
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Size Oblivious Programming of Clusters for Irregular Parallelism

Permalink
https://escholarship.org/uc/item/7dh8t5zd

Author
Koduru, Sai Charan

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dh8t5zd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Size Oblivious Programming of Clusters for Irregular Parallelism

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Sai Charan Koduru

December 2015

Dissertation Committee:

Dr. Rajiv Gupta, Chairperson
Dr. Laxmi N. Bhuyan
Dr. Iulian Neamtiu
Dr. Evangelos Christidis

Copyright by
Sai Charan Koduru

2015

The Dissertation of Sai Charan Koduru is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This dissertation is the fruition of all the support, kindness and inspiration I’ve received.

I am forever grateful and indebted to my advisor, Dr. Rajiv Gupta. Words cannot

sufficiently express my thankfulness for his unwavering, constant and consistent confidence

and belief in my potential and capabilities. For his inspiration and guidance in my research,

writing and presentations. For his understanding and patience through my highs and my

lows. Without his help, support, motivation and training, this would not be a reality. Thank

you, Dr. Gupta, for the rewarding, memorable and cherishable doctoral study under your

tutelage. And, thank you, Dr. Panchanathan, for kindly introducing me to Dr. Gupta.

Thank you, Dr. Neamtiu, for the collaboration over the years, guidance and for

agreeing to be on my committee. I’d like to thank my dissertation committee members

for their valuable feedback and support over the years. Thank you, Dr. Bhuyan and Dr.

Hristidis. I’d also like to thank Dr. Morikis, for being on my advancement committee. And,

thank you, Amy and Victor – you are the best!

Thank you, Kitchu and Saurabh, my life’s sounding boards! A big, heartfelt Thank

You to my buddies, lab mates and collaborators – Min, Kishore, Yan, Pamela, Changhui,

Amlan, Vineet, Keval, Farzad, Zack, Bo, Prerna, Mehmet, Panruo, Hemanth, Prashanth and

Vamsee, for the deep and meandering ramblings on research, life and everything in between.

My teachers from my primary school at Prasanthi Nilayam, specially Munni aunty

and Prema Aunty – I am forever indebted to all of you for the loving care and being my

family growing up in the hostel; you made it very hard for my parents to fill your shoes!

Heartfelt gratitude to all my high school teachers, particular Sairam sir, for molding me and

iv

for giving me a hand and direction when I faltered. To Mishra sir, for the wonderful English

and Philosophy classes. To Prusty sir, Satish Babu sir, Ram Mohan sir, Venkateshwarlu sir

and Janardhanan sir for everything. To all my teachers in Bridavan campus – particularly,

Subramanian sir – thank you for trusting a kid to tinker with computers – I learnt a lot

fiddling with the machines which kindled the start of a long lasting love for computers and

their science and to Warden sir for cutting me slack when I was down. Finally, a HUGE

Thank You! to all my teachers, lecturers and professors at SSSIHL, Prasanthi Nilayam for

my the formative years in Math and Computer Science. Thank you, Prof. GV Prabhakar

Rao and Dr. Chase – my masters’ thesis advisors and mentors. Thank you JB sir, Raghu sir,

Pallav sir, Ravi Iyer sir and Uday sirs – and everyone else at DMACS, SSSIHL for believing

in all of us kids! I hope I’ve lived up to at least a bit of all your collective expectations.

Thank you, Hari and Swathi for everything from day One! I’m forever indebted

and grateful to my Mum, Dad for their love and constant prayers. I’m still stumped by my

in-laws for nonchalantly trusting me with their little girl – thank you. Thank you, Chinna,

Praveen and families – for bearing with my idiosyncrasies. And, none of this would have

been possible without the unconditional love, co-operation and belief from my better-half,

Prasanthi, for understanding and putting up with me through my grad-student life of classes,

publications, accepts, rejects, missing out on family and the many, many little pleasures. I

hope to make it up to you!

v

To my Guru, Guide and God, Sri Sathya Sai, for who I am.

To my wife, Prasanthi, for all the love and support.

vi

ABSTRACT OF THE DISSERTATION

Size Oblivious Programming of Clusters for Irregular Parallelism

by

Sai Charan Koduru

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2015

Dr. Rajiv Gupta, Chairperson

Ubiquitous availability of growing troves of interesting datasets warrants a rewrite

of existing programs, for clusters or for out-of-core versions, to handle larger datasets. While

DSM clusters deliver programmability and performance via shared-memory programming and

tolerating latencies by prefetching and caching, copious disk space is far more readily available

than managing clusters. Irregular applications, however, are challenging to parallelize because

the input related data dependences that manifest at runtime require use of speculation for

correct parallel execution. By speculating that there are no input related cross iteration

dependences, it can be doall parallelized; the absence of dependences is validated before

committing the computed results. Latency tolerating mechanisms like prefetching and

caching which have traditionally benefited data-parallel applications, can hurt performance

of speculation from reading stale values. This thesis seeks to address the task of size oblivious

programming of irregular applications for large inputs on DSM clusters.

We first simplify the task of programming very large and irregular data, which

may sometimes not fit in the DSM. To this end, we introduce a language, the associated

vii

runtime and a compiler for efficient distributed software speculation to parallelize irregular

applications. The programming model consists of an easy to use, templated C++ library

for writing new vertex-centric programs or the simple large and speculate constructs as

extensions to the C/C++ language for existing programs.

In addition we introduce the InfiniMem random-access efficient object data format

on disk to enable I/O of arbitrary data objects from disk in at most two logical disk seeks. We

also present a simple API for I/O into this data format and the accompanying object-centric

library framework to program size oblivious programs to support scale-up on individual

machines as a first step. We then leverage InfiniMem on individual machines in the cluster

to support distributed size oblivious programs. As a final stage to ease programming,

we built an LLVM/Clang-based source-to-source compiler, SpeClang, which instruments

the annotated source code with invocations into our libraries and runtime. The runtime

comprises of an object-based caching DSM with explicit support for software speculation and

transparently performs out-of-core computations using InfiniMem to handle large inputs.

Next, we address the inefficiencies that result from employing traditional latency

tolerance mechanisms like prefetching and caching on DSM systems to support speculation:

(a) we demonstrate the need for balancing computation and communication for efficient

distributed software speculation and provide an adaptive, dynamic solution that leverages

prefetch and commit queue lengths to drive this balance. (b) we demonstrate that aggressive

caching can hurt speculation performance and present three techniques to decrease commu-

nication and cost of misspeculation check and speed up misspeculated recomputations by

leveraging the DSM caching and speculation protocols to keep misspeculation rates low.

viii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Dissertation Overview . 3

1.1.1 Programming Interface . 4
1.1.2 Speculation on Shared-Memory Clusters 6
1.1.3 Efficient I/O for Large Irregular Inputs 8

1.2 Dissertation Organization . 10

2 Programming Interface for
Size Oblivious Programming 11
2.1 High-level Language for Size-Oblivious Irregular

Parallelism . 12
2.2 Low-level API for Size-Oblivious Irregular Parallelism 15

2.2.1 Object-centric Programming . 15
2.2.2 Low-level API . 16

2.3 The SpeClang Compiler and Runtime . 20
2.4 Summary . 21

3 Infinimem: Size Oblivious Programs on a Single Machine 22
3.1 Size Oblivious Programming . 24

3.1.1 Motivating Applications . 25
3.1.2 A Naive Approach . 26
3.1.3 Our Solution . 27

3.2 The InfiniMem Programming Interface . 29
3.2.1 Identifying Large Collection of Objects 30
3.2.2 Processing Data . 31

3.3 InfiniMem’s I/O Efficient Object Representation 35
3.4 Evaluation . 37

3.4.1 Programmability . 38

ix

3.4.2 Performance . 39
3.4.3 Scalability . 44

3.5 Summary . 46

4 ABC2: Adaptively Balancing Computation and Communication in DSM
Clusters 47
4.1 The Need for Distributed Software Speculation 49
4.2 Communication Bottleneck on Multicore Machines 53
4.3 Dynamically Adaptive Communication . 56

4.3.1 Motivating Study . 56
4.3.2 Adapting Communication for Distributed Speculative Parallelism . . 58

4.4 ABC2: An Adaptive Runtime Framework 62
4.4.1 System Design . 62
4.4.2 The ABC2 Algorithm . 66
4.4.3 Evaluation of ABC2 . 67

4.5 Summary . 71

5 Distributed Software Speculation on Caching DSMs 72
5.1 Speculation on Caching-based DSM Systems 73
5.2 Interplay Between Distributed Software Speculation and Distributed Caching 74

5.2.1 Distributed Caching and Speculation Protocol 75
5.2.2 Cache Size vs. Misspeculation Rate 79

5.3 Optimizing Distributed Speculation . 82
5.3.1 Piggybacking Version . 82
5.3.2 Early Misspeculation Detection . 83
5.3.3 Fast Recovery . 85

5.4 Evaluation of Optimizations . 88
5.4.1 Overall Speedups from Optimizations 88
5.4.2 Combining Optimizations . 90
5.4.3 Integration with Infinimem . 92

5.5 Summary . 93

6 Related Work 95
6.1 Programming Interface . 95

6.1.1 Programming Large Data . 95
6.1.2 Programming Speculation . 97

6.2 Size Oblivious Programming . 98
6.2.1 Out-of-core Computations . 98
6.2.2 Processing on a Single Machine . 99

6.3 Distributed Shared Memory Software Systems 99
6.3.1 Latency Tolerance Mechanisms . 100
6.3.2 Distributed Software Speculation . 101

x

7 Conclusions and Future Work 105
7.1 Contributions . 105
7.2 Future Directions . 108

Bibliography 110

xi

List of Figures

1.1 Overview of our Size Oblivious Programming approach. 4

2.1 Object-centric programming and annotation of speculative regions with
SpeClang. 16

2.2 Complete list of low-level APIs to support object-centric program trans-
formation and protocol customization to identify, pre-process, fetch/store,
lock/unlock, parallel compute and speculation. 19

2.3 Overview of the SpeClang compiler and runtime implementation. 20

3.1 Common data structure declarations to motivate the need for explicit support
for fixed and variable sized data, block based and random IO. 29

3.2 Programming with InfiniMem: the Box and Bag interfaces are used for fixed
size and variable sized objects; process drives the computation using the
user-defined update() methods and the low-level fetch() and store() API. 30

3.3 InfiniMem’s generic batch process()-ing. 31
3.4 Variations of graph programming, showcasing the ease and versatility of

programming with InfiniMem, using its high-level API. 33
3.5 Default and custom overrides for process() via low-level InfiniMem API. . 34
3.6 Indexed disk representation of fixed- and variable-sized objects. 35
3.7 Percentage(%) of IO and execution time for decoupled over coupled represen-

tations for various applications on the ‘Delicious-UI’ input. 40
3.8 Scalability of InfiniMem with parallelism and input size. 44

4.1 Dependencies between neighboring nodes requires speculation in order to
correctly parallelize graph coloring. 51

4.2 Speedups of the parallel versions of the benchmarks over their serial versions. 57
4.3 Figures 4.3a, 4.3b, 4.3c and 4.3d show the speedups for GC, SSSP, KM and

MIS respectively. Prefetch threads make remote objects locally available,
hence avoiding remote accesses and reducing the average fetch time. Each
benchmark was executed on a cluster of 6 machines, running 4 computation
threads. 59

xii

4.4 Figures 4.4a, 4.4b, 4.4c and 4.4d show the number of 1K aborts due to
misspeculation for GC, SSSP, KM and MIS respectively. Lesser number
of commit threads delay the availability of newly computed object values
resulting in higher aborts of computations on stale data values. 60

4.5 The ABC2 system design showing the DSM, Prefetch, Compute & Update
threads. 65

4.6 The ABC2 Algorithm. 65

5.1 Cache, directory and speculative buffer state diagrams for speculation. . . . 78
5.2 State Diagrams for Speculation with Piggybacking. 84
5.3 States for objects in cache with early misspeculation detection. 85
5.4 States for objects in speculative buffer with fast recovery. 87

xiii

List of Tables

1.1 I/O costs are significant in the total running time for external irregular
algorithms. 9

3.1 Between 6 and 9 additional lines of code are needed to make these applications
size oblivious. Graph processing uses decoupled version (Figure 3.4b). . . . 38

3.2 Inputs used in this evaluation. 39
3.3 Decoupling vertex and edgelists improves performance by avoiding wasteful

I/O (time in seconds). ‘Co’ and ‘DeCo’ refer to coupled and decoupled
respectively. 40

3.4 Frequencies of operations for various inputs for PageRank. 41
3.5 Percentage of time for I/O operations for various inputs for PageRank. 41
3.6 InfiniMem-Decoupled vs. InfiniMem-Sharding vs. GraphChi. The speedups

presented are over GraphChi. 43
3.7 Throughput for the probabilistic applications. 43

4.1 A Suite of Modern Irregular Applications 57
4.2 Summary of communication strategies. 62

5.1 Applications . 79
5.2 Real-world inputs . 80
5.3 Effect of cache size on speculation on an 8 node cluster. Execution time in

seconds and misspeculation rate (MR) with varying cache sizes. 81
5.4 Best speedups and change in MR (∆MR) of optimized speculation over baseline. 88
5.5 Speedups and the change misspeculation rate (∆MR) for optimized speculation

with varying cache sizes. 89
5.6 Best speedups from individual optimizations over baseline speculation. 91
5.7 Best speedups from pairwise combination of optimizations over baseline

speculation. 91
5.8 Overhead from using InfiniMem to spill data that does not fit in allocated

memory is shown here as a percentage of slowdown over the version without
InfiniMem for AZ input. 92

xiv

5.9 Breakdown of total time into input, size oblivious IO and compute for dis-
tributed software speculation with InfiniMem. 93

xv

Chapter 1

Introduction

The widespread availability of large scale clusters has enabled computer scientists

to tackle applications that are both highly data-intensive and compute-intensive. However,

for many of the modern workloads, exploiting the clusters requires a great deal of effort due

to the need to handle very large data sets and exploit irregular parallelism. Examples of

such workloads include graph processing on irregular inputs like social graphs etc., many of

which are easily available to the research community [78, 72].

For ease of programming clusters the Distributed Shared Memory (DSM) systems

have been proposed. For example, Orca [8, 7], Shasta [112, 113], Munin [10], TreadMarks [4],

CRL [56]. In such systems the programmer develops the applications using the shared

memory model which makes programming easy. The focus of these systems were latency

tolerance mechanisms for DSMs like prefetching and caching. While great strides were

made in developing distributed memory systems, these systems were not designed to either

deal with very large data sets and nor were they developed to effectively exploit irregular

1

parallelism. If the input data or intermediate data generated by an application is so large

that it cannot be held in memory, these systems simply fail. The exploitation of irregular

parallelism requires the use of speculation. However, much of the work on speculation

is aimed at shared memory multicore systems [104, 105, 40, 99] and not applicable to

distributed memory systems.

Existing programs that work perfectly well for smaller inputs, cannot run with larger

inputs. Typically, the programmer will need to modify the program to explicitly handle larger

inputs, for example, by using an out-of-core solution. Such manual, tailor-made solutions

usually only work specific system configurations, constraints and assumptions and these

programs simply crash when any of these assumptions are violated. For example, programs

written using the popular Hadoop [118] framework require the programmers to manually

ensure that the data being loaded into the java process can fit in the allocated JVM memory.

Minor changes to cluster configurations, like lowering the per-process JVM memory can

result in the program crashing. Other big data systems like Hive [126] focused on distributed

relational queries using Hadoop, while dedicated, specialized systems like GraphX [131] and

GraphLab [82] focused on distributed graph processing only. GraphChi [75] is one system

that provides a size oblivious programming experience, but only for graphs and only works

on with a single machine. In summary, although existing big data processing systems make

use of disk in addition to memory, decisions made by the user cause the programs to be

inflexible and they often fail because they run out of memory; further, they do not support

speculation which is necessary for many irregular parallelism and/or they are usually domain

specific solutions.

2

We therefore address the need for Size Oblivious Programming – techniques

and runtime that can transparently and efficiently handle very large data, with minimal to

no manual intervention. This dissertation develops a programming system that provides an

easy to use programming interface for developing applications that must handle large data

sets and contain irregular parallelism. The task of application developer is greatly simplified

because the complexities of handling large data sets and irregular parallelism are handled

transparently by the runtime system.

1.1 Dissertation Overview

This dissertation presents a parallel programming system shown in Figure 1.1 which

addresses the issues of programmability and performance described above via design of a new

programming interface and a new distributed shared memory system. The programming

interface allows user to identify collections of objects that can become too large in number to

be held in memory and indicate when the parallelism present is of speculative nature. The

InfiniMem library augments distributed shared memory with a transparent use of disk to

handle large collections of objects locally on each machine. The runtime distributed caching

protocols on which the distributed shared memory system is based are specially designed to

handle speculation.

Consider graphcoloring as an example application. The first phase is reading the

input. If the input is very large and cannot entirely fit in memory, the program cannot

progress any further and typically crashes with an out-of-memory error. In such a scenario,

the application cannot progress any further. When the input data can fit in the available

3

������

��	

������

��	

������

��	

������

��	

������

��	

������

��	

���������

��	��������������������� ��	���������������������������

�������������������

���������������������

��	���

Figure 1.1: Overview of our Size Oblivious Programming approach.

memory, parallelizing an application like graph coloring requires the speculation, a runtime

technique, since the dependencies between concurrent iterations are input dependent and

are known only at runtime: to color nodes in a graph, the coloring algorithm needs to

iterate over all nodes in the graph, comparing the color of each node with that of all of

its neighbors. When naively parallelized, concurrently updating a graph node and one or

more of its neighbors neighbors will result in incorrect coloring. Speculation avoids such

mishaps. This dissertation addresses the problem of simplifying programming applications

that process very large inputs and require speculation for correct execution on a cluster with

distributed shared memory. We present a simple language and a runtime to aid with this.

1.1.1 Programming Interface

We first illustrate the proposed programming interface with the Graphcoloring

example. We first address the problem of large input I/O and then address the problem of

processing large irregular inputs.

4

Language Support for Large Inputs

The input to the graph algorithms can be any large input graph. If the programmer

implicitly assumes that the input can fit in memory when the input graph cannot actually

fit in the available memory, the program will crash when loading the graph after failing

to allocate additional memory. We propose to transparently and automatically spill data

that cannot fit in the available memory to disk. To enable this, we require the programmer

to simply identify the large data collections to the framework with the introduction of the

large keyword for container data structures that are potentially large. On the cluster,

container data structures annotated with the large keyword are preprocessed to enable

partitioning across machines in the cluster and then loaded into distributed memory in

parallel for efficiency and performance. When the data does not fit in the available memory,

the objects in the large collections are automatically and transparently spilled to and fetched

from disk as needed by the application. Reads and writes to large data structure are

transparently handled by the runtime library.

Language Support for Speculation

The sequential Graphcoloring example colors all nodes in the input graph in a

loop, coloring nodes after considering the colors of all its neighboring nodes. Parallelizing

this loop requires speculation since the list of node’s neighbors can only be known at

runtime. Speculation involves treating this loop as a doall loop and executing it in parallel

in a distributed manner on the DSM system. When the nodes being processed in parallel

are not neighbors, no misspeculation is encountered. However, if neighbors are processed

5

in parallel, they may be assigned the same color leading to misspeculation. A commit

phase that updates the colors of vertices detects this misspeculation and initiates recovery.

The recovery requires repeating the coloring process for a vertex. If misspeculation occurs

infrequently, speculative parallelization results in speedups. Speculation is expressed by using

the speculate keyword. Distributed objects in the large container that are accessed inside

the speculate block/method are automatically copied into a thread-private speculation

buffer to enable the speculative computation to commit atomically.

1.1.2 Speculation on Shared-Memory Clusters

Irregular applications, such as vertex centric graph processing algorithms, contain

significant levels of data parallelism as the same operation needs to be performed repeatedly

over the large number of vertices in the graph. On a distributed system, the vertices and their

processing can be distributed across the machines to exploit data parallelism. While use of

DSM makes the task of programming easy and the distributed caching protocol reduces long

latency fetch operations, the irregular nature of parallelism makes it necessary to employ

speculation. Infrequently arising data dependences requires processing of interdependent

vertices to be serialized. While these dependences are infrequent, they are dependent upon

the input data set, and hence are revealed at runtime. Speculation [105, 104, 40] involves

processing vertices in parallel assuming that there are no dependences between them, runtime

detection of misspeculation when the dependences arise, and then recovering from them.

As long as misspeculation rate is low, the benefits of speculation far outweigh the cost of

recovering from misspeculation. Data parallel applications on DSMs benefits from prevailing

techniques like prefetching and caching to tolerate the long network latencies for remote I/O.

6

However, aggressive prefetching and over-reliance on caching tend to increase misspeculation

rates on DSMs. In this context, these are the problems that we tackle in this thesis:

1. Aggressive prefetching can increase misspeculation rates from prematurely fetching

values that could become stale before the computation can commit.

2. For speculation execution, every read from the cache is a potential misspeculation and

larger caches only increase the misspeculation rates.

Balancing Prefetching and Commit

The biggest challenge to efficiency in a distributed setup is the large network

latency which comes into play for all remote fetch, store and lock operations. Prefetching

and caching as techniques to tolerate long network latencies have been effective for

general purpose DSM applications. However, in the context of speculation, overaggressive

prefetching and caching can hurt the performance of speculation: computations that speculate

on prefetched stale values will eventually abort, increasing the misspeculation rate and

resulting in an overall slow down of the program execution. Therefore, it is imperative that

the rate of prefetching should be paced with the speed of computation. To enable such

balanced pacing, our computation model designates various types of threads: prefetch,

compute and commit threads designated to their named tasks. To pace the prefetching, the

length of the commit and prefetch queues are used as hints to auto tune the balance between

prefetch, compute and commit to decrease over-reliance on prefetching and prioritizing

commits.

7

Decreasing Misspeculation Rate with Caching DSMs

Another challenge in this regard is the presence of machine level caches in DSMs.

While DSMs coupled with caching help tolerate long network latencies for non-speculative

data-parallel applications, aggressive caching can hurt during speculative execution due

to the potential of using stale values in computations, increasing the misspeculation rate.

With distributed speculation on a caching DSM, every cache read can cause misspeculation

because the read could occur before a network-delayed invalidate is received – note that

successful speculation is counting on the fact that no invalidate would arrive. To address this

challenge, we develop optimizations for distributed speculation on caching based DSMs that

decrease the cost of misspeculation check and speed up the re-execution of misspeculated

recomputations.

1.1.3 Efficient I/O for Large Irregular Inputs

When the input data is very large and does not fit in the DSM memory, we propose

that the data that does not fit in memory can be transparently offloaded to the disk and

fetched into memory on demand. This is akin to an out-of-core solution. While many

out-of-core algorithms have been proposed, but we go a step further and propose generic

techiques to transparently compute any algorithm out-of-core.

A naive apporach to this would be to use a database to spill and fetch the overflow

data, we show that this approach is not very efficient for irregular data due to the large

number of unpredictable random accessess generated by applications processing irregular

inputs. For example, we experimented with RocksDB [50], which is an enhancement

8

of LevelDB [51]. RocksDB claims to have better support for random reads and graph

scans; however, we show that we can do far better for irregular applications. For example,

GraphColoring on the Amazon [77] input with 400K vertices and 3,200K edges took about

23 seconds with RocksDB as the excess datastore while it only took about 1 second with

our solution, InfiniMem.

Load/Store Compute RocksDB I/O Total Time
Application in seconds in seconds in seconds in seconds

(% of total) (% of total) (% of total)

Coloring 9 (2.56) 7 (2.01) 333 (95.43) 349
Conn. Comp. 15 (2.50) 10 (1.67) 574 (95.83) 599
Comm. Dete. 13 (1.95) 20 (3.00) 633 (95.05) 666
SSSP 14 (2.06) 13 (1.92) 650 (96.02) 677
PageRank 10 (1.01) 21 (2.12) 955 (96.87) 986

Table 1.1: I/O costs are significant in the total running time for external irregular algorithms.

Table 1.1 shows the time breakdown for loading, storing, spilling and computation

for various applications on the Amazon [77] input using RocksDB as the datastore as

described above. The program was configured to hold upto 20,000 vertices in memory

while performing the computation, spilling the remaining vertices to disk and loading them

on demand as needed. We see that the time spent in I/O is a significant portion of the

total running time. To begin, for SSSP and Conn. Comp., the sequential load/store times

are more than the time spent on computation. And, the time spent by these benchmarks

on compute is an insignificant portion of the total time: only ∼2% is spent on compute

and input load/output store each. Instead, much of the total running time is spent in the

RocksDB I/O: ∼95% is spent on intermediate I/O with RocksDB, motivating the need for

efficiencies across the board, including:

1. Parallel loading and storing of inputs and outputs;

9

2. Need for speculation to parallelize irregular applications; and,

3. Need for efficient datastore for excess data with support for fast random access.

Since the data access patterns are irregular, they result in unpredictable random

accesses and the resulting spilling and loading data in contiguous chunks would be inefficient

with naive solutions. Instead, we need the ability to transparently and efficiently spill and

load individual objects to and from disk without the traditional penalties associated with

random seeks on a disk. We propose a data representation on disk that allows efficient

random access to spill and retrieve objects of irregular inputs to and from disk. Specifically,

with InfiniMem we provide a runtime and API to efficiently spill and access irregular data

on disk.

1.2 Dissertation Organization

The rest of the thesis is organized as follows: Chapter 2 presents the language to

support Large inputs and to program distributed software speculation. Next, Chapter 3,

presents InfiniMem, our out-of-core solution to transparently scale computation to inputs

that do not fit in the available memory. Distributed software speculation is convered in

the next two chapters: Chapter 4 addresses the need to balance prefetching and commit

for lowering misspeculation rates while Chapter 5 addresses the problem of optimizing

distributed speculation in the presence of caching on DSM clusters. Chapter 6 surveys

existing literature in related areas and Chapter 7 concludes the thesis with a summary of

our work and presents a brief future outlook.

10

Chapter 2

Programming Interface for

Size Oblivious Programming

The use of Distributed Shared Memory (DSM) systems is a widespread in modern

computing. While early systems relied on custom message passing solutions via send and

recv primitives, the introduction of the Message Passing Interface (MPI) [44] standard and

accompanying implementations like OpenMPI [93], MPICH [48] etc. eased the programming

of these systems. The runtime libraries managed efficient packing and network based I/O

of any kind of data structures that can be expressed as an MPI Type struct. Systems like

Orca [8], Shasta [112], Munin [10], TreadMarks [4], CRL [56] etc. implemented distributed

caching protocols with runtimes invoking message passing to implement the caching protocols.

The next phase of simplification involves utilizing the compiler to generate calls into MPI or

similar libraries, thereby simplifying DSM programming even further. Examples include

Chapel [16], X10 [25], UPC [39], SHMEM [24] etc. However, these prior systems did not

11

have explicit support for today’s emerging workloads that require speculative parallelism nor

did they provide very simple language constructs for large distributed data collections.

This chapter presents the two simple language extensions to the C++ language

to support size-oblivious irregular programs. We then present examples illustrating the

use of these constructs in the context of irregular graph applications. Next, we show the

transformation of programs written using these constructs are transformed into their object-

centric counterparts. And finally, we present the low-level language and API that powers the

runtime and describe how these can be customized for easily evaluating different algorithms

and/or strategies etc.

2.1 High-level Language for Size-Oblivious Irregular

Parallelism

A lot of emerging applications involve distributed parallel processing of irregular

data structures like large graphs and networks. Graphs are essentially collections of vertices

and edges. Large graphs have a large number of vertices and/or edges. It would be convenient

for the programmer to simply identify such collections and have the language and/or runtime

handle the detailed nitty-gritties of distributing and managing the collection. We wish to

provide a simple language keyword that enables this simplicity:

large;

Parallelizing irregular applications requires the use speculation for correct parallel

execution. While software speculation has been extensively researched on single shared

12

memory systems, speculation in a distributed setup is still work in progress. For example,

the LRPD test [105] formalized the notion and procedure for safe speculative execution

via privatization. SpiceC [40] introduced the #pragma speculate language construct to

speculatively parallelize loops on single shared memory sytems. We wish to introduce a

similar simple language keyword that enables speculative parallelization in a distributed

setup:

speculate{ ... };

We now illustrate the use of large and speculate with the example of sequentially

loading and coloring a potentially large graph. This example is listed in Algorithm 4.1,

which presents two opportunities for parallelization and speedup: the graph loading loop on

Line 1 can be parallelized and the graph coloring loop on Line 3 can also be parallelized.

Algorithm 1: Sequential graph loading and the graphcoloring
algorithm.

1 Vertex graph[NUM VERTICES];

2 /* Read edgelists and add neighbors */

3 while moreInputEdges() do
4 readNextEdge(src, dst);
5 graph[src].addNeighbor(dst);

6 /* Graphcoloring */

7 for int i=0; i<graph.size(); i++ do
8 for int j=0; j<graph[i].numNeighbors(); j++ do
9 if graph[i].nbr[j].color == graph[i].color then

10 graph[i].color++;

Parallelizing the graph input loop on Line 3 requires the use of speculation since

reading edges in parallel could result in multiple neighbors concurrently added to the same

vertex. In order to not lose neighbors added in this process, we require speculation. As before,

13

the input graph itself could be very large and automated memory and I/O management for

this data would be desirable.

Next, parallelizing the graph coloring loop on Line 2 also requires speculation

since a naive doall parallelization of the loop could result in a vertex and its neighbor

concurrently processed, leading to incorrect coloring. Further, the input graph on Line 1

could potentially be an input that does not fit in available memory, and could benefit from

automatic memory and storage management by spilling from memory to disk and fetching

from disk into memory automatically and transparently.

The simple annotations to transform this program into a size-oblivious program

with distributed software speculation are shown in Algorithm 2. The large keyword on

Line 1 and the speculate blocks on Line 3 and Line 9 are the only required changes to

achieve this.

Algorithm 2: Use of large and speculate for parallel loading
and processing of large, irregular inputs.

1 large Vertex graph[NUM VERTICES];

2 /* Read edgelists and add neighbors */

3 speculate {
4 while moreInputEdges() do
5 readNextEdge(src, dst);
6 graph[src].addNeighbor(dst);

7 }
8 /* Graphcoloring */

9 speculate {
10 for int i=0; i<graph.size(); i++ do
11 for int j=0; j<graph[i].numNeighbors(); j++ do
12 if graph[i].nbr[j].color == graph[i].color then
13 graph[i].color++;

14 }

14

2.2 Low-level API for Size-Oblivious Irregular Parallelism

The high-level large and speculate language extensions are easy to use in a

everyday programming. However, the bulk of the heavy lifting to enable the semantics

of these constructs is handled by the acommpanying runtime and libraries. Our library

provides a rich set of low-levl APIs to handle the nittigritties of size-oblivious programming

and speculation.

2.2.1 Object-centric Programming

Typical algorithms for big data processing usually iterate over all input data

items. So, the high-level design of the language is to transform the large and speculate

constructs into their corresponding Object-centric versions, where the transformed program

also iterates over all the objects in the input data. We illustrate this with an Graph Coloring

as a typical example. Modern graph-processing frameworks are so-called vertex-centric

frameworks, where the unit of work is around individual vertices. Object-centric versions

are the equivalent generalizations for arbitrary datatypes where the program iterates over

all objects in the container.

We first illustrate the transformation of an annotated program into its equivalent

object/vertex-centric versions, followed by a summary of all the available low-level APIs that

are automatically invoked by the runtime to process the inputs speculatively and in parallel.

Figure 2.1 illustrates the transformation of a program annotated with the large

and speculate C++ extensions as seen in Figure 2.1a into a vertex-centric parallel version

in Figure 2.1b. These extensions are encapsulated in the SpeClang complier and associated

15

runtime. Observe the transformation of the large keyword into the Large<> template

container with the same datatype on Line 1. Further observe that the speculate block is

transformed into the body of the Large::Speculate() method.

1 large Vertex g[NUM_VERTICES];

2

3 int main() {

4 load(g, ‘data’);

5

6

7 for(int i=0; i<NUM_VERTICES; i++)

8 speculate {

9 for(int j=0; j<g[i].nbrs(); j++)

10 if(g[i].color == g[i].nbrs[j].color)

11 g[i].color++;

12 }

13 return 0;

14 }

(a) Program annotation using SpeClang.

Large<Vertex> g;

template <typename V>

Large::Speculate(V v) {

for(auto nbr: v) {

if(v.color == nbr.color)

v.color++;

}

}

int main() {

g.preprocess(‘input’).load().run();

return 0;

}

(b) Object-centric speculative programming.

Figure 2.1: Object-centric programming and annotation of speculative regions with SpeClang.

2.2.2 Low-level API

The high-level language presented above eases everyday programming. However,

for purposes of research, exploration and customization to specialized domains, it would

be convenient to easily tweak portions of the programming model. This is enabled by the

low-level API.

We now describe the various portions of the low-level API that enables size-

oblivious irregular parallelization. These include object identification, partitioning, I/O,

processing, versioning and object locking. We bundled all these features into an object-based,

Distribued Shared Memory (DSM) system with a directory-based caching protocol with

strict consistency [129]. As illustrated in Figure 2.1, the high-level program annotations are

16

transformed into the object-centric versions. The runtime that executes the transformed

program on the DSM system which satisfied object fetches and stores through background

calls to the low-level APIs.

Object Identifiers

The first step in enabling size-oblivious programming is a generalization of the

notion of a pointer. We need a construct that is unique and portable across the entire

distributed shared memory address space. In addition, this construct should also help

identify/locate objects quickly and uniformly from any machine in the cluster. For this, we

use the notion of an object identifier, or ID.

When injesting input data, each dataitem is assigned a unique ID. Objects are then

referenced by their ID in the rest of the program. For example, consider a graph input which

consists of vertices and their edges. Vertices are typically indexed by a numeric identifier.

In the simplest case, the numeric identifier is the Vertex ID. The transformation of the

program into the object-centric version ensures that the ID is consistently used throughout

the program.

Input Partitioning

Once injested, the input then partitioned across machines in the cluster and assigned

a home node based on their ID. A consistent global partitioning funcion ensures that the

runtime on any machine can easily locate the home node of objects and initiate various

network-based or local interations as needed. We provide a preprocess() API that can be

overloaded to implement any custom partitioning and/or object identifcation.

17

Network I/O

One of the primary features of a DSM system are transparent data caching and

consistency protocols which are enabled by fetch and store APIs. Consistent with the

object-centric programming model, our DSM system is an object-based system. The basic

fetch and store APIs have object granularity. In addition, the DSM also supports batched

I/O APIs to fetch or store. This API helps with decreasing network communication by

grouping/bundling I/O of objects to the same machine.

Object Versioning

Software speculation proceeds in phases: (a) Privatization, (b) Parallel Speculative

Computation, (c) Misspeculation detection/check, and (d) Commit. To enable the third

phase, we employ versioning of data to detect mis-speculation. Therefore, in addition to

an object ID, each object in the DSM system is associated with a version. Each time an

object is successfully committed to the DSM system, its version number is also atomically

and automatically incremented to reflect the change in value.

Object Locking for Speculation

For the first two phases of speculation, the network I/O API provided by the

DSM are sufficient. However, mis-speculation detection/check requires explicit locking of

possibly local and remote objects to enable the atomic commit protocol after a successful

mis-speculation check. For this, the DSM system also provides the lock and unlock API at

object granularity.

18

Parallel Speculative Computation

Once the input objects are identified, partitioned and distributed across machines

in the cluster, the run API is used to invoke the speculative parallel execution. This API

invokes the object-centric speculative computation, Large::Speculate() on each object in

the input dataset then invokes the commit API to ensure correct commit.

Mis-speculation Detection and Commit

Finally, the misspeculation detction and commit protocols are encapsulated in

the commit API. The commit API takes as input the speculative buffer with private copies

of dependent data computed results. As part of the commit, the API first locks all the

dependent inputs and then performs a version check as part of the misspeculation detection.

In the absence of misspeculation, updated values are written to the home nodes; otherwise,

the computation is discarded and rescheduled.

template<typename T> template<typename T>

bool Large::assignID(); bool Large::preprocess();

template<typename T> template<typename T>

T Large::fetch(ID); void Large::store(ID, const T*);

template<typename T> template<typename T>

T* Large::fetchBatch(set<ID> ids); void Large::storeBatch(set<ID> ids);

template<typename T> template<typename T>

bool Large::lock(ID); bool Large::unlock(ID);

template<typename T> template<typename T>

bool Large::run(); bool Large::commit(specBuffer &sb);

Figure 2.2: Complete list of low-level APIs to support object-centric program transformation
and protocol customization to identify, pre-process, fetch/store, lock/unlock, parallel compute
and speculation.

19

Figure 2.2 lists the complete set of low-level APIs that are used to implement the

object-centric size-oblivious parallel processing system for irregular inputs. Observe that the

API is templated to allow for processing of arbitrary datatypes.

As stated earlier, the low-level API serves the dual role of providing the runtime

and also enables advanced programmers and researchers experiment with variations and

customizations to the various pieces of the runtime, starting from object identification and

all the way up to the speculation protocol.

2.3 The SpeClang Compiler and Runtime

Generate	 and	
Analyze	 AST

SpeClang: LLVM/Clang Compiler

Identify	 large
and	 speculate
declarations

Generate	
distributed	
parallel	 code

Generate	 Size	
Oblivious and	

Speculation code

Runtime

Distributed	
Cache

Distributed	
Speculation

Infinimem

Code	 with	
large&	 	

speculate

Compiler
(Clang/GCC)

x86/x64	 Binary

Size	 Oblivious	
&	 Speculative	
Distributed	
Parallel	 Code

Figure 2.3: Overview of the SpeClang compiler and runtime implementation.

An overview of SpeClang framework is shown in Figure 2.3. The user annotates the

C/C++ source code with large and speculate directives which is then source-translated

into a size oblivious, parallel and distributed version. This source code is then built with

any C/C++ compiler and is run on the DSM with distributed speculation and InfiniMem.

20

2.4 Summary

In this chapter, we have presented the simple high-level language extensions to

C++ to support size-oblivious irregular programs. Specifically, we have introduced the

large and speculate keywords to annotate potentially large collections and code regions

requiring speculation respectively. We also showed the transformation of such annotated

programs into their object-centric versions. Finally we described the low-level API that

powers the runtime to achieve the dual goal of distributed speculation with support for very

large data. The low-level API is provided to allow researchers and other advanced users to

tweak and customize the algorithms and design to suit their own problem domains, while

still holding together the overall framework.

Next, Chapter 3 presents and evaluates extensions to the low-level language API

and a corresponding data organization on disk that enables application scale-up on a single

machine. In addition to block-based I/O, the extensions provide features that allow fast

and efficient random I/O that is well suited for irregular applications. These extensions also

continue the object-centric design theme.

Subsequent chapters evaluate the distributed speculation enabled by this lan-

guage along with targeted enhancements and optimizations that boost the performance of

speculation on DSM systems that employ caching.

21

Chapter 3

Infinimem : Size Oblivious

Programs on a Single Machine

Supporting size-oblivious programs requires a graceful handling of situations when

the data to be processed does not fit in available memory. In such situations, we would like

to scale gracefully by relying on the underlying disk – we can intelligently spill overflow data

from memory to disk and bring back required data to memory transparently, as needed by

the application, enabling us to scale the application further even when the DSM memory is

full. A step in this direction is the InfiniMem library, which enable application scale-up on

a single machine, thereby enabling better realiability in the application scale-out scenario.

BigData processing frameworks are an important part of today’s data science

research and development. Much research has been devoted to scale-out performance via

distributed processing [46, 82, 84, 118] and some recent research explores scale-up [5, 135, 75,

99, 117, 133]. However, these scale-up solutions typically assume that the input dataset fits

22

in memory. When this assumption does not hold, they simply fail. For example, experiments

by Bu et al. [17] show that different open-source Big Data computing systems like Giraph [5],

Spark [133], and Mahout [125] often crash on various input graphs. Particularly, in one of

the experiments, a 70GB web graph dataset was partitioned across 180 machines (each with

16 GB RAM) to perform the PageRank computation. However, all the systems crashed

with java.lang.OutOfMemoryError, even though there was less than 500MB of data to be

processed per machine. In our experiments we also found that GTgraph’s popular R-MAT

generator [6], a tool commonly used to generate power-law graphs, crashed immediately with

a Segmentation Fault from memory allocation failure when we tried to generate a graph

with 1M vertices and 400M edges on a machine with 8GB RAM.

Motivated by the above observations, in this chapter, we develop InfiniMem, a

system that enables Size Oblivious Programming – the programmer develops the appli-

cations without concern for the input sizes involved and InfiniMem ensures that these

applications do not run out of memory. Specifically, the InfiniMem library provides in-

terfaces for transparently managing a large number of objects stored in files on disk. For

efficiency, InfiniMem implements different read and write policies to handle objects that

have different characteristics (fixed size vs. variable size) and require different handling

strategies (sequential vs. random access I/O). We demonstrate the ease of programming with

InfiniMem by programming BigData analysis applications like frequency estimation, exact

membership query, and Bloom filters. We further demonstrate the versatility of InfiniMem

by developing size oblivious graph processing frameworks with three different graph data

representations: vertex data and edges in a single data structure; decoupled vertex data and

23

edges; and the shard representation used by GraphChi [75]. One advantage of InfiniMem

is that it allows researchers and programmers to easily experiment with different data

representations with minimal additional programming effort. We evaluate various graph

applications on various inputs with three different representations. For example, a quick

and simple shard implementation of PageRank with InfiniMem achieves performance within

∼30% of GraphChi.

The remainder of the chapter is organized as follows: Section 3.1 motivates the

problem and presents the requirements expected from a size oblivious programming system.

Section 3.2 introduces the programming interface for size oblivious programming. Section

3.3 describes the object representation used by InfiniMem in detail. Section 3.4 describes

the experimental setup and results of our evaluation and Section 3.5 summarizes the chapter.

3.1 Size Oblivious Programming

The need to program processing of very large data sets is fairly common today.

Typically a processing task involves representing the data set as a large collection of objects

and then performing analysis on them. When this large collection of objects does not fit in

memory, the programmer must spend considerable effort on writing code to make use of

disk storage to manage the large number of objects. In this work we free the programmer

from this burden by developing a system that allows the programmer to write size oblivious

programs, i.e., programs where the user need not explicitly deal with the complexity of using

disk storage to manage large collections of objects that cannot be held in available memory.

To enable the successful execution of size oblivious programs, we propose a general-purpose

programming interface along with an I/O efficient representation of objects on disk. We now

24

introduce a few motivating applications and identify requirements to achieve I/O efficiency

for our size oblivious programming system.

3.1.1 Motivating Applications

Algorithm 3: Motivating applications: Membership Query, Mesh Generation
and Graph Processing.

1 HashTable ht;

2 while read(value) do
3 ht.insert(value);

4 while more items do
5 if ht.find(item) then
6 print(“Item found”);

7 —————————————————
8 Mesh m(NUM-VERTICES)

9 foreach node n in Mesh m do
10 i ← rand(0, MAX);
11 for j=0; j < i; j++ do
12 n.addNeighbor(m[j]);
13 m[j].addNeighbor(n);

14 foreach Node n in Mesh m do
15 Write(n)

16 Graph g;
17 while not end of input file do
18 read next;
19 g.Add(α(next));

20 repeat
21 termCondition ← true;
22 forall the Vertices v in g do
23 for int i=0; i<v.nbrs(); i++ do
24 Vertex n = v.neighbors[i];
25 if v.dst>n.dst+v.wt[i] then
26 v.dst←(n.dst+v.wt[i]);

27 if NOT converged then
28 termCondition ← false;

29 until termCondition is true;

30 foreach Node n in Graph g do
31 Write(n);

Consider an application that is reading continuously streaming input into a Hash

Table in heap memory (lines 1–3, Algorithm 3); a website analytics data stream is an

excellent example of this scenario. When the memory gets full, the insert on line 3 could

fail, resulting in an application failure. Consider a common approach to graph generation

which assumes that the entire graph can be held in memory during generation, as illustrated

by lines 8–15 in Algorithm 3. First, memory for NUM-VERTICES is allocated (line 8) and then

the undirected edges are generated (lines 11-13). Note that the program can crash as early

as line 8 when memory allocation fails due to a large number of vertices. Finally, consider

25

the problem of graph processing, using SSSP as a proxy for a large class of graph processing

applications. Typically, such applications have three phases: (1) input, (2) compute, and (3)

output. The pseudocode for SSSP is outlined in lines 16–31 in Algorithm 3, highlighting

these three phases. Note that if the input graph does not fit in memory, this program will

not even begin execution.

3.1.2 A Naive Approach

To study the state of the art in this regard, we evaluated the use of RocksDB [50]

to write a size-oblivious program. For this, we wrote an object-centric program to process

large inputs: the program reads in sufficient data to fit in memory, process it in parallel

and store the contents back to disk, thereby making space in memory for the next batch of

data. For this, we evaluated the Graph Coloring algorithm using RocksDB as the data store.

LevelDB [51] is touted as an efficient data store for large-scale applications. However, we

used RocksDB – an evolution of LevelDB, as the data store in our test application since it

claims to better support random accesses and graph processing. However, GraphColoring

on the Amazon [77] input with 400K vertices and 3,200K edges took about 23 seconds

with RocksDB as the excess datastore while it only took about 1 second with our solution,

InfiniMem, which we now describe. This is attributed to RocksDB’s data organization that

requires loading an complete level into memory and performing a linear scan on that level.

RocksDB is better suited to scans once a level is loaded. Out solution is more efficient for

random accesses and requires at most 2 logical seeks to access any data object, in addition

to supporting efficient block-based I/O.

26

3.1.3 Our Solution

We focus on supporting size oblivious programming for C++ programs via the

InfiniMem C++ library and runtime. Examples in Algorithm 3 indicate that the data

structures that can grow very large are usually represented as collections of objects. Size

Oblivious Programming with InfiniMem simply requires programmers to identify potentially

large collections of objects using very simple abstractions provided by the library and

these collections are transparently made disk-resident and can be efficiently and concurrent

accessed. We now analyze these representative applications to tease out the requirements

for size oblivious programming that have influenced the architecture of InfiniMem.

Let us reconsider the pseudocode in Algorithm 3, mindful of the requirement of

efficient I/O. Lines 5–6 will execute for every key in the input; similarly, lines 9 and 14

indicate that lines 10–13 and line 15 will be executed for every node in the mesh. Similarly,

line 22 indicates that lines 23–26 will be performed on every vertex in the graph. It is

natural to read a contiguous block of data so that no additional I/O is required for lines

24–26 for the vertices and is an efficient disk I/O property. Moreover, this would be useful

for any application in general, by way of decreasing I/O requests and batching as much I/O

as possible. Therefore, we have our first requirement:

Support for efficient block-based IO.

Consider next, the example of the hash table where the input data is not sorted;

then, line 3 of Algorithm 3 motivates need for random access for indexing into the hash

table. As another example, observe that line 24 in Algorithm 3 fetches every neighbor of

the current vertex. When part of this graph is disk-resident, we need a way of efficiently

27

fetching the neighbors, much like random access in memory. This is important because any

vertex in a graph serves two roles: (1) vertex and (2) neighbor. For the role (1), if vertices

are contiguously stored on disk block-based I/O can be used. However, when the vertex is

accessed as a neighbor, the neighbor could be stored anywhere on disk, and thus requires an

imitation of random access on the disk. Hence our next requirement is:

Support for efficient, random access to data on disk.

To make the case for our final requirement, consider a typical definition of the

HashTable shown in Figure 3.1a. Each key can store multiple values to support chaining.

Clearly, each HashTableEntry is a variable sized entity, as it can hold multiple values by

chaining. As another example, consider the definition for a Vertex shown in Figure 3.1b: the

size of neighbors array can vary; and with the exception of the neighbors member, the

size of a Vertex can be viewed as a fixed-size object. When reading/writing data from/to

the disk, one can devise very fast block-based I/O for fixed-size data (Section 3.3). However,

reading variable-sized data requires remembering the size of the data and performing n reads

of appropriate sizes; this is particularly wasteful in terms of disk I/O bandwidth utilization.

For example, if the average number of neighbors is 10, every time a distance value is needed,

we will incur a 10x overhead in read but useless data. As a final example, Figure 3.1c is an

example of an arbitrary container that showcases the need for both fixed and variable sized

data. Hence we arrive at our final requirement from InfiniMem:

Support to speed up I/O for variable-sized data.

The goal of InfiniMem is to transparently support disk-resident versions of object

collections so that they can grow to large sizes without causing programs to crash. In-

28

template <typename K, typename V>

struct HashTableEntry {

K key;

V* values; /* for chaining */

};

(a) Hash Table

struct Vertex {

int distance;

int* weights; /*Edge weights*/

Vertex* neighbors; /*Array*/

};

(b) Graph Vertex

template<typename T>

struct Container{

T stackObjects[96]; /* Fixed */

T *heapObjects; /* Variable */

};

(c) Arbitrary container

Figure 3.1: Common data structure declarations to motivate the need for explicit support
for fixed and variable sized data, block based and random IO.

finiMem’s design allows size oblivious programming with little effort as the programmer

merely identifies the presence and processing of potentially large object collections via

InfiniMem’s simple programming interface. The details of how InfiniMem manages I/O

(i.e., uses block-based I/O, random access I/O, and I/O for fixed and variable sized data)

during processing of a disk-resident data structure are hidden from the programmer.

3.2 The InfiniMem Programming Interface

In order to work consistently with our object-based DSM, InfiniMem uses a similar

templatized interface as the DSM, with extensions to support efficient disk operations on

large irregular inputs.

InfiniMem is a C++ template library that allows programmers to identify size

oblivious versions of fixed- and variable-sized data collections and enables transparent,

efficient processing of these collections. We now describe InfiniMem’s simple application

programming interface (API) that powers size oblivious programming. InfiniMem provides a

29

high-level API with a default processing strategy that hides I/O details from the programmer;

however the programmer has the flexibility to use the low-level API to implement any

customized processing.

3.2.1 Identifying Large Collection of Objects

In InfiniMem, the programmer identifies object collections that potentially grow

large and need to be made disk-resident. In addition, the programmer classifies them as

fixed or variable sized. This is achieved by using the Box and Bag abstractions respectively.

template<typename T>

struct Container: public Box<T> {//Bag<T>

T data;

void update() { /* for each T */

...

}

void process();

};

typedef Container<int> intData;

typedef Container<MyObject> objData;

int main() {

Infinimem<intData> idata;

idata.read("/input/file");

idata.process();

Infinimem<objData> odata;

odata.read("/input/data/");

odata.process();

}

template<typename T>

T Box::fetch(ID);

template<typename T>

T* Box::fetchBatch(ID, count);

template<typename T>

void Box::store(ID, const T*);

template<typename T>

void Box::storeBatch(ID, count);

template<typename T>

T Bag::fetch(ID);

template<typename T>

T* Bag::fetchBatch(ID, count);

template<typename T>

void Bag::store(ID, const T*);

template<typename T>

void Bag::storeBatch(ID, count);

Figure 3.2: Programming with InfiniMem: the Box and Bag interfaces are used for fixed size
and variable sized objects; process drives the computation using the user-defined update()

methods and the low-level fetch() and store() API.

The Box abstraction can be used to hold fixed-size data, while the Bag holds

flexible-sized data. Figure 3.2 illustrates an example and lists the interface. The programmer

30

uses the Box or Bag interface by simply inheriting from the Box (or Bag) type and provides

an implementation for the update() method to process each object in the container. Here,

Container is the collection that can potentially grow large, as identified by the programmer.

InfiniMem’s process() function hides the details of I/O and fetches objects as needed by

the update() method, thereby providing a size oblivious programming experience.

3.2.2 Processing Data

The process() method is the execution engine: it implements the low-level details

of efficiently fetching objects from the disk, applies the user-defined update() method and

efficiently spills the updated objects to disk. Figure 3.3 details the default process(). By

default, the process()-ing engine fetches, processes and store-es data in batches of size

BATCH_SIZE such that the entire batch fits and can be processed in memory.

// SZ = SIZEOF_INPUT; BSZ = BATCH_SIZE;

Box<T>::process() { // or Bag<T>

for(i=0; i<SZ; i+=BSZ) {

// fetch a portion of Box<T> or Bag<T>

cache = fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)

cache[j].update();

}

}

Figure 3.3: InfiniMem’s generic batch process()-ing.

While InfiniMem provides the default implementation for process() shown in

Figure 3.3, this method can be overridden: programmers can use the accessors and mutators

exposed by InfiniMem (Figure 3.2) to write their own processing frameworks. Notice

that InfiniMem natively supports both sequential/block-based and random accessors and

31

mutators, satisfying each of the requirements formulated earlier. For block-based and random

access, InfiniMem provides the following intuitively named fetch and store APIs: fetch()

and fetchBatch(); and store() and storeBatch().

Illustration of InfiniMem for Graph Processing

We next demonstrate InfiniMem’s versatility and ease of use by programming

graph applications using three different graph representations. We start with the standard

declaration of a Vertex as seen in Figure 3.1b. An alternate definition of Vertex separates

the fixed sized data from variable sized edgelist for IO efficiency, and used in many vertex

centric frameworks [82, 75]. Finally, we program GraphChi’s [75] shards.

Figure 3.4a declares the Graph to be a Bag of vertices, using the declaration from

Figure 3.1b. With this declaration, the programmer has identified that the collection of

vertices is the potentially large collection that can benefit from size oblivious programming.

The preprocess() phase partitions the input graph into disjoint intervals of vertices to

allow for parallel processing. These examples uses a vertex-centric graph processing approach

where the update() method of Vertex defines the algorithm to process each vertex in the

graph. The process() method of Graph uses the accessors and mutators from Figure 3.2 to

provide a size oblivious programming experience to the programmer. Figure 3.4b declares a

Graph as the composition of a Box of Vertex and a Bag of EdgeLists, where EdgeList is an

implicitly defined list of neighbors. Finally, Figure 3.4c uses a similar graph declaration,

with the simple tweak of creating an array of N shard partitions; a shard imposes additional

constraints on the vertices that are in the shard: vertices are partitioned into intervals

such that all vertices with neighbors in a given vertex interval are all available in the same

32

void Vertex::update() {

foreach(neighbor n)

distance = f(n.distance);

}

template <typename V>

class Graph {

Bag<V> vertices;

public:

void process();

};

int main() {

Graph<Vertex> g;

g.read("/path/to/graph");

g.preprocess(); //Partition

g.process();

}

(a) Graph for Vertex in Figure 3.1b.

void Vertex::update() {

foreach(neighbor n)

distance = f(n.distance);

}

template <typnam V, typnam E>

class Graph {

Box<V> vertices;

Bag<E> edgeLists;

public:

void process();

};

int main() {

Graph<Vertex, EdgeList> g;

g.read("/path/to/graph");

g.preprocess(); //Partition

g.process();

}

(b) Decoupling Vertices from Edgelists.

void Vertex::update() {

foreach(neighbor n)

distance = f(n.distance);

}

template <typename V, typename E>

class Graph {

Box<V> vertexShard[N];

Bag<E> edgeShard[N];

public:

void processShard(int);

};

int main() {

Graph<Vertex, EdgeList> g;

g.read("/path/to/graph");

g.createShards(N); //Preprocess

for(int i=0; i<N; i++)

g.processShard(i);

}

(c) Using Shard representation of graphs.

Figure 3.4: Variations of graph programming, showcasing the ease and versatility of pro-
gramming with InfiniMem, using its high-level API.

shard [75], enabling fewer random accesses by having all vertices’ neighbors available before

processing each shard. Note that representing shards in InfiniMem is very simple.

33

// SZ = SIZEOF_INPUT;

// BSZ = BATCH_SIZE;

// vb = vertices;

Graph<V>::process() {

for(i=0; i<SZ; i+=BSZ) {

// fetch a batch

vb=fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)

vb[j].update();

storeBatch(vb, BSZ);

}

}

(a) process()-ing graph in Figure 3.1b.

// SZ = SIZEOF_INPUT;

// BSZ = BATCH_SIZE;

// v = vertices;

// e = edgeLists;

Graph<V, E>::process() {

for(i=0; i<SZ; i+=BSZ) {

// fetch a batch

vb=v.fetchBatch(ID(i), BSZ);

// fetch corr. edgelist

eb=e.fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)

vb[j].update(eb[j]);

storeBatch(vb, BSZ);

}

}

(b) process() for decoupled Vertex.

// NS = NUM_SHARDS;

// SS = SIZEOF_SHARD;

// vs = vertexShard;

Graph<V, E>::process() {

for(i=0; i<NS; i++) {

// fetch entire memory shard

mshrd = vs[i].fetchBatch(.., SS);

// fetch sliding shards

for(j=0; j<NS; j++)

sshrd += vs[j].fetchBatch(..,..);

sg = buildSubGraph(mshrd, sshrd);

foreach(v in sg)

v.update();

storeBatch(mshrd, SS);

}

}

(c) Custom process()-ing for shards.

Figure 3.5: Default and custom overrides for process() via low-level InfiniMem API.

Figure 3.5a illustrates the default process(): objects in the Box or Bag are read

in batches and processed one at a time. For graphs with vertices decoupled from edgelists,

34

vertices and edgelists are read in batches and processed one vertex at a time (Figure 3.5b);

batches are concurrently processed. Figure 3.5c illustrates custom shard processing: each

memory shard and corresponding sliding shards build the subgraph in memory; then each

vertex in the subgraph is processed [75].

3.3 InfiniMem ’s I/O Efficient Object Representation

We now discuss the I/O efficient representation provided by InfiniMem. Specifically,

we propose an Implicitly Indexed representation for fixed-sized data (Box); and an Explicitly

Indexed representation for variable-sized data (Bag).

��
�

������
�

������
�

�
�
�

0xFA

+

sizeof(object) * ID
n

��������	���
����
��

��������0xFA

���������	
�����

������
�

������
�

�
�
�

���������	
�����

���	��

�������

����
������

����

����
������

Box<T> Bag<S>

Figure 3.6: Indexed disk representation of fixed- and variable-sized objects.

As the number of objects grows beyond what can be accommodated in main

memory, the frequency of object I/O to/from disk storage will increase. This warrants

an organization of the disk storage that reduces I/O latency. To allow an object to be

35

addressed regardless of where it resides, it is assigned a unique numeric ID from a stream of

non-negative, monotonically increasing integers. Figure 3.6 shows the access mechanism for

objects using their IDs: fixed-sized data is stored at a location determined by its ID and its

fixed size: FILE_START + (sizeof(Object)*ID). For variable-sized data, we use a metafile

whose fixed-sized address entries store the offset of the variable-sized data into the datafile.

The Vertex declared in Figure 3.4a for example, would only use the explicitly indexed Bag

notation to store data, while the representations in Figure 3.4b and Figure 3.4c use both the

Box and Bag for the fixed size Vertex and the variable sized EdgeList respectively. Thus,

fixed-sized data can be fetched/stored in a single logical disk seek and variable-sized data in

two logical seeks. This ensures fetch and store times are nearly constant with InfiniMem and

independent of the number of objects in the file (like random memory access), and enabling:

– Efficient access for Fixed-Sized objects: Using the object ID to index into the datafile,

InfiniMem gives fast access to fixed-sized objects in 1 logical seek.

– Efficient access for Variable-Sized objects: The metafile enables fast, random-access

access to objects in the datafile, in at most 2 logical seeks.

– Random Access Disk I/O: The indexing mechanism provides an imitation of random

access to both fixed and variable sized objects on disk.

– Sequential/Batch Disk I/O: To read n consecutive objects, we seek to the start of the

first object. We then read sizeof(obj)*n bytes and up to the end of the last object in the

sequence for fixed- and variable-sized objects, respectively.

– Concurrent I/O: For parallel processing, different objects in the datafile must be concur-

rently and safely accessed. Given the large number of objects, individual locks for each object

36

would be impractical. Instead, InfiniMem provides locks for groups of objects: to decrease

lock conflicts, we group non-contiguous objects using modulo ID modulo a MAX_CONCURRENCY

parameter set at 25.

3.4 Evaluation

We now evaluate the programmability and performance of InfiniMem. This

evaluation is based upon three class of applications: probabilistic web analytics, graph/mesh

generation, and graph processing. We also study the scalability of size oblivious applications

written using InfiniMem with degree of parallelism and input sizes. We programmed size

oblivious versions of several applications using InfiniMem and are listed in Table 3.1. We

begin with data analytics benchmarks: frequency counting using arrays, membership query

using hash tables, and probabilistic membership query using Bloom filters. Then, in addition

to mesh generation, in this evaluation, we use a variety of graph processing algorithms from

diverse domains like graph mining, machine learning, etc. The Connected Components (CC)

algorithm finds nodes in a graph that are connected to each other by at least one path, with

applications in graph theory. Graph Coloring (GC) assigns a color to a vertex such that it

is distinct from those of all its neighboring vertices with applications in register allocation

etc. In a web graph, PageRank (PR) [95] iteratively ranks a page based on the ranks of

pages with inbound links to the page and is used to rank web search results. NumPaths

(NP) counts the number of paths between a source and other vertices. From a source node

in a graph, Single Source Shortest Path (SSSP) finds the shortest path to all other nodes in

the graph with applications in logistics and transportation.

37

3.4.1 Programmability

Application Additional LoC

Probabilistic Web Analytics

Frequency Counting 2 + 3 + 3 = 8
Membership Query 2 + 3 + 3 = 8
Bloom Filter 2 + 4 + 3 = 9

Graph/Mesh Generation

Mesh Generation 2 + 2 + 2 = 6

Graph Processing

Graph Coloring

1 + 3 + 2 = 6
PageRank
SSSP
Num Paths
Connected Components

Table 3.1: Between 6 and 9 additional lines of code are needed to make these applications
size oblivious. Graph processing uses decoupled version (Figure 3.4b).

Writing size oblivious programs with InfiniMem is simple. The programmer needs

to only: (a) initialize the InfiniMem library, (b) identify the large collections and Box or

Bag them as necessary, and (c) use the default process()-ing engine or provide a custom

engine. Table 3.1 quantifies the ease of programming with InfiniMem by listing the number

of additional lines of code for these tasks to make the program size oblivious using the

default processing engine. At most 9 lines of code are needed in this case and InfiniMem

does all the heavy lifting with about 700 lines for the I/O subsystem, and about 900 lines for

the runtime, all of which hides the complexity of making data structures disk-resident from

the user. Even programming the shard processing framework was relatively easy: about 100

lines for simplistic shard generation and another 200 lines for rest of the processing including

loading memory and corresponding sliding shards, building the subgraph in memory and

processing the subgraph; rest of the complexity of I/O etc., are handled by InfiniMem.

38

3.4.2 Performance

We now present the runtime performance of applications written using InfiniMem.

We evaluated InfiniMem on a Dell Inspiron machine with 8 cores and 8GB RAM with

a commodity 500GB, 7200RPM SATA 3.0 Hitachi HUA722050CLA330 hard drive. For

consistency, the disk cache is fully flushed before each run.

Size Oblivious Graph Processing

We begin with the evaluation of graph processing applications using input graph

datasets with varying number of vertices and edges, listed in Table 3.2. Orkut, Pokec, and

LiveJournal graphs are directed graphs representing friend relationships. Vertices in the

Amazon graph represent products, while edges represent purchases. The largest input in

this evaluation is rmat-805-134 at 14GB on disk, 805M edges and 134M vertices.

Input Graph |V | |E| Size

Pokec (PO) 1,632,804 61,245,128 497M
Live Journal (JL) 4,847,571 68,993,773 1.2G
Orkut-2007 (OR) 3,072,627 223,534,301 3.2G
Delicious-UI (DL) 33,778,221 151,772,443 4.2G
RMAT-536-67 (R5) 67,108,864 536,870,912 8.8G
RMAT-805-134 (R8) 134,217,728 805,306,368 14G

Table 3.2: Inputs used in this evaluation.

We first discuss the benefits of decoupling edges from vertices. When vertex data

and edgelists are in the same data structure, line 22 in Algorithm 3 requires fetching the

edgelists for the vertices even though they are not used in this phase of the computation.

Decoupling the edgelists from vertex data has the benefit of avoiding wasteful I/O: the

running times in seconds for these two configurations are shown in Table 3.3. The very large

39

decrease in running time is due to the extremely wasteful I/O that reads the variable sized

edgelists along with the vertex data even though only the vertex data is needed.

I/P
PageRank Conn Comp Numpaths Graph Coloring SSSP

Co DeCo Co DeCo Co DeCo Co DeCo Co DeCo

PO 2,228 172 352 60 37 8 277 28 48 7
LJ 8,975 409 1,316 122 106 14 602 58 133 70
OK 3,323 81 3,750 277 459 11 3,046 140 660 154
DL 32,743 1,484 15,404 904 1,112 67 9,524 365 1,453 65
R5 23,588 3,233 12,118 2,545 1,499 861 5,783 1,167 1,853 584
R8 25,698 3,391 >8h 3,380 3,069 1,482 11,332 2,071 >8h 2,882

Table 3.3: Decoupling vertex and edgelists improves performance by avoiding wasteful I/O
(time in seconds). ‘Co’ and ‘DeCo’ refer to coupled and decoupled respectively.

Figure 3.7 shows the I/O breakdowns for various benchmarks on the moderately

sized Delicious-UI input. While the programming effort with InfiniMem is already minimal,

switching between representations for the same program can be easier too: with as little as

a single change to data structure definition (figures 3.4a-3.4b), the programmer can evaluate

different representations.

 3%

 4%

 5%

 6%

 7%

PR CC NP GC SSSP

%
 o

f
D

e
c
o
u
p
le

d
 o

v
e
r

C
o
u
p
le

d IO Time
Total Time

 0%

 1%

 2%

Figure 3.7: Percentage(%) of IO and execution time for decoupled over coupled representa-
tions for various applications on the ‘Delicious-UI’ input.

40

Tables 3.4 and 3.5 show the frequencies and percentage of total execution time

spent in various I/O operations for processing the decoupled graph representation with

InfiniMem, as illustrated in Figure 3.4b. Observe that the number of batched vertex reads

and writes is the same in Table 3.4 since both vertices and edgelists are read together in

batches. There are no individual vertex writes since InfiniMem only writes vertices in

batches. Moreover, the number of batched vertex writes is less than the reads since we write

only updated vertices and as the algorithm converges, in some batches, there are no updates.

Observe in Table 3.5 that as described earlier and as expected, the maximum time is spent

in random vertex reads.

I/O Operation LJ OK DL R5 R8

Vertex Batched Reads 7,891 421 40,578 12,481 24,052
Edge Batched Reads 7,891 421 40,578 12,481 24,052
Vertex Individual Reads 865e+6 188e+6 2.8e+9 1.8e+9 2.5e+9
Vertex Batched Writes 7,883 413 40,570 12,473 24,044

Table 3.4: Frequencies of operations for various inputs for PageRank.

I/O Operation LJ OK DL R5 R8

Vertex Batched Reads 0.05% 0.02% 0.31% 0.12% 0.13%
Edge Batched Reads 8.48% 2.75% 11.25% 7.75% 9.72%
Vertex Individual Reads 54.80% 71.59% 76.96% 86.47% 81.73%
Vertex Batched Writes 0.12% 0.03% 0.37% 0.04% 0.10%

Total IO 63.45% 74.39% 88.89% 94.38% 91.68%

Table 3.5: Percentage of time for I/O operations for various inputs for PageRank.

Sharding with InfiniMem

In the rest of this discussion, we always use the decoupled versions of Vertex and

EdgeLists. We now compare various versions of graph processing using InfiniMem. Table 3.6

41

compares the performance of the two simple graph processing frameworks we built on top of

InfiniMem with that of GraphChi-provided implementations in their 8 thread configuration.

InfiniShard refers to the shard processing framework based on InfiniMem. In general, the

slowdown observed with InfiniMem is due to the large number of random reads generated,

which is O(|E|). For PageRank with Orkut, however, we see speedup for the following

reason: as the iterations progress, the set of changed vertices becomes considerably small:

∼50. So, the number of random reads generated also goes down considerably, speeding up

PageRank on the Orkut input. With Connected Components, our InfiniMem runs slower

primarily because the GraphChi converges in less than half as many iterations on most inputs.

Table 3.6 also presents the data for PageRank that processes shards with our InfiniMem

library as compared to the very fine-tuned GraphChi library. The speedup observed in

Table 3.6 from InfiniMem to InfiniShard is from eliminating random reads enabled by the

shard format. Notice that even with our quick, unoptimized ∼350 line implementation of

sharding, the average slowdown we see is only 18.7% for PageRank and 22.7% for Connected

Components compared to the highly tuned and hand-optimized GraphChi implementation.

Therefore, we have shown that InfiniMem can be used to easily and quickly provide a size

oblivious programming experience along with I/O efficiency for quickly evaluating various

representations of the same data.

Size-Oblivious Programming of Probabilistic Apps

Here, we present the throughput numbers for the probabilistic applications in

Table 3.7. We evaluated these applications by generating uniformly random numeric input.

Frequency counting is evaluated by counting frequencies of random inserts while membership

42

I/P
PageRank Time (sec) Conn. Comp. Time (sec)

InfiniMem InfiniShard
GraphChi

InfiniMem InfiniShard
GraphChi

(speedup) (speedup) (speedup) (speedup)

PO 172 (0.72) 121 (1.02) 124 60 (0.40) 26 (0.92) 24
LJ 409 (0.90) 488 (0.76) 371 122 (0.49) 80 (0.75) 60
OK 81 (1.91) 190 (0.82) 156 277 (0.44) 142 (0.87) 123
DL 1,484 (0.43) 730 (0.89) 652 904 (0.17) 191 (0.78) 149
R5 3,233 (0.36) 1,637 (0.70) 1,146 2,545 (0.21) 746 (0.71) 529
R8 3,391 (0.44) 2,162 (0.69) 1,492 3,380 (0.30) 1,662 (0.61) 1,016

Table 3.6: InfiniMem-Decoupled vs. InfiniMem-Sharding vs. GraphChi. The speedups
presented are over GraphChi.

query and Bloom filter are evaluated using uniformly generated random queries on the

previously generated uniformly random input. Jenkins hashes are used in Bloom filter.

Bloom filter achieves about half the throughput of Frequency Counting since Bloom filter

generates twice as many writes.

Application Throughput (queries/sec)

Frequency Counting 635,031
Membership Query 446,536
Bloom Filter 369,726

Table 3.7: Throughput for the probabilistic applications.

We also experimented with search/grep. We searched for entries using the Orkut

input file (3.2GB on disk) as an input file. Using a naive, sequential scan and search took

67 seconds. Using InfiniMem with 1 thread took 15 seconds, while using 4 threads took

5 seconds for the same naive search implementation. The highly optimized GNU Regular

Expressions utility took an average of 4.5 seconds for the same search. This shows that in

addition to ease of programming, InfiniMem delivers performance even with very simple

implementations.

43

3.4.3 Scalability

Next, we present data to show that InfiniMem scales with increasing parallelism.

Figure 3.8a shows the total running times for various applications on the 14GB rmat-805-134

input: for most applications InfiniMem scales well up to 8 threads.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

1 2 4 6 8 10

T
o
ta

l
T

im
e
 (

s
e
c
)

Number of Threads

PageRank
Numpaths

Graph Coloring
SSSP

Conn. Comp.

(a) Scalability with parallelism for RMAT-805-
134 (14GB)

 0

 500

 1000

 1500

 2000

 2500

1 2 4 6 8

T
o
ta

l
T

im
e
 (

s
e
c
)

Number of Threads

Frequency
Bloom filter

Membership

(b) Scalability with parallelism for Probabilistic
Applications

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 40 60 80 100 120 140 160 180 200

T
o
ta

l
T

im
e
 (

s
e
c
)

Number of Edges

SSSP
Conn. Comp.

Numpaths
PageRank

Graph Color

(c) Scalability with |E|, 8 threads for various
applications.

 0

 500

 1000

 1500

 2000

 2500

0 1e+08 2e+08 3e+08

T
im

e
 (

s
e
c
)

Number of edges

5M vertices

7.5M vertices

(d) Generation of a Mesh with 7.5M vertices
and 300M edges.

Figure 3.8: Scalability of InfiniMem with parallelism and input size.

However, given that the performance of applications is determined by the data

representation and the number of random accesses that result in disk I/O, we want to study

how well InfiniMem scales with increasing input size. To objectively study the scalability with

increasing number of edges with fixed vertices and controlling for variations in distribution

of vertex degrees and other input graph characteristics, we perform a controlled experiment

44

where we resort to synthetic inputs with 4M vertices and 40M, 80M, 120M, 160M and

200M edges. Figure 3.8c shows the time for each of the for these inputs. We see that with

increasing parallelism, InfiniMem scales well for increasing number of edges in the graph.

This shows that InfiniMem effectively manages the limited memory resource by orchestrating

seamless offloading to disk as required by the application. The performance on real-world

graphs is determined by specific characteristics of the graph like distribution of degrees of

the vertices etc. But for a graph of a specified size, Figure 3.8c can be viewed as a practical

upper bound.

Figure 3.8b illustrates the scalability achievable with programming with InfiniMem

with parallelism for the Frequency counting, Exact membership query and Probabilistic

membership query using Bloom filters. Notice that these applications scale well with

increasing number of threads as well as increasing input sizes. The execution time for Bloom

filter is significantly larger since Bloom filter generates more random writes, depending on

the number of hash functions utilized by the filter; here, two independent hashes are used.

Figure 3.8d illustrates that very large graph generation is feasible with InfiniMem

by showing the generation of a Mesh with 7.5M vertices and 300M edges which takes about

40 minutes (2400 seconds). We observe that up to 5M vertices and 200M edges, the time

for generation increases nearly linearly with the number of edges generated after which

the generation begins to slow down. This slowdown is not due to the inherent complexity

of generating larger graphs: the number of type of disk operations needed to add edges

is independent of the size of the graph – edge addition entails adding the vertex as the

neighbor’s neighbor and accessing the desired data in InfiniMem requires a maximum of 2

45

logical seeks. Instead, the slowdown is because modifications of variable sized data structures

in InfiniMem are appended to the datafile on disk, which grows very large over time and

the disk caching mechanisms begin to get less effective. Compare this with the fact that

GTGraph crashed immediately for a graph with just 1M vertices and 400M edges.

3.5 Summary

This chapter presented the InfiniMem system for enabling size oblivious program-

ming. The techniques developed in this chapter are incorporated in the versatile general

purpose InfiniMem library. In addition to various general purpose programs, we also built

two more very domain specific graph processing frameworks on top of InfiniMem including

processing GraphChi-style shards. InfiniMem performance scales well with parallelism,

increasing input size highlighting the necessity of concurrent I/O design in a parallel set up.

Our experiments show that InfiniMem can successfully generate a graph with 7.5M vertices

and 300M edges (4.5 GB on disk) in 40 minutes and compute PageRank on an RMAT graph

with 134M vertices and 805M edges (14GB on disk) on an 8-core machine in ∼54 minutes.

46

Chapter 4

ABC2: Adaptively Balancing

Computation and Communication

in DSM Clusters

Big-data applications have become increasingly important in many application

domains. The large inputs offer data level parallelism at a scale that makes it attractive

to run such applications on distributed shared memory (DSM) based modern clusters

composed of multicore machines. Clusters offer an attractive computing platform for

achieving scalable performance on data and compute intensive applications. To simplify the

task of programming clusters, distributed shared memory (DSM) has been widely used. The

memory resources available across the machines in a cluster are harnessed as one and made

available to the application in form of shared-memory. The large amount of application

data stored in DSM is actually scattered across the machines and must be transferred

47

across them as needed by the computation. A variety of DSMs have been built in the

past [8, 58, 112]. These DSMs were developed before the advent of multicore machines.

To deliver high performance, latency hiding mechanisms were deployed to mitigate the

impact of communication delays associated with transferring data across machines: for

example, creating multiple application threads was the common approach. The primary

limitation of this approach is that computation and communication are still coupled: the

communication is still in the critical path of computation. Moreover, with the advent of

multi-cores, a much larger number of application threads becomes feasible – but that also

increases communication which can quickly become the bottleneck on DSMs.

Our analysis of several applications that require software speculation for correct

parallel execution shows that the balance between computation and communication differs

between applications. Decoupling communication and computation will allow for dynami-

cally balancing computation and communication – this will automatically achieve optimal

performance even in the face of changes to the DSM/cluster HW/SW configuration. In

this work, we study this balance in the context of DSM for applications that benefit from

speculative parallelism [40, 94, 106].

In this chapter, we study this balance in the context of DSMs and exploit the

multiple cores present in modern multicore machines by creating three kinds of threads

which allows us to dynamically balance computation and communication: compute threads

to exploit data level parallelism in the computation; fetch threads that replicate data into

object-stores before it is accessed by compute threads; and update threads that make results

computed by compute threads visible to all compute threads by writing them to DSM. We

48

observe that the best configuration for above mechanisms varies across different inputs in

addition to the variation across different applications. To this end, we design ABC2: a

runtime algorithm that automatically configures the DSM using simple runtime information

such as: observed object prefetch and update queue lengths. This runtime algorithm achieves

speedups close to that of the best hand-optimized configurations.

4.1 The Need for Distributed Software Speculation

Speculative parallelism is a software technique that parallelizes algorithms by

creating parallel threads to perform computations that may exhibit non-deterministic

sharing of data [40, 94, 106]. Irregular applications, such as vertex centric graph processing

algorithms, contain significant levels of data parallelism as the same operation needs to

be performed repeatedly over the large number of vertices in the graph. On a distributed

system, the vertices and their processing can be distributed across the machines to exploit

data parallelism. While use of DSM makes the task of programming easy and the distributed

caching protocol reduces long latency fetch operations, the irregular nature of parallelism

makes it necessary to employ speculation. Infrequently arising data dependences requires

processing of interdependent vertices to be serialized. While these dependences are infrequent,

they are dependent upon the input data set, and hence are revealed at runtime. Speculation

involves processing vertices in parallel assuming that there are no dependences between

them, runtime detection of misspeculation when the dependences arise, and then recovering

from them. As long as misspeculation rate is low, the benefits of speculation far outweigh

the cost of recovering from misspeculation.

49

Techniques for exploiting data-parallelism have been extensively researched, but

parallelizing irregular applications is still work in progress [103, 70]. Irregular applications or

applications with irregular parallelism are typically those that process structures like graphs

and cannot be statically analyzed for parallelism the way regular data-parallel applications

can [70]. The parallelism present in these applications is actually input dependent, which

can vary from one run to the next. For example, a road network is a sparse graph while a

social network is often a power law graph. Parallelizing applications that handle diverse

types of inputs requires dynamic techniques like speculation.

Software speculation [105, 104] is a runtime approach to loop parallelization which

speculates that there are no cross iteration data dependencies and treats the loop as if it were

a doall loop. Once the computation is complete, a misspeculation detection phase checks if

any data dependency violations have actually occurred. If not, the computation can commit

the computed value; in case of a violation, the result of the computation is discarded and

the computation restarted. Speculation is accomplished by privatization of data [105]: a

copy of the data is saved in a compute-private buffer to isolate the computation from other

concurrently executing computations. The modified data in the thread-private buffer is then

speculatively committed back to memory. This approach has also been applied recently in

SpiceC [40] for shared as well as distributed memory software speculation [30].

As an example consider the pseudocode for graph coloring listed in Algorithm 4.1.

To parallelize the loop on Line 2 requires speculation since the list of vertex’s neighbors can

only be known at runtime. Speculation involves treating this for loop as a doall loop and

executing it in parallel. When the vertices being processed in parallel are not neighbors, no

50

misspeculation is encountered. However, if neighbors are processed in parallel, they may

be assigned the same color leading to misspeculation. A commit phase that updates the

colors of vertices detects this misspeculation and initiates recovery. The recovery requires

repeating the coloring process for a vertex. If misspeculation occurs infrequently, speculative

parallelization results in speedups.

Algorithm 4: Vertex-centric sequential graph coloring.

1 Graph g;

2 for int i=0; i<g.size(); i++ do
3 Vertex v = g[i];
4 v.color = 0;
5 for int j=0; j<v.numNeighbors(); j++ do
6 if v.nbr[j].color == v.color then
7 v.color++;

As shown in Figure 4.1, the node Ni being colored by thread Ti is the neighbor

of the node Nj which is concurrently being colored by thread Tj . Therefore, the coloring

information of node Ni with thread Tj and node Nj with thread Ti may indicate that the

two nodes are not colored. This can lead to incorrect coloring assignment, i.e. the two nodes

may be assigned the same color.

�� ��

�� ��

Figure 4.1: Dependencies between neighboring nodes requires speculation in order to correctly
parallelize graph coloring.

51

On the face of it, it appears that an algorithm such as graph coloring cannot be

parallelized. However, this is where speculation comes in. With speculation, there are

two distinct phases: (1) computation and (2) commit. To begin, each computation thread

speculates that the data it reads will stay current during the computation and proceeds

with the computation and stores the results privately. Once the computation is complete,

the thread attempts to commit the results in order to make these results visible to other

computation threads. As part of the commit phase, a mis-speculation check is performed to

assert that the data read by the thread is, in fact, still current. The result of a speculative

computation is committed only if the mis-speculation check succeeds. On failure, the result

of the computation is discarded and the computation is scheduled to be re-executed.

Therefore, in the presence of potential sharing between concurrently executing

threads, the key idea behind speculation is to speculate that such sharing does not occur and

proceed with the computation. Once the results of the computation are ready to be written

to memory, a mis-speculation check is performed to assert the absence of such sharing.

This can be achieved by resorting to versioning of data, for example. Thus, speculative

parallelism only commits those results that are computed from most current values. With

speculative parallelism, data commit failures can arise from violating write-read or read-write

or write-write dependencies that manifest at runtime. In this work, we use the SpiceC [40]

speculative execution model.

Software speculation has been been successfully applied to parallelize irregular

applications for distributed shared memory systems [105, 40]. However, distributed software

speculation has not been fully researched. In this work we study the interaction between

52

caching and speculation. In the presence of a cache, every read from the local cache in the

DSM can cause a misspeculation because, due to network latency, even though a cached

object may have been updated on the remote machine, the invalidate may not have been

received at the local cache before the object is speculatively read. Therefore, in a DSM with

caching, larger caches can lead to more misspeculations.

For speculation to be effective, the sharing of nodes between concurrently executing

threads should be small. If such sharing is high, the potential benefits from speculation

will be offset by repeated re-computations caused by commit failures that result from failed

mis-speculation checks. Examples of applications that have low sharing and can benefit from

speculative execution include: Graph Coloring (GC), Single Source Shortest Path (SSSP),

KMeans (KM) and Maximal Independent Set (MIS).

4.2 Communication Bottleneck on Multicore Machines

While clusters have an inherently scalable architecture, shared memory systems are

easier to program than clusters since there is only one memory and address space to manage.

To make programming of clusters easy, the Distributed Shared Memory (DSM) paradigm has

been widely used. With DSMs, the programmer uses the familiar shared memory paradigm,

while the underlying DSM runtime transparently translates and handles remote load/store

requests and via caching it minimizes the need for long latency fetch operations. DSM

systems like the object based Orca [8] and linear-memory based Shasta [112] leverage caching

and prefetching, via automated and programmable prefetch-hints, to tolerate communication

latencies.

53

Since each machine in a modern cluster supports multiple cores, simultaneous

requests for communication originating from multiple computation threads can rapidly

cause the communication to become a performance bottleneck – if programs designed for

prior DSMs and developed for a cluster of uniprocessor machines are naively executed on

modern multicore machines by simply running more threads on each machine, the network

becomes the bottleneck. For example, on a cluster of six 8-core machines, we observed that

a 5x increase in the number of threads generating communication requests resulted in a

7x increase in fetch time from the DSM. In this work we exploit multicore machines to

tolerate communication latency by introducing dedicated communication threads and move

the communication latency off the critical path.

Applications generate high-priority fetch requests when the node to be processed is

needed – these must be serviced immediately and the requesting thread blocks until this

request completes. Once a node has been fetched, additional requests are issued to prefetch

the neighbors. Finally, once the speculative computation is completed, an update request is

issued to commit the updated private copy of the data. The update thread performs the

mis-speculation check and performs the commit asynchronously and off the critical path of

the speculative computation.

Computation being performed generates two types of network requests: fetch and

update. In addition, to tolerate fetch latency, prefetch requests may also be issued. Fetch

requests are of the highest priority since a computation must stall on a fetch. On the other

hand, prefetch requests can be given a lower priority because they are issued to reduce

latency of future fetch requests and update requests can be given lower priority because there

54

may or may not be other computations waiting on the updates. Therefore, depending upon

the spare network capacity, prefetch requests and update requests should be accommodated

at a rate that does not overwhelm the network. Moreover, depending upon the needs of

the application, a balance between handling of prefetch and update requests should be

maintained. In this work, for each machine, the number of outstanding prefetch requests

and outstanding update requests is controlled to: limit the amount of network capacity they

use; and to maintain a balance between the two types of requests. We develop a system

to achieve this goal that, for a given number of compute threads, dynamically varies the

number of prefetch threads and update threads to meet the needs of the application.

As an example, our experiments show that merely increasing the number of compute

threads can actually hurt the performance of distributed Graph Coloring – on a cluster of 6

machines, the speedup with 4 computation threads and 4 prefetch threads was 2.4x that

of the speedup with 8 computation threads and 4 prefetch threads. We further observed

that blindly increasing either prefetch or update threads in DSM based programs also can

hurt performance. An optimal configuration that uses just 4 compute threads per machine

and dynamically varies the number of update threads was faster than the case of 4 compute

threads with 4 prefetchers by a factor of 1.2x. To summarize, this data illustrates that fewer

computation threads when balanced with communication gives better speedup compared

to more computation threads. Clearly, this data is an indicator for the need to carefully

balance computation and communication in DSM based applications.

55

4.3 Dynamically Adaptive Communication

This latency tolerance mechanism hides communication latency by creating com-

munication threads that run concurrently with computation on the multicore machine. Two

types of communication threads are used: prefetch threads and update threads. Prefetch

threads fetch objects from the DSM into the prefetch buffer before they are accessed by

the threads on a machine so that computation threads can avoid potential long access

latency. Update threads are responsible for writing modified objects to the DSM so that

computation threads can proceed with execution without waiting for object updates in DSM

to complete. Given a fixed number of computation threads, the number of communication

threads required will depend upon the rate at which the computation threads initiate fetch

and update operations from and to the DSM. Therefore we must decide:

• Degree of prefetching - determined by the number of prefetch threads that are created

to run concurrently with the given number of computation threads; and

• Aggressiveness of updates - determined by the number of update threads that are

created to run concurrently with computation threads.

An appropriate balance between computation and communication threads must be dynami-

cally maintained at runtime to optimize performance.

4.3.1 Motivating Study

In this section, we present results of a study that motivates the conjecture that

different applications require different balance between communication and computation.

Table 5.1 lists the applications considered in this work and their characteristics. For this

56

study, we consider applications with speculative parallelism [40, 94, 106]. We briefly describe

these classes of applications in subsection Section 4.3.2. Observe that that applications with

low sharing benefit from speculation. This is because when sharing between nodes is low,

the runtime dependencies are fewere and therefore the benefits from speculation are higher

than its overheads.

Application Speculative Low

Parallelism Sharing

Graph Coloring (GC)
√ √

KMeans (KM)
√ √

Single Src Shortest Path (SSSP)
√ √

Maximal Independent Set (MIS)
√ √

Table 4.1: A Suite of Modern Irregular Applications

 10

 12

 14

 16

 18

 20

 22

 24

 26

G
C

K
M

S
S

S
P

M
IS

S
p
e

e
d

u
p

 o
v
e
r

s
e
ri
a
l

Figure 4.2: Speedups of the parallel versions of the benchmarks over their serial versions.

We first present the raw speedups of the parallel versions (without using our

techniques) over the serial versions. The experiments were conducted on an object-based

DSM we built system [63], which uses the SpiceC’s copy-in copy-out model [40] for speculative

57

execution. Figure 4.2 shows that before using our techniques, the speculative benchmarks

achieve 30x speedup on average. Our goal is to further improve the speedups of these parallel

benchmarks.

In the rest of this study, the speedups we present are over the baseline parallel

version that does not use separate prefetching or update threads. This allows us to objectively

study the speedups that can be attributed exclusively to the mechanisms considered in this

study.

In the remainder of this section we study the benefits of our techniques on specula-

tive parallelism observed in applications listed in Table 5.1 and evaluate the benefits from

balancing communication and computation. As mentioned above, the baseline used is the

parallel version without our techniques. This allows us to evaluate the specific benefit from

using dedicated prefetch and update threads and dynamically adapting these resources.

4.3.2 Adapting Communication for Distributed Speculative Parallelism

We now present a study of the speculative benchmarks listed in Figure 5.1. Figure

4.3 show the speedups Graph Coloring (GC), Single Source Shortest Path (SSSP), KMeans

(KM), and Maximal Independent Set (MIS) with varying number of commit and prefetch

threads on the lower axes. The baseline for the speedups is the configuration with zero

prefetch and zero update threads. We now present the observations for communication.

Communication Strategy

Asynchronously prefetching the data needed for computation in the near future can

definitely help speedup the computations: this is seen in the speedups plotted in Figures 4.3a,

58

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20

 0.5

 1

 1.5

 2

 2.5

Speedup over
parallel
baseline

Commit
Threads

Prefetch
Threads

Speedup over
parallel
baseline

(a) GC: Speedup

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20

 0.5

 1

 1.5

 2

 2.5

 3

Speedup over
parallel
baseline

Commit
Threads

Prefetch
Threads

Speedup over
parallel
baseline

(b) SSSP: Speedup

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20

 1.5

 2

Speedup over
parallel
baseline

Commit
Threads

Prefetch
Threads

Speedup over
parallel
baseline

(c) KM: Speedup

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20

 0.5

 1

 1.5

 2

 2.5

Speedup over
parallel
baseline

Commit
Threads

Prefetch
Threads

Speedup over
parallel
baseline

(d) MIS: Speedup

Figure 4.3: Figures 4.3a, 4.3b, 4.3c and 4.3d show the speedups for GC, SSSP, KM and MIS
respectively. Prefetch threads make remote objects locally available, hence avoiding remote
accesses and reducing the average fetch time. Each benchmark was executed on a cluster of
6 machines, running 4 computation threads.

59

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1K aborts

Commit Threads

Prefetch

Threads

1K aborts

(a) GC: Aborts

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20

 10

 20

 30

 40

 50

 60

 70

 80

 90

1K aborts

Commit Threads

Prefetch

Threads

1K aborts

(b) SSSP: Aborts

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20

 30

 40

 50

 60

1K aborts

Commit Threads

Prefetch

Threads

1K aborts

(c) KM: Aborts

 0 10 20 30 40 50 60 70 0

 5

 10

 15

 20
 10

 20

 30

1K aborts

Commit Threads

Prefetch

Threads

1K aborts

(d) MIS: Aborts

Figure 4.4: Figures 4.4a, 4.4b, 4.4c and 4.4d show the number of 1K aborts due to misspecu-
lation for GC, SSSP, KM and MIS respectively. Lesser number of commit threads delay the
availability of newly computed object values resulting in higher aborts of computations on
stale data values.

60

4.3b, 4.3c and 4.3d. This is especially true when there are a proportionately large number

of neighbors to process for each node. In addition, speculation will benefit from aggressive

updates back to the DSM: this is apparent from the increasing speedup with an increasing

number of commit threads in Figure 4.3. Delaying commits increases the mis-speculation

rate as the computation threads continue to compute results based on potentially stale

values. This can be observed in Figure 4.4 – the aborts are higher for fewer commit threads

and rapidly decrease with increasing commit threads. Further, notice that in most cases

when there are fewer commit threads, aggressive prefetching can result in a 10x increase in

aborts. This is because prefetching aggressively brings in stale values since the newer values

are still in the update queue. As a result, all computations that speculated on prefetched

stale values will eventually abort, thereby resulting in an overall slow down of the program

execution. Therefore, it is imperative that depending on the speed of computation, the

number of update threads – both prefetch and commit – should be dynamically balanced as

needed to speedup commits.

Notice that neither the number of prefetch threads nor the number of commit threads

can be statically determined in advance: the number of most effective prefetch threads depends

on the number of compute threads, the speed of the computation, dynamic network latencies

etc. All these point to the need for dynamically adapting these types of requests.

In the next section, we present an adaptive computational model that directly

follows from the above observations. We propose, present and evaluate various parameters

that can be monitored at runtime. Finally, we evaluate our proposed dynamic model and

show that it achieves speedups close to that of the best hand-optimized parallel versions.

61

4.4 ABC2: An Adaptive Runtime Framework

The results of the study of applications in the previous section are summarized

in Table 4.2. As we can see, not all applications benefit from prefetching but for those

that do, the appropriate number of prefetch threads can vary. Finally, although update

threads help tolerate latency in all applications, the appropriate number of update threads

varies across applications. Therefore we conclude that to benefit from the latency tolerance

mechanisms we support, it is best to develop a runtime model that supports all of the

proposed mechanisms and, with the help of runtime monitoring, it adapts their use to meet

the needs of the application.

Strategy Speculative Parallelism

Number of Prefetch Threads Varying

Number of Update Threads Varying

Table 4.2: Summary of communication strategies.

In this section we develop an adaptive framework that performs well for all different

types of parallel applications considered without any a priori knowledge of their type or

behavior. We identify parameters that are monitored at runtime to guide and control the

degree of prefetching and aggressiveness of updates. In the remainder of this section we

present the system architecture and design, discuss the parameters monitored at runtime,

and finally present ABC2 which is the runtime decision making algorithm.

4.4.1 System Design

In this section we present the system design and describe the roles and responsibil-

ities of its various components.

62

DSM. We built and used an object-based DSM [63] as the underlying DSM in this study.

Speculation. As described in Section 4.3.2, we have implemented the copy-in, copy-out

speculative model from SpiceC [40] into the object-based DSM. The separate compute

and commit phases of this model are in tune with our need to separate computation and

communication.

Thread Pool. To eliminate the penalty of creating and terminating new threads at runtime,

we employ a thread pool model. A large number of threads of each required type are created

during the runtime initialization. Unused threads are put to sleep and woken up as needed

rather than resorting to polling for work. This prevents idle threads from using CPU

resources.

Prefetching. Prefetching is implemented to take advantage of the graph structures being

used by the applications. The computation threads enque the objects IDs of the objects that

need to be prefetched into the prefetch queue. The prefetch threads first deque the object

IDs from the prefetch queue, then fetch the object asynchronously and place the object into

a prefetch buffer. When per-machine replication is used, the per-machine replica store can

be used as the prefetch buffer. When no replication is used, a separate prefetch buffer needs

to be used.

Updates. Update threads first dequeue the thread-private memory object from the commit

queue and asynchronously commit the data back to the DSM. With speculation, the update

thread must atomically perform the mis-speculation check (discussed in Section 4.3.2) that

involves detecting write-read, read-write, and write-write dependencies for all the data in

the thread-private memory object and then perform the write back to the DSM. Therefore,

63

when speculation is used, the update threads work in a commit mode. Note that since the

mis-speculation check and update into the DSM need to be performed atomically, batch

updates into the DSM can be performed efficiently.

Computation. Computations are performed by compute threads. When speculation is

used, the compute threads implement the copy-in, copy-out model to allow concurrent

compute threads to execute in isolation. Under this model, the compute threads copy all the

data used by the computation into a thread-local private memory. Once the computation is

complete, the entire private memory (which also contains the results of the computation)

are pushed into a commit queue, to be handled asynchronously by the update threads.

Similar mechanism is also used for applications with asynchronous parallelism. Figure 4.5

summarizes the overview of the prototype. The core components of the framework are:

1. Object based DSM;

2. Speculation via SpiceC’s copy-in, copy-out model;

3. Separate computation and commit phases; and

4. Prefetch, Compute, and Update thread pools.

The numbering in Figure 4.5 indicates the flow of execution. The compute thread

first populates the prefetch queue with the IDs of objects to be prefetched and returns

to its computation task. The prefetch threads asynchronously fetch the necessary data

from the DSM into the prefetch-buffer. When the compute thread needs a data item, it

first looks up the prefetch buffer and brings it into the per-machine replication stores as

appropriate; the compute thread then continues with its task. Once completed, the compute

64

thread pushes the results of the computation into the update queue and starts working on

the next computation. The update threads dequeue the data from the update queue and

commit or discard the results of the computation depending on the success or failure of the

mis-speculation check.

����������	
����	
������

�����
��������
��������

��������	
�������
�������

����

�������

�����

�����������

��	�����������

�������

�����

��

�
�

�

�

�

!��"����

����	� #������

����	

$�	��

����	�

�
�����

�
��
	

���

�

��
�
��
��
���

�
�
��

Figure 4.5: The ABC2 system design showing the DSM, Prefetch, Compute & Update
threads.

Adapt Prefetching:

// At the start of the prefetch task:

0. if(prefetch_q.length > PQ_Threshold):

1. wakeup_more_prefetchers()

2. else:

3. sleep_extra_prefetchers()

Adapt Updates:

// At the start of update task:

0. if(update_q.length > UQ_Threshold):

1. wakeup_more_udapters()

2. else:

3. sleep_extra_updaters()

Figure 4.6: The ABC2 Algorithm.

65

4.4.2 The ABC2 Algorithm

For each of the decisions the runtime needs to make, we consider the various

parameters that we evaluated in Section 4.3.1. To vary the number of prefetch threads, we

propose to monitor the length of the prefetch queue, which contains the IDs of objects that

need to be prefetched. Finally, to vary the number of update threads, we monitor the length

of update queue, which contains the results of computations to be written back to the DSM.

The adaptive ABC2 algorithm monitors the various parameters listed above to

adapt the computation model and communication resources. There are two independent

parts to the algorithm, both of which are initiated simultaneously at start of the application.

The two independent parts adaptively control the prefetch threads, and update threads.

The listing in Figure 4.6 presents the adaptive algorithm. To adapt prefetching and updates,

more threads are used depending upon the current queue sizes. In these experiments, the

maximum number of prefetch threads was experimentally bounded at 25 and the number of

update threads was bounded at 64.

Each of the parameters like prefetch and update queue lengths are monitored as

needed in Figure 4.6. We now briefly discuss the benefits and generality of monitoring these

parameters.

1. Prefetch-queue length: To turn on or turn off prefetching on demand, we simply

leverage the presence of the prefetch queue. We will always have at least one prefetcher

active. If this prefetcher observes many pending data objects to be prefetched, by

querying the prefetch queue length, it will wake up more prefetchers. If prefetchers

find no work to do, they simply go to sleep until woken up again.

66

2. Update-queue length: Update threads are dynamically adjusted in a manner similar to

that used for prefetch threads, with the exception that the update threads monitor

the length of the update queue.

4.4.3 Evaluation of ABC2

We now evaluate the ABC2 framework on a cluster of 6 8-core Dell T410 machines

each with 8 GB memory, running Ubuntu 10.04, Kernel v2.6.32-21. Our goal is to compare

the speedups achieved by the adaptive framework with those of the fastest configurations

from the study in Section 4.3.2. The speculative benchmarks are run with 4 compute threads,

while adaptively varying prefetch and update threads. In this evaluation, we consider the

following different configurations:

• Basic, which is the basic configuration without prefetch or update threads: without

ABC2, prefetching and updates are handled by the computation thread itself.

• Optimal, which is the fastest configuration from the motivation in Section 4.3.2.

• Average, where the maximum number of prefetch and update threads is set to the

respective average numbers as measured in the ABC2 version.

We show that for each benchmark, our adaptive framework (a) automatically

selects the optimal fastest configuration seen in the study above; and (b) achieves speedups

comparable to the fastest configuration.

67

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

G
C

K
M

S
S

S
P

M
IS

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
b

a
s
e

lin
e

Basic Optimal ABC
2

(a) Speedups without and with ABC2.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

G
C

K
M

S
S

S
P

M
IS

S
p

e
e

d
u

p
 o

v
e

r
p

a
ra

lle
l
b

a
s
e

lin
e

Average Optimal ABC
2

(b) Performance evaluation of ABC2.

Speedup over serial baseline

We first show that parallel benchmarks running on 6 machines with tt ABC2

achieve significant speedups over the Basic version without ABC2. The speedups in this

experiment are baselined to the serial versions of their benchmarks. Both the serial and

parallel versions fetch data from the DSM and update data back into the DSM. In the serial

versions of the benchmarks, the network communication is handled by the computation

thread itself. Figure 4.7a compares the speedups of the Basic, Optimal and ABC2. First,

we see that without ABC2, the Basic versions of speculative benchmarks, on an average,

achieve speedups of 18x. Next, we see that the best achievable speedups with prefetch and

update threads from the study in Section 4.3.1 is significantly higher: an average of 40x

for the speculative benchmarks. On an average, this is an improvement over the Basic

version by 22x for speculative benchmarks. This clearly shows that ABC2 algorithm is

beneficial for performance. This apparently very large increase is because these benchmarks

are mostly network-bound due to the DSM communication. Therefore, providing dedicated

resources for network IO in the form of prefetch and update threads hides the network

68

communication latency while simultaneously allowing the computations to make progress

with overall speedup.

Speedup over parallel baseline

We now evaluate the speedup benefits of ABC2 for the parallel versions of the

benchmarks. The baseline in this experiment is the parallel benchmark running on 6

machines without dedicated prefetching or update threads; the fetches and updates are

handled by the computation thread itself. This baseline allows us to evaluate the specific

benefit of the ABC2 algorithm dynamically adapting the prefetch and update threads for

parallel programs. Therefore, the speedups presented here are over and above the speedups

achieved by the parallel program without adaptive communication. Figure 4.7b compares

the speedups of the Optimal configuration from Section 4.3.1 with the speedups achieved

by the ABC2 algorithm. We see that the ABC2 algorithm achieves speedups between 1-6%

of that achieved in the study.

 0

 5

 10

 15

 20

 25

 30

G
C

K
M

S
S

S
P

M
IS

A
c
ti
v
e

 p
re

fe
tc

h
 t

h
re

a
d

s Average Maximum

(a) Concurrently active prefetch threads.

 0

 10

 20

 30

 40

 50

G
C

K
M

S
S

S
P

M
IS

A
c
ti
v
e

 u
p

d
a

te
 t

h
re

a
d

s Average Maximum

(b) Concurrently active update threads.

69

Adaptive Prefetching and Updates

Finally, we evaluate the specific improvements accrued by ABC2 adaptively varying

prefetch and update threads. Comparing the speedups achieved using the average numbers

for prefetch and update threads obtained from Figures 4.8a and 4.8b with the speedups

obtained by the ABC2, we see that ABC2 always gives better speedups close to the optimal

in the study. This indicates that a higher maximum number for prefetch and update threads

employed by ABC2 is important and useful in achieving better speedups.

Figures 4.8a and 4.8b show the average and maximum number of concurrently

active prefetch and update threads as measured by the ABC2 algorithm. We see that the

ABC2 algorithm uses, on an average, 5 prefetch threads. On an average, all the asynchronous

benchmarks use just 2 update threads while the speculative benchmarks use 16 update

threads, except for KM, which uses only 2 update threads. The update phase of asynchronous

benchmarks is significantly shorter compared to the speculative benchmarks: for GC, SSSP

and MIS, since a node’s value is calculated based on its neighbors, the mis-speculation check

involves the node and all its neighbors. Therefore, speculative updates are network-bound

and time consuming, but not CPU-bound. Hence, with fewer update threads, more commit

requests can get queued to the update queue. But as can be seen from the Adapt Updates

section in Figure 4.6, when the update queue length is greater than a threshold, the ABC2

algorithm wakes up more update threads. This does not happen often with asynchronous

benchmarks since there is no mis-speculation check in their updates. With KM, the mis-

speculation check only involves the single cluster data; there is no notion of neighbors in

this case. Therefore, the mis-speculation check is fast and hence fewer number of update

70

threads are sufficient to keep the update queue length below the set threshold. Also, the

maximum numbers show that occasionally the ABC2 algorithm uses a maximum of 25

prefetch threads and 49 update threads. The vertical bars show the standard deviation

around the average number of prefetch and update threads. The average, standard deviation

and the maximum are indicative of the dynamically varying number of prefetch and update

threads in the ABC2 algorithm. The standard errors for the average number of prefetch

and update threads are 0.0036 and 0.0054, indicating a very high confidence in the average

numbers shown.

4.5 Summary

In this paper, we motivate the need to delicately balance computation and commu-

nication for applications with speculative and asynchronous parallelism. To address this

problem, we propose to enable fine-tuned balance between computation and communication:

we propose the separation of concerns into prefetch, compute and update threads. To

dynamically adapt the system based on the runtime application and data characteristics,

we proposed a scheme to monitor data sharing, hit-rates and fetch-times. An evaluation of

the ABC2 model shows that the adaptive scheme achieves performance close to that of the

optimal case.

71

Chapter 5

Distributed Software Speculation

on Caching DSMs

Clusters with caching DSMs deliver programmability and performance by support-

ing shared-memory programming model and tolerating communication latency of remote

fetches via caching. The input of a data parallel program is partitioned across machines in

the cluster while the DSM transparently fetches and caches remote data as needed by the

application. Irregular applications are challenging to parallelize because the input related

data dependences that manifest at runtime require the use of speculation for correct parallel

execution. By speculating that there are no cross iteration dependences, multiple iterations

of a data parallel loop are executed in parallel using locally cached copies of data; the

absence of dependences is validated before committing the speculatively computed results.

This chapter shows that in irregular data-parallel applications, while caching helps

tolerate long communication latencies, using a value read from the cache in a computation

72

can lead to misspeculation and thus aggressive caching can degrade performance due to

increased misspeculation rate. To limit misspeculation rate we present optimizations for

distributed speculation and caching based DSM that decrease the cost of misspeculation check

and speed up the re-execution of misspeculated recomputations. These optimizations give

speedups of 2.24x for graph coloring, 1.71x for connected components, 1.88x for community

detection, 1.32x for shortest path, and 1.74x for pagerank over baseline parallel executions.

5.1 Speculation on Caching-based DSM Systems

While DSMs coupled with caching work well for non-speculative data-parallel

applications, aggressive caching can hurt performance during speculative execution due

to the potential of using stale values in computations. With distributed speculation on

a caching DSM, every cache read can cause misspeculation because the read could occur

before a network-delayed invalidate is received – note that successful speculation is counting

on the fact that no invalidate would arrive. In this chapter we show that aggressive caching

can degrade performance due to increased misspeculation rate. Furthermore, to prevent

an increase in misspeculation rate, we develop optimizations for a distributed speculation

and caching based DSM to speedup misspeculation check and re-execution of misspeculated

recomputations.

We build upon the DSM, cache and commit protocols recently described by Dash

et. al. [30]: the input and address space are disjointly partitioned across all the machines

and each data object is assigned a home node; every computation thread maintains a

thread-private cache for speculation in addition to the per-machine directory-based object

73

caches. Data is accessed first by looking up the thread-private cache, then in the object cache

and fetched from the remote home node on a cache miss. The per-machine object cache

is managed similar to the high-performance optimized cache-coherence protocol described

in [30] that essentially relies on lazy updates and proactive, directory-initiated invalidates.

Finally, we use privatization of data to implement speculative parallelism. While [30] focused

on integrating caching and prefetching, we show that aggressive caching can slow down

execution due to increased misspeculations caused by stale, cached data. In this work, we

seek to optimize the underlying caching protocol for speculation to speed up distributed

speculation and hence reduce the likelihood of misspeculations.

In the rest of this chapter, we first present the protocol for distributed software

speculation on a caching DSM. We then analyze the protocol to derive optimizations which

we then implement and evaluate. In particular, we identify the following optimizations to

the protocol: (1) piggybacking different requests as a means of decreasing communication;

(2) early misspeculation detection by leveraging the existing cache mechanisms to avoid the

expensive misspeculation checks when possible; and (3) a fast recovery scheme to speedup

re-computations by leveraging the contents of the existing speculation buffer.

5.2 Interplay Between Distributed Software Speculation and

Distributed Caching

In this section we begin by motivating the need for using speculation to exploit

dynamic parallelism present in irregular applications and then describe how speculation is

implemented in a DSM based system that employs distributed caching. Finally, we present

74

results of an experimental study that demonstrates the interplay between distributed caching

and distributed speculation. For non-speculative distributed data parallel applications,

larger caches deliver higher performance as larger caches lead to higher cache hit rate and

thus a reduction in long latency fetch operations. Our study shows that in the presence

of speculation while larger caches can result in higher cache hit rates, they also lead to a

greater likelihood that at least some of the values found in caches are stale. This leads to a

higher misspeculation rate and thus an overall degradation in performance.

5.2.1 Distributed Caching and Speculation Protocol

For this study, we have built a directory-based caching DSM system modeled on

the recently proposed system by Dash et. al. [30]: the input data is partitioned among the

nodes in the cluster and each object is assigned a home node. The cache contains copies

of remote objects while the directory keeps track of all the objects in the cache and some

state information associated with the objects. The cache is a directory-based, distributed

write-through cache. Any object in the DSM has a state that is either Uncached or Shared as

shown in Figure 5.1a. Any shared object supports the following four basic operations: Read,

Write, Invalidate and Evict. For each shared object o, the directory maintains information

about the machine mi that has cached object o. Specifically, if machine mi requests a

read/write of object o, then the directory marks it shared and adds mi to the list of machines

that has cache object o. The directory entry for o corresponding to mi is appropriately

updated to reflect evictions and invalidate messages.

The speculation we use is similar to that presented by Dash et. al [30]. Object

versioning is used to enable speculation: each object is associated with a version number

75

which is used to detect dependency violations. The software speculation mechanism consists

of three phases: (1) Compute, (2) Misspeculation detection, and (3) Update. In the

compute phase, a private, thread-local Speculative Buffer is used to privately cache all the

data required to perform the computation independent of all other computations. The

speculative buffer also holds the version numbers associated with the objects used in the

computation. Any updates to be performed by the computation are made only to the

thread-local speculative buffer.

Next, in the misspeculation detection phase, the data used in the compute phase

is verified to be current. This is achieved by lock on all the data in the speculative buffer

to ensure an atomic update. Then, the version number of the objects in the speculative

cache is checked against those of the authoritative copies. If any version numbers mismatch,

the computation is deemed misspeculated and the computation aborts. If there is no

misspeculation, then the update is performed. From the above description, we observe that

to support distributed speculation, a distributed cache should support: (1) versioning for

objects, and (2) read/write-locking of objects. The misspeculation detection and update,

henceforth collectively referred to as Speculative Commit, are summarized in Algorithm 5,

which attempts to atomically commit object O using the associated speculative buffer sb

which contains the data used to compute object O.

Figures 5.1a and 5.1b show the cache and directory, while Figure 5.1c shows the

states of the an object o in the speculative buffer. The speculation-specific parts are in blue.

Figure 5.1a includes a Cache Local Version, Co
LV for each object o, representing

the version of the object in the cached. On a cache miss, when object o is read into the

76

Algorithm 5: Speculative Commit.

1 SpeculationBuffer sb;

2 for int i=0; i<sb.size(); i++ do /* Lock */

3 lock(sb[i]);

4 for int i=0; i<sb.size(); i++ do
5 Object o = remote-fetch(sb[i]); /* Ver chk */

6 if o.version != sb[i].version then
7 for int j=0; j<i; j++ do
8 unlock(sb[j]);

9 return failure;

10 Write(O) /* No misspeculation: commit */

11 for int i=0; i<sb.size(); i++ do /* Unlock */

12 unlock(sb[i]);

13 return success;

local cache, Co
LV is set to the version of the remote object. When invalidated or on evict,

Co
LV is set to -1. The directory is extended to support read and write locks. The directory

now has two additional states: Read-Locked and Write-Locked. WLo is the machine mi

that currently holds the write lock on object o and RLo is the set of machines mi that have

currently requested read locks on the object. Observe that the directory protocol allows

single writer and multiple readers.

To further aid protocol analysis, Figure 5.1c presents the states of objects in the

speculative buffer. As with any cache, an object can be Buffered or Unbuffered ; we use

the phrase buffer to distinguish the speculative buffer from the machine cache. Buffered

objects can be Dirty (on update) and dirty objects can be write-locked (just before update).

On successful update, the dirty object is simply marked buffered. Buffered objects in the

speculative buffer can also be read-locked (during speculative commit). After successful

commit or on abort, objects in the speculation buffer are marked unbuffered and discarded.

77

Uncached Shared

Cache-‐‑Miss	 /	 Write
[Local	 Node]
COLV=version

Evict
[Local	 Node]

COLV=-‐‑1

Hit
[Local	 Node]

Invalidate
[Directory]
COLV=-‐‑1

Write
[Local	 Node]

COLV++

(a) States for object in cache with speculation.

Shared

Write
do =	 do U	 {mi}	

Evict
do =	 do \ {mi}	

Read-‐‑Lock
RLo=	 RLo U	 {mi}

Read
do =	 do U	 {mi}	

Write
Locked Write-‐‑

Unlock
WLO=	 ϕ

Invalidate
do =	 do \ {mi}	

Read
Locked

Read
do =	 do U	 {mi}	

Read-‐‑Unlock
RLO	 =	 ϕ,	 if	 |RLO|	 =	 1

Read-‐‑Lock
RLO	 =	 {mi}

Read-‐‑Unlock
RLo=	 RLo \ {mi}

if	 |RLo|	 >	 1

Write-‐‑Lock
WLo =	 mi

(b) States for objects in the directory with speculation.

Un-‐‑buffered

Buffered

Read	
(from	 local	 cache)
[Local	 Node]
BOLV	 =	 COLV

Write
BOLV	 ++

Discard
[Local	 Node]
BOLV	 =	 -‐‑1

Dirty

Discard
[Local	 Node]
BOLV	 =	 -‐‑1

Dirty,
Write
Locked

Write
Locked

Write	 Unlock
[Local	 Node]

Write	 Lock
[Local	 Node]

Write	 Unlock
[Local	 Node]

Read
Locked

Read	 Lock

Read	 Unlock

Update
[buffer	
local]

(c) States for objects in speculative buffer with speculation.

Figure 5.1: Cache, directory and speculative buffer state diagrams for speculation.

78

5.2.2 Cache Size vs. Misspeculation Rate

We now study how the performance of distributed speculation on a DSM with

caching can degrade with larger caches. We evaluate our system on various graph mining

and analytics applications on various real world inputs.

Experimental Setup: Table 5.1 lists the various applications used in this evaluation.

Graph Coloring (GC) is an algorithm that assigns ‘colors’ to nodes in the graph such that

no two neighbors have the same color. As the name suggests, Connected components (CC)

computes the connected subgraphs of a graph. PageRank (PR) computes the ‘rank’ of a

webpage represented by a graph vertex based on the rank of its neighbors. Community

detection is similar to CC, and SSSP computes the shortest path to each vertex in the input

graph from a given source.

Applications

Graph Coloring (GC)

Connected Components (CC)

Community Detection (CD)

Single-Source Shortest Path (SP)

PageRank (PR)

Table 5.1: Applications

Table 5.2 summarizes the real world inputs from the Stanford Network Analysis

Project (SNAP) [78], University of Koblenz-–Landau’s Konect Network Collection [72] and

The University of Florida Sparse Matrix Collection [33] along with their sizes. |V | is the

number of vertices and |E| is the number of edges in the input. WordNet [72] is a network

between words in the Wordnet database with words being the vertices and relationships

79

between words, the edges. Gowalla [72] is a graph from the now defunct Gowalla social

network, with nodes representing people and edges representing friendships. DBLP [72] is

a DBLP bibliography database’s co-authorship network with authors as vertices and an

edge between authors with joint papers. Amazon [78] is a co-purchase graph with vertices

representing products and edges representing a co-purchase. These three inputs are power law

graphs with many high degree vertices with up to a degree of 14,730. DielFilterV3Real [33]

is a graph representation of a sparse, high-order finite element matrix. Flan1565 [33] is a

graph representation of a steel flange. The last two inputs are sparse matrices with only low

degree nodes, with a maximum degree of 10.

Input |V | |E|

WordNet (WN) 146,005 656,999

Gowalla (GW) 196,591 950,327

DBLP (DB) 317,080 1,049,866

Amazon (AZ) 400,727 3,200,440

DielFilterV3Real (DF) 1,102,824 89,306,020

Flan1565 (FL) 1,564,794 114,165,372

Table 5.2: Real-world inputs

We now evaluate the protocol on an 8-node cluster running CentOS 6.3. The nodes

in the cluster are connected to a Mellanox Infiniband switch. In addition to the speculation,

to avoid wasteful computation we employ activations [82]. In the first iteration, every input

data object is scheduled for computation. In subsequent iterations, only those that could

potentially require an update are scheduled for computation. For example in a graph, if

a particular vertex is updated in the current iteration, all of its immediate neighbors are

activated for the next iteration, as they depend on a changed vertex. As a final enhancement,

the speculative commit is attempted only if the value of the object changes.

80

Cache% GW AZ

Time MR Time MR

GC

1 646 2.49 135 11.24

5 498 1.04 102 9.69

10 388 0.63 87 6.37

20 516 0.85 108 8.30

CC

1 514 2.38 112 10.63

5 449 1.22 111 10.08

10 326 0.72 112 9.69

20 530 1.11 119 10.59

CD

1 1187 2.12 101 9.47

5 721 0.95 88 8.82

10 668 0.52 84 9.35

20 749 0.77 88 9.50

SP

1 7 0.00 119 6.39

5 7 0.00 77 5.59

10 6 0.00 77 5.44

20 6 0.00 90 6.58

PR

1 1241 2.27 456 9.42

5 1054 1.14 457 9.59

10 1106 1.74 402 9.45

20 1225 1.19 425 9.77

Table 5.3: Effect of cache size on speculation on an 8 node cluster. Execution time in seconds
and misspeculation rate (MR) with varying cache sizes.

Peformance of Distributed Speculation on a Caching DSM: Table 5.3 shows the

total running times for distributed speculation on the caching DSM described above with

varying cache sizes along with their misspeculation rates (MR). MR is computed as the ratio

of misspeculations over cache hits. The general trend here is a speedup from 1% cache to

10% cache and then the speculation slows down at 20% cache size. That is, even though the

number of remote fetches are decreased with larger cache size, the increase in misspeculative

81

aborts degrades the performance much more than any potential savings from the cache.

The highlighted values are the data of interest showing that in many cases the distributed

speculation performs best with smaller caches. In most cases, the fastest configuration also

corresponds to lowest MR. In other cases, the benefit from using cached values out weighs

the cost of misspeculation, leading to faster execution with only slightly larger MR than

the minimum for that application-input combination. In a few cases, the speculation is

insensitive to cache sizes: for example, all executions on the FL input, which is a essentially

a sparse graph with max degree of about 10. In this case, the misspeculations are fewer with

no impact from the cache.

5.3 Optimizing Distributed Speculation

Optimizations can be found at various layers of the protocol. We now look at

various optimizations to the speculation protocol, leveraging the state information already

captured in the cache and directory structures.

5.3.1 Piggybacking Version

To begin with, consider the Line 3 and Line 5 of Algorithm 5. We can save on

communication by combining the lock request and fetch for version checking into a single

request: we can piggyback the version of the requested object in the lock request message,

thus saving about 50% of communication requests over the baseline commit. The remote

lock request will return failure without acquiring a lock if versions don’t match. Algorithm

6 summarizes the Speculative Commit protocol with this optimization.

82

Algorithm 6: Speculative Commit with Piggybacking.

1 SpeculativeBuffer sb;

2 for int i=0; i<sb.size(); i++ do /* Lock+Check */

3 if ! lock(sb[i], sb[i].version) then
4 for int j=0; j<i; j++ do
5 unlock(sb[j]);

6 return failure;

7 Write(O) /* No misspeculation: commit */

8 for int i=0; i<sb.size(); i++ do /* Unlock */

9 unlock(sb[i]);

10 return success;

Figure 5.2 shows the extensions to the baseline speculation in Figure 5.1 in red.

Bo
LV refers to the Buffer Local Version of object o in the speculative buffer. The lock

mechanism is modified to fail if Bo
LV ! = Co

LV . Observe that there are no changes to the

cache itself; only the directory and speculative buffer need modification.

5.3.2 Early Misspeculation Detection

As a next optimization, we leverage the fact that the cache receives invalidate

messages. Given that an object is present in the cache of a given machine only if it was

read by a compute thread on that machine, we can extend the cache to track which threads

on the local machine are actively using each object. Anytime an object is invalidated, it

indicates that all the threads that have read and are using the invalidated object have

definitely misspeculated. This allows us to completely bypass the expensive speculation

commit attempt, thereby giving us better performance. Notice that this optimization only

requires changes to the cache.

83

Shared

Write
do =	 do U	 {mi}	

Evict
do =	 do \ {mi}	

Read-‐‑Lock
RLo=	 RLo U	 {mi}

Read
do =	 do U	 {mi}	

Write
Locked Write-‐‑

Unlock
WLO=	 ϕ

Invalidate
do =	 do \ {mi}	

Read
Locked

Read
do =	 do U	 {mi}	

Read-‐‑Unlock
RLO	 =	 ϕ,	 if	 |RLO|	 =	 1

Read-‐‑Lock(BOLV)
if(BOLV ==	 COLV)
RLO	 =	 {mi}

Read-‐‑Unlock
RLo=	 RLo \ {mi}

if	 |RLo|	 >	 1

Write-‐‑Lock(BOLV)
if(BOLV ==	 COLV)
WLo =	 mi

(a) States for objects in the directory with piggybacking.

Un-‐‑buffered

Buffered

Read	
(from	 local	 cache)
[Local	 Node]
BOLV	 =	 COLV

Write
BOLV	 ++

Discard
[Local	 Node]
BOLV	 =	 -‐‑1

Update
[buffer	
local]

Dirty

Discard
[Local	 Node]
BOLV	 =	 -‐‑1

Dirty,
Write
Locked

Write
Locked

Write	 Unlock
[Local	 Node]

Write	 Lock(BOLV)
[Local	 Node]
if(BOLV ==	 COLV)

Write	 Unlock
[Local	 Node]

Read
Locked

Read	 Lock(BOLV)
if(BOLV ==	 COLV)

Read	 Unlock

(b) States for objects in speculative buffer with piggybacking.

Figure 5.2: State Diagrams for Speculation with Piggybacking.

84

Uncached Shared

Cache-‐‑Miss/Write(tid)
[Local	 Node]
COLV=version
ro[tid]=1

Evict
[Local	 Node]

COLV=-‐‑1

Hit(tid)
[Local	 Node]
ro[tid]=1

Invalidate
[Directory]	 COLV=-‐‑1
mis[i]=1,	 ∀i ∋	 ro[i]==1
(0	 ≤	 i <	 nThreads)

Write
[Local	 Node]	 COLV++
mis[i]=1,	 ∀i ∋	 ro[i]==1
(0	 ≤	 i <	 nThreads)

Clear(tid)
ro[tid]=0,
mis[i]=0,

0	 ≤	 i <	 nThreads

Figure 5.3: States for objects in cache with early misspeculation detection.

Figure 5.3 shows the modifications over the basic speculation from Figure 5.1 in

purple. For each compute thread tid that reads object o, we set the ro flag. To keep track

of misspeculation, we use an array of booleans, one for each thread: mis[]. If thread tid

writes object o or the cache receives an invalidate message, the cache sets mis[i], for all

threads i that have read o; i.e., all threads i that have ro[i] set. In addition, we introduce a

Clear(tid) method which clears the read flags for all objects that thread tid had read. This

method is invoked on abort and after successful commit.

5.3.3 Fast Recovery

We now explore an optimization to help speed up re-computations that arise from

misspeculations. Given that during misspeculation detection, the speculative buffer knows

which object(s) have been misspeculated, the basic idea is the following: if only a subset of

the objects in the speculative buffer have resulted in misspeculation, then the re-computation

could hedge that other objects may not have changed and only re-fetch the misspeculated

objects, while unchanged objects are read from the speculative buffer.

85

The expectation here is to gain speedups from fewer fetches. A further optimization:

our framework computes and updates objects using some ordering on input data. In the

speculative commit phase, when acquiring locks for objects in the speculative buffer, the

lock requests on objects are also ordered using the same ordering to prevent deadlocking. If

we use the simplistic fast-recovery mechanism just described above, we observed that as soon

as we encounter one misspeculated value, the probability that many of the following objects

are also misspeculated is very high. This is expected since the computations are ordered

using the same mechanism as the locks and therefore if a misspeculation has occurred on

oi since it was recently updated, the there is a good chance that oj , j > i also have been

updated, and therefore potentially misspeculated. Hence, we further optimize by fetching

all the objects following a misspeculated object from the machine cache rather than re-use

from the speculative buffer.

Algorithm 7: Speculative Commit with Fast Recovery.

1 SpeculativeBuffer sb; /* Ordered buffer */

2 fail = false;
3 int i=0 for i=0; i<sb.size(); i++ do /* Lock */

4 if ! lock(sb[i], sb[i].version) then
5 sb[i].changed = true;
6 fail = true;
7 break;

8 if fail then
9 for int j=0 j<i; j++ do

10 unlock(sb[j]); /* Release if locked */

11 return failure;

12 Write(O) /* No misspeculation: commit */

13 for int i=0; i<sb.size(); i++ do /* Unlock */

14 unlock(sb[i]);

15 return success;

86

Algorithm 8: Recomputation with Fast Recovery.

1 SpeculativeBuffer sb; /* Ordered buffer */

2 int i=0;
3 for i=0; i<sb.size(); i++ do
4 if ! sb[i].changed then /* Unchanged */

5 O = compute(O, sb[i]);

6 else
7 break;

8 for int j=i; j<sb.size(); j++ do
9 Object o = fetch(sb[i]);/* Maybe changed */

10 O = compute(O, o);

Un-‐‑buffered

Buffered

Read	
(from	 local	 cache)
[Local	 Node]
BOLV	 =	 COLV

Write
BOLV	 ++

Discard
[Local	 Node]
BOLV	 =	 -‐‑1

Update
[buffer	
local]

Dirty

Discard
[Local	 Node]
BOLV	 =	 -‐‑1

Dirty,
Write
Locked

Write
Locked

Write	 Unlock
[Local	 Node]

Write	 Lock(BOLV)
[Local	 Node]

assert(BOLV ==	 COLV)

Write	 Unlock
[Local	 Node]

Read
Locked

Read	 Unlock
Read	 Lock(BOLV)

Changedif(BOLV ==	 COLV)

Y N
Read	

(from	 local	 cache)
[Local	 Node]
BOLV	 =	 COLV

Figure 5.4: States for objects in speculative buffer with fast recovery.

Algorithms 7 and 8 summarize the changes needed to support misspeculation and

recomputation with fast recovery. For fast recovery, only the speculative buffer sub-system

needs modification. Figure 5.4 shows the extensions to support fast recovery in green. We

introduce a new state for buffered objects in the speculative buffer called Changed that

tracks misspeculated objects. During recompute, we read the unchanged objects from the

87

speculative buffer and the changed objects from the cache. Buffered object are moved to the

changed state depending on the success of the read-lock: if the lock fails since the buffered

version is outdated, the object is marked changed.

5.4 Evaluation of Optimizations

The experiments were performed on a cluster of 8 machines running CentOS 6.3,

each with 32 cores and 64GB main memory with a Mellanox Infiniband interconnect switch.

For the DSM we used the directory-based, write-through, strict consistency caching protocol

from the ASPIRE system [129], with the extensions described above to support speculation.

5.4.1 Overall Speedups from Optimizations

GW AZ DF
Speedup ∆MR Speedup ∆MR Speedup ∆MR

GC 2.24 -1.09 2.05 -4.45 1.07 0.06
CC 1.71 -0.20 1.59 -2.73 1.09 0.09
CD 1.88 -0.84 1.38 -5.01 1.17 0.00
SP 1.00 0.00 1.18 0.38 1.01 -0.01
PR 1.74 -0.37 1.67 -2.73 1.05 0.08

FL WN DB
Speedup ∆MR Speedup ∆MR Speedup ∆MR

GC 1.06 -0.06 1.12 -0.44 1.17 -0.51
CC 1.03 -0.09 1.12 -0.45 1.10 -0.10
CD 1.00 0.00 1.06 -0.17 1.07 -0.07
SP 1.00 0.00 1.00 0.00 1.00 0.00
PR 1.20 -0.21 1.12 -0.33 1.04 0.48

Table 5.4: Best speedups and change in MR (∆MR) of optimized speculation over baseline.

Table 5.4 presents the best achievable performance for various applications over

the baseline from Table 5.3. Observe that these optimizations provide up to 2.25x speedup.

Notice that except for 5 cases, the speedups are accompanied by a decrease in MR.

88

C
ac

h
e%

G
W

A
Z

D
F

F
L

W
N

D
B

S
p

ee
d

u
p

∆
M

R
S

p
ee

d
u

p
∆

M
R

S
p

ee
d

u
p

∆
M

R
S

p
ee

d
u

p
∆

M
R

S
p

ee
d

u
p

∆
M

R
S

p
ee

d
u

p
∆

M
R

G
C

1
2.

24
-1

.0
9

2.
05

-4
.4

5
1.

02
0.

08
1.

04
-0

.0
2

1.
12

-0
.4

4
1.

11
-0

.4
7

5
1.

72
-0

.3
5

1.
79

-3
.5

0
1.

07
0.

06
1.

06
-0

.0
6

1.
07

-0
.4

6
1.

17
-0

.5
1

10
1.

41
-0

.1
3

2.
04

-3
.1

5
1.

04
0.

09
1.

04
-0

.0
4

1.
09

-0
.3

0
1.

12
-0

.4
6

20
1.

84
-0

.3
6

1.
67

-1
.7

6
1.

05
0.

06
1.

03
0.

01
1.

07
-0

.6
8

1.
08

-0
.4

7

C
C

1
1.

62
-0

.5
6

1.
47

-2
.7

6
1.

05
0.

14
0.

99
-0

.1
1

1.
02

-0
.1

7
1.

10
-0

.1
0

5
1.

57
-0

.4
7

1.
56

-2
.4

2
1.

04
0.

14
1.

03
-0

.1
4

1.
04

-0
.6

3
1.

00
0.

15

10
1.

13
-0

.5
6

1.
45

-1
.3

8
0.

99
0.

09
1.

02
-0

.1
1

1.
12

-0
.4

5
1.

00
0.

15

20
1.

71
-0

.2
0

1.
59

-2
.7

3
1.

09
0.

09
1.

03
-0

.0
9

1.
04

-0
.4

4
1.

09
-0

.2
2

C
D

1
1.

88
-0

.8
4

1.
28

-2
.6

1
1.

17
0.

00
1.

00
0.

00
0.

99
-0

.3
6

1.
06

-0
.3

5

5
1.

10
-0

.2
1

1.
26

-2
.9

1
1.

00
0.

00
1.

00
0.

00
1.

06
-0

.1
7

1.
03

-0
.0

8

10
1.

41
-0

.2
4

1.
24

-4
.3

4
1.

00
0.

00
1.

00
0.

00
1.

01
-0

.0
6

1.
04

-0
.2

8

20
1.

22
-0

.0
8

1.
38

-5
.0

1
1.

00
0.

00
1.

00
0.

00
0.

90
-0

.8
5

1.
07

-0
.0

7

S
P

1
1.

00
0.

00
1.

17
0.

99
0.

99
-0

.0
4

1.
00

-0
.0

0
1.

00
0.

00
1.

00
0.

00

5
1.

00
0.

00
0.

79
2.

30
1.

01
-0

.0
1

1.
00

-0
.0

0
1.

00
0.

00
1.

00
0.

00

10
1.

00
0.

00
1.

00
1.

29
1.

00
0.

00
1.

00
-0

.0
0

0.
67

0.
00

1.
00

0.
00

20
1.

00
0.

00
1.

18
0.

38
0.

94
0.

09
0.

86
-0

.0
0

0.
67

0.
00

1.
00

0.
00

P
R

1
1.

62
-0

.1
5

1.
44

-1
.5

9
1.

05
0.

08
1.

10
-0

.2
3

1.
12

-0
.3

3
1.

04
0.

48

5
1.

31
-0

.5
0

1
.6

-2
.7

3
0.

98
0.

12
1.

20
-0

.2
1

1.
12

-0
.3

8
0.

97
0.

56

10
1.

46
-0

.2
6

1.
49

-2
.2

6
1.

02
0.

11
0.

96
-0

.1
7

1.
09

-1
.0

4
1.

00
0.

54

20
1.

74
-0

.3
7

1.
50

-2
.6

5
1.

02
0.

11
1.

10
-0

.2
6

1.
11

-0
.3

6
1.

00
0.

35

T
ab

le
5
.5

:
S

p
ee

d
u

p
s

a
n

d
th

e
ch

a
n

ge
m

is
sp

ec
u
la

ti
on

ra
te

(∆
M

R
)

fo
r

op
ti

m
iz

ed
sp

ec
u

la
ti

on
w

it
h

va
ry

in
g

ca
ch

e
si

ze
s.

89

Table 5.5 shows the speedups and ∆MR for various cache sizes over the baseline

data presented in Table 5.3. Notice that compared to the baseline many more configurations

are able to achieve their best speedups at larger cache sizes. The highlighted data points out

configurations with the maximum speedups from these optimizations. Observe that the best

speedups are usually achieved when the decrease in MR is the largest or the increase in MR

is the smallest. That is, these optimizations mostly decrease misspeculation as expected. For

the configuration where the speedups are gained with an increase in MR, observe that the

gains are only marginal, as can be seen in the highlighted rows for DF and the highlighted

PR with DB input.

5.4.2 Combining Optimizations

Next, we present the speedups obtained from the individual optimizations and their

combinations to study their specific share of contribution to the speedups. Table 5.6 shows

the speedups obtained from Piggybacking, Early misspeculation Detection, Fast Recovery

and their pair-wise combinations. Considering the individual optimizations in the top half

of Table 5.6, we see that the maximum benefits are from piggybacking, which focuses on

decreasing the communication in the misspeculation phase. Piggybacking shows a maximum

of ≈2x speedup, early misspeculation detection a maximum of ≈1.8x speedup while fast

recovery shows a maximum speedup of ≈1.5x. In these experiments, piggybacking and early

misspeculation detection are helpful in many cases, while fast recovery shows speedups in

fewer cases. Fast recovery tends to be less effective since the recomputation phase may

incorrectly speculate that many objects in the speculative buffer are unchanged. In such

cases, the fast recovery optimization could potentially increase the aborts with lesser benefit.

90

GW AZ DF FL WN DB

P
ig

gy
b

ac
k
in

g GC 1.72 1.99 1.04 1.08 1.17 1.08
CC 1.44 1.61 1.08 1.05 1.07 1.10
CD 1.74 1.52 1.00 1.00 1.01 1.04
SP 1.00 1.32 1.08 1.00 1.00 1.00
PR 1.61 1.72 1.06 1.14 1.09 1.08

E
ar

ly
M

is
sp

ec
.

D
et

ec
ti

on
GC 1.56 1.59 1.06 1.06 1.10 1.08
CC 1.17 1.30 1.12 1.02 1.02 1.10
CD 1.78 1.22 1.00 1.00 1.08 1.07
SP 1.00 1.19 1.05 1.17 1.00 1.00
PR 1.32 1.07 1.01 1.22 1.06 1.04

F
as

t
R

ec
ov

er
y GC 1.19 1.48 0.98 1.01 1.00 1.00

CC 1.11 1.02 1.28 1.04 1.00 1.04
CD 1.21 1.09 1.17 1.14 1.07 1.00
SP 1.20 1.14 1.01 1.17 1.00 1.00
PR 1.26 1.06 1.00 1.04 1.00 0.99

Table 5.6: Best speedups from individual optimizations over baseline speculation.

GW AZ DF FL WN DB

P
ig

gy
b

ac
k
in

g
+

E
ar

ly
M

is
sp

ec
.

D
et

ec
ti

on

GC 1.77 2.14 1.07 1.07 1.14 1.08

CC 1.62 1.72 1.09 1.05 1.09 1.10

CD 2.08 1.42 1.17 1.14 0.97 1.12

SP 1.20 1.50 1.11 1.00 1.00 1.00

PR 1.71 1.70 1.07 1.04 1.10 1.09

E
ar

ly
M

is
sp

ec
.

D
et

ec
ti

on
+

F
as

t
R

ec
ov

er
y GC 1.68 1.44 0.99 1.02 1.06 1.07

CC 1.36 1.32 1.09 1.05 1.02 1.06

CD 1.57 1.12 1.17 1.14 1.00 1.07

SP 1.20 1.07 1.01 1.00 1.00 1.00

PR 1.27 1.07 1.03 1.20 1.03 1.00

P
ig

gy
b

ac
k
in

g
+

F
a
st

R
ec

ov
er

y GC 1.62 1.96 1.07 1.02 1.12 1.08

CC 1.64 1.61 1.08 1.03 1.09 1.06

CD 1.94 1.31 1.00 1.00 1.01 1.07

SP 1.17 1.29 1.01 1.00 1.00 1.00

PR 1.79 1.69 1.02 1.10 1.08 1.03

Table 5.7: Best speedups from pairwise combination of optimizations over baseline specula-
tion.

91

As can be expected from the above discussion, the piggybacking + early misspecu-

lation detection combination is the most effective pair-wise combination, giving a maximum

speedup of 2.14x. Finally observe that compared to the pair-wise combinations, the synergy

between all three optimizations as shown in Table 5.4 is less, but greater when present.

For example, Graphcoloring, Connected components and PageRank with the GW input all

perform better than any of the individual or pair-wise optimizations. These gains obtained

from the pairwise combinations of these optimizations is shown in Table 5.7.

5.4.3 Integration with Infinimem

We now present the results of integrating the object-centric InfiniMem library

into the DSM to further support scale-up on individual machines in the cluster. In this

experiment, the DSM was allocated memory to hold only 75% of the AZ input that was

partitioned and assigned to it. The remaining 25% of the local data is stored on the disk.

As can be expected, this feature would slightly slowdown the performance of distributed

speculation; Table 5.8 shows the percentage slowdown. Observe that the overhead results in

an average slowdown of only 5.3%. In this case, the overhead is from individual object reads

and writes, which arise from random accesses generated by the applications.

Application Overhead (%)

GC 5.8
CC 7.1
CD 8.2
SP 2.5
PR 2.8

Table 5.8: Overhead from using InfiniMem to spill data that does not fit in allocated memory
is shown here as a percentage of slowdown over the version without InfiniMem for AZ input.

92

Finally, we compare the performace of size oblivious distributed software speculation

with the data in Table 1.1. Table 5.9 shows the parallel input load/output store, compute

and size oblivious I/O via InfiniMem for various applications.

Load/Store Compute InfiniMem I/O Total Time Speedup
App in seconds in seconds in seconds in seconds (over Table 1.1)

GC 2 45.8 5 52.8 6.6
CC 2 62.3 8 72.3 8.3
CD 2 56.3 7 65.3 10.2
SP 2 68.6 7 77.6 8.7
PR 3 265.4 4 272.4 3.6

Table 5.9: Breakdown of total time into input, size oblivious IO and compute for distributed
software speculation with InfiniMem.

Compared to the runs from Table 1.1, we see overall speedups between 3.6x – 10x,

with an average speedup of ∼7.5x. Parallel I/O speedups up input loading/output storage

more than 75% in this experiment. Prallelizing the program on a cluster results in an inrease

in fraction of time spent in computation rather than on intermediate I/O. Earlier, most of

the time (∼95%) was spent intermediate I/O, while most of the time (∼88%) is now spent

on computation and very little (∼8%) on intermediate I/O. This reaffirms the motivation

for size oblivious programming of clusters for irregular applications.

5.5 Summary

This chapter presented the protocols for distributed software speculation on a

caching DSM as a framework for analyzing and optimizing the distributed speculative

commit protocol. We then identified the following three optimizations to speedup or

bypass the expensive misspeculation detection and to speedup the recomputation after

93

misspeculation has occurred: (1) piggybacking object version numbers on lock requests

to decrease the communication cost of the misspeculation check; (2) early misspeculation

detection leverages the information contained in the cache to entirely avoid the expensive

speculative commit; and (3) fast recovery to speed up the re-computations resulting from

misspeculative aborts, by fetching only potentially changed objects in the speculative buffer.

These optimizations provide between 1.32x to 2.24x speedups on various graph processing

applications. Finally, we showed that InfiniMem can scale-up individual nodes on the cluster

by spilling data that does not fit in local memory with an average overhead of just 5.3%.

94

Chapter 6

Related Work

This chapter summarizes various research in domains and problems addressed by

this thesis. We first summarize prior programming solutions for big data problems on DSMs

and single machines. Next, we address various attempts at size-oblivious programming

including distributed computing solutions. Finally, we summarize work on latency tolerance

mechanisms and their impact on speculation.

6.1 Programming Interface

First, we present related research on programming systems with large datasets,

followed by work on programming speculation.

6.1.1 Programming Large Data

The earliest solutions to programming large distributed systems involved manual

message passing, which was later standardized via the Message Passing Interface (MPI) [44].

95

MPI standardized the communication primitives and provided a unified, efficient framework

to pack/unpack, serialize/deserialize many different types of data structures portably across

varying machine types [93, 48]. A related approach to keep programming simple on distributed

platforms was the development of the notion of Distributed Shared Memory (DSM). Programs

are written using the familiar shared memory paradigm and the DSM runtime employs

a distributed coherent cache. The data is partitioned across machines in the cluster.

The caching protocol on the DMS system uses message passing or similar techniques to

transparently fetch and store data needed by computations on various machines in the

cluster.

DSMs are not the only programming/memory model for distributed parallel pro-

gramming. MapReduce [34] is a popular programming model that consists of two distinct

phases of computation: map and reduce. The map operation distributes work across the

cluster while the reduce operation aggregates the results from the across cluster. However,

MapReduce cannot be applied to every program that can be parallelized, thereby limiting

it to a smaller set of applications than possible with DSM. Another approach is to use

distributed memory (DM) (in contrast to distributed shared memory (DSM)) model. With

DM, the programmer has to explicitly manage and move data between various compute

nodes. HipG [68] is an example of a graph processing framework that uses DM. HipG

contains DM extensions similar to those proposed in SpiceC [40] and works in two phases,

like MapReduce. The Message Passing Interface (MPI) [44] is a popular DM programming

model. Compared to DSM based systems, the programmer burden in programming for

these systems is very high. For example, with the exception of transferring atomic data

96

types and their arrays, simply creating the wrappers to allow serialized communication

of incrementally complex data structures can be daunting enough to deter the use of this

system for larger programs. Examples of some recent Distributed Memory (DM) systems

are Hadoop [118] and Pregel [84]. Here, programming the system to bring in required data

is a major task. Such systems usually employ an underlying Distributed File System (DFS)

like the Hadoop Distributed File System (HDFS) [119] or the Goole File System (GFS) [45].

Specialized systems like GraphLab [82], GraphX [131] etc. support efficient distributed

processing of graph applications. Our framework is designed to be general purpose and

works with arbitrary data types.

Our approach simply requires the programmer to identify the data collections that

can grow large using the large keyword. Such data collections are automatically partitioned

and distributed across the cluster. In addition, data that cannot fit in available memory is

transparently and automatically spilled to available disk using out InfiniMem library.

6.1.2 Programming Speculation

LRPD was amongst the earliest practical implementations of software speculation

technique [105, 104]. The compiler was designed to look for loops that require speculation and

then parallelized them as a doall loop with speculation. In our approach, the programmer

annotates loops which need to be speculatively parallelized – this speeds up the compilation

itself compared to the compiler searching through all loops in the program. The savings can

be especially significant for very large programs. Our approach is similar to that taken by

SpiceC [40], which employed various incarnations of the #pragma speculate pre-processor

directives around loops, with each variation addressing a different type of parallelism.

97

However, all this was only in the context of single, shared memory machines.

Programming language support for doall speculative parallelization is not present in

previous and existing DSM systems and big data frameworks. In our approach, a simple

speculate annotation on a loop is transformed into a distributed, speculative doall loop.

6.2 Size Oblivious Programming

The closest file organization to that used by InfiniMem and illustrated in Figure

3.6 is the B+ tree representation used in database systems. The primary differences in our

design are the following: (1) InfiniMem uses a flat organization, with at most one level

index for variable sized data. (2) InfiniMem provides O(1) time I/O operations for random

access while the B+ trees require O(log n) time. A related approach uses Sorted String

Tables (SST). For example, LevelDB [51] and RocksDB [50] use this organization. LevelDB

for example, stores files in various ‘levels’, combining files into the next larger level file when

it grows too large. The disadvantage of this approach is that the entire level file is required

to be held in memory. In addition, searching for items in the level file requires sequential

scans. Our approach does not require the entire data file in memory and can locate items

randomly, in at most two logical seeks.

6.2.1 Out-of-core Computations

In this work, we enable applications with very large input data sets to efficiently

run on a single multicore machine, with minimal programming effort. The design of the

InfiniMem transparently enables large datasets become disk-resident while common out-of-

98

core algorithms [28, 71, 127] explicitly do this. As demonstrated with shards, it should be

easy to program these techniques with InfiniMem.

6.2.2 Processing on a Single Machine

Traditional approaches to large-scale data processing on a single machine involve

using machines with very large amounts of memory, while InfiniMem does not have that

limitation. Examples include Ligra [117], Galois [99], BGL [120], MTGL [11], Spark [133]

etc. FlashGraph [135] is a semi-external memory graph processing framework and requires

enough memory to hold all the edgelists; InfiniMem has no such memory requirements.

GraphChi [75] recently proposed the Parallel Sliding Window model based on

sharded inputs. Shard format enables a complete subgraph to be loaded in memory, thus

avoiding random accesses. GraphChi is designed for and works very well with algorithms that

depend on static scheduling. InfiniMem is a general-purpose size-oblivious programming

framework and recognizes the need for sequential/batched and random input for fixed and

variable sized data and provides simple APIs to handle all forms of I/O for rapid prototyping.

6.3 Distributed Shared Memory Software Systems

Distributed Shared Memory or DSM is a prominent choice of memory models for

programming distributed systems. In essence, this software layer superimposes an abstraction

of shared memory over the physical memories from multiple machines in a cluster. This

allows programmers to write applications using the familiar abstraction of shared memory

systems. Additionally, the scalability of clusters coupled with the shared memory abstraction

99

makes DSMs an attractive option for scalable distributed computing without resorting to

specialized programming models or frameworks.

6.3.1 Latency Tolerance Mechanisms

Dynamic data prefetching in the context of distributed systems has also been studied

[29, 80] in various research and engineering communities. Our work differs by providing

a runtime that monitors dynamic parameters and dynamically turns on/off prefetching

as needed. Further, our designation of separate threads on each machine specifically for

prefetching allows us to dynamically scale prefetching on demand. This further allows for

optimal allocation of physical CPU cores to computation and communication needs of the

application. There are other strategies based on Markov models [57] etc., that do not need

any input from the user, but those models are not the primary focus of this evaluation.

Traditional clusters were built from commodity single core CPUs and the DSMs

proposed for those systems were not designed to exploit the presence of multiple cores.

For instance, systems like ORCA, Shasta, TreadMarks and Emerald [8, 58, 4, 112] were

all successful DSM systems for clusters of uniprocessor machines. Our work is focused

not on the DSMs perse, but rather on novel approaches to exploit new opportunities

afforded by multi-core machines. Specifically, we explore the dynamic balance between

communication and computation for speculative and asynchronous applications on DSMs.

Prior systems do not provide explicit support for speculative or asynchronous parallelism, like

we do. Finally, to the best of our knowledge, none of the older systems monitored dynamic,

runtime characteristics of data and applications to automatically adapt communication

and computation for optimal performance. To tolerate latencies, prior work has explored

100

lazy vs. eager release consistency models [4]. Other work has looked at dynamically

adapting between single and multiple writer protocols [89, 3] or adapting to dynamic sharing

patterns, which again relies on some release consistency model [89] in the context of regular

applications. This work focusses on irregular applications; for speculative applications, we

rely on the SpiceC [40] model, which is a lazy release, multiple-writer protocol. Asynchronous

applications by definition require no strict consistency models; we use the multiple writer

model for both speculative and asynchronous applications, with primary focus on ABC2:

Adaptively Balacing Communication and Computation.

6.3.2 Distributed Software Speculation

Prior efforts for achieving distributed speculation in a DSM based cluster explore

alternate approaches to speculation. For example, executing multiple processes with the

same input while speculating that one or more instances may either fail or complete early is a

speculative approach to robustness, as in Hadoop/Hive. In master-slave speculation, multiple

master threads compute different approximate versions of the program while the slave threads

validate the computation, aborting the invalid masters [136]. A similar approach is taken by

algorithmic speculation where multiple algorithms for the same problem are speculatively

executed in parallel and the most appropriate result is accepted [107]. A more recent

work has considered integrating caching with symbolic prefetching to support distributed

speculation to enable doall parallelism in irregular applications [30].

In this work, we first show that speculation on DSMs with caching can slow down

with larger caches due to an increase in misspeculation rates from reading potentially stale

values from the cache. We then propose three optimizations that leverage the caching protocol

101

to decrease the cost of communication, misspeculation check and speedup misspeculated

recomputations by combining requests, leveraging information present in the cache and the

thread-private speculation buffer etc.

The baseline speculation and caching DSM protocol used in this work is based on the

system recently presented by Dash et. al. [30]. It uses execution model based on SpiceC’s [40]

implicit private copying and explicit commits; the speculation works by making private

copies to enable compute isolation and speculative execution following LRPD’s original

proposal for shared-memory software speculation [105], which also helps with speculative

execution in a distributed setting. Like LRPD, our approach also speculatively executes all

iterations of the loop in a ‘doall’ manner. The distributed misspeculation check is similar to

D-BOP’s distributed validation [52]. In addition, we present the protocol for distributed

speculation mechanism and the extensions necessary for the optimizations we propose.

Orca [8] and Shasta [112] were caching DSMs that provided prefetching in addition

to caching to speedup data-parallel applications. However, they did not have explicit

support for speculation like mechanisms for distributed locking and object versioning.

[124, 96, 42, 30] explore the use of software transactional memory (STM) as a mechanism

to achieve speculation. With STMs reading objects also locks them, which could limit the

runtime parallelism. Moreover, STMs require frequent synchronization which is expensive

and only increases in a distributed setting due to added communication and network latencies.

In our approach, the use of synchronization is minimized by speculative lock-free reads

and requires no synchronization until the data is ready to commit. Most recently, Dash et.

al. presented a system that uses symbolic prefetching and caching to support distributed

102

speculation using STM. For performance, they relax the STM to allow for lazy updates and

invalidates to decrease inline communication latencies. However, we show that aggressive

caching can hurt speculation and instead devise optimizations to decrease misspeculation

cost and speedup misspeculated recomputations.

Many alternate approaches to distributed speculation have been explored. In

the master-slave model of speculation, the master process runs approximate versions of

the program, slaves validate correctness. The primary drawback is the ability to generate

approximations for general purpose programs. [91] uses this same model in a distributed

setting [136]. [62] uses home based release-consistency coupled with access predictors for

future access to improve speculation performance. Our approach does not require release

consistency by implementing the single-writer model. In [37], programmer has to express

hints for parallelism, data dependence and data checking. Speculative execution is via

independent processes; aborts simply terminate processes. OS page level monitoring is used

to detect dependency violations. In contrast, our approach is more general purpose: we use

a library based approach does not rely on low-level OS features. In addition, misspeculation

results in retries and is therefore fully robust. D-BOP [110] attempts to speedup BOP [37]

by predicting the outcome of a speculative execution based on the success/failure of the last

speculation and avoiding un-promising executions all together. In our approach, we propose

to eliminate the costly misspeculation checks whenever possible. [52] seeks to adapt the

basic BOP in a distributed setup. Our approach is akin to the ’distributed validation, lazy

update’ (data is read only as needed; not broadcast), decreasing communication.

103

In [110] loads/stores uses the thread-id to enforce sequential consistency. Spec-

ulation is achieved via shadow copy; for the cluster, our approach assigns home nodes to

variables; only tasks on home node update the variables, an approach similar to that taken

by modern distributed computing frameworks like Hadoop which schedule compute close

to storage. This strategy works particularly well for large data sets that can be easily

partitioned among nodes in the cluster. Further, [110] proposes to replace bit-vectors for

lock-synchronization with byte-arrays and using atomic primitives to read-write byte sized

data as an alternate to lock-free data structures. However [110] also points the drawbacks

and the lack of scalability of such an approach. In the distributed setup, our approach

proposes piggybacking version numbers to decrease the communication cost associated

with locks, which is the most expensive part of the distributed misspeculation check (aka

distributed validation).

Systems like Hive use speculation in a distributed setting, but the motivation there

is different: given the heterogeneity of hardware, multi-tenancy of the cluster and data

replication, these systems schedule multiple instances of the same computation and pick

up the results of the first one to complete and terminate other instances: they speculate

that the occupancy and usage characteristics of the compute nodes could vary dynamically,

so multiple instances are run hoping that it will be beneficial in the overall turn-around

time, while we speculate that we can concurrently compute all values in parallel, which is a

fundamentally different speculation.

104

Chapter 7

Conclusions and Future Work

7.1 Contributions

This dissertation contributes to enabling easy programming of irregular applications

that crunch large data sets. It presents a shared-memory style programming system that is

transformed into an object centric program that runs efficiently on a cluster of machines

using software Distributed Shared Memory (DSM), thus simplifying the task of programming

for the user. The programming interface comprises of very simple high-level extensions

to the C++ language. The runtime employs sophisticated runtime techniques to speedup

distributed software speculation and leverage the InfiniMem library to transparently spill

data that cannot fit in local memory to the disk and transparently load the required data

back into local node’s memory. InfiniMem is built on a random-access efficient object

data format on disk, well suited and tailored for the access patterns generated by irregular

applications. Specifically, we highlight the contributions as follows:

105

Address Emerging Workloads

The focus of this thesis is irregular applications. Decreasing cost of storage and

compute along with a massive proliferation of interest in data sciences for user data analysis

has sparked a new interest in graph processing applications like PageRank. These applications

process very large graphs as input. A typical computation usually requires a node and all

its immediate neighbors – and this is iterated over all nodes in the graph. Parallelizing

such loops with runtime cross iteration dependencies is a challenge and so is storing this

data on disk when it cannot fit in available memory, since it generates random accesses.

Our two-pronged solution of applying distributed software speculation and a random-access

efficient data format on disk effectively tackles the emerging irregular applications.

Scale-up on Single Machines

While hardware cost has gone down and it is monetarily inexpensive to add

machines to the cluster to handle larger data sizes, it is still wasteful if each machine is not

utilized completely. The thesis presents InfiniMem as a way to scale-up individual machines

by leveraging the local disk.

Given that the distribution of neighbors in the graph can be only known at runtime,

there is no good one-size-fits-all solution to nicely organize the data structure for strided or

similar ‘regular’ access when the inputs are large and need to be stored on disk. Therefore,

computation on such inputs generally requires and generates random or ’irregular’ accesses

for data. Therefore, efficiently storing and retrieving such data from disk is a challenge

which we solve here, not just for graphs, but for any arbitrary data type.

106

Additionally, we leverage multiple cores for balancing computation and communi-

cation on individual machines for efficient use of system resources while achieving significant

performance gains.

Scale-out on Clusters

Addition of machines to the cluster theoretically scales-out the compute power.

However, achieving significant gains practically is a different ball game. For example, if the

application cannot be effectively parallelized, then compute power of the cluster does not

matter to such programs. With irregular applications, since neighbors can only be discerned

at runtime, the cross-iteration dependencies can also only be known at runtime, effectively

requiring serial computation. We adapt software speculation DSM clusters, aiding with

scale-out performance. In addition, we present techniques that leverage existing DSM cache

structures to extract performance on the cluster, further pushing the scale-out performance.

Easy Programming and Fast Prototyping

Prior systems like CRL boasted rich features but required manual programming

coupled with the need for arcane knowledge of the application domain, making it very

hard to be generally adopted. Our language consists of just two simple to use language

constructs. Our framework is also general-purpose, highly customizable and easy to program

with. We also demonstrate that the InfiniMem framework can be used to quickly prototype

specialized, single machine frameworks like GraphChi with relative ease.

107

7.2 Future Directions

Application in Diverse Domains

Domains like bioinformatics and computational genomics involve algorithms that

process large graph-like connected structures. Therefore, such domains can also benefit

from size oblivious irregular programming. Future work can explore the applicability and

customization of our proposed solutions to those specific domains.

Additionally, since InfiniMem can handle arbitrary data types, studying additional

domains could give us more insights into alternate data formats and how our proposed data

format can be evolved, if needed.

Scale to Larger and non-DSM Clusters

Our experiments on distributed speculation were on a cluster with up to 8 machines,

for a total of up to 256 cores. Scaling to larger clusters could potentially pose additional

problems which do not manifest on smaller clusters. For example, bottlenecks from increased

communication. We wish to explore this scalability in the future.

Distributed Memory (DM) systems, as opposed to Distributed Shared Memory

(DSM) systems are in vogue today. Achieving speculation on DM systems will allow us to

explore new problems and opportunities in the absence of caching, in message passing, work

migration and related DM opportunities.

108

Reliable Computing

As InfiniMem spills data transparently to disk and transparently loads data from

disk, InfiniMem can be applied in fault tolerant, reliable computing by way of automatic

checkpointing and restore. Additionally, this format can also be used for persistent data

when quick random access are a high priority.

109

Bibliography

[1] Kevork N Abazajian, Jennifer K Adelman-McCarthy, Marcel A Agüeros, Sahar S
Allam, Carlos Allende Prieto, Deokkeun An, Kurt SJ Anderson, Scott F Anderson,
James Annis, Neta A Bahcall, et al. The seventh data release of the sloan digital sky
survey. The Astrophysical Journal Supplement Series, 182(2):543, 2009.

[2] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An evaluation
of directory schemes for cache coherence. In ACM SIGARCH Computer Architecture
News, volume 16, pages 280–298. IEEE Computer Society Press, 1988.

[3] Cristiana Amza, Alan L Cox, Sandhya Dwarkadas, Li-Jie Jin, Karthick Rajamani,
and Willy Zwaenepoel. Adaptive protocols for software distributed shared memory.
Proceedings of the IEEE, 87(3):467–475, 1999.

[4] Cristiana Amza, Alan L Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakr-
ishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. Treadmarks: Shared memory
computing on networks of workstations. IEEE Computer, 29(2):18–28, 1996.

[5] Ching Avery. Giraph: large-scale graph processing infrastruction on hadoop. Proceed-
ings of Hadoop Summit. Santa Clara, USA:[sn], 2011.

[6] David A Bader and Kamesh Madduri. Gtgraph: A synthetic graph generator suite.
Atlanta, GA, February, 2006.

[7] Henri E Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen,
Tim Rühl, and M Frans Kaashoek. Performance evaluation of the orca shared-object
system. ACM Transactions on Computer Systems (TOCS), 16(1):1–40, 1998.

[8] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language
for parallel programming of distributed systems. IEEE Transactions on Software
Engineering, 18:190–205, 1992.

[9] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

[10] John K Bennett, John B Carter, and Willy Zwaenepoel. Munin: Distributed shared
memory based on type-specific memory coherence, volume 25. ACM, 1990.

110

[11] Jon Berry and Greg Mackey. The multithreaded graph library, 2014. https://

software.sandia.gov/trac/mtgl.

[12] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages
72–81, 2008.

[13] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software
transactional memory for large scale clusters. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 247–258, 2008.

[14] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression tech-
niques. In Proc. of the Thirteenth International World Wide Web Conference (WWW
2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[15] Erik B. Boman, Doruk Bozdaǧ, Unit Catalyurek, Assefaw H. Gebremedhin, and
Fredrik Manne. A scalable parallel graph coloring algorithm for distributed memory
computers. In EURO-PAR, pages 241–251, 2005.

[16] Hans P. Zima Bradford L. Chamberlain, David Callahan. Parallel programmability
and the chapel language. International Journal of High Performance Computing
Applications, 21(3):291–312, 2007.

[17] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J Carey. A bloat-aware design
for big data applications. In Proceedings of the 2013 international symposium on
International symposium on memory management, pages 119–130. ACM, 2013.

[18] Protocol Buffers. Google’s data interchange format, 2011.

[19] David Callahan and Ken Kennedy. Compiling programs for distributed-memory
multiprocessors. J. Supercomputing, 2(2):151–169, 1988.

[20] Nuno Carvalho, Paolo Romano, and Lúıs Rodrigues. Asynchronous lease-based
replication of software transactional memory. Middleware 2010, pages 376–396, 2010.

[21] Nuno Carvalho, Paolo Romano, and Lúıs Rodrigues. Asynchronous lease-based
replication of software transactional memory. MIDDLEWARE 2010, pages 376–396,
2010.

[22] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: bulk enforce-
ment of sequential consistency. In ISCA, pages 278–289, 2007.

[23] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive
model for graph mining. In SDM, volume 4, pages 442–446. SIAM, 2004.

[24] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn, Chuck
Koelbel, and Lauren Smith. Introducing openshmem: Shmem for the pgas commu-
nity. In Proceedings of the Fourth Conference on Partitioned Global Address Space
Programming Model, page 2. ACM, 2010.

111

https://software.sandia.gov/trac/mtgl
https://software.sandia.gov/trac/mtgl

[25] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. Acm Sigplan Notices, 40(10):519–
538, 2005.

[26] Jeffrey S. Chase, Darrell C. Anderson, Andrew J. Gallatin, Alvin R. Lebeck, and
Kenneth G. Yocum. Network i/o with trapeze. In HOTI, 1999.

[27] Thomas Cheatham, Amr Fahmy, Dan Stefanescu, and Leslie Valiant. Bulk synchronous
parallel computing—a paradigm for transportable software. In Tools and Environments
for Parallel and Distributed Systems, pages 61–76. Springer, 1996.

[28] Yi-Jen Chiang, Michael T Goodrich, Edward F Grove, Roberto Tamassia, Darren Erik
Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms. In Proceedings
of the sixth annual ACM-SIAM symposium on Discrete algorithms, pages 139–149.
Society for Industrial and Applied Mathematics, 1995.

[29] Alokika Dash and Brian Demsky. Automatically generating symbolic prefetches for
distributed transactional memories. Middleware 2010, pages 355–375, 2010.

[30] Alokika Dash and Brian Demsky. Integrating caching and prefetching mechanisms in a
distributed transactional memory. Parallel and Distributed Systems, IEEE Transactions
on, 22(8):1284–1298, 2011.

[31] Alokika Dash and Brian Demsky. Integrating caching and prefetching mechanisms in
a distributed transactional memory. TPDS, 22(8):1284–1298, 2011.

[32] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with ordering
guarantees. In International Conference on Data Engineering (ICDE), pages 424–435,
2004.

[33] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[34] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[35] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm on
distributed memory multiprocessors. In Large-Scale Parallel Data Mining, pages
245–260, 2000.

[36] Edsger W. Dijkstra. The origin of concurrent programming. chapter Cooperating
sequential processes, pages 65–138. 2002.

[37] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang.
Software behavior oriented parallelization. In ACM SIGPLAN Notices, volume 42,
pages 223–234. ACM, 2007.

[38] Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A multi-platform co-array
fortran compiler. In PACT, 2004.

112

[39] Tarek El-Ghazawi and Lauren Smith. Upc: unified parallel c. In Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 27. ACM, 2006.

[40] Min Feng, Rajiv Gupta, and Yi Hu. Spicec: scalable parallelism via implicit copying
and explicit commit. In ACM SIGPLAN Notices, volume 46, pages 69–80. ACM, 2011.

[41] Min Feng, Rajiv Gupta, and Iulian Neamtiu. Effective parallelization of loops in the
presence of I/O operations. In ACM Coference on Programming Language Design &
Implementation (PLDI), pages 487–498, 2012.

[42] Joao Fernandes. Speculative execution on distributed and replicated software
transactional memory systems. http://www.gsd.inesc-id.pt/~ler/reports/

joaofernandesea.pdf.

[43] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal, 2004(124):5,
2004.

[44] The MPI Forum. Mpi: Message passing interface. 1993. http://www.mcs.anl.gov/
research/projects/mpi/index.htm.

[45] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
ACM SIGOPS operating systems review, volume 37, pages 29–43. ACM, 2003.

[46] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Proceedings
of the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 17–30, 2012.

[47] Douglas Gregor, Nick Edmonds, Alex Breuer, Peter Gottschling, Brian Barrett, and
Andrew Lumsdaine. The parallel boost graph library. The Trustees of Indiana
University, 2005.

[48] William Gropp. Mpich2: A new start for mpi implementations. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, pages 7–7. Springer, 2002.

[49] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Liblit, G. Pike, J. Su,
and K. Yelick. Titanium language reference manual. U.C. Berkeley Tech Report,
UCB/EECS-2005-15, 2005.

[50] Facebook Inc. Rocksdb. http://rocksdb.org/.

[51] Google Inc. Leveldb. http://leveldb.org/.

[52] Bryan Jacobs, Tongxin Bai, and Chen Ding. Distributed speculative program paral-
lelization.

[53] C. Janna and M. Ferronato. 3d model of a steel flange, hexahedral finite elements., 2011.
http://www.cise.ufl.edu/research/sparse/matrices/Janna/Flan1565.html.

113

http://www.gsd.inesc-id.pt/~ler/reports/joaofernandesea.pdf
http://www.gsd.inesc-id.pt/~ler/reports/joaofernandesea.pdf
http://www.mcs.anl.gov/research/projects/mpi/index.htm
http://www.mcs.anl.gov/research/projects/mpi/index.htm
http://rocksdb.org/
http://leveldb.org/
http://www.cise.ufl.edu/research/sparse/matrices/Janna/Flan1565.html

[54] Yunlian Jiang and Xipeng Shen. Adaptive software speculation for enhancing the cost-
efficiency of behavior-oriented parallelization. In Parallel Processing, 2008. ICPP’08.
37th International Conference on, pages 270–278. IEEE, 2008.

[55] Anoop Gupta John L. Henessey, Mark Heinrich. Cache-coherent distributed shared
memory: perspectives on its development and future challenges. Proceedings of the
IEEE, 87:418–429, 1999.

[56] Kirk Lauritz Johnson, M Frans Kaashoek, and Deborah A Wallach. CRL: High-
performance all-software distributed shared memory, volume 29. ACM, 1995.

[57] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In ACM
SIGARCH Computer Architecture News, volume 25, pages 252–263. ACM, 1997.

[58] E Jul, H Levy, N Hutchinson, and A Black. An object-oriented language and system
that indirectly supports dsm through object mobility. University of Washington
Technical Report, 1988.

[59] Magnus Karlsson and Per Stenström. Effectiveness of dynamic prefetching in multiple-
writer distributed virtual shared-memory systems. Journal of Parallel and Distributed
Computing, 43(2):79–93, 1997.

[60] George Karypis and Vipin Kumar. Metis-unstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995.

[61] Ilya Katsov. Probabilistic data structures for web analytics and data min-
ing. https://highlyscalable.wordpress.com/2012/05/01/probabilistic-structures-web-
analytics-data-mining/, May 2012.

[62] Michael Kistler and Lorenzo Alvisi. Improving the performance of software distributed
shared memory with speculation. Parallel and Distributed Systems, IEEE Transactions
on, 16(9):885–896, 2005.

[63] Sai Charan Koduru, Min Feng, and Rajiv Gupta. Programming large dynamic data
structures on a dsm cluster of multicores. In 7th International Conference on PGAS
Programming Models, page 126, 2013.

[64] Giorgos Kollias, Ananth Y Grama, and Zhiyuan Li. Asynchronous iterative algorithms.
In Encyclopedia of Parallel Computing, pages 87–95. Springer, 2011.

[65] Masanori Koshiba, Shinji Maruyama, and E Hirayama. A vector finite element method
with the high-order mixed-interpolation-type triangular elements for optical waveguid-
ing problems. Lightwave Technology, Journal of, 12(3):495–502, 1994. http://www.

cise.ufl.edu/research/sparse/matrices/Dziekonski/dielFilterV3real.html.

[66] Christos Kotselidis, Mohammad Ansari, Kimberly Jarvis, Mikel Lujan, Chris Kirkham,
and Ian Watson. DiSTM: A software transactional memory framework for clusters. In
International Conference on Parallel Processing (ICPP), pages 51–58, 2008.

114

http://www.cise.ufl.edu/research/sparse/matrices/Dziekonski/dielFilterV3real.html
http://www.cise.ufl.edu/research/sparse/matrices/Dziekonski/dielFilterV3real.html

[67] Christos Kotselidis, Mohammad Ansari, Kimberly Jarvis, Mikel Lujan, Chris Kirkham,
and Ian Watson. Investigating software transactional memory on clusters. In IEEE
Parallel & Distributed Processing Symposium (IPDPS), pages 1–6, 2008.

[68] Elzbieta Krepska, Thilo Kielmann, Wan Fokkink, and Henri Bal. A high-level frame-
work for distributed processing of large-scale graphs. In Distributed Computing and
Networking, pages 155–166. Springer, 2011.

[69] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. Lonestar:
A suite of parallel irregular programs. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2009.

[70] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin
Casçaval. How much parallelism is there in irregular applications? In ACM SIGPLAN
Notices, volume 44, pages 3–14. ACM, 2009.

[71] Vamsi K Kundeti, Sanguthevar Rajasekaran, Hieu Dinh, Matthew Vaughn, and Vishal
Thapar. Efficient parallel and out of core algorithms for constructing large bi-directed
de bruijn graphs. BMC bioinformatics, 11(1):560, 2010.

[72] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int.
Conf. on World Wide Web Companion, pages 1343–1350, 2013. http://userpages.
uni-koblenz.de/~kunegis/paper/kunegis-koblenz-network-collection.pdf.

[73] George Kurian, Jason E. Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jurgen
Michel, Lionel C. Kimerling, and Anant Agarwal. Atac: a 1000-core cache-coherent
processor with on-chip optical network. In International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 477–488, 2010.

[74] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th international conference
on World wide web, pages 591–600. ACM, 2010.

[75] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph
computation on just a pc. In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 31–46, 2012.

[76] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization (CGO), 2004.

[77] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral
marketing. ACM Transactions on the Web (TWEB), 1(1):5, 2007. http://snap.

stanford.edu/data/amazon0302.html.

[78] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[79] Yi Lin, Bettina Kemme, Marta Patiño Mart́ınez, and Ricardo Jiménez-Peris. Middle-
ware based data replication providing snapshot isolation. In Special Interest Group on
Management of Data (SIGMOD), pages 419–430, 2005.

115

http://userpages.uni-koblenz.de/~kunegis/paper/kunegis-koblenz-network-collection.pdf
http://userpages.uni-koblenz.de/~kunegis/paper/kunegis-koblenz-network-collection.pdf
http://snap.stanford.edu/data/amazon0302.html
http://snap.stanford.edu/data/amazon0302.html
http://snap.stanford.edu/data

[80] Haiming Liu and Weiwu Hu. A comparison of two strategies of dynamic data prefetching
in software dsm. In Parallel and Distributed Processing Symposium., Proceedings 15th
International, pages 6–pp. IEEE, 2001.

[81] Lixia Liu and Zhiyuan Li. Improving parallelism and locality with asynchronous
algorithms. In ACM Sigplan Notices, volume 45, pages 213–222. ACM, 2010.

[82] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint arXiv:1006.4990, 2010.

[83] Mary E. Mace. Memory storage patterns in parallel processing. Kluwer Academic
Publishers, 1986.

[84] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, pages 135–146. ACM, 2010.

[85] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, pages 135–146. ACM, 2010.

[86] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting distributed
version concurrency in a transactional memory cluster. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages 198–208, 2006.

[87] Rob Misek and Jon Purdy. Types of cache coherence. October 2006.

[88] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and Analysis of Online Social Networks. In Proceedings
of the 5th ACM/Usenix Internet Measurement Conference (IMC’07), San Diego, CA,
October 2007.

[89] Luiz Rodolpho Monnerat and Ricardo Bianchini. Efficiently adapting to sharing
patterns in software dsms. In High-Performance Computer Architecture, 1998. Pro-
ceedings., 1998 Fourth International Symposium on, pages 289–299. IEEE, 1998.

[90] Yasukazu Nakamura, Takehide Kosuge, Jun Mashima, Yuichi Kodama, Takatomo
Fujisawa, Eli Kaminuma, Osamu Ogasawara, Kousaku Okubo, and Toshihisa Takagi.
Ddbj-dna data bank of japan. 2014. http://www.ddbj.nig.ac.jp.

[91] Cosmin E Oancea, Jason WA Selby, Mark Giesbrecht, and Stephen M Watt. Distributed
models of thread level speculation. In PDPTA, volume 5, pages 920–927, 2005.

[92] Victor Olman, Fenglou Mao, Hongwei Wu, and Ying Xu. Parallel clustering algo-
rithm for large data sets with applications in bioinformatics. IEEE Transactions on
Computational Biology and Bioinformatics (TCBB), 6(2):344–352, 2009.

116

http://www.ddbj.nig.ac.jp

[93] MPI Open. Open source high performance computing, 2012.

[94] Jeffrey Oplinger, David Heine, Shih-Wei Liao, Basem A Nayfeh, Monica S Lam, and
Kunle Olukotun. Software and hardware for exploiting speculative parallelism with a
multiprocessor. Computer Systems Laboratory, Stanford University, 1997.

[95] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. 1999.

[96] Roberto Palmieri, Francesco Quaglia, and Paolo Romano. Osare: Opportunistic
speculation in actively replicated transactional systems. In Reliable Distributed Systems
(SRDS), 2011 30th IEEE Symposium on, pages 59–64. IEEE, 2011.

[97] David Patterson. The trouble with multi-core. IEEE Spectrum, 47(7):28–32, 2010.

[98] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-scale
data analysis. In Special Interest Group on Management of Data (SIGMOD), pages
165–178, 2009.

[99] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber Hassaan,
Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-
Lojo, et al. The tao of parallelism in algorithms. In ACM SIGPLAN Notices, volume 46,
pages 12–25. ACM, 2011.

[100] Prakash Prabhu, Ganesan Ramalingam, and Kapil Vaswani. Safe programmable
speculative parallelism. In ACM Sigplan Notices, volume 45, pages 50–61. ACM, 2010.

[101] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH: Practical
static race detection for C. ACM Transactions on Programming Languages and Systems
(TOPLAS), 33(1):3:1–3:55, 2011.

[102] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed shared memory:
Concepts and systems. IEEE Concurrency, 4(2):63–79, 1996.

[103] Mukund Raghavachari and Anne Rogers. Understanding language support for irregular
parallelism. In Parallel Symbolic Languages and Systems, pages 174–189. Springer,
1996.

[104] Lawrence Rauchwerger, Nancy M Amato, and David A Padua. Run-time methods for
parallelizing partially parallel loops. In Proceedings of the 9th international conference
on Supercomputing, pages 137–146. ACM, 1995.

[105] Lawrence Rauchwerger and David A Padua. The lrpd test: Speculative run-time
parallelization of loops with privatization and reduction parallelization. Parallel and
Distributed Systems, IEEE Transactions on, 10(2):160–180, 1999.

[106] Lawrence Rauchwerger and David A. Padua. The lrpd test: Speculative run-time
parallelization of loops with privatization and reduction parallelization. Parallel and
Distributed Systems, IEEE Transactions on, 10(2):160–180, 1999.

117

[107] Kaushik Ravichandran and Santosh Pande. Multiverse: efficiently supporting dis-
tributed high-level speculation. ACM SIGPLAN Notices, 48(10):533–552, 2013.

[108] Paolo Romano, Roberto Palmieri, Francesco Quaglia, Nuno Carvalho, and Lúıs
Rodrigues. Brief announcement: on speculative replication of transactional systems.
In Proc. of SPAA, pages 69–71, 2010.

[109] Seyed H. Roosta. Parallel Processing and Parallel Algorithms: Theory and Computation.
2000.

[110] Peter Rundberg and Per Stenström. An all-software thread-level data dependence
speculation system for multiprocessors. Journal of Instruction-Level Parallelism,
3(1):2002, 2001.

[111] Barbara G. Ryder and Ben Wiedermann. Language design and analyzability: a
retrospective. Software: Practice and Experience (SP&E), 42(1):3–18, 2012.

[112] Daniel J Scales and Kourosh Gharachorloo. Shasta: A system for supporting fine-grain
shared memory across clusters. In PPSC. Citeseer, 1997.

[113] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta:
a low overhead, software-only approach for supporting fine-grain shared memory. In
Architectural Support for Programming Languages and Operation Systems (ASPLOS),
pages 174–185, 1996.

[114] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R.
Larus, and David A. Wood. Fine-grain access control for distributed shared memory. In
Architectural Support for Programming Languages and Operation Systems (ASPLOS),
pages 297–306, 1994.

[115] Nir Shavit and Dan Touitou. Software transactional memory. In ACM Symposium on
Principles of Distributed Computing (PODC), pages 204–213, 1995.

[116] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10:99–116, 1997.

[117] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework for
shared memory. In Proceedings of the 18th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 135–146. ACM, 2013.

[118] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[119] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[120] Jeremy Siek, L Lee, and Andrew Lumsdaine. The boost graph library (bgl).
http://www.boost.org, 2000.

118

[121] Guy L Steele Jr. Making asynchronous parallelism safe for the world. In Proceedings of
the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 218–231. ACM, 1989.

[122] Lubos Takac and Michal Zabovsky. Data analysis in public social networks. In Int’l.
Scientific Conf. & Int’l Workshop Present Day Trends of Innovations, 2012.

[123] Chunqiang Tang, DeQing Chen, Sandhya Dwarkadas, and Michael L. Scott. Integrating
remote invocation and distributed shared state. In IEEE Parallel & Distributed
Processing Symposium (IPDPS), 2004.

[124] Cristian Ţăpuş and Jason Hickey. Speculations: providing fault-tolerance and recover-
ability in distributed environments. In Proceedings of the Second conference on Hot
topics in system dependability, pages 10–10. USENIX Association, 2006.

[125] TM Team et al. Apache mahout project, 2014.

[126] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing solution
over a map-reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–1629,
2009.

[127] Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra. External
Memory Algorithms and Visualization, 50:161–179, 1999.

[128] Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision tree induction based
on efficient tree restructuring. Machine Learning, 29(1):5–44, 1997.

[129] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. Aspire: exploiting asynchronous
parallelism in iterative algorithms using a relaxed consistency based dsm. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, pages 861–878. ACM, 2014.

[130] Shuqing Wu and Bettina Kemme. Postgres-R(SI): Combining replica control with
concurrency control based on snapshot isolation. In International Conference on Data
Engineering (ICDE), pages 422–433, 2005.

[131] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. Graphx: A
resilient distributed graph system on spark. In First International Workshop on Graph
Data Management Experiences and Systems, page 2. ACM, 2013.

[132] Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, and Tadashi
Watanabe. The K computer: Japanese next-generation supercomputer development
project. In ISLPED, pages 371–372, 2011.

[133] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages 10–10, 2010.

119

[134] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly
using de bruijn graphs. Genome research, 18(5):821–829, 2008.

[135] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and
Alexander S Szalay. Flashgraph: processing billion-node graphs on an array of
commodity ssds. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies, pages 45–58. USENIX Association, 2015.

[136] Craig Zilles and Gurindar Sohi. Master/slave speculative parallelization. In Microar-
chitecture, 2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM International
Symposium on, pages 85–96. IEEE, 2002.

120

	List of Figures
	List of Tables
	Introduction
	Dissertation Overview
	Programming Interface
	Speculation on Shared-Memory Clusters
	Efficient I/O for Large Irregular Inputs

	Dissertation Organization

	Programming Interface for Size Oblivious Programming
	High-level Language for Size-Oblivious Irregular Parallelism
	Low-level API for Size-Oblivious Irregular Parallelism
	Object-centric Programming
	Low-level API

	The SpeClang Compiler and Runtime
	Summary

	Infinimem: Size Oblivious Programs on a Single Machine
	Size Oblivious Programming
	Motivating Applications
	A Naive Approach
	Our Solution

	The InfiniMem Programming Interface
	Identifying Large Collection of Objects
	Processing Data

	InfiniMem's I/O Efficient Object Representation
	Evaluation
	Programmability
	Performance
	Scalability

	Summary

	ABC2: Adaptively Balancing Computation and Communication in DSM Clusters
	The Need for Distributed Software Speculation
	Communication Bottleneck on Multicore Machines
	Dynamically Adaptive Communication
	Motivating Study
	Adapting Communication for Distributed Speculative Parallelism

	ABC2: An Adaptive Runtime Framework
	System Design
	The ABC2 Algorithm
	Evaluation of ABC2

	Summary

	Distributed Software Speculation on Caching DSMs
	Speculation on Caching-based DSM Systems
	Interplay Between Distributed Software Speculation and Distributed Caching
	Distributed Caching and Speculation Protocol
	Cache Size vs. Misspeculation Rate

	Optimizing Distributed Speculation
	Piggybacking Version
	Early Misspeculation Detection
	Fast Recovery

	Evaluation of Optimizations
	Overall Speedups from Optimizations
	Combining Optimizations
	Integration with Infinimem

	Summary

	Related Work
	Programming Interface
	Programming Large Data
	Programming Speculation

	Size Oblivious Programming
	Out-of-core Computations
	Processing on a Single Machine

	Distributed Shared Memory Software Systems
	Latency Tolerance Mechanisms
	Distributed Software Speculation

	Conclusions and Future Work
	Contributions
	Future Directions

	Bibliography

