

decreases to 50% in five years. The short term forecast seems in line with 90% and 40% realized

volatility in March and April 2020. Over the long-run, the model-implied effects of breaks on

market volatility seem too persistent relative to the data. In practice, investors may access more

information such that uncertainty is resolved sooner than the model would imply.

1.5 Implications for the cross-section of returns

To explore asset pricing implications of learning from multiple goods, we assume investors’

total consumption expenditure is the aggregation of two types of goods:

Ct =C1t +C2t , (1.27)

where Cit is expenditure on goods i at time t. Combined with the utility function specified in (1.14)

and (1.15), investors’ utility is a function of aggregate consumption expenditure, and include the

CES utility function used in Yogo (2006) and Piazzesi, Schneider and Tuzel (2007) as a special

case.

The consumption dynamics follow:

∆cit = gik +σikεit , i = 1,2 if τk ≤ t < τk+1 (1.28)

where εit are i.i.d standard normal.

To solve the model in close form, we assume EIS = 1 and breaks are non-recurring. Let
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N
(
µit ,Σitσ

2
it
)

denote investors posterior of gi, i = 1,2. Investors’ beliefs evolve as

∆µit = Σit (∆cit−µit−1) , (1.29)

1
Σit

=
1

Σit−1
+1.

Following the same method in Collin-Dufresne, Johannes and Lochstoer (2016), it can be proven

that the log value-consumption ratio vt takes the form vt =
β

1−β

(
∑

2
i=1 αit∆µit

)
+ f (Σ1t ,Σ2t), where

αit is the expenditure share of each type of good and f (·) is a deterministic function of model

uncertainty. We have the following propostion of the pricing kernel.

Proposition 1.5.1. When the break is nonrecurring (λ = 0) and investors’ EIS=1, investors’ log

pricing kernel mt+1 satisfies

mt+1−Et (mt+1) =−(∆ct+1−Et (∆ct+1))+
(1− γ)β

1−β

(
2

∑
i=1

αi∆µit

)
, (1.30)

where αi is expenditure share of each type of good.

The last term characterizes effects of variation in investors’ beliefs on the pricing kernel.

As shown in equation (1.29), investors update their beliefs more actively when parameter

uncertainty is higher. Across different goods, more attention is allocated to goods of higher

parameter uncertainty whose signals contain more information about expected consumption

growth. As a result, the pricing kernel is tilted toward types of goods with higher parameter

uncertainty. To sharpen the intuition, equation (1.30) can be reformulated to

mt+1−Et (mt+1) =−
(

1+
(γ−1)β

1−β
· Σ1t +Σ2t

2

)
(∆ct+1−Et (∆ct+1))︸ ︷︷ ︸

CCAPM

(1.31)

− (γ−1)β

1−β

Σ1t−Σ2t

2
[α1 (∆c1t−µ1t−1)−α2 (∆c2t−µ2t−1)]︸ ︷︷ ︸ .

Consumption fragility
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The first term in equation (1.31) is the aggregate consumption factor that features in the

conventional CCAPM proposed by Breeden (1979). When Σ1t > Σ2t , the second factor longs

goods of higher parameter uncertainty and shorts goods of lower parameter uncertainty. It can

be viewed as a factor of consumption fragility which over-weights types of goods that are more

sensitive to breaks. The model implies the fragility factor has positive price of risk.

1.5.1 Empirical test of cross-sectional implications

In this section, we test the implication that the consumption fragility factor have a positive

price of risk. We use the standard deviation of git conditional on data up to time t to measure

parameter uncertainty. Figure 1.10 presents the heat map of standard deviations of git over

time, starting in 1969Q2. On average, consumption growth in clothing, energy, transportation,

and financial service have higher parameter uncertainty, while food, housing and utility service,

and health care have lower parameter uncertainty. Consistent with estimates of locations of

breaks in Section 1.3.1, parameter uncertainty in energy goods is high the 1970s, while parameter

uncertainty in financial services is high in the early 2000s.

To test the implication, at each time t, we separate the 11 types of goods into 3 groups

based on parameter uncertainty. The top group contains 3 consumer goods that have the largest

uncertainty about git ; the bottom group contains 3 consumer goods that have the least uncertainty

about git ; while the medium group contains the remaining 5 goods. Let eH,t , eM,t and eL,t denote

the consumption growth innovations of goods of high, medium, and low parameter uncertainty

groups: e(·),t+1 = ∆c(·)t+1−Et
(
∆c(·)t+1

)
, where ∆c(·)t is the expenditure-share weighted average

of log consumption growth in each group. We use expenditure shares of the three groups αH,t ,

αM,t , αL,t as proxy for corresponding αis in (1.33).

Equation (1.31) suggests a two-factor model of aggregate consumption innovation et

and relative consumption innovation e f ragile,t+1 ≡ αH,teH,t−αL,teL,t . e f ragile,t+1 emphasizes the

components in aggregate consumption that are more subject to breaks. Investors’ learning and
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their aversion to long-run uncertainty implies its price of risk is positive and is increasing in the

difference of parameter uncertainty across the two groups. The fragility factor has a correlation

of -0.1 with the aggregate consumption factor.

Let R j be the return of asset j and r j be the log return. Under the approximation in

Campbell et al. (2018), the pricing equation is

Et
[
R j,t+1−R0,t+1 +

(
r j,t+1− r f t+1

)
(mt+1−Et (mt+1))

]
= 0. (1.32)

Based on equation (1.31), our model implies positive λc and λ f ragile in the pricing equation:

Et
[
R j,t+1−R0,t+1−

(
r j,t+1− r0t+1

)(
λcet +λ f ragilee f ragile

)]
= 0. (1.33)

We can further test the implication that price of risk of e f ragile is increasing in the difference of

parameter uncertainty across the two groups by adding a facor consisting of interactions of e f ragile

and a proxy for uncertainty difference between the top and bottom group. Let σdi f f ,t denotes the

difference between average parameter uncertainty across the two groups and Mdi f f denotes its

sample median. We use the indicator function 1(σdi f f ,t > Mdi f f ) as the proxy for uncertainty

difference. Hence, the model implies positive values of λc, λ f ragile and λ̄ f ragile in the pricing

equation

Et
[
R j,t+1−R0,t+1− (r j,t+1− r0t+1)

(
λcet +λ f ragilee f ragile + λ̄ f ragile1(σdi f f ,t > Mdi f f )e f ragile

)]
= 0. (1.34)

Our test assets consist of the 25 Fama-French portfolios sorted by size and book-to-market

equity, 10 momentum portfolios sorted by prior 12 months returns, and 10 industry portfolios.

The data is from Kenneth French’s website. Our reference asset return R0.t is the risk-free rate.

Table 1.8 reports estimates of the price of risk of the CCAPM, the consumption fragility factor

e f ragile, and the interaction factor. Estimation is by two-step GMM with HAC standard errors

of lag 1. The price of risk of aggregate consumption growth is positive and significant for both

CCAPM and extended CCAPM. The magnitude is reduced to 121 from 183 after including
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e f ragile. The price of risk of e f ragile is 682 and is significantly positive. The third row of Table

1.8 presents the conditional price of risk for e f ragile. The conditional price of risk of the fragility

factor is roughly 40% higher when σdi f f ,t is above its median relative to other periods. The mean

absolute pricing error is 1.30% for CCAPM and 1.29% for CAPM, while the value is reduced

to 0.66% for the extended CAPM with the consumption fragility factor. Similar improvement

is found in the R2 of pricing errors benchmarked against CAPM. The CCAPM generates R2 of

−0.11 while the extended CAPM generates R2 of 0.71, a significant improvement relative to

CCAPM and CAPM.

To investigate the source of the fragility factor’s price of risk, we examine factor loadings

of portfolios sorted by size, book-to-market equity ratio, and returns in past 12 months as reported

in Table 1.9. The three panels from left to right reports size, value, and momentum portfolios

respectively. The first column of each panel reports loadings of the aggregate consumption factor,

and the second column of each panel reports loadings of the consumption fragility factor. The

third column of each panel reports average excess returns. Based on our sample from 1969Q1 to

2019Q4, the size, value and momentum premium are -0.2%, 0.8%, and 3.0% at quarterly rates.

The left panel shows that average excess returns are increasing in book to market equity ratios

and past 12 months returns, while the size premium is small in our sample. Factor loadings on

aggregate consumption growth are increasing in book-to-market equity ratios, while loadings on

the fragility factor is not monotonic. The right panel shows that portfolios of higher momentum

have higher exposure to the consumption fragility factor: the the fifth portfolio has beta in

relative consumption growth of 12.6, while the first portfolio has beta 1.5 and their difference is

statistically significant.

In general, the aggregate consumption beta accounts for value premium, while the

consumption fragility beta accounts for momentum premium. The empirical evidence is consistent

with findings of Liu and Zhang (2008) that macroeconomic factors like industrial production can

explain part of momentum premium.
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1.6 Conclusion

Using a panel of disaggregate consumption goods, we identify infrequent and persistent

breaks to consumption growth dynamics. The impact of the breaks is very heterogeneous across

consumption goods, leading to unevenly distributed parameter uncertainty across different goods.

Having demonstrated that consumption growth is neither stable nor continuous, we build

a Lucas tree model with breaks in consumption growth dynamics. The resulting parameter

uncertainty combined with investors’ learning leads to persistent changes in investors’ beliefs.

Because investors with recursive preferences are averse to persistent sources of consumption

growth risk, breaks generate high price of risk embedded in the market portfolio. Parameter

uncertainty plays a key role in driving variation in price-dividend ratios, which in turn helps to

forecast excess returns on the market portfolio.

Differences in parameter uncertainty across different consumption goods imply that

investors learn more about expected growth in the current regime from consumption goods whose

parameters are most sensitive to shifts in the underlying economic state. The resulting pricing

kernel is tilted away from the aggregate consumption growth that features in the conventional

CCAPM. We account for the deviation from the CCAPM by a consumption fragility factor

which is the consumption growth of goods with high parameter sensitivity relative to goods with

low parameter sensitivity. Consistent with our hypothesis, we identify a significantly positive

risk premium in the consumption fragility factor using a cross-section of returns on portfolios

sorted on different attributes. The price of risk of the new factor is higher when the difference in

parameter sensitivity between the two types of goods is higher. Exposures to the fragility factor

is increasing in the portfolios’ prior 12-month returns suggesting that the consumption fragility

factor helps explain the momentum premium.

In practice, investors learn from an abundance of signals they observe in addition to data

on consumption growth. In future work, we intend to use the approach introduced in this paper
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to explore how pervasive breaks across different economic variables can help explain how asset

prices respond to news on macroeconomic and financial variables.
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Table 1.1: Summary statistics of log consumption growth

Quarterly data: 1959Q2 to 2020Q3
Mean( %) Standard Deviation( %) Skewness Kurtosis Autocorrelation Weight( %)

Aggregate Consumption 1.81 1.94 -5.22 87.92 -0.16
Food 0.66 1.89 1.47 9.35 -0.01 13.51
Clothing 2.42 4.84 1.67 45.49 -0.12 6.14
Energy -0.05 4.67 -2.12 36.79 -0.17 4.28
Other nondurable 2.37 1.94 -0.19 2.65 0.24 9.27
Housing & Utility 1.81 1.15 -0.29 -0.25 0.11 21.13
Health care 2.43 3.75 -2.56 70.82 -0.15 13.89
Transportation 1.65 7.01 -7.01 113.23 -0.17 3.77
Recreation 2.43 9.49 -8.24 131.93 -0.25 3.57
Food & Accommodation 1.14 6.80 -4.98 101.93 -0.25 7.59
Financial Service 2.64 3.01 0.42 0.91 0.21 7.30
Other Service 1.41 3.45 -6.28 77.08 -0.02 9.56

Quarterly data: 1959Q2 to 2019Q4
Mean( %) Standard Deviation( %) Skewness Kurtosis Autocorrelation Weight( %)

Aggregate Consumption 1.92 0.87 -0.22 1.27 0.45
Food 0.57 1.69 0.33 2.22 0.09 13.57
Clothing 2.51 2.76 -0.19 0.58 0.08 6.17
Energy 0.11 3.16 -1.88 12.23 0.02 4.31
Other nondurable 2.28 1.85 -0.56 2.04 0.30 9.26
Housing & Utility 1.82 1.15 -0.30 -0.25 0.12 21.11
Health care 2.59 1.76 0.30 2.22 0.43 13.83
Transportation 2.11 2.44 -0.78 1.54 0.57 3.77
Recreation 3.11 2.55 -0.71 5.07 -0.10 3.56
Food & Accommodation 1.52 2.16 0.10 0.32 0.11 7.59
Financial Service 2.67 3.02 0.41 0.90 0.21 7.27
Other Service 1.67 2.01 -0.17 0.43 0.29 9.56

Annual data: 1929 to 2019
Mean( %) Standard Deviation( %) Skewness Kurtosis Autocorrelation Weight( %)

Aggregate Consumption 1.78 2.11 -1.39 5.06 0.48
Food 0.84 2.70 1.01 5.05 0.30 17.53
Clothing 1.67 3.93 -1.31 2.74 0.31 8.09
Energy 0.79 5.69 1.12 13.56 0.40 4.69
Other nondurable 2.29 3.31 -1.44 5.07 0.34 9.13
Housing & Utility 2.17 1.86 0.11 0.26 0.70 19.98
Health care 2.45 2.98 0.11 4.23 0.30 10.54
Transportation 1.80 5.46 -0.25 1.94 0.53 3.63
Recreation 2.28 4.39 -1.80 8.03 0.36 3.19
Food & Accommodation 1.87 4.62 -0.15 2.81 0.43 7.62
Financial Service 2.16 3.94 -0.40 1.01 0.18 6.13
Other Service 1.31 3.28 -1.60 4.58 0.48 9.47

Notes: This table presents mean, standard deviation, skewness, kurtosis, and autocorrelation of aggregate log-
consumption growth and its components. The top panel is calculated based on sample period from 1959Q2 to
2020Q3. The middle panel is calculated based on sample period from 1959Q2 to 2019Q4, excluding the Covid-19
period. The bottom panel summarizes annual data from 1929 to 2019. For quarterly data, the mean and standard
deviation are transformed to annual percentage points. The last column presents the sample average of the expenditure
share of each type of good.
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Table 1.2: Estimates of Intercept Coefficient gik

Starts 1959Q2 1972Q4 1981Q2 2000Q1 2020Q1
Ends 1972Q3 1981Q1 1999Q4 2019Q4 2020Q3

Food 0.47 0.65 2.29
(0.40) (0.18) (1.66)

Clothing 0.80 2.90 −2.71
(0.75) (0.53) (11.20)

Energy 2.75 −2.06 0.36 −1.01 −2.62
(0.96) (2.36) (0.86) (0.73) (15.14)

Other nondurable 2.44 2.12 5.77
(0.44) (0.23) (2.21)

Housing & Utility 2.60 2.16 1.44
(0.17) (0.27) (0.10)

Health care 4.38 3.09 1.50 2.36 −3.19
(0.60) (0.42) (0.21) (0.27) (8.57)

Transportation 3.36 1.13 4.17 1.28 −28.80
(0.65) (0.98) (0.58) (0.58) (36.34)

Recreation 3.01 4.81 1.35 −25.97
(0.98) (0.45) (0.52) (29.55)

Food & Accommodation 1.36 2.30 0.99 1.59 −8.36
(0.61) (1.12) (0.50) (0.38) (14.68)

Financial Service 4.21 −0.65
(0.81) (0.49)

Other Service 1.73 0.99 −2.64
(0.26) (0.39) (4.67)

Summary Statistics
Mean absolute change 1.94 1.37 2.11 9.89
Most-affected goods Energy Transportation Financial Service Transportation

Transportation Energy Recreation Recreation
Clothing Health care Transportation Food & Accommodation

Notes: This table presents estimates of gik. The header of the table marks the beginning and ending quarters of each
regime. The reported coefficients are in annualized percentage points (the original intercept times 4). The bottom
panel presents the mean absolute change of gik after each break. The most-affect goods list the three most-affected
types of good in terms of the absolute value of change in parameters. Coefficients that are not affected by the break
(with posterior probability below 0.5) are left blank. The standard errors are in parenthesis.
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Table 1.3: Estimates of Idiosyncratic Volatility σik

Starts 1959Q2 1972Q4 1981Q2 2000Q1 2020Q1
Ends 1972Q3 1981Q1 1999Q4 2019Q4 2020Q3

Food 1.92 0.97 2.42
(0.14) (0.05) (0.43)

Clothing 2.45 3.48 17.36
(0.23) (0.19) (2.97)

Energy 3.70 7.09 3.72 3.09 23.03
(0.36) (0.73) (0.37) (0.22) (4.31)

Other nondurable 1.71 1.21 3.42
(0.15) (0.09) (0.77)

Housing & Utility 0.67 0.97 0.62
(0.06) (0.12) (0.04)

Health care 2.35 1.35 1.01 1.27 11.49
(0.22) (0.14) (0.07) (0.09) (2.01)

Transportation 1.78 2.51 2.37 2.36 48.84
(0.17) (0.29) (0.20) (0.19) (8.37)

Recreation 3.92 2.42 2.05 39.64
(0.37) (0.16) (0.18) (7.96)

Food & Accommodation 2.10 3.15 2.01 1.48 18.38
(0.21) (0.29) (0.17) (0.12) (3.17)

Financial Service 4.57 2.41
(0.24) (0.22)

Other Service 1.90 1.50 7.66
(0.11) (0.12) (1.42)

Common Component 1.57 2.05
(0.19) (0.50)

Summary Statistics
Mean absolute change 1.29 0.97 0.62 15.53
Most affected goods Energy Energy Financial Service Transportation

Recreation Food & Accommodation Energy Recreation
Food & Accommodation Food Food & Accommodation Energy

Notes: This table presents estimates of σik. The header of the table marks the beginning and ending quarters of each
regime. The reported coefficients are in annualized percentage points (the original quarterly times 2). The bottom
panel presents the mean absolute change of σik after each break. The most-affect goods list the three most-affected
types of good in terms of the absolute value of change in parameters. Coefficients that are not affected by the break
(with posterior probability below 0.5) are left blank. The standard errors are in parenthesis.
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Table 1.4: Parameter choices of benchmark break model

Parameter Description Value
β Subjective discount factor 0.994
γ Coefficient of risk aversion 6
ψ Coefficient of IES (1/ρ) 2
λ The probability that a break happens 0.0167
ḡ Unconditional mean of log consumption growth 0.45%
Ḡ Upper bound of truncated normal distribution of gKt−ḡ

σKt
1

G Lower bound of truncated normal distribution gKt−ḡ
σKt

-1

Σ0 Variance of gKt−ḡ
σKt

0.1
L Leverage of dividend growth to consumption growth 3
σ̄c Unconditional idiosyncratic volatility in consumption growth 1.0%
σ̄d Unconditional idiosyncratic volatility in dividend growth 7.9%
σLow σdKt/σ̄d, σKt/σ̄c in low volatility regime 0.91
σHigh σdKt/σ̄d, σKt/σ̄c in high volatility regime 1.30
πLow Probability that new regime has low volatility 0.66

Notes: This table presents parameter values used in the benchmark calibration. All parameters are calibrated at
quarterly frequency except for γ and ψ.
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Table 1.5: Model-implied moments of asset returns with different parameters in data-generating
process

E(rm− r f ) σ(rm− r f ) E(r f ) σ(r f ) SR σ(M)/E(M)
Data

- 5.32 21.04 0.60 1.40 0.25 -

Benchmark: λ = 0.017,
√

Σ0 = 0.3
- 5.41 17.82 1.56 1.32 0.30 0.51

λ = 0.017√
Σ0 = 0.2 2.60 16.23 2.17 0.62 0.16 0.30√
Σ0 = 0.4 7.41 18.13 1.03 1.69 0.41 0.68

√
Σ0 = 0.3

λ = 0.050 2.80 16.06 2.23 0.54 0.17 0.28
λ = 0.012 5.46 16.86 1.48 1.24 0.32 0.57

Notes: This table presents moments of historical and model implied asset returns with diferent
parameters of data generating process. The first panel presents sample moments estimated
from data. The second panel presents the result when

√
Σ0 ranges from 0.2 to 0.4, holding

other parameters fixed at 1/ρ = 2, γ = 6 and λ = 0.017. The third panel presents similar set
of result when λ varies from 0.05 to 0.0125, with

√
Σ0 fixed at 0.3. Columns E(rm− r f ),

σ(rm− r f ), E(r f ), σ(r f ) are unconditional mean and volatility of excess return and risk-free
rate, in annualized percentage points. Column SR denotes Sharpe ratio and σ(M)/E(M)
denotes price of risk.

37



Table 1.6: Model-implied moments of asset returns with different parameters of investors’
preference

γ E(rm− r f ) σ(rm− r f ) E(r f ) σ(r f ) SR σ(M)/E(M)
Data

- 5.32 21.04 0.60 1.40 0.34 -

1/ρ = 2
4 2.78 19.40 2.19 0.91 0.14 0.25
6 5.41 17.82 1.56 1.32 0.30 0.51
8 7.44 15.88 1.06 1.43 0.47 0.86

1/ρ = 1.5
4 2.31 18.71 2.57 0.89 0.12 0.23
6 4.86 17.51 2.18 1.19 0.28 0.48
8 7.63 15.60 1.62 1.31 0.49 0.92

Notes: This table presents moments of historical and model implied asset returns with
different preference parameters. The first panel presents sample moments estimated from data.
The second panel presents the result when EIS, 1/ρ = 2 and risk aversion γ ranges from 4 to 8.
The third panel presents similar set of result with 1/ρ = 1.5. Columns E(rm−r f ), σ(rm−r f ),
E(r f ), σ(r f ) are unconditional mean and volatility of excess return and risk-free rate, in
annualized percentage terms, respectively. Column SR denotes Sharpe ratio and σ(M)/E(M)
denotes price of risk.
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Table 1.7: Predictive regressions of excess returns

Excess return
Data

1 Quarter 1 Year 2 Years 3 Years 5 Years
β -0.021 -0.087 -0.172 -0.233 -0.370

(0.016) (0.048) (0.065) (0.070) (0.092)
R2 0.008 0.035 0.079 0.129 0.226

Model
1 Quarter 1 Year 2 Years 3 Years 5 Years

β -0.059 -0.210 -0.361 -0.486 -0.679
R2 0.016 0.052 0.080 0.096 0.110

Aggregate consumption growth
Data

1 Quarter 1 Year 2 Years 3 Years 5 Years
β 0.000 -0.002 -0.008 -0.013 -0.024

(0.001) (0.003) (0.007) (0.010) (0.016)
R2 0.000 0.004 0.024 0.040 0.070

Model
1 Quarter 1 Year 2 Years 3 Years 5 Years

β 0.001 0.004 0.008 0.011 0.017
R2 0.000 0.001 0.001 0.002 0.002

Notes: This table presents the slope coefficient and R2 of predictive regressions of excess
return (top panel) and aggregate consumption growth (bottom panel). The y variables are
cumulative quarterly excess return or consumption growth over the next 1 quarter, 1 year, 2
years, 3 years, and 5 years. For each panel, the top sub-panel presents estimates from data
and the sub-bottom panel presents model implication from the benchmark break model. The
HAC standard errors are in parenthesis.
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Table 1.8: Estimation of linear factor models

Aggregate consumption Fragility factor Uncertainty diff x Fragility Market MAE(%) R2

182.70 1.30 -0.11
(47.25)

121.58 681.90 0.66 0.71
(48.15) (98.92)

126.29 480.63 364.70 0.65 0.74
(43.19) (107.85) (181.71)

15.08 1.29 0.00
(4.19)

Notes: This table presents the estimated price of risk for the CAPM, CCAPM, extended CCAPM the consumption
fragility factor. The first column presents price of risk of the aggregation consumption, the second column is price
of risk of the fragility factor. The third column is the price of risk of the interaction of the fragility factor and the
uncertain difference proxy. The forth column is the market factor. The test assets are the 25 Fama-French portfolios
sorted by size and book-to-market equity and 10 momentum portfolios sorted by returns of the past 12 months.
Estimation is by two-step GMM. HAC standard errors are in parentheses. The last two columns report absolute
pricing error (MAE) and R2 which are based on first-stage estimate. The R2 is benchmarked against CAPM such that
R2 of CAPM is 0 by construction.

Table 1.9: Consumption growth and relative consumption growth betas

Size Value Momentum
Consumption Fragility Rex (%) Consumption Fragility Rex (%) Consumption Fragility Rex(%)

ME 1 0.4 3.7 2.0 BM 1 1.2 4.2 1.6 Prior 1 8.6 0.2 -0.1
ME 2 0.6 4.3 2.1 BM 2 1.1 3.5 1.9 Prior 2 4.0 1.2 1.7
ME 3 0.7 4.6 2.1 BM 3 1.3 3.3 1.9 Prior 3 4.1 1.1 1.6
ME 4 1.6 5.2 2.1 BM 4 2.0 4.4 1.9 Prior 4 3.2 4.5 1.9
ME 5 1.9 4.6 1.6 BM 5 1.1 5.6 2.6 Prior 5 6.6 11.2 2.8
Diff 1.5 0.9 -0.3 Diff -0.1 1.4 0.9 Diff -2.0 11.0 2.9

(1.5) (2.7) (1.6) (2.7) (2.3) (3.9)

Notes: This table presents regression coefficients of aggregate consumption innovations and the fragility factor on
excess returns of five size-sorted portfolios, five value-sorted portfolios and five momentum-sorted portfolios. For
each panel, the first and second columns reports factor loadings and the last column reports average excess returns.
The sixth row is the difference of the fifth and the first row. The numbers in parenthesis are standard errors of the
difference in factor loadings.
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Figure 1.1: Weights of consumption expenditures in each categories over time
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Figure 1.2: Time series of annualized 20-year rolling average of quarterly consumption growth
for selected series
The shaded area are 95% confidence intervals.
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Figure 1.3: Time series of annualized 20-year rolling volatility of quarterly consumption growth
for selected series
The shaded area are 95% confidence intervals.
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Figure 1.4: Posterior locations of breaks
The top panel presents the posterior probability Pt|T that a break happened between period t and t +1
based on 11 consumer goods. The bottom panel presents the posterior probability Pt|T that a break
happened between period t and t +1 based on the aggregate consumption.
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Figure 1.5: Expected number of goods affected by breaks and posterior of location of breaks
affecting each good
The top panel presents expected number of goods affected by breaks conditional on a break happens at t.
The second panel presents the posterior probability Pit|T that a break happens to good i between period t
and t +1.
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Figure 1.6: Posterior mean of the expected growth rate and volatility of aggregate consumption
The expected growth of aggregate consumption is the expenditure-share weighted average of git of each
good. The volatility of aggregate consumption growth is calculated as the combined effect of idiosyncratic
components and the common component.
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Figure 1.7: Price-dividend ratio and state variables
The left panel plot price-dividend ratio against µct holding Σt = 3.5%. The right panel plot price-dividend
ratio against

√
Σt holding µct = 1.8%.
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(a) Et(Rt+1−R ft+1)

(b) Volt(Rt+1−R ft+1)

Figure 1.8: Risk premium, volatility and state variables
The top panel plots annualized risk premium against state variables. The bottom panel plots annualized
volatility of market return against state variables. For the figures on the left side of top and bottom panels,
the x-axis is µct holding Σt = 3.5%. For the figures on the right side of top and bottom panels, the x-axis
is
√

Σt holding µct = 1.8%.
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(a) Excess return

(b) Volatility

Figure 1.9: Forecasts of market risk premium and volatility after the Covid shock
The forecasts are based on the Lucas tree model. The forecasts are made at 2020Q3, assuming that a
break happened on 2020Q1 and the mean of investors’ beliefs of consumption growth is -1.5% at an
annual rate.
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Figure 1.10: Parameter uncertainty in real-time estimation of intercept git|t of major types of
goods
The figure presents the standard deviations of posteriors of git|t based on data up to time t. The units are
in annual percentage points.
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Chapter 2

Identifying Forecasting Skills: A Bootstrap

Test for Comparing Predictive Accuracy

with Panel Data
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2.1 Introduction

Panels of forecasts of outcomes recorded over multiple periods of time for many different

variables and forecasters are increasingly widespread in economics and finance. For example,

in their biannual World Economic Outlook publication, the IMF reports forecasts of economic

indicators such as real GDP growth and inflation for more than 180 countries and at multiple

horizons. Financial analysts predict company earnings growth, profits, and other outcomes

for hundreds of firms spanning multiple industries and countries. The travel and tourism

industry forecasts daily demand for hotel rooms and occupancy rates across countries and cities.

Multiple forecasts also arise regularly in comparisons of the predictive accuracy of different

econometric modeling approaches such as univariate autoregressive, multivariate and machine

learning methods.

Comparisons of predictive accuracy across what is typically very large sets of forecasts is

complicated by the sheer number of possible pair-wise test statistics that needs to be conducted

in order to identify superior predictive performance. Conventional critical values that apply to a

single pair-wise test of the null of equal predictive accuracy no longer remain valid when multiple

test statistics are examined. To deal with this multiple hypothesis testing issue, we develop in

this paper a set of “Sup” tests that allow us to conduct robust inference on whether one or more

forecasts is significantly more accurate than some benchmark forecast. Our analysis exploits

the panel data structure to conduct tests for the existence of superior forecasting skills for any

forecast(er), any outcome variable, at any horizon, or at any point in time. The existence of

several dimensions, including cross-sectional and time-series dimensions, for an arbitrarily large

set of individual forecasts introduces a high-dimensional multiple hypothesis testing problem.

Our approach handles situations with multiple moment inequalities by controlling the family-wise

error rate.

Outcomes in any individual period are likely to be strongly cross-sectionally correlated, so
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accurate forecasting performance across many variables in a particular period could simply be due

to luck, i.e., the result of a forecaster essentially making one good judgment about the realization

of a highly influential common factor. Provided that the cross-sectional dimension of the data

set is large enough–or, equivalently, that the forecasts of sufficiently many variables are being

compared–and there is sufficiently independent variation across forecast errors, we demonstrate

that valid comparisons of predictive accuracy can be performed on a single cross-section, i.e.,

for a single time period, after controlling for common factors. This result requires us to apply a

cross-sectional central limit theorem. We establish conditions under which this can be justified

in the context of a model that decomposes the forecast errors of individual variables into a

correlated component that is driven by exposures to a set of common factors and an uncorrelated,

idiosyncratic component.

Our paper makes several contributions to the existing literature on multiple comparisons

of predictive performance.1 The seminal paper of White (2000) and subsequent work by Hansen

(2005), Romano and Wolf (2005), Hansen, Lunde and Nason (2011) address the multiple

hypothesis problem in settings with a low-dimensional model space and a single dependent

outcome variable. We generalize this to a setting with multiple dimensions, including cases

in which the dimensions of both the number of forecasters and the cross-section are large,

while retaining the ability to identify which forecasters and for which variables we find superior

predictive performance. Further, we generalize results in the extant literature to a setting that uses

a single cross-section to conduct inference on the average forecasting performance across a large

number of (cross-sectional) units in a single time period.

To handle cases in which the number of pair-wise comparisons increases with the length

of the time series–and even can be much larger than this–we use the approach developed by

1An earlier literature develops methods for conducting inference on the relative accuracy of a pair of forecasting
models. For example, Chong and Hendry (1986) develop tests of forecast encompassing, while Diebold and Mariano
(1995) and West (1996) develop distribution theory and propose statistics for testing the null of equal predictive
accuracy for the non-nested case. Clark and McCracken (2001) and Giacomini and White (2006) develop methods
for testing equal predictive accuracy for forecasts generated by nested models.
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Chernozhukov, Chetverikov and Kato (2018).2 This approach implements a version of the high-

dimensional bootstrap from Chernozhukov, Chetverikov and Kato (2013, 2017) which accounts

for serial dependence using a blocking technique. We use the bootstrap tests to identify superior

predictive skills based on a potentially large set of forecast comparisons or, equivalently, multiple

moment inequalities. The resulting bootstrap is easy to implement and, in addition to testing the

null that no forecast is more accurate than a given benchmark, identifies the variables, forecasts,

horizons, or time periods for which the benchmark is beaten. To the best of our knowledge, our

approach provides the first tests for superior predictive accuracy conducted over multiple units in

a panel setting.

Although our analysis builds on Chernozhukov, Chetverikov and Kato (2018), there

are also some important technical differences between our method and theirs. In particular,

we develop studentized test statistics that apply to dependent data, whereas Chernozhukov,

Chetverikov and Kato (2018) study a non-studentized test statistic (see their Appendix B.1). In

many empirical applications, the scale of forecast errors can differ drastically across units and/or

time and so normalizing the test statistics to have unit variance under the null hypotheses can

improve the power of the test (Hansen (2005)). In practice, this really matters as we demonstrate

through Monte Carlo simulations.

Our paper also contributes to the literature on panel forecasting. Papers that use panel data

to evaluate predictive accuracy such as Keane and Runkle (1990) and Davies, Lahiri et al. (1995)

do not address the multiple hypothesis testing issue and can therefore not be used to identify the

dimensions in which forecasting performance is genuinely superior (or inferior) relative to some

benchmark.3

We use our approach in an empirical analysis of the “term structure” of forecast errors

which examines the rate at which macroeconomic forecasts improve as the distance to the target

date shrinks. Specifically, we analyze forecasts from the IMF’s World Economic Outlook (WEO)

2The approach in White (2000) assumes that the number of pair-wise comparisons is fixed.
3Baltagi (2013) provides an extensive review of forecast applications that use panel data.
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publication of five variables–inflation, GDP, import, and export growth, and the current account

balance–across up to 185 countries recorded over the 30-year period from 1990 to 2019. WEO

forecasts are updated in April and October every year and we focus on current-year and next-year

forecasts, giving us four different points on the term structure representing forecast horizons of

21, 15, 9, and 3 months prior to the end of the target year.

Comparing predictive accuracy across these horizons, we test if individual country-

level forecasts become significantly more accurate at the shorter horizons and, if so, at which

revision points the improvements are largest. Our most extensive comparisons of predictive

accuracy across countries, variables, and forecast horizons involve more than 2,700 pair-wise

tests. Empirically, we find little evidence of significant improvements in the accuracy of next-year

forecasts between the Spring and Fall WEO issues, suggesting that the IMF’s learning curve is

flat between 21 and 15 months prior to the end of the year being predicted. Accuracy gains for the

GDP growth, inflation, and current account forecasts materialize between the Fall next-year and

Spring current-year WEO issues (horizons of 15 and 9 months) and further accelerate between

the Spring and Fall current-year issues (horizons of 9 and 3 months). The IMF’s learning curve

for these variables is, thus, considerably steeper during the target year.4

Applying our Sup tests to clusters of countries defined according to developmental stage

and geographic region, we find not only that predictive accuracy is higher for advanced economies

than for emerging market and developing economies, but also that predictive accuracy improves

by a significantly larger margin for the advanced economies as the forecast horizon shrinks. The

steeper learning curve is consistent with the flow of data and data quality being better for advanced

economies than for emerging market and developing economies, making it more difficult to track

the state of the economy and improve forecast accuracy for the latter group.

Our cross-sectional individual-year tests for improvements in predictive accuracy at

4For the two remaining variables–import and export–we find only limited evidence that forecast accuracy improves
significantly in the 18-month period lasting from 21 to 3 months prior to the end of the predicted year. This finding is
consistent with a flat learning curve for these variables.
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shorter horizons show that forecasts of import and export fail to improve significantly in many

years, particularly prior to 2002. For GDP growth and inflation, forecast accuracy improves

significantly at the shorter horizons in almost all years, consistent with the IMF incorporating

new information to improve forecasts of these variables.

The outline of the paper is as follows. Section 2.2 describes methods for identifying

predictive skills with panels of forecasts, while the next two sections describe our test

methodologies in panel (Section 2.3) and cross-sectional (Section 2.4) settings. Section 2.5

conducts our empirical analysis of the WEO forecasts and Section 2.6 concludes. Monte Carlo

simulation results and technical proofs are contained in Appendices.

2.2 Identifying Predictive Skills in Panels of Forecast

This section introduces our framework for comparing forecasting performance in a panel

setting with an arbitrary number of forecasts and outcome variables observed across multiple

time periods. Our analysis explicitly accounts for the multiple hypothesis testing problem that

arises when many test statistics are simultaneously evaluated.

2.2.1 Setup

Consider a set of h-step-ahead forecasts of a panel of variables (units) i= 1, ....,N observed

over T time periods t +h = 1, ...,T . We refer to the outcome of variable i at time t +h as yi,t+h

and to the associated h−step-ahead forecast at time t as ŷi,t+h|t,m, where m = 1, ...,M refers to an

individual survey participant or a model used to generate the forecast. In all cases, the forecast

horizon, h≥ 0, is a non-negative integer.

This type of panel data gives us four dimensions over which to compute averages and/or

conduct inference: variables/units (i = 1, ...,N), forecasters/models (m = 1, ...,M), forecast

horizons (h = 1, ...,H) and time periods (t +h = 1, ...,T ).
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Following standard practice (e.g., Granger (1999)), forecasting performance is evaluated

through a loss function, L(yi,t+h, ŷi,t+h|t,m), which takes as its inputs the outcome and the forecast

and maps these values to the real line. By far the most common loss function in applied work is

squared error loss:

L(yi,t+h, ŷi,t+h|t,m) = e2
i,t+h,m, (2.1)

where ei,t+h,m = yi,t+h− ŷi,t+h|t,m is the forecast error.

Forecasting performance is usually measured relative to some benchmark, m0, which

might be an incumbent forecasting approach while the M alternative forecasts represent

competitors that could replace the benchmark.

The resulting loss differential of forecast m, measured relative to the benchmark m0, is

given by5

∆Li,t+h,m = L(yi,t+h, ŷi,t+h|t,m0)−L(yi,t+h, ŷi,t+h|t,m). (2.2)

Under squared error loss, ∆Li,t+h,m = e2
i,t+h,m0

− e2
i,t+h,m. Positive values of ∆Li,t+h,m show that

forecast m generated a lower loss than the benchmark, m0, in period t +h, while negative values

show the reverse.

2.2.2 Single Pairwise Comparison of Forecast Accuracy

We begin with a simple setting that compares the predictive accuracy of two forecasts

for a single variable over a single horizon (M =N = H = 1) so that the two forecasts used in the

comparison (m0 and m) as well as the identity of the variable (i) and the horizon (h) used in the

comparison are fixed ex-ante (predetermined). Under this assumption, the comparison does not

involve a multiple hypothesis testing problem and so inference about the hypothesis that the two

forecasts are equally accurate, on average, can be conducted using the approach proposed by

5For simplicity, we drop the reference to t and m0 in the subscripts of ∆L.
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Diebold and Mariano (1995):

HDM
0 : E[∆Li,t+h,m] = 0. (2.3)

Assuming that a time series of outcomes and forecasts {yi,t+h, ŷi,t+h|t,m} t +h = 1, ...,T is

observed, the Diebold-Mariano null in (2.3) can readily be tested using a t-test on the time-series

average of the loss differential ∆Li,m = T−1
∑

T
t+h=1 ∆Li,t+h,m.6 Provided that parameter estimation

error (“learning”) can be ignored or is incorporated as part of the null hypothesis, the test statistic

will be asymptotically normally distributed.7

Whenever we do not fix the variable, i, the forecast, m, and the horizon, h, and instead

conduct tests either across multiple variables, forecasts, or horizons, a multiple hypothesis testing

problem arises and we cannot rely on the conventional distribution results that underpin tests of

HDM
0 . We next discuss how to deal with this issue.

2.2.3 Multiple Comparisons of Forecast Accuracy

Assuming initially that the time-series dimension of the data is used to compute sample

averages, the remaining three dimensions of our four-dimensional panel can be used to identify

whether any of the forecasts outperforms the associated benchmark for any of the variables or

at any horizon. This corresponds to considering the “sup” loss differential across i ∈ {1, ...,N},

m ∈ {1, ..,M} and h ∈ {1, ..,H}:

H0 : max
h∈{1,...,H}

max
i∈{1,...,N}

max
m∈{1,..,M}

E[∆Li,t+h,m]≤ 0. (2.4)

6It is common to use heteroskedasticity and autocorrelation consistent standard errors when conducting this test,
see Diebold and Mariano (1995).

7Giacomini and White (2006) discuss conditions under which this type of test is valid even for forecasts generated
by nested models while Clark and West (2007) derive distributional results that account for parameter estimation
error and nested models. Clark and McCracken (2001) consider the case with recursive updating in the parameters of
nested forecasting models and show that this gives rise to a non-standard distribution of the resulting test statistic.
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It is common to study individual forecast horizons. For a given forecast horizon (fixed h),

under the null of “no outperformance” for any variable or any forecast, we have

H0 : max
i∈{1,...,N}

max
m∈{1,..,M}

E[∆Li,t+h,m]≤ 0. (2.5)

This null nests, as a special case, the “reality check” null considered by White (2000),

Hansen (2005), and Romano and Wolf (2005) that, for a particular variable, i, no forecast

m = 1, ...,M can beat the benchmark m0:

HRC
0 : max

m∈{1,...,M}
E[∆Li,t+h,m]≤ 0. (2.6)

The null in (2.6) cannot be used to identify whether a particular forecast outperforms the

benchmark for some variables but not for others.

To address the possibility that some forecasts are superior to the benchmark for a subset

of variables–including just a single variable–we can test whether any of the M forecasts beats the

benchmark among variables within some cluster Ck comprising Nk < N of the variables, where

both Ck and Nk are assumed to be predetermined:

HC
0 : max

i∈Ck
max

m∈{1,..,M}
E[∆Li,t+h,m]≤ 0. (2.7)

2.3 Test Statistics and Bootstrap

We next introduce our test statistic and bootstrap methods. To handle cases in which

N increases with T and even can be much larger than T, we use the approach developed by

Chernozhukov, Chetverikov and Kato (2018).8 This approach implements a version of the high-

dimensional bootstrap from Chernozhukov, Chetverikov and Kato (2013, 2017) which accounts

8The approach in White (2000) assumes that N is fixed.
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for serial dependence using a blocking technique.

2.3.1 Bootstrap

Suppose we only compare the performance of a single forecast (m) to that of the benchmark

(m0) so that, without risk of confusion, we can drop the forecast subscript, m, from (2.2) and define

∆Li,t+h = L(yi,t+h, ŷi,t+h|t,m0)−L(yi,t+h, ŷi,t+h|t,m) and µ̂i = T−1
∑

T
t+h=1 ∆Li,t+h. Appendix B.1 of

Chernozhukov, Chetverikov and Kato (2018) considers the test statistic JT = max1≤i≤N
√

T µ̂i.

We depart from the analysis in their paper by introducing a studentized test statistic. As suggested

by Hansen (2005), studentization can improve the power in tests of predictive performance

in many empirical applications where µ̂i displays strong forms of heteroskedasticity. Such

heteroskedasticity may arise due to differences in sample lengths used to compute the test

statistics or due to differences in the degree of variability in the loss differentials across different

variables.

Consider the following test statistic for the maximum value of the average loss differential,

computed across the i = 1, ....,N cross-sectional units:

RT = max
1≤i≤N

T−1/2
∑

T
t+h=1 Ii,t+h∆Li,t+h

âi
, (2.8)

where Ii,t+h = 1{∆Li,t+h is observed} is an indicator for whether the loss differential for unit i

is observed in period t + h and âi > 0 is a normalizing quantity that is either deterministic or

estimated from the data. Ideally, we observe all the loss differentials and so Ii,t+h = 1 for all i and

all t +h. In practice, it is common that not all of the ∆Li,t+h’s are available.

To account for serial dependency in loss differentials, let BT be an integer that measures

the average block length used in the bootstrap and define the number of blocks K :=KT = bT/BT c.

For j ∈ {1, ...,K−1}, let H j = {( j−1)BT +1, ..., jBT} and HK = {(K−1)BT +1, ...,T} denote

the jth and Kth time-series blocks, respectively.
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Example 2.3.1. We consider a variety of possible normalizations of the test statistic, RT :

• No normalization: âi = 1 for 1≤ i≤N. This choice does not attempt to balance differences

in Var(T−1/2
∑

T
t=1 Ii,t+h∆Li,t+h) across i. Hence, the behavior of RT will tend to be

dominated by those units i with the largest values of Var(T−1/2
∑

T
t=1 Ii,t+h∆Li,t+h) which

are likely to produce the most extreme values of the numerator in (2.8).

• Full normalization: âi =

√
K−1 ∑

K
j=1

(
B−1/2

T ∑t+h∈H j Ii,t+h(∆Li,t+h− µ̂i)
)2

with µ̂i =

T−1
∑

T
t+h=1 Ii,t+h∆Li,t+h. This normalization is an estimate of the long-run variance and

hence can correct the cross-sectional differences in scale of T−1/2
∑

T
t+h=1 Ii,t+h∆Li,t+h.

However, this could be a rather noisy estimate as it is essentially computed from K

observations, each being the sum of data in a block. In small samples, the noise in this

estimate could create substantial size distortions.

• Partial normalization: âi =
√

T−1 ∑
T
t+h=1 Ii,t+h(∆Li,t+h− µ̂i)2. This choice of

normalization corrects for different scales in the unconditional variance of

Var(Ii,t+h∆Li,t+h). This is a sensible choice when the variability of Ii,t+h∆Li,t+h

differs significantly across i but does not guarantee that the variance of

T−1/2
∑

T
t+h=1 Ii,t+h∆Li,t+h/âi stays approximately constant across i.9

• Sample-sized normalization: âi =
√

Ti/T , where Ti = ∑
T
t+h=1 Ii,t+h. This choice is sensible

when Ti/T varies significantly across i and the variance of T−1/2
∑

T
t+h=1 Ii,t+h∆Li,t+h is

driven by the number of observations in each series.

• Double normalization: âi =
√

Ti/T ×
√

K−1 ∑
K
j=1

(
∑t+h∈H j Ii,t+h(∆Li,t+h− µ̂i)

)2
. This

choice normalizes both by the number of observations Ti and the long-run variance of the

observed ∆Li,t+h.
9The reason is that the unconditional variance is not the same as the long-run variance of the partial sum

T−1/2
∑

T
t+h=1 Ii,t+h∆Li,t+h since the latter also depends on any serial correlation in ∆Li,t+h.
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Critical values for RT in (2.8) can be based on the following multiplier bootstrap procedure.

Let {ξ j}K
j=1 be a set of i.i.d N(0,1) variables used to construct the test statistic

R∗T = max
1≤i≤N

R∗i,T , (2.9)

where

R∗i,T =
K−1/2

∑
K
j=1 ξ j

(
B−1/2

T ∑t+h∈H j Ii,t+h∆Li,t+h

)
âi

.

To cover different hypotheses and test statistics encountered in empirical analysis, we

consider a general setting in which the number of forecasts of yi,t+h can be large. Suppose that

for each 1≤ i≤ N, we have a set of Di models generating |Di| forecasts for all 1≤ t +h≤ T ,

namely ŷi,t+h|t,m for m ∈ Di, in addition to the benchmark ŷi,t+h|t,m0 . Hence, we can allow the

number of forecasts to vary across variables, although for simplicity we assume that this number

does not depend on time.10

The following general setup covers as special cases the earlier null hypotheses:11

H0 : max
1≤i≤N

max
m∈Di

E
[
∆Li,t+h,m

]
≤ 0. (2.10)

To test this null, define

Ut+h =
(
{∆L1,t+h,m}m∈D1,{∆L2,t+h,m}m∈D2, ...,{∆LN,t+h,m}m∈DN

)
so Ut+h is a column vector of dimension N = ∑

N
i=1 |Di| with kth component denoted by Uk,t+h.

Consider the test statistic

R̃T = max
1≤k≤N

T−1/2
∑

T
t+h=1Uk,t+h

âk
, (2.11)

10Extension to the case where Di is time-varying is conceptually trivial but makes the notation more cumbersome
without offering additional insights.

11For simplicity we ignore the dimension referring to the forecast horizon, but the analysis is easily extended to
also cover this.
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where âk is computed using any of the schemes described in Example 2.3.1.

Bootstrap critical value are constructed analogously

R̃∗T = max
1≤k≤N

R̃∗k,T , (2.12)

where

R̃∗k,T =
K−1/2

∑
K
j=1 ξ j

(
B−1/2

T ∑t+h∈H j Uk,t+h

)
âk

.

To establish the distributional properties of the test statistic in (2.11), we require

a set of regularity conditions. To this end, let Wk,t+h = Uk,t+h − E(Uk,t+h), while Wt+h =(
W1t+h, ...,WN t+h

)
. We summarize our assumptions as follows:

Assumption 1. Suppose that the following conditions hold:

(1) The distribution of Wt+h does not depend on t +h.

(2) P(max1≤t+h≤T ‖Wt+h‖∞ ≤ DT ) = 1 for some DT ≥ 1.

(3) {Wt+h}T
t+h=1 is β-mixing with mixing coefficient βmixing(·).

(4) c1 ≤ E
(

k−1/2
∑

s+k
t+h=s+1Wj,t+h

)2
, E
(

k−1/2
∑

s+k
t+h=s+1Wj,t+h

)2
≤C1 for any j, s and k.

(5) T 1/2+bDT log5/2(N T ) . BT . T 1−b/(logN )2 and βmixing(s) . exp(−b1sb2) for some

constant b,b1,b2 > 0.

(6) There exist a nonrandom vector a = (a1, ...,aN )′ ∈ RN and constants κ1,κ2 > 0 such that

κ1 ≤ a j ≤ κ2 for all 1≤ j ≤N and max1≤ j≤N |â j−a j|= oP(1/ logN ).

Part (1) of Assumption 1 requires strict stationarity and can be relaxed at the expense

of more technicalities in the proof. Part (2) imposes a bound on the tail behavior of the loss

difference. When the loss difference is bounded, we can choose DT to be a constant; when the

loss difference is sub-Gaussian, we can choose DT �
√

log(N T ) and adapt the proof to handle

P(max1≤t≤T ‖Wt+h‖∞≤DT )→ 1. This bound on the variables is needed for the high-dimensional

bootstrap and Gaussian approximation even in the i.i.d case; see Chernozhukov, Chetverikov
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and Kato (2013, 2017, 2018).12 The β-mixing condition in part (3) is routinely imposed in the

literature and holds for many stochastic processes. Part (4) requires the loss differences for all

variables to be of roughly the same order of magnitude. Part (5) imposes rate conditions; notice

that we allow N � T . Finally, part (6) states that â j needs to be uniformly consistent for some

non-random quantity that is bounded away from zero and infinity.

We can verify that part (6) of Assumption 1 holds for the normalization schemes listed

above as we next formalize:

Lemma 2.3.1. Let Assumption 1(1)-(5) hold. Then all the normalizations in Example 2.3.1 satisfy

part (6) of Assumption 1.

Using Assumption 1, we have the following result:

Theorem 2.3.1. Suppose Assumption 1 holds. Under

H0 : max
1≤i≤N

max
m∈Di

E
[
∆Li,t+h,m

]
≤ 0,

we have

limsup
T→∞

P
(
R̃T > Q̃∗T,1−α

)
≤ α,

where Q̃∗T,1−α
is the (1−α) quantile of R̃∗T conditional on the data. Moreover, if E(∆Li,t+h,m) = 0

for all 1≤ i≤ N and m ∈Di, then

limsup
T→∞

P
(
R̃T > Q̃∗T,1−α

)
= α.

12One way to relax part (2) of Assumption 1 is to use the union bound together with moderate deviation inequalities
for self-normalized sums, but this might lead to more conservative procedures; see Chernozhukov, Chetverikov and
Kato (2018). Notice that although other parts of Assumption 1 require DT � T 1/2−2b, it is possible to relax DT
to be larger than

√
log(N T ). To do so, we only need components of Wt+h to have bounded m-th moment with m

satisfying N � T (1/2−2b)m−1. Hence, certain “heavy-tailed” processes such as GARCH processes can be allowed,
provided that they have a sufficient number of moments. For conditions ensuring that this hold for a GARCH(1,1)
process, see Bollerslev (1986).
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Theorem 2.3.1 establishes the asymptotic validity of the bootstrap procedure. Under the

null of equal expected loss for all variables, the multiplier bootstrap test is asymptotically exact

and, hence, not conservative.

The result readily applies to comparisons across multiple forecast horizons as described

in Section 2.2.3; for this case we only need to replace Ut+h with

Ut =
(
{∆L1,t+h,m}m∈D1,1≤h≤H ,{∆L2,t+h,m}m∈D2,1≤h≤H , ...,{∆LN,t+h,m}m∈DN ,1≤h≤H

)
.

The studentization used for R̃T serves a similar role as the self-normalization in

Chernozhukov, Chetverikov and Kato (2018) for the independent case and can improve

the power of the test. By arguments similar to those in Chernozhukov, Chetverikov and

Kato (2018), we expect the test to have non-trivial power against alternatives of order

max1≤i≤N maxm∈Di E(∆Li,t+h,m) = O(
√

T−1 logN ) with a rate that is minimax optimal. Since

the number of hypotheses tested only enters through a logarithmic factor, the proposed test has

consistency against fixed alternatives even if this number grows exponentially with T .

It is important to note that the dimension N only has a very small impact on the

requirements that guarantee the validity of the procedure. This holds because in the regularity

conditions (Assumption 1), only the rate log(N ) matters, which means that N can increase at

the rate T c for any constant c > 0.

Theorem 2.3.1 provides a transparent technical result on the nature of the normalization.

The main concern is whether the estimation errors (each of order O(T−1/2)) in the vast number

(N ) of normalizations â j could create problems for the asymptotic behavior of the test. From

Chernozhukov, Chetverikov and Kato (2018), we know that the sample variance can be used

as valid normalizations in the independent case. However, it is not clear whether the specific

structure of the sample variance plays an important role or how to obtain a meaningful “sample

variance” in the dependent case. Theorem 2.3.1 answers this question and states that the only
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requirement for the normalization terms is that they are consistent for some non-random quantities

a j at a very slow rate. We do not need to specify what these non-random quantities are and they

do not strictly have to be variances.

2.3.2 Family-wise Error Rate

We next show how to use Theorem 2.3.1 to construct confidence sets for under- and

overperforming units. For notational simplicity, we consider |Di| = 1 so N = N. Define

A = {i : µi > 0}, where µi = T−1
∑

T
t+h=1 E∆Li,t+h, so that A is the set of units, i, for which an

alternative forecast, m, is genuinely better than the benchmark, m0.

To estimate this set, consider

Â =

{
i :

T−1/2
∑

T
t+h=1 ∆Li,t+h

âi
> Q∗T,1−α

}
.

If Â contains a unit that is not in A, i.e., Â\A 6= /0, Â makes a false discovery since it

includes units for which the alternative forecast performs no better than m0.

A consequence of Theorem 2.3.1 is that the probability of a false discovery is

asymptotically at most α. To see this, notice that

P
(
Â\A 6= /0

)
= P

(
T−1/2

∑
T
t=1 ∆Li0,t+h

âi0
> Q∗T,1−α for some i0 ∈ Â\A

)

≤ P

(
max
i∈Ac

T−1/2
∑

T
t=1 ∆Li,t+h

âi
> Q∗T,1−α

)

≤ α+o(1),

where the last inequality follows by Theorem 2.3.1 applied to Ac (instead of {1, ...,N}). By

construction, maxi∈Ac Eµi ≤ 0. We summarize this result as follows:
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Corollary 2.3.1. Suppose Assumption 1 holds. Consider A and Â defined above. Then

limsup
T→∞

P
(
Â⊆ A

)
≥ 1−α.

Hence, with probability at least 1−α, Â only selects cases in which the alternative forecast

outperforms the benchmark.

Our approach to bootstrapping the distribution of the maximum value chosen from a

large set of test statistics is related to the reality check methodology pioneered by White (2000),

though there are also important differences. Most notably, White (2000) tests hypotheses about

the population parameter value.13 Moreover, he assumes that the forecasts are generated by

parametric models and thus take the form ft+h|t = f (Zt , β̂h), using the parameter updating scheme

discussed in West (1996).14 Finally, White (2000) assumes that the number of forecasts each

time period is fixed, whereas we allow it to be expanding with the sample size, T . As pointed out

by White (2000) (page 1111) and Chernozhukov, Chetverikov and Kato (2018) (Comment 4.7),

assuming a fixed number of forecasts, models or moment conditions is an important limitation in

many empirical applications. Here we allow the number of forecasts to be much larger than T

which can be quite important for panel forecasts with large N.

2.3.3 Moment Selection

The literature on testing moment inequalities suggests that test power can be improved

by reducing the number of inequalities via moment selection; see e.g., Hansen (2005); Andrews

and Soares (2010); Romano, Shaikh and Wolf (2014). To see how this works, we start with the

goal of testing moment inequalities in A = {1, ...,N}.15 We would like to use the data to find a

13See, e.g., the discussion on page 1099 in White (2000).
14See Assumption A.2 in the Appendix to West (1996).
15This can be generalized to A = {1, ...,N }, where N varies depending on which null hypothesis is being tested.

For example, N = N in HS
0 , whereas N = N×M in HNSS

0 . Again, for simplicity, we focus on the case of |Di|= 1
(so N = N).
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set A0 such that with high probability, say 1−β, the moment inequalities contained in A\A0 are

satisfied. Provided that this holds, we only need to test the moment inequalities in A0. When

|A0| � |A|, excluding the moment inequalities in A\A0 can be expected to improve the power

of the test, although we need to adjust the size of the test to be α−β when testing the moment

inequalities in A0.

Most of the literature on testing moment inequalities focuses on the case where |A| is

fixed.16 Here, we follow the spirit of Romano, Shaikh and Wolf (2014) and use a bootstrapped

threshold. We summarize the details in Algorithm 1.

Algorithm 1. Implement the following steps:

1. Choose β ∈ (0,α) to be either a constant or a sequence tending to zero.

2. Compute

Ri,T =
T−1/2

∑
T
t=1 ∆Li,t+h

âi
∀1≤ i≤ N.

3. Compute the bootstrapped threshold Cβ, which is the 1−β quantile of ‖R∗T‖∞ conditional

on the data, where R∗T is defined in (2.9). In other words, P(‖R∗T‖∞ >Cβ | data) = β.

4. Select A0 =
{

i : Ri,T >−Cβ

}
.

5. Compute the test statistic maxi∈A0 Ri,T .

6. Compute the bootstrap critical value Cα−β,A0 satisfying P(maxi∈A0 R∗i,T >Cα−β,A0 | data) =

α−β, where R∗i,T is defined in (2.9).

Although this procedure requires us to decrease the size of the test from α to α−β for

small β, the test statistic and the bootstrap critical value are computed as the maximum over

indices in A0 rather than over the original set {1, ...,N}. When |A0| is much smaller than N, the

16Hansen (2005) proposes a threshold of
√

log logN based on the law of iterated logarithm so that A0 contains
moments whose sample counterpart is larger than −

√
T−1 log logN.
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price we pay for using a reduced nominal size is small and the procedure can result in improved

power.17

2.3.4 Monte Carlo Simulations

Appendix A reports the results from a set of Monte Carlo simulations which we use

to study the finite sample properties of our test statistics. We draw the following conclusions

from these simulations. Both studentized and non-studentized test statistics have reasonable

size properties when N and M are small, regardless of the time-series dimension, T . For small

N,M and T , the test statistics are slightly oversized. However, as N and M grow bigger, the test

statistics tend to become under-sized. Undersizing is particularly pronounced for the studentized

test statistic when α = 0.05 but is less of a concern for α = 0.10. Using a critical level of α = 0.10

for the studentized test statistic in many cases gets us close to a size of 5-10%.

The Monte Carlo simulations also show that the power of the studentized test statistic is

far better than that of the non-studentized test statistic, even when size-adjusted critical values

are used in the power calculations. This is an important consideration because accounting for

the multiple hypothesis testing problem easily leads to procedures with weak power and, hence,

conservative inference. For this reason, we use studentized test statistics with a size of α = 0.10

throughout our empirical applications.

2.4 Comparing Forecasting Performance in Individual Cross-

sections

In situations with a large number of variables, N, we can attempt to exploit the cross-

sectional dimension of the data to address whether the performance of any individual forecaster,

averaged cross-sectionally, is better than the benchmark in a single period or over a short time
17The high-dimensional testing problem is further discussed by Chernozhukov, Chetverikov and Kato (2018).
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span. In this section we introduce a set of assumptions about a common-factor structure in

the individual forecast errors that allows us to conduct inference on predictive accuracy using

individual cross-sections.

2.4.1 Common Factors in Forecast Errors

Tests for superior predictive skills in a single cross-section can be based on the distribution

of the average cross-sectional loss differential of forecaster m, µ̂m,t+h = N−1
∑

N
i=1 ∆Li,t+h,m. For

inference to be valid, we require the use of a cross-sectional central limit theorem for the resulting

test statistic which means that the cross-sectional dependency in the loss differentials cannot be

too strong. To establish conditions under which this holds, consider the following factor structure

for the forecast errors

ei,t+h,m = λ
′
i,m ft+h +ui,t+h,m, (2.13)

for 1≤ i≤ N and 1≤ t +h≤ T , where ft+h ∈Rk is a set of latent factors common to the forecast

errors. Economic variables often contain common components that none of the forecasters

anticipated and these can make forecast errors highly correlated. The factor structure assumed in

(2.13) is a natural representation of this situation.

Under the factor structure in (2.13), the squared error loss differential takes the form

∆Li,t+h,m =
(
λ
′
i,m0

ft+h +ui,t+h,m0

)2−
(
λ
′
i,m ft+h +ui,t+h,m

)2

= f ′t+h(λi,m0λ
′
i,m0
−λi,mλ

′
i,m) ft+h +u2

i,t+h,m0
−u2

i,t+h,m

+2 f ′t+h(λi,m0ui,t+h,m0−λi,mui,t+h,m). (2.14)

To rule out that the cross-sectional dependencies are so strong as to prevent us from

establishing distributional results for the cross-sectional average loss differentials, we assume that

the idiosyncratic terms are independent conditional on the factor structure:
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Assumption 2. Let F be the σ-algebra generated by { ft+h}1≤t+h≤T and {λi,m}1≤i≤N, 0≤m≤M.

Conditional on F , {ui}1≤i≤N is independent across i and E(ui | F ) = 0, where ui =

{ui,t+h,m}1≤t+h≤T,1≤m≤M ∈ RT×M.

Using Assumption 2, we have

1
N

N

∑
i=1

∆Li,t+h,m−E

(
1
N

N

∑
i=1

∆Li,t+h,m | F

)
=

1
N

N

∑
i=1

ξi,t+h,m,

where ξi,t+h,m = 2 f ′t+h(λi,m0ui,t+h,m0 − λi,mui,t+h,m) +
(

u2
i,t+h,m0

−u2
i,t+h,m

)
−

E
(

u2
i,t+h,m0

−u2
i,t+h,m | F

)
. Under Assumption 2, {ξi,t+h,m}N

i=1 has mean zero and is

independent across i conditional on F . Therefore, we can use a central limit theorem to show that

1
N ∑

N
i=1 ∆Li,t+h,m is an asymptotically normal estimator for E

( 1
N ∑

N
i=1 ∆Li,t+h,m | F

)
. By virtue of

a high-dimensional Gaussian approximation, we can extend this intuition to a simultaneous test

across many periods, t +h, and/or forecasts, m.

2.4.2 Hypotheses about Performance in Individual Cross-sections

The conditional null that, given F , no forecaster, m = 1, ....,M, is better, on average

across all units, than the benchmark in a particular time period, t +h, can be tested by considering

the maximum of the expected value of the cross-sectionally averaged loss differentials in period

t +h, ∆Lt+h,m = 1
N ∑

N
i=1 ∆Li,t+h,m:

HES
0 : max

(t+h,m)∈A
E
(
∆Lt+h,m | F

)
≤ 0, (2.15)

where A is the set defined by A = {t +h}×{m = 1, ....,M}. The hypothesis in (2.15) is strictly

about performance in period t +h so we refer to this null as characterizing “event skills” (ES).

Equivalently, the null in (2.15) is concerned with whether the average predictive accuracy in

period t +h of any of the M forecasters is better than that of the benchmark.

71



We can also test whether, across all periods t+h= 1, ...,T and all forecasters, m= 1, ...,M,

any of the forecasters were more accurate, on average across all units, than the benchmark in any

time period (given F ):

HESall
0 : max

t+h∈{1,...,T}
max

m∈{1,...,M}
E
(
∆Lt+h,m | F

)
≤ 0, (2.16)

where now A = {t+h = 1, ...,T}×{m = 1, ...,M} in (2.16). This null can be used to test whether

any forecaster’s cross-sectional average performance beats the benchmark during any period in

the sample.

Finally, we can also consider the average performance over small subsamples of time,

e.g., during individual calendar years or during some periods of time characterized, e.g., by

high volatility. Denoting the subset of dates as Tc, we can accommodate this case by re-defining

A = {t +h ∈ Tc}×{m = 1, ...,M}, and considering the null hypothesis

HESc
0 : max

t+h∈Tc
max

m∈{1,...,M}
E
(
∆Lt+h,m | F

)
≤ 0, (2.17)

2.4.3 Test statistics

The test statistic we propose for testing (2.15), (2.16) or (2.17) is given by

Z = max
(t+h,m)∈A

√
N∆Lt+h,m√

N−1 ∑
N
i=1 ∆̃L

2
i,t+h,m

, (2.18)

where ∆̃Li,t+h,m = ∆Li,t+h,m−∆Lt+h,m is the demeaned loss differential of variable i for forecaster

m. Critical values for this test statistic can be obtained from a bootstrap

Z∗ = max
(t+h,m)∈A

N−1/2
∑

N
i=1 εi∆̃Li,t+h,m√

N−1 ∑
N
i=1 ∆̃L

2
i,t+h,m

, (2.19)
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where the multipliers εi ∼ N(0,1) are generated independently of the data. Note that we assume

cross-sectional conditional independence for the idiosyncratic terms. Moreover, we assume

that the multipliers εi are i.i.d, rather than having the block structure needed to handle serial

dependence in the test statistics which use data from multiple time periods.

Using these assumptions, we can establish the validity of the above procedure:

Theorem 2.4.1. Let Assumption 2 hold. Suppose that (κ3
N,3∨κ2

N,4∨BN)
2 log7/2(T MN).N1/2−c

for some c∈ (0,1/2), where BN = (E maxt,m,i |ξi,t+h,m|4)1/4, κN,3 = (maxi,t,m E|ξi,t+h,m|3)1/3 and

κN,4 = (maxi,t,m E|ξi,t+h,m|4)1/4. Then under H0 in (2.15) we have

limsup
N→∞

P
(
Z > Q∗N,1−α,Z

)
≤ α,

where Q∗N,1−α,Z is the (1 − α) quantile of Z∗ conditional on the data. Moreover, if

E
( 1

N ∑
N
i=1 ∆Li,t+h,m | F

)
= 0 for all (t +h,m) ∈ A , then

limsup
N→∞

P
(
Z > Q∗N,1−α,Z

)
= α.

Here, BN , κN,3 and κN,4 measure the tail of ξi,t+h,m, which is the deviation of the loss

differential ∆Li,t+h,m from its conditional mean. When deviations are bounded, BN ,κN,3 and

κN,4 are positive constants. If ξi,t+h,m has sub-Gaussian tails, then BN = O(log(T MN)) and κN,3

and MN,4 are constants. The proof of Theorem 2.4.1 follows almost exactly the same lines as

the proof of Theorem 4.3 of Chernozhukov, Chetverikov and Kato (2018) with two exceptions:

(1) the independence assumption is replaced by conditional independence given F and (2) the

assumption of identical distributions is changed and can be handled by slight changes to the

definition of BN , κN,3 and κN,4. We omit the details of the proof for this reason.

Theorem 2.4.1 is stated for the null in (2.15), but the null hypotheses in (2.16) or (2.17) can

be tested in the same way by replacing max(t+h,m)∈A with either maxt+h∈{1,...,T}maxm∈{1,...,M}

or with maxt+h∈Tc maxm∈{1,...,M} in (2.18) and (2.19).
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2.5 Evaluating the Term Structure of Forecast Errors for the

IMF

Do macroeconomic forecasts become significantly more accurate over time as the distance

to the target date is reduced so that, on average, short-term forecasts are be more precise than

long-run forecasts? We would expect this property to hold as a result of flows of news which

should enable forecasters to update their predictions by conditioning on an expanded information

set. However, whether such improvements really do occur is likely to depend on the quality and

relevance of the information flow and on whether the forecaster exploits such information in

a reasonably efficient manner. For example, in cases with noisy and irregular statistical data,

short-term forecasts may not be much more accurate than long-term forecasts. How far out in

time (prior to the target date) any improvements occur is also likely to reflect the persistence of

the underlying variable: Improvements in predictive accuracy can be expected to occur at longer

horizons for variables that are highly persistent–since news shocks affect outcomes further ahead

in time–compared to variables with little persistence.

The term structure of forecast errors–the mapping between predictive accuracy and the

forecast horizon–therefore contains information about the data generating process of the variable

being predicted, the arrival rate and quality of new information, as well as on forecasters’ ability

to use such information to improve forecast accuracy, i.e., the forecaster’s “learning curve”.

Macroeconomic surveys often ask participants to predict outcomes across across multiple

forecast horizons. For example, the Survey of Professional Forecasters and the Blue Chip forecasts

request that survey participants forecast outcomes several quarters or even years ahead in time.

This enables comparisons of forecast accuracy across multiple horizons and makes this type of

data ideally suited for analysis by means of our new Sup tests.

This section provides an empirical application that uses our methods to compare the

accuracy at long and short horizons of the International Monetary Fund’s (IMF) World Economic
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Outlook (WEO) forecasts of five variables across up to 185 countries over a 30-year period. The

WEO publication contains the “flagship” forecasts published by the IMF which receive more

attention perhaps than any other global forecasts and is widely covered by public media.18

To be able to pinpoint for which variables and at which horizons any improvements in

predictive accuracy occurs, we conduct our initial analysis separately for each of the five variables

and at particular forecast horizons. Instead we take advantage of the large cross-sectional (country-

level) dimension of the data which allows us to analyze forecasting performance for particular

clusters or subsets of countries and identify for which types of economies the IMF forecasts

become significantly more accurate as the forecast horizon is reduced. We also conduct analyses

that consider performance across all dimensions of the data (horizons, variables, and countries).

Using the richness of this information, we can better understand the IMF’s learning curve as well

as determinants of any improvements in predictive accuracy as a function of the forecast horizon.

2.5.1 Predictive Accuracy Across Different Horizons

WEO forecasts are published twice each year, namely in April (labeled Spring, or S) and

October (Fall, or F). The WEO publication contains forecasts for the current year (h = 0), next

year (h = 1), and up to five years ahead in time (h = 5). Since the time-series dimension of our

sample is relatively short, we focus our benchmark analysis on the current-year and next-year

forecast horizons in order to have a sufficient number of observations to compute sample averages.

This gives us four horizons, listed in decreasing order: {h = 1,S; h = 1,F; h = 0,S; h = 0,F}.

However, we also show results for the 2-5 year horizons at the end of this section.

For a subset of mostly advanced countries, current-year forecasts go back to 1990, while

next-year forecasts start in 1991. For other countries, the forecasts start later, providing us with a

somewhat shorter data sample. In all cases, the last outcome for our data is recorded for 2019,

giving us a maximum sample of 30 years. Our analysis covers forecasts of five variables, namely

18The WEO forecasts have been the subject of a number of academic studies summarized in Timmermann (2007).
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real GDP growth, inflation, import growth, export growth, and the current account balance as a

percentage of GDP.

We expect predictive accuracy to improve as the forecast horizon is reduced and more

information about the outcome becomes available. Because we observe the WEO forecasts of a

particular outcome at different horizons, we can test if this holds. Ordering the WEO forecasts

from the longest (h = 1,S) to the shortest (h = 0,F) horizon, under the squared error loss in (2.1)

we have, from Patton and Timmermann (2011)

E[e2
i,h=0,F ]≤ E[e2

i,h=0,S]≤ E[e2
i,h=1,F ]≤ E[e2

i,h=1,S]. (2.20)

Using these inequalities, we compare predictive accuracy across four pairs of long and short

forecast horizons (hL and hS, respectively), namely (i) Spring versus fall next year (hL = 1,S;hS =

1,F); (ii) Fall next year versus spring current-year (hL = 1,F ;hS = 0,S); (iii) Spring versus

fall current-year (hL = 0,S;hS = 0,F); and (iv) Spring next year versus fall current-year (hL =

1,S;hS = 0,F).19 The fourth comparison is concerned with cumulative improvements in predictive

accuracy across the three shorter six-month intervals and so summarizes the lessons learned over

the 18-month period preceding the Fall current year forecast.

Our comparisons use the squared forecast error loss differential for variable i in period t

given forecasts generated at short and long horizons, t−hS and t−hL for hL > hS:

∆Li,t,hL→hS = (yi,t− ŷi,t|t−hS)
2− (yi,t− ŷi,t|t−hL)

2. (2.21)

Similarly, define the change in the squared forecast error from reversing the order and going from

the short to the long horizon:

∆Li,t,hS→hL = (yi,t− ŷi,t|t−hL)
2− (yi,t− ŷi,t|t−hS)

2. (2.22)

19Current-year forecasts (h = 0) can be viewed as a mixture of nowcasts and forecasts.
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To understand the IMF’s learning curve, we initially apply our approach to test for

improvements in squared error loss accuracy across all countries for a given pair of forecast

horizons and a given variable. For example, to test the null that, for each country, i, the short-term

forecast is at least as accurate as the long-term forecast, we test the null20

H0 : max
i∈{1,...,N}

(
E[∆Li,t,hL→hS ]

)
≤ 0. (2.23)

To test the converse proposition that, for each country, i, forecast accuracy does not

improve as the forecast horizon is reduced, we test the null

H0 : max
i∈{1,...,N}

(
E[∆Li,t,hS→hL ]

)
≤ 0. (2.24)

2.5.2 Results for Individual Countries

Rejections of the null in (2.24) imply that forecasts are improving as the forecast horizon

gets shorter. To get a sense of whether the accuracy of the WEO forecasts improves across

different horizons, Figure 2.1 shows a heat diagram depicting how the accuracy of the WEO

country-level inflation forecasts evolves as we move from h = 1,S to h = 1,F (top left panel),

from h = 1,F to h = 0,S (top right panel), from h = 0,S to h = 0,F (bottom left panel) and

on a cumulative basis (h = 1,S versus h = 0,F , bottom right). The last comparison measures

whether the WEO current-year Fall forecasts (h = 0,F) are more accurate than the prior-year

Spring forecasts (h = 1,S) and thus accumulates any gains in accuracy over the three preceding

six-month intervals. Colors applied to each country are based on the p-values for testing the null

in (2.24). Red color corresponds to small p-values, indicating that short horizon forecasts are

significantly more accurate than long-horizon forecasts. Green color indicates weak evidence

20For simplicity, we suppress references to the variable in the subscript.
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against significant improvements in accuracy as the forecast horizon gets shorter.21

We find no evidence that inflation forecasts at the longest horizon (h = 1,S) are

significantly less accurate than forecasts at the shorter horizon (h = 1,F), indicating that little

useful information arrives between 15 and 21 months prior to the end of the year whose inflation is

predicted–or at least that such information is not incorporated in the IMF’s forecasts. Significant

improvements in forecast accuracy start showing up as we move from the prior-year fall to the

current-year spring (top right, h = 1,F vs h = 0,S) and from current-year spring to current-year

fall (bottom left, h = 0,S vs h = 0,F) inflation forecasts, with notable improvements for many

European countries, United States, and Australia. Finally, on a cumulative basis, we identify

significant improvements in the accuracy of the inflation forecasts for most of the aforementioned

countries in addition to countries such as Canada, Chile, and India.22

Table 2.1 supplements Figure 2.1 by reporting the outcome of comparisons of the accuracy

of the WEO forecasts of GDP growth and inflation across the four different forecast horizons.

Panels A and C set up the test statistic so that rejections (small p-values) indicate significant

improvements as the forecast horizon gets longer, thus testing the null in (2.23). Reassuringly, we

fail to find a single country for which the GDP growth forecasts (Panel A) or inflation forecasts

(Panel C) are significantly less accurate at the shorter forecast horizons than at the longer horizons.

Testing the reverse null in (2.24) we find four instances–Brazil, Mexico, Italy, and Portugal–

for which the Sup test identifies significant improvements in the accuracy of next-year GDP

growth forecasts as we move from the spring to the fall WEO (Panel B). Evidence of significant

improvements in the accuracy of the GDP growth forecasts gets stronger for the current-year

forecasts (h = 0,S vs. h = 0,F) for which the null is rejected for ten countries. On a cumulative

basis (last column), we identify significant improvements in short-term GDP growth forecasts

21When implementing sup tests on current-year and next-year forecasts, we use a block length BT = 1 while we
set BT = 2,3,4,5 when analyzing forecasts at horizons 2, 3, 4 and 5 years. To increase the power of tests, we only
include countries with at least 20 forecasts.

22Note that a significant improvement for one of the shorter six-month incremental horizons is no guarantee that
a country experiences a significant improvement on a cumulative basis, mainly because the cumulative 18-month
forecast revisions are more volatile than the shorter six-month revisions.
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(h = 0,F) relative to long-term forecasts (h = 1,S) for 21 countries.

For the inflation forecasts (Panel D), consistent with Figure 2.1 we find no evidence of

significant improvements in predictive accuracy as we move between the two longest forecast

horizons (h = 1,S vs. h = 1,F). Conversely, at the shorter horizons there are now more countries

with significant improvements than for GDP growth, namely 10 (h = 1,F vs. h = 0,S) and

15 (h = 0,S vs. h = 0,F) cases, respectively. Improvements in inflation forecasts are, thus,

concentrated in the revisions between the next-year fall and current-year fall periods. On a

cumulative basis, we identify significant improvements in inflation forecasts for 32 countries.

Table 2.2 conducts the same set of tests for forecasts of import and export growth and

the current account balance. For all three variables, we fail to identify a single case in which

forecasts are significantly more accurate at the longer horizons than at the shorter ones (Panels

A, C, and E). For import and export, our tests only identify a combined total of six cases in

which forecast accuracy improves significantly between the two fall issues of WEO (h = 1,F

vs. h = 0,F). Even on a cumulative basis (h = 1,S vs. h = 0,F), the Sup tests only detect six

countries with significant improvements in predictive accuracy for each of the import and export

growth variables.

Improvements in predictive accuracy at shorter horizons is notably stronger for the current

account forecasts. In fact, we identify significant improvements for all three six-month reductions

in forecast horizon, including 23 countries for which the cumulative forecast revision leads to

significant improvements.

These results show that there is surprisingly weak evidence that IMF forecasts of imports

and exports improve significantly as the forecast horizon gets reduced from 21 to 3 months prior

to the end of the target year. The learning curve is, thus, quite flat for these variables. Conversely,

the learning curve for the current account forecasts behaves more in line with the forecasts of

GDP growth and inflation with many more cases showing significant improvements in predictive

accuracy for this variable as the forecast horizon is reduced.
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2.5.3 Heterogeneity Across Regions and Types of Economies

To examine whether improvements in the accuracy of the WEO forecasts vary across

geographical regions and types of economies we next test the hypothesis in (2.7). To this end,

we group the countries into nine categories adopted by the IMF, namely (i) advanced economies,

(ii) emerging and developing economies, (iii) emerging and developing Europe, (iv) low income

developing countries, (v) Latin America and Caribbean, (vi) Commonwealth of Independent

States, (vii) Middle East, North Africa, Afghanistan and Pakistan, (viii) Emerging and developing

Asia, and (ix) Sub-Sahara Africa.

The results, presented in Tables 2.3 and 2.4, show large variation across types of

economies, regions, and variables. For reference, the first column (world) summarizes the

evidence from Tables 2.1 and 2.2, confirming that we identify most countries with significant

improvements in predictive accuracy for the inflation and current account series and fewest for

the import and export growth variables, with GDP growth in the middle.

The remaining columns reveal a great deal of heterogeneity in rejection rates across

different clusters of countries and also demonstrate that the number of rejections in fact can be

lower for tests undertaken on a larger, more heterogeneous set of countries compared to a smaller,

more homogeneous set. This shows up most evidently for the advanced economy cluster in the

second column. For example, for the cumulative revisions (h = 1,S vs. h = 0,F), we identify

significant improvements in the accuracy of the inflation forecasts for 27 out of 36 advanced

economies as compared to only 33 out of 182 world economies. The corresponding numbers are

16 out of 36 advanced economies for GDP growth versus 17 out of 149 emerging market and

developing economies and 23 out of 185 world economies. Across regional clusters, the number

of rejections tends to be high for Latin America and the Caribbean and low for emerging and

developing Europe.

For the import and export growth forecasts (Table 2.4), the number of rejections is twice

as high when the Sup tests are undertaken on the cluster of advanced economies compared
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to conducting the tests on the full set of world economies. The number of rejections is

correspondingly lower among emerging market and developing economies (column 3) compared

to what we would expect if rejection rates were homogeneous across different clusters.

We conclude from these findings that there is stronger evidence for the advanced

economies than for any of the other groups that the WEO forecasts become significantly more

accurate as the forecast horizon shrinks. Our empirical results thus suggest that conducting the

Sup tests on a more homogeneous sample of units can lead to increased power consistent with the

analysis in Hansen (2005).

Advanced Economies

The higher power of the Sup tests among the set of advanced economies allows us to

identify the individual economies in this group for which forecasts improve significantly as the

horizon shrinks. Table 2.5 therefore applies the Sup test associated with (2.7) to GDP growth and

inflation forecasts for this group.

Once again, we find no case for which the short-horizon forecasts are significantly

less accurate than the corresponding forecasts generated at longer horizons (Panels A, C).

Conversely, we identify significant reductions in squared error loss after accounting for the

multiple comparison problem not only for the current-year forecasts (h = 0,S versus h = 0,F)

but also for the one-year-ahead GDP growth forecasts (Panel B). For example, for next-year

GDP growth forecasts, we identify significant improvements in predictive accuracy between

the Spring and Fall WEO issues for Italy, Japan and Portugal. At the shorter horizons, we also

see improvements in predictive accuracy for major economies such as United States, United

Kingdom, Japan, France, and Spain. Portugal is the only country with improvements in predictive

accuracy across all six-month increments to the forecast horizon.

For the inflation forecasts (Panel D), we identify 12 countries for which the predictive

accuracy improves significantly between the three shortest horizons and no country with improved
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accuracy between the two next-year horizons (h = 1,S vs. h = 1,F). On a cumulative basis, we

see significant improvements for all major advanced economies.

2.5.4 Joint Tests Across Variables and Forecast Horizons

The top part of panel A in Table 2.6 reports results from Sup tests conducted, at each

horizon, across all five variables ( j = 1, ...,5):

H0 : max
j∈{1,...,J}

max
i∈{1,...,N}

max
m∈{1,..,M}

E[∆Li, j,t+h,m]≤ 0. (2.25)

These comparisons result in up to 878 pairwise tests and produce up to 47 rejections for the world

economies. Our tests again identify a much larger number of rejections at the shortest (h = 0,S vs.

h = 0,F) horizons and for advanced economies compared to emerging markets and developing

economies (44 vs. 27).

The bottom part of panel A in Table 2.6 further pools the Sup tests across the three pairings

of non-overlapping horizons (H = 3):

H0 : max
h∈{1,...,H}

max
j∈{1,...,J}

max
i∈{1,...,N}

max
m∈{1,..,M}

E[∆Li, j,t+h,m]≤ 0. (2.26)

This generates a maximum of 2,751 pair-wise forecast comparisons for the world economies.

For this extended list of pairwise comparisons we identify only 14 rejections of the null that

long-run forecasts are at least as accurate as the short-run forecasts for every variable, country,

and horizon. Once again, this illustrates how adding more moment inequalities can in fact lead to

weaker power and fewer rejections.

Our results are based on the studentized test statistic in (2.8). To examine if it makes a

difference whether we use a studentized test, in unreported results we also conduct tests based on

the non-standardized test statistic with âi = 1. Using this test statistic, we find no rejections of the
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null that long-horizon forecasts are as accurate as short-horizon forecasts. This finding reflects

the dominance of outliers from a few emerging market and developing economies whose test

statistics tend to be far more volatile than those from other economies.

Panel B of Table 2.6 reports results from implementing our moment selection procedure

described in Algorithm 1 on the same set of moments as in Panel A. In fact, the moment selection

procedure produces fewer rejections than what we find for the regular approach (Panel A).

This happens because our data contains only few countries whose long-horizon forecasts are

significantly better than their short-horizon forecasts. As a result, the moment selection procedure

fails to exclude many hypotheses and its use of a smaller nominal size leads to fewer rejections.

2.5.5 Improvements in Predictive Accuracy for Individual Years

So far, our empirical analysis has focused on the panel-based Sup tests from Section 2.3.

We next consider the tests conducted on individual cross-sections as described in Section 2.4.

Figure 2.2 shows results from cross-sectional comparisons of GDP growth and inflation

forecasting performance in individual years, averaged across the roughly 180 individual countries

in our sample. Each row tracks a particular pairing of long and short forecast horizons, with

circles indicating individual years with rejections of the null that forecasts at the longer horizon

are at least as accurate as forecasts at the shorter horizon. Open circles indicate years with

rejections of the null in (2.15), while closed circles show years in which the joint null in (2.16)

gets rejected.

Comparing the two longest forecast horizons (h = 1,S versus h = 1,F) for the GDP

growth and inflation forecasts, we fail to reject the null (2.15) for around half of the years in our

30-year sample. Conversely, at the two shortest horizons (h = 0,S vs. h = 0,F), we only fail to

reject this null for two years. GDP growth and inflation forecasts thus improve significantly, on

average, in almost all years at the current-year horizons, as well as on a cumulative basis. There is

much weaker evidence of improvements in predictive accuracy every year at the longer next-year
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horizons. Overall, short-horizon forecasts of GDP growth and inflation are significantly more

accurate than long-horizon forecasts for a majority of the years during our sample even after

accounting for the multiple hypothesis testing problem associated with testing the joint null in

(2.16).

Figure 2.3 detects far fewer rejections of the null in (2.15) and (2.16), particularly for

the import and export growth forecasts (top panels). For these, the rate at which we identify

individual years with significantly improved forecasting performance increases over time with few

rejections prior to 2002 even at the two shortest horizons (h = 0,S vs. h = 0,F). Compared with

this, the rejection rates for the current account forecasts (bottom panel) are both more numerous

and also display a more even pattern through our sample.

These results demonstrate that our cross-sectional tests can be used to identify individual

years with improvements in forecasting performance as the forecast horizon gets shorter.

2.5.6 IMF’s Learning Curve at Longer Horizons

Up to this point our analysis focused on current-year and next-year forecasts. To get a

sense of the IMF’s learning curve at the longer horizons, we also consider the accuracy of WEO

forecasts spanning 2-5 year forecast horizons.

Figure 2.4 illustrates the IMF’s learning curve in the form of box-and-whisker plots

depicting the distribution of MSE ratios MSEhS/MSEhL which summarize the relative MSE

accuracy of short-horizon (hS) vs. long-horizon (hL) forecasts. In each panel, the top four rows

use Spring WEO forecasts at horizons ranging from one through five years while the rows below

track the shorter horizons. An MSE ratio of unity indicates no improvement in predictive accuracy,

while ratios below unity measure the degree of improvement in predictive accuracy between the

horizons in the numerator and denominator.

The plots show only modest evidence of improved forecast accuracy between the two-year

and five-year horizons except, perhaps, for the current account forecasts. Notable improvements in
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predictive accuracy show up at the shorter horizons, however, particularly for the GDP growth and

inflation series whose median values and 90th percentiles fall below 0.7 and unity, respectively,

for the two shortest forecast horizons.

Table 2.7 presents formal tests for improvements in predictive accuracy, again comparing

Spring WEO forecasts at forecast horizons spaced one year apart from one through five years.23

We identify very few cases with significant improvements in predictive accuracy for the one-year

increments to the forecast horizon–essentially zero cases between the three and five-year horizons

and one or two cases at the shorter two or three-year horizons. On a cumulative basis, for the

four-year horizons from h = 1,S to h = 5,S, we find significant improvements in GDP growth

forecasts for about 10 of the world economies with even fewer cases for inflation (one instance),

import and export growth (both zero cases), and the current account balance (six cases).

This evidence is consistent with our empirical findings that significant improvements in

the predictive accuracy of the WEO forecasts are most common for GDP growth, inflation, and

the current account balance, and rarer for import and export forecasts. They also show that the

IMF’s learning curve is quite flat at the longer horizons–extended here to five years–and that

improvements in forecast accuracy accelerate notably at the shortest forecast horizons.

2.6 Conclusion

We develop new methods for comparing the accuracy of panels of forecasts and testing

if individual forecasts are significantly more accurate than some benchmark for at least one

outcome variable, one forecaster (model), one horizon, or one period. Our tests control the

family wise error rate and thus account for the multiple hypothesis testing problem that arises

when forecasting performance is compared across large numbers of pairings. Building on

Chernozhukov, Chetverikov and Kato (2018), we show that a bootstrap approach can be used

23To increase the power of our tests, we use the full normalization scheme from Example 2.3.1 with BT = 2,3,4,5
for forecast horizons of 2, 3, 4 and 5 years.
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to test hypotheses about predictive accuracy in high-dimensional settings such as those that are

increasingly encountered in practice.

Our empirical application to the IMF’s World Economic Outlook forecasts of five variables

for more than 180 countries recorded at several forecast horizons over a 30-year sample suggests

that the term structure of forecast errors is quite flat at longer 2-5 year horizons with little evidence

of significant improvements in predictive accuracy. Improvements in predictive accuracy are

stronger at shorter horizons spanning nine to three months, for GDP growth, inflation and the

current account balance and in advanced economies. Improvements in predictive accuracy are

notably weaker at longer horizons, for import and export growth and for emerging markets and

developing economies. These findings are confirmed across a range of tests conducted both in a

panel setting and for individual cross-sections (years). The results suggest that information that

helps significantly improve the accuracy of economic forecasts tends to be relatively short-lived.
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Table 2.1: Sup tests comparing predictive accuracy of GDP growth and inflation across different
horizons

Panel A: GDP, m0 = short horizon,m1 = long horizon
H0: Short-horizon forecasts are at least as accurate as long-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.995 0.996 1.000 1.000

Panel B: GDP, m0 = long horizon,m1 = short horizon
H0: Long-horizon forecasts are at least as accurate as short-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.015 0.025 0.006 0.001

Brazil India Canada Argentina Lebanon
Italy Switzerland Chile Brazil Liberia
Mexico Zimbabwe Israel Comoros Malta
Portugal Italy Congo, Democratic Panama

Japan Congo, Republic of Peru
Mongolia Guyana Portugal
Spain Haiti Sudan
Switzerland Israel Switzerland
Ukraine Italy Tunisia
United Kingdom Kenya United States

Zimbabwe

Panel C: Inflation, m0 = short horizon,m1 = long horizon
H0: Short-horizon forecasts are at least as accurate as long-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.316 0.944 1.000 0.998

Panel D: Inflation, m0 = long horizon,m1 = short horizon
H0: Long-horizon forecasts are at least as accurate as short-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.127 0.000 0.000 0.000

Angola Belgium Angola Guatemala
Australia Dominican Republic Austria India
France Finland Bangladesh Indonesia
Germany Georgia Belarus Italy
Hungary Indonesia Belgium Japan
Luxembourg Japan Cyprus Kenya
New Zealand Lithuania Denmark Lithuania
Slovak Republic Nepal Dominican Republic Luxembourg
Slovenia Norway Egypt Malaysia
Switzerland Panama Estonia Mongolia

Peru Ethiopia New Zealand
Poland Finland Norway
Singapore France Sweden
United Kingdom Germany Switzerland
United States Ghana Thailand

United States
Zambia

Notes: The first row in each panel reports the p-value of the Sup test for the null that the benchmark
forecasts m0 are at least as accurate as the alternative forecasts m1 for all countries included in the
comparison. Small p-values indicate rejections of the null. For cases where the null is rejected, we
list the countries for which the alternative forecast is significantly more accurate than the benchmark
forecast, i.e., countries whose t-statistics are higher than the 90% quantile of the maximum value of the
bootstrapped t-statistic. Panels A and B examine GDP growth forecasts while Panels C and D examine
inflation forecasts. Columns 1-3 compare WEO forecasts at consecutive 6-month revision points, while
column 4 evaluates the cumulative revision from the one-year-ahead spring forecasts (h = 1,S) to the
current-year fall forecasts (h = 0,F).
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Table 2.2: Sup tests comparing predictive accuracy of export growth, import growth and the
current account-GDP ratio across different horizons

Panel A: Import, m0 = short horizon,m1 = long horizon
H0: Short-horizon forecasts are at least as accurate as long-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.999 0.779 1.000 0.909

Panel B: Import, m0 = long horizon,m1 = short horizon
H0: Long-horizon forecasts are at least as accurate as short-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.190 0.137 0.006 0.001

Italy Australia
Japan Chile
Venezuela Ireland

Switzerland
United States
Venezuela

Panel C: Export, m0 = short horizon,m1 = long horizon
H0: Short-horizon forecasts are at least as accurate as long-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.316 0.944 1.000 0.998

Panel D: Export, m0 = long horizon,m1 = short horizon
H0: Long-horizon forecasts are at least as accurate as short-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.127 0.000 0.000 0.000

Egypt Japan Canada
Uruguay Egypt

India
Ireland
Korea
Myanmar

Panel E: Current account, m0 = short horizon,m1 = long horizon
H0: Short-horizon forecasts at least as accurate as long-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.538 0.990 0.940 1.000

Panel F: Current account, m0 = long horizon,m1 = short horizon
H0: Long-horizon forecasts at least as accurate as short-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.034 0.009 0.009 0.000

Algeria Italy Algeria Algeria Italy
Japan Colombia Australia Japan
Malta Japan Bangladesh New Zealand
Pakistan South Africa Canada Pakistan
Poland Venezuela Chile Saudi Arabia
Saudi Arabia China Slovenia
Spain Egypt South Africa

France Spain
Greece Trinidad and Tobago
Guyana Turkey
Israel Uruguay

Venezuela

Notes: The first row in each panel reports the p-value of the Sup test for the null that the benchmark forecasts
m0 are at least as accurate as the alternative forecasts m1 for all countries included in the comparison. Small
p-values indicate rejections of the null. For cases where the null is rejected, we list the countries for which
the alternative forecast is significantly more accurate than the benchmark forecast, i.e., countries whose
t-statistics are higher than the 90% quantile of the maximum value of the bootstrapped t-statistic. Panels A
and B examine import growth forecasts; Panels C and D examine export growth forecasts; Panels E and F
examine current account-GDP ratio forecasts. Columns 1-3 compare WEO forecasts at consecutive six-month
revision points, while column 4 evaluates the cumulative revision from the one-year-ahead spring forecasts
(h = 1,S) to the current-year fall forecasts (h = 0,F).
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Table 2.3: Sup tests comparing the accuracy of GDP growth and inflation rate forecasts across
clusters of economies

Panel A: GDP Growth
world ae emde lics eeur dasia lac menap cis ssa

h=1,S vs. h=1,F 0.01 0.01 0.01 0.07 0.15 0.41 0.00 0.13 0.05 0.05
Rejections 4 3 2 1 0 0 3 0 1 1
h=1,F vs. h=0,S 0.02 0.00 0.05 0.03 0.20 0.02 0.06 0.12 0.04 0.02
Rejections 3 6 2 1 0 1 2 0 4 2
h=0,S vs. h=0,F 0.01 0.00 0.02 0.08 0.03 0.01 0.01 0.02 0.01 0.06
Rejections 10 15 3 3 2 2 8 3 2 3
h=1,S vs. h=0,F 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.00
Rejections 23 16 17 9 2 4 12 5 3 12

Countries 185 36 149 58 12 27 32 23 12 43

Panel B: Inflation
world ae emde lics eeur dasia lac menap cis ssa

h=1,S vs. h=1,F 0.12 0.13 0.10 0.05 0.14 0.11 0.45 0.45 0.21 0.04
Rejections 0 0 0 2 0 0 0 0 0 2
h=1,F vs. h=0,S 0.00 0.00 0.03 0.03 0.00 0.04 0.03 0.01 0.04 0.01
Rejections 10 12 3 2 5 1 3 2 2 4
h=0,S vs. h=0,F 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.02 0.14
Rejections 15 12 7 3 1 5 5 3 3 0
h=1,S vs. h=0,F 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
Rejections 33 27 18 11 4 11 8 6 6 9

Countries 182 36 146 57 12 26 31 22 12 43

Notes: This table reports p-values for Sup tests comparing long-horizon to short-horizon WEO forecasts of GDP
growth (Panel A) or inflation (Panel B). The null hypothesis is that none of the long-horizon WEO forecasts are
less accurate than the corresponding short-horizon forecasts for each of the countries within a particular group.
Small p-values indicate that the null is rejected and some short-horizon WEO forecasts are significantly more
accurate than their long-horizon counterparts. Each panel also shows the number of countries for which the null
hypothesis is rejected using a nominal size of α = 0.1. ’ae’ refers to advanced economies, ‘emde’ is emerging
and developing economies, ’eeur’ is emerging and developing Europe, ‘lics’ is low income developing countries,
’lac’ is Latin America and Caribbean, ’cis’ is Commonwealth of Independent States, ’menap’ is Middle East,
North Africa, Afghanistan, and Pakistan, ’dasia’ is emerging and developing Asia, and ’ssa’ is Sub-Sahara Africa.

89



Table 2.4: Sup tests comparing the accuracy of import, export, and current account forecasts
across clusters of economies

Panel A: Import
world ae emde lics eeur dasia lac menap cis ssa

h=1,S vs. h=1,F 0.19 0.28 0.17 0.22 0.17 0.18 0.05 0.55 0.20 0.19
Rejections 0 0 0 0 0 0 1 0 0 0
h=1,F vs. h=0,S 0.13 0.02 0.25 0.19 0.06 0.07 0.07 0.54 0.31 0.56
Rejections 0 4 0 0 1 2 2 0 0 0
h=0,S vs. h=0,F 0.00 0.00 0.07 0.20 0.04 0.10 0.02 0.02 0.22 0.10
Rejections 3 6 2 0 1 0 3 1 0 0
h=1,S vs. h=0,F 0.01 0.00 0.06 0.05 0.02 0.05 0.01 0.02 0.12 0.03
Rejections 5 12 3 1 1 1 7 1 0 1

Countries 180 35 145 57 11 24 32 23 12 43

Panel B: Export
world ae emde lics eeur dasia lac menap cis ssa

h=1,S vs. h=1,F 0.46 0.15 0.43 0.38 0.46 0.12 0.44 0.54 0.17 0.34
Rejections 0 0 0 0 0 0 0 0 0 0
h=1,F vs. h=0,S 0.05 0.04 0.04 0.37 0.45 0.21 0.12 0.01 0.09 0.65
Rejections 1 3 1 0 0 0 0 1 1 0
h=0,S vs. h=0,F 0.05 0.02 0.04 0.43 0.14 0.03 0.01 0.23 0.17 0.36
Rejections 2 3 1 0 0 3 1 0 0 0
h=1,S vs. h=0,F 0.00 0.00 0.00 0.03 0.08 0.00 0.08 0.00 0.04 0.18
Rejections 6 10 3 1 2 6 1 2 1 0

Countries 180 35 145 57 11 24 32 23 12 43

Panel C: Current account
world ae emde lics eeur dasia lac menap cis ssa

h=1,S vs. h=1,F 0.03 0.09 0.03 0.27 0.29 0.34 0.21 0.01 0.51 0.22
Rejections 1 2 1 0 0 0 0 1 0 0
h=1,F vs. h=0,S 0.01 0.00 0.04 0.07 0.00 0.11 0.09 0.01 0.08 0.03
Rejections 5 6 4 2 3 0 1 4 3 3
h=0,S vs. h=0,F 0.01 0.02 0.01 0.05 0.01 0.02 0.00 0.00 0.22 0.01
Rejections 5 3 5 1 2 4 5 3 0 1
h=1,S vs. h=0,F 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
Rejections 23 16 16 4 6 4 13 8 2 5

Countries 180 35 145 57 11 24 32 23 12 43

Notes: This table reports p-values for Sup tests comparing the accuracy of long-horizon vs. short-horizon WEO
forecasts of import growth (Panel A), export growth (Panel B), and the current account balance (Panel C). The null
hypothesis is that none of the long-horizon WEO forecasts are less accurate than the corresponding short-horizon
forecasts for each of the countries within a particular group. Small p-values indicate that the null is rejected
and some short-horizon WEO forecasts are significantly more accurate than their long-horizon counterparts.
Each panel also shows the number of countries for which the null hypothesis is rejected using a nominal size of
α = 0.1. ’ae’ refers to advanced economies, ‘emde’ is emerging and developing economies, ’eeur’ is emerging
and developing Europe, ‘lics’ is low income developing countries, ’lac’ is Latin America and Caribbean, ’cis’ is
Commonwealth of Independent States, ’menap’ is Middle East, North Africa, Afghanistan, and Pakistan, ’dasia’
is emerging and developing Asia, and ’ssa’ is Sub-Sahara Africa.
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Table 2.5: Sup tests comparing the accuracy of forecasts of GDP growth and inflation across
different forecast horizons for advanced economies

Panel A: GDP, m0 = short horizon,m1 = long horizon
H0: Short-horizon forecasts are at least as accurate as long-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.975 0.755 1.000 1.000

Panel B: GDP, m0 = long horizon,m1 = short horizon
H0: Long-horizon forecasts are at least as accurate as short-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.007 0.007 0.003 0.002

Italy Canada Austria Belgium
Japan Hong Kong SAR Belgium Canada
Portugal Luxembourg Canada Cyprus

Portugal Cyprus Finland
Switzerland Estonia France
United States France Germany

Israel Greece
Italy Hong Kong SAR
Japan Ireland
Malta Israel
New Zealand Italy
Portugal Japan
Spain Malta
Switzerland Portugal
United Kingdom Switzerland

United States

Panel C: Inflation, m0 = short horizon,m1 = long horizon
H0: Short-horizon forecasts are at least as accurate as long-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.888 1.000 1.000 1.000

Panel D: Inflation, m0 = long horizon,m1 = short horizon
H0: Long-horizon forecasts are at least as accurate as short-horizon forecasts
h=1, S vs. h=1, F h=1, F vs. h=0, S h=0, S vs. h=0, F h=1, S vs. h=0, F

0.151 0.000 0.001 0.000

Australia Belgium Austria Japan
Cyprus Denmark Belgium Korea
Finland Finland Canada Lithuania
France France Cyprus Luxembourg
Germany Germany Czech Republic Netherlands
Italy Italy Denmark New Zealand
Luxembourg Japan Estonia Norway
New Zealand Lithuania Finland Singapore
Slovak Republic Norway France Slovak Republic
Slovenia Singapore Germany Slovenia
Spain United Kingdom Ireland Spain
Switzerland United States Italy Sweden

Switzerland
United Kingdom
United States

Notes: The first row in each panel reports the p-value of the Sup test for the null that the benchmark
forecasts m0 are at least as accurate as the forecasts in the alternative set m1 for all advanced economies.
Small p-values indicate rejections of the null. For cases where the null is rejected, we list the countries for
which the alternative forecast is significantly more accurate than the benchmark forecast, i.e., countries
whose t-statistics are higher than the 90% quantile of the maximum value of the bootstrapped t-statistic.
Panels A and B examine GDP forecasts while Panels C and D examine inflation forecasts. Columns
1-3 compare WEO forecasts at consecutive six-month revision points, while column 4 evaluates the
cumulative revision from the one-year-ahead spring forecasts (h = 1,S) to the current-year fall forecasts
(h = 0,F).
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Table 2.6: Sup tests comparing predictive accuracy across clusters of economies with pooling
across variables and horizons

Panel A: Sup tests pooled across variables
world ae emde lics eeur dasia lac menap cis ssa

h=1,S vs. h=1,F 0.05 0.04 0.04 0.21 0.45 0.35 0.01 0.03 0.15 0.18
Rejections 1 3 1 0 0 0 2 1 0 0
h=1,F vs. h=0,S 0.00 0.00 0.13 0.10 0.04 0.08 0.05 0.04 0.14 0.08
Rejections 9 15 0 1 2 1 1 4 0 1
h=0,S vs. h=0,F 0.01 0.00 0.01 0.01 0.06 0.00 0.00 0.01 0.02 0.03
Rejections 14 21 4 1 0 2 6 4 1 1
h=1,S vs. h=0,F 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00
Rejections 47 44 27 12 8 10 15 12 6 8

Country-variable pairs 878 177 701 276 51 121 155 110 55 209

Sup tests pooled across variables and horizons
Pool horizons 0.00 0.00 0.03 0.03 0.11 0.01 0.01 0.02 0.04 0.07
Rejections 14 21 4 1 0 2 6 4 1 1
Country-variable-horizon pairs 2751 534 2217 864 169 383 480 345 180 660

Panel B: Sup tests with moment selection
world ae emde lics eeur dasia lac menap cis ssa

h=1,S vs. h=1,F 0.10 0.09 0.09 0.24 0.50 0.39 0.06 0.08 0.21 0.23
Rejections 1 1 1 0 0 0 1 1 0 0
h=1,F vs. h=0,S 0.05 0.05 0.19 0.14 0.10 0.13 0.10 0.09 0.19 0.13
Rejections 6 10 0 0 1 0 1 3 0 0
h=0,S vs. h=0,F 0.05 0.05 0.07 0.06 0.11 0.06 0.05 0.06 0.07 0.08
Rejections 8 10 3 1 0 2 5 2 1 1
h=1,S vs. h=0,F 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.07 0.05
Rejections 26 31 15 9 2 7 10 7 2 8

Country-variable pairs 878 177 701 276 51 121 155 110 55 209

Pool 3 horizons
Pool horizons 0.05 0.05 0.09 0.07 0.17 0.06 0.06 0.07 0.09 0.11
Rejections 8 14 2 1 0 1 3 1 1 0
Country-variable-horizon pairs 2751 534 2217 864 169 383 480 345 180 660

Notes: This table reports p-values for Sup tests comparing long-horizon to short-horizon WEO forecasts. The null hypothesis
is that none of the long-horizon WEO forecasts are less accurate than the corresponding short-horizon forecasts for each of the
countries. The first set of tests pools results across our five variables but keeps forecast horizons separate while the second set of
results pools across both variables and horizons. Small p-values indicate that the null is rejected and some short-horizon WEO
forecasts are significantly more accurate than their long-horizon counterparts. Each panel also shows the number of countries for
which the null hypothesis is rejected using a nominal size of α = 0.1. The bottom panel reports outcomes from the same set of tests
but uses moment selection with α = β = 0.05.
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Table 2.7: Sup tests comparing predictive accuracy across longer forecast horizons

GDP Inflation Import Export Current
Account

h=5,S vs. h=4,S 0.42 0.28 0.49 0.66 0.57
Rejections 0 0 0 0 0
h=4,S vs. h=3,S 0.22 0.31 0.11 0.30 0.54
Rejections 0 0 0 0 0
h=3,S vs. h=2,S 0.05 0.02 0.41 0.11 0.28
Rejections 2 1 0 0 0
h=2,S vs. h=1,S 0.04 0.41 0.16 0.47 0.36
Rejections 2 0 0 0 0
h=5,S vs. h=1,S 0.00 0.00 0.58 0.45 0.01
Rejections 10 1 0 0 6

Countries 175 154 155 155 158

Notes: This table reports p-values for Sup tests comparing long-horizon to short-horizon WEO
forecasts with forecast horizons separated by one year (first four comparisons) or four years
(final comparison). The null hypothesis is that none of the long-horizon WEO forecasts are less
accurate than the corresponding short-horizon forecasts. Small p-values indicate that the null
is rejected and some short-horizon WEO forecasts are significantly more accurate than their
long-horizon counterparts. Each panel also shows the number of countries for which the null
hypothesis is rejected using a nominal size of α = 0.1.
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Table 2.8: Sup tests comparing predictive accuracy across longer forecast horizons

GDP Inflation Import Export Current
Account

h=5,S vs. h=4,S 0.42 0.28 0.49 0.66 0.57
Rejections 0 0 0 0 0
h=4,S vs. h=3,S 0.22 0.31 0.11 0.30 0.54
Rejections 0 0 0 0 0
h=3,S vs. h=2,S 0.05 0.02 0.41 0.11 0.28
Rejections 2 1 0 0 0
h=2,S vs. h=1,S 0.04 0.41 0.16 0.47 0.36
Rejections 2 0 0 0 0
h=5,S vs. h=1,S 0.00 0.00 0.58 0.45 0.01
Rejections 10 1 0 0 6

Countries 175 154 155 155 158

Notes: This table reports p-values for Sup tests comparing long-horizon to short-horizon WEO
forecasts with forecast horizons separated by one year (first four comparisons) or four years
(final comparison). The null hypothesis is that none of the long-horizon WEO forecasts are less
accurate than the corresponding short-horizon forecasts. Small p-values indicate that the null
is rejected and some short-horizon WEO forecasts are significantly more accurate than their
long-horizon counterparts. Each panel also shows the number of countries for which the null
hypothesis is rejected using a nominal size of α = 0.1.
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(a) GDP growth

(b) Inflation

Figure 2.2: Sup test comparing average performance of long- and short-horizon forecasts of
GDP growth and inflation in individual calendar years
Each panel shows the outcome of tests for whether the benchmark forecasts (m0) are at least as accurate
as all forecasts in the alternative set (m1) in individual years (with rejections marked by open circles).
We also show results from tests of the null that the benchmark forecasts are at least as accurate as all
forecasts in the alternative set during every single year in the sample (marked by filled circles). Circles
indicate years in which the null is rejected at the 10% significance level, suggesting that the short-horizon
forecast is significantly more accurate than the long-horizon forecast. Panel A shows results for GDP
growth while Panel B shows results for inflation rate forecasts.
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(a) Import growth

(b) Export growth

(c) Current account-GDP ratio

Figure 2.3: Sup test comparing average performance of long- and short-horizon forecasts of
GDP growth and inflation in individual calendar years
Each panel shows the outcome of tests for whether the benchmark forecasts (m0) are at least as accurate
as all forecasts in the alternative set (m1) in individual years (with rejections marked by open circles). We
also show results from tests of the null that the benchmark forecasts are at least as accurate as all forecasts
in the alternative set during every single year in the sample (marked by filled circles). Circles indicate
years in which the null is rejected at the 10% significance level, suggesting that the short-horizon forecast
is significantly more accurate than the long-horizon forecast. Panel A shows results for import growth,
Panel B shows results for export growth, while Panel C shows results for the current account balance.
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(a) GDP growth

(b) Inflation

(c) Import growth

(d) Export growth

(e) Current account-GDP ratio

Figure 2.4: Distribution of ratios of short-horizon MSE values over long-horizon MSE-values
These box-and-whisker diagrams show the median, interquartile, and 10% and 90% quantiles for the
MSE ratios of short- versus long-horizon MSE values recorded for different pairings of horizons and for
different variables.
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Chapter 3

Comparing Forecasting Performance in

Cross-sections
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3.1 Introduction

What, if anything, can we learn about forecasting performance from a single cross-section

of data? This question is becoming highly relevant as large cross-sections of forecasts are now

routinely recorded for numerous economic and financial outcomes: financial analysts predict

company earnings and revenues for hundreds of firms covering multiple industries; credit card

companies conduct billions of forecasts for real-time transactions to guard against fraud; banks

and international organizations forecast macroeconomic outcomes across many countries and

sectors.

Comparisons of forecasting performance conducted on a single cross-section has

the potential for yielding important economic insights that easily get masked by averaging

performance over longer spans of time. First, forecasting performance may be state- and time-

dependent. A test conducted on a single cross-section might find that model-based forecasts are

inferior to survey forecasts during, say, the Covid-19 epidemic although the two forecasts are

equally accurate when their performance gets averaged over a longer sample. Such a finding

could indicate that survey participants possessed important forward-looking information about

the impact of this event that was not reflected in past data. Second, when conducted on individual

time periods, cross-sectional tests can be used to identify points in time during which one

forecast performs relatively well or to identify shifts over time in forecasting performance.

Third, performance evaluations conducted on individual cross-sections facilitate faster real-time

comparisons of predictive accuracy than conventional methods that require calculating often

lengthy time-series averages which tends to slow down discovery of deterioration or breakdown

in forecasting performance. Fourth, inference conducted on a single cross-section dispenses with

time-series stationarity assumptions that are unlikely to be valid in many situations.

From an inferential perspective, the key challenge for cross-sectional comparisons of

forecasting performance is the likely presence of common components in forecast errors. Such
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common components can invalidate the use of a cross-sectional central limit theorem (CLT) to

derive distributional results for test statistics based on cross-sectional averages. To address this

challenge, we develop a common factor framework for capturing cross-sectional dependencies in

forecast errors and separately consider the cases with homogeneous and heterogeneous factor

loadings. The case with homogeneous factor loadings gives rise to tests of equal unconditionally

expected squared error loss, while heterogeneous factor loadings lead to tests that condition on

factor realizations. Although these tests are fundamentally different we show that, in practice,

they lead to very similar inference. Forecast comparisons conducted on individual cross-sections

are robust to changes in both the number of factors and in the factor loadings which can be an

important concern in empirical work, see Cheng, Liao and Schorfheide (2016).

Common components in the forecast errors contain important economic information about

the underlying models used by forecasters and the extent to which shocks are fundamentally

unpredictable. Large shocks to outcomes that were unanticipated by all forecasters and, thus,

are common, cancel out from pairwise comparisons of squared forecast error differences to the

extent that they affect individual forecasters by the same amount. Conversely, idiosyncratic error

components that are specific to individual forecasters do not cancel out from squared error loss

differentials.

To get a better sense of the commonality and predictability of economic shocks, we

propose a new decomposition of the squared forecast error differential into a squared bias

component, which tracks differences in forecast exposures to common factors, and an idiosyncratic

error variance component. Only the total squared forecast error differential is observed, so we

develop three approaches to estimate the common factors in forecast errors, namely (i) a cluster

method that imposes homogeneity restrictions on factor loadings within clusters of variables

and can be computed on a single cross-section; (ii) a common correlated effects estimator based

on Pesaran (2006); and (iii) a principal components approach. Unlike the cluster approach, the

second and third approach require the availability of time-series data to estimate factor loadings.
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Moreover, these approaches work under different assumptions about the number of factors and

patterns in factor loadings and cover many of the situations encountered by applied researchers.

We illustrate our new tests in an empirical application to financial analysts’ short-term

forecasts of individual firms’ quarterly earnings. We compare the predictive accuracy across six

brokerages covering a total of between 1,400 and 1,800 different firms during a sample that spans

twenty years. We find evidence of highly significant correlation across brokerage firms’ earnings

forecast errors, most of which can be captured through their loadings on a single common factor.

Empirically, we find that our cross-sectional tests of equal predictive accuracy across brokerage

firms are highly robust regardless of whether factor loadings are assumed to be homogeneous or

heterogeneous and so yield similar results for the conditional and unconditional cases. For the

vast majority of quarters, brokerage firms produce similarly accurate earnings forecasts, but we

also identify some quarters with rejections of the null of equal predictive accuracy.

Using our decompositions we find that, in general, differences in idiosyncratic error

variances account for more of the variation in squared error loss differences in brokerage firms’

earnings forecasts than the squared bias. Differences in the accuracy of earnings forecasts in

individual quarters thus appear to be mostly driven by differences in brokerage firms’ ability

to reduce uncertainty about the idiosyncratic earnings component and is less a reflection of

differences in exposures to common factor shocks.

Our paper expands to a cross-sectional setting a large literature that compares the

predictive accuracy of time-series forecasts. Chong and Hendry (1986) propose tests of forecast

encompassing. More recently, Diebold and Mariano (1995) and West (1996) develop tests for

comparing the null of equal predictive accuracy. Clark and McCracken (2001) and McCracken

(2007) focus on comparisons of predictive accuracy for forecasts that are generated by nested

models, while accounting for the effect of recursive updating in the parameter estimates used

to generate forecasts. Giacomini and White (2006) propose a test of equal predictive accuracy

that accounts for the presence of non-vanishing parameter estimation error and develop methods
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for conditional forecast comparisons. We build on these earlier contributions, but show how the

presence of a cross-sectional dimension can enrich the set of economic hypotheses that can be

tested and dispenses with the need for restrictive assumptions on time-series stationarity for the

underlying data generating process.

A related literature evaluates the efficiency of forecasts with panel data; see, e.g., Keane

and Runkle (1990), Davies and Lahiri (1995), and Patton and Timmermann (2012). However,

this literature does not provide methods for comparing the relative accuracy of different forecasts

or for conducting tests of the null of equal predictive accuracy across different forecasts. An

advantage of our new tests is that they can be computed using only a single cross-section-provided

that cross-sectional dependencies are properly accounted for. This makes the tests particularly

useful in microeconomic forecast applications which often have short time-series dimensions

since such surveys are conducted infrequently or due to the attrition of individual households that

enter and exit.1

The outline of the paper is as follows. Section 3.2 presents our new tests for comparing

predictive accuracy with individual cross-sections, while Section 3.3 develops our decomposition

of the mean squared forecast errors into a squared bias and an idiosyncratic error variance

component and derives statistics for testing the null that these two components are of the same

magnitude across different forecasts. Section 3.4 conducts an empirical analysis that compares the

predictive accuracy of firm-level short-term earnings forecasts across six brokerage firms. Section

3.5 uses Monte Carlo simulations to explore the finite-sample size and power properties of our

tests in a variety of settings and Section 3.6 concludes. Technical proofs are in an Appendix.

1Giacomini, Lee and Sarpietro (2019) discuss micro forecasting approaches for annual PSID panels while Liu,
Moon and Schorfheide (2018) and Liu, Moon and Schorfheide (2019) develop ways to forecast in panels with very
short time-series dimensions.
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3.2 Tests for Cross-sectional Comparisons of Predictive

Accuracy

Formal tests used in comparisons of forecasting performance such as the well-known

Diebold-Mariano test (Diebold and Mariano (1995)) rely on time-series averages. While these

tests have proven useful in many economic applications, an important limitation of their usage is

that sample sizes (T ) are often short and so their statistical power can be quite low.2 Conversely,

in situations with long samples, non-stationarities in the underlying data generating process

becomes an issue for inference. Moreover, new time-series observations arrive only slowly when

outcomes are measured at a monthly, quarterly, or annual frequency, reducing the usefulness of

real-time comparisons of predictive accuracy. These points highlight shortcomings of inference

on predictive accuracy based on time-series averages.

In contrast, individual forecasting models can often be used to generate hundreds or even

thousands of cross-sectional forecasts each period, as in the case of forecasts for individual

customers, market places, product categories, or firms. Data with small T and large n can be

used to compare the accuracy of pairs of forecasts in a particular time period or over a short

period of time. Conducting such tests requires, however, an understanding of the assumptions

under which it is possible to establish the distribution of cross-sectional averages underlying

the test statistics. Most obviously, the loss differentials cannot be too strongly cross-sectionally

dependent–otherwise a CLT will not apply to the cross-sectional test statistics.

We next develop a framework and a set of tests that allow us to conduct inference about

relative predictive accuracy on single cross-sections.

2This is particularly relevant for microeconomic applications that often rely on short surveys, see, e.g., Giacomini,
Lee and Sarpietro (2019) and Liu, Moon and Schorfheide (2019).

104



3.2.1 Setup

Let yit+h denote the realized value of unit i at time t +h, where i = 1, ....,n refers to the

cross-sectional dimension and t +h refers to the “target date”, i.e., the point in time at which we

observe the outcome. Further, suppose we observe the h-step-ahead forecast of yit+h generated

conditional on information available to the forecaster at time t. We denote these by ŷit+h|t,m,

where m = 1, ...,M indexes the individual forecasts (e.g., forecasting models) and h≥ 0 is the

forecast horizon.

To compare the predictive accuracy of different forecasts we use a loss function that

quantifies the cost of different forecast errors. Following Diebold and Mariano (1995), define the

loss associated with forecast m as Lit+h|t,m = L(yit+h, ŷit+h|t,m). Consistent with most empirical

work, we assume that the loss is a quadratic function of the forecast error, eit+h,m = yit+h− ŷit+h|t,m,

and thus takes the form3

L(yit+h, ŷit+h|t,m)≡ Lit+h|t,m = e2
it+h,m. (3.1)

Similarly, the squared-error loss differential between forecasts m1 and m2 for unit i at time

t +h is given by (dropping the reference to m1and m2)

∆Li,t+h|t = e2
it+h,m1

− e2
it+h,m2

. (3.2)

Following Diebold and Mariano (1995) and Giacomini and White (2006), we treat the

forecasts as given and make high-level assumptions on the distribution of the forecast errors or,

more generally, the losses Lit+h|t . Hence, we do not consider the effect of estimation error on the

distribution of the test statistics which we derive.4

3See Elliott, Komunjer and Timmermann (2005) for a more general loss function that nests squared error loss.
4Estimation error and its effect on tests for equal predictive accuracy features prominently in the analysis of West

(1996), Clark and McCracken (2001), McCracken (2007), and Hansen and Timmermann (2015).
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To keep our analysis simple, we focus on pair-wise comparisons of forecasting

performance (M = 2). Often, empirical researchers have access to a large number of forecasts,

e.g. from surveys with large numbers of participants, from different forecasting models, or even

from several cross-sections spanning different time periods. This introduces a multiple hypothesis

testing problem when analyzing outcomes of several (pair-wise) test statistics. Dealing with this

issue is beyond the scope of the present paper, but Qu, Timmermann and Zhu (2019) propose a

Sup test procedure that allows for multiple comparisons while controlling the family-wise error

rate.

3.2.2 Factor Structure

To capture cross-sectional dependencies in forecast errors, suppose we can decompose

the forecast error of model m, ei,t+h,m = yi,t+h− ŷi,t+h|t,m, into a common component, ft+h, with

factor loadings λim, and an idiosyncratic component, uit+h,m, so that, for m = 1,2,

ei,t+h,m = λ
′
im ft+h +ui,t+h,m. (3.3)

Under this setup, forecast errors are allowed to be affected by the same common factors, ft+h,

but we allow for differences in the factor loadings (λim) across units, i, and forecasts, m. Factor

loadings, λim, can be either random or fixed as we make clear in the analysis below.

The assumed factor structure in (3.3) is typically well-motivated in economic forecast

applications. Outcomes of economic variables such as GDP growth and inflation are likely to

contain an important common unpredictable component reflecting large unanticipated supply

shocks (e.g., commodity price shocks) or crises in financial markets. Common factors can be

either global or regional in nature and are likely to have a very different impact on, e.g., advanced

versus developing economies. The presence of common and idiosyncratic shocks is also consistent

with macroeconomic models such as Mackowiak and Wiederholt (2009). A distinct advantage
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of the setup, which we demonstrate in our empirical analysis, is that the presence of common

factors in the forecast errors is empirically testable through simple econometric tests.

We next consider how to conduct cross-sectional tests of equal predictive accuracy using

the squared error loss function in (3.2) and the factor structure in (3.3).

3.2.3 Null Hypotheses

The assumed common factor structure in (3.3) introduces a common component that does

not disappear asymptotically even as n→ ∞. To address this issue, we consider two different

approaches for testing the null of equal predictive accuracy in a single cross-section.

First, we can test the unconditional null that the cross-sectional average loss differential at

time t +h, ∆Lt+h = n−1
∑

n
i=1 ∆Li,t+h|t , equals zero in expectation:

Hunc
0,t+h : E(∆Lt+h) = 0. (3.4)

While the forecasts are only expected to be equally accurate at a single point in time, t + h,

differences in predictive accuracy at that time are hypothesized to balance out across units,

i = 1, ...,n. As we show below, this requires that the common factor component that introduces

dependence in forecast errors cancels out in the loss differentials.

Second, we can test whether two forecasts are expected to be equally accurate, at time

t + h, conditional on a particular outcome of the factor realizations, ft+h, and factor loadings

{λi1,λi2}n
i=1 so that, for F = σ( ft+h,{λi1,λi2}n

i=1),

Hcond
0,t+h : E(∆Lt+h | F ) = 0. (3.5)

This approach is valid provided that, conditional on the realized factor, a cross-sectional CLT

applies to the idiosyncratic error components.

The conditional null in (3.5) is different from the unconditional null in (3.4) but is often
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of separate economic interest. For example, we can use (3.5) to test whether, conditional on the

unusual realizations of the factors that occurred during the Global Financial Crisis, the accuracy

of a set of alternative forecasts was the same. Or, as the complement to this, we can test whether

the forecasts were equally accurate during more “normal” years.

If, in fact, factor realizations were the main driver of differences in the predictive accuracy

of a pair of forecasts, we can imagine situations in which we reject the null in (3.4) without

rejecting (3.5). Conversely, two forecasts could be equally accurate “on average” in a given period

because one forecast is more strongly affected by shocks to the common factors and less affected

by idiosyncratic error shocks, while the reverse holds for the other forecast and the effects balance

out. In this case, we do not reject the null in (3.4), whereas the conditional null in (3.5) is rejected.

We next discuss settings under which the hypotheses in (3.5) and (3.4) hold along with

how they can be tested.

3.2.4 Homogeneous Factor Loadings

Suppose loadings on the common factors affecting the individual forecast errors in (3.3)

are the same across the two forecasts so λi1 = λi2 = λi. Under quadratic error loss,

∆Li,t+h|t = (u2
i,t+h,1−u2

i,t+h,2)+2(ui,t+h,1−ui,t+h,2)λ
′
i ft+h. (3.6)

Common unpredictable shocks that are not picked up by any of the forecasts can be

thought of as satisfying the assumption of homogeneous factor loadings since they can have

a different effect on different units (λi1 6= λ j1 for i 6= j), but will affect the forecasts in the

same way(λ′i1 = λ′i2 for all i). These shocks will, therefore, cancel out from the forecast error

differentials. For example, if the effects of a major event such as the Global Financial Crisis were

unanticipated by both forecasts and affected them by the same amount, they cancel out from the

loss differential.
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Under homogeneous factor loadings, the cross-sectional dependence arising from the

forecasts’ exposure to the common factors, ft+h, does not play an important role in deriving the

asymptotics of tests of the null in (3.4) since λ′i ft+h in (3.6) is multiplied by (ui,t+h,1−ui,t+h,2).

This is assured under the following assumption which requires (conditionally) independent

idiosyncratic errors as well as a Lyapounov condition:

Assumption 3. Suppose that the loadings are homogeneous, λi1 = λi2 = λi for i = 1, ...,n.

Conditional on F = σ( ft+h,{λi1,λi2}n
i=1), {(ui,t+h,1,ui,t+h,2)}n

i=1 is independent across i with

mean zero and bounded (4+ δ) moments for some δ > 0. Moreover, min1≤i≤n Var[(ui,t+h,1−

ui,t+h,2) | F ]≥ c for some constant c > 0 and

(
∑

n
i=1 |λ′i ft+h|2+δ

)1/(2+δ)

(∑n
i=1 |λ′i ft+h|2)1/2 = oP(1).

To test the null of equal expected loss for the cross-sectional average in (3.4), consider the

test statistic

Qt+h =
n1/2∆Lt+h|t√

n−1 ∑
n
i=1
(
∆Li,t+h|t

)2
. (3.7)

Under the assumption of pair-wise homogeneous factor loadings, (3.6) shows that testing

the null of equal predictive accuracy in period t +h amounts to testing that E(u2
i,t+h,1−u2

i,t+h,2) =

0. This is easily accomplished under Assumption 3 which ensures independence across i for

(ui,t+h,1,ui,t+h,2) so that asymptotic normality can be established for Qt+h in (3.7) as we next

show:5

Theorem 3.2.1. Suppose Assumption 3 holds. Then under the null of equal expected cross-

5Alternatively, we can test this null under assumptions of stationarity which allows us to exploit time-series
variation in the factors.
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sectional predictive accuracy, Hunc
0,t+h : E(∆Lt+h) = 0, we have

limsup
n→∞

P
(
|Qt+h|> z1−α/2

)
≤ α,

where z1−α/2 is the (1−α/2) quantile of a N(0,1) variable.

Theorem 3.2.1 shows that homogeneous factor loadings lead to a simple test of the null of

equal expected loss for the pooled average using data only on a single cross-section. Moreover,

the test statistic follows a Gaussian distribution in large cross-sections.

For now, we do not go into details of how the assumption of homogeneous loadings

can be tested. However, as we show below, our approach for testing the null in (3.4) remains

valid as long as n−1
∑

n
i=1[(λ

′
i,1 ft+h)

2− (λ′i,2 ft+h)
2] = 0. Moreover, this condition can be tested

empirically and we propose ways to do so later on.

3.2.5 Heterogeneous Factor Loadings

Next, consider the case with heterogeneous factor loadings for the forecast errors, i.e.,

λi,1 6= λi,2. For this case, the loss differential in (3.6) is generalized to

∆Li,t+h|t =
[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2]

+
[
u2

i,t+h,1−u2
i,t+h,2 +2(λ′i,1 ft+hui,t+h,1−λ

′
i,2 ft+hui,t+h,2)

]
. (3.8)

When the factor loadings differ for the forecasts, equation (3.8) shows that the relative predictive

accuracy in period t +h contains a systematic component, E
[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]
. Even if

ft+h is independent of the factor loadings, {(λi,1,λi,2)}n
i=1, and these loadings are independent

across i, n−1/2
∑

n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]

is asymptotically normal only conditional on ft+h.

This suggests conducting a test of equal expected predictive accuracy conditional on the factor

realization as is done in (3.5).
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To test the conditional null in (3.5), let F = σ( ft+h,{λi1,λi2}n
i=1) and assume that

E(ui,t+h,1 | F ) = E(ui,t+h,2 | F ) = 0. Define

ξi,t+h =
(
u2

i,t+h,1−u2
i,t+h,2

)
−E

(
u2

i,t+h,1−u2
i,t+h,2 | F

)
+2(λ′i,1 ft+hui,t+h,1−λ

′
i,2 ft+hui,+ht,2).

Using equation (3.8), we have

∆Lt+h−E(∆Lt+h | F ) = n−1
n

∑
i=1

ξi,t+h. (3.9)

The ideal variance estimate for the object in (3.9) is n−1
∑

n
i=1 ξ2

i,t+h. However, at the unit level,

we only observe ei,t+h,m and hence are restricted to computing n−1
∑

n
i=1(∆Li,t+h|t −∆Lt+h)

2.

Consider the following test statistic

Q̃t+h =
n1/2∆Lt+h√

n−1 ∑
n
i=1(∆Li,t+h|t−∆Lt+h)2

. (3.10)

To establish properties of the test statistic in (3.10), we need a set of regularity conditions

which we summarize in the following assumption:

Assumption 4. Conditional on F = ( ft+h,{λi1,λi2}n
i=1), {(ui,t+h,1,ui,t+h,2)}n

i=1 is independent

across i with mean zero and bounded (4 + δ) moments for some δ > 0. Moreover,

min1≤i≤n Var[ξi,t+h | F ]≥ c for some constant c > 0.

Using this assumption, we can now test the null E(∆Lt+h | F ) = 0 or, equivalently,

establish a confidence interval for E(∆Lt+h | F ):

Theorem 3.2.2. Suppose Assumption 4 holds. Then, under the conditional null Hcond
0,t+h : E(∆Lt+h |

F ) = 0, the following result holds for the test statistic in (3.10)

limsup
n→∞

P
(
|Q̃t+h|> z1−α/2

)
≤ α,
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where z1−α/2 is the (1−α/2) quantile of a N(0,1) variable.

Results based on the test statistic in (3.10) can be interpreted in two ways. First, as

explained above, they can be viewed as tests of the conditional null E(∆Lt+h | F ) = 0. Second,

if we assume that the factor loadings {(λi,1,λi,2)}n
i=1 are random, independent across i and

independent of ft+h, we can use the test statistic in (3.10) to test E(∆Lt+h | ft+h) = 0 without

also conditioning on the factor loadings (λi,1 and λi,2). Testing the latter hypothesis introduces an

additional term in the numerator of (3.10)

E(∆Lt+h | F )−E(∆Lt+h|t | ft+h)

= f ′t+h

(
n−1

n

∑
i=1

[
λi,1λ

′
i,1−λi,2λ

′
i,2−E(λi,1λ

′
i,1−λi,2λ

′
i,2)
])

ft+h.

However, the denominator in (3.10) still overestimates the variance of the numerator of

the test statistic under the null. As a result, Theorem 3.2.2 remains valid for testing the null

E(∆Lt+h | ft+h) = 0 and the critical values remain the same.

Under either interpretation, it follows from (3.8) that the variance estimate in (3.10) is

conservative. Under the first interpretation, this follows because the variance estimate takes

into account variation in the factor structure and in E(u2
i,t+h,1− u2

i,t+h,2). Under the second

interpretation, the variance estimate still includes cross-sectional variations in E(u2
i,t+h,1−u2

i,t+h,2).

This seems unavoidable without introducing additional modeling assumptions that impose

structure on this variation.6

3.2.6 Other loss functions

In practice, applied researchers might consider loss functions other than the squared error

loss in (3.1), including linex, absolute error or piece-wise linear loss, see, e.g., Elliott, Komunjer

6Essentially, we have a CLT for independent but non-identically distributed variables, ∆Li,t+h|t−E
[
∆Li,t+h|t | ft+h

]
,

but the exact variance is difficult to estimate because E
[
∆Li,t+h|t | ft+h

]
cannot be estimated from the observed data.
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and Timmermann (2005). Fortunately, the methodology in Section 3.2.5 can readily be extended

to such loss functions.

To see this, suppose we replace Assumption 4 with the assumption that, conditional on F ,

{∆Li,t+h|t}n
i=1 is independent, where ∆Li,t+h|t = L(yit+h, ŷit+h|t,1)−L(yit+h, ŷit+h|t,2) for a general

loss function L(·, ·). Under the conditional null hypothesis E(∆Lt+h | F ) = 0, ∆Lt+h−E(∆Lt+h |

F ) will be the average of terms that, conditional on F , have mean zero and are independent.

Therefore, with moment conditions similar to those in Assumption 4, Theorem 3.2.2 remains

valid. In Section 3.5, we demonstrate this point using Monte Carlo simulations for the test of

equal conditionally expected loss applied to the linex loss function. We find results that are very

similar to those obtained under squared error loss.

For the unconditional test, we can consider a linear factor structure as a series

approximation. For example, suppose that ei,t+h,m = λ′im ft+h +ui,t+h,m and Li,t+h,m = φ(ei,t+h,m)

for some function φ(·). Provided that φ(·) is smooth enough and ei,t+h,m is bounded, standard

approximation results can be used to give a polynomial approximation φ(x)≈ ∑
k
j=0 a jx j, where

k grows slowly with the sample size. Because (λ′im ft+h +ui,t+h,m)
j contains powers of λ′im ft+h,

polynomials of factors and factor loadings become new factors in an augmented linear factor

structure. Clearly, the details of this approach (e.g., approximation rate and strong factor

conditions) require serious theoretical analysis, which we leave for future research.

Cross-sectional comparisons of forecast errors sometimes involve variables that are

measured in very different units. This can mean that the comparisons are dominated by a few

variables, possibly impairing the finite-sample behavior of the test statistics. To address this

point, one can use squared percentage errors which tend to be more comparable across variables.

Alternatively, individual variables’ forecast errors can be scaled by their standard errors prior to

calculating the test statistics.
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3.3 Decomposing Differences in Forecasting Performance

Equation (3.3) decomposes the forecast errors into a common factor component and an

uncorrelated idiosyncratic error component. In some economic applications, it is important to

be able to attribute differences in forecasting performance to these two sources. For example,

Mackowiak and Wiederholt (2009) develop a rational inattention model in which firms acquire

and process information subject to a constraint on their total attention budget. Consistent with the

setup in (3.3), Mackowiak and Wiederholt (2009) partition firms’ information set into signals

about a common (aggregate) factor and an idiosyncratic term. The constraint on each forecaster’s

attention introduces a trade-off between reducing the uncertainty about the common factor versus

reducing the variance of the idiosyncratic error. Similarly, the finance literature on performance

of investment managers distinguishes between generalists who possess market timing skills that

require an ability to predict pervasive (common) factors affecting a broad set of asset returns

versus stock pickers with security selection skills which require specialist firm-level knowledge

akin to more precise signals on the idiosyncratic error terms (see, e.g., Blake et al. (2013)).

The importance of these types of skills is likely to vary over time as a result of common

factor volatility being higher during recessions or in financial crises (favoring market timers)

and lower during expansions and calmer periods (favoring stock pickers), see, e.g., Kacperczyk,

Nieuwerburgh and Veldkamp (2014). By conducting tests on individual cross-sections, our

approach can help identify periods in which forecasters with a comparative advantage at predicting

the common factors (generalists) perform relatively better than the forecasters who focus instead

on the idiosyncratic error component (specialists).

Decomposing forecast errors into common factors and uncorrelated idiosyncratic terms is

also important in applications of forecast combination since these terms matter for calculating

optimal combination weights which depend on both the overall error variance and on the

covariance between forecast errors. The larger the contribution to forecast errors from the
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common factors and the more homogeneous the factor loadings are, the closer the optimal

combination weights will be to equal-weighting. Related to this, the scope for achieving gains

in predictive accuracy from forecast combination is likely to be highest during times when the

correlation in forecast errors is weakest, i.e., less driven by common factors with similar loadings

and more by idiosyncratic errors.

We next discuss how to conduct inference on the squared conditional bias and idiosyncratic

variance components.

3.3.1 Decomposing the Conditional Squared Error Loss

Using equation (3.8), we can express the (cross-sectional) average conditional squared

error loss difference as the sum of the average difference in squared conditional bias and the

average difference in the conditional idiosyncratic error variance:

n−1
n

∑
i=1

E
(
∆Li,t+h|t | F

)
︸ ︷︷ ︸

E(∆Lt+h | F ) =

n−1
n

∑
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2]

︸ ︷︷ ︸
bias2

t+h
+

n−1
n

∑
i=1

E
(
u2

i,t+h,1−u2
i,t+h,2 | F

)
︸ ︷︷ ︸ .

E
(
∆u2

t+h | F
)

(3.11)

The terms on the right hand side of the decomposition in (3.11) are unobserved. However,

note that

∆Lt+h−bias2
t+h = ∆u2

t+h +
2
n

n

∑
i=1

[
λ
′
i,1 ft+hui,t+h,1−λ

′
i,2 ft+hui,t+h,2

]
, (3.12)

where ∆u2
t+h = n−1

∑
n
i=1

(
u2

i,t+h,1−u2
i,t+h,2

)
. Provided that n is relatively large so the last term on

the right side of (3.12) is small, the bias-adjusted average loss differential on the left hand side of

(3.12) can be expected to be a good estimate of the difference in the two forecasts’ idiosyncratic

variance at time t, E
(
∆u2

t+h | F
)
.7

7Of course, we do not directly observe the idiosyncratic errors and factors. However, since ∆Lt+h is observed,
from (3.12) we only need to estimate the factor-induced squared bias term, bias2

t+h.
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We next discuss three strategies for computing (λ′i,1 ft+h)
2− (λ′i,2 ft+h)

2. The first exploits

clusters in factor loadings and so is applicable when factor loadings are homogeneous within

certain groups of units. This approach can be computed on a single cross-section and poses

no limit on the number of factors affecting the forecast errors but requires that clusters can be

identified within which there is little or no heterogeneity in the factor loadings. The second

approach uses the common correlated effects (CCE) method of Pesaran (2006) and so requires the

availability of panel data to estimate factor loadings from time series data. This approach does not

impose tight restrictions on factor loadings but, in practice, limits the number of common factors

driving the forecast errors. The third approach, principal components (PCA), again requires the

availability of panel data and is similar to the CCE approach. However, it does not impose tight

bounds on the number of common factors in the forecast error differentials.

3.3.2 Clustering in Factor Loadings

It is common in empirical applications to have data on units that share certain observable

characteristics or features which make them more similar than randomly selected units. For

example, advanced economies may react in a broadly similar way to supply shocks which, in

turn, affect emerging or developing economies very differently. Or, the effect of an interest

rate increase on the default probability of credit card holders may be quite different across high,

medium, and low income households, yet be broadly similar within these three categories.

In this section we develop a class of estimators using the identifying assumption that

clusters of cross-sectional units share the same factor loadings, while allowing factor loadings

to differ across clusters. Formally, suppose that a set of K clusters
⋃K

k=1 Hk = {1, ...,n} form a

partition of all n units so that each unit belongs to a unique cluster, Hk, i.e., H j ∩Hl = /0 with

nk = |Hk| elements in the kth cluster. We assume that the cluster membership for each unit is

known ex ante and so is not determined endogenously from the data. Moreover, suppose that the

factor loadings (λi,1,λi,2) can differ across clusters (λi,1,λi,2)6=(λ j1,λ j2) for i ∈ Hk and j ∈ Hl ,
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but are homogeneous within clusters

(λi,1,λi,2) = (λ1,(k),λ2,(k)) for all i ∈ Hk. (3.13)

Testing Equal Idiosyncratic Error Variances

We first discuss how to test the conditional null of equal average idiosyncratic error

variance for the two forecasts given F for all units in cluster k:

H idio
0 : n−1

k ∑
i∈Hk

E(u2
i,t+h,1−u2

i,t+h,2 | F ) = 0. (3.14)

To test this null, we need to construct an estimate of the idiosyncratic variance within each cluster.

To see how group patterns in factor loadings allow us to identify the idiosyncratic variance

component, ∆u2
t+h, define the errors from the two forecasts, averaged within each cluster, as

e1,k,t+h ≡ n−1
k ∑

i∈Hk

(
yi,t+h− ŷi,t+h|t,1

)
= λ

′
1,(k) ft+h +n−1

k ∑
i∈Hk

ui,t+h,1,

and

e2,k,t+h ≡ n−1
k ∑

i∈Hk

(
yi,t+h− ŷi,t+h|t,2

)
= λ

′
2,(k) ft+h +n−1

k ∑
i∈Hk

ui,t+h,2.

Squaring these within-cluster average forecast errors, we have

e2
1,k,t+h− e2

2,k,t+h = (λ′1,(k) ft+h)
2− (λ′2,(k) ft+h)

2 +

(
n−1

k ∑
i∈Hk

ui,t+h,1

)2

−

(
n−1

k ∑
i∈Hk

ui,t+h,2

)2

+2λ
′
1,(k) ft+hn−1

k ∑
i∈Hk

ui,t+h,1−2λ
′
2,(k) ft+hn−1

k ∑
i∈Hk

ui,t+h,2. (3.15)

Define ∆Lt+h,k ≡ n−1
k ∑i∈Hk

∆Li,t+h and let ∆u2
t+h,k be the average loss differential for
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cluster k adjusted for the difference (e2
1,k,t+h− e2

1,k,t+h):

∆u2
t+h,k = ∆Lt+h,k− (e2

1,k,t+h− e2
1,k,t+h). (3.16)

This suggests using the following statistic to test H idio
0 in (3.14):

Sk =

√
nk∆u2

t+h,k√
n−1

k ∑i∈Hk
(∆Li,t+h−∆Lt+h,k)2

. (3.17)

Theorem 3.3.1. Suppose Assumption 4 holds. Then under the null hypothesis H idio
0 :

n−1
k ∑i∈Hk

E(u2
i,t+h,1−u2

i,t+h,2 | F ) = 0, we have

limsup
nk→∞

P
(
|Sk|> z1−α/2

)
≤ α,

where z1−α/2 is the (1−α/2) quantile of a N(0,1) variable.

Alternatively, we can test the weaker null of equal expected squared idiosyncratic forecast

errors holding on average, i.e., across all units though not necessarily within each cluster:

H idio−av
0 : n−1

n

∑
i=1

E(u2
i,t+h,1−u2

i,t+h,2 | F ) = 0. (3.18)

To this end, let ∆u2
t+h = ∑

K
k=1

nk
n ∆u2

t+h,k be the cluster-weighted average difference in

squared idiosyncratic forecast errors, and consider the test statistic

Sc =

√
n∆u2

t+h√
n−1 ∑

K
k=1 ∑i∈Hk

(∆Li,t+h−∆Lt+h,k)2
. (3.19)

We use Sc to test the null in (3.18) of equal average idiosyncratic forecast error variance:

Corollary 3.3.1. Suppose Assumption 4 holds and assume that limn→∞ nk/n> 0 for all 1≤ k≤K.
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Then under the null H idio−av
0 : n−1

∑
n
i=1 E(u2

i,t+h,1−u2
i,t+h,2 | F ) = 0, we have

limsup
n→∞

P
(
|Sc|> z1−α/2

)
≤ α,

where z1−α/2 is the (1−α/2) quantile of a N(0,1) variable.

Using Corollary 3.3.1, we can compute a 1−α confidence interval for the squared

idiosyncratic forecast errors ∆u2
t+h as

∆u2
t+h±

z1−α/2√
n

√√√√n−1
K

∑
k=1

∑
i∈Hk

(∆Li,t+h−∆Lt+h,k)2. (3.20)

Testing Equal Squared Biases

Next, consider the squared bias component of the expected loss differential in (3.11).

Under the assumed homogeneous factor loadings within clusters in (3.13), we have

n−1
n

∑
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2]= K

∑
k=1

nk

n

(
(λ′1,(k) ft+h)

2− (λ′2,(k) ft+h)
2
)
.

We can estimate (λ′1,(k) ft+h)
2− (λ′2,(k) ft+h)

2 by e2
1,k,t+h− e2

2,k,t+h. By (3.15), we have

e2
1,k,t+h− e2

2,k,t+h = (λ′1,(k) ft+h)
2− (λ′2,(k) ft+h)

2

+2λ
′
1,(k) ft+hn−1

k ∑
i∈Hk

ui,t+h,1−2λ
′
2,(k) ft+hn−1

k ∑
i∈Hk

ui,t+h,2 +OP(n−1
k ).

To test the null of equal squared bias, we use the following test statistic:

Bn,1 =

√
n∑

K
k=1

nk
n (e

2
1,k,t+h− e2

2,k,t+h)

2
√

n−1 ∑
K
k=1 ∑i∈Hk

(e1,k,t+hûi,t+h,1− e2,k,t+hûi,t+h,2)2
, (3.21)

where ûi,t+h,1 = yi,t+h− ŷi,t+h|t,m1 − e1,k,t+h and ûi,t+h,2 = yi,t+h− ŷi,t+h|t,m2 − e2,k,t+h. We can
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show that Bn,1

(
n−1

∑
n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
])
→d N(0,1), and so:

Theorem 3.3.2. Suppose Assumptions 3 holds and assume that limn→∞ nk/n> 0 for all 1≤ k≤K.

Then under H0 : n−1
∑

n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]
= 0, we have

limsup
n→∞

P
(
|Bn,1|> z1−α/2

)
≤ α.

The null of equal squared bias relates to our earlier discussion of homogeneous versus

heterogeneous factor loadings: If factor loadings are the same across two sets of forecasts, their

squared bias differential should also be close to zero.

Theorem 3.3.2 yields a 1−α confidence interval for n−1
∑

n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]
:

K

∑
k=1

nk

n
(e2

1,k,t+h− e2
2,k,t+h)±

z1−α/2√
n

√√√√n−1
K

∑
k=1

∑
i∈Hk

(e1,k,t+hûi,t+h,1− e2,k,t+hûi,t+h,2)2. (3.22)

Note that because Bn,1

(
n−1

∑
n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
])
→d N(0,1), the confidence interval

is asymptotically exact.

3.3.3 Factor Structure Estimated by CCE

In many empirical applications, a cluster structure may not be suitable either because units

are not easily assigned to individual clusters or because factor loadings are not homogeneous

within clusters. For such applications, a more traditional factor setting may be more appropriate.

To this end, suppose we observe a panel of forecast errors {ei,s+h,m}1≤i≤n, 1≤s≤T generated

according to the factor model in (3.3), ei,s+h,m = λ′i,m fs+h +ui,s+h,m, where m = 1,2, λi,m ∈ Rr×v

and fs+h ∈ Rr with v ≥ r, so the number of observables, v, is at least equal to the number of

factors, r. The requirement that v≥ r implies that if we do not include observables other than

the two sets of forecast errors, we can allow for at most two factors. Conversely, including more
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observable variables that are driven by the same factors lets us relax this restriction and allow for

additional factors.

Difference in Idiosyncratic Error Variances

Let ei,s+h = (ei,s+h,1,ei,s+h,2)
′ ∈ R2 and ui,s+h = (ui,s+h,1,ui,s+h,2)

′ ∈ R2 be 2 × 1

vectors of forecast errors and idiosyncratic residuals and define the cross-sectional averages

ēs+h = n−1
∑

n
i=1 ei,s+h, ūs+h = n−1

∑
n
i=1 ui,s+h and λ̄ = n−1

∑
n
i=1 λi with λi = (λi,1,λi,2) ∈ Rr×2.

Assuming that we can invoke a CLT for the cross-sectional average of the idiosyncratic shocks,

ūs+h will be small and ēs+h ≈ λ̄′ fs+h can be used as a proxy for the unobserved factors. This is

the common correlated effects (CCE) idea proposed in Pesaran (2006). In turn, we can estimate

the individual factor loadings, λim, from a time-series regression

λ̂
′
i =

(
T

∑
s=1

ei,s+hē′s+h

)(
T

∑
s=1

ēs+hē′s+h

)−1

.

Let λi,1 denote the first column of λi, with similar notations used for λ̂i,1 and λ̂i,2. Consider

the following regularity conditions:

Assumption 5. The following conditions hold for m = 1,2:

(1) the smallest eigenvalue of λ̄λ̄′ is bounded away from zero.

(2) conditional on { fs+h}T
s+h=1 and {λi}n

i=1, {ui,t+h,m}n
i=1 has mean zero with bounded variance

and is independent across i.

The first part of Assumption 5 implies that the number of factors cannot exceed the

dimension of ei,s+h since otherwise the smallest eigenvalue of λ̄λ̄′ is zero. We also impose

additional regularity conditions. These are part of Assumptions A, B and C in Bai (2003) and are

routinely imposed in factor analysis.

Assumption 6. The following conditions hold for m = 1,2:

(1) n−1
∑

n
i=1 λi,mλ′i,m and E fs+h f ′s+h have eigenvalues bounded away from zero and infinity.
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(2) ∑
T
s+h=1 ∑

n
i=1 λi,mui,s+h,m f ′s+h = OP(

√
nT ).

(3) There exists a constant M > 0 such that ‖γn(s,τ)‖≤M and T−1
∑

T
s+h=1 ∑

T
τ+h=1 ‖γn(s,τ)‖≤M,

where γn(s,τ) = n−1
∑

n
i=1 Eui,s+hu′i,τ+h.

(4) n/T 2 = o(1).

Using Assumption 5 and 6, we can characterize the difference between the average squared

forecast errors and the average squared factor values, both weighted by the factor loadings, λ′i :

Lemma 3.3.1. Under Assumptions 5 and 6, we have

n−1/2
n

∑
i=1

[(λ̂′i,1ēt+h)
2− (λ′i,1 ft+h)

2] = 2n−1/2ū′t+hλ̄
′(λ̄λ̄

′)−1

(
n

∑
i=1

λi,1λ
′
i,1

)
ft+h +oP(1).

Next, consider the null that the difference in the squared idiosyncratic variance component

of the forecast errors equals zero:

H0 : n−1
n

∑
i=1

E(u2
i,t+h,1−u2

i,t+h,2 | F ) = 0. (3.23)

To test this null, we use the following test statistic

Scce =

√
n∆û2

t+h√
n−1 ∑

n
i=1(∆Li,t+h|t− [(λ̂′i,1ēt+h)2− (λ̂′i,2ēt+h)2]− ĉt+h + û′i,t+hD̂t+h)2

, (3.24)

where ĉt+h = n−1
∑

n
i=1(∆Li,t+h|t− [(λ̂′i,1ēt+h)

2− (λ̂′i,2ēt+h)
2]+ û′i,t+hD̂t+h),

∆û2
t+h = n−1

n

∑
i=1

∆Li,t+h−n−1
n

∑
i=1

[(λ̂′i,1ēt+h)
2− (λ̂′i,2ēt+h)

2] (3.25)

and

D̂t+h = n−1
n

∑
i=1

(λ̂i,1λ̂
′
i,1− λ̂i,2λ̂

′
i,2)ēt+h. (3.26)

Using these definitions, we now have the following result:
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Theorem 3.3.3. Suppose that Assumptions 5 and 6 hold. Then under H0 : n−1
∑

n
i=1 E(u2

i,t+h,1−

u2
i,t+h,2 | F ) = 0,

Scce→d N(0,1).

Using that Scce follows a standard Gaussian distribution asymptotically, we can compute

a 1−α confidence interval for n−1
∑

n
i=1 E(u2

i,t,1−u2
i,t,2 | F ) as

∆û2
t+h±

z1−α/2√
n

√
n−1

n

∑
i=1

(∆Li,t+h|t− [(λ̂′i,1ēt+h)2− (λ′i,2ēt+h)2]− ĉt+h + û′i,t+hD̂t+h)2 (3.27)

Squared Bias Differences

Next, consider the squared bias component of the MSE loss differential. Define

Dt+h = λ̄
′(λ̄λ̄

′)−1

(
n−1

n

∑
i=1

[λi,1λ
′
i,1−λi,2λ

′
i,2]

)
ft+h.

Using

√
n(n−1

∑
n
i=1[(λ̂

′
i,1ēt+h)

2−(λ̂′i,2ēt+h)
2]−n−1

∑
n
i=1[(λ

′
i,1 ft+h)

2−(λ′i,2 ft+h)
2])=2n1/2ū′t+hDt+h+oP(1),

it follows that n−1
∑

n
i=1

[
(λ̂′i,1ēt+h)

2− (λ̂′i,2ēt+h)
2
]

is a
√

n-consistent estimator for the average

difference in the squared bias differential, n−1
∑

n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]
, where the

estimation error is asymptotically 2ū′t+hDt+h. To construct tests for the squared bias difference,

consider the following test statistic

Bn,2 =
n−1/2

∑
n
i=1

[
(λ̂′i,1ēt+h)

2− (λ̂′i,2ēt+h)
2
]

2
√

n−1 ∑
n
i=1(û

′
i,t+hD̂t+h)2

, (3.28)

where, again, ûi,t+h = ei,t+h− λ̂′iēt+h. The following result characterizes the distribution of this

statistic:
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Theorem 3.3.4. Suppose that Assumption 5 holds. Then under H0 :

n−1
∑

n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]
= 0,

Bn,2→d N(0,1).

Using Theorem 3.3.4, we can construct a confidence interval for the average squared bias

differential, n−1
∑

n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]

as

n−1
n

∑
i=1

[
(λ̂′i,1ēt+h)

2− (λ̂′i,2ēt+h)
2
]
±

z1−α/2√
n

√
n−1

n

∑
i=1

(û′i,t+hD̂t+h)2. (3.29)

Again, this confidence interval is asymptotically exact.

Comparing (3.27) and (3.29), we note a difference in the asymptotics. Although both

variance expressions have û′i,t+hD̂t+h, the former has the additional term ∆Li,t+h|t− [(λ̂′i,1ēt+h)
2−

(λ̂′i,2ēt+h)
2]− ĉt+h. This difference could well make a difference to the finite-sample performance

of the two tests. For example, overfitting could result in a very small ûi,t+h and thus a small

û′i,t+hD̂t+h. By including the extra term, tests associated with Theorem 3.3.3 might be more robust

in small samples.

3.3.4 Factor Structure Estimated by PCA

An alternative to the CCE approach in Section 3.3.3 is to use principal components

analysis (PCA) to extract the common factors. A notable advantage of the PCA approach is that,

unlike the CCE approach, the number of observed forecast errors does not pose an upper bound

on the number of factors. In practice, this means that we can allow for more factors under the

PCA approach.

Define the difference in the idiosyncratic forecast error variance
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∆û2
t+h = n−1

n

∑
i=1

∆Li,t+h−n−1
n

∑
i=1

[
(λ̂′i,1 f̂t+h)

2− (λ̂′i,2 f̂t+h)
2
]
. (3.30)

As before, let f̂t+h and λ̂i be the estimated factors and factor loadings obtained using PCA

estimation. Then we have the following results:

Lemma 3.3.2. Under Assumptions A-F in Bai (2003), we have

√
n

[
∆û2

t+h−n−1
n

∑
i=1

E(u2
i,t+h,1−u2

i,t+h,2 | F )

]

= n−1/2
n

∑
i=1

[
(u2

i,t+h,1−u2
i,t+h,2)−E(u2

i,t+h,1−u2
i,t+h,2 | F )+2(λ′i,1 ft+hui,t+h,1−λ

′
i,2 ft+hui,t+h,2)

]
+oP(1).

Notice that we no longer have a term involving D̂t+h. Depending on the distribution of

the idiosyncratic term, the PCA approach might yield a more efficient estimator than the CCE

approach since it does not require us to estimate this term.

From this point, all steps in the inference procedure are exactly the same as those in Section

3.3.3, except that (λ̂′i,1ēt+h, λ̂
′
i,2ēt+h) is replaced by the PCA estimate (λ̂′i,1 f̂t+h, λ̂

′
i,2 f̂t+h) and we

set D̂t+h = 0. Specifically, in Equations (3.24), (3.25) and (3.27), we replace (λ̂′i,1ēt+h, λ̂
′
i,2ēt+h)

with the PCA estimate (λ̂′i,1 f̂t+h, λ̂
′
i,2 f̂t+h) and set D̂t+h = 0. We also replace Bn,2 in (3.28) with

the following

B̃n,2 =
n−1/2

∑
n
i=1

[
(λ̂′i,1 f̂t+h)

2− (λ̂′i,2 f̂t+h)
2
]

2
√

n−1 ∑
n
i=1(λ̂

′
i,1 f̂t+hûi,t+h,1− λ̂′i,2 f̂t+hûi,t+h,2)2

, (3.31)

where ûi,t+h,m = ei,t+h,m−λ′i,m ft+h.
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3.4 Empirical Application to Earnings Forecasts

To illustrate the economic insights that can be gained from our new test statistics, we

next conduct an empirical analysis that compares the accuracy of analysts’ forecasts of quarterly

earnings recorded across six large brokerage firms.

3.4.1 Data

Using data from the Institutional Brokers Estimate System (IBES), we examine forecasts

of quarterly earnings per share (EPS) generated by analysts at six large brokerage firms, namely

Merrill Lynch (MERRILL), JP Morgan Chase (JPMORGAN), Credit Suisse (FBOSTON),

Goldman Sachs (GOLDMAN), Morgan Stanley (MORGAN) and Deutsche Bank (LAWRENCE).

Analysts’ forecasts are not always updated so frequently at long horizons, so we focus on forecasts

generated at the two-month horizon to avoid issues caused by stale forecasts.8

Our quarterly data span the 20-year period from 2000Q1 to 2020Q1. Table 3.1 presents

summary statistics on the number of firms covered by each brokerage firm (Panel A) as well as

the average number of firms covered each quarter (Panel B). The total number of firms covered

by the brokerage firms in at least one quarter ranges from 1,437 (Lawrence) to 1,825 (Merrill),

while the average number of firm-level quarterly EPS estimates reported by the brokerage firms

ranges from 239 (Lawrence) to 356 (Merrill).

In addition to inspecting the forecasting performance across all firms, we also use SIC

codes to assign individual firms to five industry groupings chosen to match the Fama-French

industry classification, namely Consumer, Manufacturing, High Tech, Health, and Other. Firm

numbers are highest in the Other category, followed by High Tech, Manufacturing, Consumer,

and Health.
8We calculate the forecast horizon using daily data on the announcement date (ANNDATS) and forecast period

end date (FPEDATS).
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3.4.2 Factor Structure in Errors and Loss Differentials

Table 3.2 presents results from testing for the presence of common factors in the EPS

forecast errors for the six brokerage firms using the growth ratio (GR) and eigenvalue (ER)

statistics of Ahn and Horenstein (2013) as well as the Onatski (2009) test (ED).9 For three of the

brokerage firms (Fboston, Goldman, and Merrill), the three tests identify a single common factor

in the forecast errors, while for a fourth (Lawrence), two of the tests suggest a single common

factor while the third (ED) uncovers three factors. For the remaining two brokerages, the tests

identify either zero (JP Morgan) or two (Morgan) common factors.

Given these findings, we next inspect whether controlling for a common factor in the EPS

forecast errors captures their correlation. To this end, Table 3.3 reports the average correlation

between the forecast errors without controlling for a common factor (top row labeled 0) as well

as after controlling for one or two common factors (second and third rows), along with values

of the test statistic of Pesaran (2004). Under the null that the data are uncorrelated, this test

statistic is asymptotically normally distributed. The average cross-sectional correlation in forecast

errors ranges from 0.07 (Morgan) to 0.12 (Lawrence). Moreover, the underlying correlations are

highly statistically significant with test statistics exceeding 25, indicating very strong evidence of

cross-correlations in all brokerage firms’ EPS forecast errors.10

Controlling for exposures to a single common factor, average correlations drop to a

much narrower range from -0.01 to 0.03. While some of these test statistics remain statistically

significant–notably for Morgan Stanley–the test statistics typically come down by more than

an order of magnitude as does the average cross-correlation estimate. Accounting for a second

common factor only has a marginal effect on average correlations and test statistics, except for

Morgan Stanley whose average correlation declines from 0.03 to 0.01. We conclude that very

9We estimate the factors from the subset of firm-brokerage pairings with at least 40 quarterly observations,
corresponding to half of the sample period.

10Cross-sectional regressions of EPS outcomes on brokerage forecasts yield predictive R2-values in the range
0.5-1, with an average of 0.91.
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little common variation remains in the forecast errors after accounting for a single common factor

and, hence, that the setup in (3.3) appears to provide an accurate empirical characterization for

our data.

We next explore evidence of heterogeneity in cluster loadings across industries. To the

extent that industries differ in how sensitive their earnings are to the economic cycle, we might

expect factor loadings to be clustered along industry lines with firms within a particular industry

exhibiting more similar factor loadings than firms belonging to different industries. To see if this

holds, we estimate a common factor model ẽit+h = λi ft+h + εit+h on the standardized forecast

errors (ẽit+h) subject to the constraint ∑
N
i=1 λ2

i = 1. Specifically, we first demean and scale the

forecast errors so they have mean zero and unit standard deviation. Next, we estimate factors and

factor loadings by PCA using the EM algorithm.

Table 3.4 shows the standard deviation of the estimated factor loadings across all firms

(first column) as well as within the five industry clusters. Factor loadings that are more

homogeneous within a particular industry than in the aggregate should give rise to smaller

values of the standard deviations than in the first column. We see modest evidence of this: For all

but one of the six brokerage firms, the standard deviation of the factor loadings is smaller in three

of the five industries compared to in the aggregate. Similarly, for the Consumer, Manufacturing,

and High Tech industries, the standard deviation of factor loadings is smaller than the standard

deviation of factor loadings in the aggregate for four of the six brokerages. For the “Other”

industry, there is typically higher heterogeneity in factor loadings than what we see in the

aggregate, indicating that this industry group includes many heterogeneous firms.

3.4.3 Test Results

We next use our new cross-sectional tests of equal predictive accuracy to compare the

EPS forecasts. With six brokerage firms, we can conduct a total of 15 pair-wise comparisons. To

focus the discussion, we concentrate on four pairs, namely Morgan Stanley vs. Goldman, Morgan
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Stanley vs. Merrill, Goldman vs. Merrill, and Lawrence (Deutsche Bank) vs. Merrill.11

Figure 3.1 plots time-series of the quarterly values of the cross-sectional average test

statistics for the null of equal predictive accuracy. We show separate lines for the test statistics

assuming homogeneous factor loadings, (3.7), used to test the unconditional null in (3.4), and

heterogeneous factor loadings, (3.10), used to test the conditional null in (3.5). In each panel,

positive values of the test statistic indicate that the second forecaster is more accurate than the

first forecaster, while negative values suggest the reverse.

The first point to note is that the two sets of test statistics in (3.7) and (3.10) are very

similar even though they test different hypotheses and deal with factor-related shocks in different

ways. This similarity arises because the tests only differ with respect to the centering of the terms

in the denominator which turns out to be of little importance.

Next, consider the pairwise comparisons starting with Morgan Stanley vs. Goldman (top

left panel). In most quarters during our sample, the test statistic is not statistically significant,

the three exceptions being 2004Q4, 2012Q1 and 2020Q1 where Goldman’s forecasts are

significantly more accurate than Morgan Stanley’s. Comparing Morgan Stanley vs. Merrill

(top right corner), Merrill comes out on top in two quarters (2001Q3, 2018Q4). The pairwise

comparison of Goldman vs. Merrill (bottom left) only shows one quarter (2004Q3) with significant

underperformance for Merrill relative to Goldman, while Lawrence produces significantly more

accurate earnings forecasts than Merrill (bottom right) in five quarters (2005Q4, 2011Q1, 2013Q4,

2014Q2 and 2017Q3) and only underperforms significantly during a single quarter (2007Q3).

An important point to bear in mind when interpreting these results is that we are inspecting

multiple test statistics–81 in this case–which introduces a multiple hypothesis testing problem.

While we do not deal with this issue here, Qu, Timmermann and Zhu (2019) develop a Sup-type

bootstrap approach that evaluates the joint statistical significance of individual test statistics.

We conclude the following from these results. First, the empirical results are very robust

11For each of the pairwise comparisons of firm-level EPS forecasts, our analysis imposes a requirement of at least
five observations.
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to whether we assume homogeneous or heterogeneous factor loadings and test the null of equal

cross-sectional average predictive accuracy unconditionally or conditional on the factors and

factor loadings. Second, our results suggest that the brokerage firms produce short-term earnings

forecasts that are equally accurate during the vast majority of quarters but also indicate that there

are significant differences in predictive accuracy in a few periods.

3.4.4 Decomposition Results

Figure 3.2 presents a set of heat diagrams displaying the quarterly values of the cross-

sectional tests statistics used to test the null of equal idiosyncratic variances (3.23) for pairs of

brokerage firms. Each panel corresponds to a particular pair-wise comparison, using the four

pairs from Figure 3.1. Red colors indicate quarters in which the first forecaster has a larger

idiosyncratic error variance component than the second forecaster, while blue colors indicate the

reverse. Asterisks mark quarters in which the test statistic is significant at the 5% level, using a

two-sided test. Each diagram contains three rows showing results based on the PCA, CCE, and

cluster approaches, respectively.

First consider the comparison of Morgan Stanley vs. Goldman (top panel). The test

statistics fluctuate around zero in most quarters without being statistically significant. Using the

PCA-based test we see find two quarters in which Morgan Stanley’s idiosyncratic error variance

was significantly higher than that of Goldman while for the CCE and cluster tests this holds in

zero and one quarter, respectively. Given that we are considering 81 quarterly test statistics, this

number of rejections is lower than what we would expect by random chance and so does not

provide strong evidence that idiosyncratic error variances differ in any significant way across the

two brokerage firms. Similar results hold for the Morgan Stanley vs. Merrill Lynch and Goldman

vs. Merrill Lynch comparisons. The comparison of the idiosyncratic error variances of Lawrence

versus Merrill Lynch (bottom panel) leads to more rejections of the null of equal accuracy–four

in total–when based on the PCA method, with one and four rejections using the CCE and cluster

130



methods, respectively.

In total, across the four pair-wise comparisons in Figure 3.2, the PCA test produces

eleven rejections of the null, while the CCE and cluster-based methods record five and nine

rejections. These findings suggest that there is little overall evidence of systematic differences in

the magnitude of the idiosyncratic error variance component of analysts’ EPS estimates.

Figure 3.3 shows the outcome of cross-sectional comparisons of the squared bias

component in the errors of the four pairs of brokerage firms’ EPS forecasts using the test

statistics in (3.21), (3.28) and (3.31). Starting with the Morgan Stanley vs. Goldman comparison,

we find nine rejections of the null of equal squared biases based on the PCA test, six rejections

based on the CCE test, and a single rejection based on the cluster test. Rejection rates are lower

for the three other pairwise comparisons, with five to six rejections for the PCA-based test, two to

seven rejections for the CCE-based test, and zero or one rejections for the cluster test.

Overall, across the four pair-wise comparisons, we find 26 rejections of the null based on

the PCA test, 22 rejections based on the CCE test, and only two rejections based on the cluster

test. Hence, for the PCA and CCE-based tests, the rejection rate is somewhat higher than what

we would expect by random chance from applying a test with a 5% size to 324 cross-sectional

comparisons (16 rejections), while clearly this is not the case for the cluster-based test. Many of

the rejections based on the PCA and CCE tests occur during the Global Financial crisis (2008-09).

During this period, factor volatility is likely to have been higher than normal and so this could

have boosted the power of the test for equal squared biases.

There are good theoretical reasons why the PCA approach appears to have better power

in our empirical application. First, the cluster-based method is likely to be conservative since

its asymptotic size is not exact; in fact, in Theorems 3.3.1 and 3.3.2, the asymptotic size is only

bounded by the nominal size, rather than being equal to it. Second, the asymptotic variance of the

estimates for the difference in squared biases and idiosyncratic variances can be smaller under

PCA than under CCE because, as we noted after Lemma 3.3.2, the PCA estimator tends to be
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more efficient than the CCE, thus increasing its relative power.

The empirical results displayed in Figures 3.2 and 3.3 show notable differences across the

tests of equal idiosyncratic variance versus equal squared biases. The Monte Carlo simulations

reported in the next section suggest that the test for equal idiosyncratic error variances can be

quite conservative which is consistent with the smaller number of rejections of the null for this

test compared to the test for equal squared error bias.

The test statistics plotted in Figures 3.1-3.3 provide evidence on the statistical significance

of differences in squared error loss, idiosyncratic variances, and squared biases. They do not

show how much of the variation in differences in squared error loss is explained by differences in

the idiosyncratic variance and squared bias components. To address this point, Table 3.5 reports

the mean and variance of the contributions from these components, both measured relative to the

total loss differential. Specifically, defining the cross-sectional sample moments

bias2
t+h = n−1

n

∑
i=1

[
(λ̂′i,1 f̂t+h)

2− (λ̂′i,2 f̂t+h)
2
]
,

4u2
t+h = n−1

n

∑
i=1

(
û2

i,t+h,1− û2
i,t+h,2

)
,

the columns labeled mean ratio in Table 3.5 report the time-series averages

100
81

(
∑

2020Q1
t=2000Q14u2

t+h

∑
2020Q1
t=2000Q14Lt+h

)
,

100
81

2020Q1

∑
t=2000Q1

(
∑

2020Q1
t=2000Q1 bias2

t+h

∑
2020Q1
t=2000Q14Lt+h

)
,

for the idiosyncratic variance (top panel) and squared bias (bottom panel) components,

respectively. As before,4Lt+h = n−1
∑

n
i=1 ∆Li,t+h|t . From (3.11), these measures can be positive

or negative but sum to 100.

Similarly, columns labeled variance ratio report the following

Var(4u2
t+h)

Var(4Lt+h)
,

Var(bias2
t+h)

Var(4Lt+h)
,
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where

Var(4Lt+h) =
1

80

2020Q1

∑
t=2000Q1

(
4Lt+h−4Lt+h

)2
,

Var(4u2
t+h) =

1
80

2020Q1

∑
t=2000Q1

(
4u2

t+h−4u2
t+h

)2

,

Var(bias2
t+h) =

1
80

2020Q1

∑
t=2000Q1

(
bias2

t+h−4bias2
t+h

)2

.

and 4Lt+h = (1/81)∑
2020Q1
t=2000Q14Lt+h, 4u2

t+h = (1/81)∑
2020Q1
t=2000Q14u2

t+h, and 4bias2
t+h =

(1/81)∑
2020Q1
t=2000Q14bias2

t+h. These variance ratios do not sum to 100 because of the omitted

covariance term.

The mean ratios of the four pairwise comparisons reported in Table 3.5 are generally

notably higher for differences in the idiosyncratic variances than for differences in squared biases,

with the former falling within ranges of 40-87%, 1-95%, and 85-96% for the PCA, CCE, and

cluster methods, respectively. Variance ratios are also higher–typically by a large margin–for

differences in the idiosyncratic variance component than for differences in the squared biases for

all but one pairwise comparison (Morgan Stanley vs. Goldman, CCE method). Variation in the

idiosyncratic variance component is thus generally substantially more important to explaining

squared error loss differences between brokerage firms’ earnings forecasts than variation in the

squared bias term.

These results show that, on average, differences in idiosyncratic error variances account

for far more of squared error loss differences in brokerage firms’ EPS forecasts than the squared

bias component. Differences in brokerage firms’ quarterly EPS forecast accuracy therefore appear

not so much to be driven by differences in their ability to predict common factors, i.e., their skills

as “generalists”. Rather, differences in predictive accuracy tend to be driven by differences in

brokerage firms’ ability to reduce uncertainty about the idiosyncratic component of EPS as this

relates to their specialist knowledge of individual firm performance. The main exception to this
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finding occurs around the Global Financial Crisis (2008-09) during which the squared bias term

becomes more important in explaining differences in squared-error losses across brokerages,

particularly for the PCA-based test.

3.5 Monte Carlo Simulations

Our final section reports the outcome of a set of Monte Carlo simulations which address

the finite-sample properties of our tests.

3.5.1 Setup

Our baseline simulations use a simple setup designed to satisfy the assumptions of the

three different estimation procedures (clustering, CCE and PCA) which allows us to more directly

compare their performance. First, we generate factors f1,t and f2,t as i.i.d variables from the

standard normal distribution. Next, we compute realized outcomes as yit+h = f1,t + f2,t + εit+h,

while forecasts are generated as ŷit+h|t,1 = f1,t +ξit+h,1 and ŷit+h|t,2 = f2,t +ξit+h,2, where εit+h,

ξit+h,1 and ξit+h,2 are mutually independent i.i.d. N(0,σ2) draws. We calibrate σ2 to yield a value

for the predictive power ρ2 in a certain range, where for m ∈ {1,2},

ρ
2 = 1−

E(yit+h− ŷit+h|t,m)
2

Ey2
it+h

.

Because ρ2 = 1/(2 + σ2), ρ2 ∈ (0,1/2). We set n ∈ {10,25,50,100,200,1000} and ρ2 ∈

{0.05,0.1,0.2,0.25,0.3,0.4,0.45} as well as T = 80. All results are based on 2000 random

samples.

Initially we consider the performance in a typical time period (t = 3) and note that results

for other time periods would be similar, given the i.i.d. setting. Section 3.5.4 introduces breaks to

the data generating process and so considers both pre- and post-break performance.
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Because we are testing a random hypothesis, the hypothesized value is not zero but a

random quantity that depends on the realization of the factors and factor loadings. For this reason,

and to simplify the presentation of size and power results, we invert our test statistics to form

95% confidence intervals for E(∆Lt+h | F ) and report the coverage probabilities.

3.5.2 Baseline results

Table 3.6 reports results on the procedure for conducting inference on E(∆Lt+h | F ) = 0

described in Section 3.2.5. Coverage probabilities are generally quite accurate although there is

some undercoverage for very small values of n, suggesting that the test might slightly overreject

in such cases.

Next, we invert the procedures described in Section 3.3 to construct 95% confidence

intervals for the squared error loss decompositions based on the clustering, CCE, and PCA

methods. Table 3.7 reports results for the average difference in the squared bias component

n−1
∑

n
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2
]

while results for the average difference in the idiosyncratic

variance component n−1
∑E(u2

i,t+h,1−u2
i,t+h,2 | F ) are reported in Table 3.8.

For the tests applied to the squared bias terms (Table 3.7), the coverage probability

generally improves with the sample size n, with exception of the PCA method when ρ2 is very

small.12 In larger samples, the coverage probability for the difference in squared bias is relatively

stable as a function of ρ2, while for smaller values of n, the tests are under-sized for small values

of ρ2 and oversized for large values of ρ2. Conversely, the confidence intervals for the difference

in variances (Table 3.8) tend to be more conservative when ρ2 is large, with coverage probabilities

exceeding 99%. To understand this finding, note that ρ2 = 1/(2+σ2) and inference on the

difference in variance relies on variation in uit+h|m which is 2σ2 in this case. Large values of

ρ2 are therefore associated with smaller variation in uit+h|m and so the higher-order terms in the

12A reason for this finding is that for n = 1000 and T = 80, the two dimensions of the sample size are not very
balanced and the accuracy of the PCA method is determined by min{n,T}.

135



asymptotic expansion tend to be more pronounced which means that the first-order asymptotic

approximation underlying the inference procedure is generally less accurate.

Overall, the procedure for testing differences in idiosyncratic variances has better coverage

than its counterpart for testing differences in the squared bias component. This might be explained

by the greater robustness of the test for equal idiosyncratic variances highlighted earlier. Moreover,

the size distortion results suggest that tests for equal squared biases are likely to have more power

than tests for equal idiosyncratic error variances.

3.5.3 Decompositions with heterogeneous factor loadings

We next consider various extensions to the baseline simulation setup. To keep the

presentation short, all results are reported in a set of appendix tables.

Heterogeneous factor loadings across Clusters

Our first extension allows factor loadings to have a cluster structure. Specifically, we

partition the cross-section of n units into five equal-sized clusters and set ŷit+h|t,1 = f1,tλk(i)+

ξit+h,1, where λk(i) ∈ {0,0.5,1,1.5,2} and k(i) is the cluster that contains unit i. Similarly, we set

ŷit+h|t,2 = f2,tλk(i)+ξit+h,2 with λk(i) ∈ {0,0.5,1,1.5,2}. Since each cluster contains n/5 units,

the clusters are very small for the smallest values of n, i.e., only two and five units per cluster for

n = 10 and n = 25, respectively.

Results from this setup are reported in Appendix Tables C.1 and C.2. For inference on

differences in the squared bias (Table C.1), the clustering method has a substantial undercoverage

for small values of n but performs notably better with larger sample sizes. This is as expected

since the clustering method uses the cluster-wise average to estimate the factor structure and

the size of each cluster is n/5. The CCE method mostly has sufficient coverage probability

while the PCA method tends to be very conservative with coverage probabilities at or above

99%. For inference on differences in the error variance (Table C.2), all three methods perform
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reasonably well across various sample sizes, although the clustering and CCE approaches tend

to be somewhat conservative while, conversely, the PCA method overrejects if n is very small

(n = 10).

General heterogeneous factor loadings

Our second extension applies a more general setting in which factor loadings are neither

constant, nor have a cluster structure as we generate factor loadings as the absolute value of a

standard normal distribution, i.e., λ1,i and λ2,i are i.i.d |N(0,1)|. Using absolute values ensures

that E(λ1,i) = E(λ2,i) is positive as required by the CCE method (Assumption 5). Conversely,

the clustering method is no longer valid in this setting and so we omit results for this method.

Using these heterogeneous factor loadings, we set yit+h = λ1,i f1,t +λ2,i f2,t + εit+h and generate

forecasts as ŷit+h|t,1 = λ1,i f1,t + ξit+h,1 and ŷit+h|t,2 = λ2,i f2,t + ξit+h,2, where εit+h, ξit+h|1 and

ξit+h|2 are again drawn independently with mean zero and variance σ2. Appendix Table C.3

shows that the coverage of the CCE method is often better than that of the PCA method for

inference on differences in the squared bias with the latter having issues with undercoverage for

small values of n; both methods provide sufficient overall coverage but tend to be conservative

for inference on differences in variances, particularly when ρ2 is large.

3.5.4 Variation in the factor structure

Three factors

The key reason for using the PCA method is that once the number of factors exceeds two,

PCA is the only valid method for handling the general case with heterogeneous factor loadings.13

We illustrate this point in a setting with three factors as we set yit+h = λ1,i f1,t +λ2,i f2,t +λ3,i f3,t +

εit+h and generate the forecasts as ŷit+h|t,1 = λ1,i f1,t + ξit+h,1 and ŷit+h|t,2 = λ2,i f2,t + ξit+h,2,

13Another reason for using the PCA method is that it remains asymptotically valid even if E(λi) = 0, whereas the
CCE method would fail in this setting.
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where all variables (including all factors and factor loadings) are generated as before.

As shown in Appendix Table C.4, the 95% coverage probability for the CCE method can

be as low as 40% for comparing the squared bias and as low as 59% for comparing variances

when n = 1000 and ρ2 = 0.45. This phenomenon arises because we only observe two variables

(two forecast errors) and the CCE method can handle at most two factors in our setup. With more

than two factors, the CCE method does not guarantee consistent estimation of the factor structure.

Since we are studying the average across n units, the problem becomes more pronounced as n

increases.

Breaks in the number of factors

We next consider a setting in which the number of factors changes as represented by a

discrete break to the factor structure: yit+h = λ1,i f1,t +λ2,i f2,t +λ3,i f3,t1{t>T/2}+ εit+h. In this

model, the third factor ( f3,t) only shows up in the second half of the sample. All other details

remain the same. Instability in the number of factors is empirically plausible and has been studied

in Cheng, Liao and Schorfheide (2016).

Appendix Table C.5 reports coverage probabilities for 95% confidence intervals based on

the PCA and CCE methods. We consider two time periods: one before the break (t = 3), the other

after the break (t = T −3).14 Overall, the PCA method maintains sufficient coverage probability

while the CCE method can suffer from severe undercoverage. Again, the reason is that when

there are three factors, CCE cannot consistently estimate the factor structure from two observed

variables. The performance of the PCA approach is similar before and after the break. Conversely,

the CCE method performs worse after the break than before, most likely because there are only

two factors before the break, consistent with a setting in which the CCE approach is valid.

14We conduct the PCA analysis for the full sample using three factors because there are three spiked eigenvalues
in the data matrix for the full sample.
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3.5.5 Linex Loss

Table C.6 reports 95% confidence intervals for testing the null of equal conditional

expected loss (3.5) using linex loss:

L(eit+h) =
1
a2 [exp(aeit+h)−aeit+h−1] (3.32)

where a = 1. The data generating process is identical to that in the baseline case used to construct

Table 3.6. Coverage probabilities are very similar to those in Table 3.6, with a slight undercoverage

for small values of n and coverage approximating 95% as n grows larger.

3.5.6 Conditional heteroskedasticity

We now conduct a set of simulations in which the data generating process allows for

conditional heteroskedasticity modeled through a simple ARCH process of the form:

ft = σtεt ,

where σ2
t = (1− r)+ r f 2

t−1 with r = 0.5. Notice that Eσ2
t = 1.

Results are reported in Appendix Tables C.7 and C.8. Compared to the baseline setup

in Tables 3.7 and 3.8, the results do not change in any material ways, showing that conditional

heteroskedasticity in the innovations of the data generating process need not have a material effect

on the performance of our cross-sectional tests for equal predictive accuracy.

3.5.7 Relation to empirical results

In our empirical analysis, the PCA and CCE methods lead to notably more rejections

of the null of equal squared biases than the clustering method which rarely rejects the null. To

help explain these results, we slightly modify the simulation setup so as to match the high cross-
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sectional R2 values found in our application (0.9 on average) and allow for broad heterogeneity

in factor loadings. We accomplish this by adding a third factor to the model and letting factor

loadings be random: yit+h = λi1 f1,t +λi2 f2,t +λi3 f3,t + εit+h, where f1,t , f2,t , f3,t ∼ iidN(0,1),

λi1 ∼ iidN(0,V ), λi2,λi3 ∼ iidN(1,1), and εi,t+h ∼ iidN(0,σ2). The two forecasts are generated

as ŷit+h|t,1 = λi1 f1,t + λi2 f2,t and ŷit+h|t,2 = λi1 f1,t + λi3 f3,t , respectively, with forecast errors

eit+h,1 = λi3 f3,t + εit+h and eit+h,2 = λi2 f2,t + εit+h.

Normally distributed factor loadings is likely to cause the biggest problem for

the clustering method which approximates heterogeneity in factor loadings by means of

a small number of discrete values. Such heterogeneity is particularly important if the

fraction of the variation in forecast errors explained by the omitted factors is large. Here,

this is given by ρ2
e = 2/(2 + σ2) and we vary σ to obtain a range of values ρ2

e ∈

{0.3,0.4,0.5,0.6,0.7,0.8,0.9}. To mimic the cross-sectional R2, note that for each t, 1−

E[(yit+h− ŷit+h|t,1)
2| f1,t , f2,t , f3,t ]/E[y2

it+h| f1,t , f2,t , f3,t ] = (V f 2
1,t +2 f 2

2,t)/(V f 2
1,t +2 f 2

2,t +2 f 2
3,t +

σ2). Matching the empirical evidence, we set this number to 0.9 for f 2
1,t = f 2

2,t = f 3
3,t = 1 by

choosing an appropriate value of V .

Simulation results that use this setup are reported in Appendix Table C.9. When the

omitted factors matter less for the variation in forecast errors (small ρ2
e), the PCA and clustering

methods generate tighter confidence intervals than the CCE approach. However, as the common

factors gain in importance (high ρ2
e), the PCA approach produces notably narrower confidence

intervals than the clustering method, with the CCE approach in the middle. This is consistent

with the clustering approach having weaker power and so helps explain the far lower rejection

rate observed empirically for this estimator for the equality of squared bias tests in situations with

substantial cross-sectional heterogeneity in factor loadings.
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3.6 Conclusion

This paper develops new methods for testing the null of equal predictive accuracy on

a single cross-section containing pairs of forecasts of multiple outcome variables. In settings

where the cross-sectional dependence in forecast errors can be captured by a common factor

structure, we show that it is possible to conduct formal inference about equal predictive accuracy

and develop a set of test statistics. In particular, we show that the null of equal predictive accuracy

can be conducted in settings with a large cross-sectional dimension if either (i) factor loadings are

homogeneous across units so that the effect of common factors on forecast errors cancels out in

squared error loss differentials; or (ii) we condition on factor realizations and conduct a test of

equal predictive accuracy, given these factors.

We illustrate our tests in an empirical application that compares the accuracy of analyst

short-term earnings forecasts across six brokerage firms, using a sample covering hundreds

of individual firms. While our cross-sectional tests fail to reject the null of equal predictive

accuracy for most quarters, we do identify individual quarters with significant differences among

pairs of brokers. Moreover, our empirical results suggest that differences in the variances of

the idiosyncratic error component tend to be more important than differences in squared biases

for explaining variation in differences in brokerage firms’ earnings per share squared-error loss

performance.
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Table 3.1: Firm coverage by forecaster

Panel A: Total number of firms covered
Total Consumer Manufacturing High tech Health Other

MERRILL 1825 233 382 409 159 642
JPMORGAN 1796 210 341 455 166 624
FBOSTON 1752 211 375 417 121 628
GOLDMAN 1602 193 358 387 123 541
MORGAN 1473 170 305 352 117 529
LAWRENCE 1437 151 297 372 113 504

Panel B: Average number of firms covered
Total Consumer Manufacturing High tech Health Other

MERRILL 356 45 81 76 29 125
JPMORGAN 311 38 79 72 27 96
FBOSTON 277 34 70 60 17 96
GOLDMAN 283 37 72 64 21 88
MORGAN 243 29 55 53 19 88
LAWRENCE 239 27 57 56 16 82

Note: Panel A reports the number of different firms whose quarterly earnings per share is predicted by each brokerage
firm for at least one quarter during our sample. Panel B reports the average number of quarterly earnings per share
forecasts generated by each brokerage firm both in the aggregate (first column) and across five industries (columns
2-6).

Table 3.2: Estimated number of common factors in the earnings forecast errors

GR ER ED
FBOSTON 1 1 1
JPMORGAN 0 0 0
MORGAN 2 2 2
GOLDMAN 1 1 1
LAWRENCE 1 1 3
MERRILL 1 1 1

Note: This table presents estimates of the number of common factors in the earnings forecast errors using the
methods in Ahn and Horenstein (2013) and Onatski (2010). Columns labeled “GR” and “ER” report the “’Growth
Ratio” and “Eigenvalue Ratio” statistics proposed by Ahn and Horenstein (2013), while the column labeled “ED”
reports the Onatski (2010) statistic.
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Table 3.3: Correlations across earnings forecast errors

Average correlations in forecast errors
No. factors FBOSTON JPMORGAN MORGAN GOLDMAN LAWRENCE MERRILL
0 0.09 0.08 0.07 0.08 0.12 0.08

(40.22) (43.50) (25.12) (37.41) (39.02) (57.97)
1 -0.01 0.00 0.03 0.00 -0.01 0.00

(-2.62) (0.34) (9.95) (1.08) (-2.24) (2.82)
2 -0.01 -0.00 0.01 0.01 -0.01 -0.00

(-2.39) (-1.87) (5.07) (4.41) (-2.68) (-0.71)

Note: This table reports estimates of the average pair-wise correlation in earnings forecast errors along with the test
statistic for non-zero average correlations proposed by Pesaran (2004) in brackets underneath. Results are presented
using raw forecast errors (row labeled ”0”) as well as residuals from a regression that accounts for one and two
common factors in the residuals (rows labeled ”1” and ”2”).

Table 3.4: Heterogeneity in factor loadings within and across industries

Aggregate consumer manufacturing high tech health other
FBOSTON 0.067 0.066 0.075 0.049 0.043 0.070
JPMORGAN 0.062 0.049 0.058 0.052 0.067 0.070
MORGAN 0.096 0.048 0.101 0.049 0.064 0.123
GOLDMAN 0.074 0.086 0.060 0.072 0.048 0.080
LAWRENCE 0.069 0.075 0.061 0.077 0.084 0.065
MERRILL 0.057 0.048 0.051 0.067 0.063 0.051

Note: This table reports the standard deviation of the estimated factor loadings for the earnings forecast errors across
all firms (column 1) as well as for different industries (columns 2-6). For each set of forecast errors, we estimate a
model with a single common factor on the normalized forecast errors, demeaned and scaled to have a unit sample
variance.

ẽi,t = λi,1 f1,t + εi,t ,

sucject to the constraint: ∑
N
i λ2

i,1 = 1. The table reports the standard deviation of the factor loadings λi,1 within each
group of firms.
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Table 3.5: Contributions of idiosyncratic error variance and squared bias components

Difference in idiosyncratic variance (%)
MORGAN vs. GOLDMAN MORGAN vs. MERRILL GOLDMAN vs. MERRILL LAWRENCE vs. MERRILL

Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio
PCA 39.85 86.97 55.23 61.75 64.10 51.30 74.82 98.34
CCE 1.31 31.91 51.57 63.01 94.79 105.98 43.34 76.81
Cluster 96.46 93.58 96.35 92.91 93.40 90.74 85.46 89.45

Difference in squared bias (%)
MORGAN vs. GOLDMAN MORGAN vs. MERRILL GOLDMAN vs. MERRILL LAWRENCE vs. MERRILL

Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio
PCA 60.15 7.70 44.77 16.41 35.90 31.67 25.18 6.07
CCE 98.69 64.37 48.43 15.71 5.21 6.94 56.66 7.74
Cluster 3.54 0.35 3.65 0.64 6.60 0.44 14.20 0.42

Note: Columns labeled mean ratio report the sample average of the ratio of the mean contribution to the total loss difference that comes from differences in
idiosyncratic variances (top panel) or differences in squared biases (bottom panel) for a given pair of brokerage firms. Columns labeled variance ratio report the ratio
of the sample variance of the squared idiosyncratic error differences to the sample variance of the total loss difference (top panel) or the ratio of the variance of the
squared bias difference to the variance of the total loss difference (bottom panel), averaged across all quarters in the sample.

Table 3.6: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal conditional squared error loss

Coverage probability

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 91.6 91.6 91.1 90.8 90.9 90.4 89.8
25 93.8 94.0 93.4 93.4 93.3 93.3 92.9
50 94.5 94.3 94.3 94.1 94.0 94.4 94.2
100 94.5 94.7 94.5 94.5 94.6 94.4 94.4
200 94.8 94.9 94.8 94.8 94.7 94.7 94.8
1000 94.9 95.2 95.1 95.0 95.1 94.8 95.2

Note: This table reports the coverage probability for a 95% confidence
interval for the test of equal conditional squared error loss, E(∆Lt+h |F )= 0
using the Monte Carlo simulation setup described in Section 5.1 and 2,000
random samples. n refers to the number of cross-sectional units used in the
pair-wise comparison of loss differences, while ρ2 measures the predictive
power of the underlying forecasts.
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Table 3.7: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal squared biases

Clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.0 96.6 93.8 92.7 92.5 90.8 91.8
25 97.3 96.6 94.4 94.1 93.1 93.2 93.4
50 96.3 95.7 95.6 93.9 95.2 94.1 93.7
100 95.9 95.3 94.9 94.9 94.9 94.1 94.3
200 95.9 94.4 93.8 95.4 95.5 95.3 95.0
1000 95.4 94.8 94.8 95.4 95.1 95.5 95.1

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.7 96.2 93.6 92.1 92.5 90.7 91.4
25 97.1 96.1 94.2 93.9 92.9 93.0 93.2
50 96.3 95.4 95.3 93.6 95.0 93.6 93.1
100 95.7 95.3 94.6 94.8 94.4 93.9 93.8
200 95.3 93.9 93.6 94.9 95.2 95.1 94.5
1000 94.7 94.2 94.7 95.1 94.7 95.2 94.8

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 99.1 96.9 92.2 91.4 91.9 90.4 91.0
25 97.1 92.6 92.4 93.1 92.5 92.9 93.2
50 95.0 91.7 94.2 92.0 94.6 93.3 93.2
100 90.6 92.7 93.3 94.1 93.6 93.4 93.7
200 90.2 92.5 93.6 93.4 94.8 95.2 94.9
1000 91.3 92.6 93.6 94.3 93.8 94.6 94.9

Note: This table reports the coverage probability for a 95% confidence interval
for the test of equal squared biases, using the Monte Carlo simulation setup
described in Section 5.1 and 2,000 random samples. n refers to the number of
cross-sectional units used in the pair-wise comparison of loss differences, while
ρ2 measures the predictive power of the underlying forecasts. We show coverage
probabilities for the clustering, CCE, and PCA methods described in Section 3.
The assumed time-series dimension is T = 80.
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Table 3.8: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal idiosyncratic error variances

Coverage probability (clustering)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 93.7 94.8 95.4 96.4 95.6 98.0 99.1
25 94.8 94.6 97.4 97.3 97.8 98.5 99.4
50 95.3 96.3 97.0 97.3 98.1 99.0 99.6
100 95.3 96.6 97.3 97.8 98.6 99.2 99.8
200 95.8 96.6 97.7 98.6 98.2 99.0 99.4
1000 95.7 96.4 98.0 97.8 98.3 99.5 99.7

Coverage probability (CCE)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.3 96.5 97.0 98.0 97.1 99.2 99.5
25 96.1 96.4 98.4 98.5 98.5 99.3 99.7
50 96.4 97.3 97.9 98.3 99.0 99.6 99.8
100 96.5 97.1 98.4 98.7 99.1 99.7 100.0
200 96.4 97.6 98.5 99.1 98.9 99.4 99.7
1000 96.4 97.1 98.7 98.6 99.1 99.8 99.9

Coverage probability (PCA)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 91.3 91.0 93.1 94.1 95.4 98.0 99.1
25 94.1 92.8 96.1 96.8 97.4 98.6 99.3
50 94.6 94.5 96.5 97.0 97.9 99.0 99.6
100 93.3 95.5 96.3 97.5 98.4 99.1 99.7
200 95.0 95.8 96.8 98.4 98.0 99.1 99.4
1000 94.8 95.3 97.6 97.1 98.0 99.4 99.7

Note: This table reports the coverage probability for a 95% confidence interval
for the test of equal idiosyncratic variances, using the Monte Carlo simulation
setup described in Section 5.1 and 2,000 random samples. n refers to the number
of cross-sectional units used in the pair-wise comparison of loss differences, while
ρ2 measures the predictive power of the underlying forecasts. We show coverage
probabilities for the clustering, CCE, and PCA methods described in Section 3.
The assumed time-series dimension is T = 80.
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Figure 3.1: Cross-sectional test statistics for comparisons of the null of equal squared error loss
conducted on pairs of brokerage firms
Positive values of the test statistics indicate that the second forecaster is more accurate than the first
forecaster, while negative values suggest the reverse.
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Figure 3.2: Values of the cross-sectional test of equal idiosyncratic variances conducted on
individual quarters
Each panel shows the outcome of a cross-sectional test of the null that a pair of forecasters produce
the same idiosyncratic error variance in a given quarter. Red color indicates that the idiosyncratic error
variance component of the first forecaster is larger than that of the second forecaster. Blue color indicates
the reverse. The first and second rows of each panel estimate the factors by PCA and CCE, respectively,
while the third row is calculated by assuming identical factor loadings within each cluster. Asterisks
represent quarters with test statistics that are statistically significant at the 5% level.
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Figure 3.3: Values of the cross-sectional test of equal squared biases conducted on individual
quarters
Each panel shows the outcome of a cross-sectional test of the null that a pair of forecasters produce the
same squared bias in a given quarter. Red color indicates that the squared bias component of the first
forecaster is larger than that of the second forecaster. Blue color indicates the reverse. The first and
second rows of each panel estimate the factors by PCA and CCE, respectively, while the third row is
calculated by assuming identical factor loadings within each cluster. Asterisks represent quarters with
test statistics that are statistically significant at the 5% level.
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Appendix A

Appendix for Chapter 1

A.1 Numerical solution of value function and prices

It is more convenient to reparameterize vt = vH(L) (µ̃t ,Σt), where µ̃t =
µt−∑

N
i=1 αiḡi
σct

and

H(L) in the subscripts denote high or low volatility regimes. Our strategy is to solve for vt

backwards from the solutions when Σt is close to zero.

A.1.1 Partial solution of vt and ϕt when Σt = 0

One feature of the model is that investors observe the timing of breaks. When

breaks happen, investors’ belief is refreshed to
(
0,Σ0,σHigh

)
or (0,Σ0,σLow). This

section derived partial close form solution of vt and ϕt at Σ0 = 0 given values of

vH (0,Σ0) ,vL (0,Σ0) ,ϕH (0,Σ0) ,ϕL (0,Σ0).

Investors’ utility satisfy (1.14), where Qt (vt+1 +∆ct+1) satisfies

Qt (vt+1 +∆ct+1) =
1

1− γ
ln
{∫

ft (g)(Egt=g exp [(1− γ)(vt+1 +∆ct+1)])dg
}
. (A.1)

150



Hence

QH (µ̃t ,0) =

ln

(1−λ)e
(1−γ)

[
vH (µ̃t ,0)+µ̃ct σcH+∑

N
i=1 αiḡi+

(1−γ)σ2
cH

2

]
+λ

[
(1−πL)e(1−γ)vH (0,Σ0)+πLe(1−γ)vL(0,Σ0)

]
1− γ

,

QL (µ̃t ,0) =

ln

(1−λ)e
(1−γ)

[
vL(µ̃t ,0)+µ̃ct σcL+∑

N
i=1 αiḡi+

(1−γ)σ2
cL

2

]
+λ

[
(1−πL)e(1−γ)vH (0,Σ0)+πLe(1−γ)vL(0,Σ0)

]
1− γ

.

Further, we have the solution of vH(L) at Σt = 0:

vH (µ̃t ,0) =
1

1−ρ
ln{(1−β)+βexp [(1−ρ)QH (µ̃t ,0)]} ,

vL (µ̃t ,0) =
1

1−ρ
ln{(1−β)+βexp [(1−ρ)QL (µ̃t ,0)]} .

In the case of no parameter uncertainty and using equations (1.18), (1.21) and (1.23) ,

we have

ϕt =
βexp

[
gdt +

1
2σ2

dst

]
Et {(1+ϕt+1)exp [(L− γ)∆ct+1 +(ρ− γ)vt+1]}

exp [(ρ− γ)Qt (∆ct+1 + vt+1)]
.

Given gdt = L(µt − ḡ)+ ḡd , ϕt is also a function of µ̃t , Σt and volatility level. Our strategy is

to first solve the case when Σt = 0 and move backwards in time with lt increasing until lt = Σ0.

Looking at ϕ(µ̃ct ,0), we have

ϕH (µ̃t ,0) =
βexp

[
gdt +

1
2σ2

dH

]
Et {(1+ϕt+1)exp [(L− γ)∆ct+1 +(ρ− γ)vt+1]}

exp [(ρ− γ)QH (µ̃ct ,0)]
.

ϕL (µ̃t ,0) =
βexp

[
gdt +

1
2σ2

dL

]
Et {(1+ϕt+1)exp [(L− γ)∆ct+1 +(ρ− γ)vt+1]}

exp [(ρ− γ)QL (µ̃ct ,0)]
.
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Let us define

ϕ̄0 = (1−πL)(1+ϕH (0,Σ0))e(ρ−γ)vH(0,Σ0)+πL (1+ϕL (0,Σ0))e(ρ−γ)vL(0,Σ0).

We have the partial solution of ϕH(L) at Σt = 0:

ϕH (µ̃t ,0) =

βexp
[
gdt +

1
2 σ2

dH

](1−λ)(1+ϕH (µ̃t ,0))e
(ρ−γ)vH (µ̃t ,0)+(L−γ)

[
µ̃t σcH+ḡ+

(L−γ)σ2
cH

2

]
+λϕ̄0


exp [(ρ− γ)QH (µ̃t ,0)]

.

ϕL (µ̃t ,0) =

βexp
[
gdt +

1
2 σ2

dL

](1−λ)(1+ϕL (µ̃t ,0))e
(ρ−γ)vL(µ̃t ,0)+(L−γ)

[
µ̃t σcL+ḡ+

(L−γ)σ2
cL

2

]
+λϕ̄0


exp [(ρ− γ)QL (µ̃t ,0)]

.

A.1.2 Compute vt and ϕt by backward iteration

We solve the vt and ϕt through backward value function iteration. When the time interval

between two breaks tends to infinity, parameter uncertainty Σt will converge to zero and vt and

ϕt will converge to the case of Σt = 0. Note there is a one to one mapping between Σt and the

length of time period to the most recent break as shown in equation (1.19). Let us assume the

most recent break happens at time 0, hence,

1
Σt

=
1

Σ0
+ t.

We use Tmax = 400 quarters as the maximum of t. Assume at t = Tmax the difference

between
(
vH(L) (µ̃t ,0) ,ϕH(L) (µ̃t ,0)

)
and

(
vH(L) (µ̃t ,ΣT max) ,ϕH(L) (µ̃t ,ΣT max)

)
are small enough

to be ignored. We further descritize support of µ̃t in to Nmax points on the interval [−hG,hḠ]

by separating it evenly. We use Nmax = 200 and h = 3. Given an initial specification

of vH(L) (0,Σ0) ,ϕH(L) (0,Σ0) as v(0)H(L) (0,Σ0) ,ϕ
(0)
H(L) (0,Σ0), we solve v(0)t ,ϕ

(0)
t using backward

iteration:

1. Given v(0)t ,ϕ
(0)
t on the descritezed points, solve for v(0)T max,ϕ

(0)
T max
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2. Starting from t = Tmax, solve for Q(0)
t−1 using equation (A.1).

3. Solve for v(0)t−1 using Q(0)
t−1 and equation (1.20).

4. Solve for ϕ
(0)
t using Q(0)

t−1 and equations (1.18), (1.21) and (1.23)

5. Repeat process 1-3 until t goes to zero and the resulting Σt = Σ0.

6. Set
[
v(1)H(L) (0,Σ0) ,ϕ

(1)
H(L) (0,Σ0)

]
=
[
v(0)H(L) (0,Σ0) ,ϕ

(0)
H(L) (0,Σ0)

]
where the right hand side

is from v(0)t ,ϕ
(0)
t at t = 0. Repeat the process 1-5.

Finally, we repeat step 1-6 through N iterations with (0) and (1) replaced by n and n+ 1th

iterations. N is large enough that the value function converges which can be measured by the

distance between v(N+1)
H(L) (0,Σ0) and v(N)

H(L) (0,Σ0).

A.2 Estimating the model with MCMC algorithm

Prior

We assume the prior of Γi = (γi0,γi1)
′ , i = 1, ...,N as i.i.d. normal distribution, Γi ∼

N
(
µG,σ

2
G · I2

)
. We assume µG = 0 and σ2

G = 1.

We assume the prior of d−1 that characterizes the scale parameter of Gamma distribution

(1.5) where λk is drawn is Gamma:

d ∼ Gamma(u∗d,v
∗
d) .

The expected length of duration is c/d. Our goal is to examine regime of long duration so we

truncate the support of d to [0, d̄]. We assume c = 20, µ∗d = 20, v∗d = 160 and d̄ = 1/6 such that

the expectation of c/d before truncation is 40 years and the minimum of c/d = c/d̄ is 30 years.
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We assume the prior of 1/σ2
β

that characterizes the dispersion of regression coefficients

(1.7) of the new regime is Gamma:

1
σ2

β

∼ Gamma
(
uβ,vβ

)
.

We assume µβ = 5 and vβ = 0.5.

MCMC procedure

We use MCMC methods to estimate model parameters. The following is notation

preparations. Let Γ denote

Γ =

γ10 · · · γN0

γ11 · · · γN1


′

β = (Aik|i = 1, ...,N,k ∈ Ki), σ2 =
(
σ2

ik|i = 1, ...,N,k ∈ Ki
)
, σ2

f =
(

σ2
f k|k ∈ K f

)
, 1= (11, ...1K),

F = ( f1, ..., fT ), ∆ct = (∆c1t , ...,∆cNt), ∆c = (∆c′1, ...,∆c′T )
′. Let τ = (0,τ1, ...,τK) where τk is

the timing of break k. Our MCMC algorithm involves a marginal Gibbs sampler with Metropolis

proposal distributions in some blocks. We separate the parameters into several blocks: Block

1 consists of parameters related to the timing and number of breaks {K,τ,1}, block 2 involves

the common component {Γ,F}, block 3 involves hyperparameters parameters governing regime

length and distributions where parameters of new regimes are drawn
{

d,σ2
β

}
. We sample the

number and timing of breaks using Metropolis-Hastings algorithm in a manner similar to Smith

(2017) and Geweke and Jiang (2011). We can improve efficiency in sampling {K,τ,1} by

marginalizing β and σ. The general steps below:

1. Sample starting value of parameters: Sample Γ, d, σ2
β

from their priors. Use cross-sectional

mean of ∆cit as starting value of ft . Set the starting value K = 1 and τK = bT/2c .

2. Sample the number and location of the breaks: Conditional on Γ, F , d, σ2
β
, sample K, τ, 1
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using Metropolis-Hastings algorithm.

3. Conditional on d, σ2
β
, K, τ and 1, sample Γ and F .

4. Sample hyperparameters governing distributions of regime duration, regression coefficients

and volatility of regimes: Conditional on Γ , K, τ and 1, sample d and σ2
β

using Metropolis-

Hastings algorithm or Gibbs sampler.

5. Repeat step 2.

A.2.1 Sampling the location, pervasiveness and number of breaks

This section elaborate how to implement step 2: sampling K, τ, 1 conditional on Γ, F ,

d, σ2
β
. We sample the location, the pervasiveness of breaks, and the number of breaks in a

sequential manner using Metropolis-Hastings sampler. Before we proceed, we lay out useful

density expressions. Let Kit denote the indices of the last non common break that hits consumption

good i at time t: Kit =max{k|1ik = 1,k ≤ Kit}. Ki denote The conditional density of ∆c is derived

using similar tricks in Proposition 1 in Smith and Timmermann (2018),

p
(

∆c|F,Γ,K,τ,1,d,σ2
β

)
= p

(
∆c|F,Γ,K,τ,1,σ2

β

)
(A.2)

= (2π)
−T N

2
N

∏
i=1

∏
k∈Ki

vu

Γ(u)
Γ(ũik)

ṽũik
ik

|Σik|1/2∣∣Vβ

∣∣1/2

where

Σ
−1
ik =V−1

β
+ |{t|Kit = k}| ,

µik = Σik

(
∑

t∈{τ|Kiτ=k}
∆cit

)
,

ũik = u+ |{t|Kit = k}|/2,
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ṽik =
1
2

(
2v−µ′ikΣ

−1
ik µik + ∑

t∈{τ|Kiτ=k}
∆c2

it

)
.

The following is the density of F conditional on {K,τ,1} and other parameters. It can

be shown that σ2
f t can be marginalized. Let K f denote the set of breaks that hit the common

component

p
(

F |K,τ,1,d,σ2
β

)
= p

(
F |K,τ,1,σ2

β

)
= (2π)

−T
2 ∏

k∈K f

v
u f
f Γ
(
ũ f
)

ṽ
ũ f
f Γ
(
u f
) , (A.3)

where

ũ f k = u+
∣∣{t|K f t = k

}∣∣/2,

ṽ f k =
1
2

2v+ ∑
t∈{τ|K f τ=k}

f 2
t

 .

The probability of τ conditional on K,1,d,σ2
β

can be expressed as

p
(

τ|K,1,d,σ2
β

)
= p(τ|d) =

K

∏
k=1

1
lk!

Γ(c+ lk)

(d +1)c+lk

dc

Γ(c)
, (A.4)

where lk = τk+1− τk. In practice, the exact value of lK is not known given τ: it is only known

that lK ≥ T − τK . The last factor of equation (A.4) can be replaced by the right tail of CDF of

negative Bernoulli distribution NB
(
r = c, p = 1

d+1

)
.

The following is the probability of 1 conditional on τ,K,d,σ2
β
:

p
(
1|τ,K,d,σ2

β

)
=

K

∏
k=1

N +1

Nk

B(Nk +1,N +2−Nk) (A.5)

which can be derived from the data generating process.
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Sample timing of breaks

For each of the k = 1, ...,K breakpoints we perturb τk by an integer j that is sampled

uniformly from the interval [−s,s], such that τ̂k = τk + j. The proposed τ̂ has its kth element

replaced by τ̂k. This is a Metropolis-Hastings algorithm of random walk proposition function.

The proposal is accepted with probability min(1,α) where

α =
p
(

∆c|F, τ̂,Γ,K,1,σ2
β

)
p(F |τ̂,K,1) p(τ̂|d)

p
(

∆c|F,τ, ,Γ,K,1,σ2
β

)
p(F |τ,K,1) p(τ|d)

which can be calculated using equations (A.2), (A.3), (A.4).

Sample pervasiveness of breaks

Let 1i be the ith row of 1 indicating which breaks hit the ith series. Let 1 f be the last row

of 1 indicating which breaks hit the common component. For each of the i = 1, ...,N series and

the common component, we propose 1̂i( f ) where each element is sampled independently from a

Bernoulli distribution of P. The whole sequence of elements in 1̂i( f ) is sampled in one block to

increase efficiency because of dependence of breaks affecting the same series. The proposal is

accepted with probability min(1,α) where

α =
p
(

∆c|F,τ,Γ,K, 1̂,σ2
β

)
p
(
F |τ,K, 1̂

)
p
(
1̂|τ,π

)
P|Ki| (1−P)K−|Ki|

p
(

∆c|F,τ, ,Γ,K,1,σ2
β

)
p(F |τ,K,1) p(1|τ,π)P|K̂i| (1−P)K−|K̂i|

which can be calculated using equations (A.2), (A.3), (A.5).

Sample number of breaks

We adopt the reversible jump MCMC approach of Green (1995) which is also used

in Geweke and Jiang (2011) and Smith (2017). The computational burdern is alleviated by
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marginalizing regime specific parameters β, σ2, σ2
f . The proposal is a mixture of birth move and

death move.

1. Birth move: With equal probability select τ̂ among periods {1, ...,T}\τ. At time τ̂, we
propose with probability P which of the N series and common component got hit. The
proposed number of breaks K̂ = K +1. Let N̂birth denotes the number of series that is hit
by the new break. The proposed τ̂ and resulting 1̂ and K̂ are accepted with probability
min(1,α) where

α =
p
(

∆c|F, τ̂, ,Γ, K̂, 1̂,σ2
β

)
p
(

F |K̂, τ̂, 1̂,d,σ2
β

)
p(τ̂|d) p

(
1̂|τ,π

)
T

p
(

∆c|F,τ, ,Γ,K,1,σ2
β

)
p
(

F |K,τ,1,d,σ2
β

)
p(τ|d) p

(
1̂|τ,π

)
PN̂birth (1−P)N+1−N̂birth (K +1)

.

The last factor T
PN̂birth(1−P)N+1−N̂birth(K+1)

equals to 1/(K+1)

PN̂birth(1−P)N+1−N̂birth/T
the ratio of proposal

probability of death move over birth move.

2. Death move: With equal probability, delete one element among τ and the corresponding

column in 1̂ to get τ̂ and 1̂. The proposed number of breaks K̂ = K−1. Let N̂death denotes

the number of series that is hit by the break deleted. The proposed τ̂ and resulting 1̂ and K̂

are accepted with probability min(1,α) where

α =
p
(

∆c|F, τ̂, ,Γ, K̂, 1̂,σ2
β

)
p
(

F |K̂, τ̂, 1̂,d,σ2
β

)
p(τ̂|d) p

(
1̂|τ,π

)
PN̂death (1−P)N+1−N̂death K

p
(

∆c|F,τ, ,Γ,K,1,σ2
β

)
p
(

F |K,τ,1,d,σ2
β

)
p(τ|d) p

(
1̂|τ,π

)
T

.

A.2.2 Sample the common component and its parameters

Given the regime specific coefficients β, σ2 and σ2
f , equations (1.1) specifies a state-space

model of latent factor Ft = ( ft , ft−1)
′ with state equation

Ft = BFt−1 +
(
σ f tε f t ,0

)′ (A.6)

where

B =

0 0

1 0

 .
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Let Γi = (γi0,γi1)
′ observation equations

yit = Γ
′
iFt +σitεit , i = 1, ...,N (A.7)

where yit = ∆cit −Ait . The factor component F and parameters B f and Γ can be sampled by

modifying algorithms proposed in Carter and Kohn (1994). The general steps are the following.

1. Sample β, σ2 and σ2
f conditional on

{
F,Γ,∆c,K,τ,1,d,σ2

β

}
.

2. Sample F conditional on
{

F,Γ,∆c,K,τ,1,d,σ2
β
,β,σ2,σ2

f

}
.

3. Sample Γ conditional on
{

F, ,∆c,K,τ,1,d,σ2
β
,β,σ2,σ2

f

}
.

The posterior of elements in σ2 follow inverse Gamma distribution of density which can be

sampled directly:

p
(

σ
2
ik|F,Γ,∆c,K,τ,1,d,σ2

β

)
=

ṽũik
ik

Γ(ũik)

(
σ

2
ik
)−(ũik+1)

exp
(
− ṽik

σ2
ik

)
, k ∈ Ki, i = 1, ...,N.

where ũik and ṽik are defined in (A.2). The posterior of β conditional on σ2 is Gaussian:

p(Aik) = N (µik,Σik) , k ∈ Ki, i = 1, ...,N.

where µik and Σik are defined in (A.2). The posterior of elements in σ2
f follow inverse Gamma

distribution of density which can be sampled directly:

p
(

σ2
f k|F,Γ,∆c,K,τ,1,d,σ2

β

)
=

ṽ
ũ f k
f k

Γ(ũ f k)

(
σ2

f k

)−(ũ f k+1)
exp
(
− ṽ f k

σ2
f k

)
, k ∈ K f ,where ũ f k

and ṽ f k are defined in (A.3).

The posterior of F is normal of which the mean and variance can be computed recursively

using Kalman filter. Let µ f t|t and R f t|t denote the posterior mean and covariance matrix of Ft

conditional on
{

β,σ2,σ2
f ,Γ,∆ct ,K,τ,1,d,σ2

β

}
where ∆ct is subset of . Let µ f t+1|t and R f t+1|t

denote the posterior mean and variance of Ft conditional on
{

β,σ2,σ2
f ,Γ,∆ct ,K,τ,1,d,σ2

β

}
. Let
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σ2
t denotes vector of variance of idiosyncratic innovations

(
σ2

1t , ...,σ
2
Nt
)
. The parameters µ f t|t ,

R f t|t , µ f t+1|t and R f t+1|t are updated following the Kalman filters:

µ f t+1|t = Bµ f t|t ,

R f t+1|t = BR f t|tB
′+diag

(
σ

2
f t ,0
)
,

et|t =
(
y1t−Γ1µ f t|t−1, ...,yNt−ΓNµ f t|t−1

)′
,

µ f t|t = µ f t|t−1 +R f t|t−1Γ
′ (

ΓR f t|t−1Γ
′+diag

(
σ

2
t
))−1

et|t ,

R f t|t = R f t|t−1−R f t|t−1Γ
′ (

ΓR f t|t−1Γ
′+diag

(
σ

2
t
))−1

ΓR f t|t−1

We can then sample the entire set of factor observations conditional on the parameters

starting from the latest period T and move backward. First, sample FT from N
(
µ f T |T ,R f T |T

)
.

Let µ f t|t, ft+1 and R f t|t, ft+1 denote the posterior mean and variance of Ft conditional on{
Ft+1,β,σ

2,σ2
f ,Γ,∆c,K,τ,1,σ2

β

}
.

µ f t|t, ft+1 = µ f t|t +R f t|tB
′R−1

f t+1|t
(

ft+1−µ f t+1|t
)
,

R f t|t, ft+1 = R f t|t−R f t|tB
′R−1

f t+1|tBR f t|t .

Conditional on
{

β,σ2,Γ,∆c,F
}

, the posterior of Γi, i = 1, ...,N is N
(
µ̃Gi, Σ̃Gi

)
:

Σ̃
−1
Gi = σ

−2
G I2 +

T

∑
t=1

FtF ′t /σ
2
it ,

µ̃Gi = Σ̃Gi

(
σ
−2
G µG +

T

∑
t=1

Ftyt/σ
2
it

)
.
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A.2.3 Sample parameters governing regime length and break

distributions

We sample regime d governing the distribution where regime length is drawn using

Metropolis-Hasting algorithm. The proposal d̂ = d exp(s · ε), where ε is drawn from a standard

normal distribution and s is features average step length. d̂ is accepted with probability min(1,α)

where

α =
p
(
τ|d̂
)

p
(
d̂|u∗d,v∗d

)
p(τ|d) p

(
d|u∗d,v∗d

) .
p
(
d|u∗d,v∗d

)
is the prior density of d of Gamma

(
u∗d,v

∗
d

)
.

We sample 1/σ2
β

governing the variance of new coefficients using Metropolis-Hasting

algorithm. The proposal 1/σ̂2
β
= 1/σ2

β
exp(s · ε) where ε is drawn from a standard normal

distribution and s is features average step length. σ̂2
β

is accepted with probability min(1,α) where

α =
p
(

∆c|F,τ,Γ,K,1, σ̂2
β

)
p
(

1/σ̂2
β
|uβ,vβ

)
p
(

∆c|F,τ,Γ,K,1,σ2
β

)
p
(

1/σ2
β
|uβ,vβ

) .
p
(

1/σ2
β
|uβ,vβ

)
is the prior density of 1/σ2

β
of Gamma

(
uβ,vβ

)
.
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Appendix B

Appendix for Chapter 2

B.1 Monte Carlo Simulations

To explore the finite-sample performance of our bootstrap procedure for identifying

superior forecasting skills, this section conducts a series of Monte Carlo simulations addressing

both the size and power of our bootstrap. We adopt the following setup: for forecasters m =

1, ....,M, variables i = 1, ....,N and time periods t +h = 1, ...,T , the forecast errors are assumed

to obey the factor structure

ei,t+h,m = λi,m ft+h +ui,t+h,m,

where ft+h is a mean-zero Gaussian AR(1) process with autoregressive coefficient ρ and

variance σ2
f . We generate λi,m as i.i.d random variables from a N(0,σ2

λ
) distribution truncated

such that λ2
i,mσ2

f ≤ 0.9; we then set ui,t+h,m as a mean-zero Gaussian AR(1) process with

AR coefficient ρ and variance 1 − λ2
i,mσ2

f . Here, { ft+h}T
t+h=1, {λi,m}1≤i≤N,1≤m≤M and

{ui,t+h,m}1≤i≤N,1≤m≤M,1≤t+h≤T are mutually independent. We set (σ f ,σλ) = (2,1.2). When

T > 30, we use ρ = 0.5 and a block size BT = T 0.6; otherwise, we set ρ = 0 and BT = 1. We

consider a no normalization and a partial normalization scheme, both of which are described in

Example 2.3.1. Under these schemes, all forecast errors have MSE values equal to one so the null
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hypothesis that no forecasts underperform the benchmark model, m0, holds.

Table B.1 reports size results from 1,200 Monte Carlo simulations using a variety of

combinations for the sample size, T = {25,50,100,200}, the number of forecasters, M =

{2,10,100} and the number of outcome variables N = {1,10,25,50,100}. Each MC simulation

uses 250 bootstraps. We report results both with and without studentizing the Sup test statistic

and use critical values of α = 0.05,0.10.

In general, the size of the non-studentized test statistic is reasonably closely aligned with

the true size although it tends to be undersized for large values of N and T , particularly when M is

also large. The size properties of the studentized test statistic are quiteR good for small-to-modest

values of N,M, and T , but this test statistic tends to be severely undersized when N,T,M are large.

The undersizing is particularly pronounced for α = 0.05. Interestingly, when the time-series

dimension is small (T = 25), the studentized test statistic is actually over-sized and the rejection

rate increases in the number of variables, N. This pattern reverses in the tests that use larger

sample sizes, i.e., T = 50,100,200.

The size simulations can be used to compute size-adjusted critical values that deliver more

accurate finite-sample performance. In particular, for each value of (N,M,T ), we can compute

size-adjusted critical values for the p-value such that the rejection probability for this sample

size under the null hypothesis is made to be exactly α. Whenever the rejection rate in Table

B.1 exceeds α, the corresponding size-adjusted p-value, displayed in Table B.2, will be adjusted

downward (below α), whereas the reverse holds when the rejection rate in Table B.1 falls below

α. An interesting observation from Table B.2 is that using a critical level of α = 0.10 for the

studentized test statistic in many cases gets us close to a size of 5%. This is the chief reason we

use a 10% size throughout the empirical analysis.

To explore the power properties of the Sup test statistics with and without studentization,

consider the following setup. For each of the N outcome variables, we use one forecast as the

benchmark while the remaining (M−1) forecasts are competitors. In other words, we split the
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NM forecasts into N benchmarks and (N−1)M competing forecasts. Next, we randomly select

20% of these competing forecasts and add
(
2T−1 log(MN)

)1/8 to the selected forecast errors,

which then have larger MSE than the baseline forecasts.

This design for the power experiments is in line with that in Chernozhukov, Chetverikov

and Kato (2018). In their simulations, 5% of the moments violate the null hypothesis while this

figure is 20% in ours. We choose a larger percentage of moments that violate the null hypothesis

due to the smaller sample size in our experiments: their sample size is always 400 and our sample

size ranges from 25 to 200.1

Table B.3 reports the power of the Sup test statistics with and without studentization. To

facilitate comparisons across the two test statistics, we use size-adjusted critical values. With

exception of a few instances when N = 1, the power of the Sup test statistic is generally much

higher with studentization than without, e.g., the power can be 10-20% for the non-studentized

test statistic but 70-80% for the studentized test statistic. The general conclusion is, thus, that

using the studentized rather than the non-studentized test statistic yields far better power.

B.2 Proofs

This appendix provides proofs for the theoretical results in our paper.

B.2.1 Preliminary results

Before proving our theorem, we start by recalling some results from Chernozhukov,

Chetverikov and Kato (2018), re-stated here using our notation so that these results can be

readily used in our analysis. Let qT > rT with qT + rT ≤ T/2. Further, let BT = qT + rT and

K = KT = bT/(qT + rT )c (the integer part of T/(qT + rT )). For 1 ≤ k ≤ K, define Ak = {t :

1Because of our smaller sample sizes, it is necessary to let the magnitude of departures from the null depend on
the sample size in order to obtain meaningful comparisons; if we change

(
2T−1 log(MN)

)1/8 to a fixed value, we
would likely find that the methods either have power close to one or close to the nominal size.
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(k−1)(qT + rT )+1≤ t ≤ (k−1)(qT + rT )+qT}. Let {εk}K
k=1 be i.i.d N(0,1) random variables

that are independent of the data. In the proofs, we use Wt instead of Wt+h for notational simplicity;

changing t +h to t does not affect the theoretical arguments.

Theorem B.2.1 (Theorem B.1 of Chernozhukov, Chetverikov and Kato (2018)). Let Assumption

1 hold. Then there exist constants C,c > 0 depending only on c1,c2 and C1 such that

E sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

T−1/2
T

∑
t=1

Wjt ≤ x

)

−P

(
max

1≤ j≤N

1√
KqT

K

∑
k=1

∑
t∈Ak

(Wj,t− µ̂ j)εk ≤ x | {Ws}T
s=1

)∣∣∣∣∣≤CT−c,

where µ̂ j = T−1
∑

T
t=1Wjt . Moreover,

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

T−1/2
T

∑
t=1

Wjt ≤ x

)
−P

(
max

1≤ j≤N
Z j ≤ x

)∣∣∣∣∣≤CT−c,

where Z = (Z1, ...,ZN )′ ∈ RN is a centered Gaussian vector with variance matrix EZZ′ =

(KqT )
−1

∑
K
k=1 E

[(
∑t∈Ak

Wt
)(

∑t∈Ak
Wt
)′].

Proof. The first claim follows from the statement of Theorem B.1 of Chernozhukov, Chetverikov

and Kato (2018). The second statement is from the proof of Theorem B.1 of Chernozhukov,

Chetverikov and Kato (2018); see Equation (94) therein.

Bootstrap approximation of normalized test statistic

The following theorem is a general result on the bootstrap approximation of the normalized

test statistic, assuming a good approximation of the normalization. In Appendix B.2.1, we provide

further results on the approximation of the normalization. We first state the following Theorem

B.2.2, present its proof, and then prove the auxiliary lemmas used.
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Theorem B.2.2. Let Assumption 1 hold. Suppose that T−1
√

KrT (logN )3/2 = o(1),

T−1qT (logN )3/2 = o(1), T−1KrT log2 N = o(1) and T−1r2
T D2

T log3 N = o(1). Let a =

(a1, ...,aN )′ ∈ RN be nonrandom with κ1 ≤ a j ≤ κ2 for all 1≤ j ≤N and κ1,κ2 > 0. Suppose

that â = (â1, ..., âN ) satisfies min1≤ j≤N â j > 0 and ‖â−a‖∞ = oP(1/ logN ). Then

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

T−1/2
∑

T
t=1Wjt

â j
≤ x

)

−P

(
max

1≤ j≤N

T−1/2
∑

K
k=1 ∑t∈Āk

(Wj,t− µ̂ j)εk

â j
≤ x | {Ws}T

s=1

)∣∣∣∣∣= oP(1),

where Āk = {t : (k−1)(qT + rT )+1≤ t ≤ k(qT + rT )}.

Proof. We first apply Theorem B.2.1 to {(a−1
1 W1t , ...,a−1

N WN t)}T
t=1, obtaining

E sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

a−1
j T−1/2

T

∑
t=1

Wjt ≤ x

)

−P

(
max

1≤ j≤N
a−1

j (KqT )
−1/2

K

∑
k=1

∑
t∈Ak

(Wj,t− µ̂ j)εk ≤ x | {Ws}T
s=1

)∣∣∣∣∣≤CT−c,

where C,c > 0 are constants that only depend on c1,c2, C1, κ1 and κ2. By Lemma B.2.5,

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

a−1
j (KqT )

−1/2
K

∑
k=1

∑
t∈Ak

(Wj,t− µ̂ j)εk ≤ x | {Ws}T
s=1

)

−P

(
max

1≤ j≤N
â−1

j T−1/2
K

∑
k=1

∑
t∈Āk

(Wj,t− µ̂ j)εk ≤ x | {Ws}T
s=1

)∣∣∣∣∣= oP(1).

Therefore, we have

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

a−1
j T−1/2

T

∑
t=1

Wjt ≤ x

)

−P

(
max

1≤ j≤N
â−1

j T−1/2
K

∑
k=1

∑
t∈Āk

(Wj,t− µ̂ j)εk ≤ x | {Ws}T
s=1

)∣∣∣∣∣= oP(1).
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It follows from Lemma B.2.3 that

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

a−1
j T−1/2

T

∑
t=1

Wjt ≤ x

)

−P

(
max

1≤ j≤N
â−1

j T−1/2
T

∑
t=1

Wjt ≤ x

)∣∣∣∣∣= oP(1).

The desired result follows from this.

Lemma B.2.1. Let R = (R1, ...,RN )′, R̂ = (R̂1, ..., R̂N )′, ζ = (ζ1, ...,ζN )′, ζ̂ = (ζ̂1, ..., ζ̂N )′ and

Z = (Z1, ...,ZN )′ be random vectors in RN . Suppose that ζ and ζ̂ are F -measurable for some

σ-algebra F . Also assume that Z is a centered Gaussian vector with min1≤ j≤N E(Z2
j )≥ b almost

surely for some constant b > 0. If max1≤ j≤N |R̂ j−R j| = oP(1/
√

logN ) as N → ∞ (or other

dimensions tend to infinity), then the following holds:

E sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P( max

1≤ j≤N
R̂ j ≤ x | F )

∣∣∣∣
≤ 3E sup

x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P

(
max

1≤ j≤N
R j ≤ x | F

)∣∣∣∣+o(1).

Moreover, if ‖ζ̂−ζ‖∞ = oP(1/
√

logN ), the following holds:

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P

(
max

1≤ j≤N
ζ̂ j ≤ x

)∣∣∣∣
≤ 3sup

x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P

(
max

1≤ j≤N
ζ j ≤ x

)∣∣∣∣+o(1).

Proof. Step 1: show the first claim.

For an arbitrary η > 0, let c = η/
√

logN . Define the event M =

{max1≤ j≤N |R̂ j−R j| ≤ c} and variables ξ = max1≤ j≤N R j and ξ̂ = max1≤ j≤N R̂ j. Let aN =

supx∈R
∣∣P(max1≤ j≤N Z j ≤ x

)
−P(ξ≤ x | F )

∣∣.
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We first notice that, given the event M , |ξ̂−ξ| ≤ c, and thus

∣∣∣1{ξ≤ x}−1
{

ξ̂≤ x
}∣∣∣

= 1
{

ξ̂≤ x and ξ > x
}
+1
{

ξ̂ > x and ξ≤ x
}

= 1
{

ξ− ξ̂≥ ξ− x and ξ− x > 0
}
+1
{

ξ− ξ̂ < ξ− x and ξ− x≤ 0
}

≤ 1
{
|ξ− x| ≤ |ξ̂−ξ|

}
≤ 1{|ξ− x| ≤ c} . (B.1)

Hence,

∣∣∣P(ξ≤ x | F )−P(ξ̂≤ x | F )
∣∣∣

≤ E
[∣∣∣1{ξ≤ x}−1

{
ξ̂≤ x

}∣∣∣ | F ]
≤ P(|ξ− x| ≤ c | F )+P(M c | F )

≤ P(ξ≤ x+ c | F )−P(ξ≤ x−2c)+P(M c | F )

≤ P
(

max
1≤ j≤N

Z j ≤ x+ c | F
)
−P

(
max

1≤ j≤N
Z j ≤ x−2c

)
+P(M c | F )+2aN . (B.2)

Let ι = (1, ...,1)′ ∈ RN . Then, by Lemma A.1 of Chernozhukov, Chetverikov and Kato

(2017), it follows that almost surely, for any x ∈ R,

P(Z ≤ (x+ c)ι | F )−P(Z ≤ (x−2c)ι | F )≤ 3cCb

√
logN ,

where Cb > 0 is a constant that only depends on b. Here, Z ≤ (x+ c)ι means Z j ≤ (x+ c) for

all 1≤ j ≤N ; similarly, Z ≤ (x−2c)ι means that Z j ≤ (x−2c) for all 1≤ j ≤N . Hence, for

any z ∈ R, P(Z ≤ zι) = P(max1≤ j≤N Z j ≤ z). Therefore, the above display implies that for any

x ∈ R,

P
(

max
1≤ j≤N

Z j ≤ x+ c | F
)
−P

(
max

1≤ j≤N
Z j ≤ x−2c

)
≤ 3cCb

√
logN . (B.3)
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By (B.2), we have

∣∣∣P(ξ≤ x | F )−P(ξ̂≤ x | F )
∣∣∣≤ 3cCb

√
logN +2aN +P(M c | F ).

Since the above display holds for any x ∈ R, we have

sup
x∈R

∣∣∣P(ξ≤ x | F )−P(ξ̂≤ x | F )
∣∣∣≤ 3cCb

√
logN +2aN +P(M c | F ),

and, thus,

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P(ξ̂≤ x | F )

∣∣∣∣≤ 3aN +3cCb

√
logN +P(M c | F ).

Taking expectations on both sides, we obtain

E supx∈R|P(max1≤ j≤N Z j≤x)−P(ξ̂≤x|F )|≤3EaN+3cCb
√

logN +P(M c)=3EaN+3ηCb+P(M c).

Since max1≤ j≤N |R̂ j−R j|= oP(1/
√

logN ), P(M c) = o(1), and so

E sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P(ξ̂≤ x | F )

∣∣∣∣≤ 3EaN +3ηCb +o(1).

Because η > 0 is arbitrary, it follows that

E sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P(ξ̂≤ x | F )

∣∣∣∣= EaN +o(1).

Step 2: show the second claim.

The argument is similar to Step 1, but we include the details for completeness.

Fix an arbitrary η > 0. Let c1 = η/
√

logN , ψ = max1≤ j≤N ζ j and ψ̂ = max1≤ j≤N ζ̂ j.

Define dN = supx∈R
∣∣P(ψ≤ x)−P

(
max1≤ j≤N Z j ≤ x

)∣∣. Define the event M1 = {‖ζ̂− ζ‖∞ ≤
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c1}. As in (B.1), we notice that, given the event M1,

|1{ψ≤ x}−1{ψ̂≤ x}| ≤ 1{|ψ− x| ≤ c1} .

Thus,

|P(ψ≤ x)−P(ψ̂≤ x)|

≤ P(|ψ− x| ≤ c1)+P(M c
1 )

= P(x− c1 ≤ ψ≤ x+ c1)+P(M c
1 )

≤ P(ψ≤ x+ c1)−P(ψ≤ x−2c1)+P(M c
1 )

≤ P
(

max
1≤ j≤N

Z j ≤ x+ c1

)
−P

(
max

1≤ j≤N
Z j ≤ x−2c1

)
+2dN +P(M c

1 )

(i)
≤ 3c1Cb

√
logN +2dN +P(M c

1 ),

where (i) follows by (B.3) (with c replaced by c1). Since the above bound holds for any x ∈ R,

we have that, given the event M1,

sup
x∈R
|P(ψ≤ x)−P(ψ̂≤ x)| ≤ 3c1Cb

√
logN +2dN = 6c1Cbη+2dN +P(M c

1 ).

Therefore,

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P(ψ̂≤ x)

∣∣∣∣≤ 6c1Cbη+3dN +P(M c
1 ).

Notice that P(M c
1 ) = o(1) due to ‖ζ̂−ζ‖∞ = oP(1/

√
logN ). Since η > 0 is arbitrary,

we have

sup
x∈R
|P(ψ≤ x)−P(ψ̂≤ x)| ≤ 3dN +o(1).

This completes the proof.
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Lemma B.2.2. Suppose that Z = (Z1, ...,ZN )′ is a centered Gaussian vector with

max1≤ j≤N E(Z2
j ) ≤ b for some constant b > 0. Then for any z ∈ (0,N /5),

P
(
‖Z‖∞ ≥

√
2b log(N /z)

)
≤ 2z.

Proof. Clearly, Z j/
√

EZ2
j ∼ N(0,1). Thus, P

(
|Z j|/

√
EZ2

j > x
)
= 2Φ(−x) = 2−2Φ(x), where

Φ(·) denotes the cdf of a N(0,1) variable. Since EZ2
j ≤ b, we have that for any x > 0,

P
(
|Z j|>

√
bx
)
≤ 2(1−Φ(x)). By the union bound, it follows that for any x > 0,

P
(

max
1≤ j≤N

|Z j|>
√

bx
)
≤ 2N (1−Φ(x)).

Taking x = Φ−1(1− a) for a ∈ (0,1), we have P(‖Z‖∞ >
√

bΦ−1(1− a)) ≤ 2N a. By

Lemma 1 of Zhu and Bradic (2018), for a≤ 1/5, Φ−1(1−a)≤
√

2log(1/a). This means that

P(‖Z‖∞ >
√

2b log(1/a))≤ 2N a. The desired result follows by setting a = z/N .

Lemma B.2.3. Let the assumptions of Theorem B.2.2 hold. Then

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

a−1
j T−1/2

T

∑
t=1

Wjt ≤ x

)

−P

(
max

1≤ j≤N
â−1

j T−1/2
T

∑
t=1

Wjt ≤ x

)∣∣∣∣∣= oP(1).

Proof. Define ζ = (ζ1, ...,ζN )′ and ζ̂ = (ζ̂1, ..., ζ̂N )′, where ζ j = a−1
j T−1/2

∑
T
t=1Wjt and ζ̂ j =

â−1
j T−1/2

∑
T
t=1Wjt . Also, let Z = (Z1, ...,ZN )′ ∈RN be a centered Gaussian vector with variance

matrix EZZ′ = (KqT )
−1

∑
K
k=1 E

[(
∑t∈Ak

Wt
)(

∑t∈Ak
Wt
)′].

By Theorem B.2.1, we have

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P

(
max

1≤ j≤N
ζ j ≤ x

)∣∣∣∣= o(1). (B.4)
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Applying the same argument with (Z j,ζ j) replaced by (−Z j,−ζ j), we obtain

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

(−Z j)≤ x
)
−P

(
max

1≤ j≤N
(−ζ j)≤ x

)∣∣∣∣= o(1).

By assumption, max1≤ j≤N EZ2
j ≤C1. Hence, by Lemma B.2.2, we have that, for any

η ∈ (0,1/5),

P
(
‖Z‖∞ ≥

√
2C1 log(ηN )

)
≤ 2η.

It follows that

P
(

max
1≤ j≤N

ζ j >
√

2C1 log(ηN )

)
≤ P

(
max

1≤ j≤N
Z j >

√
2C1 log(ηN )

)
+o(1)≤ 2η+o(1)

and

P
(

max
1≤ j≤N

(−ζ j)>
√

2C1 log(ηN )

)
≤P

(
max

1≤ j≤N
(−Z j)>

√
2C1 log(ηN )

)
+o(1)≤ 2η+o(1).

Therefore,

P
(
‖ζ‖∞ >

√
2C1 log(ηN )

)
≤ P

(
max

1≤ j≤N
ζ j >

√
2C1 log(ηN )

)
+P

(
max

1≤ j≤N
(−ζ j)>

√
2C1 log(ηN )

)
≤ 4η+o(1).

Since η is arbitrary, we have

‖ζ‖∞ = OP

(√
logN

)
. (B.5)

By Assumption 1, min1≤ j≤N E(Z2
j )≥ c1. Next, we verify

‖ζ̂−ζ‖∞ = oP(1/
√

logN ). (B.6)
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Notice that ζ̂ j = â−1
j a jζ j. Thus,

‖ζ̂−ζ‖∞ = max
1≤ j≤N

|ζ̂ j−ζ j| ≤ ‖ζ‖∞ max
1≤ j≤N

∣∣∣â−1
j a j−1

∣∣∣ .
Since min1≤ j≤N a j ≥ κ1 and ‖â− a‖∞ = oP(1), we have max1≤ j≤N

∣∣∣â−1
j a j−1

∣∣∣ =
OP(‖â−a‖∞). Since ‖ζ‖∞ = OP(

√
logN ), we have (B.6) by the assumption on ‖â−a‖∞.

Therefore, from Lemma B.2.1, we have

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P

(
max

1≤ j≤N
ζ̂ j ≤ x

)∣∣∣∣
≤ 3sup

x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P

(
max

1≤ j≤N
ζ j ≤ x

)∣∣∣∣+oP(1)
(i)
= oP(1),

where (i) follows by (B.4). Now by the triangular inequality, (B.4) implies

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

ζ j ≤ x
)
−P

(
max

1≤ j≤N
ζ̂ j ≤ x

)∣∣∣∣= oP(1).

This completes the proof.

Lemma B.2.4. Let the assumptions of Theorem B.2.2 hold. Then

max
1≤ j≤N

∣∣∣∣∣∣
K

∑
k=1

∑
t∈Āk\Ak

(Wj,t− µ̂ j)εk

∣∣∣∣∣∣= OP

(√
KrT logN + rT DT logN + rT

√
T−1K logN

)
,

where Āk = {t : (k− 1)(qT + rT )+ 1 ≤ t ≤ k(qT + rT )} for 1 ≤ k ≤ K− 1 and ĀK = {(K−

1)(qT + rT )+qT +1, ...,T}.

Proof. For 1≤ k≤ K, let u j,k = ∑t∈Āk\Ak
Wj,tεk. By Berbee’s coupling (e.g., Lemma 7.1 of Chen

et al. (2016)), there exist variables {vk}K
k=1 with vk = (v1,k, ...,vN ,k)

′ such that (1) {vk}K
k=1 is

independent across k and independent of {εk}K
k=1; (2) vk has the same distribution as ∑t∈Āk\Ak

Wt

and (3) P(
⋂K

k=1{vk = ∑t∈Āk\Ak
Wt})≥ 1−Kβmixing(qT ).
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Since εk ∼N(0,1), Assumption 1 implies that max1≤ j≤N ∑
K
k=1 E(v j,kεk)

2 ≤KrTC1. Also

notice that ‖∑t∈Āk\Ak
Wt‖∞ ≤ rT DT . It follows by Lemma D.3 of Chernozhukov, Chetverikov

and Kato (2018) that

E

(
max

1≤ j≤N

∣∣∣∣∣ K

∑
k=1

v j,kεk

∣∣∣∣∣
)
≤M

(√
KrTC1 logN + rT DT logN

)
,

where M > 0 is a universal constant. Since max1≤ j≤N

∣∣∣∑K−1
k=1 v j,kεk

∣∣∣ = max1≤ j≤N |∑K−1
k=1 u j,k|

with a probability of at least 1−Kβmixing(qT ) and Kβmixing(qT )≤ T βmixing(rT ) = o(1), we have

that

max
1≤ j≤N

∣∣∣∣∣ K

∑
k=1

u j,k

∣∣∣∣∣= OP

(√
KrT logN + rT DT logN

)
. (B.7)

In the proof of Lemma B.2.3, we showed that max1≤ j≤N µ̂ j = OP(
√

T−1 logN ); see

(B.5). By a similar argument, we have max1≤ j≤N (−µ̂ j) = OP(
√

T−1 logN ). Hence,

‖µ̂‖∞ = OP(
√

T−1 logN ).

It follows that

max
1≤ j≤N

∣∣∣∣∣∣
K

∑
k=1

∑
t∈Āk\Ak

µ̂ jεk

∣∣∣∣∣∣= rT‖µ̂‖∞

∣∣∣∣∣K−1

∑
k=1

εk

∣∣∣∣∣
= OP(rT

√
T−1 logN ×

√
K−1) = OP(rT

√
T−1K logN ).

The above display and (B.7) imply that

max
1≤ j≤N

∣∣∣∣∣∣
K

∑
k=1

∑
t∈Āk\Ak

(Wj,t− µ̂ j)εk

∣∣∣∣∣∣= OP

(√
KrT logN + rT DT logN + rT

√
T−1K logN

)
.

This completes the proof.
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Lemma B.2.5. Let the assumptions of Theorem B.2.2 hold. Then

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

a−1
j (KqT )

−1/2
K

∑
k=1

∑
t∈Ak

(Wj,t− µ̂ j)εk ≤ x | {Ws}T
s=1

)

−P

(
max

1≤ j≤N
â−1

j T−1/2
K

∑
k=1

∑
t∈Āk

(Wj,t− µ̂ j)εk ≤ x | {Ws}T
s=1

)∣∣∣∣∣= oP(1),

where {Āk}K
k=1 is defined in the statement of Lemma B.2.4.

Proof. Define R = (R1, ...,RN )′ and R̂ = (R̂1, ..., R̂N )′, where R j =

a−1
j (KqT )

−1/2
∑

K
k=1 ∑t∈Ak

(Wj,t − µ̂ j)εk and R̂ j = â−1
j T−1/2

∑
K
k=1 ∑t∈Āk

(Wj,t − µ̂ j)εk. Let

F denote the σ-algebra generated by {Ws}T
s=1.

Also, let Z = (Z1, ...,ZN )′ ∈ RN be a centered Gaussian vector with variance matrix

EZZ′ = (KqT )
−1

∑
K
k=1 E

[(
∑t∈Ak

Wt
)(

∑t∈Ak
Wt
)′].

By Theorem B.2.1, we have

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

Z j ≤ x
)
−P

(
max

1≤ j≤N
R j ≤ x | F

)∣∣∣∣= oP(1). (B.8)

Applying the same argument with (Z j,R j) replaced by (−Z j,−R j), we obtain

sup
x∈R

∣∣∣∣P( max
1≤ j≤N

(−Z j)≤ x
)
−P

(
max

1≤ j≤N
(−R j)≤ x | F

)∣∣∣∣= oP(1).

By assumption, max1≤ j≤N EZ2
j ≤C1. Hence, by Lemma B.2.2, we have that, for any

η ∈ (0,1/5),

P
(
‖Z‖∞ ≥

√
2C1 log(ηN )

)
≤ 2η.

It follows that

P
(

max
1≤ j≤N

R j >
√

2C1 log(ηN ) | F
)
≤P

(
max

1≤ j≤N
Z j >

√
2C1 log(ηN )

)
+oP(1)≤ 2η+oP(1)
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and

P
(

max1≤ j≤N (−R j)>
√

2C1 log(ηN )|F
)
≤P
(

max1≤ j≤N (−Z j)>
√

2C1 log(ηN )
)
+oP(1)≤2η+oP(1).

In turn, we have

P
(
‖R‖∞>

√
2C1 log(ηN )|F

)
≤P

(
max

1≤ j≤N
R j >

√
2C1 log(ηN ) | F

)
+P
(

max
1≤ j≤N

(−R j)>
√

2C1 log(ηN ) | F
)
≤ 4η+oP(1).

Since η is arbitrary, we have

‖R‖∞ = OP(
√

logN ). (B.9)

By Assumption 1, min1≤ j≤N EZ2
j ≥ c1. Hence, by Lemma B.2.1, it suffices to verify that

max
1≤ j≤N

|R̂ j−R j|= oP(1/
√

logN ). (B.10)

We notice that

â j
√

T R̂ j−a j
√

KqT R j =
K

∑
k=1

∑
t∈Āk\Ak

(Wj,t− µ̂ j)εk.

Hence, by Lemma B.2.4, we have

max
1≤ j≤N

∣∣∣â j
√

T R̂ j−a j
√

KqT R j

∣∣∣= OP

(√
KrT logN + rT DT logN + rT

√
T−1K logN

)
.
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Since ‖â−a‖∞ = oP(1) and min1≤ j≤N a j ≥ κ1 > 0, we have

max1≤ j≤N

∣∣∣R̂ j−a jâ−1
j

√
KqT /T R j

∣∣∣=OP

(√
T−1KrT logN +T−1/2rT DT logN +rT T−1

√
K logN

)
.

By (B.9), it follows that

max
1≤ j≤N

∣∣R̂ j−R j
∣∣

≤ max
1≤ j≤N

∣∣∣R̂ j−a jâ−1
j

√
KqT/T R j

∣∣∣+ max
1≤ j≤N

∣∣∣a jâ−1
j

√
KqT/T −1

∣∣∣× max
1≤ j≤N

∣∣R j
∣∣

= OP

(√
T−1KrT logN +T−1/2rT DT logN + rT T−1

√
K logN

)
+ max

1≤ j≤N

∣∣∣a jâ−1
j

√
KqT/T −1

∣∣∣OP(
√

logN )

≤ OP

(√
T−1KrT logN +T−1/2rT DT logN + rT T−1

√
K logN

)
+ max

1≤ j≤N

∣∣∣a jâ−1
j −1

∣∣∣√KqT/T OP(
√

logN )+ max
1≤ j≤N

∣∣∣√KqT/T −1
∣∣∣OP(

√
logN ).

(B.11)

By assumption, we have ‖â−a‖∞ = oP(1/ logN ) and min1≤ j≤N a j ≥ κ1 > 0. Observe

that

max
1≤ j≤N

∣∣∣a jâ−1
j −1

∣∣∣√KqT/T ≤ OP

(
max

1≤ j≤N
|â j−a j|

)
and

∣∣∣√KqT/T −1
∣∣∣= 1−KqT/T

1+
√

KqT/T
<

T −KqT

T

<
((K +1)(qT + rT )−KqT )

T
=

(K +1)rT +qT

T
.

By the assumptions on the rates in the statement of Theorem B.2.2, we obtain (B.10) from

(B.11). This completes the proof.
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We next show the following result.

Preliminary results on variance approximation

Lemma B.2.6. Let the assumptions of Theorem B.2.2 hold. Moreover, suppose that βmixing(i).

exp(−b1ib2). Then

max
1≤ j≤N

|T−1
T

∑
t=1

(Wj,t−E(Wj,t))|= OP

(
DT T−1/2

(
logN +(logT )1/(2b2)

))
.

Proof. We apply Bernstein’s blocking technique with the same block structure as Ak and Āk, but

the choice of K and qT is only specific to the proof of this lemma. Let Rk, j =∑t∈Ak
(Wj,t−E(Wj,t)).

We choose rT such that Kβmixing(rT ) = o(1). This means that KqT exp(−b1rb2
T ) = o(1).

By Berbee’s coupling and Lemma 8 of Chernozhukov, Chetverikov and Kato (2015), it

follows that

max
1≤ j≤N

∣∣∣∣∣ K

∑
k=1

Rk, j

∣∣∣∣∣
= OP

 max
1≤ j≤N , 1≤k≤K

|Rk, j|
√

logN +

√√√√ max
1≤ j≤N

K

∑
k=1

ER2
k, j× logN


≤ OP

 max
1≤k≤K

|Ak| max
1≤ j≤N , 1≤t≤T

|Wj,t−E(Wj,t)|
√

logN +

√√√√ max
1≤ j≤N

K

∑
k=1

ER2
k, j× logN


(i)
= OP

(
DT qT

√
logN +DT

√
KqT logN

)
,

where (i) follows from the definition of Ak and ER2
k, j . D2

T qT (due to Lemma 7.2 of Chen et al.

(2016)). Moreover,

max
1≤ j≤N

∣∣∣∣∣ T

∑
t=1

(Wj,t−E(Wj,t))−
K

∑
k=1

Rk, j

∣∣∣∣∣= max
1≤ j≤N

∣∣∣∣∣∣
K

∑
k=1

∑
t∈Āk/Ak

(Wj,t−E(Wj,t))

∣∣∣∣∣∣
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≤ 2DT

K

∑
k=1
|Āk/Ak| ≤ 2DT (KrT +qT ).

Therefore,

max
1≤ j≤N

∣∣∣∣∣ T

∑
t=1

(Wj,t−E(Wj,t))

∣∣∣∣∣= OP

(
DT qT

√
logN +DT

√
KqT logN +DT KrT

)
.

Using K � T/(qT + rT ), we choose qT �
√

TrT/
√

logN to get

max
1≤ j≤N

∣∣∣∣∣ T

∑
t=1

(Wj,t−E(Wj,t))

∣∣∣∣∣= OP

(
DT
√

T logN +DT
√

TrT

)
.

Now the requirement of KqT exp(−b1rb2
T ) = o(1) implies that we can choose rT �

(logT )1/b2, which means that

max
1≤ j≤N

∣∣∣∣∣ T

∑
t=1

(Wj,t−E(Wj,t))

∣∣∣∣∣= OP

(
DT
√

T
(

logN +(logT )1/(2b2)
))

.

The desired result follows from this.

Lemma B.2.7. Let the assumptions of Theorem B.2.2 hold. Moreover, suppose that Kβmixing(qT +

rT ) = o(1). Then

max
1≤ j≤N

∣∣∣∣∣∣T−1
K

∑
k=1

(∑
t∈Āk

(Wj,t−µ j)

)2

−E

(
∑

t∈Āk

(Wj,t−µ j)

)2
∣∣∣∣∣∣

= OP

(√
T−1(qT + rT )D4

T logN +T−1(qT + rT )
2D2

T logN
)
.

Proof. For simplicity, we assume that K is an even number and denote LT = K/2. Since

Kβmixing(qT + rT ) = o(1), we can use Berbee’s coupling and Lemma 8 of Chernozhukov,
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Chetverikov and Kato (2015), obtaining

max
1≤ j≤N

∣∣∣∣∣∣∣
LT

∑
l=1


 ∑

t∈Ā2l−1

(Wj,t−µ j)

2

−E

 ∑
t∈Ā2l−1

(Wj,t−µ j)

2

∣∣∣∣∣∣∣

= OP


√√√√√ LT

∑
l=1

E

 ∑
t∈Ā2l−1

(Wj,t−µ j)

4

logN + max
1≤l≤LT , 1≤ j≤N

 ∑
t∈Ā2l−1

(Wj,t−µ j)

2

× logN


(i)
= OP


√√√√ LT

∑
l=1
|Ā2l−1|2(2DT )4× logN + max

1≤l≤LT
|Ā2l−1|2(2DT )

2× logN


= OP

(√
T (qT + rT )D4

T logN +(qT + rT )
2D2

T logN
)
,

where (i) follows by E
(

∑t∈Ā2l−1
(Wj,t−µ j)

)4
. |Ā2l−1|2(2DT )

4 (due to Lemma 7.2 of Chen et al.

(2016)). Similarly, we can show

max
1≤ j≤N

∣∣∣∣∣∣
LT

∑
l=1

( ∑
t∈Ā2l

(Wj,t−µ j)

)2

−E

(
∑

t∈Ā2l

(Wj,t−µ j)

)2
∣∣∣∣∣∣

= OP

(√
T (qT + rT )D4

T logN +(qT + rT )
2D2

T logN
)
.

The desired result follows from this.

B.2.2 Proof of Theorem 2.3.1

We apply Theorem B.2.2. We separate KT = qT + rT with qT > rT . Specifically, we

choose rT = κ1(logT )1/b2 with κ1 = (2/b1)
1/b2 and qT = KT − rT . It suffices to show that the

conditions of Theorem B.2.2 can be satisfied by this choice of (qT ,rT ).

Since K � T/(qT + rT ) and (rT/qT ) log2 N = o(1), we have T−1
√

KrT (logN )3/2 =

o(1) and T−1KrT log2 N = o(1). By qT DT log5/2(N T ) ≤ C1T 1/2−c2 and rT < qT , we have

T−1qT (logN )3/2 = o(1) and T−1r2
T D2

T log3 N = o(1). It remains to show that Assumption 1 is

180



satisfied by this choice of (qT ,rT ). In particular, with N = N, we need to verify the following

max{Kβmixing(rT ), (rT/qT ) log2 N } ≤C1T−c2 (B.12)

and

qT DT log5/2(N T )≤C1T 1/2−c2 (B.13)

for some 0 < c2 < 1/4.

Since βmixing(rT ). exp(−b1rb2
T ), K ≤ T , it follows that Kβmixing(rT ). T exp(−b1rb2

T ).

Hence, we have Kβmixing(rT ). T−1.

Since K � T/(qT + rT ) and qT > rT , we have qT � T/K. Therefore,

(rT/qT ) log2 N . (logT )1/b2KT−1 log2 N .

By Assumption 1, KT−1 log2 N . T−b for some b ∈ (0,1/4). Thus, we only need to

choose c2 = b/2 to obtain (rT/qT ) log2 N . T−c2 . This proves (B.12).

By qT � T/K and Assumption 1, we have

qT DT log5/2(N T )� K−1T DT log5/2(N T ). T 1/2−b . T 1/2−c2,

which proves (B.13). Now we have verified all the conditions of Theorem B.2.2, which implies

that

sup
x∈R

∣∣∣∣∣P
(

max
1≤ j≤N

T−1/2
∑

T
t=1Wjt

â j
≤ x

)

−P

(
max

1≤ j≤N

T−1/2
∑

K
k=1 ∑t∈Āk

(Wj,t− µ̂ j)εk

â j
≤ x | {Ws}T

s=1

)∣∣∣∣∣= oP(1).
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This means that

lim
T→∞

P

(
max

1≤ j≤N

T−1/2
∑

T
t=1(U j,t−EU j,t)

â j
> Q̃∗T,1−α

)
= α.

Under the null hypothesis of EU j,t ≤ 0, we have that

max
1≤ j≤N

T−1/2
∑

T
t=1(U j,t−EU j,t)

â j
≥ max

1≤ j≤N

T−1/2
∑

T
t=1U j,t

â j
= R̃T .

In turn, this means that

limsup
T→∞

P
(
R̃T > Q̃∗T,1−α

)
≤ α.

When EU j,t = 0, the inequality in the above two equation displays hold with equality.

This completes the proof.

B.2.3 Proof of Lemma 2.3.1

We consider two cases.

Case 1: â j = 1.

We only need to take a j = 1. Then â j−a j = 1 and the result clearly holds.

Case 2: â j =

√
K−1 ∑

K
j=1

(
B−1/2

T ∑t∈H j(∆Li,t+h− µ̂i)
)2

.

We inherit all the notations from before. Recall µ̂ j = T−1
∑

T
t=1Wj,t . Let a2

j =

T−1
∑

K
k=1 E

(
∑t∈Āk

(Wj,t−µ j)
)2 with µ j = T−1

∑
T
t=1 E(Wj,t). Let W̄j,t = Wj,t − µ j and ā2

j =

T−1
∑

K
k=1
(
∑t∈Āk

W̄j,t
)2. Clearly, µ̂ j−µ j = T−1

∑
T
t=1W̄j,t .

Notice that by triangular inequality for the Euclidean norm in RK , we have

max
1≤ j≤N

∣∣â j− ā j
∣∣= T−1/2 max

1≤ j≤N

∣∣∣∣∣∣
√√√√ K

∑
k=1

(
∑

t∈Āk

W̄j,t−|Āk|(µ̂ j−µ j)

)2

−

√√√√ K

∑
k=1

(
∑

t∈Āk

W̄j,t

)2
∣∣∣∣∣∣
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≤ T−1/2 max
1≤ j≤N

√√√√ K

∑
k=1
|Āk|2(µ̂ j−µ j)2

≤ T−1/2‖µ̂−µ‖∞ max
1≤k≤K

|Āk|
√

K

(i)
= OP

(
DT T−1

(
logN +(logT )1/(2b2)

)
× (qT + rT )

√
K
)

= OP

(
DT K−1/2

(
logN +(logT )1/(2b2)

))
,

where (i) follows from Lemma B.2.6. On the other hand, Lemma B.2.7 implies that

max
1≤ j≤N

∣∣ā2
j −a2

j
∣∣= OP

(√
T−1(qT + rT )D4

T logN +T−1(qT + rT )
2D2

T logN
)
.

Notice that the rate conditions in the assumption imply that the rate in the above

two displays are oP(1/ logN ). Since min1≤ j≤N a j is bounded away from zero, we have

max1≤ j≤N |â j−a j|= oP(1/ logN ).

The proof for the other cases follows by similar arguments as for Case 2.
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Appendix C

Appendix for Chapter 3

C.1 Proofs

This section presents proofs of the theoretical results in the main body of our paper.

C.1.1 Theorem 3.2.1

Proof. Using (3.6), we have

∆Li,t+h|t−E(∆Li,t+h|t) = (u2
i,t+h,1−u2

i,t+h,2)−E[u2
i,t+h,1−u2

i,t+h,2]+2(ui,t+h,1−ui,t+h,2)λ
′
i ft+h.

Hence, conditional on F , {∆Li,t+h|t−E(∆Li,t+h|t)}n
i=1 is independent across i with mean

zero. By Assumption 3, the sequence {∆Li,t+h|t−E(∆Li,t+h|t)}nt
i=1 conditional on F satisfies the

Lyapunov condition. Hence, a standard argument yields

n−1/2
∑

n
i=1[∆Li,t+h|t−E(∆Li,t+h|t)]√

n−1 ∑
n
i=1[∆Li,t+h|t−E(∆Li,t+h|t)]2

d→ N(0,1).
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Under the null that n−1
∑

n
i=1 E(∆Li,t+h|t) = 0, we have

n−1/2
∑

n
i=1 ∆Li,t+h|t√

n−1 ∑
n
i=1[∆Li,t+h|t−E(∆Li,t+h|t)]2

d→ N(0,1).

The result now follows by noticing that n−1
∑

n
i=1[∆Li,t+h|t − E(∆Li,t+h|t)]

2 ≤

n−1
∑

n
i=1(∆Li,t+h|t)

2.

C.1.2 Theorem 3.2.2

Proof. Using (3.8), we have

∆Li,t+h|t−E(∆Li,t+h|t |F )=(u2
i,t+h,1−u2

i,t+h,2)−E[u2
i,t+h,1−u2

i,t+h,2|F ]+2(ui,t+h,1−ui,t+h,2)λ
′
i ft+h.

Hence, conditional on F , {∆Li,t+h|t −E(∆Li,t+h|t | F )}n
i=1 is independent across i with

mean zero. By Assumption 4, the sequence {∆Li,t+h|t −E(∆Li,t+h|t | F )}nt
i=1 conditional on F

satisfies the Lyapunov condition. Hence, a standard argument yields

n−1/2
∑

n
i=1[∆Li,t+h|t−E(∆Li,t+h|t | F )]√

n−1 ∑
n
i=1[∆Li,t+h|t−E(∆Li,t+h|t | F )]2

d→ N(0,1).

Under the null that n−1
∑

n
i=1 E(∆Li,t+h|t | F ) = 0, we have

n−1/2
∑

n
i=1 ∆Li,t+h|t√

n−1 ∑
n
i=1[∆Li,t+h|t−E(∆Li,t+h|t | F )]2

d→ N(0,1).

The result now follows by noticing that n−1
∑

n
i=1[∆Li,t+h|t − E(∆Li,t+h|t | F )]2 ≤

n−1
∑

n
i=1(∆Li,t+h|t)

2.
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C.1.3 Theorem 3.3.1

Proof. Start by noticing that

√
nk

(
∆u2

t+h,k−n−1
k ∑

i∈Hk

E(u2
i,t+h,1−u2

i,t+h,2 | F )

)

= n−1/2
k ∑

i∈Hk

[
(u2

i,t+h,1−u2
i,t+h,2)−E(u2

i,t+h,1−u2
i,t+h,2 | F )+2(λ′1 ft+hui,t+h,1−λ

′
2 ft+hui,t+h,2)

]
+n−1/2

k

(
n−1

k ∑
i∈Hk

ui,t+h,2

)2

−n−1/2
k

(
n−1

k ∑
i∈Hk

ui,t+h,1

)2

.

By a CLT,

n−1/2
k

(
n−1

k ∑
i∈Hk

ui,t+h,2

)2

−n−1/2
k

(
n−1

k ∑
i∈Hk

ui,t+h,1

)2

= OP(n
−3/2
k ) = oP(1).

Therefore, ∆u2
t+h,k is a

√
nk-consistent estimator for n−1

k ∑i∈Hk
E(u2

i,t+h,1−u2
i,t+h,2 | F ). By the

same CLT argument, it follows that

√
nk

(
∆u2

t+h,k−n−1
k ∑i∈Hk

E(u2
i,t+h,1−u2

i,t+h,2|F )
)

=n−1/2
k ∑i∈Hk [(u

2
i,t+h,1−u2

i,t+h,2)−E(u2
i,t+h,1−u2

i,t+h,2|F )+2(λ′1 ft+hui,t+h,1−λ′2 ft+hui,t+h,2)]+oP(1)

is asymptotically normal and that the variance of
√

nk

(
∆u2

t+h,k−n−1
k ∑i∈Hk

E(u2
i,t+h,1−u2

i,t+h,2 | F )
)

can be estimated by

V̂ := n−1
k ∑

i∈Hk

[
(u2

i,t+h,1−u2
i,t+h,2)−E(u2

i,t+h,1−u2
i,t+h,2 | F )+2(λ′1 ft+hui,t+h,1−λ

′
2 ft+hui,t+h,2)

]2
.

Recall our estimate V̄ := n−1
k ∑i∈Hk

(∆Li,t+h−∆Lt+h,k)
2 with ∆Lt+h,k = n−1

k ∑i∈Hk
∆Li,t+h.

189



It remains to show that V̂ = V̄ +oP(1). By (3.8) and (3.9), we have

∆Li,t+h−∆Lt+h,k

=
[
u2

i,t+h,1−u2
i,t+h,2 +2(λ′i,1 ft+hui,t+h,1−λ

′
i,2 ft+hui,t+h,2)

]
−n−1

k ∑
j∈Hk

[(
u2

j,t+h,1−u2
j,t+h,2

)
+2(λ′j,1 ft+hu j,t+h,1−λ

′
j,2 ft+hu j,+ht,2)

]
= (u2

i,t+h,1−u2
i,t+h,2)−E(u2

i,t+h,1−u2
i,t+h,2 | F )+2(λ′1 ft+hui,t+h,1−λ

′
2 ft+hui,t+h,2)+hn,1 +hn,2,

where hn,1 = E(u2
i,t+h,1 − u2

i,t+h,2 | F ) − n−1
k ∑ j∈Hk

(u2
j,t+h,1 − u2

j,t+h,2) and hn,2 =

−2n−1
k ∑ j∈Hk

(λ′j,1 ft+hu j,t+h,1 − λ′j,2 ft+hu j,+ht,2). Clearly, by a LLN, hn,1 = oP(1) and

hn,2 = oP(1). By the elementary inequality
∣∣∣∣√∑(ai +bi)2−

√
∑a2

i

∣∣∣∣≤√∑b2
i , we have that

∣∣∣√V̂ −
√

V̄
∣∣∣≤√n−1

k ∑
i∈Hk

(hn,1 +hn,2)2 = |hn,1 +hn,2|= oP(1).

Thus, V̂ = V̄ +oP(1). The proof is complete.

C.1.4 Corollary 3.3.1

Proof. The result follows once we notice that

√
n

(
K

∑
k=1

nk

n
∆u2

t+h,k−n−1
n

∑
i=1

E(u2
i,t+h,1−u2

i,t+h,2 | F )

)

=
√

n
K

∑
k=1

nk

n

(
∆u2

t+h,k−n−1
k ∑

i∈Hk

E(u2
i,t+h,1−u2

i,t+h,2 | F )

)

=
K

∑
k=1

nk√
n

{
n−1

k ∑
i∈Hk

[
(u2

i,t+h,1−u2
i,t+h,2)−E(u2

i,t+h,1−u2
i,t+h,2 | F )

]
+OP(n−1

k )

}

= n−1/2
n

∑
i=1

[
(u2

i,t+h,1−u2
i,t+h,2)−E(u2

i,t+h,1−u2
i,t+h,2 | F )

]
+OP(n−1/2).
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C.1.5 Theorem 3.3.2

Proof. By equation (3.15), we have

√
n

[
K

∑
k=1

nk

n
(e2

1,k,t+h− e2
2,k,t+h)−

K

∑
k=1

nk

n

(
(λ′1,(k) ft+h)

2− (λ′2,(k) ft+h)
2
)]

= n−1/2
K

∑
k=1

nk


(

n−1
k ∑

i∈Hk

ui,t+h,1

)2

−

(
n−1

k ∑
i∈Hk

ui,t+h,2

)2


+2n−1/2
n

∑
i=1

(
λ
′
i,1 ft+hui,t+h,1−λ

′
i,2 ft+hui,t+h,2

)
.

Again as in the proof of Theorem 3.3.1, we can show that

n−1/2
∑

K
k=1 nk

{(
n−1

k ∑i∈Hk
ui,t+h,1

)2
−
(

n−1
k ∑i∈Hk

ui,t+h,2

)2
}
= oP(1), and so

√
n

[
K

∑
k=1

nk

n
(e2

1,k,t+h− e2
2,k,t+h)−n−1

n

∑
i=1

[
(λ′i,1 ft+h)

2− (λ′i,2 ft+h)
2]]

= 2n−1/2
n

∑
i=1

(
λ
′
i,1 ft+hui,+ht,1−λ

′
i,2 ft+hui,t+h,2

)
+oP(1).

The rest of the proof follows by a CLT as in the proof of Theorem 3.3.1.

C.1.6 Lemma 3.3.1

Proof. Since we can write fs+h = (λ̄λ̄′)−1λ̄(ēs+h− ūs+h), we have ei,s+h = λ′i(λ̄λ̄′)−1λ̄ēs+h +

ui,s+h−λ′i(λ̄λ̄′)−1λ̄ūs+h. It is not difficult to see that

λ̂
′
i =

(
T

∑
s+h=1

[λ′i(λ̄λ̄
′)−1

λ̄ēs+h +ui,s+h−λ
′
i(λ̄λ̄

′)−1
λ̄ūs+h]ē′s+h

)(
T

∑
s+h=1

ēs+hē′s+h

)−1

= λ
′
i(λ̄λ̄

′)−1
λ̄+

(
T

∑
s+h=1

ui,s+hē′s+h

)(
T

∑
s+h=1

ēs+hē′s+h

)−1

−λ
′
i(λ̄λ̄

′)−1
λ̄

(
T

∑
s+h=1

ūs+hē′s+h

)(
T

∑
s+h=1

ēs+hē′s+h

)−1
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and thus

λ̂
′
iēt+h = λ

′
i ft+h +ξi,t+h + εi,t+h +ζi,t+h,

where ξi,t+h = λ′i(λ̄λ̄′)−1λ̄ūt+h, εi,t+h =
(
∑

T
s+h=1 ui,s+hē′s+h

)(
∑

T
s+h=1 ēs+hē′s+h

)−1 ēt+h and

ζi,t+h =−λ′i(λ̄λ̄′)−1λ̄
(
∑

T
s+h=1 ūs+hē′s+h

)(
∑

T
s+h=1 ēs+hē′s+h

)−1 ēt+h.

Next, observe that

n−1/2
n

∑
i=1

[(λ̂′i,1ēt+h)
2− (λ′i,1 ft+h)

2]

= n−1/2
n

∑
i=1

(
ξi,t+h,1 + εi,t+h,1 +ζi,t+h,1

)2
+2n−1/2

n

∑
i=1

(
ξi,t+h,1 + εi,t+h,1 +ζi,t+h,1

)
λ
′
i,1 ft+h.

and

n−1/2
n

∑
i=1

ξi,t+h,1λ
′
i,1 ft+h = n−1/2ū′t+hλ̄

′(λ̄λ̄
′)−1

(
n

∑
i=1

λi,1λ
′
i,1

)
ft+h.

Therefore, we have

n−1/2
n

∑
i=1

[(λ̂′i,1ēt+h)
2− (λ′i,1 ft+h)

2]

= n−1/2ū′t+hλ̄
′(λ̄λ̄

′)−1

(
n

∑
i=1

λi,1λ
′
i,1

)
ft+h

+n−1/2
n

∑
i=1

(
ξi,t+h,1 + εi,t+h,1 +ζi,t+h,1

)2
+2n−1/2

n

∑
i=1

(
εi,t+h,1 +ζi,t+h,1

)
λ
′
i,1 ft+h.

The rest of the proof proceeds in four steps, bounding different components in the above

display.

Step 1: show that n−1/2
∑

n
i=1
(
εi,t+h,1 +ζi,t+h,1

)
λ′i,1 ft+h = oP(1).

We observe that

n−1/2
n

∑
i=1

ζi,t+h,1λ
′
i,1 ft+h
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=−n−1/2ē′t+h

(
T

∑
s+h=1

ēs+hē′s+h

)−1( T

∑
s+h=1

ēs+hū′s+h

)
λ̄
′(λ̄λ̄

′)−1

(
n

∑
i=1

λi,1λ
′
i,1

)
ft+h (C.1)

and

n−1/2
n

∑
i=1

εi,t+h,1λ
′
i,1 ft+h = n−1/2 f ′t+h

(
T

∑
s+h=1

(
n

∑
i=1

λi,1ui,s+h,1

)
ē′s+h

)(
T

∑
s+h=1

ēs+hē′s+h

)−1

ēt+h.

(C.2)

Recall that ēs+h = λ̄′ fs+h + ūs+h. Since λ̄λ̄′ has eigenvalues bounded away from zero

and infinity and fs+h has non-trivial variance, it follows that
(
∑

T
s+h=1 ēs+hē′s+h

)−1
= OP(T−1).

Moreover,
T

∑
s+h=1

ēs+hū′s+h = λ̄
′

T

∑
s+h=1

fs+hū′s+h +
T

∑
s+h=1

ūs+hū′s+h. (C.3)

Notice that ∑
T
s+h=1 fs+hū′s+h = n−1

∑
n
i=1(∑

T
s+h=1 fs+hu′i,s+h) and T−1/2

∑
T
s+h=1 fs+hu′i,s+h

has mean zero with bounded variance and is independent across i conditional on { fs+h}T
s+h=1.

Therefore, ∑
T
s+h=1 fs+hū′s+h = OP(

√
T/n). Since E ∑

T
s+h=1 ūs+hū′s+h = O(T/n), we have

∑
T
s+h=1 ūs+hū′s+h =O(T/n). By (C.3), we have ∑

T
s+h=1 ēs+hū′s+h =OP(

√
T/n+T/n). Therefore,

(C.1) implies

n−1/2
n

∑
i=1

ζi,t+h,1λ
′
i,1 ft+h

=−n−1/2ē′t+h

(
T

∑
s+h=1

ēs+hē′s+h

)−1( T

∑
s+h=1

ēs+hū′s+h

)
λ̄
′(λ̄λ̄

′)−1

(
n

∑
i=1

λi,1λ
′
i,1

)
ft+h

= n−1/2OP(1) ·OP(T−1) ·OP(
√

T/n+T/n) ·OP(1) ·OP(n) ·OP(1)

= OP(n−1/2 +T−1/2) = oP(1). (C.4)

We observe that

T

∑
s+h=1

(
n

∑
i=1

λi,1ui,s+h,1

)
ē′s+h
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=
T

∑
s+h=1

n

∑
i=1

λi,1ui,s+h,1
(
ū′s+h + f ′s+hλ̄

)
=

T

∑
s+h=1

n

∑
i=1

λi,1ui,s+h,1ū′s+h +
T

∑
s+h=1

n

∑
i=1

λi,1ui,s+h,1 f ′s+hλ̄

(i)
=

T

∑
s+h=1

n

∑
i=1

λi,1ui,s+h,1ū′s+h +OP(
√

nT )

= OP


√√√√ T

∑
s+h=1

(
n

∑
i=1

λi,1ui,s+h,1

)2

×

√√√√ T

∑
s+h=1

‖ūs+h‖2

+OP(
√

nT )

(ii)
= OP

(√
T n×

√
T/n

)
+OP(

√
nT ) = OP

(√
nT (1+

√
T/n)

)
,

where (i) and (ii) follow by Assumption 5. Hence, by (C.2), we have

n−1/2
n

∑
i=1

εi,t+h,1λ
′
i,1 ft+h

= n−1/2 f ′t+h

(
T

∑
s+h=1

(
n

∑
i=1

λi,1ui,s+h,1

)
ē′s+h

)(
T

∑
s+h=1

ēs+hē′s+h

)−1

ēt+h

= n−1/2 ·OP(1) ·OP

(√
nT (1+

√
T/n)

)
·OP(T−1) ·OP(1)

= OP(T−1/2 +n−1/2) = oP(1). (C.5)

By (C.4) and (C.5), we have proved the claim in Step 1.

Step 2: show that n−1/2
∑

n
i=1 ξ2

i,t+h,1 = oP(1).

Clearly Eūt+hū′t+h = O(n−1) and thus ūt+hū′t+h = OP(n−1). It follows that

n

∑
i=1

ξi,t+hξ
′
i,t+h =

n

∑
i=1

λ
′
i(λ̄λ̄

′)−1
λ̄ūt+hū′t+hλ̄

′(λ̄λ̄
′)−1

λi

=
n

∑
i=1

trace
(
ūt+hū′t+hλ̄

′(λ̄λ̄
′)−1

λiλ
′
i(λ̄λ̄

′)−1
λ̄
)

= trace

(
ūt+hū′t+hλ̄

′(λ̄λ̄
′)−1

[
n

∑
i=1

λiλ
′
i

]
(λ̄λ̄
′)−1

λ̄

)
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= trace
(
OP(n−1) ·OP(1) ·OP(n) ·OP(1)

)
= OP(1).

Therefore, n−1/2
∑

n
i=1 ξ2

i,t+h,1 = OP(n−1/2) = oP(1).

Step 3: show that n−1/2
∑

n
i=1 ε2

i,t+h,1 = oP(1).

Let qn,1 =
(
∑

T
s+h=1 ēs+hē′s+h

)−1 ēt+h. Then

εi,t+h =

(
T

∑
s+h=1

ui,s+hē′s+h

)
qn,1 =

T

∑
s+h=1

ui,s+hū′s+hqn,1 +
T

∑
s+h=1

ui,s+h f ′s+hλ̄qn,1.

Therefore,

n−1/2
n

∑
i=1
‖εi,t+h‖2 ≤ 2n−1/2

n

∑
i=1

∥∥∥∥∥ T

∑
s+h=1

ui,s+hū′s+hqn,1

∥∥∥∥∥
2

+2n−1/2
n

∑
i=1

∥∥∥∥∥ T

∑
s+h=1

ui,s+h f ′s+hλ̄qn,1

∥∥∥∥∥
2

.

From the previous argument, ‖qn,1‖= OP(T−1). It follows that

n−1/2
∑

n
i=1 ‖εi,t+h‖2=OP

(
T−2n−1/2

[
∑

n
i=1‖∑

T
s+h=1 ui,s+hū′s+h‖

2
+∑

n
i=1‖∑

T
s+h=1 ui,s+h f ′s+h‖

2
])

. (C.6)

We observe that

trace

[
n

∑
i=1

(
T

∑
τ+h=1

ūτ+hu′i,τ+h

)(
T

∑
s+h=1

ui,s+hū′s+h

)]

= trace

[
T

∑
s+h=1

T

∑
τ+h=1

ūτ+h

(
n

∑
i=1

u′i,τ+hui,s+h

)
ū′s+h

]

=
T

∑
s+h=1

T

∑
τ+h=1

(
n

∑
i=1

u′i,τ+hui,s+h

)
ū′s+hūτ+h

≤

√√√√ T

∑
s+h=1

T

∑
τ+h=1

(
n

∑
i=1

u′i,τ+hui,s+h

)2

×

√√√√ T

∑
s+h=1

T

∑
τ+h=1

(ū′s+hūτ+h)2.
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Notice that

E
T

∑
s+h=1

T

∑
τ+h=1

(
n

∑
i=1

u′i,τ+hui,s+h

)2

=
T

∑
s+h=1

T

∑
τ+h=1

n

∑
i1=1

n

∑
i2=1

Eu′i1,τ+hui1,s+hu′i2,τ+hui2,s+h

=
T

∑
s+h=1

T

∑
τ+h=1

n

∑
i=1

E(u′i,τ+hui,s+h)
2 +

T

∑
s+h=1

T

∑
τ+h=1

∑
i1 6=i2

Eu′i1,τ+hui1,s+hu′i2,τ+hui2,s+h

(i)
=

T

∑
s+h=1

T

∑
τ+h=1

n

∑
i=1

E(u′i,τ+hui,s+h)
2 +

T

∑
s+h=1

T

∑
τ+h=1

∑
i1 6=i2

Eu′i1,τ+hui1,s+hEu′i2,τ+hui2,s+h

≤
T

∑
s+h=1

T

∑
τ+h=1

n

∑
i=1

E(u′i,τ+hui,s+h)
2 +

T

∑
s+h=1

T

∑
τ+h=1

(
n

∑
i=1

Eu′i,τ+hui,s+h

)2

= O(nT 2)+O

(
n2

T

∑
s+h=1

T

∑
τ+h=1

‖γn(s,τ)‖2

)
(ii)
= O(nT 2)+O

(
n2

T

∑
s+h=1

T

∑
τ+h=1

‖γn(s,τ)‖

)
(iii)
= O(nT 2)+O(n2T ),

where (i) follows by the independence of ui,s across i, (ii) follows by maxs maxτ ‖γn(s,τ)‖ ≤M

and (iii) follows by Assumption 6. On the other hand, we have

T

∑
s+h=1

T

∑
τ+h=1

(ū′s+hūτ+h)
2 ≤

T

∑
s+h=1

T

∑
τ+h=1

‖ūs+h‖2 · ‖ūτ+h‖2 =

(
T

∑
s+h=1

‖ūs+h‖2

)2

= OP(T 2n−1).

The above three displays imply that

trace

[
n

∑
i=1

(
T

∑
τ+h=1

ūτ+hu′i,τ+h

)(
T

∑
s+h=1

ui,s+hū′s+h

)]

≤

√√√√ T

∑
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×

√√√√ T

∑
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T

∑
τ+h=1

(ū′s+hūτ+h)2

=
√

OP(nT 2)+OP(n2T )×
√

OP(T 2n−1) = OP

(
T 3/2(n1/2 +T 1/2)

)
.
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Since ∑
n
i=1

(
∑

T
τ+h=1 ēτ+hu′i,τ+h

)(
∑

T
s+h=1 ui,s+hē′s+h

)
is positive semi-definite, we have

n

∑
i=1

(
T

∑
τ+h=1

ūτ+hu′i,τ+h

)(
T

∑
s+h=1

ui,s+hū′s+h

)
= OP

(
T 3/2(n1/2 +T 1/2)

)
.

By a CLT, we have

n

∑
i=1

∥∥∥∥∥ T

∑
s+h=1

ui,s+h f ′s+h

∥∥∥∥∥
2

= OP(nT ).

The above two displays and (C.6) imply

n−1/2
n

∑
i=1
‖εi,t+h‖2

= OP

T−2n−1/2

 n

∑
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∥∥∥∥∥ T

∑
s+h=1

ui,s+hū′s+h

∥∥∥∥∥
2

+
n

∑
i=1

∥∥∥∥∥ T

∑
s+h=1

ui,s+h f ′s+h

∥∥∥∥∥
2


= OP

(
T−2n−1/2

[
OP

(
T 3/2(n1/2 +T 1/2)

)
+OP(nT )

])
= OP

(
n−1/2 +T−1/2 +n1/2T−1

)
(i)
= oP(1),

where (i) follows by n/T 2 = o(1).

Step 4: show that n−1/2
∑

n
i=1 ζ2

i,t+h,1 = oP(1).

Let qn,2 = (λ̄λ̄′)−1λ̄
(
∑

T
s+h=1 ūs+hē′s+h

)(
∑

T
s+h=1 ēs+hē′s+h

)−1 ēt+h. Then ζi,t+h =−λ′iqn,2.

It follows that

n−1/2
n

∑
i=1
‖ζi,t+h‖2 = n−1/2

n

∑
i=1

q′n,2λiλ
′
iqn,2 ≤ OP

(
n1/2‖qn,2‖2

)
. (C.7)

By the previous argument,
(
∑

T
s+h=1 ēs+hē′s+h

)−1 ēt+h = OP(T−1). Notice that

T

∑
s+h=1

ūs+hē′s+h =
T

∑
s+h=1

ūs+hū′s+h +
T

∑
s+h=1

ūs+h f ′s+hλ̄.
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It is simple to show that ∑
T
s+h=1 ūs+hū′s+h = OP(T/n) and ∑

T
s+h=1 ūs+h f ′s+hλ̄ =

OP(
√

T/n). Therefore, ‖qn,2‖= OP

(
T/n+

√
T/n

)
·OP(T−1). By (C.7), we have

n−1/2
n

∑
i=1
‖ζi,t+h‖2 = OP

(
n1/2‖qn,2‖2

)
= OP

(
n−3/2 +n−1/2T−1

)
= oP(1).

This completes the proof.

C.1.7 Theorem 3.3.3

Proof. By (3.12) and Lemma 3.3.1, we have that

√
n

[
∆û2

t+h−n−1
n

∑
i=1

E(u2
i,t+h,1−u2

i,t+h,2 | F )

]

= n−1/2
n

∑
i=1

[
(u2

i,t+h,1−u2
i,t+h,2)−E(u2

i,t+h,1−u2
i,t+h,2 | F )

+2(λ′i,1 ft+hui,t+h,1−λ
′
i,2 ft+hui,t+h,2)+u′i,t+hDt+h

]
+oP(1), (C.8)

where Dt+h = λ̄′(λ̄λ̄′)−1
(

n−1
∑

n
i=1[λi,1λ′i,1−λi,2λ′i,2]

)
ft+h. Since λ̂′i − λ′i(λ̄λ̄′)−1λ̄ = oP(1),

ēt+h = λ̄′ ft+h +oP(1) and (λ̄λ̄′)−1 exists asymptotically, we have D̂t+h = Dt+h +oP(1). Since

{ui,t+h,m}n
i=1 is independent across i, the result then follows by the classical CLT and a self-

normalized CLT; see e.g., Theorem 4.1 of Chen, Shao and Wu (2016); Peña, Lai and Shao

(2008).

C.1.8 Theorem 3.3.4

Proof. By Lemma 3.3.1, we have that under the null hypothesis,

n−1/2
n

∑
i=1

[
(λ̂′i,1ēt+h)

2− (λ̂′i,2ēt+h)
2
]
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′)−1
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(
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′
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′
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)
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Since {ui,t+h,m}n
i=1 is independent across i, the result then follows by the classical CLT

and a self-normalized CLT; see e.g., Theorem 4.1 of Chen, Shao and Wu (2016); Peña, Lai and

Shao (2008).

C.1.9 Lemma 3.3.2

Proof. Under Assumptions A-F and Theorem 3 in Bai (2003), recall that the following result

holds:

λ̂
′
i f̂t+h−λ

′
i ft+h = n−1
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′
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Using this result, we have λ̂′i,m ft+h = λ′i,m ft+h +ξi,t+h,m for m ∈ {1,2}, where
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T

∑
s+h=1

fs+h f ′s+h

)−1 T

∑
s+h=1

fs+huis+h,m +OP(1/min{n,T}).

It follows that
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∑
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2
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The last term is of order 1/min{n,T}, which is negligible if
√

n/T = o(1). Under

assumptions of weak (cross-sectional and serial) dependence in ui,t+h,m (e.g., Assumptions E and
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F in Bai (2003)), we can show that

n−1
n

∑
i=1

λ
′
i,m ft+hξi,t+h,m = n−1

n

∑
i=1

λ
′
i,m ft+hui,t+h,m +oP(n−1/2).

Using this, it follows that

n−1
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∑
i=1

[
(λ̂′i,1 f̂t+h)

2− (λ̂′i,2 f̂t+h)
2
]
= n−1

n

∑
i=1

[(λ′i,1 ft+h)
2− (λ′i,2 ft+h)

2]
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∑
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[λ′i,1 ft+hui,t+h,1−λ
′
i,2 ft+hui,t+h,2]+oP(n−1/2).

The stated result follows from this.

200



Table C.1: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal squared biases (5-cluster DGP)

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 88.1 86.6 84.2 83.8 81.8 78.5 77.1
25 97.3 96.0 95.0 94.2 94.2 91.6 90.6
50 98.2 97.5 96.1 95.9 95.0 94.3 93.9
100 98.2 97.4 96.8 95.6 95.0 94.5 94.6
200 98.4 96.5 95.8 95.3 94.9 94.6 95.1
1000 96.9 96.2 96.1 95.8 95.5 95.8 95.3

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.5 97.5 95.2 94.6 93.6 90.7 90.6
25 98.6 97.1 95.7 95.5 93.3 93.1 91.2
50 98.4 96.6 94.9 94.5 93.4 92.9 93.3
100 96.6 95.6 94.5 93.7 93.5 93.8 93.2
200 95.7 93.3 92.9 92.8 92.7 92.4 93.9
1000 94.3 93.0 93.5 93.2 93.1 93.7 93.4

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 99.7 99.4 98.7 99.5 99.7 99.8 99.9
25 99.7 99.2 99.9 99.9 99.8 100.0 100.0
50 99.2 99.7 100.0 100.0 99.9 100.0 99.9
100 98.8 99.7 99.9 100.0 100.0 100.0 100.0
200 99.7 99.8 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: This table reports the coverage probability for a 95% confidence interval for
the test of equal squared biases, using the Monte Carlo simulation setup described
in Section 5.1 and 2,000 random samples. n refers to the number of cross-sectional
units used in the pair-wise comparison of loss differences, while ρ2 measures the
predictive power of the underlying forecasts. We show coverage probabilities
for the clustering, CCE, and PCA methods described in Section 3. The assumed
time-series dimension is T = 80. The underlying data generating process assumes
factor loadings that follow a cluster structure with 5 clusters and n/5 elements in
each cluster.
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Table C.2: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal idiosyncratic error variances (5-cluster DGP)

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.0 98.0 98.4 98.8 99.0 99.5 99.8
25 96.4 97.1 98.3 98.8 98.9 99.8 99.7
50 96.4 96.5 97.6 98.7 99.1 99.8 99.8
100 96.8 96.6 97.9 98.4 99.0 99.6 99.8
200 96.4 97.1 98.5 98.6 98.9 99.1 99.7
1000 95.7 96.7 97.9 97.9 98.7 99.4 99.5

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.8 95.4 96.6 96.6 97.0 98.4 98.9
25 95.4 96.8 97.4 97.5 97.7 98.8 99.3
50 95.8 95.9 96.6 97.6 98.3 99.3 99.4
100 97.0 96.6 97.5 98.2 98.1 99.0 99.6
200 95.8 96.2 97.5 98.5 98.4 98.4 99.2
1000 95.7 96.7 97.9 97.0 98.3 98.9 98.9

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 92.3 91.2 91.3 92.9 93.2 92.3 92.3
25 93.1 94.4 94.9 94.7 94.2 94.4 95.2
50 94.2 93.6 94.2 95.2 95.5 96.0 95.1
100 95.6 94.8 95.4 95.5 95.5 95.6 95.6
200 94.8 95.5 95.8 96.1 95.8 94.8 95.7
1000 95.1 94.8 95.8 94.1 96.4 95.3 95.7

Note: This table reports the coverage probabilities for 95% confidence
intervals for the test of equal idiosyncratic variances using the Monte
Carlo simulation setup described in Section 5.1 and 2,000 random
samples. n refers to the number of cross-sectional units used in the pair-
wise comparison of loss differences, while ρ2 measures the predictive
power of the underlying forecasts. We show coverage probabilities
for the clustering, CCE, and PCA methods described in Section 3.
The assumed time-series dimension is T = 80. The underlying data
generating process assumes that factor loadings follow a cluster structure
with 5 clusters and n/5 elements in each cluster.
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Table C.3: Coverage probability of 95% confidence intervals: 2 factors with heterogeneous
loadings

CCE: squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.2 95.4 93.2 94.0 92.1 92.0 91.8
25 97.7 94.7 93.1 94.2 93.7 94.3 93.8
50 95.4 94.2 92.5 93.5 94.6 94.3 94.7
100 94.7 94.3 93.7 94.8 95.1 94.6 94.2
200 92.9 94.2 94.5 93.4 94.4 95.0 95.0
1000 93.7 94.2 94.8 93.9 94.0 95.4 94.1

PCA: squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.3 95.1 89.9 88.4 86.0 85.7 84.6
25 95.7 91.9 89.4 90.7 90.5 90.1 90.0
50 93.6 88.7 89.0 91.1 93.0 92.1 93.0
100 90.1 89.5 91.8 92.7 93.1 93.7 93.8
200 87.5 89.7 93.0 93.5 93.5 94.7 94.5
1000 87.3 91.5 93.0 94.7 92.9 94.6 94.7

CCE: variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.5 96.0 97.1 96.3 96.6 97.8 98.9
25 96.2 96.8 97.3 98.0 97.6 98.5 98.9
50 95.6 96.4 97.5 98.0 98.1 99.1 99.3
100 96.5 96.7 97.7 97.9 98.6 98.9 99.5
200 96.3 96.2 97.5 97.8 98.9 99.4 99.4
1000 95.7 96.5 97.7 98.2 98.3 99.3 99.4

PCA: variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 92.4 93.0 92.3 93.8 94.3 96.7 98.5
25 94.3 93.7 94.9 95.8 96.0 98.0 99.0
50 93.4 94.5 96.0 96.7 97.5 98.6 99.3
100 94.8 94.9 96.1 97.4 97.9 98.7 99.2
200 94.6 94.7 96.0 97.3 97.4 99.4 99.4
1000 94.1 95.4 96.5 97.2 97.9 98.9 99.2

Note: This table reports the coverage probability for a 95% confidence interval
for the test of equal squared biases (top two panels) or equal idiosyncratic
variances (panels 3 and 4), using the Monte Carlo simulation setup described in
Section 5.1 and 2,000 random samples. n refers to the number of cross-sectional
units used in the pair-wise comparison of loss differences, while ρ2 measures the
predictive power of the underlying forecasts. We show coverage probabilities
for the CCE and PCA methods described in Section 3. The assumed time-series
dimension is T = 80. The underlying data generating process assumes two
factors.

203



Table C.4: Coverage probability of 95% confidence intervals: 3 factors with heterogeneous
loadings

CCE method for difference in squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 96.8 95.2 91.9 92.7 91.1 89.1 88.9
25 96.5 94.4 92.8 90.3 91.7 88.9 85.9
50 95.2 94.0 90.6 90.9 88.4 84.6 77.6
100 92.8 92.3 88.4 88.1 84.6 75.1 66.1
200 93.0 89.4 84.8 81.1 75.5 63.9 53.8
1000 90.6 84.6 74.9 68.7 64.0 52.2 40.4

PCA method for difference in squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.1 96.9 92.7 91.3 88.7 88.3 88.0
25 98.2 95.1 93.2 93.0 93.3 92.4 93.9
50 96.0 94.3 93.1 92.2 92.9 95.0 94.4
100 94.3 91.9 94.2 94.8 94.8 95.1 94.6
200 92.1 93.3 94.0 95.6 94.7 95.0 95.4
1000 91.1 92.7 96.0 94.7 95.7 95.9 96.1

CCE method for difference in variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 94.5 97.1 96.3 97.5 97.5 98.3 99.0
25 96.3 97.5 97.7 98.0 97.4 98.5 98.8
50 96.5 96.4 98.4 97.5 98.1 98.3 97.6
100 97.2 96.3 97.8 97.8 96.7 94.6 90.5
200 95.4 97.1 97.4 95.7 94.9 86.5 77.6
1000 95.5 94.9 94.1 90.5 86.1 74.0 59.0

PCA method for difference in variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 92.1 92.8 91.3 93.6 93.8 96.1 97.5
25 93.7 94.4 94.6 95.9 95.9 98.0 98.8
50 94.4 93.9 96.9 96.0 97.0 98.4 98.7
100 95.1 94.2 96.7 97.1 96.7 99.1 98.6
200 93.5 95.2 96.7 97.6 98.3 98.9 98.9
1000 93.8 94.6 97.1 96.6 97.2 98.6 99.0

Note: This table reports the coverage probability for a 95% confidence interval
for the test of equal squared biases (top two panels) or equal idiosyncratic
variances (panels 3 and 4), using the Monte Carlo simulation setup described in
Section 5.1 and 2,000 random samples. n refers to the number of cross-sectional
units used in the pair-wise comparison of loss differences, while ρ2 measures the
predictive power of the underlying forecasts. We show coverage probabilities
for the CCE and PCA methods described in Section 3. The assumed time-series
dimension is T = 80. The underlying data generating process assumes three
factors.
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Table C.5: Coverage probability of 95% confidence intervals: Breaks in the number of factors
with heterogeneous loadings

CCE method PCA method

difference in squared bias (before the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.4 95.6 93.5 91.9 90.9 89.5 89.4 99.6 98.2 94.5 91.1 89.9 85.8 85.4
25 97.2 95.6 92.1 92.2 91.3 88.7 88.3 99.2 96.6 93.0 92.0 92.3 89.8 91.1
50 95.2 91.7 90.6 90.1 90.3 87.1 85.6 98.0 95.0 93.4 93.1 92.5 91.7 92.0
100 94.1 91.1 89.8 89.9 87.8 84.6 76.7 95.1 94.4 93.6 92.5 94.0 94.0 93.3
200 93.5 92.0 88.7 85.6 85.7 77.6 65.7 94.3 93.7 93.8 93.3 94.0 94.8 94.2
1000 90.9 91.0 83.7 80.2 77.2 62.6 47.4 92.5 93.1 93.8 94.2 95.3 95.1 94.5

diff in squared bias (after the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 96.8 95.9 93.2 91.9 90.7 90.4 90.2 99.5 97.3 93.0 90.7 88.6 88.8 87.3
25 96.9 93.9 93.0 92.5 91.8 90.6 86.9 98.6 95.6 94.5 93.1 93.6 93.4 92.4
50 94.5 93.8 91.7 90.9 90.6 84.4 79.8 97.4 93.7 93.9 94.0 95.2 93.9 94.1
100 94.2 92.2 89.9 87.0 86.4 76.0 67.4 96.0 95.3 94.6 94.8 95.8 95.4 95.5
200 92.7 90.9 85.2 81.9 76.9 65.0 54.3 94.1 94.6 94.5 94.9 95.7 96.0 96.2
1000 90.7 85.2 73.7 68.2 64.1 47.8 39.8 94.0 95.2 96.0 95.5 95.0 96.2 96.2

diff in variance (before the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.4 95.6 95.6 96.8 97.2 98.3 99.0 91.8 91.6 92.3 92.9 94.4 97.3 98.4
25 95.5 96.4 97.4 97.5 98.2 98.7 99.4 93.3 94.6 95.4 96.0 97.5 98.5 99.5
50 95.8 95.8 97.4 98.3 98.7 99.2 99.6 94.4 94.1 96.1 97.2 97.7 99.2 99.5
100 96.2 96.9 97.2 98.0 98.4 98.4 96.8 94.9 94.8 96.2 97.1 98.7 99.3 99.2
200 96.3 96.2 96.9 97.6 98.1 95.7 88.5 94.7 95.2 96.9 97.9 98.5 99.0 99.8
1000 96.0 96.7 95.4 95.6 93.9 83.6 69.2 94.6 95.9 96.3 96.9 98.4 99.6 99.2

diff in variance (after the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.3 96.0 96.7 97.2 97.6 98.9 99.2 91.8 91.7 92.3 93.6 94.4 96.9 98.0
25 96.4 96.2 98.3 98.3 98.7 99.1 98.7 93.1 92.8 96.0 95.5 96.7 98.6 98.2
50 96.1 97.7 98.0 98.0 98.2 97.9 98.2 93.8 94.4 95.7 96.6 97.2 98.5 99.3
100 97.2 97.0 97.7 97.4 96.7 94.6 89.9 94.8 95.2 96.7 97.2 97.4 98.6 99.0
200 95.9 97.2 96.3 96.4 94.2 87.9 74.8 94.4 95.4 96.5 97.4 97.6 99.0 99.0
1000 96.2 96.5 93.5 89.3 84.9 67.9 56.0 94.9 95.6 96.7 97.1 97.4 98.9 99.3

Note: This table reports the coverage probability for a 95% confidence interval for the test of equal squared biases (top two panels) or equal
idiosyncratic variances (panels 3 and 4), using the Monte Carlo simulation setup described in Section 5.1 and 2,000 random samples. n
refers to the number of cross-sectional units used in the pair-wise comparison of loss differences, while ρ2 measures the predictive power of
the underlying forecasts. We show coverage probabilities for the CCE and PCA methods described in Section 3. The assumed time-series
dimension is T = 80. The underlying data generating process assumes that there are initially two factors but that this changes to three factors
in the second half of the sample.
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Table C.6: 95% Coverage probabilities for a 95% confidence interval for testing the null of
equal conditionally expected loss under Linex loss

Coverage probability (linex loss)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 89.5 90.5 89.2 88.9 89.0 88.1 87.8
25 92.6 93.0 92.9 92.5 93.1 92.1 90.5
50 95.4 94.5 94.3 94.2 93.8 93.0 92.3
100 95.1 94.2 94.3 94.1 94.2 94.0 93.6
200 95.0 94.9 94.5 95.0 95.1 94.9 94.1
1000 94.3 95.4 95.3 94.8 94.7 95.0 95.8

Note: This table reports the coverage probability for a 95% confidence
interval for the test of equal expected loss, E(∆Lt+h | F ) = 0, using the
linex loss function. We use the Monte Carlo simulation setup described
in Section 5.1 and 2,000 random samples. n refers to the number of
cross-sectional units used in the pair-wise comparison of loss differences,
while ρ2 measures the predictive power of the underlying forecasts.

206



Table C.7: Coverage probabilities for a 95% confidence interval for the average difference in
squared bias under conditionally heteroskedastic shocks

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.9 96.3 94.2 93.7 93.0 91.0 91.3
25 98.2 96.1 94.9 94.1 93.6 92.6 94.2
50 96.1 95.7 95.0 94.0 94.8 94.5 94.7
100 96.0 96.0 94.5 94.6 95.3 94.3 94.1
200 96.1 95.8 94.3 94.1 95.4 95.1 95.0
1000 95.3 94.8 95.1 94.5 94.5 94.5 95.7

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.8 95.9 94.0 93.3 92.0 90.2 91.2
25 98.3 96.0 94.6 94.1 93.2 92.2 93.9
50 96.1 95.2 94.8 93.5 94.6 94.0 94.3
100 95.7 95.8 94.3 94.4 95.1 94.2 93.8
200 95.8 95.2 94.1 93.8 94.9 94.6 94.8
1000 94.9 94.7 94.8 94.2 94.1 94.1 95.3

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.7 94.8 90.1 89.2 90.2 89.8 90.8
25 96.1 91.4 91.7 91.8 91.9 92.1 94.1
50 92.1 88.4 91.6 93.1 94.1 93.6 94.5
100 89.8 89.3 91.2 93.3 94.0 94.1 93.6
200 87.0 89.9 93.7 92.9 94.1 94.4 94.8
1000 86.7 91.0 93.9 93.4 94.0 93.8 95.2

Note: This table reports coverage probabilities for 95% confidence intervals
for the test of equal squared biases using the Monte Carlo simulation setup
described in Section 5.1 and 2,000 random samples. n refers to the number
of cross-sectional units used in the pair-wise comparison of loss differences,
while ρ2 measures the predictive power of the underlying forecasts. We show
coverage probabilities for the clustering, CCE, and PCA methods described in
Section 3. The assumed time-series dimension is T = 80. The table replaces the
assumption of i.i.d standard normal errors and factors with an assumption of
ARCH dynamics.
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Table C.8: Coverage probabilities for a 95% confidence interval for the average difference in
variance under conditionally heteroskedastic shocks

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 94.3 94.4 95.7 95.8 96.5 97.9 98.3
25 95.1 96.4 96.8 96.4 98.1 99.2 99.5
50 95.4 96.5 97.5 98.0 98.0 98.7 99.6
100 95.6 96.7 97.3 96.9 98.1 99.0 99.7
200 95.5 96.2 96.4 97.4 97.7 98.9 99.6
1000 94.5 96.2 97.1 97.6 98.3 98.9 99.0

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.8 96.2 97.1 97.0 97.9 98.9 99.3
25 95.8 97.0 98.1 97.6 98.9 99.6 99.7
50 96.3 97.5 98.2 98.4 98.5 99.2 99.8
100 96.1 97.1 98.0 98.1 99.1 99.6 99.8
200 96.4 96.9 97.6 98.3 98.6 99.3 99.9
1000 95.1 96.9 98.1 98.4 98.7 99.5 99.6

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 93.4 92.7 92.1 93.1 95.1 97.4 98.1
25 93.1 93.4 94.9 95.3 97.7 99.3 99.2
50 94.0 94.4 96.9 97.2 97.7 98.6 99.6
100 94.1 95.0 96.4 96.6 97.8 99.1 99.7
200 94.4 94.5 95.7 97.2 97.8 98.9 99.6
1000 93.8 94.6 96.5 97.3 97.9 98.8 98.9

Note: This table reports the coverage probability for 95% confidence intervals
for the test of equal idiosyncratic error variances, using the Monte Carlo
simulation setup described in Section 5.1 and 2,000 random samples. n refers
to the number of cross-sectional units used in the pair-wise comparison of loss
differences, while ρ2 measures the predictive power of the underlying forecasts.
We show coverage probabilities for the clustering, CCE, and PCA methods
described in Section 3. The assumed time-series dimension is T = 80. The
table replaces the assumption of i.i.d standard normal errors and factors with an
assumption of ARCH dynamics.
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Table C.9: Expected length of 95% confidence intervals

squared bias variance

clustering

n \ ρ2
e 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 3.84 3.35 2.93 2.81 2.40 2.27 2.08 4.95 4.23 3.66 3.44 2.94 2.68 2.43
25 2.42 2.15 1.89 1.69 1.55 1.53 1.40 3.25 2.86 2.46 2.18 1.93 1.91 1.68
50 1.72 1.48 1.33 1.29 1.13 1.13 1.05 2.37 2.00 1.77 1.67 1.45 1.41 1.28
100 1.22 1.07 0.96 0.87 0.85 0.76 0.72 1.70 1.47 1.27 1.14 1.10 0.97 0.90
200 0.88 0.76 0.69 0.61 0.58 0.55 0.50 1.22 1.04 0.92 0.80 0.74 0.70 0.63
1000 0.55 0.47 0.42 0.40 0.37 0.35 0.33 0.77 0.65 0.57 0.53 0.48 0.44 0.41

CCE

n \ ρ2
e 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 4.28 3.74 3.17 2.79 2.31 1.83 1.31 6.00 4.92 4.03 3.43 2.75 2.12 1.46
25 3.20 2.77 2.30 1.86 1.53 1.22 0.82 4.07 3.41 2.78 2.21 1.79 1.42 0.95
50 2.45 1.96 1.65 1.42 1.14 0.90 0.60 3.02 2.38 1.97 1.67 1.33 1.05 0.70
100 1.78 1.46 1.23 0.97 0.81 0.62 0.42 2.17 1.75 1.45 1.16 0.95 0.72 0.49
200 1.32 1.06 0.87 0.69 0.58 0.44 0.29 1.57 1.25 1.03 0.81 0.67 0.52 0.34
1000 0.83 0.66 0.54 0.45 0.36 0.28 0.18 0.99 0.79 0.64 0.53 0.43 0.33 0.22

PCA

n \ ρ2
e 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 3.50 2.89 2.41 2.03 1.59 1.24 0.81 3.99 3.13 2.52 2.08 1.63 1.25 0.82
25 2.58 2.12 1.73 1.39 1.12 0.88 0.58 2.67 2.18 1.76 1.41 1.12 0.88 0.58
50 1.94 1.53 1.26 1.07 0.84 0.66 0.44 1.98 1.55 1.27 1.07 0.85 0.67 0.44
100 1.41 1.14 0.93 0.75 0.61 0.47 0.32 1.42 1.14 0.93 0.75 0.62 0.47 0.32
200 1.01 0.81 0.67 0.53 0.43 0.33 0.22 1.02 0.81 0.67 0.53 0.43 0.34 0.22
1000 0.65 0.51 0.42 0.35 0.28 0.22 0.14 0.65 0.52 0.42 0.35 0.28 0.22 0.14

Note: This table assumes a three-factor data generating process with random factor loadings. Parameters are set to match the average
cross-sectional R2 value observed in the empirical application.
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