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Abstract

Basin-scale Hydrologic Experiment by Means of a Wireless-Sensor Network System

by

Ziran Zhang

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Steven D. Glaser, Chair

The use of wireless sensor networks(WSN) to study the mountain hydrologic cycle has been
proposed as a supplement to existing systems used for ground-based hydrologic and ecolog-
ical monitoring. Historically, the study of mountain hydrology and the water cycle has been
largely modeling with limited data, with meteorological forcing and hydrological variables ex-
trapolated from a few infrequent manual measurements. Recent developments in Internet
of Things (IoT) technology are revolutionizing the field of mountain hydrology. Low-power
WSNs can now generate denser data in realtime and for a fraction of the cost of labor-intensive
manual measurement campaigns. This research details the requirements and different tech-
nical options, describes the technology deployed in the American River basin, and discusses
the methods associated with modeling large-scale environmental monitoring in extreme con-
ditions. The American River Hydrologic Observatory (ARHO) project has deployed fourteen
low-power wireless IoT networks throughout the American River basin to monitor California’s
snowpack. A network of sensors for spatially representative water-balance measurements was
developed and deployed across the 2154 km2 snow-dominated portion of the upper American
River basin, primarily to measure changes in snowdepth and soil-water storage, air tempera-
ture, and humidity. The WSNs, each has 10 measurement nodes that were strategically placed
within a 1-km2 area, across different elevations, aspects, slopes and canopy covers.

The research evaluates the accuracy of a machine-learning-based path-loss model to es-
timate the expected radio-transmission distances. The model is trained on 42,157,324 RSSI
samples collected over seven months from the ARHO WSN. The 2218 links in the network span
across the upper portion of the American River basin and are deployed in a complex environ-
ment, with large variations of terrain attributes and vegetation coverage. The model is based on
an ensemble regression-tree machine-learning algorithm (Random Forest). The independent
variables used in the model include path distance, canopy coverage, terrain variability, and path
angle. The accuracy of this model is compared to several well-known canonical and empirical
propagation models. This model showed a 37% reduction in the average prediction error com-
pared to the canonical/empirical model with the best performance. The research presents an
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in-depth discussion on the strengths and limitations of the proposed approach as well as op-
portunities for further research.

Compared to existing operational sensor installations, the ARHO WSN reduces hydrologic
uncertainty in at least three ways. First, redundant measurements improved estimation of
lapse rates for air and dew-point temperature. Second, distributed measurements captured
local variability and constrained uncertainty in the air and dew-point temperature, snow ac-
cumulation and derived hydrologic attributes important for modeling and prediction. Third,
the distributed relative-humidity measurements offer a unique capability to monitor upper-
basin patterns in dew-point temperature and better characterize elevation gradient of water
vapor-pressure deficit. Network statistics during the first year of operation demonstrated that
the ARHO WSN was robust for cold, wet and windy conditions in the basin.

Using daily dew-point temperature and the amount of snow accumulation at each node to
estimate the fraction of rain versus snow resulted in an underestimate of total precipitation be-
low the 0 oC dew-point elevation, which averaged 1730 m across 10 precipitation events. Blend-
ing lower-elevation rain-gauge data with higher-elevation sensor-node data for each event pro-
vided precipitation estimates that were on average 15-30% higher than using either set of mea-
surements alone. Using data from the current operational snow-pillow sites give even lower es-
timates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a
warming climate, a strategy that blends distributed measurements of both liquid and solid pre-
cipitation will provide more-accurate basin-wide precipitation estimates. The distributed, rep-
resentative sensor-network measurements also improve upon operational estimates of snow-
pack water storage, snowmelt amount and snowmelt timing across the basin.
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Chapter 1

Introduction

Quantitative information on mountain water cycles at the basin scale almost non-existent; the
limited measurements that are available are largely provided by a few operational precipita-
tion, snowpack-storage, and stream-gauging stations. These tend to represent a limited range
of elevations, weather and snow conditions, with precipitation and snow measured in the up-
per regions and streamflow in the lower regions of the mountain basin. The data from moun-
tain basins is limited, and limited information about the massive gradients that occur from
basin outflow to headwaters across the western United States. Research networks include a few
selected headwater catchments where a complete set of meteorological and hydrological at-
tributes are carefully measured. While these catchments offer specialized information on some
aspects of mountain hydrology, they provide only a limited understanding the hydrology of
larger mountain river basins. Climate warming is raising the rain-snow transition elevation
and changing the hydrologic response of mountain basins. While we can see these changes
in data from research catchments, extending these findings to the larger mountain basin re-
mains a challenge. At the scale of large mountain basins, evapotranspiration, soil moisture,
and groundwater recharge/discharge are generally not measured and the spatial properties of
energy-balance variables driving the mountain hydrologic cycle are poorly measured across the
region.

Snowmelt from the Sierra Nevada provides more than half of the developed water supply
for the state of California. A severe drought in the recent years has motivated an increased
stakeholder interest in a finer monitoring of this resource. There is a growing need for bet-
ter streamflow predictions to allow more-efficient dam operations, for hydropower generation,
flood control, and drought mitigation. Different strategies have recently gained attention from
both governmental agencies and utilities companies, and are being employed to improve snow-
pack monitoring. They include remote-sensing (MODIS), aerial Light Detection and Ranging
(LiDAR), in-situ sensors, weather forecasts and ideally their synergistic combination. Though
satellite remote sensing typically covers wide areas, it lacks fine spatial resolution, and thus
is complemented with finer resolution limited range techniques such as LiDAR and in-situ
sensors. Snowpack and soil-moisture storage, and the fluxes into and out of these reservoirs,
are not precisely measured; and the spatial properties of energy-balance variables driving the
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mountain water cycle are poorly quantified across the region.
A basin-scale instrument cluster was developed, as part of the goal of this dissertation,

to make comprehensive water-balance measurements across the rain-snow transition in the
American River basin of the Sierra Nevada. This is the American River Hydrologic Observatory
(ARHO, arho.org). Quantifying the water balance at greater spatial and smaller temporal reso-
lutions is critical to research in atmospheric science, biogeochemistry, ecosystem science, and
water resources, and is central to research in hydrologic science. It has enabled new science for
which no adequate infrastructure currently exists. Such a rich data set will enable development
of new classes of modeling tools to produce quantitative climate assessments, influence hy-
drologic forecasting, probe system response to climate and land-cover perturbations, increase
process understanding of basin-scale water cycles, and provide defensible scenarios for infras-
tructure planning all over a scale currently not possible. New measurement will promote new
models to be developed for more accurate representation of the processes governing snow and
snowmelt.

1.1 Document organization

Three research questions motivated the research reported in this document:

• What are the requirements for WSNs to become a viable ground-based measurement sys-
tem, and what is the methodology needed for designing and deploying WSN systems for
snow monitoring?

• How can a new network connectivity model help guiding future WSN deployments?

• What hydrologic insights can a spatially distributed and temporally resolved information
provided by WSN offer?

The dissertation is organized to answer these questions.
Chapter 2 examines the requirement, design, and deployment methods of using WSNs. This

chapter provides a detailed description of the technology and the system concept, architecture,
hardware, and software. Some existing (wireless) sensor network platforms were compared to
the system used in this research in this chapter to illustrate how they are different.

Chapter 3 uses real-world data, collected from the ARHO, to develops a connectivity model
of wireless signals. The results are compared to existing propagation models to show a 37%
reduction in the average prediction error using the proposed machine-learning method.

Chapter 4 gives a formal description to the methodology of using WSN as a main tool for
in-situ snow monitoring in the American River basin. It discusses the methods for using WSN
technology in mountain hydrology studies through an analysis of an extensive monitoring cam-
paign. Data-use scenarios are also given in this chapter. An evaluation of the field performance
of our WSN system devices is also provided.

Chapter 5 provides insights into mountain precipitation and snowpack through analysis of
the data. This chapter describes how to better characterize the rain/snow transition zone on
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the mountain slopes using the WSN. It also provides a quantitative estimate of the amount of
snowpack on the mountain and discusses the snowmelt patterns.
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Chapter 2

Wireless sensor network preliminaries

2.1 Introduction

There is an increasing amount of attention and resources spent on developing WSNs in scien-
tific and operational research. The momentum of adopting wireless solutions is fueled by re-
duced production cost of wireless equipment, advances in the development of networking pro-
tocols, and the synergies wireless technology creates by combining traditionally wired sensing
equipment with a wireless platform [4, 33, 120]. Among different kind of wireless applications,
wireless platforms/test-beds in outdoor environments are especially enticing to researchers be-
cause of the challenges and the opportunities offered; it is simply too impractical to run wires
for hundreds of meters through the woods. Over the last ten years, many WSNs have been
deployed over various spatial scales, showing some success in monitoring environmental phe-
nomenon with distributed arrays of sensors. Dozens, sometimes hundreds of wireless sensor
nodes hosting non-trivial numbers of sensors were put into outdoor environment to measure
and monitor air temperature [66], relative humidity, snow depth [56], soil moisture [9, 14, 65],
permafrost [44], forest fire [42], potential landslides [104]and volcanic activities [112]. The use
of WSNs and actuators for monitoring and controlling various aspects of agricultural activities
had also gained tremendous attention over the years [11, 57, 40].

WSN is a field that has grown out of the initial work done at the University of California,
Berkeley [85, 70, 47]. Coming from the concept of “smart dust”, the expectations is extremely
low power consumption so the network nodes can run off batteries for extended periods of
time, which means low power radio since the transceiver is the largest user of the sensor node,
known as a “mote”. The motes should form a reliable self-managed self-assembling redundant
mesh network. Each mote carries computation, memory, and all the necessary signal condi-
tioning to operate the needed sensors. The motes on the network are closely time-synchronized
so that temporally-based analyses are possible. Given a large enough power budget all these
tasks are not difficult.

There is special interest in developing WSN platform to perform sensing and real-time mon-
itoring tasks in remote mountainous watersheds. Historically, the study of mountain hydrology
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and the water cycle has been largely observational, with meteorological forcing and hydrolog-
ical variables extrapolated from a few or even individual measurement sites situated at non-
representative locations [89, 93, 94, 24]. Traditionally, very few point measurements were made
over usually very large area by sensors hosted on met towers situated at non-representative
locations [19]. Large deployments of WSN in the wilderness represent an increasing demand
for detailed information about hydrological and meteorological events. The data WSNs can
provide are crucial for advancing understanding of watershed science [8]. Distributed mea-
surements of hydrological variables were done by painstaking manual surveys at a far coarser
temporal resolution (monthly) compared to what WSNs can provide. Samples in a WSN can be
taken and transmitted at a sub-hourly frequency and the motes are dispersed in patterns that
capture the variance and mean of the catchments to provide detail insight needed for accurate
modeling and predictions.

2.2 Previous studies of outdoor WSN applications

In situ hydrological and meteorological information is difficult to obtain from distributed loca-
tions due to logistic constraints associated with harsh weather. Many studies have been per-
formed to examine the possibility of using WSNs to obtain more detailed knowledge from re-
mote watersheds. Early campaigns of using WSN for habitat monitoring lead by Berkeley en-
gineers had shown both the both the opportunities and technical challenges in applying this
new technology to environmental monitoring [70, 103]. A 12 stations deployment, from June to
October 2009, in a 20-km2 catchment of the Swiss Alps measured the spatial variability of mete-
orological forcing parameters such as temperature and precipitation [101]. Recently, densely
deployed WSNs have been scaled to a size comparable to the mountaintops being studied.
Ninety-nine sensor-loggers, within three 40-180 km2 basins, were deployed to monitor snow
cover dynamics in southern Germany for one winter [86]. Bogena et al.[14] installed 150 wire-
less nodes, with over 600 soil moisture sensors in the forest catchment of Wustebach, Germany
to study the spatiotemporal distribution of soil moisture over complex terrain. Over 300 sen-
sors hosted by 60 wireless nodes are deployed at the Southern Sierra Critical Zone Observatory
to study complex interaction of water within the snowpack, canopy, and soil [56].

2.3 Requirements and options

Remote environmental sensing places unique requirements on the network interconnecting
the sensors. Section 2.3 starts by listing those requirements; Section 2.3 then details the net-
working options in light of those requirements. The goal of the ARHO project is not to develop
a new networking technology, but rather to “bring it all together” by integrating the appropriate
off-the-shelf networking solution with environmental sensors.
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Requirements for remote environmental sensing

Placement of the sensing nodes is generally expertly determined and depends mainly on some
hydrological characteristics of the terrain. The networking technology must be able to support
the placement of nodes at arbitrary locations. Moreover, for the collected data to be physio-
graphically representative, the network of sensors must be able to cover 1-2 km2 and be com-
prised of up to 60 network devices.

Sites of interest are scattered throughout the Sierra Nevada, and reaching some sites re-
quires hours of driving through forest roads that are closed during the winter. The networks
must, therefore, be able to run “on their own” without any mandatory user intervention. They
must be able to withstand large temperature swings, self-heal in the case of environmental
changes, and hopefully run for several years without human intervention.

Each node must be able to report sensor measurements . Assuming a 60-node network, this
translates in the network generating one packet every 15 seconds. The network must success-
fully and securely transport the sensors data to a gateway device [38, 98]. The user must be
offered remote monitoring capabilities, i.e. the ability to remotely assess the health of the net-
work. Hydrologists must be able to access the data gathered by the sensors within minutes of
when it was measured.

Present solutions for WSNs : A comparison of existing technologies

Environmental data loggers such as the Campbell CR1000, very well know in the hydrology
community, store time-stamped sensor data on the internal memory, which can be retrieved
manually. While off-line logging does not satisfy the “real-time” requirement, it is an interesting
option, at least for keeping a copy of the data locally in case of networking problems.

Wired equipment

A first networking option is to use wired technology to interconnect the different sensors. This
is the technology used by commercial products such as Campbell. This is not an option for the
ARHO for the following reasons. First, there is significant additional cost and time associated
with covering a 1-2 km2 with wires. Second, the state of California and the US Forest Service has
strict rules on deploying equipment in the Sierra Nevada; interconnecting sensors using wires
would be too intrusive. Finally, the weight of snow-pack, falling objects, and animal curiosity
are likely to inflict damage to wires laying on, or shallowly buried, in the ground [94, 57].

Cellular, WiFi, BlueTooth technology

Wireless is the technology which fits the requirement of Section 2.3 the best. Cellular coverage
on some sites is non-existent, spotty on others; equipping each sensor with a cellular modem is
therefore not an option. An IEEE802.11 (low-power) WiFi network would force a star topology;
given the size of the deployments, WiFi doesn’t offer the range required. WiFi consumes a com-
paratively very large amount of power compared to the mote. The range of Bluetooth and the
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size of piconet prevent us from using this possible solution. To offer a 2-year battery lifetime,
assuming a 17,000 mAh Li-Ion battery, a communicating node must draw at most 970 uA, on
average.

Sensor networks are made up of motes. This term, from its definition “a small speck of
dust,” was coined at UC Berkeley to describe a very small, low-power device that incorporates
a radio transceiver, computational power, data storage, and sensors. There are many commer-
cially available motes with many different standards. Different motes were designed for differ-
ent purposes such as research, education, hobbyists, indoor industrial or outdoor monitoring
and control applications. The question is why to pick one hardware solution over another? Our
primary consideration focuses on how well the networking protocols were implemented to en-
sure performance and robustness. We also look into the hardware flexibility to satisfy needs
for interfacing with different sensors. We focus on the most popular of motes that comply with
the IEEE 802.11.15.4 standards for power-savings reasons and availability. IEEE802.15.4 [52] is
a wireless technology which can satisfy the requirements. It offers a good balance between data
rate (250 kbps), communication range (50-100 m outdoors) and power consumption (a radio
chip consumes 5-25 mA when on, depending on the vendor). Communication protocols en-
able the radio to be heavily duty-cycled (enough to reach the 970 uA on average current draw
above) and form a multi-hop topology. The challenge is that IEEE802.15.4 is “just” the physical
layer; a complete flurry of protocols, products, and open-source implementations build on top
of it. Properties and specifications of two main families of motes along with our solutions were
investigated.

Mica-II, Iris, TelosB, Lotus

Memsic Inc. provides a number of low-power motes (MICA, TelosB, and Lotus) that are 802.11.5.4
compatible. The MICA and TelosB design go back almost twenty years to the early UC Berkeley
work. The LOTUS mote with a Cortex M3 processor and ZigBee radio provides the most internal
memory for the OS and application software among Memsic motes. Several operating systems
(RTOS, MoteRunner and TinyOS) can be ported to LOTUS. However, some problems with the
network-routing protocol and channel-management protocols remain. Operating on a single
channel makes them vulnerable to network instabilities resulting from signal interference and
multi-path effects. The current draw from the LOTUS and MDA300 board is estimated to be
around 17 mA at 3V when transmitting. The mote depletes two AA batteries in approximately
five months when set to transmit for 3 seconds every 15 minutes. The data-acquisition board
(MDA300) provides seven single-ended and one (multiplexed to four) differential 12-bit ADC
channels. In addition, the digital I/O support is very limited on this board.

ZigBee and Xbee

ZigBee is a protocol stack that builds on top of IEEE802.15.4 radio. ZigBee motes represent
a popular family of wireless motes that share common communication protocols and speci-
fications (network layer and application layer) by implementing a ZigBee software stack [21].
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In practice, ZigBee operates as a star network. Although it is theoretically possible to form a
mesh-like network topology, it has two major shortcomings. Firstly, a subset of motes has to be
pre-selected and programmed as dedicated routing nodes to relay data from the end/leaf node
to the coordinator. The RX channel of those router elements has to be constantly powered,
which results in high overall energy consumption of 5-25mA [49], well above the 970 uA limit.
Secondly, ZigBee operates on a single channel, making it difficult to avoid channel interference
due to other ISM sources such as WI-FI, and multipath [2]. In Gungor 2009[37] and Huang
2012[50], the authors discuss how this prevents ZigBee from meeting industrial requirements,
and is therefore also our requirements. Recent large-spread hacker attacks have shown the Zig-
Bee network security to be non-existent.

Digi International maintains a family of motes called XBee. The XBee 2.4 GHz-band mote
has its own proprietary protocol called DigiMesh that seriously suffers from environmental in-
terference and varying effects of multipath because it does not implement channel hopping
[53]. In order to achieve low power in a DigiMesh network, the system needs to enter a synchro-
nized sleep mode. Due to the lack of a central network coordinator, a subset of the DigiMesh
motes needs to be constantly running to serve as sleep coordinators (i.e., network manager).
Those motes continuously broadcast sync message to the surrounding nodes to keep the net-
work assembled, otherwise the message transmitted to a mote during the sleeping period will
be permanently lost [53]. Another possible issue for DigiMesh network in synchronized sleep
mode is that when a new mote is added to the network, it needs to be physically near a sleep
coordinator to receive a sync message in order to join the network [118]. If a node temporar-
ily drops out, it is permanently lost, and an extended trial and error installation is difficult.
XBees are commonly interfaced with Arduino single-board computers to provide facilities to
host sensors, compute, and store data. The Arduino Uno R3, with no external load from sensors
and other components, consumes about 40 mA at 5V. The Uno R3 uses a slow and outdated At-
mega328P (8-bit/16MHz) microprocessor with a 10-bit analog to digital converter that provides
only six analog pins and fourteen digital pins to interface with the sensors and other equipment.
Similar issues with power and flexibility can be found with solutions provided by Raspberry Pi,
which consumes 700 mA at 5V, making it impractical to operate with a battery. Systems with
Arduino and Raspberry Pi are best kept indoors where sufficient power input is provided. They
are not recommended for long-term outdoor deployments, as they were designed for hobbyist
use.

SmartMesh IP

SmartMesh IP is an off-the-shelf low-power wireless networking product, developed by the Dust
Networks product group at Linear Technology, which satisfies all requirements listed in Sec-
tion 2.3. A SmartMesh IP network is multi-hop in nature, with a single gateway device (called
“manager”) and up to 100 motes. The protocol stack it uses is rooted in IEEE802.15.4e Time Syn-
chronized Channel Hopping (TSCH), a new networking technology in which nodes are tightly
synchronized, and where a communication schedule orchestrates all the communication in the
network [109]. This results in over 99.999% end-to-end reliability, and router nodes drawing less
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than 50 µA on average [107]. The capacity of a network is 25 packets per second, which is well
above the one packet every 15 s requirement of our application.

A SmartMesh IP network is composed of a manager and up to 100 motes. The motes form a
redundant multi-hop and self-healing wireless mesh network around the manager.

The core of a manager or mote is the LTC5800 chip, specifically designed for SmartMesh IP,
and which features an ARM Cortex-M3 microcontroller and an IEEE802.15.4-compliant radio
chip. Because it is specifically designed for SmartMesh IP, the LTC5800 features hardware ac-
celeration for common operations, resulting in ultra-low-power operation.

45,000 SmartMesh networks are deployed today, in application domains ranging from in-
dustrial process monitoring and city-wide parking solutions to building monitoring and remote
sensing. SmartMesh IP provides over 99.999% end-to-end reliability and less than 50µA average
current draw on routing nodes, translating to over a decade of lifetime on typical batteries.

The network stack used in SmartMesh IP is rooted in the IEEE802.15.4e TSCH standards.
In a TSCH network, nodes are tightly time-synchronized, and time is cut into timeslots. All
communication is orchestrated by a schedule that indicates to each mote what to do in each
timeslot: transmit, receive or sleep. The schedule is built in such a way that nodes only switch
their radio on when they actually communicate, yielding radio duty cycles well below 1%. When
communicating, nodes sent successive packets at different frequencies. The resulting channel
hopping is known to combat external interference and multi-path fading efficiently [2, 12, 23,
69, 84, 106], the two main sources of unreliability in low-power wireless networks.

The network stack used in SmartMesh IP combines the performance of TSCH (through the
IEEE802.15.4e standard) and the ease-of-use of IPv6. Each SmartMesh IP devices can be as-
signed a globally unique IPv6 address, significantly simplifying Internet integration. Through
several sets of keying material, and the use of an AES-128 cipher, all frames exchanged in a
SmartMesh IP network are secured. At any point in time, a device can be administratively re-
moved from the network. Thanks to the underlying TSCH technology, nodes are tightly syn-
chronized (a handful ofµs maximum de-synchronization between neighbor nodes). This means
the events measured can be accurately timestamped, or that several nodes in the network can
coordinate actuation.

The manager plays an important role. First, it serves as the gateway between the low-power
wireless mesh and the Internet. Second, it is responsible for building and maintaining the TSCH
schedule. The manager monitors the topology of the network and the application-level com-
munication requirements of the nodes, and continuously adjusts the schedule accordingly. The
result is that the network adapts to topological changes. Finally, the manager is responsible for
coordinating the join process of new motes, which includes a security handshake, and handing
out the appropriate keying material.

In a SmartMesh IP network, each node has at least two routing parents. In case one of the
parents is switched off or removed, the second parent is used to reliably route the node’s pack-
ets. To be able to exploit this path diversity, nodes need to be deployed in a sufficiently dense
manner. The rule by Dust Networks is that each node should be able to “hear” at least three
other nodes.
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The TSCH schedule provides a clean trade-off between bandwidth and power consumption.
The more data a mote has to send, the more activity it will have in its communication schedule,
and hence the more it consumes. Based on the communication requirements, it is possible to
accurately predict the current draw of a node [107], which typically ranges between 10 µA and
50 µA.

2.4 Metronome Systems neoMote

Metronome Systems provides a comprehensive solution for the sensor node called the neo-
Mote, which was developed at UC Berkeley. It combines the DUST Networks Eterna radio mod-
ule with a Cypress Programmable System on Chip (PSoC5) into a two-chip solution. While
DUST Network radios provide robust and reliable wireless networking capability, PSoC pro-
vides full support to any peripheral. The PSoC offers an array of configurable system blocks
that can be dynamically added to a project for a particular application. For instance, the board
can interface up to 40 analog and/or digital sensors at once, providing all analog and digital
signal conditioning and excitation. The PSoC building blocks are available to a drag-and-drop
interface and are reprogrammable over the radio. The neoMote provides 3.3, 5, and 12Vdc ex-
citation to sensors. Interfacing with an SD-card slot provides additional storage for data and
system parameters. In addition, the board is ultra-low power. Power consumption is 30 mA, 60
in 20-bit A/D mode, with transmission adding 10 mA, two to three orders of magnitude lower
than the previous solutions. The network is controlled by a Metronome Systems network man-
ager, which also interfaces the data with the outside world. It is based on a full LINUX com-
puter, while only consuming 50 mA at 5V. It runs a full database and sends the data out through
a variety of modems. DUST Networks, a division of Linear Technology, provides an industrially
rated ultra-low power fully-meshed wireless networking platform. The dynamic network allows
seamless joining and rejoining by any mote or hopper. A few technical details properties of the
DUST mote make it superior to other choices. The SmartMesh IP software utilizes time syn-
chronized mesh protocol (TSMP) that maintains complete network synchronization to 10 mS,
which minimizes the “on-time” to listen for the beacon.

Incorporating TSCH reduces interference within the communication channels through the
diversity of frequency at which each packet is sent [85]. Adding diversity to the channel selec-
tion reduces the adverse effect of multipath fading in the wireless network. The typical duty
cycle of the DUST radio module is < 1% while keeping communication reliability 99.999%. The
DUST network is unique in that it constantly collects a wide variety of network statistics, which
allows for the later optimization of a network.

The Metronome system provides for Internet-of-Things capability, such that one can de-
liver programs remotely to sensor nodes to resync real-time clock settings, change firmware,
sampling interval, sensor gain, etc.
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(a) Manager (b) NeoMote (c) repeater node

Figure 2.1: The Metronome Systems hardware used in the ARHO project.

The Metronome Systems Ecosystem

Linear Technology sells generic communication modules (a small 24 mm × 42 mm board),
which can be easily integrated into a complete solution. Metronome Systems (http://metronomesystems.com/)
has done this integration, and offers an ecosystem of SmartMesh IP-enabled boards, which the
ARHO project is using. Section 2.4 details the Metronome Systems ecosystem we use. Metronome Sys-
tems’ “ecosystem” of low-power wireless devices is chosen in this application.

The Manager (Fig. 2.1a) is a single-board Linux computer connected to a SmartMesh IP
manager module, encased in a robust and water resistance enclosure. Besides the advantage
of being built to cope with the extreme Sierra Nevada weather, the Manager consumes only
50 mA at 5 V on average, much less than the raspberryPi (700 mA) or Arduino boards (500 mA).
In the ARHO project, the Manager is connected to a cellular or satellite modem, as detailed in
Section 2.4.

The NeoMote (Fig. 2.1b) is the sensing heart of the ARHO network. It is composed of a
SmartMesh IP module and a Cypress Programmable System on Chip (PSoC5). The SmartMesh IP
module provides robust and reliable wireless networking capability, the PSoC interfacing capa-
bilities to any sensor and actuator. The PSoC offers an array of configurable system blocks that
can be dynamically added to a project for a particular application. For instance, the board can
interface up to 40 analog and/or digital sensors at once, providing all analog and digital signal
conditioning and excitation. The PSoC building blocks are available to a drag-and-drop inter-
face and are reprogrammable over the radio. The NeoMote supports 3.3V, 5V and 12V sensors.
Interfacing with an SD-card slot provides additional storage for data and system parameters. In
addition, the board is ultra-low power. The PSoC consumes 30µA at 3.3 V, 60µA when the 20-bit
A/D mode is active. In the ARHO project, the NeoMote is connected to sensors and mounted
on a sensor node as detailed in Section 2.4.

The repeater node (Fig. 2.1c) consists of a SmartMesh IP mote and a carrier board with a
D-cell 17 Ah battery. In the ARHO project, the repeater node is used as a relay in case the sensor
nodes are spread too far apart in the deployment field, as detailed in Section 2.5.
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Figure 2.2: A sensor node is composed of: (1) a NeoMote low-power wireless mote; (2) a break-
out board; (3) a memory card for local data logging; (4) a rechargeable battery; (5) a snow depth
sensor; (6) temperature and relative humidity sensors; (7) a pyranometer (solar radiation) sen-
sor; (8) a solar panel; (9) an omni-directional antenna; and (10) underground volumetric soil
moisture sensors.

The sensor node: Interfacing sensors

The NeoMote is the “sensing heart” of an ARHO network. Through the PSOC microcontroller,
it can connect to any sensor or actuator, through digital or analog interfaces. In the ARHO
project, the NeoMotes with sensors attached were enclosed in a waterproof enclosure mounted
on a mast. These poles, typically 5 m high, were secured into the ground at strategic locations
throughout the deployment site.

Fig. 2.2 depicts such as sensor node. A waterproof box contains all the electronics, includ-
ing a rechargeable battery. This box is typically mounted 2 m above the ground, so it can be
accessed both when there is, and when there is no snow. A number of elements are mounted
on a cross arm at the top of the pole. These include solar panel, as a well solar radiation, tem-
perature, humidity and snow depth sensor. The latter is an ultrasonic range finder oriented
down; it sends “chirps” and measures the time it takes for the sounds to bounce on the snow
and return to its built-in microphones. Soil moisture sensors are placed at different depth in the
ground to monitor the water seeping through the soil. All these elements are connected to the
main electronics box through kevlar tubing, after animals, including bears, chewed and broke
traditional electric wiring in early deployments.

The sensor nodes were pre-assembled in the laboratory, and transported by truck to a de-
ployment site. At the site, the cross arm and mast were fastened, and the pole was secured into
the ground using a U-channel. Installing a single pole takes approximately 1 hour for a team of
two.
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The base station: Internet connectivity

The manager is attached to a sturdy 3 in diameter, 4 m long steel mast secured on a concrete
foundation. The manager is connected to a cellular modem (Sierra Wireless RavenX) or satellite
modem (Inmarsat BGAN 9502). When available, we prefer cellular connectivity as it is cheaper
and provides more stable services. Five sites are connected using cellular, five sites using satel-
lite. The other four sites have their gateways yet to be installed.

The main role of this cellular/satellite connection is to upload the sensor data and network
statistics onto the servers located in the back-end at UC Berkeley (see Section 2.6). In addition,
it allows one to log into the Linux computer of the manager remotely to inspect the network,
reprogram the network, and update the software running on the manager.

2.5 Deployment strategy

An ARHO network is composed of one manager, 10-11 sensor nodes, and a number of relay
nodes in case some sensor nodes are deployed too far apart from the rest of the network to have
radio connection.

We deployment an ARHO network as follows. The locations of the sensor nodes are chosen
based on their hydrological importance and representativeness. In a typical deployment, the
sensor nodes cover an area between 1 km2 and 1.5 km2. The location of the manager is chosen
so it has good cellular connectivity, or in an open area for good satellite connectivity.

Once the sensor and gateway poles are in place, and the devices turned on, we use the mon-
itoring tools built in the manager to verify the connectivity between the sensors. We place relay
nodes in an iterative fashion, each time verifying the updated connectivity information. The
rules provided by Dust Networks are for each node to have at least three neighbors with which
it has a connection with a Received Signal Strength Indicator (RSSI) higher than -85 dBm. Re-
play nodes are added until that rule is satisfied. In a typical network, 20 to 30 relay nodes are
added to ensure connectivity and path-redundant.

2.6 Back-end system

The back-end system consists of a server running at UC Berkeley, and which is responsible for
receiving the data from the deployed ARHO networks, storing it in a database and presenting
the data over a web interface on a first-come-first-served basis. Each manager of an ARHO net-
work sends the sensor data and topological information to the back-end server, using the cel-
lular or satellite connection, periodically. Sensor data is also stored locally on each NeoMote’s
internal memory as backup.

The size of the American River Basin and the number of devices deployed as part of the
ARHO project confirm the clear advantages of using low-power wireless technology over a wired
solution. The idea of using an off-the-shelf low-power wireless solution has proven a successful
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one, although the ARHO project has demonstrated that the networking aspect is only a very
small piece of the challenge.

This project has highlighted the importance of network monitoring and management tools.
Although the SmartMesh IP manager offers a complete interface to query the state of the net-
work, receive alerts, and verify the performance of the network, what is missing is a multi-
network management interface. Such a solution would complement an existing SmartMesh IP
network by offering a unified interface to assist during network deployment, visualize the net-
work, run network health routines, display the sensor data, and log maintenance activity. This
tool is developed through collaboration with the REALMS associate team (https://realms-team.github.io/).
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Chapter 3

The method and evaluation of a basin-scale
wireless sensor network for mountain
hydrology

3.1 Introduction

In environmental monitoring applications, sensors are often deployed in remote regions. In
the ARHO deployment, it takes hours of driving and hiking to get to a deployment site, and in-
stalling a single node takes about about an hour. When the snow season starts, the deployment
sites are usually inaccessible for 3-4 months. A trial-and-error deployment, in which nodes are
added/moved over the course of a couple of days to obtain the right connectivity, is hence not
an option. When we install a new node, we need to be able to make an informed guess at how
well that node will connect to already installed nodes. A key tool for making that guess is a con-
nectivity model. Given different features of the deployment (the distance between the nodes,
the amount of vegetation, etc), that model must produce the best possible prediction of the Re-
ceive Signal Strength(RSS) between that node and different other nodes in the network. Note
that the term RSS and Receive Signal Strength Indicator (RSSI) are used interchangeably in this
chapter.

Such a connectivity model is a basic building block for planning the physical connectivity of
a deployment, regardless of the type of networking technology being used (star topology, multi-
hop redundant mesh network). Even though, in the ARHO networks, we are using a particular
type of low-power mesh network (see Section 3.2), the methodology developed in this chapter is
not tied to that networking technology, and applies equally well to star networks. Similarly, even
through we focus on low-power wireless networks deployed in forested mountainous areas, the
methodology can apply to any deployment area, as long as the data used to train the model
resembles the data to predict (see an in-depth discussion in Section 3.6).

Propagation models (equations) are a natural choice for predicting connectivity. Yet, canon-
ical path-loss models are ill-suited in complex terrain due their simplifying assumptions of
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plane earth or free space environments. In order to address these limitations, empirical path-
loss models that parametrize the effects of vegetation on path-loss in a variety of settings. But
although these models attempt to capture the excess power loss as a function of frequency and
foliage depth, they are otherwise univariate (i.e. they are only a function of distance).

The ARHO networks produce on average 10 times more network statistics than sensor mea-
surements. Part of these statistics are RSSI measurements: each node reports the RSSI of the
link to each of its neighbors, every 15 minutes. Over the course of 1-year, we have collected
42,157,324 measurements, together with the topographic and other features about each of the
2218 wireless links in the deployments. This dataset and gives us a unique opportunity to quan-
tify the performance of the propagation models.

Perhaps more importantly, having this dataset allows to think about connectivity models
in a radical new way. In traditional propagation models, one creates an equation which ap-
proximates the observed data, and fine-tunes the parameters in a univariate equation (multi-
pliers, exponents, etc.) so it matches the data points best. We proposed to use a completely
agnostic “big data” approach by associating to each of RSSI measurements a set of features
(distance, vegetation, terrain, etc. between the communicating nodes) and train a multivariate
non-parametric model so it learns which features are most important in predicting the RSSI.
The result of the this machine learning approach is a predictor: given a new set of features
(e.g. a new node is added), is it able to predict the RSSI over that link. The connectivity dataset
allows us to quantify the performance of this approach through cross-validation. This allows us
to evaluate the accuracy of the machine learning method used, which is based on an ensemble
of regression trees (Random Forest). This is a multivariate, non-parametric method in which an
ensemble of decision trees are trained on existing data.

The contributions of this article are threefold:

• We present a connectivity dataset consisting of 42,157,324 RSSI measurements gathered
on 2218 wireless links in the ARHO networks.

• We develop a machine learning approach to predict link quality by training on this dataset.

• We evaluate (i) the suitability of traditional and this Machine Learning-based model for
predicting the RSSI in complex environments, (ii) whether features other than distance
play a role in the prediction of RSSI in complex terrain, and (iii) the strengths and limita-
tions of our machine learning-based methodology.

The remainder of this article is organized as follows. Section 3.2 describes the large-scale
connectivity dataset. Section 3.3 discusses related connectivity models for forested environ-
ments. Section 3.4 presents the machine learning model we propose. Section 3.5 evaluates the
performance of the machine learning and canonical models. Section 3.6 summarizes the key
findings, discusses the strengths and limitations of the proposed approach and presents the
opportunities for further research.
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3.2 A large-scale real-world connectivity dataset

The connectivity data we use in this article is gathered from the deployed network discribed in
Section 3.

Besides generating sensor measurements, the network continuously produces network statis-
tics for an operator to be able to assess its “health”. The network generates approximately
10 times more network statistics than sensor measurements. Each node in the network pro-
duce a “Health Report” every 15 min which contains the list of neighbors it is communicating
with, and – among other things – the average RSSI of the packets it received from that neigh-
bor over the past 15 min. Over the course of 1 year, we have collected 42,157,324 such RSSI
measurements from the 2218 wireless links that make up the ARHO deployments.

Note that we chose to use two different types of omni-directional antennas with different
gain level to adapt with the terrain challenges. Pairs of 6-dB gain antennas were used on “flat”
areas with less than 10-degree slopes. When the slope between to radios are greater than 10-
degree, we switch to pairs of 4-dB antennas. The lower-gain antennas has a wider beam width
in the vertical direction, hence the performance is improved on severe slopes.

Every entry in the dataset of RSSI values is annotated with a set of “features” to characterize
the topographic and canopy structures between the two nodes which have exchanged the data
used to make that RSSI measurements. The location of the deployed nodes are logged with a
handheld GPS unit (Magellan Explorist 710). Features at the associated locations are extracted
from two digital raster maps. We use a 30 m resolution digital elevation model (DEM) from the
National Elevation Dataset (www.nationalmap.gov/elevation.html). The DEM stores elevations
above sea level in meters for the latitude and longitude coordinates of each pixel. Each pixel is
30 m wide in the North-South direction. The spacing varies in the east-west direction, depend-
ing on latitude. The clusters are separated with distances from 10 to 50 km. Features associated
to canopy density are extracted from a percent-tree canopy cover raster developed by the Na-
tional Land Cover Database (NLCD) with 30 m resolution (www.mrlc.gov/nlcd2011.php). The
NLCD map gives a relative canopy density value ranging from 0 to 100, representing the per-
centage of tree canopy cover for each pixels [48].

The features we annotate each RSSI measurement with are:

1. Path ground distance (a number in meters): the distance between the two radios com-
municating for this RSSI measurement, calculated from their GPS locations and eleva-
tions.

2. Mean percent tree canopy cover (a number between 0% and 100%): the average pixel
value from the NLCD vegetation map along the line-of-sight path between the two com-
municating nodes.

3. Terrain complexity: the standard deviation of the raster values from the DEM along the
line-of-sight path between the two communicating nodes.

4. Vegetation variability: the standard deviation of the raster values of the NLCD vegetation
map along the line-of-sight path between the two communicating nodes.
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5. Path angle: the angle between the line-of-sight path between the two communicating
nodes and horizontal.

6. Source canopy coverage: the bi-linear interpolated values of the NLCD vegetation map
pixels at the source and receiver locations, a number between 0% and 100%.

7. Receiver canopy coverage: same calculation as the “Source canopy coverage” feature, but
at the receiver node.

3.3 Related Connectivity Models for Forested Environments

The aim of a propagation model is to predict the expected connectivity. Models based on
the physics of the diffusion of electromagnetic waves in an ideal medium (Friis propagation)
provide a first-order approximation of the expected connectivity. Second order models, such
as “plane earth” account for constructive/destructive interference based on the height of the
transmitter and receiver nodes, and the assumption of an ideal flat and empty environment.
These propagation models are described in Section 3.3.

In forested environments, signal strength is attenuated by vegetation. Related work has fo-
cused on empirically modeling the excess signal strength loss due to canopy, based on field
measurements. These models are described in Section 3.3.

Canonical Propagation Models

The simplest path-loss model is “free space” propagation. It assumes unobstructed, line-of-
sight decay of an electromagnetic wave, based on the Friis transmission equation, see (3.1) (and
equation (1) in [62] “free space”).

Pr

Pt
= GtGrλ

2

(4π)2d 2L
(3.1)

In (3.1), Pt is power transmitted by the transmitter, Pr is power received by the receiver, Gt

and Gr are the gains of the antennas at the transmitter and receiver, respectively, λ is the signal
wavelength (m), d is the distance between the transmitter and receiver (m), L is the system loss
factor (equal to 1 for free space, but modified in the empirical models detailed Section 3.3).

“Free space” propagation does not capture the effect of ground reflection. The “plane earth”
is a second canonical model which takes into account the effect of ground reflection, under the
assumption of an infinite ground plane, see (3.2) (or (2a) in [62]).

Pr

Pt
= 2

GtGr

L
(
λ

4πd
)2[1− cos(kω

2ht hr

d
)] (3.2)

In (3.2), hr and ht are the heights of the transmitter and receiver (m), respectively, kw is the
wave number (m−1).
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Empirical Propagation Models in Forested Environments

While canonical plane earth and free space path loss models provide a first-order approxima-
tion of path loss, their simplifying assumptions make them unrealistic in the general case. We
are looking for a model representative of our deployments in forested environments. Models
specific to this environment model the excess loss induced by the foliage characteristics be-
tween each link. They modify the loss factor (L) from the canonical models. Well-known prop-
agation models for forested environments include Weissberger’s modified exponential decay
model [110], the ITU Recommendation (ITU-R) model [54] and the COST235 model [41].

The Weissberger [110] model assumes that propagation occurs through a dense body of dry
trees (see (4) in [62]). It assumes that propagation only occurs through the trees, and is not
diffracted over the top of the trees. The loss factor is given by (3.3).

LW ei ss =
{

1.33 f 0.284d 0.558 14 m < d < 400 m
0.45 f 0.284d 0 m < d <14 m

(3.3)

In (3.3), LW ei ss is the loss due to foliage, f is the transmission frequency (GHz), d is the
distance between transmitter and receiver (m).

Another common propagation model is ITU-R [54]. Like Weissberger, it assumes that the
majority of the signal propagates through a body of trees (See (5) in [62]). The measurements
for ITU-R were primarily made in the Ultra High Frequency (UHF) range. The loss factor is
given by (3.4).

L I TU−R = 0.2x f 0.3d 0.6 (3.4)

In (3.4), f is the transmission frequency (MHz), d is the distance between transmitter and
receiver (m).

The Weissberger and ITU-R models do not account for seasonality (i.e. differing amounts of
vegetation when trees have leaves or are bare). In order to account for this effect, the COST235
model [41] was developed based on measurements carried out over two seasons when trees are
“in-leaf” and “out-of-leaf”. Measurements were made in the millimeter-wave frequencies (9.6
to 57.6 GHz). The resulting parametrization is given by (3.5).

LCOST 235 =
{

26.6 f −0.2d 0.5 out-of-leaf
15.6 f −0.009d 0.26 in-leaf

(3.5)

In (3.5), f is the transmission frequency (MHz), d is the distance between transmitter and
receiver nodes (m).

Several other models have been developed to take into account specific characteristics.
In [39], the authors derive path loss as a function of trunk height gain k for a pine tree en-
vironment. The authors in [6] model RSSI inside a forest, based on factors such as the average
density of trees, or the average trunk diameter. They find that the path loss coefficient decreases
linearly with the average tree density multiplied by the trunk diameter. The authors in [20] use
high-resolution LiDAR data to calibrate a log-normal path loss-model.
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Figure 3.1: Comparing the different canonical (Section 3.3) and empirical propagation models
(Section 3.3) against the measurements gathered on the 2218 wireless links of the ARHO net-
works (Section 3.2).

Comparison to Real Data

All of the canonical and empirical propagation models in Sections 3.3 and 3.3 are equations.
Starting from ideal physics in the canonical models, the empirical propagation models fine-
tune some parameters of those equations (e.g. the system loss factor L) so the resulting equation
better matches some experimentally gathered data. These models use the distance between
nodes as the only variable.

Since we have collected a large number of real-world RSSI measurements on the 2218 wire-
less links from the ARHO networks, we are interested in seeing how well the models surveyed in
Section 3.3 are able to match the measurements. We plot in Fig 3.1 the RSSI as a function of dis-
tance predicted by the different models, and overlay our measurements. In the models, we set
the parameters to match that of our deployment: Gt = 4 dBi, Gr = 4 dBi, λ= c

2.4 G H z (c being the
speed of light), ht = hr = 5 m. Fig. 3.1 suggests the models do not match our empirical data well,
and over-estimate the measured RSSI. Moreover, the shape of the signal strength decay is not
exponential: at short distances, there is much greater signal strength variability than predicted
by the models.

To quantify the error between the models and the measurements, we use each of the models
on each of the 2218 wireless links in the dataset. We record the difference between the RSSI
predicted by the models, and the average RSSI of that link over the year of measurement. Fig 3.2
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Figure 3.2: Distribution of errors under canonical and empirical models (top panels), compared
to proposed model (bottom panel) for year-averaged RSSI data.

shows the results as a histogram. Table 3.1 contains the average and standard deviation of the
prediction error for the distributions shown in Fig 3.2.

It is clear from Fig. 3.1 and Table 3.1 that the models cannot be used as-is to accurately
predict the RSSI between two nodes deployed in the field. Other phenomena besides distance
and vegetation affect signal strength, including specifics about the environment we deploy in
(e.g. terrain), or the hardware we use (e.g. transmission power, antenna matching, antenna
alignment, radiation pattern). We could produce another model, in which we take into account
these phenomena, and create an equation that best matches our data. Yet, we believe that such
matching makes the model more specific to a particular set of empirically-gathered data, and
less generally usable. We question whether using a simple equation is the right approach.
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Table 3.1: Performance evaluation of the propagation models to the ARHO dataset.

Model Name Avg. Error, dBm SD Error, dBm
Free space [116] 20.5 8.60
Plane earth [116] 17.8 6.92
Weissberger [110] 6.65 4.70
ITU-R [54] 6.37 4.64
COST235 [41] 5.91 4.37
Proposed model 3.74 3.40

Our conclusion is that trying to model every physical phenomenon in an equation is a non-
starter. Minute changes to the environment (e.g. node position [108], antenna alignment, the
quality of the antenna connector) can cause the RSSI to vary by over 10 dB. Understanding,
measuring and modeling each of these phenomena is unfeasible for any real deployment. Our
intuition is that we should instead learn from the wireless links deployed now and predict the
performance of wireless links installed in the future. Section 3.4 develops this idea, and presents
a model based on an Ensemble Regression-Tree algorithm (a common algorithm used in Ma-
chine Learning). We show how this model achieves a 37% reduction in the average prediction
error compared to the canonical/empirical model with the best performance.

3.4 A Machine Learning Model

Given the limitations of the canonical and empirical models, we want to determine whether
a multivariate connectivity model could be trained on the RSSI measurements and associated
features described in Section 3.2, and used to predict RSSI at un-instrumented locations. We de-
scribe machine learning and ensemble regression-tree in Section 3.4, and the proposed model
in Section 3.4.

Overview of Machine Learning

Machine-learning algorithms are trained to identify patterns in historical data. This is very dif-
ferent from the canonical and empirical models surveyed in Section 3.3, which fit a specific
function “a priori”. Patterns learned by these algorithms can be non-linear, multivariate, and
can be used both for predicting which category a piece of data belongs to (classification), and
predicting continuously-valued outputs from a set of inputs (regression). Algorithms in ma-
chine learning are broadly divided into two categories: “supervised” and “unsupervised.” Su-
pervised algorithms require observations of the output to learn patterns. Unsupervised algo-
rithms learn patterns in the space of independent variables without observations of the depen-
dent variable (e.g. clustering). The field of machine learning has seen a number of recent ap-
plications to low-power wireless networking, including for localization and routing [1]. In this



CHAPTER 3. THE METHOD AND EVALUATION OF A BASIN-SCALE WIRELESS SENSOR
NETWORK FOR MOUNTAIN HYDROLOGY 23

study, we have observations of the output (the RSSI), and try to predict a continuously valued
function. We hence design a “supervised regression” machine learning solution.

A number of algorithms can be used to solve supervised regression problems, including:
Support Vector Machines, Neural Networks, Nearest Neighbors, Gaussian Processes, and Deci-
sion Trees. Of these, Decision Trees are considered to be one of the best off-the-shelf algorithms
because they are not sensitive to independent variable scaling or the inclusion of irrelevant vari-
ables. [31] Also, decision trees are not “black-box” models: each split in the decision tree can
be inspected once the model is trained. A single decision tree is known overfit data [30]. To
address this, Random Forests combine estimates from multiple trees using a random selection
of features to arrive to a consensus of the true output [16]. This process prevents the model
from over-fitting the data (i.e. fitting the noise rather than the trend). The accuracy of the algo-
rithm is affected by parameters of the estimator such as the maximum tree depth and the size
of the ensemble. Decision tree depth controls the maximum depth of the decision tree (i.e. how
many splits on the independent variables are made). The size of the ensemble is the number of
decision trees the outputs are averaged over. In general, a small ensemble with deep decision
trees has a greater tendency to overfit than a shallow ensemble of many decision trees. These
parameters must be tuned for the RSSI model, which is discussed in Section 3.4.

Once the model is trained, its indicates which features are more important. This is calcu-
lated by computing the out-of-bag sampling error (MSE) during training, then permuting each
predictor variable and computing the difference in sampling errors. The process is described in
detail in [16].

Model Implementation

We develop the connectivity model using Scikit-Learn version 17.1, an open-source machine
learning package implemented in Python (http://scikit-learn.org/). We first divide the average
annual RSSI data along the 2218 links into three subsets using randomized sub-sampling (”test
train split” in Scikit-Learn). We use standard splitting ratios: training (50%), cross-validation
(25%), testing (25%). Training and cross-validation sets are used to determine the optimal pa-
rameters for the model (decision tree depth and number of estimators). We use the Random
Forest Regressor module and perform a grid-search process over the set of potential parame-
ters for n estimators (the number of estimators) and max depth (the maximum decision tree
depth). We use mean squared error as the criterion of split quality, and use bootstrapped sam-
ples when building the decision trees. Min samples split is set to 2. Min samples leaf is set to
1.

3.5 Model Validation and Results

To validate the model, we use data not used during the training process. We train the model
using the best parameters determined in Section 3.4, and evaluate the model’s accuracy on the
cross-validation dataset selected at random from the available data. We discuss the accuracy of
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Figure 3.3: RSSI predictor accuracy compared to an ideal predictor (blue line) on the testing
dataset of 555 RSSI measurements.

the model on the cross-validation dataset in Section 3.5. We then discuss the relative contribu-
tion of each independent variable in Section 3.5.

RSSI Prediction Accuracy

The accuracy of the predictor on the 555-sample cross-validation dataset is depicted in Fig. 3.3.
The blue line represents an ideal predictor; black points is the predicted data for the 555-sample
cross-validation dataset. The coefficient of determination (R2) of the predictor is 0.70. The
predictor exhibits a slight positive bias at very low values of RSSI (less than -85 dBm) and a
slight negative bias at values greater than -85 dBm. Overall, the predictor exhibits near-zero
bias (0.18 dBm).

Fig. 3.2 shows how this predictor compares to the predictions done with the canonical and
empirical RSSI models from Section 3.3. All of the canonical and empirical propagation models
exhibit positive bias on the testing dataset (the bias is 19.5, 17.7, 3.61, 1.75, and 0.49 dBm for
plane earth, free space, Weissberger, ITU-R, and COST235, respectively). The models also show
a higher mean absolute error and higher error variability (error standard deviation) than the
proposed model (Table 3.1). Of the existing models, the COST235 (in-leaf) model shows the
highest accuracy. The proposed model, however, exhibits a average prediction error 37% lower
than that of the COST235 (in-leaf) model.
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Table 3.2: Independent variable importances inferred from the ensemble regression (normal-
ized).

Feature Mean importance SD importance
Path ground distance 0.594 0.026
Mean percent canopy 0.096 0.017
Terrain complexity 0.077 0.015
Vegetation variability 0.076 0.015
Path angle 0.070 0.014
Source canopy 0.043 0.012
Receiver canopy 0.044 0.010

Feature Contribution

One important aspect of this study, which is made possible by the machine learning approach,
is to determine which additional independent variable (”feature”) is important to predict the
RSSI. Random Forests provide a natural ranking of features in the model, based on the degree
to which splits on each variable improve the split quality criterion (mean squared error – MSE
– in the current study). In Scikit-Learn, this value is averaged across the estimators (i.e. each
decision tree) in order to determine a “mean importance” for each feature. Table 3.2 shows the
normalized contribution of each independent variable used in the model. Path ground distance
and mean percent tree canopy cover are the two most important features in the model, followed
by terrain complexity and vegetation variability. Attributes related to the local characteristics of
each node (e.g. source/receiver canopy coverage) exhibit lower significance.

3.6 Discussion and Opportunities

This paper introduces a radical new way of thinking about wireless connectivity models. In-
stead of relying on an expert understanding of the physics of wireless propagation, we propose
a agnostic computational approach in which patterns are identified in recorded data. The ma-
chine learning tools used are generic: they are not aware that the data is related to wireless
connectivity.

The main result, which is counter-intuitive, is that this agnostic approach yields better re-
sults than the expert approach. The proposed approach reduces the average prediction error
by 37%, when compared the expert model with the best performance. The quantitative study
is based on a large connectivity dataset of 42,157,324 measurements gathered for one year on
2218 wireless links: we have confidence in the results. These findings open up many new pos-
sibilities for understanding, planning and diagnosing wireless networks.
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Discussion

On top of the numerical results, we want to conclude this article with a discussion about the
strengths and limitations of the proposed approach.

Being able to compute which features are important is a key benefit of the methodology de-
veloped. First, it confirms the importance of distance as a key feature for predicting the wireless
connectivity between devices. But it also highlights that other features are important. To quan-
tify how these additional features help in predicting connectivity, we repeat the analysis with
only distance. When we train the predictor with distance alone, the R2 of the predictor is 0.6,
compared to 0.7 when all the features are used. So, even though distance is the most important
feature (with an mean importance of 0.594, see Table 3.2), annotating the data with addition
features makes a real difference.

An immediate drawback is that these extra features are not common to all deployments.
While the mean percent tree canopy cover is an important feature for our networks, it doesn’t
apply to for example a smart factory application. This means the model created during the
learning phase only applies to the particular environment it was created in. That being said,
the methodology can be used in all environments, and the same remark applies to canonical
and empirical models.

Perhaps the main drawback of the approach is that one needs a lot of data to train the model.
This has two main implications.

First, you need training data, which leads to a chicken-and-egg situation in new deploy-
ment environments. When deploying in a completely new environment, you need to build up
a dataset by measuring the connectivity between nodes that were deployed without assistance
from a model. As the dataset grows, and as more and more nodes/networks are deployed, the
model can be refined to start helping you with the deployment.

Second, you need dataset to be gathered in an environment that has similar distributions
of independent variables as the environment used train the model. The 14 low-power wire-
less networks from the ARHO are similar in that they are deployed outdoor in a mountainous
forested areas, and composed of the same devices and radio technology. Fig. 3.4 quantifies this
similarity. It shows the standards deviation of the RSSI of the different links over the one-year
period of the dataset. It is less than 5 dB for 90% of the of links. The model would be less accu-
rate if the different networks would be deployed in very different areas.

Another limitation of the proposed approach is that the feature selection needs to be done
well. Table 3.2 shows the 7 features the training data is annotated with. Even though the
machine-learning tool which crunches the data is agnostic to the semantics of the data, it still
takes expert knowledge and “intuition” to select which feature to use.

Further complicating the problem, the importance of the feature can evolve depending on
the setup. For example, the “path angle” feature has an mean importance of 0.070 (see Ta-
ble 3.2), which is low. This , in part, can be explained by the choice of using a lower-gain 4 dBi
antennas for nodes on the slope. If a 8 dBi antenna were used, the spread of the vertical ra-
diation pattern would be narrower, probably leading to an increased mean importance of the
“path angle” feature.
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Figure 3.4: Standard deviation of RSSI over all links over a one-year period.

To conclude the discussion, the model developed in this article achieves very good results,
with a 37% reduction in the average prediction error compared to the canonical/empirical
model with the best performance. That being said, the methodology is applicable only to cases
where (1) you already have gathered training connectivity data in similar deployments and (2)
you have some intuition about which features are important, and hence which features to an-
notate the data with.

Opportunities for Further Research

The methodology presented in this article is a radical new way of predicting connectivity in
wireless networks. It opens up numerous opportunities of further research, including to under-
stand/minimize the drawbacks highlighted in Section 3.6.

First, develop a methodology to guide feature selection. Such a methodology would guide
feature selection in a systematic way, and reduce the amount of expert guidance needed. The
goal would be limit the possibility of “missing” important features.

Second, explore other machine-learning methodologies. While Random Forest is consid-
ered one the best “out-of-the-box” machine learning tools, other methods may be better suited
to the prediction of RSSI. A study could evaluate the accuracy of multiple machine learning
algorithms on the same dataset.

Third, evaluate how much training data is required to build a model with good enough ac-
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curacy, and how that accuracy evolves as the size of the data set increases. The ultimate goal
is to be able to assess how the model behaves if the training data is built-up as more and more
nodes are deployed. This study could be done with the same dataset, by considering data from
an increasing number of wireless links.

Fourth, build a prediction placement tool. This study would use the model proposed in this
article to optimize network topologies in complex terrain over the set of feasible signal repeater
placements. This would facilitate the automated deployment of new networks to ensure they
are robust to path-loss.

Fifth, apply the same methodology in different environments. This study would gather a
similar connectivity dataset in a different environment (e.g. a smart factory), verify that the
methodology applies equally, and quantify the difference in connectivity with the model pre-
sented in the present article.



29

Chapter 4

A data-driven machine-learning based
connectivity model for complex terrain
low-power wireless deployments

4.1 Introduction

Currently, in situ measurements of mountain water cycles at the basin scale are limited in both
spatial coverage and temporal resolution, with data largely provided by a relatively small num-
ber of operational precipitation, snowpack, climate and stream-gauging stations [8, 24].dv In
the Sierra Nevada, measurement sites supporting operational water-resources decision making
are also biased to middle and lower elevations and flat terrain in forest clearings [77].

Hydrologic prediction, particularly when constrained by the practical demands of water-
resources management, relies heavily on calibrated models to mitigate both limitations in model
formulation and inadequate data for rigorous model testing [97, 61]. There are increasing de-
mands on distributed models as predictive tools for situations in which lumped models may
fall short, such as non-stationarity in catchment conditions or climate; however, their use in
water-resources management is limited by the level of field data available [92]. The need for
improved coverage by in situ measurements is both local and global, and new network designs
should complement satellite data [117]. Ground-based sensors provide critical ground truth
for remotely sensed satellite and aircraft data, and offer a wide suite of independent data that
can help provide much-needed gains in predictive modeling. Realizing gains in accuracy from
the next generation of spatially explicit models at the scale of water-resources decision mak-
ing will require both the broad spatial coverage of remotely sensed data and the accuracy of in
situ measurements [64]. An adaptive rather than one-size-fits-all approach is needed to realize
these gains [29].

WSNs are an efficient and economical solution for distributed sensing. It is often costly and
disruptive to create networks of spatially representative wired sensors at the scale desired since
it might require kilometers of cables placed either above ground or buried. Reliable wireless so-
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lutions are now enabled by reduced production costs of wireless equipment and by advances in
networking protocols, effectively combining traditionally non-wireless sensors with a wireless
platform. [4, 120, 33].

A few WSN solutions, using different network technologies, were developed specifically for
applications in hydrology. These studies have not provided quantifiable assessments of net-
work design, operation and hydrologic results at the river-basin scale. A review of these prior
deployments, and a comparison of three existing WSN solutions that have been used, is pro-
vided in supporting information[13, 95, 101, 56, 86]

In 2007, a WSN with a few dozen nodes was deployed to a golf course near Almkerk Nether-
land to monitor soil moisture. The study claimed to be successful. However, the description and
discussing over the key component of the system, the wireless network infrastructure, was very
brief[95]. In 2009, a 12-station, 4-month deployment in a 20-km2 catchment in the Swiss Alps
measured the spatial variability of meteorological forcing, including temperature and precipi-
tation. The study was only conducted over a short time period with rather sparsely distributed
stations [101]. Recently, densely deployed sensor arrays have been scaled to a size compara-
ble to the mountain areas being studied. Ninety-nine sensor loggers, within three 40-180 km2

basins, were deployed to monitor snow properties in southern Germany for one winter. The
system deployed used data loggers rather than a WSN [86]. In another study, 150 wireless nodes
with over 600 soil-moisture sensors were installed in a forest catchment at Westebach, Germany
to study the spatiotemporal distribution of soil moisture over complex terrain [14]. The study
used a variation of ZigBee motes developed by JenNet Ltd. Over 300 sensors hosted by 60 wire-
less nodes have been deployed at the Southern Sierra Critical Zone Observatory since 2008 to
study heterogeneous interactions of water within the snowpack, canopy and soil influence on
the water cycle [56]. This installation suffered from network optimization issues that limited
locations of the sensor nodes, and hardware problems with the cold.

While sensor networks that are deployed in headwater catchments for short durations offer
lessons for local-scale WSNs, they provide limited guidance for WSN design, performance and
hydrologic benefits for systems in larger mountain river basins, characterized by steep gradients
in temperature, precipitation, rain-versus-snow fraction, growing season, vegetation density
and evapotranspiration. The proposed approach to scaling WSN measurements to larger basins
involves strategically placing local clusters to capture the variability in hydrologically important
basin attributes [111].

The research described in this technical report addresses three questions. First, to what ex-
tent can a basin-scale distributed wireless-sensor network with a limited number of sensors
arrayed in local clusters sample hydrologic variables across a representative range of landscape
attributes in a seasonally snow-covered mountain basin? Second, to what extent can this low-
power, distributed wireless-sensor network reliably provides hydrologic data during harsh win-
ter conditions? Third, what types of gains in hydrologic information may result from this net-
work? Further development and more-detailed analysis of the third question is also the subject
of Chapter 4.
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Figure 4.1: Location of American River basin and 14 sensor clusters deployed in the upper part
of the basin.
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Figure 4.2: WSN nodes on hypsometric curve with existing snow pillows.

4.2 Methods

The network was deployed in the ARHO, in the upper, snow-dominated portion of the Ameri-
can River basin on the western slope of the Sierra Nevada in California (36.069 N, 120.583 W).
The basin is incised with steep river canyons and is comprised of three sub-basins: the North,
Middle, and South forks, which combine to form a drainage basin of 5311 km2 above the Folsom
Reservoir, the main impoundment on the river. Basin elevations range from 15 m at Folsom to
3147 m at the Sierra crest, with precipitation transitioning from rain to snow at about 1400-1600
m elevation [89, 59]. Forty percent or about 2154 km2, of the basin is above 1500 m, the lowest
elevation for siting our WSNs. About 0.5% of the basin is above the highest node that was sited
(2678 m). In 2013-2015, 14 clusters of 140 wireless nodes were deployed (Figure 4.1), with lo-
cations selected to represent the range of elevation, aspect, canopy coverage, and solar loading
in the basin (Figure 4.1 and 4.3).
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Figure 4.3: Characteristics of individual sites, arranged from lowest to highest elevation. See Ta-
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(%). The central red mark is the median, the edges of the box are the 25th and 75th percentiles,
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outliers.

4.3 Physiographic attributes of cluster

Elevations were extracted from a 30-m DEM. Slopes and aspects were calculated using ArcGIS
spatial analyst toolbox. Percent canopy cover was extracted from NLCD 2011 data layer [55].
Overall, sensor placement reflects a close correspondence between site characteristic of the
sensor nodes and the features within the 1-km2 area for most of the sites. Mean site elevations
range from 1590 to 2680 m, with considerable overlap between some sites (Figure 4.3a). Some
sites are relatively flat (e.g. CAP) and some on relatively steeper terrain (e.g. MTL, ECP) (Figure
4.3b). It was possible to get a range of aspect at most sites, with the notable exception of TLC and
CAP (Fig 4.3c). All other sites have both north and south aspects. Sensor placements capture
the range of canopy covers, shown in Figure 4.3d.

The number of local clusters was based on results of Welch et al.[111]and constrained by
project budget. The Welch et al. analysis used spatial time-series data over 11 years and a
rank-based clustering approach to identify measurement locations that will be most informa-
tive for real-time estimation of snow depth, and derived a set of regions that remained rela-
tively stable over time. They found a point of marginal return at about 15 measurement loca-
tions, after which placing more local sensor networks did not significantly improve estimation
performance. The Welch et al. study also showed that there is some flexibility in placing the
local clusters to capture representative parts of the basin, and thus all sites, except MTL and
DOR, were co-located with existing snow pillows and met stations. Each cluster consists of ten
measurement nodes, limited due to budget, seven to 35 signal-repeater nodes, and a network
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5 6

Figure 4.4: American River basin system hierarchy: local WSN clusters connect to central server
through data links provide by cell phone or satellite modems. (1) wireless sensor nodes (a neo-
Mote, sensors and external power infrastructure); (2) repeater nodes; (3) Metronome network
manager/base station; (4) external connection to the Internet; (5) central-site data server; and
(6) real-time visualization engine and data portal.

manager (see Table 4.1 for details; and Figure 4.4 for system hierarchy).

4.4 WSN Systems

Each sensor node (Figure 4.4) is equipped with an ultrasonic snow-depth sensor (Judd Com-
munication Depth Sensor) and a temperature/relative humidity sensor (Sensirion SHT-15). A
selected subset of the nodes at five of the sites measure soil moisture and soil temperature
(Decagon GS3) at depths of 10 and 60 cm. Nine sites include measurements of total incom-
ing solar radiation using an upward-pointing Hukseflux-LP02 pyranometer at node locations
on a separate mast with a concrete foundation. The solar-radiation sensors at these locations
are located in the open, without obstruction by either canopy or the terrain to capture the to-
tal available incoming solar irradiance. At nine of the 14 sites, co-located with the clear-sky
irradiance, solar radiation is measured in a partially canopy-covered location, providing repre-
sentative solar irradiance-measurements underneath the canopy structure. It should be noted
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Figure 4.5: Sensor node detail. The 4.5 m vertical mast is bolted to a U-channel driven into the
ground. Sensors are either buried under ground or mounted on a 1.2-m long cross arm 4 m
above ground.

that our wireless nodes are not limited to these sensors, which were chosen based on past per-
formance, cost and consistency with other networks.



CHAPTER 4. A DATA-DRIVEN MACHINE-LEARNING BASED CONNECTIVITY MODEL FOR
COMPLEX TERRAIN LOW-POWER WIRELESS DEPLOYMENTS 35

Table 4.1: Equipment installed for sites

Abbrev. Site name Lat, Lon
Temperature,

relative-humidity
Snow
depth

Soil
moisture

Solar
radiation

SCN Schneiders 38.745,-120.067 10 10 10 2
ECP Echo Peak 38.848,-120.079 10 10 0 2
MTL Mt. Lincoln 39.287,-120.328 10 10 0 1
CAP Caples Lake 38.711,-120.042 10 10 0 2
LCM Lost Corner 39.017,-120.216 10 10 0 0
ALP Alpha 38.804,-120.216 10 10 10 1

DUN Duncan Peak 39.154,-120.510 11 11 10 2
VVL Van Vleck 38.944,-120.306 10 10 10 1
DOR Dolly Rice 39.149,-120.369 10 10 0 0
ONN Onion Creek 39.274,-120.356 10 10 0 2
RBB Robb Saddle 38.912,-120.379 10 10 0 2
TLC Talbot Camp 38.944,-120.306 10 10 0 0

OWC Owens Camp 38.736,-120.241 10 10 0 0
BTP Bear Trap 39.095,-120.577 10 10 0 0

Measurement-node placement consisted of three steps. First, major physiographic vari-
ables that affect the water balance were characterized in a 1-km2 area around each site [10,
26, 5, 27, 102, 25, 71, 8]. Second, at each site, ten points representing different physiographic
attributes were selected by a random-stratified technique, and the attributes aggregated to as-
sess their representativeness in the larger basin. Rice and Bales [94] showed that a 10-sensor
network could capture the mean and distribution of snow depths at this scale. Third, final loca-
tion adjustments were made in the field to a small subset of sensor nodes, ensuring a complete
sampling of the physiographic features together with a strong WSN connection mesh.

The network statistics presented were evaluated over a period of seven months. Each node
provided 15-minute data for snow depth, air temperature and relative humidity. Hourly and
daily products were developed for periods where no less than 75% of data were present and
valid within the averaging window. Extreme values in the data were removed following Daly et
al.[19]. Operational data were downloaded from the California Department of Water Resources
(http://cdec.water.ca.gov/). SNODAS data, obtained from NSIDC, were used as an additional
point of comparison with our snow measurements (http://nsidc.org/data/). SNODAS data
were extracted from cells overlapping WSN clusters using a simple weighted-average scheme
(Figure 4.6). The results of the extracted values from all 10 nodes are averaged to yield the
SNODAS mean for each local cluster. Hourly dew-point temperature for each node was com-
puted based on an empirical equation [63].
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Figure 4.6: Illustration of how a weighted average of SNODAS SWE data were calculated for
each local cluster, for comparison with WSN data. For SNODAS data gridded at 1-km spa-
tial resolution, pixels containing nodes for each local cluster were extracted and averaged for
that local cluster. In the example shown, the SNODAS mean of this site was calculated as
(A+4B+2C+3D)/10.

4.5 Results

WSN performance

The wireless-network links formed a redundant multi-hopped mesh network of sensors and re-
peaters for data transport. Figure 4.7 shows the stable layout of sensor nodes for the Alpha clus-
ter (ALP), and illustrates how repeaters were non-uniformly distributed to connect the sensor
nodes via at least two independent paths to the base station (see Figure 4.7b for photographs
of base station, nodes and repeater). A relatively large number of repeaters were installed to
provide redundant paths to sensor nodes 6, 8, and 9, where a steep change in slope produced
a radio path kink and reliable network links were challenging to establish. Surprisingly, it was
found that lower-gain antennas worked better in steep terrain. During 213 days of consecutive
recording only 662 out of over 56 million packets were lost in transmission. The average num-
ber of hops for packets to transmit from a node to the base station was 3.6 and the maximum
seven. The average latency of the network, the time it takes from the packet being sent until it
arrived at the base station, was 1.01 second. On average, each node received 181,000 packets
over the period when network statistics were gathered.

Two measures indicate the reliability and performance of the network: i) the number of
other sensor or repeater nodes connected to each node and ii) the average received signal
strength indicator (RSSI). RSSI is closely associated with an important network-performance
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Figure 4.7: Node layout and steady-state network connections (green lines) at ALP, overlain on
Google Map. Sensor nodes are numbered. Two possible paths of data out from sensor node 5
to the base station are marked with red arrows.
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Figure 4.8: Average daily network performance of sensor nodes at ALP for seven-month period.
Top panel shows number of network neighbors for each of the 10 sensor nodes, and bottom
panel is the average received signal strength indicator (RSSI) for each sensor node. A white gap
indicates no communication. The data-stream gap for node 9 in January 2015 was due to a
non-network related hardware failure.

indicator called packet delivery ratio (PDR). In aggregate, each node was connected to at least
two other nodes over 95% of the time, and to three or more nodes 68% of the time (see Fig-
ure 4.5). Taking all nodes together, RSSI values were above -85 dBm, the manufacturer-specified
threshold for efficient transmission over 54% of the time, with values above -80 dBm 33% of the
time.

There was no clear influence of environmental factors, e.g., temperature, humidity and
snow-induced topographic changes, on network performance (Figure 4.9). Each node was con-
nected to one to five other nodes at each time step (Figure 4.9a). RSSI values at each node typ-
ically fluctuated +5 dBm, and the average RSSI (Figure 4.9b) depended on node location rather
than temperature (Figure 4.9c), humidity (Figure 4.9d) or topographic changes due to snow ac-
cumulation (see water-year days 72 and 80, Figure 4.9e).

Temperature, humidity and snow patterns

Daily air and dew-point temperatures from the 10 wireless-sensor clusters that were installed
prior to the 2014 water year showed very similar temporal patterns (Figure 4.10a), with average
temperature differences reflecting elevation differences between clusters. Temperatures for all
pairs of clusters were highly correlated, r > 0.91 for air temperature and r > 0.86 for dew-point
temperature, p < 0.05. Daily temperatures were used to derive surface-level lapse rates, which
over the eight-month period varied from close to zero to -12oC/km for both air and dew-point
temperatures (Figure 4.10b). The respective average lapse rates for the months before snow
accumulation (Oct-Dec) were -4.6 and -5.7 oC/km, increasing to -5.5 oC/km for air temperature
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Figure 4.9: Network performance of sensor nodes 2,7 and 10 at ALP: a) hourly data of network
neighbors number, b) the corresponding average RSSI, c) average air temperature, d) hourly
average humidity, and e) daily average snow depth. Shaded periods represent precipitation
events. For clarity, data from three sensor nodes are presented.

and decreasing to -4.7 oC/km for dew-point temperature during the snow season. The day-to-
day variability in lapse rates during the snow-covered period was also lower than earlier in the
water year. The transition to a period with less variability in lapse rate is also illustrated by the
higher R2 values starting on water-year day 121, when snow started accumulating in the basin
(Fig 4.10c). Note that less-negative air-temperature lapse rates, associated with lower R2 values,
were associated with temperature inversions.

Daily mean air and dew-point temperatures taken across the ten clusters were adjusted to
2100 m using the mean daily lapse rates (Figure 4.10d). The average standard deviation is 3.3 oC
for air temperature and 3.5 oC for dew-point temperature, a variability equivalent to the average
difference over about 600 m and 545 m elevation based on the eight-month average lapse rate
of -5.5 oC/km and -5.0 oC/km, respectively. While any index elevation could be used for this
comparison, 2100 m is generally representative of the upper part of the rain-snow-transition
elevation zone.

Mean relative humidity across WSN clusters varied from 15 to 100%, with similar patterns
across all 10 clusters (Figure 4.10e). The relations were strong, R2 = 0.83, p < 0.05, for all pairs of
clusters. While differences in average relative humidity values between clusters were small, ab-
solute humidity and vapor-pressure deficit values were larger. The mean water vapor-pressure
deficit for each cluster ranged from zero to 1.5 kPa (Figure 4.10f), with daily inter-cluster differ-
ence between the lowest and highest values as much as 55%. The highest variability in vapor-
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Figure 4.10: Network performance of sensor nodes 2,7 and 10 at ALP: a) hourly data of network
neighbors number, b) the corresponding average RSSI, c) average air temperature, d) hourly
average humidity, and e) daily average snow depth. Shaded periods represent precipitation
events. For clarity, data from three sensor nodes are presented.

pressure deficit was associated with periods of higher temperature and lower relative humid-
ity, indicating a warmer and drier condition. Periods with lower variability of inter-site vapor-
pressure deficit were closely associated with sub-zero temperatures in the basin, typically trig-
gered by precipitation events.

Snow-depth data (Figure 4.11) show a clear elevation trend, with variability also increasing
with elevation. One exception was SCN, which has a tighter grouping of measured snow depths
as compared to lower-elevation sites. During the very warm and dry WY-2014 snow season,
sustained snow cover accumulated mainly at elevations above 2100 m.

Snow depths were also compared with co-located or nearby snow-course measurements
(Figure 4.11). At lower-elevation clusters, due to the timing of the snow-course measurements,
most surveys missed the snow-cover peak accumulation. At ONN, snow-course data showed a
small amount of snow throughout the season, missing the few individual peaks. Snow-course
values at ECP were generally lower than the mean cluster value across the season.
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There are substantial differences between the WSN, nearby operational snow-depth sen-
sors, and SNODAS snow depth at most clusters. Compared to WSN means, nearby operational
sensors tended to overestimate snow depth during early season (e.g. at ECP, CAP, and ALP), and
matched the WSN mean better at peak accumulation. Near-by operational sensors also showed
faster melt than indicated by cluster means for the same sites. The time series of SNODAS values
is comparable to the WSN data at MTL and SCN for much of the season, with similar magnitude
and high correlation. SNODAS data generally fall within one standard deviation of WSN nodes
at these sites. At lower-elevation sites, such as BTP, VAN and DUN, SNODAS underestimated
snow depth at peak accumulation by as much as 50% compared to the WSN. At all other sites,
SNODAS overestimated peak-accumulation snow depth by as much as 80% compared to the
WSN mean.

4.6 Discussion

WSN design and performance

With 945 sensors across 14 clusters, the WSN offers representative, real-time monitoring of
the meteorological and hydrologic conditions of the basin. Our analysis of the variability of
temperature, humidity, snow and derived quantities shows the importance of multiple land-
scape attributes in determining their variability. This WSN is also arguably the largest long-
term, remote wireless-sensor platform deployed for environmental monitoring. Even though
some aspects of the networks in ARHO share similar properties with the prototype installation
at the Southern California Critical Zone Observatory [56], the more-recent network statistics
help to resolve several previously unanswered questions. The longer-term performance of the
networks, subjected to the test of a full snow season, showed that WSNs can be a viable solution
for distributed sensing in the at this scale. ARHO networks showed resilience to factors such as
humidity and snow-induced topographic changes across different part of the basin. The pos-
itive result is likely due to the combination of the Dust Network’s radio technologies such as
time-synchronized channel-hopping, time-slotted mesh protocol (see section 2.3 for details of
the technology), effective network topology, and the use of lower-gain antennas.

A stringent criterion of design was low power consumption, requiring the sensor node to
be powered with a 6-amp-hour battery recharged by a 10-watt solar panel. The low-power
requirement constrains radio-power output, so the range of the radio limits the size and per-
formance of the network. The WSN uses a multi-hopped network to overcome the range lim-
itations. However, a network that requires more hops to deliver the same number of packets
ultimately consumes more power than higher-power, more-energy-demanding radios. Placing
the network manager close to the geographic center of the network limited the number of hops.
The overall reliability of the network is protected from isolated failures of nodes by radio-link
redundancy, provided by the network’s mesh topology. This property allows nodes to be sited
indiscriminately to potential natural hazards, e.g. treefall.

Topographic relief is one of the more serious challenges to overcome for good system perfor-
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mance. Different from earlier installations, the networks in ARHO encountered more-challenging,
steep forested terrain. A lower-gain 4-dBm omni-directional antenna provided improved net-
work connectivity, especially in steep terrain, compared to the 12-dBm antennas used by Kerkez
et al.[56] on more-even terrain. Even with the improvement, the capability of the network to
communicate over steep slopes is limited by the antenna. The ALP site is a good example, where
some radio links operated at the edge of the acceptable RSSI level. The network performance
was stable but less efficient, indicated by the lower PDR values, compared to Kerkez et al.[56],
who had shorter data hops.

Spatial pattern and variability of hydrologic attributes

The following three examples illustrate how our spatially distributed, daily data over complex
terrain set provides better estimates of important hydrologic attributes. A more-detailed analy-
sis is the subject of a subsequent chapter 5.

Dew-point temperature

A widely accepted model of near-surface air temperature in mountains is the ground-level lapse
rate [22, 96, 51, 58]. Scientists and modelers use lapse-rate-derived temperature to evaluate
model responses due to temperature perturbations [32, 7]. In those applications the lapse rate,
often averaged over a monthly to annual period, is used to approximate input temperature for
models with a much shorter (daily) time increment. This approach, however, does not account
for short-term variability. WSN data show that the day-to-day lapse rate was highly variable,
particularly before snow accumulation (Figure 4.10b). Not only does the array of sensors pro-
vide a more temporally resolved lapse-rate estimate, we also found that redundancy of instru-
ments provides a more-robust estimate of the quantity. Linear models of daily air temperature
were constructed with a training set and a cross-validation set of 60 randomly selected nodes.
The results were compared with models computed using seven nearby met stations. On aver-
age, the cross-validation root-mean-square error was reduced from 1.41 to 1.18 oC using ran-
dom sets of 60 measurements versus data from seven nearby met stations. The uncertainty in
air temperature was reduced by 16%.

Dew-point temperature complements air temperature in providing a reliable estimate of
the timing and phase of precipitation. The reduction of uncertainty in temperature and hu-
midity patterns helps to better determine the elevation range of the rain/snow transition. Air
temperature is approximately equal to dew-point temperature, indicating saturated air, when
precipitation occurs (Figure 4.10). The phase change from rain to snow usually occurs around
the 0 oC dew-point [72]. Compared to air-temperature-based methods, dew-point temperature
is a less geographically dependent variable to determine the solid or liquid precipitation [119].
Due to lack of relative-humidity measurements for most met stations, calculation of dew-point
temperature cannot be performed from met-station data alone.
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Evaporative potential

Direct measures of vapor-pressure-deficit patterns from a dense array of ground-based sensors
can be important for scaling evapotranspiration and assessing forest health [81, 82, 15]. Ac-
curately estimating vapor-pressure deficit is crucial as the saturation-pressure deficit becomes
relatively more important in the Penman-Monteith equation [121]. Despite the importance of
the variable, reliable field-based estimates of vapor-pressure deficit in mountains are rare. The
performance of satellite-based estimates varies, with RMSE values from upwards of 0.3 kPa to
1.1 kPa, limiting their accuracy as estimates of vapor-pressure deficit across steep terrain [88,
43]. A WSN with relative-humidity measurement at every sensor node fills this gap.

Snow depth

The differences in snow depth between WSN and near-by operational sensors can be explained
by the patterns of snow accumulation. Operational snow-depth sensors are typically placed
near flat meadows or ridge tops free of overhead obstructions or hazards, which produce known
biases [78, 3, 94]. We placed our nodes in both forested and non-forested area to produce a more
spatially representative measurement. Figure 4.11 indicates that operational snow-depth sen-
sors data had a systematic positive bias in snow depth in the early season. During the melting
season, the canopy acts as a shield, limiting energy input to the snowpack [73, 100, 87]. The
canopy also shelters the snow surface from wind, reducing turbulent heat transfer. The net re-
sult is an extended melt season recorded by sensor nodes in the forested area compared to the
operational snow-depth sensors.

Due to local redundancy of the WSN, the data stream is more complete than operational
snow-depth sensors at CAP and BTP. Large sections of data were missing from the operational-
snow-depth sensors from those two sites during the storm around water-year day 180 (Fig-
ure 4.11 ). This reflects a reality of operational water-resources networks, namely the ability to
respond in a timely manner to problems in remote sensors. The redundancy provided by our
WSNs helps to address this constraint.

The differences in snow depth between SNODAS and the WSN were less systematic, as there
is no apparent trend in the bias across different sites. One pronounced difference between
WSN and SNODAS snow depth was at the steep ECP site, where the 1-km2 SNODAS product
overestimated snow depth (Figure 4.11 ). This follows previous reports that without sufficient
data, estimates of snow depth under these conditions can be difficult and error prone due to the
underlying variance in elevation within grid boundaries [45]. Clow et al.[18] showed that while
over forested regions of the Colorado Rockies, SNODAS estimates of snow depth accounted for
as much as 72% of the variance line (1-km resolution) in forested areas, SNODAS was able to
account for only 16% of snow-depth variance in areas above the tree.
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4.7 Conclusion

A wireless-sensor network distributed over the 2154 km2 snow-dominated portion of a moun-
tain basin provided good coverage of watershed attributes. With ten measurement nodes per
each of fourteen clusters, the WSNs reliably provided spatially distributed measurements of
temperature, relative humidity and snow depth every 15 minutes over the basin. The WSN also
provided measurements of the significant within-cluster spatial variability of these attributes,
which were influenced by local topography, primarily through cold-air drainage.

Compared to existing operational sensors, the wireless-sensor network reduces uncertainty
in water-balance measurements in at least three distinct ways. Redundant measurements in
temperature improved the robustness of temperature lapse-rate estimation, reducing cross-
validation error compared to that of using met-station data alone. Second, distributed mea-
surements capture local variability and constrain uncertainty, compared to point measures, in
attributes important for hydrologic modeling, such as air and dew-point temperature and snow
precipitation. Third, the distributed relative-humidity measurements offer a unique capability
to monitor upper-basin patterns in dew-point temperature and better characterize precipita-
tion phase and the elevation of the rain/snow transition.
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Chapter 5

Insights into mountain precipitation and
snowpack from a basin-scale
wireless-sensor network

5.1 Introduction

At the basin scale, measurements of mountain water cycles currently are limited in both spatial
coverage and temporal resolution, with data largely provided by a few operational precipitation,
snowpack, climate and stream-gauging stations [8, 24]. In the Sierra Nevada, measurement
sites tend to be limited to middle and lower elevations and flat terrain in forest clearings[77].
Research networks include a few selected headwater basins where a more-complete set of me-
teorological and hydrologic attributes are accurately measured[56]. While these catchments
offer some detailed information on mountain hydrology, they provide a limited understanding
of the hydrology of larger mountain river basins that can be characterized by steep gradients in
temperature, precipitation, and rain versus snow fraction. In mountainous environments, the
interaction between soil, vegetation, and existing snowpack and precipitation depends strongly
on the precipitation phase[60]. One of the common ways to determine the phase of precipita-
tion is through a calibrated model of air temperature. However, the precipitation phase and
air temperature relationship is higher variable across different seasons, sites, and storm tracks,
while dew-point temperature shows a strong relationship to precipitation phase[72].

Operational forecasts of runoff are sensitive to estimation of rain versus snow, as illustrated
by a tripling of storm runoff for a 600-m change in the estimated melting-level elevation in one
simulated 24-hour precipitation event in the American River basin[114]. Freezing levels are of
particular interest for warm events, and it has been observed that forecast biases associated
with freezing levels above 2300 m in the basin have been under-forecasted by as much as 900
m[115]. It has been noted that the rain-snow transition region is of great scientific as well as
practical interest, affecting both current forecasting and potential improvements in predictive
tools[91].
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Mesoscale differences between the atmospheric 0o C elevation and the mountainside snow
line in the Sierra Nevada make both characterizing and predicting the snow line particularly
challenging. Data from three years of storms show that the mesoscale lowering of the snow line
is a feature common to nearly all major storms, with an average snow-line drop of 170 m[76].
While radar can be an effective tool for detecting rain versus snow, and other attributes of a
precipitation event, its use is limited in the complex topography of the upper American River
basin[74].

Recently developed and deployed WSN clusters in the American River basin provide a rich
dataset with denser spatial sampling as compared to operational sites[122]. This richer dataset
allows us to understand and characterize the critical gradients in temperature, humidity, and
precipitation that help define the dynamics of mountain water balance. It can enable use of new
classes of spatially explicit hydrologic-modeling tools to produce quantitative assessments, in-
fluence hydrologic forecasting, probe system response to climate and land-cover perturbations,
increase process understanding of basin-scale water cycles, and provide defensible scenarios
for infrastructure planning over a scale currently not possible. These WSN clusters complement
deployments by others monitor extreme weather events for flood forecasting[113].

The specific aims of the research reported in this paper were to assess how spatially dis-
tributed sensor-network data can improve estimates of: i) the basin’s average rain-snow tran-
sition elevation during precipitation events, ii) the amount of rain versus snow during mixed-
precipitation events across the basin, and iii) the amount and timing of snowmelt across the
basin. Together, these affect the soil-moisture and runoff patterns across a basin.

5.2 Methods

Data from 140 wireless-sensor nodes clustered in 10 strategically chosen locations in the Ameri-
can River basin were used together with operational data to estimate precipitation as rain versus
snow and snow ablation across the upper part of the basin for the 2014 water year. The sensor-
network nodes provided temperature, relative humidity and snow-depth data across the range
of topographic and vegetation characteristics in the portion of the basin where snow is currently
an important part of the water balance 3.

Study area

The study area was the ARHO, a spatially distributed water-balance sensor in the upper, snow-
dominated part of the American River basin on the western slope of the Sierra Nevada in Cali-
fornia (36.069 N, -120.583 W). The basin is incised with steep river canyons and is comprised of
three sub-basins: the North, Middle, and South forks, which combine to form a drainage basin
of 5311 km2. Basin elevations range from 200 m at Folsom Reservoir to 3100 m at the Sierra crest,
with precipitation transitioning from rain to snow at about 1400-1600 m[89, 59]. Sixty percent
or about 2154 km2 of the basin is above 1500 m: the location of the WSNs. The basin supports
diverse vegetation types ranging from grasslands, oak woodland, chaparral, and oak savannas



CHAPTER 5. INSIGHTS INTO MOUNTAIN PRECIPITATION AND SNOWPACK FROM A
BASIN-SCALE WIRELESS-SENSOR NETWORK 48

at the lower elevations, mixed conifers and montane hardwoods at the mid to upper elevations,
and above the montane forest is the sub-alpine, alpine meadows, and shrub land[105]. The
canopy structure exhibits high heterogeneity in both percent coverage and vegetation type, as
indicated by National Land Cover Database[55]. The forest landscape is subjected to land-cover
perturbations such as forest thinning and fire. Locations for both the ten sensor network clus-
ters, each distributed over approximately 1.5-km2 area, and sensor nodes within each cluster,
were placed to physiographically represent the variability of the upper basin (Figure 4.1a). See
Table S5.4 for locations and other information on the ten clusters of nodes used.

Data

Data were from two sources. First, time-series data were taken from 80 sensor nodes of the
sensor-network clusters for the first eight months (Oct-May) of the 2014 water year (WY). Each
node provided 15-minute data for snow depth, temperature and relative humidity. Hourly and
daily products for each attribute were developed from the 15-minute data. Second, precipita-
tion, temperature, snow depth and snow water equivalent (SWE) from across the basin were
acquired from operational stations. All data were subjected to quality control to remove noise,
following the protocols described in Daly et al[19]. Hourly and daily products were developed
for periods where no less than 75% of data, were valid within the averaging window.

In order to estimate SWE from sensor-network measurements of snow depth, we used a
basin-averaged snow density derived from ten snow-telemetry sites where snow depth and SWE
were both measured. A density time series was developed using the ratio of daily SWE and snow
depth (See Figure 5.9). Density values from all sites were averaged, and this mean-density time
series used for SWE calculations at all sensor-network nodes, with mean values ranging from
about 130 kg m−3 in Jan to 420 kg m−3 in May. There was no apparent elevation pattern to
the density record. Density data at the beginning and the end of the season when the snow
pillow may not have been completely covered were omitted. Snow density during this period
was assumed to be 330 kg m−3, the seasonal average. Near the end of the season, the last valid
snow-density value from each site was extended to calculate basin-average snow density.

Precipitation phase and rain-snow transition elevation

The total amount of precipitation for each of the 10 main precipitation events was estimated
for each sensor-network node using the changes in accumulated snow and dew-point tem-
perature. Solid precipitation at each node was computed as the sum of the daily increase in
SWE over the duration of the storm event. Dew-point temperatures were calculated at each
node based on an empirical formula[63], using air temperature and relative humidity. The du-
ration of each precipitation event was determined based on the mean difference of hourly air
and dew-point temperatures. We assumed that dew-point and air temperatures were approx-
imately equal during a precipitation event. For each day with solid precipitation, the mean
daily dew-point temperatures were used to determine the precipitation phase. The proportion
of liquid and solid precipitation was computed from the daily dew-point temperature. With a
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dual-threshold temperature of +1oC, the proportion of snow and rain was allowed to vary lin-
early between the thresholds[90]. We thus defined the rain/snow transition zone as the band of
elevations between +1oC dew-point temperature. Precipitation was considered as 100% solid
and 100% liquid if computed mean dew-point temperature were below and above the thresh-
old temperatures. Results were evaluated using measurements of SWE from snow pillows and
precipitation from rain gauges at two sites (ALP and ECP).

Basin mean SWE and melt

The amount of accumulated snow and melt-out dates provide an additional check on the par-
titioning of rain versus snow precipitation. Spatially averaged sensor-network SWE estimates
were compared to operational snow data to assess differences in melt patterns and melt-out
dates across elevation. The portion of the basin above 1500 m was divided to three elevation
zones of equal area, with cutoff elevations at 1752 m and 2041 m. The basin’s area/elevation re-
lationship was derived from a 30-m DEM. SWE estimates from sensor nodes in each zone were
averaged to zone and basin means. The snow-disappearance day was determined as the day
snow depth fell below 1 cm.

5.3 Results

Temperature, humidity and precipitation

Data from the 80 measurement nodes illustrate average patterns across elevation as well as
within-cluster heterogeneity. For example, over a typical 14-day period, the daily cycle of air
temperature for the 10 nodes at ALP (Figure 5.1a) showed a 5-10oC difference between hourly
maximum and minimum values on a given day, with temperatures below 0oC during snow ac-
cumulation (Figure 5.1c). The smallest snow accumulation during the event on water-year day
(WYD) 207 was 22 cm for a heavily forested location, with two other nodes (in the forest clear-
ing) receiving 31 cm of snow. Relative humidity peaked at 100% from WYD 206 to 208 (Fig-
ure 5.1b), and showed little variability across the site. Most of the snow disappeared within
three days after the event due to warm temperatures.

Across the basin, eight of the 10 clusters of nodes were co-located with a met station (Ta-
ble 5.4), allowing comparison between the sensor-network spatial mean versus single met-
station temperature. At four of these, the met-station average temperature was within 1oC of
the 10-node average. Over an 8 month-period, at four of the clusters (BTP, VVL, CAP, ECP) the
average daily sensor-network temperature was 1.5, 1.1, 1.1 and 1.8 oC, respectively, below that
for the nearby met station (see Figure 5.2). For these sites, 80%, 2%, 58% and 77%, respectively,
of days had a difference greater than 1oC. The intersections of air and dew-point temperature
coincided well with precipitation events at all sites. Four of the ten sites also have a met sta-
tion with a rain gauge to measure precipitation, plotted as daily values on Figure 5.2. Note that
precipitation was recorded for most, but not all events at these sites.
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Figure 5.1: Measurements from the 10 nodes at ALP over 2 weeks: a) hourly and daily mean air
temperature b) relative humidity, and c) snow depth. Shaded bands indicate rain (WYD 206-
207) or snow (WYD 207-208) events.

Rain-snow transition zone

The elevations of the rain-snow transition zone were apparent in nine out of 10 precipitation
events (Table 5.1). The coldest period was WYD 67 (Event 3), with an average daily dew-point
temperature of -13.5 oC, and maximum of -9.1 oC. During this event, the rain-snow transition
was at approximately 600-m elevation, well below all of our sensors. The rest of the events all
had 0 oC dew-point temperature elevations between the highest and lowest of our sensors.
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Table 5.1: Rain/snow transition characteristics of the ten precipitation eventsa

∆ Mean Td lapse
Mean elev. of,1 oC Td , elevation to -1 rate,

Event Duration, WYD m oC Td , m oC km−1

E1 27-29 1463 328 -5.4
E2 49-52 1721 328 -4.7
E3 67-69 627 217 -6.5
E4 102-103 1691 336 -4.7
E5 121-122 1720 242 -4.8
E6 128-132 1681 343 -5.0
E7 148-157 1889 298 -5.7
E8 176-183 1485 298 -5.9
E9 206-208 1509 301 -5.7
E10 231-232 2011 330 -5.1
Mean - 1580 302 -5.0
St.Dev - 376 42 0.6
aValues are averages of hourly data over the entire event

The event E6 is used as an illustration of our analysis. The average lower boundary of the
rain-snow transition zone for the five-day period of E6 was 1681 m (Figure 5.3a). During this
event, the rain/snow transition zone gradually moved up in elevation. The hourly dew-point
lapse rates during precipitation were relatively stable (mean -5.0 oC km−1) compared to pre-
and post-event values, with R2 values significantly higher and RMSE lower during precipitation
(Figure 5.3b-d). Early in the event, snow depths at all clusters tracked each other, with a di-
vergence of trends observed on WYD 131, when only half of the clusters at higher elevation
recorded increases in snow depth (Figure 5.3e). At FRN (2269 m elevation), the precipitation
gauge recorded 5 cm on WYD 130, with no SWE increase recorded on the snow pillow. On the
other hand, ECP, roughly 200 m higher in elevation, recorded a 15-cm increase in SWE and
13-cm increase in precipitation during the same day (Figure 5.3f). Both sites received solid pre-
cipitation on WYD 132 as the storm intensified (Figure 5.3f).

Upslope migration of the rain/snow transition during event E6 was also visible in the daily
increase of snow-depth measurements across the basin. The lower-elevation nodes gradually
lost recordable snow starting from WYD 130 (Figure 5.3g). Migration of the snow line coincided
with the upward movement of the zero dew-point temperature (Figure 5.3a). The mean hourly
difference between air temperature and dew-point temperature was 0.4 oC during the four-day
event (Figure 5.3h). The air remained relatively saturated across elevations and time span of the
entire event. Similar records for other events are shown in supplemental Figures 5.10 to 5.18.
The mean R2 of the dew-point-temperature lapse rate for all 10 events was 0.78 and the RMSE
was 149 m, indicating an overall good fit of the dew-point data during the precipitation events.

The amount of solid and total precipitation by event is shown in Figure 5.4a for each node
and in Table 5.2 for the basin average above 1500 m. The rain-snow mix was more significant
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at lower elevations, with considerable variability across the nodes of each local cluster owing
to differences in dew-point temperature. A precipitation lapse rate for each event was calcu-
lated as the slope of the linear best-fit line. The values for solid precipitation varied from 1-3 cm
km−1 in E3, E4 and E10, all relatively small events, to over 30 cm km−1 in the largest event E6
(Table 5.6). All slopes in Figure 5.4a were statistically significant (p < 0.05), except total precip-
itation for E8 (p=0.27). For binned data, E3 and E8 had p > 0.05 (0.08, 0.11, respectively), with
the other eight having statistically significant fitted lines. Slopes for solid precipitation for the
binned data were on average about 0.6 cm km−1 higher than for all node data. Binning provides
a similar number of values across the basin as are currently available from operational sensors.
The analysis shown on Figure 5.4b uses 11 bins of 100-m in elevation; results were essentially
the same for fewer bins (data not shown). Doing the same analysis of total and liquid precip-
itation using snow-pillow data, together with dew-point temperature from the wireless-sensor
nodes (Figure 5.4b), gives slopes that are about 2.3 cm km−1 lower than those for the binned
node data, and on average differ from the slopes for the node data by about 25%. Differences
between binned-node and snow-pillow data were relatively large for the two events with the
steepest precipitation lapse rates, E6 and E7, for about 3.7 and 4.6 cm km−1, respectively. Using
rain-gauge data gave precipitation laps rates that were near zero, and in some cases negative
for the 10 events (Table 5.6). However, only one event (E5) had a statistically significant trend.
The p-values for the other nine events were in the range of 0.16-1.00.

Table 5.2: Partitioning of rain and snow, and area-weighted means, of ten precipitation events
(cm)a

WSN, All 80 nodes WSN, 11 bins Snow pillow Rain gauge
Mean Mean Blended
daily Mean Gauge with

Event ∆SWE Total ∆SWE ∆SWE Total ∆SWE ∆SWE Total only WSN
E1 4.0 4.2 2.0 3.8 4.1 1.9 2.2 2.7 2.2 4.2
E2 1.9 2.1 0.6 1.9 2.1 0.6 1.5 1.6 3.5 3.6
E3 3.5 3.5 1.8 3.3 3.3 1.6 4.0 4.0 3.2 3.5
E4 0.4 0.4 0.4 0.6 0.6 0.6 0.9 0.9 0.8 0.8
E5 1.4 1.5 1.4 1.4 1.4 1.4 2.2 2.2 6.5 7.5
E6 9.3 12.1 2.3 9.0 11.9 2.3 11.5 15.3 24.5 25.3
E7 7.2 8.4 0.8 6.8 7.9 0.8 6.5 8.6 15.7 14.7
E8 17.9 19.1 2.6 16.1 17.0 2.3 10.0 11.0 15.4 19.1
E9 9.1 9.3 4.5 8.0 8.5 4.0 4.6 5.1 5.7 9.3
E10 0.5 0.8 0.5 0.4 0.7 0.4 0.4 0.8 1.7 2.2
Mean 5.5 6.2 1.7 5.1 5.7 1.6 4.4 5.2 7.9 9.0
St.Dev 5.5 5.7 1.2 4.9 5.2 1.0 3.8 4.9 7.9 8.6
aSee Table 5.5 for statistics

Normalizing precipitation lapse rates by the mean precipitation amounts in Table 5.2 gives
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values of about 2.4±1.8 km−1 (mean ± standard deviation) for all nodes, versus 2.2±1.0 km−1 for
binned data, and 2.0±1.3 km−1 for the snow-pillow data. On average, normalized precipitation
lapse rates for each event differed by about +33% for the sensor-node versus snow-pillow data.
Normalized total precipitation lapse-rate values for sensor-node data range from 0.3-0.8 for E1,
E3, E8 and E9 to 2.5-3.2 for E4, E6 and E7 to 3.7-5.1 for E2, E5 and E10.

The contribution of liquid precipitation for mixed rain-snow events can be significant. For
example, during event E6, 2.8 cm liquid precipitation, averaged across elevations, was recorded,
with 9.3 cm solid precipitation by the nodes (Table 5.2). Using the node data, it is estimated that
across the 10 events, about 11% of the estimated total 62 cm of precipitation above elevation
1500 m fell as liquid. However, this likely underestimates the rain contribution to total precipi-
tation at some of the lower sensors. Rain-gauge data, averaged over the basin and summed for
all 10 events, give 79 cm total. Using binned node data gives only 57 cm total precipitation (11%
liquid), and snow-pillow data give 52 cm total (15% liquid).

SWE and snowmelt

SWE data show a clear elevation trend, with variability also increasing with elevation (Figure 5.5).
Maximum SWE occurred around April 1. During the warm and dry 2014 snow season, snow
cover accumulated mainly at elevations above 2100 m. At elevations below that, snow melted
soon after a precipitation event. At peak accumulation, average SWE measured by the WSN for
the 2154 km2 above 1500 m was 24.7 cm. Thus the estimated water stored in the snowpack at
the American River basin above 1500 m was 532 million m3 (0.43 million acre feet), or 10 cm
averaged across the 5311 km2 basin. The averages of snow-pillow SWE values showed positive
biases when compared to the WSN. However, basin-mean SWE on April 1st from snow courses
was 15 cm lower than sensor-network average SWE (Figure 5.5).

Sites at higher elevations generally had a longer melt season compared to lower elevations.
For sensor-network sites above 2000 m, snow melt out progressed upslope an average of 13
m day−1 (R2 = 0.68) (Figure 5.6). This is comparable to the 14 m day−1 observed by Rice et
al. [2011] for a dry year (2004) using satellite snow-cover data. The mean melt-out progressed
upslope about 25 m day−1 (R2 = 0.67) if lower-elevation sites were considered. The entire melt
season lasted roughly 65 days after April 1 (WYD 183), indicated by the first node at BTP to melt
out versus the last node at ECP. The error bars in Figure 5.6 indicate a 3-22 day variability in the
progress of snowmelt among nodes within each cluster. ECP experienced the longest period
(61 days) between the first and the last nodes to melt out. The progression of snowmelt within
each site was also recorded. Differences in the timing of melt-out between the sensor-network
nodes vs. snow pillows were also apparent (Figure 5.6). Snow-pillow data show an earlier melt
out as compared to the cluster means, with 18-, 22- and 30-day differences at VVL, ALP and ECP,
respectively.

Related to snowmelt timing, there were also significant differences in cumulative tempera-
ture between sensor-network nodes and met-station sensors. For the main snowmelt season,
April 4 to June 27, the differences between sensor-network nodes and met-station cumulative
values were +24 oC-day at VVL, and -68 oC-day at ECP. Using an average degree-day factor of 0.4
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cm per oC−1day−1[99], the resulting difference in potential snowmelt would amount to about
+9.70 cm at VVL and -28 cm SWE at ECP. In contrast, temperature data between the sensor
nodes and met-stations from SCN and ALP showed much less difference, +9.7 oC-day and +4.5
oC-day (Figure 5.6). The differences in potential snowmelt would be +3.9 and +1.8 cm of SWE
for SCN and ALP.

5.4 Discussion

Dew-point temperature and rain-snow transition

Combining dew-point temperature with air temperature has previously been shown to pro-
vide a reliable estimate of the timing and phase of precipitation[72]. Precipitation occurs when
temperature approximately equals dew-point temperature, indicating saturation of an air par-
cel. The critical temperature range of separating solid versus liquid is usually wider and more
variable for a method based on air temperature compared to one based on dew-point tempera-
ture. Therefore, dew-point temperature-based method to determine the phase of precipitation
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Figure 5.6: Basin mean SWE estimated by averaging SWE from equal-area segments above 1500
m. The shaded area represents the standard deviation of SWE estimated by WSN nodes. Also
shown are basin mean SWE values calculated by snow-pillow and snow-course data, using the
same method (dashed lines). See Table 5.10 for a list of snow courses in the American River.

is generally less geographically dependent[119]. It has also been observed that using ground-
based dew-point temperatures to determine the phase of precipitation is potentially more ac-
curate than radar-based methods due to reduction of error associate to interpreting the radar
measurement[68]. Precipitation data from the nearby rain gauges at ALP and EP5 showed that
the dual-temperature method reliably mapped the timing of precipitation (Figure 5.3g). The
better characterization of the timing of an event provided by the sensor network helps to more-
accurately estimate event-based indexes such as lapse rate and RMSE. That is, the reduction of
uncertainty in temperature and humidity elevation patterns helps to determine the elevation
range associated with the rain-snow transition.

Due to limited relative-humidity measurements at met stations in the basin, dew-point tem-
perature is not routinely available. Previous studies in the American River basin demonstrated
the inaccuracy of estimating daily dew-point temperature patterns using empirical method-
based spatial-projections algorithms, radiosonde data, or PRISM lapse rates[28]. They suggest
that dense field measurements or down-scaled atmosphere-model data are two viable solutions
to more-accurately estimate daily dew point. Our telemetered sensor-network data are of the
density and quality that can support the dual-temperature method.
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The bottom of the rain/snow transition elevation, represented as 1oC dew-point tempera-
ture, ranged from 627 to 2011 m for the ten events (Table 5.1), a wider range than observed at
Reynolds Creek, Idaho[79]. Marks et al.[72] did a detailed analysis of the rain-snow transition
by putting in place a transect of seven measurement stations providing temperature, humid-
ity and snow depth every 50 m, including precipitation and wind at the bottom (1500 m), top
(1800 m) of the catchment, and in a sheltered site just below the top (1750 m) in a 1.8 km2 sub-
drainage within the Reynolds Creek Experimental Watershed. Their work showed that the rain
- snow transition is very dynamic moving up and sown during mountain storms, and that rain
- snow transition level can be reliably determined from site humidity. However, in the absence
of such an extensive measurement network, methods to reliably estimate the melting level are
still an open question in mountain hydrology[68]. Widely used snow models such as SNOW-17
are very sensitive to the melting-level parameter input[75]. A melting-level error of 500 m can
sometimes result in a 200% difference in peak flow prediction[114]. Previous studies interpo-
lated ground melting elevation from atmosphere hydrometeor measurements using Doppler-
profiling radar[68, 76]. However, the uncertainty in estimates made from these methods were
at best about 300 m in the American River basin. The mean error of estimating dew-point tem-
perature was about 150 m using our WSNs (Table 5.1).

Rain-snow partitioning results are sensitive to the choice of the dew-point temperature
thresholds. Marks et al.[72] proposed a 1oC window, ±0.5 oC, as the boundary of the transition
zone. While they used hourly data for calculation, our study used daily averaged dew-point
temperature and SWE in order to mitigate noise in snow depth and possible lags in density
data. We also use wider bounds, ±1 oC, to accommodate uncertainties from measurements
and method. The wider bounds allow inclusion of more daily events in the rain/snow transition
zone. Specifically, the 100% widening of bounds resulted in an increase in the mean predicted
liquid precipitation from 6.2% to 9.9% seasonally and from 14.2% to 21.1% for E6.

Partitioning rain and snow

The ability to estimate liquid-precipitation amounts from solid precipitation could substan-
tially extend the current capability of precipitation observations. Those observations are im-
portant, as they are the basis of interpolation for some gridded-precipitation products such as
PRISM, WprldClim, and Climate Research Unit CL 2.0[80, 93, 46]. In a study by Lundquist et
al.[67], total ground precipitation was assumed to be the increase SWE at elevation above 2500
m when compared to gridded datasets. Seasonally, the assumption holds for American River
site for WY 2014. However, the rain/snow transition zone can reach elevations above 2500 m
for warmer event such as E6 (Figure 5.4). To extent the analysis to lower elevation and higher
temporal resolution, accurate temperature or dew-point temperature data are needed to help
reduce the uncertainty in predicting the phase of the precipitation.

Besides local spatial variability of dew-point temperature, the temporal variability of dew
point temperature can also produce suitable temperature conditions for snowfall. Event 6 around
WYD 131 was an example of such event (Figure 5.2). On WYD 131, 7 cm of precipitation was
recorded at the BTP rain gauge (Figure 5.3). With a daily averaged dew-point temperature at
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3.1oC (Figure 5.3a), almost all of the precipitation was rain. There was little to no SWE recorded
by the five lower WSN clusters (Figure 5.3). At higher elevation clusters, almost all of the precipi-
tation was snow. Despite the high mean daily dew-point temperature, there was still a small but
measurable amount of snow deposited at BTP during the event. This was likely due to both the
temporal and spatial variability of dew-point temperature, which is not completely captured by
a daily, cluster-averaged lapse rate and temperature. An hourly analysis of dew point and pre-
cipitation as rain versus snow is feasible using sensor-node data; however, melting during the
warm part of the day would need to be accounted for.

On average, the data indicate that up to 89% of the WY 2014 precipitation in these 10 events
fell as snow at the sensor nodes. The challenges in predicting the amount of liquid precipita-
tion was smaller compared to previous studies[72]. This is due to the relatively larger elevation
differences among sensor nodes, where some higher-elevation nodes receive mostly solid pre-
cipitation from all events. This difference could be even smaller if events with 100% liquid pre-
cipitation event were accounted for. In this paper, the derived total precipitation relies on some
portion of precipitation to be snow in order to calculate the liquid portion of the precipitation.
Due to lack of snow precipitation in some event at lower elevation, this method could result in
under estimate total precipitation.

Across all events, only 10% of precipitation occurred when daily averaged dew-point tem-
perature was above 0 oC. The general trend of increasing precipitation followed a weaker oro-
graphic effect during some events such as E1, E3, E8 and E9, i.e. higher elevations generally
received similar amount of precipitation compared to lower elevations. During those events,
elevations account for no more than 27% of the variance in snow deposition.

Inspection of moisture-transport suggests that a steeper precipitation lapse rate was asso-
ciated with atmospheric-river events, which made landfall, e.g. events E2, E6 and E7 (M. Det-
tinger 2016, personal communication). Events E1, E3, E4 and E9 showed no effect of atmo-
spheric river moisture. The outliers are E8, the largest event of the season, which had a weak
precipitation lapse rate but was weakly associated with atmospheric-river transport; and E5
and E10, smaller events that had steeper lapse rates, but were not associated with land-falling
atmospheric rivers.

For 1998-2010, the overall contribution of atmospheric rivers to Sierra Nevada SWE was
about 35%, with the rest contributed by less-intense but more-frequent precipitation events
citeGuan2012. The majority (80%) of the total SWE was contributed by days with ∆SWE be-
tween 0.5-4.5 cm day-1[35]. The contribution of atmospheric rivers for events in that range
(30%) doubles for ∆SWE >4.5 cm day−1. For ∆SWE <0.5 cm day−1, atmospheric rivers account
for only 2-3% of the total number of days, but about 40% of the cumulative SWE. Eight of the
10 events that we analyzed were in the range of 0.5-4.5 cm day−1. The Sierra Nevada averages
about nine days per year with atmospheric rivers contributing precipitation[36].

Comparison of basin-wide precipitation estimates

The rain-from-snow reconstruction result was compared to measurements of two co-located
sites at EP5 and ALP. Both sites simultaneously recorded SWE on a snow pillow and precipita-
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Figure 5.7: Cumulative solid (dashed lines) and total precipitation (solid lines) from the sensor-
network nodes at ALP and ECP compared to co-located snow-pillow and precipitation-gauge
data, For clarity, data from only five nodes are shown.

tion by a rain gauge. Seasonally, most of the precipitation was predicted as solid at EP5 from
the sensor-network data (Figure 5.7a). Good agreements were observed between the WSN and
operational data. On the other hand, the snow pillow and precipitation gauge at ALP measured
about 25% liquid precipitation versus 12-42% liquid predicted by the sensor-network nodes
(Figure 5.7b). At ALP, there were larger uncertainties associated with predicted liquid water
content in snow. Compared to ECP, ALP is more susceptive to the effects of rain/snow tran-
sition due to moderate elevation. Besides the natural heterogeneity, canopy interception and
wind redistribution of snowfall to the wireless-sensor nodes at ALP could add sources of uncer-
tainties in predicting liquid water content. Although, these uncertainties may be resolved using
subsequent-year data from the WSN, gridded and then evaluated and using the spatial snow
measurements.

It is useful to compare precipitation estimates from operational versus sensor-node data
across the basin above 1500 m elevation. First, it is apparent from Figure 5.3b that the 80 sen-
sor nodes capture landscape variability that is not apparent in snow-pillow data. While the
two data sets give broadly similar precipitation lapse rates, the WSN data potentially offer four
types of added value. First, the WSN data better capture spatial variability, and thus should
give improved estimates of gridded SWE (paper in preparation), essential for spatially explicit
modeling and forecasting tools. Second, compared to snow-pillow data, the WSN provides re-
dundancy in measurements that can bridge data gaps and uncertainties in snow-pillow mea-
surements. Third, compared to snow-course data, the WSN provides temporally continuous
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data over the same or larger spatial domain. This is especially important given the shifting rain-
snow mix and earlier peak in SWE at snow courses as climate warms. Fourth, these differences
together reduce uncertainty in precipitation, snowpack storage and snowmelt.

It is apparent from Figure 5.4c that total precipitation estimated using snow depth, and dew-
point temperature from the WSN show differences in precipitation across elevation and other
landscape attributes that are not captured by the rain-gauge data. However, the relationship
between precipitation estimates from the two data sets differs for warmer versus colder events.
For the colder events E1, E3, E8 and E9, total precipitation estimated by the WSN is higher
than that measured in the precipitation gauges. For these four events the rain-snow transition
elevation was at or near the 1500-m lower limit of the WSN, and little liquid precipitation con-
tributed to the total. For the other six events, the 0 oC dew-point elevation was well above 1500
m, and liquid precipitation was more important. A second estimate of total event precipita-
tion can come from combining the two types of measurements, i.e. using precipitation-gauge
data at lower elevations and WSN data at higher elevations. Given the few precipitation gauges
available in the basin, we used an average value for lower elevations, combining that with WSN
data for elevations above that value. The result is higher precipitation estimates for the mixed
rain-snow events (Table 5.2). Over all 10 events, this results in a season total of 90 cm, versus
79 cm for gauges alone and 62 cm for WSN alone. These represent respective total precipita-
tion amounts of 1.9, 1.7 and 1.3 billion cubic meters (1.6, 1.4, 1.1 million acre-ft). A potential
value added from this combined estimate is to provide a more-accurate elevation dependence
of precipitation.

An additional comparison comes from summing precipitation by elevation across all events,
by elevation. Here, we compare two estimates (Figure 5.8). Note the strong elevation depen-
dence of the WSN estimates versus PRISM data, which is gridded based on operational data.
PRISM reflects the mean of precipitation-gauge data in the basin. Here, the point of intersec-
tion is about 2400 m, which is still in the snow-dominated part of the basin. Rain-gauge data are
shown for reference, and represent part of the data used in the PRISM interpolation. Going for-
ward, improvements in precipitation estimates across the basin should focus more on snow in
this region, and rain below. In the mixed rain-snow zone, blending the two should be pursued.

Basin SWE and snow melt

Similar to other studies, the variability in SWE increases with elevation, but the coefficient of
variation showed no distinct trend in elevation at the spatial scale of the WSNs [83]. Seasonally,
the coefficient of variation for the lower one third of the basin is 1.04, similar to the upper one
third at 1.05 (Table 5.3). The differences in variability at similar elevations can in large part be
accounted by differences in forest canopy coverage[17]. At a few higher-elevation sites (e.g. ECP
and MTL), the high variability in SWE was caused by high SWE values recorded by a small subset
of nodes.
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Figure 5.8: Seasonal total comparison of precipitation estimates with PRISM.

Table 5.3: Daily average of µ, σ and coefficient of variation (CV) of elevation segments

Lower 1/3 Middle 1/3 Upper 1/3 Basin >1500 m
WSN Pillow WSN Pillow WSN Pillow WSN Pillow

Ave. daily SWE, cm 0.53 1.03 0.9 3.05 9.15 12.89 3.5 5.7
Ave. daily σ, cm 0.49 0.64 0.78 2.14 8.61 10.64 3.3 4.5
Ave. daily CV 1.04 0.8 0.92 0.66 1.05 0.99 1.0 0.8

The study characterized the basin’s mean SWE by three zones similar to Welch et al.[111],
which showed that strategically placed sensors in three to eight ‘clusters’ could efficiently char-
acterize SWE in the basin. They recommended measurements taken from clusters with strong
elevation differences. Our SWE measurements followed this approach, aimed at producing a
representative basin-wide SWE. Continuous measurements at higher temporal resolution can
aid in accurately monitoring a basin’s hydrologic condition. The combination of dry and warm
conditions during WY 2014 places it within the most severe drought periods (WY2012-2014) in
the last 1200 years[34]. There were no large storms, and of the few events that occurred, only
five deposited snow at all ten sensor-network cluster sites. Snow deposited at lower elevations
started to melt as soon as the precipitation event ended. Monthly snow courses at lower eleva-
tions missed the timing of those small ‘peaks’ in SWE for the season (Figure 5.3).

Reconstruction of SWE backwards from the last day of snow towards the peak accumula-
tion using energy-based methods is of interest to hydrologists for its higher accuracy and ro-
bustness to climate change[36]. One of the major uncertainties affecting the performance of
the method is the knowledge of the snow-disappearance date[89]. To determine snow cover,
Satellite remote-sensing observes snow-covered area, however obstruction of view by cloud
cover and canopy are significant challenges for this method. Ground-based sensors can mea-
sure snow-covered versus snow-free conditions without that uncertainty. On-the-ground snow
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measurements can also be used to verify satellite and LiDAR remote-sensing datasets, and ac-
count for their limited under-canopy measurements.

5.5 Conclusion

A spatially distributed WSN, installed across the 2154 km2 portion of the American River basin
above 1500 m elevation, reliably provided spatial measurements of temperature, relative hu-
midity and snow depth. Mixed rain/snow events were common at elevations below 2100 m; and
distributed-sensor data showed significant heterogeneity in rain versus snow precipitation that
was not apparent in more-limited operational data. Distributed dew-point temperature mea-
surements provided estimates of ground melting levels that were consistent with distributed
observations of snow accumulation. Using daily dew-point temperature and the amount of
snow accumulation at each node to estimate the fraction of rain versus snow resulted in an un-
derestimate of total precipitation below the 0 oC dew-point elevation, which averaged 1730 m
across 10 precipitation events, but was as high as 2170 m during one warm event. Rain-gauge
measurements failed to capture the elevation and other topographic variability of precipita-
tion. However, blending lower-elevation rain-gauge data with higher-elevation sensor-node
data for each event provided precipitation estimates that were on average 15-30% higher than
using either set of measurements alone. Given the increasing importance of liquid precipita-
tion in a warming climate, a strategy that blends distributed measurements of both liquid and
solid precipitation will provide the most-accurate basin-wide precipitation estimates. However,
blending data from the current operational rain-gauge and snow-pillow measurements under-
estimates basin-wide precipitation and snowpack storage. Distributed, representative mea-
surements also improve upon operational estimates of snowpack water storage and snowmelt
amount and snowmelt timing across the basin.

5.6 Supporting information

Introduction

This document includes supporting tables and figures referenced in the main text.
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Supplemental tables

Table 5.4: list of WSN sites and existing co-located instruments in the American River basin

WSN Site Abbr. Co-located oper. Elev., Lat,Lon # sensor nodes with
name site abbr. on CDEC m data in WY 2014

Schneiders SCN SCNb 2673 38.745, -120.067 8
Echo Peak ECP EP5b,c,d , ECSe 2478 38.848, -120.079 7
Mt. Lincoln MTL 2477 39.287, -120.328 8
Caples Lake CAP CAPb,c,d ,e 2437 38.711, -120.042 9
Alpha ALP FRNd , APHb,c,d ,e 2269 38.804, -120.216 10
Duncan Peak DUN 2097 39.154, -120.510 6
Van Vleck VVL VVLb,d 2069 38.944, -120.306 6
Onion Creek ONN ONNe 1891 39.274, -120.356 10
Robbs Saddle RBB RBBb,d , RBVe 1812 38.912, -120.379 9
Bear Trap BTP BTPb,c 1518 39.095, -120.577 8
aOut of 10 nodes installed at each local cluster
bRain gauge. Note that SCN an VVL did not have data in WY 2014
c Snow depth
d Snow pillow. CAP had no data in WY 2014
e Snow course

Table 5.5: SNOTEL sites used in deriving snow density

Site name Elevation, m
Fallen Leaf 1901
Truckee #2 1984
Ward Creek #3 2028
CSS Lab 2089
Echo Peak 2338
Rubicon #2 2344
Forestdale Creek 2444
Squaw Valley G.C. 2447
Independence Lake 2546
Carson Pass 2546
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Table 5.6: Statistical results from fitting SWE and precipitation data (main text, Figure 5.4)

WSN all nodes 11 bins WSN Pillow Gauge
Event ∆SWE Total ∆SWE Total ∆SWE precip.

P-value
E1 0.00 0.00 0.01 0.05 0.01 0.80
E2 0.00 0.00 0.00 0.00 0.00 0.72
E3 0.00 0.00 0.08 0.08 0.24 1.00
E4 0.00 0.00 0.00 0.00 0.07 0.49
E5 0.00 0.00 0.00 0.00 0.00 0.00
E6 0.00 0.00 0.00 0.00 0.00 0.95
E7 0.00 0.00 0.00 0.00 0.00 0.30
E8 0.05 0.27 0.11 0.19 0.24 0.35
E9 0.00 0.00 0.02 0.04 0.08 0.74
E10 0.00 0.00 0.01 0.01 0.01 0.16

R2
E1 0.18 0.15 0.45 0.31 0.52 0.01
E2 0.56 0.54 0.72 0.71 0.76 0.02
E3 0.10 0.10 0.25 0.25 0.13 0.00
E4 0.27 0.27 0.78 0.78 0.28 0.08
E5 0.56 0.52 0.72 0.67 0.63 0.76
E6 0.77 0.70 0.79 0.77 0.70 0.00
E7 0.56 0.48 0.77 0.76 0.82 0.18
E8 0.05 0.02 0.22 0.15 0.13 0.15
E9 0.12 0.10 0.42 0.34 0.28 0.02
E10 0.32 0.35 0.49 0.53 0.49 0.30

Slope, cm km−1

E1 3.16 2.79 4.90 3.89 3.61 0.43
E2 7.18 7.09 5.79 6.34 5.27 -0.99
E3 1.20 1.20 2.60 2.60 2.49 0.00
E4 1.09 1.08 1.61 1.59 1.50 -0.30
E5 6.71 7.06 4.33 4.40 8.90 3.29
E6 30.01 30.84 25.77 30.71 22.07 0.93
E7 19.23 18.23 18.04 20.31 13.47 -5.39
E8 5.65 3.17 12.99 10.89 3.44 -5.96
E9 4.86 4.37 10.43 8.99 2.68 -0.63
E10 2.50 4.05 1.16 2.31 1.54 1.32
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Table 5.7: Table 5.6. (cont.)

WSN all nodes 11 bins WSN Gauge
Event ∆SWE Total ∆SWE Total ∆SWE Precip.

Normalized slope, km−1

E1 0.79 0.67 1.28 0.96 1.61 0.19
E2 3.71 3.36 3.12 3.02 3.50 -0.29
E3 0.34 0.34 0.79 0.79 0.62 0.00
E4 2.53 2.47 2.66 2.58 1.66 -0.35
E5 4.64 4.64 3.19 3.06 4.00 0.50
E6 3.24 2.55 2.86 2.58 1.92 0.04
E7 2.68 2.17 2.64 2.57 2.06 -0.34
E8 0.31 0.17 0.81 0.64 0.34 -0.39
E9 0.53 0.47 1.31 1.06 0.58 -0.11
E10 5.13 4.83 3.06 3.28 3.67 0.79

RMSE, cm km−1

E1 2.26 2.26 1.77 1.89 1.40 1.52
E2 2.15 2.19 1.18 1.31 1.21 2.53
E3 1.22 1.22 1.47 1.47 2.58 1.47
E4 0.60 0.60 0.28 0.27 0.97 0.39
E5 1.98 2.28 0.87 1.00 2.77 0.72
E6 5.59 6.81 4.28 5.49 5.89 14.21
E7 5.69 6.43 3.19 3.72 2.54 4.60
E8 8.37 8.46 8.00 8.37 3.58 5.68
E9 4.51 4.45 3.99 4.05 1.77 1.76
E10 1.23 1.86 0.38 0.71 0.64 0.80
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Table 5.8: Snow pillow sites in the American River basin

Site name Abbrev. Elevation, m
Schneiders SCN 2667
Lake Lois LOS 2621
Carson Pass CXS 2546
Caples Lakea CAP 2438
Alpha ALP 2316
Forni Ridge FRN 2316
Silver Lake SIL 2164
Van Vleck VVL 2042
Huysink HYS 2012
Robbs Saddle RBB 1798
Greek Store GKS 1707
Blue Canyon BLC 1609
Robbs Powerhouse RBP 1570
aInsufficient data for WY 2014

Table 5.9: Precipitation gauges in the American River basin above 1500 m

Site Name Abbrev. Elevation, m
Schneidersa SCN 2667
Caples Lake CAP 2438
Caples (Twin) Lakea CPT 2438
Forni Ridge FRN 2316
Alpha (SMUD)a ALP 2316
Silver Lake SIL 2164
Van Vlecka VVL 2042
Huysink HYS 2012
Loon lake (SMUD) LON 1954
Robbs Saddlea RBB 1798
Greek Store GKS 1707
Blue Canyon #2 (ETI)a BL2 1609
Blue Canyon (DWR-2) BYM 1609
Blue Canyon BLC 1609
Robbs Powerhousea RBP 1570
aInsufficient data for
WY 2014
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Figure 5.9: Basin-wide daily mean (µ) and standard deviation (σ) of snow density calculated
from 9 snow-pillow sites in and around the American River basin 5.5. We used SNOTEL sites
adjacent to the American R. basin for this analysis, as the snow-pillow data in the basin had
significant gaps. Densities measured by four-snow courses sites within American River basin
are shown as discrete points.

Table 5.10: List of snow course sites in the American River basin above 1500 m

Snow course Survey
site ID Snow course site name Elev., m date SWE, cm

106 Upper Carson Pass 2591 25-Mar 17.5
331 Lower Carson Pass 2560 25-Mar 17.0
107 Caples Lake 2438 25-Mar 11.5
365 Alpha 2316 2-Apr 13.5
338 Lost Corner Mt. 2286 3-Apr 11.0
108 Echo Summit 2271 28-Mar 12.0
110 Lake Audrain 2225 28-Mar 12.0
109 Silver Lake 2164 27-Mar 5.0
316 Wrights Lake 2103 31-Mar 11.5
113 Phillips 2073 1-Apr 8.0
320 Lyons Creek 2042 2-Apr 10.5
289 Tamarack Flat 1996 1-Apr 14.5
114 Wabena Meadows 1920 28-Mar 6.5
369 Miranda Cabin 1890 28-Mar 3.0
120 Onion Creek 1859 26-Mar 1.0
371 Diamond Crossing 1844 28-Mar 1.0
122 Talbot Camp 1753 28-Mar 1.5
322 Robbs Valley 1707 31-Mar 3.0
127 Ice House 1615 31-Mar 1.5

Suplemental figures
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Chapter 6

Conclusion

My research has sought to design and deploy a ground-based system of WSNs to the Moun-
tains of Sierra Nevada, so as to monitor snowpacks and variables related to hydrologic changes.
Taking the series of instruments as a whole, the system provides more comprehensive and rep-
resentative snapshots of the important hydrologic variables, allowing new questions to be an-
swered. While comparing measurement results with data from the existing system, models, and
remote sensing product, we recognize that no single approach can characterize the complex-
ity of the natural phenomenon, and that all the available tools must be combined to address
questions in mountain hydrology. The core contributions of the research are two fold. The four
chapters of the dissertation have attempted to address some of the early questions.

Chapter 2 explored a series of constraints in using WSN in the remote environment. This
chapter discussed the basic requirements for an effective WSN to perform distributed sensing
of snow in the remote mountains. The size of the American River Basin and the number of
devices deployed as part of the ARHO project confirm the clear advantages of using low-power
wireless technology over a wired field solution. The idea of using an off-the-shelf low-power
wireless solution has proven a successful one, although the ARHO project has demonstrated
that the networking aspect is only a small piece of the challenge.

Following the deployment in the ARHO, Chapter 3 examined a data-driven model to char-
acterize the connectivity between network elements in complex real-world environment us-
ing machine-learning-based method. The result showed improvement in error reduction over
canonical and empirical propagation models. The methodology is a new way of predicting con-
nectivity in wireless networks. The result of the study can be applied directly to systems alike in
the similar environment to predict network connectivity and line quality.

I discussed the methodology of instrumenting the American river basin with a system com-
prised of clusters of wireless sensor nodes in Chapter 3. Compared to existing operational
sensors, the wireless-sensor network reduces uncertainty in water-balance measurements in
three distinct ways. Redundant measurements of temperature improved the robustness of
temperature lapse-rate estimation, reducing cross-validation error compared to that of using
met-station data alone. Second, distributed measurements capture local variability and con-
strain uncertainty, compared to point measures, in attributes important for hydrologic mod-
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eling, such as air and dew-point temperature and snow precipitation. Third, the distributed
relative-humidity measurements offer a unique capability to monitor upper-basin patterns in
dew-point temperature and better characterize precipitation phase and the elevation of the
rain/snow transition.

Chapter 5 identified mixed rain/snow events, which were common at elevations below 2100
m; and distributed-sensor data showed significant heterogeneity in rain versus snow precip-
itation that was not apparent in more limited operational data. Distributed dew-point tem-
perature measurements provided estimates of ground melting levels that were consistent with
distributed observations of snow accumulation. Using daily dew-point temperature and the
amount of snow accumulation at each node to estimate the fraction of rain versus snow resulted
in an underestimate of total precipitation below the 0 oC dew-point elevation, which averaged
1730 m across 10 precipitation events, but was as high as 2170 m during one warm event. Rain-
gauge measurements failed to capture the elevation and other topographic variability of precip-
itation. However, blending lower-elevation rain-gauge data with higher-elevation sensor-node
data for each event provided precipitation estimates that were on average 15-30% higher than
using either set of measurements alone. Given the increasing importance of liquid precipita-
tion in a warming climate, a strategy that blends distributed measurements of both liquid and
solid precipitation will provide the most-accurate basin-wide precipitation estimates. However,
blending data from the current operational rain-gauge and snow-pillow measurements under-
estimates basin-wide precipitation and snowpack storage. Distributed, representative mea-
surements also improve upon operational estimates of snowpack water storage and snowmelt
amount and snowmelt timing across the basin.

My research has highlighted the importance of network monitoring and management tools.
Although the SmartMesh IP manager offers a complete interface to query the state of the net-
work, receive alerts, and verify the performance of the network, a multi-network management
interface is missing. Such a solution would complement an existing SmartMesh IP network by
offering a unified interface to assist during network deployment, visualize the network, run net-
work health routines, display the sensor data, and log maintenance activity. REALMS associate
team (github.com/realms-team/), and plan on deploying it within six months. The connectivity
model developed in Chapter 3 is an opportunity to derive methods to improve network robust-
ness and boost the efficiency of deployment by automating the process of repeater placement.
Future study of this subject could use the model developed in Chapter 3 to optimize network
topology in complex terrain by modeling the connectivity of the network over the set of feasible
signal-repeater placements. This would facilitate the automated deployment of new networks
to ensure they are robust to path loss, and significantly reduce human cost during deployment.

Taken as a whole, my research sets the stage for more in-depth analyses with the dataset
being collected. My research provide a rich dataset for future work in hydrologic modeling.
The distributed in-situ dataset opens new ways to interpolate hydrologic variables across the
upper American River basin by blending remote and ground sensing dataset using geospa-
tial analysis. The dataset can also improve our knowledge on how uncertainty propagates in
snow/hydrologic models. Snow accumulation and melt models require calibration to make ac-
curate estimates, and uncertainties can exist in the forcing data, model parameters, and model
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structures. The model error is often related to the inability to characterize the uncertainty in
various model components. The distributed WSN measurements contain critical model pa-
rameters, allowing calculation of the uncertainty of the forcing . It provides ground truth for the
model response, i.e. changes in snowdepth. Given a fixed model structure, future effort can be
spent on examining the efficacy of the calibrated model parameters across different regions of
the basin in hoping of developing a better strategy to calibrate snow/hydrologic models.
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