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Plant diversity varies immensely over large-scale gradients in temperature, precipitation,
and seasonality at global and regional scales. This relationship may be driven in part
by climatic variation in the relative importance of abiotic and biotic interactions to the
diversity and composition of plant communities. In particular, biotic interactions may
become stronger and more host specific with increasing precipitation and temperature,
resulting in greater plant species richness in wetter and warmer environments. This
hypothesis predicts that the many defensive compounds found in plants’ metabolomes
should increase in richness and decrease in interspecific similarity with precipitation,
temperature, and plant diversity. To test this prediction, we compared patterns of
chemical and morphological trait diversity of 140 woody plant species among seven
temperate forests in North America representing 16.2◦C variation in mean annual
temperature (MAT), 2,115 mm variation in mean annual precipitation (MAP), and from 10
to 68 co-occurring species. We used untargeted metabolomics methods based on data
generated with liquid chromatography-tandem mass spectrometry to identify, classify,
and compare 13,480 unique foliar metabolites and to quantify the metabolomic similarity
of species in each community with respect to the whole metabolome and each of five
broad classes of metabolites. In addition, we compiled morphological trait data from
existing databases and field surveys for three commonly measured traits (specific leaf
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area [SLA], wood density, and seed mass) for comparison with foliar metabolomes. We
found that chemical defense strategies and growth and allocation strategies reflected
by these traits largely represented orthogonal axes of variation. In addition, functional
dispersion of SLA increased with MAP, whereas functional richness of wood density
and seed mass increased with MAT. In contrast, chemical similarity of co-occurring
species decreased with both MAT and MAP, and metabolite richness increased with
MAT. Variation in metabolite richness among communities was positively correlated with
species richness, but variation in mean chemical similarity was not. Our results are
consistent with the hypothesis that plant metabolomes play a more important role in
community assembly in wetter and warmer climates, even at temperate latitudes, and
suggest that metabolomic traits can provide unique insight to studies of trait-based
community assembly.

Keywords: metabolomics, chemical ecology, ForestGEO, species diversity gradient, climate, biotic interactions,
functional traits, temperate forest

INTRODUCTION

Plant diversity varies immensely over large-scale climatic
gradients at regional and global scales. Climates that are
wetter, warmer, and less seasonal consistently exhibit greater
species richness than climates that are drier, colder, and more
seasonal. At global scales, tree diversity at the 0.25 km2-scale
increases by two orders of magnitude over 60◦ latitude from
the Canadian Taiga Plains to the Amazon Basin (Anderson-
Teixeira et al., 2015; Chu et al., 2019; Davies et al., 2021). At
regional scales, woody plant diversity increases with precipitation
and temperature (Gentry, 1988; Hawkins et al., 2003; Kreft
and Jetz, 2007; Esquivel-Muelbert et al., 2017). Prominent
hypotheses for these large-scale diversity gradients propose
that environmental filtering reduces community membership,
and hence diversity, in abiotically stressful climates and that
increased specialization of biotic interactions increases species
richness in less stressful climates (Schemske et al., 2009; Lamanna
et al., 2014; Chu et al., 2019). These hypotheses make testable
predictions regarding relationships between climatic gradients
and the traits that mediate plant interactions with the abiotic and
biotic environment.

Morphological and physiological traits mediate plant
interactions with the abiotic and biotic environment and
define fundamental tradeoffs in resource-use and life history
strategy (Wright et al., 2004; Rüger et al., 2018). Variation in
community weighted mean trait values can reveal climatically
driven variation in suitable morphological traits. Dispersion and
richness of morphological traits may reveal diversity in resource-
use and life-history strategies among species that co-occur at a
site, or the effects of environmental filters that limit the breadth
of trait values with which plants can tolerate a climate (Lamanna
et al., 2014; Harrison et al., 2020). For decades, researchers have
sought to link community variation in plant functional traits to
the processes of community assembly (Weiher and Keddy, 1995),
yet a focus on coarse morphological traits (e.g., specific leaf
area) that are only loosely correlated with ecological functions
(Shipley et al., 2016) has resulted in some cases where there

are strong trait-environmental linkages, and other cases where
the same traits are weakly linked to the environment, making
generalizations challenging.

In addition to morphological variation, much of the functional
trait variation found in plant communities is due to variation
in small organic molecules that make up the metabolome of
the plant (Kursar et al., 2009; Salazar et al., 2018; Sedio et al.,
2020, 2017). The plant metabolome includes primary metabolites
involved in core metabolic processes and the basic building
blocks of large organic polymers such as nucleotides, amino acids,
and mono- and disaccharides. However, much of the astonishing
diversity of plant metabolomes is made up of secondary
metabolites that are typically not involved in core metabolism,
but rather in specialized functions. Secondary metabolites can
mediate plant response to abiotic stresses, such as those exerted
by ultraviolet radiation and freezing temperatures (Close and
McArthur, 2002; Rasmann et al., 2014; Schneider et al., 2019),
as well as biotic stresses imposed by herbivores and microbial
pathogens (Coley, 1983; Wink, 2003; Fine et al., 2006; Salazar
et al., 2018; Sedio et al., 2020). Unlike abiotic stressors, biotic
agents of selection on plant defenses are capable of reciprocal
coevolution, that is, counter-adaptations on the part of herbivores
and pathogens to the chemical defenses evolved by plant hosts
(Schemske et al., 2009) (Schemske et al., 2009). Ehrlich and Raven
(1964) proposed that such coevolution of plants and their natural
enemies is a major driver of diversification in both groups. Hence,
variation over climatic gradients in the relative importance of
natural enemies as agents of selection on plants may contribute
to the parallel diversity gradients in woody plants and their
natural enemies (Dyer et al., 2007; Schemske et al., 2009), with
consequences for variation in plant metabolomes (Defossez et al.,
2018; Moreira et al., 2018; Sedio et al., 2018b; Volf et al., 2020).

In light of large-scale climate-associated diversity gradients,
biologists have long assumed that plant investment in chemical
defenses would increase with pest and pathogen pressure, and
hence increase with precipitation and temperature and decrease
with seasonality (Coley and Aide, 1991; Coley and Barone, 1996;
Dirzo and Boege, 2008; Pellissier et al., 2014; Sam et al., 2020).
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However, at regional scales, plants tend to invest more in defense
in environments in which the cost of tissue loss to natural enemies
is greater (Givnish, 1999; Fine et al., 2006; Defossez et al., 2018;
Volf et al., 2020). Hence, recent studies suggest that the cost of
tissue loss to herbivores or pathogens runs counter to that of pest
and pathogen abundance, and hence decreases with precipitation,
temperature and edaphic resources (Fine et al., 2006; Sam et al.,
2020; Volf et al., 2020). The fitness landscape of plant secondary
metabolites likely varies with multiple biotic and abiotic gradients
over broad climatic gradients at global and regional scales, and
plant responses may favor greater investment in stressful abiotic
environments where tissue loss is costly, yet greater diversity
or interspecific divergence in chemical defense composition
in less stressful abiotic environments with high herbivore and
pathogen pressure (Volf et al., 2020). Few studies have examined
the relationship between plant metabolomic composition and
major climatic or environmental gradients for specific woody
plant lineages (Fine et al., 2006; Sam et al., 2020; Volf et al.,
2020) and even fewer have done so at the community scale
(Sedio et al., 2018b).

Here, we compare metabolomic and morphological traits
among 140 species from seven forests in the US and Canada,
representing 218 unique species-site combinations. We use
untargeted metabolomics methods based on data generated with
liquid chromatography-tandem mass spectrometry to identify,
classify, and compare foliar metabolites and to quantify the
metabolomic similarity of species in each forest community.
We compare metabolomic variation with that of morphological
traits to ask: (i) do metabolomic and morphological traits co-
vary among species or communities?; (ii) do metabolomic and
morphological traits show similar patterns of phylogenetic signal
across species?; and (iii) do metabolomic and morphological
traits show similar associations with large-scale gradients in
precipitation and temperature? Finally, we test the hypotheses
that abiotic stress reduces morphological and metabolomic
trait diversity but increases investment in foliar metabolites
in cold and dry climates and that biotic interactions increase
metabolomic diversity and decrease similarity in warm and wet
climates in North American tree communities.

MATERIALS AND METHODS

Study Sites and Species
We studied the chemical and functional ecology of seven large-
scale (median 20 ha) forest dynamics plots coordinated by
the Smithsonian Forest Global Earth Observatory (hereafter
ForestGEO) in the U.S. and Canada. In each plot, all free-
standing woody stems ≥1 cm diameter at breast height (dbh,
defined as 1.3 m height) are identified, measured, and mapped at
regular census intervals (Anderson-Teixeira et al., 2015; Davies
et al., 2021). The seven plots span 23.6◦ latitude, 16.2◦C mean
annual temperature, and 2,115 mm mean annual precipitation,
and support from 10 to 68 free-standing woody species ≥1 cm
dbh (Table 1; Davies et al., 2021).

Three western forests are characterized by predominantly
coniferous overstories. Scotty Creek, Northwest Territories

(NT), Canada is a subarctic boreal forest dominated by Picea
mariana (black spruce) on permafrost plateaus and Larix
laricina (larch) on permafrost-free wetlands, with dense patches
of Betula glandulosa (dwarf birch) (Dearborn et al., 2020).
Cedar Breaks, UT, is a subalpine spruce-fir forest dominated
by Abies bifolia (subalpine fir), Populus tremuloides (quaking
aspen), Picea engelmannii (Engelmann spruce), Pinus flexilis
(limber pine), Pinus longaeva (bristlecone pine), and Picea
pungens (blue spruce) (Furniss et al., 2017). Wind River,
WA, is a moist montane forest characterized by an overstory
of Tsuga heterophylla (western hemlock) and Pseudotsuga
menziesii (Douglas-fir) and an understory of diverse Ericaceae
(Gaultheria, Menziesia, Rhododendron, and several Vaccinium)
(Lutz et al., 2013).

Four eastern forests are characterized by predominantly
broad-leaved overstory trees. Tyson Research Center, MO,
and Michigan Big Woods, MI, are both characterized by
several species of Quercus (oaks) and Carya (hickories) in the
overstory (Spasojevic et al., 2016; Allen et al., 2020, 2018),
though the Michigan plot may be undergoing a shift in
composition, as recruitment is dominated by Acer rubrum
(red maple) and Prunus serotina (black cherry) (Allen et al.,
2018). The Smithsonian Conservation Biology Institute (SCBI)
forest plot represents the eastern deciduous forest of the Blue
Ridge, with abundant Liriodendron tulipifera (tulip poplar),
Quercus and Carya (Bourg et al., 2013). The Smithsonian
Environmental Research Center (SERC) forest plot is composed
of upland secondary forest characterized by Liriodendron
tulipifera, Quercus, Carya, Fagus grandifolia (beech), and
Liquidambar styraciflua (sweetgum) in the overstory, but is
bisected by a floodplain forest distinguished by a canopy of
Fraxinus (ashes), Platanus occidentalis (sycamore), and Ulmus
americana (elm).

Sampling and Extraction
We collected expanding, unlignified leaves that were between
50 and 90% fully expanded from saplings, shrubs, and small
trees in the forest understory where possible at each site
between June 2018 and July 2019. Three to five leaves from
an individual were placed in a manila coin envelope and
immediately flash frozen in liquid nitrogen in the field using a
portable dewar (PrincetonCryo, Pipersville, PA, United States).
Where possible, we sampled 5 individuals of each species
recorded in each forest plot. In total, we sampled 140 species
from the seven forest plots, representing 218 unique species-
site combinations (Supplementary Table 1). In each of the
seven plots, the species we sampled represented ≥64.0% of the
species (median 91.1%) and ≥98.8% of the individuals (median
99.9%) recorded.

Leaf samples were stored at −80◦C and shipped on dry ice
to the Sedio Lab at the University of Texas at Austin, where
they were freeze-dried and a 50–100-mg sample was pulverized
using a Qiagen TissueLyser ball mill (Hilden, Germany). A 10-
mg subsample was weighed and extracted with 1.8 ml 90:10 v/v
methanol:water pH 5 overnight at 4◦C and 300 rpm, centrifuged
at 14,000 rpm for 30 min, and the supernatant removed and
filtered for analysis using LC-MS.
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Liquid Chromatography-Mass
Spectrometry
We optimized UHPLC-MS parameters to detect and fragment
metabolites representing a wide range in polarity and mass
(Sedio et al., 2018a). Metabolomic extracts were separated using
a Thermo Fisher Scientific (Waltham, MA, United States)
Vanquish Horizon Duo ultra-high performance liquid
chromatography (UHPLC) system with an Accucore C18
column with 150 mm length, 2.1 mm internal diameter, and 2.6-
µm particle size. UHPLC buffer A (0.1% v/v formic acid in water)
and buffer B (0.1% v/v formic acid in methanol) were employed
in a solvent gradient from 5 to 100% buffer B over 18 min.

Separation of metabolites by UHPLC was followed by heated
electrospray ionization (HESI) in positive mode using full
scan MS1 and data-dependent acquisition of MS2 (dd-MS2)
on a Thermo Fisher Scientific Q Exactive hybrid quadrupole-
orbitrap mass spectrometer. We analyzed samples of three types:
individual trees; species pools, consisting of pooled aliquots of
all conspecific individuals for each species; and quality controls
(QC), consisting of pools of aliquots of all species pools analyzed
concurrently. For individuals, we collected an MS1 scan (115–
1,725 m/z) at a resolution of 140,000. For species pools and QC
samples, the MS1 full scan was at 70,000 resolution, followed
by dd-MS2 at 17,500 resolution on the five most abundant
precursors found in the MS1 spectrum. Automatic gain control
target values were 1e6 for full scan MS1 and 1e5 for dd-MS2.
Maximum ion injection times were 200 ms for full scan MS1,
100 ms for QC MS1, and 50 ms for MS2. For dd-MS2, we set
the isolation window to 1.5 m/z and stepped collision energy
at 20, 40, and 60. QC pooled samples were used to account for
fluctuations in total ion intensity due to changes in temperature
and atmospheric pressure over time.

Metabolomics Data Analysis
Raw data from the UHPLC-MS analyses were centroided
and processed for peak detection, peak alignment, and peak
filtering using MZmine2 (Pluskal et al., 2010), which groups
chromatographic features into putative compounds based on
molecular mass and LC retention time. We used the following
parameter settings: mass detector method “centroid” with MS1
noise threshold 50,000 ion counts and MS2 noise threshold 0
ion counts; chromatogram builder module minimum highest
intensity 35,000, absolute m/z tolerance 0.002 and ppm tolerance
10.0; deconvolution module method “local minimum search”

with chromatographic threshold 0.9, minimum relative height
0.05, and peak duration range 0.0–0.3 min; isotope grouper
module using absolute m/z tolerance 0.0015, ppm tolerance 7.0,
retention-time tolerance 0.5; join aligner module using absolute
m/z tolerance 0.0015, ppm tolerance 7.0, retention-time tolerance
0.5, weight for m/z vs. retention time 3:1, isotope absolute m/z
tolerance 0.001, ppm tolerance 5.0, minimum absolute intensity
3,000, minimum score 0.6; Sirius export module merge mode “do
not merge,” absolute m/z tolerance 0.001, ppm tolerance 20.0;
GNPS export module filter rows “only with MS2.”

MZmine2 processing was performed for 11 batches of species.
Each batch was uploaded to the Global Natural Products Social
(GNPS) Molecular Networking platform (Wang et al., 2016)
and used to generate a molecular network using the “feature-
based molecular networking” method (Nothias et al., 2020) using
the following parameter settings: precursor ion mass tolerance
0.02 Da, fragment ion mass tolerance 0.2 Da, minimum pairs
cosine 0.7, minimum matched fragment ions 6, maximum
shift between precursors 500 Da, network topK 10, maximum
connected component size 100.

Each batch was then re-analyzed in GNPS using the
“qemistree” tool to simultaneously infer molecular structures
using Sirius (Dührkop et al., 2019) and CSI:FingerID (Dührkop
et al., 2015), classify metabolites using ClassyFire (Djoumbou
Feunang et al., 2016) and build a hierarchical dendrogram
that reflects the structural similarity of unique metabolites
using Qemistree (Tripathi et al., 2021). The output of the 11
batch analyses was integrated using the Qemistree plugin for
Qiime (Bolyen et al., 2019; Tripathi et al., 2021). Compounds
that occurred in blanks, such as contaminants and industrial
surfactants, were removed from further analyses. The complete,
combined foliar metabolome and Qemistree dendrogram can
be found in Supplementary Tables 2, 3, respectively. The
complete dataset is available as a MassIVE dataset on GNPS1.
Links to the Feature-Based Molecular Network and Qemistree
results on GNPS for each of the 11 batches can be found in
Supplementary Table 4.

ClassyFire’s chemotaxonomic scheme places heterocyclic
alkaloids in the superclass “organoheterocyclic compounds”
rather than “alkaloids and derivatives.” Hence, to reorganize
the alkaloids and reduce the number of chemical classes for
downstream analyses, we modified the chemotaxonomic classes
provided by ClassyFire to derive our own classes as follows:

1ftp://massive.ucsd.edu/MSV000087217/;doi:10.25345/C5HV49

TABLE 1 | Variation in latitude, mean annual temperature, mean annual precipitation, census area, and species richness of seven forest plots.

Plot, location Lat (◦N) MAT (◦C) MAP (mm) Elevation (m) Area (ha) S

Scotty Creek, NT, Canada 61.3 −2.7 380 266 9.6 10

Wind River, WA, United States 45.8 9.2 2,495 369 25 25

Michigan Big Woods, MI, United States 42.5 8.4 792 288 23 41

SCBI, VA, United States 38.9 12.9 1,001 306 25.6 65

SERC, MD, United States 38.9 13.2 1,068 8 16 68

Tyson Research Center, MO, United States 38.5 13.5 957 205 20 42

Cedar Breaks, UT, United States 37.7 4.0 849 3,084 15.32 17
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First, we defined “lipids” as the ClassyFire superclass “lipids
and lipid-like molecules,” including terpenes and steroids.
Second, we defined “organic acids” as the ClassyFire superclass
“organic acids and derivatives.” Third, we defined “benzenoids”
as all compounds in the ClassyFire superclasses “benzenoids”
and “phenylpropanoids and polyketides,” including phenols,
polyphenols, and flavonoids. Fourth, we defined “alkaloids”
as all compounds in the ClassyFire superclass “alkaloids
and derivatives,” as well as compounds in the superclass
“organoheterocyclic compounds” that contain nitrogen.
Finally, we defined “heterocyclic compounds” as all remaining
compounds in the ClassyFire superclass “organoheterocyclic
compounds.” The classifications we used can be found in the
column “customclass” in Supplementary Table 2. Chemical
superclasses and relative ion intensity of compounds that
occurred in each forest plot were visualized on the Qemistree
hierarchical dendrogram (Tripathi et al., 2021) using the
Interactive Tree of Life web tool (Figure 1; Letunic and Bork,
2019). We did not define “lignans, neolignans, and related
compounds” as a distinct superclass in downstream calculations
because they were absent from many species in the young,
expanding leaves we analyzed. Other chemical superclasses
we included only in the whole-metabolome analyses included
“allenes,” “carbides,” “hydrocarbon derivatives,” “hydrocarbons,”
“nucleosides, nucleotide, and analogs,” “organic 1,3-dipolar
compounds,” “organic oxygen compounds,” “organophosphorus
compounds,” “organosulfur compounds,” and unclassified
compounds. All five of the superclasses we examined include
numerous defensive compounds, as common defenses such as
polyphenols and flavonoids are included in the “benzenoids”
superclass; terpenes, terpenoids, and steroids are included in the
“lipids” superclass, and other anti-herbivore and antimicrobial
compounds are included in the “heterocyclic compounds”and
“organic acids” superclasses.

Sedio et al. (2017) developed the chemical structural-
compositional similarity (CSCS) metric to quantify the similarity
of samples or species in a manner that accounts for the presence
of identical compounds as well as the presence of structurally
similar unique compounds in two samples. Here, we calculated
CSCS for each species pair as the mean structural similarity of
every pair of compounds found in either species, weighted by
the ion intensity of each compound pair in the species compared.
We calculated CSCS chemical similarity for every species pair in
each forest plot for the whole metabolome and for each of the five
major chemical classes.

Morphological Traits
To compare patterns in metabolomic trait diversity with patterns
of morphological trait diversity we focused on three putatively
important morphological traits: specific leaf area (SLA), wood
density, and seed mass. Specific leaf area is associated with
resource uptake strategy and tissue N, where high SLA represents
a strategy to maximize carbon gain and relative growth rate
(Reich et al., 1997). Wood density is associated with mortality
rate, hydraulic lift and the relative mechanical strength of the
plant (Enquist et al., 1999). Seed mass is related to dispersal ability
and a reproductive strategy where species that produce few large

seeds are thought to better tolerate poor site conditions and those
that produce many small seeds are thought to be better dispersers
(Muller-Landau, 2010).

Between 2012 and 2014 we measured morphological traits at
three of our seven sites: Wind River, Tyson and SERC. At these
three sites we collected sun-exposed leaves with minimal damage
or senescence from each of 5 to 10 representative individuals of
each species and fully hydrated the leaves in water tubes. For
all species except conifers, we collected 3 leaves per individual.
Due to the small size of conifer leaves (needles) we collected
approximately 0.5 g of leaves (between 40 and 70 needles)
per individual per species. We calculated leaf area (cm2) from
scanned leaves and petioles using Image-J (Rasband, 2018). For
compound species, we calculated leaf area as the mean leaflet area
per leaf including petiolules (Pérez-Harguindeguy et al., 2016).
For needle leaves we calculated the total area of all leaves and
divided that area by the number of leaves collected. We calculated
SLA (cm2/g) as leaf area per unit dry mass after leaves were
dried in an oven at 60◦C for 4 days. Using the branches from
which leaves were collected we cut out a section that was 2.5 cm
long and at least 1 cm in diameter. We calculated wood density
(g/cm3) as the volume of the branch section per unit of dry mass
after branch sections were dried in an oven at 60◦C for 4 days.
Seed mass data were compiled from the Kew Royal Botanical
Gardens Seed Information Database2. For the other four sites
morphological trait data was either downloaded from existing
databases (Harrison et al., 2020; Kattge et al., 2020) or we used
species means from other sites (i.e., mean trait values for Fraxinus
americana at Tyson were applied to Michigan Big Woods as this
species is found at both sites). Trait values used in the present
study can be found in Supplementary Table 5.

Statistical Analysis
To examine patterns of covariance among metabolomic and
morphological traits and describe variation in species traits
among sites we conducted a principal components analysis
(PCA). Total ion abundance of all compounds in each superclass
was summed for each species-by-site and all traits were scaled
prior to analysis. Principal components analysis was conducted
using the “principal” function in R version 3.6.2 (R Core
Team, 2020). Species scores and trait loadings can be found in
Supplementary Tables 5, 6, respectively. For comparison, we
conducted a phylogenetic PCA using the R package phytools
(Revell, 2012). However, this necessitated excluding species
with missing values.

To generate a phylogeny representing all 140 species in
the seven forest plots, we queried the Zanne et al. (2014)
megaphylogeny using “phylomatic” (Webb and Donoghue,
2005). We then used phylogenetically independent contrasts
(PICs) to examine the relationship between chemical similarity
and phylogeny, and to test for phylogenetic signal. We calculated
the PIC for each node in the phylogeny as the mean CSCS
for all pairs of species for which the node represents the
most recent common ancestor. Sedio et al. (2018b) refer to
this metric as CSCSmrca. Here, we calculated 1–CSCSmrca

2http://data.kew.org/sid/
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FIGURE 1 | Hierarchical dendrogram of 13,480 foliar metabolites. Qemistree (Tripathi et al., 2021) represents the structural similarity of unique metabolites in the
form of a “phylogeny,” a hierarchical dendrogram in which structurally related metabolites form sister pairs and clades. Branch color indicates the chemotaxonomic
classification of the metabolite in one of five major chemical superclasses; black branches represent all other chemical classes. Colored interior branches represent
branches for which all “descendent” branches were classified as the same superclass. Seven concentric bar plots represent the relative log ion intensity of
metabolites in each of seven forest plots. The geographic location of each forest plot, mean annual precipitation (mm), and mean annual temperature (◦C) are
indicated in the inset.

to represent metabolomic disparity for ease of comparison
with morphological disparity, which we calculated as the
difference between the trait values of the descendent nodes
or terminal taxa for each node in the phylogeny (i.e., the
phylogenetic contrast in trait values). To evaluate phylogenetic
signal, we regressed metabolomic phylogenetic contrasts (1-
CSCSmrca) and morphological phylogenetic contrasts against
log-transformed phylogenetic distance. Tests of phylogenetic
signal have little statistical power when applied to samples with
few taxa (Revell, 2010), hence we assessed phylogenetic signal for
metabolic and morphological traits for 140 species, rather than
for each community. We corroborated our CSCSmrca method
by measuring Blomberg’s K (Blomberg et al., 2003) for the three
morphological traits.

To examine the differences in interspecific variation and the
chemical space occupied by species in each forest plot and in
taxonomic clades, we used non-metric multidimensional scaling
(NMDS) to reduce the chemical space into two dimensions using
the MASS package in R (Ripley et al., 2013).

For each plot, we calculated complementary metrics of
functional trait diversity that are appropriate for metabolomic
and morphological traits, respectively. For the metabolomic traits
we calculated the abundance-weighted mean CSCS among co-
occurring species (CSCSmean). First, we calculated the mean
CSCS for each species to all other species, weighted by abundance.
We then calculated the mean of these species-level similarity
scores, weighted by abundance. We also considered metabolomic
richness, which we defined as the number of compounds detected
in each forest community.

For morphological traits we calculated three complementary
metrics of functional diversity: Community weighted mean
(CWM) trait values, functional richness (FRic), and functional
dispersion (FDis). Community-weighted mean (CWM) trait
values describe the functional composition of a community and
are calculated as the abundance-weighted trait averages (Garnier
et al., 2004) of each trait. Functional richness measures the
ranges of trait values in a community, and is calculated as the
standardized difference between the maximum and minimum
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functional values present in the community (Mason et al.,
2005). Functional dispersion, which indicates the degree of trait
dissimilarity among species, is calculated as the abundance-
weighted mean distance of each species in trait space to
the centroid of all species and is statistically independent of
species richness (Laliberté and Legendre, 2010). We repeated
metabolomic and morphological community calculations using
species basal area to weight the CSCS, CWM, and FDis scores
and found similar patterns as the abundance weighted patterns,
so we focus only on abundance weighted results for simplicity.

To assess relationships among chemical and morphological
traits of woody plant assemblages and climatic variables, we
regressed plot-level measures of the diversity and similarity
of traits with log-transformed mean annual precipitation
(log10MAP), mean annual temperature (MAT), and species
richness. We reported significant relationships for p < 0.05 and
marginally significant relationships for p < 0.07.

RESULTS

We detected 13,480 compounds, ranging from 116.0705 to
1181.8350 Daltons (Da), in foliar extracts from all 140
species. We generated a predicted molecular structure and a
chemotaxonomic classification for 11,415 and 10,376 of these
compounds, respectively. A total of 8,323 classified compounds
were represented by the superclasses “alkaloids,” “benzenoids,”
“lipids,” “organic acids,” and “heterocyclic compounds” as we
defined them (62%; Figure 1 and Supplementary Table 2).
Among compounds classified into one of these five superclasses,
we generated a predicted molecular structure for 8,323
compounds (99.6%), but retrieved an MS2 library match from
GNPS spectral libraries for only 1,032 compounds (12.3%).

We found that the five metabolomic superclasses and the
three morphological traits we considered represented largely
orthogonal axes of variation in the PCA (Figure 2 and
Supplementary Table 6), but there was some covariation among
metabolomic and morphological traits (particularly on PC3).
Alkaloids, lipids, and organic acids loaded positively on the
first PCA axis, which explained 26% of the variation among
species. SLA and wood density loaded on PCA axis 2, which
explained 16% of the variation among species. Lastly, heterocyclic
compounds, seed mass and benzenoids loaded on PCA axis 3,
which explained another 16% of the variation among species
(Supplementary Table 6). Phylogenetic PCA carried out on
a subset of species for which all traits were measured or
available was broadly concordant with non-phylogenetic PCA,
as metabolomic and morphological traits represented orthogonal
axes of variation (Supplementary Figure 1).

Phylogenetic signal varied among metabolomic and
morphological traits. Metabolomic disparity for all foliar
metabolites increased with log phylogenetic distance (Figure 3A).
Likewise, disparity increased with log phylogenetic distance
when measured in terms of alkaloids, benzenoids, lipids,
and SLA (Figures 3B,C,E,G). In contrast, metabolomic or
morphological disparity was unrelated to phylogeny for
heterocyclic compounds, organic acids, seed mass, and

wood density (Figures 3D,F,H,I). Blomberg’s K and test for
phylogenetic signal for morphological traits corroborated our
approach, as SLA exhibited weak, but significant phylogenetic
signal (K = 0.086, p = 0.002), whereas seed mass (K = 0.034,
p = 0.573) and wood density (K = 0.024, p = 0.213) did not.

The NMDS ordination illustrates the chemical space
represented by the 218 unique species-by-site combinations
(Figures 4, 5), as well as highlighted clades (Figure 4) and each
forest community (Figure 5). Clades varied considerably in the
breadth of the chemical space they occupied. Gymnosperms
occupied a consistent neighborhood in NMDS chemical space,
with the exception of the chemically very distinct Taxus brevifolia
(Figure 4A). In contrast, Betulaceae and Ericaceae occupied
broad areas of chemical space, reflecting the low metabolomic
similarity among species in those families (Figures 4C,D).

Abundance-weighted metabolomic similarity of co-occurring
species decreased with MAP among the seven forest plots
(Figure 6A). Results for chemical superclasses largely reflected
those for the whole metabolome (Supplementary Figure 2).
Species were less similar with respect to alkaloids in forest plots
with greater MAP (Supplementary Figure 2A). However, co-
occurring species were only marginally less similar with respect to
heterocyclic compounds and organic acids in forests with greater
MAP (Supplementary Figure 2C,E), and similarity with respect
to benzenoids and lipids was not related to precipitation among
the seven sites (Figures 6B,D).

Abundance-weighted metabolomic similarity of co-occurring
species also decreased with MAT among the seven forest
plots (Figure 6B). Likewise, similarity with respect to all five
chemical superclasses decreased with MAT among the forest sites
(Supplementary Figures 2F–J). In contrast, abundance-weighted
metabolomic similarity was not related to species richness
(Figure 6C), though similarity with respect to benzenoids
and lipids decreased with species richness among the sites
(Supplementary Figures 2L,N).

Metabolomic richness was unrelated to MAP among the seven
sites (Figure 6D). Likewise, richness of compounds in all five
chemical superclasses was unrelated to MAP (Supplementary
Figures 3A–E). In contrast with MAP, metabolomic richness
increased significantly with MAT among the seven forest
plots (Figure 6E). Alkaloid richness and that of benzenoids
also increased with MAT (Supplementary Figures 3F,G),
while the increase in richness of heterocyclic compounds and
organic acids was marginally significant with MAT among sites
(Supplementary Figures 3H,J). Only lipid richness was unrelated
to variation in MAT (Supplementary Figure 3I). Metabolic
richness as a whole (Figure 6F), and with respect to all five
chemical superclasses (Supplementary Figures 3K–O), increased
significantly with species richness among forest plots.

Morphological trait dispersion with respect to SLA increased
significantly with MAP among the seven forest plots (Figure 7A).
However, dispersion with respect to seed mass and wood density
was unrelated to MAP (Figures 7B,C). Morphological trait
dispersion was unrelated to MAT for all three morphological
traits (Figures 7D–F).

Morphological trait richness was unrelated to MAP for all
three morphological traits (Figures 8A–C). Trait richness defined
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FIGURE 2 | Principal components analysis of variation among species in three morphological traits and in total ion intensity in five chemical superclasses. Loadings
for chemical superclasses reflect species means in total ion intensity of all compounds classified in each superclass. Loadings for morphological traits reflect species
means. Points represent 140 unique species; colors represent species occurrences in seven forest plots. Species that occurred in >1 forest plot contributed only a
single observation (the species mean) to the principal components analysis, but are visually represented by jittered points, the colors of which reflect the species
incidence in each forest plot. See Supplementary Table 5 for species scores and Supplementary Table 6 for trait loadings.

in terms of SLA was unrelated to MAT (Figure 8D). However,
seed mass richness increased marginally significantly with MAT
(Figure 8E), and wood density richness increased significantly
with MAT (Figure 8F).

DISCUSSION

A Comparison of Metabolomic and
Morphological Trait Variation
The seven forest plots represented a wide range of variation
in precipitation, temperature and species richness within the
temperate and boreal zones (Table 1; Anderson-Teixeira et al.,

2015). Accordingly, the functional strategies of species present
at each of these seven sites varied along these major gradients.
This was reflected in variation in both the morphological
traits, and in quantitative investment in broad chemical
superclasses, which represent largely orthogonal axes of variation
(Figure 2). Alkaloids, lipids, and organic acids loaded on
the first PCA axis. All three superclasses include numerous
anti-herbivore and antimicrobial defense compounds. These
include terpenes, terpenoids, and steroids classified among
the lipids. The lipid superclass also contains fatty acids that
make up oils and waxes that are important mediators of
tolerance to abiotic stresses such as drought and freezing
temperatures (Uemura and Steponkus, 1994). Interestingly,
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FIGURE 3 | Phylogenetic signal in the species pool and morphological traits. Panels illustrate relationships between phylogenetic distance and species disparity with
respect to (A) the whole metabolome, (B) alkaloids, (C) benzenoids, (D) heterocyclic compounds, (E) lipids, (F) organic acids, (G) SLA, (H) seed mass, and (I) wood
density. Metabolomic disparity is 1-CSCSmrca, where CSCSmrca is the mean chemical similarity of species for which a phylogenetic node represents the most
recent common ancestor. Morphological disparity is the phylogenetic contrast in trait values at a phylogenetic node. Traits that evolve according to Brownian motion,
or phenotypic drift after cladogenesis permits departure from a shared ancestral state, are expected to exhibit increasing disparity with log-transformed phylogenetic
distance.

two key morphological traits, SLA and wood density, both
loaded on PCA axis 2 (Figure 2) representing an uncorrelated
orthogonal axis to the metabolomic traits on PC1. Specific
leaf area is typically associated with resource uptake strategy,
where high SLA represents a strategy to maximize carbon
gain and relative growth rate (Reich et al., 1997), while

wood density is associated with mortality rate, hydraulic lift
and the relative mechanical strength of the plant (Enquist
et al., 1999). These patterns of orthogonal chemical and
morphological trait axes suggest that there is little covariation
between chemical defense strategies represented by investment
in alkaloids, lipids, and organic acids and growth and resource
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FIGURE 4 | Non-metric multidimensional scaling of pairwise CSCS chemical similarity for 218 populations of 140 woody plant species. Panels highlight species that
are (A) gymnosperms, (B) basal Angiosperms, (C) Betulaceae, (D) Ericaceae, (E) Fagaceae, (F) Juglandaceae, and (G) Rosaceae. Each point represents a
species-site population, and the distances between points reflect the pairwise CSCS chemical similarity between all pairs of species-site populations, represented in
two dimensions. Colors represent the taxonomic family or clade of the species.

allocation strategies represented by SLA and wood density, and
hence that metabolomic traits represent novel functional space
that is not captured by commonly measured morphological
traits (Díaz et al., 2016). However, other morphological traits
we did not consider here may yet exhibit correlations with
metabolomic features.

Benzenoids, heterocyclic compounds, and seed mass all
loaded on the third PCA axes (Figure 2), with benzenoids
and heterocyclic compounds positively covarying with each
other and both negatively covarying with seed mass. The
chemical superclass benzenoids includes defensive compounds
such as polyphenols, as well as secondary metabolites that
serve multiple functions, such as flavonoids that function in
both defense from herbivory and protection against ultraviolet
light (Close and McArthur, 2002; Schneider et al., 2019).
Heterocyclic compounds, as we have defined them, include

many compounds with potential defensive functions that lack
the characteristic functional groups or metabolic origins used to
define the other superclasses. Seed mass is generally associated
with recruitment life history strategy, where large-seeded species
tolerate suboptimal conditions for recruitment, but small-seeded
species achieve greater fecundity (Muller-Landau, 2010). The
association between seed mass, and quantitative investment in
benzenoids and heterocyclics is likely driven by the abundance
of broad-leafed, deciduous, large-seeded angiosperm trees, such
as Carya and Quercus, in the four eastern forests, and the
greater investment in benzenoid metabolites and heterocyclic
compounds in more environmentally and climatically stressful
boreal and alpine forests.

In general, we found that phylogenetic signal varied among
metabolomic and morphological traits, supporting research
demonstrating that phylogenetic signal is dependent on both
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FIGURE 5 | Non-metric multidimensional scaling of pairwise CSCS chemical similarity for 218 populations of 140 woody plant species. Panels illustrate the chemical
similarity of species that occur at (A) Scotty Creek, NT, (B) Wind River, WA, (C) Cedar Breaks, UT, (D) Tyson Research Center, MO, (E) Michigan Big Woods,
Michigan, (F) SCBI, VA, and (G) SERC, MD. Each point represents a species-site population, and the distances between points reflect the pairwise CSCS chemical
similarity between all pairs of species-site populations, represented in two dimensions. Colors represent the forest plot in which the species population occurred.

the taxonomic and spatial scales studied (Cavender-Bares
et al., 2006). While wood density (Swenson and Enquist,
2007), SLA (Ackerly and Reich, 1999), and seed mass (Moles
et al., 2007) are all generally phylogenetically conserved when
examining broad scale phylogenetic patterns involving thousands
of species, wood density and seed mass did not exhibit
phylogenetic signal among the 140 species in our study.
Interestingly, these results suggest that phylogenetic signal for
wood density and seed mass may be weaker than for the
foliar secondary metabolome at the community scale in North
America. However, the relative phylogenetic signal displayed
by morphological and metabolomic traits in temperate forests
may be reversed in tropical forests, which exhibit much
less metabolomic phylogenetic signal than their temperate
counterparts (Sedio et al., 2018b).

Variation in the species composition of the seven forest plots
resulted in striking differences in the chemical space occupied
by each site. For example, the Scotty Creek community was
represented by chemically similar gymnosperms and birches
(Betulaceae) (Figure 5A) despite the much broader chemical
space represented by species in those lineages at other sites
(Figures 4A,C). In contrast, western coniferous forests at
Wind River and Cedar Breaks, while relatively species poor
(Table 1), were highly chemically diverse and composed of
chemically distinct species. This was a result of two factors.
First, the understory flora of these forests is composed of
chemically distinctive shrubs, particularly species in the Rosaceae
such as species of Amelanchier and Holodiscus, and species
in the Ericaceae such as species of Gaultheria, Menziesia,
Rhododendron, and Vaccinium (Figures 4C,G, 5). Second,
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FIGURE 6 | Variation in metabolomic similarity and richness vs. log10 MAP, MAT, and species richness. Panels represent linear regressions between (A) mean
metabolomic similarity and MAP, (B) mean metabolomic similarity and MAT, (C) mean metabolomic similarity and species richness, (D) metabolomic richness and
MAP, (E) metabolomic richness and MAT, and (F) metabolomic richness and species richness. Panels a, b, and c represent regressions of abundance-weighted
CSCS metabolomic similarity of co-occurring species at each site vs. log10 MAP, MAT, and species richness, respectively. Panels d, e, and f represent regressions of
metabolite richness with log10 MAP, MAT, and species richness, respectively. Significant regressions are indicated by a solid line. Forest plot codes are: SC, Scotty
Creek, NT; WR, Wind River, WA; CB, Cedar Breaks, UT; TR, Tyson Research Center, MO; BW, Michigan Big Woods, MI; SB, Smithsonian Conservation Biology
Institute (SCBI), VA; and SR, Smithsonian Environmental Research Center (SERC), MD.

abundant overstory trees such as Abies and Pinus species were
less chemically similar in the temperate rainforest at Wind River
than at the drier and colder Cedar Breaks and Scotty Creek
(Figures 5B,C, 6A,B).

In contrast to the western North American plots, many species
in the four eastern forest plots occupied the center of chemical
space (Figures 5D–G). This pattern was driven by the species
richness and relative chemical similarity of species in the families
Fagaceae, Juglandaceae, and some Rosaceae (Figures 4E–G).
However, the density of points in the center of chemical space
that represent the four eastern forest plots in the NMDS may
overrepresent the chemical similarity of species in those forests,
as the NMDS ordination relies only on species pairwise CSCS
chemical similarity and does not account for or visually represent
variation in abundance.

Forest Metabolomes and Climatic
Gradients
Abundance-weighted whole metabolomic similarity of co-
occurring species strongly declined with log MAP and MAT
among the seven forest plots (Figures 6A,B). This result is
consistent with the prediction that chemically mediated biotic

interactions are more specialized in abiotically mild, wetter
and warmer climates (Mittelbach et al., 2007; Schemske et al.,
2009). In contrast, the PCA (Figure 2 and Supplementary
Table 5) illustrates that quantitative investment in most classes of
metabolites was greatest in species inhabiting abiotically stressful
environments such as the boreal forest at Scotty Creek, NT, or the
subalpine forest at Cedar Breaks, UT, which includes one of the
most extreme stress tolerators, bristlecone pine (Pinus longaeva).
Together, these results are consistent with the prediction that
quantitative investment in chemical defense is greatest is stressful
environments in which tissue loss to herbivores and pathogens is
costly, but qualitative divergence in the composition of chemical
defense is greatest in relatively benign environments where plant-
enemy coevolution may occur at an accelerated rate (Rasmann
et al., 2014; Volf et al., 2020).

Sedio et al. (2018b) found that tree species were more
chemically similar in the temperate forest at SERC than in a
tropical moist forest at Barro Colorado Island (BCI), Panama.
Furthermore, species of Quercus (oaks), Carya (hickories), and
Viburnum were chemically similar at SERC, whereas congeneric
species in the seven most-diverse tree genera at BCI were
chemically dissimilar (Sedio et al., 2018b). The metabolomic
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FIGURE 7 | Linear regressions of morphological trait dispersion at each forest site vs. log MAP, MAT, and species richness. Panels represent linear regressions
between trait dispersion of (A) SLA and MAP, (B) seed mass and MAP, (C) wood density and MAP, (D) SLA and MAT, (E) seed mass and MAT, and (F) wood density
and MAT, respectively. Significant regressions are indicated by a solid line; non-significant regressions with p < 0.08 are represented by a dashed line. Forest plot
codes are: SC, Scotty Creek, NT; WR, Wind River, WA; CB, Cedar Breaks, UT; TR, Tyson Research Center, MO; BW, Michigan Big Woods, MI; SB, Smithsonian
Conservation Biology Institute (SCBI), VA; and SR, Smithsonian Environmental Research Center (SERC), MD.

differences observed among closely related species of Eugenia,
Inga, Ocotea, Piper, Protium, and Psychotria at BCI suggest
that interspecific variation in foliar secondary metabolites may
directly promote greater species richness by reducing host ranges
of insect herbivores and microbial pathogens (Kursar et al., 2009;
Salazar et al., 2018; Volf et al., 2018), and thereby reducing
enemy-mediated competitive interactions and imposing stronger
conspecific negative density-dependent effects on recruitment
relative to the effects of heterospecific neighbors (Sedio and
Ostling, 2013; Forrister et al., 2019). Whereas the results of
Sedio et al. (2018b) suggest that the metabolomic similarity
of co-occurring woody plant species may differ profoundly

between the temperate and tropical regions, our results suggest
that metabolomic similarity among co-occurring plant species
decreases with precipitation and temperature even within the
boreal and temperate regions of North America and hence may
contribute to latitudinal and climatic diversity gradients even
outside the tropics.

Future Directions
Our results indicate that metabolomic diversity and
disparity increased with precipitation and temperature
(Figures 6A,G, 7A,G). Although these gradients are
associated with increased species richness at regional and
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FIGURE 8 | Linear regressions of morphological trait richness at each forest site vs. log MAP, MAT, and species richness. Panels represent linear regressions
between trait richness of (A) SLA and MAP, (B) seed mass and MAP, (C) wood density and MAP, (D) SLA and MAT, (E) seed mass and MAT, and (F) wood density
and MAT, respectively. Significant regressions are indicated by a solid line; non-significant regressions with p < 0.08 are represented by a dashed line. Forest plot
codes are: SC, Scotty Creek, NT; WR, Wind River, WA; CB, Cedar Breaks, UT; TR, Tyson Research Center, MO; BW, Michigan Big Woods, MI; SB, Smithsonian
Conservation Biology Institute (SCBI), VA; and SR, Smithsonian Environmental Research Center (SERC), MD.

global scales, in our results metabolomic richness and
disparity were not directly related to species richness
among our seven forest sites (Figures 6M, 7M). Linking
community variation in the metabolome to mechanisms
that may drive variation in species richness over ecological
and evolutionary timescales will require the integration of
metabolomics with the study of plant-enemy associations
and plant performance at community scales over broad
climatic gradients. Nevertheless, our results illustrate
the scalability of metabolomics methods based on mass
spectrometry (Dührkop et al., 2015, 2019; Wang et al., 2016;

Nothias et al., 2020; Tripathi et al., 2021) and suggest their utility
in the pursuit of chemical community ecology of global gradients
in diversity and climate.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.2021.
679638/full#supplementary-material

Supplementary Figure 1 | Phylogenetic principal components analysis of
variation among species in three morphological traits and in total ion intensity in
five chemical superclasses. Loadings for chemical superclasses reflect species
means in total ion intensity of all compounds classified in each superclass.
Loadings for morphological traits reflect species means. Points represent 91
unique species; colors represent species occurrences in seven forest plots.
Species that occurred in >1 forest plot contributed only a single observation (the
species mean) to the principal components analysis, but are visually represented
by jittered points, the colors of which reflect the species incidence in each forest
plot. Only species for which every trait was recorded are included.

Supplementary Figure 2 | Linear regressions of metabolomic similarity of five
chemical superclasses vs. log10 MAP, MAT, and species richness. Significant
regressions are indicated by a solid line; non-significant regressions with p < 0.07
are represented by a dashed line. Forest plot codes are: SC, Scotty Creek, NT;
WR, Wind River, WA; CB, Cedar Breaks, UT; TR, Tyson Research Center, MO;
BW, Michigan Big Woods, MI; SB, Smithsonian Conservation Biology Institute
(SCBI), VA; and SR, Smithsonian Environmental Research Center (SERC), MD.

Supplementary Figure 3 | Linear regressions of metabolomic richness of five
chemical superclasses vs. log10 MAP, MAT, and species richness. Significant
regressions are indicated by a solid line; non-significant regressions with p < 0.07
are represented by a dashed line. Forest plot codes are: SC, Scotty Creek, NT;
WR, Wind River, WA; CB, Cedar Breaks, UT; TR, Tyson Research Center, MO;
BW, Michigan Big Woods, MI; SB, Smithsonian Conservation Biology Institute
(SCBI), VA; and SR, Smithsonian Environmental Research Center (SERC), MD.

Supplementary Figure 4 | Linear regressions of community
abundance-weighted mean morphological trait values at each forest site vs. log
MAP, MAT, and species richness. Significant regressions are indicated by a solid
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line. Forest plot codes are: SC, Scotty Creek, NT; WR, Wind River, WA; CB, Cedar
Breaks, UT; TR, Tyson Research Center, MO; BW, Michigan Big Woods, MI; SB,
Smithsonian Conservation Biology Institute (SCBI), VA; and SR, Smithsonian
Environmental Research Center (SERC), MD.

Supplementary Table 1 | Sampling and species composition at seven forest
sites. Columns represent: Latin, each species taxonomic name; Code,
six-character species code; Plot Sampled, the site where the species/population
was sampled. Seven columns labeled with forest plots contain a binary value (1/0)
that indicates which sampled population was used to represent the species at the
site (e.g., Populus grandidentata sampled at Michigan Big Woods was used to
represent the species at Michigan Big Woods and SERC).

Supplementary Table 2 | Combined foliar metabolome of 140 species sampled
in seven forest plots. Columns represent: id, unique alphanumeric compound
identifier; ms2_library_match, named compound matched in a public mass
spectral library queried using GNPS; parent_mass, the mass of the compound
prior to MS2 fragmentation; retention_time, the time at which the compound was
eluted from the UHPLC column during liquid chromatography; smiles, a SMILES
text string representing the molecular structure inferred using either CSI:fingerID
and Sirius or the MS2 library match; structure_source, whether the SMILES
structure was inferred using CSI:fingerID and Sirius or represents that of the
compound matched in the MS2 library on GNPS. Subsequent columns represent
chemotaxonomic classifications at five levels of organization (kingdom,

superclass, class, subclass, and direct_parent) made using ClassyFire. The
column “customclass” reflects the five chemotaxonomic superclasses the authors
defined for analyses presented for publication. The columns “ScottyCreek,”
“WindRiver,” “CedarBreaks,” “Tyson,” “MichiganBigWoods,” “SCBI,” and “SERC”
indicate whether the compound occurred in a plant species recorded in each of
the seven forest plots. The remaining columns, with column names ending in
“mzXML,” indicate the ion abundance of each compound in each
species-by-site pooled sample.

Supplementary Table 3 | Hierarchical dendrogram of 13,480 foliar metabolites.
Qemistree (Tripathi et al., 2021) represents the structural similarity of unique
metabolites in the form of a “phylogeny,” a hierarchical dendrogram in which
structurally related metabolites form sister pairs and clades. Tip labels correspond
to compound identifiers in Supplementary Table 2.

Supplementary Table 4 | Links to GNPS Feature-Based Molecular Network and
Qemistree results for 11 batches of species.

Supplementary Table 5 | Trait values for specific leaf Area (SLA), wood density
and seed mass and PCA scores (PCA axes 1–3) for each unique site by species
combination. Measurements that were not taken at each site have their source
listed. All seed mass data is from the KEW seed information database.

Supplementary Table 6 | Trait loadings for each of three axes from a Principal
Components Analysis.
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