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ABSTRACT OF THE DISSERTATION

Generating Functions of Tandem Mass Spectra and Their Applications
for Peptide Identifications

by

Sangtae Kim

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Pavel A. Pevzner, Chair

Mass spectrometry (MS) has become the leading high-throughput tech-

nology for proteomics, a large-scale study of proteins. MS experiments generate

tandem mass (MS/MS) spectra, each representing a peptide. Identifying peptides

from MS/MS spectra is a basic and essential task in proteomics studies. At present,

MS instruments and experimental protocols are rapidly advancing, however, the

software tools to interpret MS/MS spectra are lagging behind with many com-

putational problems remaining unsolved. In this dissertation, we present a novel

approach to interpreting MS/MS spectra, called the generating function approach,

and show how this approach enables us to solve key computational problems in

MS. First, we address the problem of estimating statistical significance of Peptide-

xv



Spectrum Matches (PSMs). Since typically less than 30% of the generated spectra

can be correctly interpreted, this problem is important in distinguishing between

correct and incorrect PSMs. Using the generating function approach, we present

the first analytical (rather than empirical) solution to this problem. Our MS-GF

tool not only improves the accuracy of statistical significance estimates, but also in-

creases the number of peptide identifications at a fixed error rate. Next, we present

an alternative approach to peptide identifications based on generating all plausi-

ble de novo interpretations of a spectrum (spectral dictionary) and then quickly

matching them against the protein database. Our MS-Dictionary tool enables

proteogenomic searches in six-frame translation of genomic sequences that may be

prohibitively time-consuming with traditional methods. We also present spectral

profiles, a new representation of tandem mass spectra that compactly represent

spectral dictionaries. Spectral profiles can be used to generate gapped peptides

that are as useful as full-length peptides and as accurate as peptide sequence tags

of length 3 traditionally used to speed up database searches. Lastly, we present

a new database search tool MS-GF+ based on MS-GF. MS-GF+ is sensitive (it

identifies more peptides than other database tools) and universal (works well for

diverse types of spectra, different configurations of MS instruments and different

experimental protocols). We benchmark MS-GF+ using diverse types of spectral

datasets, and show that for all these datasets, MS-GF+ significantly increased the

number of identified peptides compared to state-of-the-art methods for peptide

identifications.
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Chapter 1

Introduction

Mass spectrometry (MS) has become the leading high-throughput technol-

ogy for proteomics [1]. MS experiments generate tandem mass (MS/MS) spectra,

each representing a peptide. Identifying peptides from MS/MS spectra is a basic

and essential task for most proteomics studies. However, this task remains chal-

lenging because the spectra are complex and the process of peptide fragmentation

is not well understood. This dissertation presents a novel approach to interpret-

ing MS/MS spectra, called the generating function approach, and describes its

applications for peptide identifications.

1.1 The generating function approach

To introduce the notion of the generating function of tandem mass spectra,

we use the analogy with the classical Ising model of ferromagnetism, one of the

pillars of statistical mechanics [2]. The model consists of n magnetic spins such

that each spin can be in two states (up and down). This results in 2n possible

states each with its own energy defined by the elementary interactions between

neighboring spins on the lattice. The partition function represents the key tech-

nique for analyzing the Ising model and is defined as
∑

all states π e
−Energy(π) (here

we ignore the “temperature” parameter of the Ising model).1

1Partition functions in statistical mechanics represent a special class of generating functions
and we use them below only to illustrate this notion in application to tandem mass spectra.

1
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Interpreting a spectrum S with a peptide P is not unlike choosing a state

in the Ising model. Instead of 2n states of magnetic spins, there are 20n possible

interpretations of the spectrum S by peptides of length n. Each of these interpre-

tations has its own “energy” given by the score of the match between spectrum S

and peptide P . The goal is to compute the partition (generating) function of the

spectrum S and to apply it to analyzing statistics of the MS/MS searches rather

than the statistics of the Ising model. While the generating function of tandem

mass spectra involves 20n terms, we show in Chapter 2 how to efficiently compute

it.

Chapter 2 introduces the notion of the generating function for MS/MS

spectra using the Boolean spectrum that ignores intensities, charges, inaccura-

cies in peak positions, and different types of ions. While Boolean spectra are

impractical, they proved to be useful as a stepping stone for introducing simple

scoring/algorithms. Later in Chapter 2, we illustrate how to define the generating

function for real spectra.

1.2 Evaluating statistical significance of Peptide-

Spectrum Matches

A key problem in computational proteomics is distinguishing between cor-

rect and incorrect peptide identifications. Chapter 2 describes how the generating

functions of MS/MS spectra and their derivatives (spectral energy and spectral

probability) represent new features of tandem mass spectra that, similar to the

commonly used ∆-scores, significantly improve peptide identifications. Further-

more, the spectral probability provides a rigorous solution to the problem of com-

puting statistical significance of Peptide-Spectrum Matches (PSMs). Our MS-GF

tool reports spectral probabilities of PSMs, improving the sensitivity-specificity

trade-off of existing MS/MS search tools. It also addresses the notoriously difficult

problem of one-hit-wonders in MS, and often eliminates the need for decoy database

searches, a common approach used to control false positive peptide identifications.

We show the generating function approach has the potential to increase the num-
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ber of peptide identifications in MS/MS searches while effectively controlling false

positives.

1.3 Integrating de novo sequencing and database

search

There are two major approaches to identifying peptides from MS/MS spec-

tra: De novo sequencing and database search. The de novo sequencing approach

directly infers peptides from spectra, whereas the database search approach com-

pares and scores spectra against theoretical spectra predicted from peptides in a

protein database, and selects the best-scoring peptide. While de novo sequencing

is emerging as an alternative to database search, database search remains a more

accurate and thus preferred method. We studied an alternative approach where all

plausible de novo interpretations of a spectrum (spectral dictionary) are generated

and then quickly matched against the database [3]. Chapter 3 presents a new MS-

Dictionary algorithm for efficiently generating spectral dictionaries using generat-

ing functions. We demonstrate that MS-Dictionary can identify spectra that are

missed in the database search. MS-Dictionary enables proteogenomic searches [4]

against six-frame translation of genomic sequences that may be prohibitively time-

consuming for existing database search approaches. We show that such searches

allow one to correct sequencing errors and find programmed frameshifts.

1.4 Alternative to de novo sequencing: Spectral

profiles and gapped peptides

Despite many efforts in the last decade, the progress in de novo peptide

sequencing has been slow with only 30–45% of all peptides being correctly recon-

structed. In Chapter 4, We argue that accurate full-length peptide sequencing may

be an unattainable goal for some spectra and demonstrate how to accurately se-

quence gapped peptides instead using the generating function approach. Gapped
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peptides are nearly as useful as full-length peptides for error-tolerant database

searches, occupying a niche between long but inaccurate full-length reconstruc-

tions and short but accurate peptide sequence tags. Gapped peptides are longer

and more accurate than peptide sequence tags of length 3 traditionally used to

speed up database searches in proteomics. To generate gapped peptides, our MS-

Profile tool uses spectral profiles, a new representation of tandem mass spectra.

Spectral profiles also enable intuitive visualization of all high scoring de novo re-

constructions of tandem mass spectra.

1.5 Universal and sensitive database search tool

MS instruments and experimental protocols are rapidly advancing, but the

software tools to analyze MS/MS spectra are lagging behind. While existing

database search tools perform well on some types of spectra (e.g., Collision Induced

Dissociation (CID) spectra of tryptic peptides), their performance often deterio-

rates on other types of spectra, such as Electron Transfer Dissociation (ETD),

Higher-energy Collisional Dissociation (HCD) spectra, or spectra of non-tryptic

digests.

Chapter 5 describes ideas on how to make MS-GF adaptable to any type

of spectra and presents a new database search tool MS-GFDB based on MS-GF.

MS-GFDB greatly outperforms a popular database search tool Mascot [5] for ETD

spectra. Moreover, even after a decade of Mascot developments for analyzing CID

spectra of tryptic peptides, MS-GFDB (that is not particularly tailored for CID

spectra or tryptic peptides) resulted in significant increase over Mascot in the

number of peptide identifications. We also propose a statistical framework for

analyzing multiple spectra known to be generated from the same peptide (e.g.

CID/ETD spectral pairs) and assigning P-values to Peptide-Spectrum-Spectrum

Matches (PS2Ms).

Although MS-GFDB showed promising results for interpreting various types

of spectra, it has several limitations, such as the limited support of search for

modified peptides and inability to benefit from high-precision MS/MS spectra.
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Chapter 6 presents a new database search tool MS-GF+ that addresses all these

limitations, greatly reduces the running time, and features a greatly improved

usability. MS-GF+ is sensitive (it identifies more peptides than other database

tools) and universal (works well for diverse types of spectra, different configurations

of MS instruments and different experimental protocols).

We benchmark MS-GF+ using diverse spectral datasets: (i) spectra of vary-

ing fragmentation methods with either linear ion trap or orbitrap readout; (ii)

spectra of multiple enzyme digests; (iii) spectra of phosphorylated peptides; (iv)

spectra of peptides with unusual fragmentation propensities produced by a novel

alpha-lytic protease. For all these datasets, MS-GF+ significantly increased the

number of identified peptides compared to state-of-the-art methods for peptide

identifications. We emphasize that while MS-GF+ is not specifically designed for

any particular experimental set-up, it improves upon the performance of tools

specifically designed for these applications. We also compare MS-GF+ with a

leading spectral library search tool, SpectraST [6]. The spectral library search is a

new emerging approach to use previously identified spectra for peptide identifica-

tions. While the existing view is that spectral library searches greatly improve on

database searches (for previously identified peptides) [7], we show that MS-GF+

identifies a similar number of peptides as compared to SpectraST without using

spectra in the library.



Chapter 2

The Generating Function

Approach for Estimating

Statistical Significance of

Peptide-Spectrum Matches

2.1 Introduction

MS experiments often generate millions of spectra, and interpreting them

leads to challenging statistical problems (see Nesvizhskii et al., 2007 [8] and Kall

et al., 2008 [8] for recent reviews). One of the major problems in tandem mass

spectrometry is the lack of theoretical (as opposed to empirical) estimates of sta-

tistical significance of peptide identifications. Indeed, the Proteomics Publica-

tion Guidelines [9, 10] recommend searching in decoy databases to determine the

statistical significance of peptide identifications (this is in contrast to genomics

searches that do not employ decoy databases). We argue that if the error rates re-

ported by existing MS/MS software tools were reliable (as in the case of genomics

searches), the search in decoy databases would not be necessary. The major dif-

ference here is that MS/MS searches are currently based on empirical database-

dependent estimates of error rates (often represented by Poisson, Gaussian, hy-

6
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pergeometric, or other approximations of tails of score distributions [11, 12, 13])

as opposed to the analytically derived and database-independent error rates in

genomics tools like BLAST [14]. Although the target-decoy search strategy is

currently viewed as the best way to distinguish between the correct and false iden-

tifications [15, 16, 17, 18, 19, 20], this valuable approach has certain shortcomings.

While the shortcomings of such strategies are well recognized in genomics (see

[21]), they are often overlooked in proteomics. Also, decoy databases take a toll

on every lab engaged in MS/MS searches effectively doubling the search time. We

argue that using decoy databases is an acknowledgment of our inability to solve

the following problem:

Spectrum Matching Problem. Given a spectrum S and a score thresh-

old T for a spectrum-peptide scoring function, find the probability that a random

peptide matches the spectrum S with score equal to or larger than T .

The Spectrum Matching Problem was first posed by Fenyo and Beavis,

2003 [22] (see also [23]).1 They acknowledged that the theoretical solution of this

problem is unknown and suggested a heuristic approach to its solution based on

approximating the tail of the score distribution. Solving the Spectrum Matching

Problem is equivalent to computing the FPRs of spectral matches. FPR is a

property of an individual spectrum as opposed to the False Discovery Rate (FDR),

the property of multiple spectra (proportion of incorrect identifications among all

identifications judged correct).2

Search in a decoy database looks like an attractive approach for approximat-

ing the solution of the Spectrum Matching Problem as m
n

, where m is the number

of matches between the spectrum and the decoy database of size n (with scores

equal to or larger than the threshold T ). However, for an individual spectrum,

the number of matches for typical n is usually zero thus making this approach

1The Spectrum Matching Problem assumes a certain probabilistic distribution on the set of
all peptides and computes the total probability of all peptides P with score(P, S) > T .

2Different papers on statistics of MS/MS searches often use inconsistent terminology. The
solution of the Spectral Matching Problem provides E-values (the expected number of peptides
with the scores equal to or larger than the observed score) or can be used for computing p-values
in the hypothesis testing framework. To avoid a confusion, we follow the terminology from the
recent review [8] and use the term FPR (and the related term Spectral Probability defined below)
in the remainder of this chapter.
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problematic (decoy and target databases usually have the same size). To obtain

reliable FPR for an individual spectrum, one can increase n (e.g., making giant

decoy databases 1000 times larger than target databases). Since this is impracti-

cal, some existing approaches bundle all spectra with the same score to evaluate

the FDR of all spectra in the bundle and to use FDR as a surrogate for FPR (see

[8]).

Assigning the same FPR to all identifications with identical scores [24, 5, 25]

is a dangerous oversimplification since the scoring functions of existing MS/MS

tools are not based on rigorous probabilistic models and are often inaccurate. Rec-

ognizing this problem, Fenyo and Beavis, 2003 [22] pioneered computing FPR for

an individual spectrum as an empirical solution of the Spectrum Matching Prob-

lem.3 They constructed the empirical score distribution of low-scoring (erroneous)

peptide identifications and extrapolated it to evaluate the FPR of high-scoring

peptide identifications in the tail of the distribution. Such approaches are not

free of shortcomings: Waterman and Vingron, 1994 [21] wrote: “Theory is needed

because simulations rarely cover the extreme tails of a distribution.” criticizing

similar approaches in genomics. In another paper criticizing such empirical ap-

proaches, Nagarajan et al., 2005 [26] demonstrated that all existing motif finding

tools are statistically flawed and can be off by orders of magnitude in computing

FPRs. This flaw remained uncovered for 15 years and affected 1000s of studies.

Needless to say, the mass spectrometry community is not immune to similar flaws

suggesting that re-examination of existing approaches to estimation of statistical

significance in MS/MS searches is timely. In this chapter, we demonstrate that

the analysis of statistical significance in various MS/MS tools is often unreliable

(Figure 2.7).

We further argue that use of decoy databases is not free from shortcomings.

The intuition behind using a decoy database is to estimate the number of spectra

that match the database by chance. If a spectrum S has probability p(S) of match-

ing a random database, then a decoy database is simply a time-consuming way to

evaluate
∑
p(S) over all spectra in the dataset (this sum represents the expected

3The approach in [22] is particularly attractive since it can be implemented without decoy
databases.
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number of hits in the decoy database) but not a good way to estimate individual

probabilities p(S). The generating function approach, in difference from the de-

coy database approach, accurately computes probabilities p(S) for the individual

spectra, an important advantage for addressing the problem of “one-hit-wonders”

in MS/MS searches. An ideal approach to evaluating the statistical significance of

MS/MS searches would be to use a database containing all possible peptides up to

a certain length, and use the number of identifications in this database to evaluate

the error rate. However, the time required to search this database renders this

approach infeasible. Below we show that it is nevertheless possible to compute the

precise number of the identified peptides in this huge database thus computing the

solution of the Spectrum Matching Problem exactly rather than empirically. This

illustrates the advantages of (fast) analysis of scores over the huge database of

all peptides as compared to (slow) analysis of scores over the much smaller decoy

databases.

Solving the Spectrum Matching Problem is not unlike computing the gener-

ating function in combinatorics [27, 28]. Given a spectrum S and a score X, define

E(S,X) as the number of peptides (among all possible peptides) that match the

spectrum S with score X. To evaluate FPRs one has to compute E(S,X) for

every spectrum S and every score X (more precisely, the sum of probabilities of

all peptides contributing to E(S,X)). Figure 2.1(b) illustrates the notion of the

generating function in the simple case when the score X of a match between a

spectrum and a peptide is defined as the number of peaks in the spectrum ex-

plained as b or y ions. Figure 2.1(c) shows the generating function for a more

advanced scoring described below. We show how to compute E(S,X) and to use

it for improving the sensitivity-specificity trade-off of various database search tools.

We further introduce the notion of spectral energy (Figure 2.1) that represents the

difference between the best de novo spectral interpretation and the best database

spectral interpretation. We show that while the Energy-score (in difference from

the ∆-score) was ignored in MS/MS searches so far, it greatly improves the separa-

tion between the correct and false identifications. Finally, we introduce the notion

of spectral probability (the total probability of all peptides with scores exceeding
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a threshold) that further improves the separation between the correct and false

identifications (Figure 2.1).

While this chapter is limited to identifications of non-modified peptides,

the generating function approach can be extended to modified peptides as well

(see Chapter 6). Our MS-GF software for computing generating function/spectral

energy/spectral probability of tandem mass spectra is available as open source

from http://proteomics.ucsd.edu/Software.html.

2.2 Methods

2.2.1 The generating function

For the sake of simplicity, we first introduce the notion of generating func-

tion for boolean spectra that ignore intensities, charges, inaccuracies in peak posi-

tions, and C-terminal ions. While the boolean spectra are impractical, they proved

to be useful as a stepping stone for introducing simple scoring/algorithms and later

generalizing them to real spectra and more complex algorithms (see [29, 30, 31]).

Later, we will illustrate how to define the generating function for real spectra.

We represent a boolean spectrum S with parent mass k as 0-1 vector

s1 . . . sk, where si = 1 if there is a peak at mass i in the spectrum, and si = 0,

otherwise. This representation assumes that the spectra are discretized and all

masses are integers (Figure 4.4). For example, for ion-trap spectra this can be

approximated by multiplying all masses by 10 and taking integer parts (see Chap-

ter 3 for details). The match score between spectra s1 . . . sk and s′1 . . . s
′
k is defined

as
∑k

i=1 si · s′i.
Given a peptide P = p1 . . . pn, we define its theoretical spectrum Spect

rum(P ) as a 0-1 spectrum s1 . . . sk with (n − 1) 1s, such that si = 1 iff i is

the mass of the peptide p1 . . . pi. The score (denoted as Score(P, S)) between a

peptide P and a spectrum S (with the same parent mass) is defined as the match

score between spectra Spectrum(P ) and S. For convenience, we assume that

Score(P, S) = −∞ if peptide P and spectrum S have different parent masses. Let

SCORE = SCORE(S) = maxall peptides P Score(P, S) be the maximum value of
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Score(P, S) among all possible peptides P . SCORE can be estimated using de

novo peptide sequencing algorithms [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. We

define energy of a peptide-spectrum pair as Energy(P, S) = SCORE−Score(P, S)

and define the generating function of the spectrum S as
∑

all peptides P e
−Energy(P,S) =

∑
t x(t) · e−t, where x(t) is the number of peptides with energy t.4

Given the probabilities of individual amino acids (e.g., computed empiri-

cally from a set of protein sequences), we define the probability prob(P ) of a peptide

P = a1 . . . am as the product of probabilities of its amino acids
∏m

i=1 prob(ai).

We will also consider the weighted generating function:
∑

all peptides P prob(P ) ·
e−Energy(P,S) =

∑
t y(t) · e−t, where y(t) is the overall probability of all peptides

with energy t.

2.2.2 Computing the generating function for boolean spec-

tra

Given a spectrum S, we introduce a variable x(i, t) equal to the number of

peptides of mass i that have t peaks in common with spectrum S, i.e, the number

of peptides P such that Score(P, Si) = t (Si stands for “i-prefix” s1 . . . si of the

spectrum S). In the case S has a peak at position i (si = 1), the variable x(i, t)

can be computed as follows (|a| denotes the mass of an amino acid a):

x(i, t) =
∑

all amino acids a

x(i− |a|, t− 1)

Otherwise (si = 0):

x(i, t) =
∑

all amino acids a

x(i− |a|, t)

4This expression represents the exponential generating function [27] of the vector x =
(x(0), x(1), . . .). Similarly to many applications of generating functions outside physics, we fol-
low Herbert Wilf’s interpretation of generating functions (“a clothesline on which we hang up a
sequence of numbers” as defined in [28]) rather than using it as a model of a physical process.
As some other applications of generating functions in bioinformatics [44], we do not analyze the
analytical behavior of the MS/MS generating functions in this chapter.
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Below we provide an equivalent and more compact representation of these recur-

rencies:

x(i, t) =
∑

all amino acids a

x(i− |a|, t− si)

We initialize x(0, 0) = 1, x(0, t) = 0 for t > 0, and assume that x(i, t) = 0

for negative i. The maximum value SCORE of Score(P, S) among all possible

peptides P is simply the maximum value of t with non-zero x(k, t). See Figure 4.4.

The recurrence for computing the weighted generating function is very sim-

ilar. In this case the variable y(i, t) equals to the overall probability of peptides of

mass i that have t peaks in common with spectrum S. The variable y(i, t) is ini-

tialized in the same way as x(i, t)5 and is computed using the following recurrence:

y(i, t) =
∑

all amino acids a

y(i− |a|, t− si) · prob(a)

The above algorithm for computing the generating function has complexity

O(|S| · |SCORE| ·Mult ·PeptideLength ·A), where A = 20 is the number of amino

acids, PeptideLength is the maximum length of a peptide with the mass equal to

|S|, and Mult is the multiplication coefficient that was applied to all masses in the

spectrum to satisfy the assumption that they are integers (typically, Mult = 10

for ion-traps). In practice, it requires 0.1-0.2 seconds to compute the generating

function on a desktop machine with 2.16 Ghz Intel processor.

2.2.3 Computing the generating function for real spectra

MS-GF transforms tandem mass spectra into its integer-valued scored ver-

sion s1 . . . sk (rather than boolean spectra) using the probabilistic model similar

to [33, 35, 43]. This transformation takes into account peptide length, peak in-

tensities, neutral losses, dependencies between ion types, noise, etc. Most de novo

and database search algorithms use such representation (explicitly or implicitly)

by assigning intensity-dependent scores to peaks, further adjusting for impreci-

sions in mass-measurements, and applying dot-product for scoring spectra against

5We initialize x(0, 0) = 1 since the “empty” peptide is the only peptide with mass 0 that has
0 peaks in common with the spectrum S. We initialize y(0, 0) = 1 since the probability of the
empty peptide is defined as 1.
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peptides. However, these scores are typically attached to the positions of peaks in

the spectrum s1 . . . sk and will not enable a computation of the generating func-

tion in the low-accuracy setting with accuracy threshold δ. However, as long as

we redefine the spectrum s1 . . . sk as s′1 . . . s
′
k with s′i = maxj=i+δj=i−δ sj, the generat-

ing function (in case of imprecise mass measurements) can be easily computed as

described below.

The score Score(P, S) between a peptide P and a spectrum S (with the

same parent mass) is defined as the dot-product between the theoretical spec-

trum Spectrum(P ) and S (now S is defined as an arbitrary integer-valued vector

and Spectrum(P ) is defined to allow for both N-terminal and C-terminal ions as

in [31]). Let SCORE be the maximum value of Score(P, S) and Energy(P, S) =

SCORE − Score(P, S). Given a spectrum S, we define x(i, t) as the number

of peptides of mass i with score t, i.e, the number of peptides P such that

Score(P, Si) = t. The variable x(i, t) can be computed as in the case of boolean

spectra.

We emphasize that MS-GF can handle scored spectra generated by any

MS/MS tool with additive scoring functions. The scoring function chosen here can

be viewed as a variation of Sherenga and PepNovo [33, 35] with improved analysis

of peak intensities and doubly charged ions (the details are described in Chapter 3).

Some MS/MS analysis tools (e.g., SEQUEST or tools using sequence-specific peak

intensities [45, 46, 47]) have non-additive scoring components and thus cannot be

modeled by this generating function framework. However, MS-GF still can be used

to re-score their results (Such re-scoring usually improves on non-additive scoring).

Let A be a peptide identification algorithm that accepts a peptide P as an

interpretation of a spectrum S as long as the peptide-spectrum score Score(P, S)

is larger or equal to the threshold T . Given the allowed (integer) parent mass error

ε, the weighted generating function allows one to compute the overall probability

of peptides with scores equal to or larger than T (spectral probability) as

ProbT (S) =
i=ParentMass+ε∑

i=ParentMass−ε

∑

t≥T

y(i, t)

For example, the spectral probability Prob60(S) = 2.76·10−10 represents the
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total probability of all 306 peptides with scores larger or equal to the score of the

correct peptide in Figure 2.1(c). The probability that the algorithmA identifies the

spectrum S in a random database of size n is computed as 1 − (1 − ProbT (S))n.

Since the parameter T is usually chosen in such a way that ProbT (S) is much

smaller than 1
n
, one can assume that 1 − (1 − ProbT (S))n ≈ ProbT (S) · n. If a

user attempts to identify peptides with a fixed FPR in a database of size n (e.g.,

FPR = 0.01 is commonly used in MS/MS searches), then the parameter T is

chosen in such a way that ProbT (S) = FPR
n

. The corresponding value of T can be

derived from the generating function (see the last column in Figure 2.1(c)).

2.3 Results

2.3.1 Datasets

The Shewanella oneidensis MR-1 dataset used here (14.5 million spectra)

and peptide identifications based on this dataset are described in [48]. 28,377

unmodified peptides were identified in this dataset by InsPecT with an error rate

of 5% (1% spectrum-level error rate) as measured using a decoy database [25].

Due to its large size, searching the entire Shewanella dataset with tools

like SEQUEST is rather time-consuming. To make it easier to benchmark our

approach against other tools and to summarize the results, we constructed two

smaller datasets (geared to peptides of length 10) that are used in this study. The

results are similar for other peptide lengths.

• Shewanella-1784: From 28,377 peptides identified in Shewanella oneidensis

MR-1, we selected all doubly-charged tryptic peptides of length 10. It re-

sulted in 1745 and 39 peptides identified in the target and decoy databases

(2.2% error rate). For each of these 1745 + 39 = 1784 peptides, we retained

one spectrum (chosen randomly if the peptide is identified from multiple

spectra) to construct the final dataset of 1784 spectra.

• Shewanella-50000: From all 14.5 million Shewanella spectra, we randomly

selected 50,000 doubly-charged spectra with parent masses ranging from 1100
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to 1200 Da (these spectra typically correspond to peptides of length ≈ 10 aa).

Each spectrum in this dataset was searched against all Shewanel la proteins

(1.47 million of amino acids) and against the randomized decoy database

(of same size) with SEQUEST (TurboSEQUEST v.27, rev. 12), InsPecT

(20060907), and X!Tandem (2007.01.01.2), as well as analyzed with MS-GF

and PeptideProphet (v3.0).

2.3.2 Using generating functions to estimate the statistical

significance of peptide identifications

We found that the error rates reported by existing database search tools do

not provide accurate estimates of the statistical significance of individual peptide

identifications (they are often off by an order of magnitude) while the error rates

evaluated by MS-GF are very accurate (see Figure 2.7).

To evaluate whether MS-GF accurately estimates the number of hits in

decoy database (thus eliminating the need for the decoy database search) we con-

ducted the following experiment. For each spectrum in the Shewanella-50000

dataset, we generated top-scoring peptides whose total probability sums up to

the parameter SpectralProbability. A spectrum is considered identified in a

database if any of the generated reconstructions is present in the database. We

varied the value of SpectralProbability, and computed the number of spectra that

were identified in the Shewanella database and the decoy database of the same

size. Table 2.1 shows the distribution of these numbers, compares them against

SpectralProbability ·n ·50000 (the expected number of matches in the database of

size n) and shows that the number of matches in the decoy database is very close

to the expected number of matches computed by MS-GF.

Figures 2.3(a,b) show the distributions of InsPecT and X!Tandem scores

for the peptides identified in Shewanella-1784 dataset against the target and decoy

database. Advanced peptide identification tools are expected to have similar score

distributions in target and decoy databases (otherwise, the difference between the

distributions can be used to better separate the correct and false identifications).

For InsPecT, the distributions in the target and decoy databases are similar, with
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Kolmogorov-Smirnov (KS) distance of 0.28, indicating that InsPecT scoring cannot

further differentiate between the correct and the false identifications. In case of

X!Tandem E-value, there is some separation between the distributions in target

and decoy database, however the distributions still have a large overlap and it is

unclear what additional features can separate the correct and false identifications.

Figure 2.3(c) shows the distribution of Energy(P, S) for identifications from

Shewanella-1784 dataset and demonstrates that spectral energy provides an ex-

cellent separation between the correct and false identifications. In particular,

Energy = 0 for a significant portion of correct identifications (in these cases,

the identified peptide also represents an optimal de novo reconstruction). The

false identifications, on the other hand, have no identifications with Energy = 0.

Moreover, the separation in Figure 2.3(c) indicates that the Energy is comple-

mentary to many other parameters used for scoring spectra (recall that InsPecT

scoring combines seven parameters but still does not attain the separation power of

Energy). Figure 2.4 further shows the joint distribution of SCORE and Energy

and provides an intuitive explanation why the generating function approach im-

proves the sensitivity/specificity ratio of existing MS/MS search tools. Note that

the target and decoy identifications are well separated in 2-D, with low SCORE

and Energy for the target database and high SCORE and Energy for the decoy

database.

Let Score(P, S) be the match score of a peptide P and a spectrum S.

We denote the spectral probability ProbScore(P,S)(S) of the peptide-spectrum pair

(P, S) as the sum of probabilities of all peptides with match scores larger or equal

to Score(P, S) (when compared to S). Figure 2.3(d) shows the distribution of

the spectral probability (as computed by MS-GF) for correct and false peptide

identifications. This parameter also provides excellent separation between the cor-

rect and false identifications, with false identifications typically having much larger

spectral probabilities ProbScore(P,S)(S). This is in agreement with Figure 2.3(c),

further confirming that most identifications on the decoy database, in spite of their

high scores, actually represent poor (sub-optimal) de novo solutions, and could be

distinguished from correct solutions using MS-GF.
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2.3.3 Generating functions increase the number of identi-

fications in MS/MS database searches

Generating functions can be used to re-score the identifications obtained

by various database search tools and to improve the sensitivity-specificity trade-

off. We illustrate this result using Shewanella-50000 dataset searched against the

target Shewanella database and the decoy database using X!Tandem [49] (similar

results were obtained when SEQUEST or PeptideProphet was used). The existing

database search tools use two types of scores that we refer to as raw and combined

scores. Raw scores (used for scanning databases) are defined by a spectrum and

a peptide alone without any reference to the scores of other peptides encountered

in the database search. The database-dependent combined scores integrate raw

scores with other information like ∆-score of the second best peptide match (like

in SEQUEST), or the distribution of scores of all peptides in the database (like in

X!Tandem). We emphasize that the generating function (and the spectral prob-

ability) represents the raw score since it does not use any additional information

about other peptides in the database. Below we show that the spectral probability

improves on previously proposed raw scores and even outperforms the combined

scores of the existing database search tools.

For each spectrum in the Shewanella-50000 dataset, three different scores

are used for analyzing the peptide identifications and constructing ROC curves:

(i) X!Tandem raw score used for scanning the database, (ii) X!Tandem combined

score (E-value) that integrates the raw score with the distribution of the scores for

all peptides in the database, and (iii) spectral probability as reported by MS-GF

for the X!Tandem identification. For each score, a varying cutoff is used, and the

number of spectra that have an identification with scores above the cutoff in the

Shewanella database and the corresponding error rate (ratio of the number of iden-

tifications on a decoy database of the same size and the number of identifications

in the target database) are plotted in Figure 2.5(a).

MS-GF results in significantly higher number of identifications in the She-

wanella database for a given error rate (number of identifications on the decoy

database) when compared to the raw X!Tandem scores. Similarly, it significantly
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improves on SEQUEST and PeptideProphet (data not shown). Figure 2.5(b) shows

similar curves for the number of unique peptides instead of the number of spectra.

For 5% error rate, X!Tandem raw/combined score identifies 1449/1613 peptides,

while MS-GF identifies 1837 peptides. The advantage of MS-GF is particularly pro-

nounced for extremely accurate identifications. For example, for 0.3% error rate

(very few false identifications) MS-GF identified 1326 peptides while X!Tandem

identified 943/1050 peptides with raw/combined scores. Such extremely accurate

identifications are important for a notoriously difficult problem of identifying pro-

teins based on a single peptide hit (one-hit-wonders). Indeed a single peptide hit

with the error rate 0.3% may be more reliable than two peptide hits with the error

rate 3% each [50, 51, 52, 46]. The fact that MS-GF has better sensitivity-specificity

than even the combined X!Tandem score is surprising since MS-GF has no access

to the valuable information about other peptides in the database that is incorpo-

rated into the combined X!Tandem score. We therefore argue that the spectral

probability represents a valuable addition to the various “raw” scores proposed for

MS/MS searches so far.

We remark that the MS-GF+X!Tandem curve in Figure 2.5 was constructed

using the information about matches in the decoy database. The superior perfor-

mance of MS-GF+X!Tandem over X!Tandem raises a question whether a database

search based on MS-GF (i.e., using SpectralProbability as a score) would be better

off on its own (without using matches identified by X!Tandem). In other words,

we are interested in how a database search with MS-GF scoring would fare in

comparison with other database search tools. Figure 2.6 illustrates that MS-GF

alone (without using X!Tandem identifications) performs better than X!Tandem.

For each spectrum in the Shewanella-50000 dataset, we generated the top-scoring

peptides whose probabilities sum up to the parameter SpectralProbability. A

spectrum is considered identified in a database if any of the generated reconstruc-

tions is present in the database. We varied the value of SpectralProbability, and

computed the number of spectra that were identified in the Shewanella database

and the decoy database of the same size. This essentially mimics the database

search with the spectral probability as the scoring function computed by MS-GF.
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Figure 2.6 provides a comparison between the number of identifications made by

MS-GF and X!Tandem. Despite the fact that X!Tandem combined score utilizes

information that MS-GF does not have access to, MS-GF outperforms X!Tandem.

In addition, MS-GF, accurately estimates the number of hits in decoy database

thus eliminating the need for the decoy database search altogether. This obser-

vation illustrates that computing scores over all possible peptides is better than

observing scores over the relatively small decoy database.

Interpreting the “one-hit-wonders” is a difficult problem that often amounts

to manual validations. The subjective nature of such inferences have resulted

in the Proteomics Publication Guidelines to virtually discard single-hit protein

identifications. In a large scale study, this inevitably results in the loss of large

amounts of valuable information. For example, there are 402 proteins with single

peptide hits in Shewanella oneidensis MR-1 [48] as opposed to 1992 proteins with

multiple hits (over 20% of the expressed proteome).6 While we estimated that

nearly 75% of these “one-hit-wonders” are correct identifications (as discussed in

[48, 53]), no means were available to objectively separate them from the false

identifications. Below we show how MS-GF (that provides a superior separation

between correct and incorrect peptide identifications for low error rates) can be

used for reliable identification of the single-hit proteins.

We computed SpectralProbability for the peptides identified in the decoy

database in [48]7. The lowest value of SpectralProbability among all these decoy

identifications is 1.55×10−8. Similarly, SpectralProbability was computed for the

peptides from the single-hit proteins and the spectral probability for 345 of them

was lower than 1.55 × 10−8. These 345 peptides represent better identifications

than every identification in the decoy database, and the corresponding proteins

must be considered reliably identified with virtually zero empirical error rate.8

We further remark that many single-hit-wonders with SpectralProbability below

6For typical bacterial MS/MS projects, the percentage of one-hit-wonders is closer to 30%
(see [53]). The percentage is somewhat smaller for the unusually large Shewanella dataset.

7 1417 peptides were identified in the decoy database as compared to 28,377 peptides identified
in the Shewanella database as described in [48]. From 1417 peptides we selected the Charge-2
and unmodified peptides for this analysis, giving 1065 peptides.

8See Chapter 3 for detection of sequencing errors and programmed frameshifts using a similar
approach.
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1.55 × 10−8 are actually more statistically significant than some proteins with

multiple peptide hits but larger SpectralProbability values (see [50, 51, 52, 46] for

combining peptide significance scores into protein significance scores).

2.4 Discussion

While the previous approaches to evaluating the statistical significance of

spectral identifications greatly improved the state of the art in peptide identifica-

tion, they have not yet eliminated the decoy databases and empirical approxima-

tions from MS/MS searches. PeptideProphet [11] combines multiple scores into

a single discriminant score, and fits its observed distribution to a mixture model

comprising of a gaussian distribution for correct identifications and a gamma dis-

tribution for incorrect identifications. Sadygov and Yates, 2003 [12] argue that

the frequencies of matches between fragment ions predicted from a random pep-

tide and an experimental spectrum follow a hypergeometric distribution that is

used to compute the probability that a peptide identification is correct. On the

other hand, OMSSA tools [13] consider the same to be a Poisson distribution and

accordingly compute the statistical significance of peptide identifications. These

studies were taken further by Wan et al., 2006 [54] who realized the importance of

generating some random peptides for estimating the statistical significance of the

individual spectra (see also [55]) but stopped short of proposing a technique for

analyzing all peptides. In an earlier work, Bafna and Edwards, 2003 [36] proposed

an algorithm for generating suboptimal de novo reconstructions and suggested to

use their score distribution for validating the optimal de novo reconstruction.

While the approaches [11, 12, 13, 22] are very valuable, neither of them rig-

orously solves the Spectral Matching Problem for individual spectra: instead they

compute the error rates based on approximate fitting the empirical distributions to

a standard distribution that may not carefully reflect the specifics of an individual

spectrum. Moreover, they assume the same null hypothesis for all spectra in the

sample, the assumption that may not be adequate for mass spectrometry searches.

Our approach does not assume any “null hypothesis” or “noise model” for spectra
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generation as in [22]. Also, it does not assume any particular approximation for the

tail of the score distribution. Instead, it rigorously solves the Spectrum Matching

Problem, the same problem the existing approaches attempt to solve via decoy

databases and various approximations.

MS-GF allows one to accurately estimate the statistical significance of in-

dividual spectral interpretations. As described above, MS-GF can be used either

to complement the decoy searches or on its own. The former case illustrates the

synergy between the decoy database and the generating function approaches in

cases when the generating function framework can only be applied to the results

of the decoy database searches9. The generating function approach can be further

used to generate a list of all peptides whose score exceeds a threshold and match

these peptides in the protein database, thus enabling a hybrid approach to peptide

identification [56, 57, 3].

While the generating function described here evaluates the statistical sig-

nificance over the set of all unmodified peptides, it can be extended to analyze

modified peptides in both restricted and blind [58, 59, 29] modes. The former

case amounts to adding “modification edges” of fixed length while the latter case

amounts to adding modification edges of arbitrary length to the amino acid graph.

The dynamic programming in the resulting graph should take into account the

maximum allowed number of modifications per peptide.
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Table 2.1: Number of spectra in Shewanella-50000 dataset that are identified
in the Shewanella database (Column 2) and the decoy database (Column 3) by
top peptide reconstructions with probability SpectralProbability. Column 4 pro-
vides the expected number of spectra that will match the decoy database given
SpectralProbability, as computed by MS-GF without actually doing the search.

Spectral- # Correct IDs # False IDs # False IDs
Probability (in target DB) (in decoy DB) (predicted by MS-GF)

2e-9 8314 161 146
1e-9 7721 76 75
8e-10 7525 60 59
6e-10 7272 44 44
5e-10 7115 34 37
4e-10 6937 28 29
2e-10 6333 15 15
1e-10 5755 6 7
1e-11 3820 0 0.7
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Figure 2.1: Illustration of the generating function. (a) A spectrum S of pep-
tide GAIDKAEEIR (top 43 peaks after removal of low-intensity peaks). (b) The
number of peptides (E(S,X)) that explain X b/y peaks in this spectrum. For
example, there are 360 peptides with 13 b/y ions explained (E(S, 16) = 360),
12940 peptides with 12 b/y ions explained, and so on. The score of the top-scoring
database peptide GAIDKAEEIR is 11, the optimal score among all possible
peptides is 13 (such as for the peptide QPMGAEAELR), thus Energy-score is
2. The second top-scoring peptide in the database (DQELLSEIR) has score 5,
therefore ∆-score is 6. For simplicity, a peak that explains both a b-ion and a
y-ion in a particular peptide is counted as explaining two b and y peaks. (c) The
(uniformly weighted) generating function of the same spectrum. The table shows
the number of peptides with score X, the overall probability of peptides with score
X and the total probability of all peptides with scores equal to or larger than X
(spectral probability). The peptides QIDKAEEIR and QIDGAAEEIR represent
better spectral interpretations (score 64) than the correct peptide GAIDKAEEIR
(score 60) resulting in Energy-score 4. The second best peptide in the database
(IRSIESQLR) has score 27, therefore ∆-score is 33.
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Figure 2.2: Illustration of the dynamic programming algorithm for computing
the generating function. The MS-GF dynamic programming algorithm is illus-
trated with the help of a simplified amino acid model (only two amino acids A and
B with masses 2 and 3 Daltons respectively) and a simplified discretized spectrum
(only 4 peaks at 2,3, 5, and 7 Da). The scoring function used for this illustra-
tion is the number of matching prefix ions. The spectrum is converted into its
boolean representation 011010100 with 1s at positions 2,3,5, and 7 (extra zero in
the beginning is added to represent the variable x(0, t)). The vertical axis in the
dynamic programming table represents scores (t). The value in each cell of the
matrix represents the number of peptide reconstructions that explain the initial
part of the spectrum till that position with the corresponding score. The first cell
in the matrix (0,0) is initialized with 1, and the matrix is filled progressively from
left to right and top to bottom. The value of each cell is computed as the sum of
the values of previously filled cells which are 2 (green arrow) or 3 (orange arrows)
columns before the cell under consideration. If there is a peak at the current posi-
tion of the spectrum, sum is taken over the cells in the previous row, otherwise in
the same row. In this example, the maximum achievable score (t) is 3, which can
be obtained by two peptide reconstructions. The sequences of these reconstruc-
tions can be obtained by backtracking, as indicated by the arrows, and are found
to be ABAA and BAAA. We also see that there are 2 reconstructions with score
1 and 1 reconstruction with a score of 2.
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(a) (b)

(c) (d)

Figure 2.3: Separation between correct and incorrect identifications. Distribu-
tion of (a) InsPecT MQScore and (b) X!Tandem E-Value, for the peptides identified
in Shewanella-1784 dataset against Shewanella and decoy databases. X-axes show
the database search scores, and Y-axes show the fraction of identifications with
that score. The Kolmogorov-Smirnov (KS) distance between the two distribu-
tions is 0.28 for InsPecT scores and 0.58 for X!Tandem scores. (c) Distribution
of Energy(P, S) for the same dataset (the KS distance is 0.77). (d) Distribution
of −log10(SpectralProbability) (the KS distance is 0.78). Spectral Probability of
the pair (P, S) is defined as the sum of probabilities of all peptides whose score
is larger or equal to the score Score(P, S) of the match between peptide P and
spectrum S.
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Figure 2.4: Joint distribution of SCORE and Energy. The distribution is
plotted for the identifications in the Shewanella-1784 dataset, for the peptides
identified in the Shewanella database and the decoy database. The blue dots
(decoy database) are laid over the red dots (Shewanella database), so that all
decoy database identifications are visible.
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(a)

(b)

Figure 2.5: Sensitivity-specificity trade-offs. (a) Comparison of MS-GF with
X!Tandem. The number of spectra identified in the Shewanella database and the
corresponding error rate. Three scores are compared (from top to bottom): (i) MS-
GF+X!Tandem: FPR as reported by MS-GF for the X!Tandem identifications, (ii)
X!Tandem combined score: X!Tandem E-value that uses the raw score as well as
the distribution of scores of all peptides for the given spectrum and (iii) X!Tandem
raw score: X!Tandem hypergeometric score. (b) Similar to (a), but counting the
number of unique peptides identified in the Shewanella and the decoy database
instead of the number of identified spectra.
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(a)

(b)

Figure 2.6: Performance of MS-GF vs. X!Tandem. The plots show the number
of spectra identified in the Shewanella database and the corresponding error rate.
(a) The spectral identifications in the Shewanella and decoy databases are divided
into three groups, depending on whether the peptide endpoints are consistent
with trypsin cleavage specificity: tryptic (both endpoints consistent), semi-tryptic
(only one endpoint consistent) and non-tryptic (both endpoint inconsistent). The
partition into these three groups illustrates MS-GF generates more tryptic peptides
than the total number of peptides generated by X!Tandem.(b) Same as (a), but
based on the number of unique peptides identified in each database (instead of the
number of spectra). As expected, the number of peptides with both non-tryptic
endpoints is very small.
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(a) (b)

(c)

Figure 2.7: (a) Distribution of the number of peptide matches to a randomized
decoy database of size 1000 times the size of the Shewanella database (X!Tandem
search for 100 spectra with E-value 0.05). X-axis shows the number of peptide
matches, and Y-axis shows the number of spectra that have these many matches.
A peptide match is reported while searching the spectrum S only if it has the same
or better score than the original search of S in the Shewanella database. (b) Similar
figure for InsPecT search. Values larger than 250 on the X-axis were added to the
histogram peak for value 250. (c) Similar figure for MS-GF, for which we generated
the top reconstructions with the spectral probability 0.05 and counted how many
of these reconstructions were found in the database. The expected number of hits
in all searches is 50. InsPecT significantly overestimates the error rate, X!Tandem
significantly underestimates the error rate, while MS-GF accurately computes the
error rate (average number of peptide matches is 52).



Chapter 3

Integrating De Novo Sequencing

with Database Search

Database search tools identify peptides by matching tandem mass spectra

against a protein database. We study an alternative approach when all plausi-

ble de novo interpretations of a spectrum (spectral dictionary) are generated and

then quickly matched against the database. This chapter describes a new MS-

Dictionary algorithm for efficiently generating spectral dictionaries and demon-

strate that MS-Dictionary can identify spectra that are missed in the database

search. MS-Dictionary enables proteogenomic searches in six-frame translation of

genomic sequences that may be prohibitively time-consuming for existing database

searchh approaches. Such searches allow one to correct sequencing errors and find

programmed frameshifts.

3.1 Introduction

In 1994, Mann and Wilm [60] proposed the peptide sequence tag approach

and outlined its applications for protein identification. However, it took ten

years for this approach to result in accurate tag-based tools like InsPecT [25]

and Paragon [47], currently among the fastest MS/MS database search tools. The

reason for this delay is that while generating some peptide sequence tags is easy,

such tags are of little use unless they contain at least one correct tag with high

30
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probability. Generating small covering sets of tags (i.e., the sets of tags that almost

surely contain a correct tag) turned out to be a more difficult problem that was

recently addressed in [25, 47, 57, 61].

Similar to generating the covering set of tags (that in most applications lim-

ited to tags of length 3), one can try to generate the covering sets of full-length pep-

tide reconstructions that with high probability contain the correct peptide (spectral

dictionary). Spectral dictionaries take the peptide sequence tag approach one step

further by generating peptide reconstructions and ensuring that one of them is cor-

rect. They also have the potential to improve the filtration efficiency of tag-based

tools [25, 47], for example, the filtration efficiency of 1000 de novo reconstructions

of length 10 is orders of magnitude higher than even a single tag of length 3.

However, while spectral dictionaries have important advantages over spectral tags,

generating them remains an open problem.

The spectral dictionaries could be searched efficiently against a protein

database resulting in a hybrid approach to peptide identification (Figure 3.1).

While the idea of spectral dictionaries is almost as old as the idea of peptide

sequence tags (Taylor and Johnson, 1997 [62]), the software tool RAId based on this

approach was described only recently (Alves and Yu, 2005 [56]). However, while

RAId generated promising initial results, it was based on a heuristic exhaustive

search and turned out to be rather slow (2-4 minutes per spectrum) thus limiting

its applicability. Also, RAId was benchmarked on a small sample thus making it

difficult to evaluate its performance on large MS/MS datasets. In this chapter, we

describe fast approach to generating spectral dictionaries that takes ≈ 0.1 seconds

per spectrum and benchmark it on a dataset of over 20,000 peptides.

Spectral dictionaries may have an edge over the traditional MS/MS ap-

proaches in searching very large databases, e.g., six-frame translations of entire

genomes. Various proteogenomic studies [63, 64, 65, 66, 67, 68, 48, 53] demon-

strated that MS/MS search against a six-frame translation of the genome allows

one to use MS/MS data for finding new genes, predicting programmed frameshifts,

correcting DNA sequencing errors, etc. However, existing MS/MS database search

tools are impractical for searches against the six-frame translation of large genomes
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like human (≈ 3 billion amino acids after removing repeats). Indeed, most of previ-

ous proteogenomic studies were limited to searches against the 6-frame translations

of bacterial genomes. The largest proteogenomic analysis conducted so far was the

search against the 6-frame translation of Arabidopsis thaliana that resulted in the

discovery of nearly 800 new genes using InsPecT.1 However, even fast tag-based

tools like InsPecT become impractical in searches of the 20-times larger 6-frame

translation of the human genome. Below we show that MS-Dictionary is able to

search the 6-frame translation of human genome in roughly the same time as it

takes to search the 100 times smaller database of all human proteins.

Spectral dictionaries make the size of the database almost irrelevant since

the spectral dictionary can be matched against the six-frame translation as effi-

ciently as against a much smaller database of known proteins. Since many genes

remain unidentified even in the well-studied organisms (see Siepel et al., 2007 [69]

and Stark et al., 2007 [70] for the recent discovery of over 1000 new protein-coding

genes in human and fruit fly genomes), the searches in six-frame translation rep-

resent a valuable tool for proteogenomic annotations.2

De novo peptide sequencing represents a fast alternative to MS/MS database

search. While the best de novo algorithms are orders of magnitude faster than the

fastest database search tools (even on moderately sized databases), they are less

accurate. However, the superior accuracy of the database search tools becomes

less pronounced with the increase in the database size. Moreover, we show that

for very large databases our de novo peptide sequencing algorithm compares fa-

vorably to MS/MS database search tools. Thus, searches in very large databases

represent an important niche where de novo-based approaches are accurate and

orders of magnitude faster than the traditional database search approaches. A

number of de novo methods have been developed, including Lutefisk [62, 32],

Sherenga [33], PepNovo [35], PEAKS [38], EigenMS [39], NovoHMM [40], AU-

DENS [41], MSNovo [43], and PILOT [42] (see also [34, 36, 72]). Most de novo

1Castellana, N., Payne, S., Shen, Z., Stanke, M., Briggs, S., and Bafna, V. Validation and
Expansion of the Arabidopsis Gene Annotation, submitted.

2Spectral dictionaries are also helpful in searches for fusion peptides that are common in
tumor proteomes but not explicitly present in protein databases (Ng and Pevzner, 2008 [71]).
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tools use the spectrum graph approach, where a spectrum is represented as a graph

with peaks as vertices that are connected by edges if their mass difference corre-

sponds to the mass of an amino acid.

De novo peptide sequencing can also be viewed as a database search in

the database of all possible peptides. Even if this time-consuming search was

feasible, it would remain unclear which peptide in the database of all peptides

represents the real peptide that generated the spectrum. We estimate that in

50%-95% of the cases (depending on the peptide length), the existing database

search tools [25, 49, 5, 24, 73, 13] will fail to identify the correct peptide in such

ultimate test since its score will be lower than the score of an incorrect peptide.

We therefore argue that any de novo peptide sequencing algorithm should output

multiple peptide reconstructions rather than a single reconstruction. Matching

these peptides against a database results in a hybrid spectral dictionary approach

that bypasses the time-consuming matching of spectra against the database.

Spectral dictionaries allow one to turn every MS/MS database search tool

into a de novo peptide sequencing software (by simply running this tool on all

peptides from the spectral dictionary and selecting the top-scoring peptide). Af-

ter such “conversion”, one can estimate how well both database search tools and

de novo tools would perform on very large databases. This experiments reveals

a disappointing performance of both de novo and database search tools in such

an ultimate experiment: only 35%-42% of peptides of length 10 (charge 2) are

correctly reconstructed in such experiments (35%, 38%, and 42% for X!Tandem,

PepNovo, and InsPecT, correspondingly). Our MS-Dictionary algorithm correctly

reconstructs 50% of such peptides, a significant improvement over existing ap-

proaches.3 We further show that MS-Dictionary can search a six-frame translation

of the entire human genome, the largest database ever searched for spectral inter-

pretations.

The key problem in the spectral dictionary approach is deciding which and

3While MS-Dictionary compares well with X!Tandem and InsPecT for charge 2 spectra, the
performance of all existing de novo tools (including MS-Dictionary and PepNovo) deteriorates
for highly charged peptides (3+). The problem of de novo analysis of highly charged spectra has
been recently addressed by Cao and Nesvizhskii, 2008 [74].
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how many reconstructions must be generated. Generating too few peptides will

lead to high false negative error rates while generating too many peptides will

lead to high false positive error rates. Some de novo algorithms output a single or

a fixed number (decided before the search) of peptides. For example, RAId [56]

generates 1000 de novo reconstructions and matches them against a database.4

We argue that for some spectra, generating only one reconstruction is sufficient

for finding the correct peptide while in other cases (even with the same parent

mass), a thousand reconstructions may be insufficient. We propose an approach

for dynamically determining how many reconstructions must be generated for each

spectrum, and then actually generating them.5

Our MS-Dictionary software (available as open source at http://proteomics.

bioprojects.org/Software.html) generates spectral dictionaries based on the re-

cently introduced concept of the generating function of tandem mass spectra bor-

rowed from statistical mechanics. The generating function approach efficiently

analyzes the peptide reconstructions with the optimal and sub-optimal scores and

determines the statistical significance (spectral probability of those reconstructions

(for more details, refer to Chapter 2).6

3.2 Methods

3.2.1 Peptide Sequencing Problem for Boolean Spectra

Dancik et al., 1999 [33] put de novo peptide sequencing in a probabilistic

framework, described how to learn the parameters of the model and optimally

solve it. While the Dancik model was further extended in a number of studies [35,

4While it may appear that matching 1000 peptides against the database is rather time con-
suming, the combinatorial pattern matching algorithms [75] are able to do it in negligible time.

5 The problem of generating varying number of reconstructions for each spectrum becomes
particularly important for long peptides. For instance, PepNovo [57] accurately reconstructs 54%
of peptides of length 7 and only 0.4% of peptides of length 20.

6Although the accuracy of MS-Dictionary in the standard de novo peptide sequencing improves
on the state-of-the-art tool PepNovo [35], optimizing de novo peptide sequencing is an important
but not not the crucial goal for our main application. As Alves and Yu, 2005 [56] pointed
out, de novo peptide sequencing and spectral dictionary approaches have similar but distinct
goals: outstanding de novo algorithm is not a prerequisite for the spectral dictionary approach
to perform well.
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40, 76, 77], it remains unclear how to design a rigorous probabilistic model for

peak intensities. We start by introducing an abstract model that seemingly has

nothing to do with de novo peptide sequencing but rather describes a very general

probabilistic process that transforms one Boolean string into another. We will

show later that this process generalizes the probabilistic model for de novo peptide

sequencing from [33] and also allows one to compute the spectral probability and

the generating function of tandem mass spectra [78].

Let s = s1 . . . sn be a Boolean string called a spectrum and π = π1 . . . πn be a

Boolean string called a peptide. The probability of peptide π generating spectrum

s is defined as Prob(s|π) =
∏n

i=1 Prob(si|πi), where Prob(x|y) is a 2 × 2 matrix

(see Figure 3.2).

Given a spectrum s and a set of strings Π, we are interested in solving

the problem of finding maxπ∈Π Prob(s|π). Below we focus on the sets Π that are

relevant to tandem mass spectrometry. Let V = {0, 1, . . . , n} and G(V,E) be a

topological ordering of a DAG (Directed Acyclic Graph) such that i < j for every

directed edge (i, j) in E. Every path from 0 to n in G corresponds to a G-peptide

π = π1 . . . πn such that πi = 1 iff vertex i belongs to the path (see Figure 3.2). We

are interested in the following Peptide Sequencing Problem [79]:

Peptide Sequencing Problem. Given a spectrum s and a DAG G, find a G-peptide

π maximizing Prob(s|π) over all G-peptides.

In de novo peptide sequencing it is assumed that (i, j) ∈ E iff (j− i) equals

the integer mass of an amino acid. Such graphs are referred to as amino acid

graphs [78] (compare to spectrum graphs [33, 80]). As a first approximation, an

MS/MS spectrum with parent mass n can be represented as a string of ones (peak

present) and zeros (peak missing), with a 0/1 for every 1 Da interval. Similarly,

sequences of amino acid masses (peptides) can also be represented as strings of

zeros and ones. An amino acid with an integer mass α is represented as a string

of α− 1 zeros followed by a single one. Then, a peptide is simply a concatenation

of Boolean strings corresponding to its amino acids. In this context, θ ≈ 0.05
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(probability of observing a noise peak) and ρ ≈ 0.7 (probability of observing a

b-ion) represent typical values of θ and ρ for ion-trap MS/MS spectra (Figure 3.2).

This somewhat simplistic Boolean model can be modified for any mass resolution,

peptide fragmentation rules and peak intensities [57, 34, 36] (see below). Moreover,

the more realistic model can be analyzed with exactly the same algorithm as the

Boolean model [33].

The model above does not capture the fact that MS/MS spectra represent

both prefix ions (b-ions series) and suffix ions (y-ions series). To reflect this we

represent peptides as strings in 3-letter alphabet: 1 (theoretical b-cut), -1 (theoret-

ical y-cut), and 0 (no cut). Given a peptide π = π1 . . . πn, we define its reverse as

the peptide π∗ = −πn . . .−π1, i.e., π∗i = −πn−i+1. We now redefine the probability

of peptide π generating spectrum s as Prob(s|π) =
∏n

i=1 Prob(si|πi) · Prob(si|π∗i ),
where Prob(x|y) is a 2 · 3 matrix

3.2.2 From Boolean spectra to MS/MS spectra

Accounting for peak intensities

While the simple model described above led to an accurate peptide sequenc-

ing algorithm [33], it does not capture the intensities of fragment ion in MS/MS

spectra. The experimental spectra represent real-valued vectors s1 . . . sn rather

than boolean vectors (si is the peak intensity at mass i). One can argue that the

same model based on probabilities P (x, y) where x is a (real-valued) peak inten-

sity and y ∈ {−1, 0,+1} would take into account the intensities of mass-spectra.

However, this model faces difficulties since (i) intensities vary between different

spectra of the same peptide (ii) the value of intensity seems to be less important

than the distribution of intensities over different peaks [43]. As a result, most

peptide sequencing algorithms use heuristic approaches and do not try to come

up with a rigorous model of spectra generation that accounts for intensities. We

argue that peak ranks rather than peak intensities may lead to an adequate model

of spectra generation. Peak ranks proved to be valuable in peptide identification,

for example InsPecT [25] utilizes peak ranks in its scoring function. Below we show

how to rigorously utilize peak ranks in de novo peptide sequencing and to solve
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the corresponding Peptide Sequencing Problem.

We now define a spectrum s = s1 . . . sn as a string in the alphabet I (ranks

of peaks) and a peptide π = π1 . . . πn as a string in the alphabet F (types of

neutral losses). The probability of peptide π generating spectrum s is defined

as Prob(s|π) =
∏n

i=1 Prob(si|πi) ·
∏n

i=1 Prob(si|π∗i ), where Prob(x|y) is an arbi-

trary |I| × |F| matrix representing the probability that a symbol y in the peptide

generates a symbol x in the spectrum.

The spectrum strings s = s1 . . . sn are generated from tandem mass spectra

as follows. For simplicity, we retain top k peaks from every MS/MS spectrum (up

to k = 150 in our implementation). Spectra are filtered to remove noisy peaks as

follows: given a peak at mass M , we retain the peak if it is among the top 5 peaks

within a window of size 100 Da around M . Let’s say this procedure gives t peaks,

which are ranked from 1 to t. If t > k, we keep only the top k peaks ; if t < k, we

re-insert the top k − t peaks that were filtered out and assign them ranks t+ 1 to

k. We define si as the rank of the peak at mass i (if there is a peak at mass i) and

define si = 0 if there is no peak at mass i.

The peptide strings π = π1 . . . πn are generated from amino acid sequences

as follows. We define an alphabet of fragment ions as a set of integers corresponding

to neutral losses, for example ion-fragments b, b−H2O, and b−NH3 correspond

to neutral losses {0, 18, 17}. Given a set of neutral losses {x1 . . . xt}, we represent

every amino acid of mass α as a string s1 . . . sα of length α with α − t zeros and

t non-zero symbols 1, 2, . . . , t located at positions α − x1, α − x2, . . . , α − xt. The

peptide string π = π1 . . . πk is simply a concatenation of strings corresponding

to amino acids from the peptide. To make the model more accurate, we further

added the doubly charged b- and y-ions as additional types of ions generated by

the peptide strings.

MS-Dictionary scoring function

When applying the above model for peptide identification, we are interested

in the ratio of probabilities that a spectrum is generated by a given peptide π versus

probability that a spectrum is generated by a string consisting of all zeros (noise).
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This can be represented as follows:

Prob(s|π)/Prob(s|0) =
n∏

i=1

Prob(si|πi)/
n∏

i=1

Prob(si|0).

We further express it as the sum of log-odds ratios:

log
Prob(s|π)

Prob(s|0)
=

n∑

i=1

log
Prob(si|πi)
Prob(si|0)

Using the training dataset (described below), we learn Prob(si|πi) and

Prob(si|0). The learning is done separately for the lower and the higher halves of

the mass range (peaks corresponding to doubly charged ions only appear in the

lower part of the spectrum). A smoothing function was applied on these values for

lower intensity peaks (ranks 11 to 150); for each ion type, the value at any rank was

set to the average value in a window of five ranks around the given rank. These

statistics vary with the length, however the differences between similar lengths

(like 7 and 8) are typically small, as compared to differences between very differ-

ent lengths (like 7 and 20). Thus, specific length-dependent scoring can be applied

using the approximate length inferred from the parent mass of the spectrum.

The MS-Dictionary scoring function described in this chapter was com-

pared with the scoring functions of popular database search tools, SEQUEST [24],

X!Tandem [49] and InsPecT [25]. 50,000 spectra were chosen randomly from the

Shewanella dataset and searched with Sequest, X!Tandem and InsPecT. The score

of the best peptide for each spectrum from database search was compared with

MS-Dictionary score for the same spectrum-peptide pair. We find good correlation

between the MS-Dictionary scoring function and the scoring functions used in the

database search tools, the correlation coefficients being 0.87 for SEQUEST, 0.90 for

X!Tandem, and 0.96 for InsPecT (Figure 3.3). These correlations are even better

than the correlation between the database search tools themselves (for example,

InsPecT and X!Tandem raw scores have a correlation coefficient of only 0.75).

Suboptimal peptide reconstructions

We use the dynamic programming algorithm for computing the spectral

probability and the generating function described in Chapter 2. The number of
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peptide reconstructions is computed for each mass value, and the optimal score is

determined for a mass within specified error tolerance from the PrecursorMass.

We then generate top reconstructions such that their SpectralProbability (see

Chapter 2 for details) adds up to a fixed threshold (we typically use 10−9). Start-

ing from the topmost score, reconstructions at each score are selected until their

cumulative probability exceeds the threshold (all reconstructions at the borderline

score are selected; hence the total probability may marginally exceed the thresh-

old). We limit the number of reconstructions generated for any spectrum to at

most 100,000.

The dynamic programming table is constructed for all mass values between

0 and PrecursorMass + 0.5, with a resolution of 0.1 Da. The number of recon-

structions is computed by summing up the results for all mass values in a window

of 1 Da around the exact PrecursorMass, to account for the low-accuracy of ion-

trap mass spectrometers. In case of precision mass-spectrometry (e.g. FTMS),

accurate solutions (with low parent mass error) can be obtained by increasing the

resolution and reducing the size of the window around the PrecursorMass. For

efficient computation, I and L are treated as the same amino acid, resulting in

19-letter amino acid alphabet at the time of generating reconstructions. In the low

accuracy setting, Q and K are also treated as the same amino acid.

Symmetric versus anti-symmetric de novo reconstructions

Some de novo reconstructions may be symmetric, i.e., the same peak in the

spectrum may contribute to the score up to four times, as a singly charged or doubly

charged, b-ion or y-ion. The algorithm to alleviate this problem was proposed by

Chen et al. [34] and further improved in [38, 36]. Later Lu and Chen, 2003 [81]

designed an algorithm for generating all anti-symmetric peptide reconstructions.

We have chosen not to use the anti-symmetric path approach in MS-Dictionary

since (i) it leads to a significant time overhead when many reconstructions are

generated and (ii) it does not take into account doubly-charged ion fragments

that often have high intensities and thus contribute significantly to MS-Dictionary

scores. To accurately score the symmetric reconstruction, MS-Dictionary re-scores
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the obtained peptide reconstructions to exclude multiple contributions from the

same peak. Starting with the highest scoring reconstructions, we check the peptide

sequence to determine if there are any peaks that have multiple contributions to

the score. These peptides are re-scored by using only the largest contributions

from such peaks.

Template-Free Spectral Recalibration

Recalibration of tandem mass spectra is important for correcting system-

atic mass errors. All existing spectral recalibration tools use templates (interpreted

spectra with known b/y peaks) to perform linear recalibration using either least

squares fit [32, 38, 82] or least median of squares fit [39]. In the de novo pep-

tide sequencing framework the reliable templates are hard to obtain thus reduc-

ing the utility of spectral recalibration to QTOF and LTQ-FT data. In the low

mass-accuracy setting, the applications of template-based spectral recalibration

are mainly limited to validating candidate peptide identifications. As a result, de

novo peptide sequencing programs commonly default to a rather high fragment

mass tolerance (e.g., 0.5 Da for ion-trap data) and thus result in many erroneous

spectral interpretations. We describe a template-free spectral recalibration proce-

dure for ion-trap mass spectra and demonstrate that it reduces the required mass

tolerance from 0.5 Da to 0.2 Da. We further show that this recalibration leads to

significant improvement in MS-Dictionary accuracy.

The fractional masses of amino acids may be as large as 0.1 for Arginine

(mass 156.1 Da). The first step of our MS-Recalibration tool is rescaling all peaks

in the spectrum by multiplying all masses by 0.9995 to minimize the theoretical

fractional masses of amino acids. After rescaling the fractional mass of Arginine is

0.02 (156.02 Da) and the fractional masses of all other amino acids are below 0.04

(the average fractional mass reduces three-fold from 0.06 to to 0.02).

MS-Calibration further filters the rescaled spectra to retain the high inten-

sity peaks using a sliding window as described above. Using Int(m) and Frac(m)

to denote the integer and fractional part of mass m (respectively), our goal is to

find α and β minimizing the sum
∑

(Frac(α ·m + β))2 over all masses m in the
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rescaled filtered spectrum (Figure 3.4(a)). The coefficients α and β are computed

with the least squares fit algorithm and are used to recalibrate all peaks in the

rescaled spectrum. While MS-Recalibration has no information about the pep-

tide that produced the spectrum, Figure 3.4(b) illustrates that it achieves almost

the same accuracy as the template-based approaches that recalibrate the spectra

based on the information about the correct positions of b/y ions. After applying

MS-Recalibration, one can safely set the mass tolerance to 0.2 Da (and retain 96%

of b/y peaks) as compared to the 0.5 Da in existing approaches. Another advan-

tage of our method is that it makes the mass error distributions centered around

zero regardless of their positions in the spectrum. This feature is important for

designing a new scoring function that carefully account for errors in peak positions

(see below).

Incorporating Mass Errors Into the Scoring Function

Most de novo peptide sequencing tools [57, 62, 32, 33, 38, 39, 40, 43, 42,

36, 83, 35, 84] setup a fixed mass error threshold (e.g., 0.5 Da for ion-traps) and

compute the scoring functions for all peaks within this error threshold. Bafna

and Edwards, 2001 [85] and Mo et al., 2007 [43] noticed that assigning the same

scores to all peaks within the error threshold may not be the optimal way to score

spectra in both database search and de novo peptide sequencing applications. For

example, a high intensity peak with mass error 0.5 Da is typically less “reliable”

than a medium intensity peak with mass error 0.1. Recent incorporation of mass

errors into the scoring function (as a quantitative component rather than a cut-off)

led to a significant improvement in MSNovo accuracy [43]. MS-Dictionary also

incorporates mass errors in the scoring functions and further improves MSNovo

model as described below.

MSNovo used unified peak error model (Gaussian distribution) and peak

rank model (exponential distribution) independent on the ion type, rank and po-

sition of each peak. However, Figure 3.5(a) illustrates that different fragment ions

have different error models. Figure 3.5(b) reveals that peak ranks and mass errors

(that are assumed to be independent in MSNovo) are strongly correlated. Also,
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Figure 3.5(b) reveals subtle irregularity in noise peaks indicating that the noise

model in Mo et al., 2007 [43] needs to be adjusted. MS-Dictionary takes these ob-

servations into account and incorporates the mass errors into its scoring function

using a more adequate error model than Mo et. al.,2007 [43]. Below we briefly de-

scribe the error-dependent scoring for boolean spectra (this model can be extended

to MS/MS spectra as described above).

The boolean spectra model assumes that a peptide symbol πi generates the

spectrum symbol si at exactly the same position. We now extend this model by

assuming that the peptide symbol πi can generate spectrum symbol si+ε, where

ε represents a mass measurement error. We assume that errors are “small”, i.e.,

they do not exceed a threshold εmax (εmax is typically 0.5 for ion-trap spectra).

Incorporating errors into the spectrum generation model requires introducing the

3-dimensional matrix Prob(x, ε|y), where −εmax ≤ ε ≤ +εmax and x and y are

boolean as before. The probability of peptide π generating a spectrum s with

error ε = ε1, . . . , εn can now be defined as Prob(s, ε|π) =
∏n

i=1 Prob(si+εi |πi) =
∏n

i=1 Prob(si+εi , εi|πi). The Peptide Sequencing Problem can now be reformulated

as follows:

Peptide Sequencing Problem with Errors. Given a spectrum s and a DAG G, find

a G-peptide π and mass errors ε maximizing Prob(s, ε|π) over all G-peptides and

over all mass errors ε.

The matrix Prob(x, ε|y) was learned from the training sample and the

learned parameters were further used in the dynamic programming algorithm as

described before. Table 3.1 compares the performance of MS-Dictionary with Pep-

Novo version 1.03 and illustrates that MS-Dictionary outperforms PepNovo for all

peptide lengths.
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3.3 Results

3.3.1 Datasets

We used the previously published Shewanella oneidensis MR-1 spectral

dataset containing 14.5 million spectra. The experimental procedures7 for ac-

quiring the spectra and identifications from this dataset are described in [48].

28,377 peptides were reliably identified with false discovery rate 5% using InsPecT

(spectrum-level FDR is 1%). InsPecT search was run using default parameter set-

tings (fragment ion tolerance of 0.5 Da and parent mass tolerance of 2.5 Da). For

this study, we selected 21,087 tryptic peptides with charge 2, obtained one rep-

resentative spectra for each of these peptides (most peptides were identified from

multiple spectra), and grouped these by the length of their peptide identifications

to form a test dataset for each length. We will refer to the length of the InsPecT

identification of a spectrum as the spectrum length. For the sake of convenience,

all lengths 7 through 10 and even lengths between 10 and 20 were considered.

The trends across these lengths show smooth progression and there is no reason to

believe that the odd lengths between 10 and 20 would show any deviant behavior.

To avoid computational artifacts introduced by errors in the parent mass, we have

chosen to correct the parent masses according to the InsPecT identifications.

3.3.2 Generating multiple de novo reconstructions

A spectrum may have many reconstructions with the optimal score, and

in these cases, reporting only one reconstruction is clearly deficient. For example,

Figure 3.6 shows a spectrum for which two distinct peptides, LHEALPDPEK and

HLEALGAFYK, receive the optimal de novo score of 90.

We further argue that even generating all optimal reconstructions may not

be sufficient for finding the correct peptide. For many spectra, the correct peptide

has a lower score than an incorrect peptide. Figure 3.7 shows a spectrum for

7The spectra were acquired on an ion trap MS (LCQ, ThermoFinnigan, San Jose, CA) using
electrospray ionization (ESI). The program extract msn (ThermoFinnigan) was used to generate
the dta files with standard options.
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which the correct peptide FINVIMQDGK (as identified reliably by InsPecT) has

score of 111, a high score that exceeds the average score of correct identifications.

However, another reconstruction YPNVMLQDGK (not present in the database)

has an even higher score 123. We note that for ≈ 60% of length 10 spectra, the

correct peptide has suboptimal PepNovo score (≈ 50% for MS-Dictionary score),

and this fraction quickly increases with the peptide length (Figure 3.8). Since

the existing de novo approaches fail to identify the correct peptide as the optimal

reconstruction in a large fraction of the spectra, a de novo method should consider

multiple reconstructions with sub-optimal scores.

3.3.3 How existing database search approaches fare while

searching very large databases?

All database search tools we tested would fail to identify the correct pep-

tide for more than half of the length 10 spectra if they were searching through the

database of all possible peptides. This is an indication of limitations of the scoring

functions of existing database search tools. Since actually searching a database of

all peptides is impractical, we conservatively estimate the error rates of MS/MS

database search tools by constructing a custom database for each spectrum con-

taining all de novo reconstructions with MS-Dictionary scores better or equal to the

correct peptide. Even if we used the theoretical database of all possible peptides,

it is likely that the identified peptides would be one of those top reconstructions

that we included in our custom database. The rate of finding the correct peptide

would only drop if more peptides were added. InsPecT was able to identify the

correct peptide (peptide identified in the the Shewanella database in [48]) on such

custom database in only 42% of the cases and X!Tandem in 35% cases for length 10

peptides. Both InsPecT (version 2006.09.07) and X!Tandem (version 2007.01.01.2)

were run with parent mass tolerance of 2.5 Da, fragment mass tolerance of 0.5 Da,

fixed modification of C+57, no optional modifications and without any enzyme

preference. The best match for each spectrum is reported. The parent masses

of spectra were corrected according to the mass of the correct peptide. Table 3.2

illustrates that the accuracy of various tools decreases sharply with the increase
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in the spectrum length. PepNovo (a de novo search method) has similar or better

accuracy than InsPecT in finding the correct peptide reconstruction. PepNovo

version 1.03 was used with fixed C+57 modification.

We remark that in some applications (e.g., search in large EST databases

or using MS/MS for proteogenomic annotations [68, 48]), the databases are very

large. It implies that search in such databases (at least for shorter peptides) is not

unlike the search in the database of all peptides. Table 3.2 leads to a surprising

conclusion that for short peptides simply generating de novo reconstructions and

matching them against the database may be more accurate (and much faster)

approach than X!Tandem/InsPecT in case of very large databases. Below we show

that MS-Dictionary leads to a better performance than InsPecT, X!Tandem, and

PepNovo in such applications (Figure 3.9).

3.3.4 Performance of MS-Dictionary

The test datasets (all peptide identifications in Shewanella) were analyzed

with MS-Dictionary for each peptide length. The size of the spectral dictionary

depends on the SpectralProbability parameter of the generating function [78] that

influences the error rate of peptide identifications if the spectrum was submitted

to a database search. Since we deal with tryptic peptides, we only consider the

reconstructions that end in K or R (although MS-Dictionary is not limited to

tryptic peptides).8

As the spectrum length increases, the size of the peptide search space in-

creases dramatically, making it harder to generate the spectral dictionary. Thus

all de novo search methods yield lower accuracy for longer peptides. The generat-

ing function approach allows one to dynamically determine the number of peptide

reconstructions and increase the chance of finding the correct peptide in the set of

de novo reconstructions (see Figure 3.9).

The number of reconstructions obtained for these same-length spectra varies

over orders of magnitude. While the peak of the distribution of the number of

8While this analysis looses peptides at the C-terminus of proteins, it will have a minor effect
on the reported statistics.
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reconstruction is at log2(size of spectral dictionary) ≈ 10 (comparable to the

number of reconstructions generated in [56]), some of these spectra have fewer

than 100 or more than 10,000 reconstructions. This remarkable variance in the

size of spectral dictionaries illustrates the point that different spectra have different

number of plausible reconstructions and raises a concern about de novo methods

that return a fixed number of peptides.

Recently, Frank et al., 2007 [86] described de novo peptide sequencing for

data acquired from FT-ICR instruments when both the parent mass and the peak

positions are accurate. However, acquiring such spectra remains time-consuming,

and an intermediate approach that is gaining prominence is to acquire mass spec-

tra with high precision at MS1 stage and lower precision at MS/MS stage, giving

accurate parent mass but inaccurate peak positions. However, the existing de novo

search methods are aimed toward ion traps or other low accuracy mass spectrom-

eters, that may have parent mass errors on the order of 1 Dalton. Since vertices

in the spectrum graph are constructed based on low accuracy peaks, it is not clear

how to exploit the accurate parent mass information that is available from new

high accuracy instruments. Availability of accurate PrecursorMass values can

be effectively utilized in MS-Dictionary to filter the reconstructions. The num-

ber of reconstructions for 5 ppm accuracy is typically 4-16 times smaller than the

corresponding numbers for 0.5 Dalton accuracy (data are not shown).

3.3.5 Using MS-Dictionary for database search

In any database search, a large number of spectra remain unidentified. This

may happen due to several reasons: these spectra may have many missing or noisy

peaks making them difficult to interpret, the corresponding peptide may not be

present in the database or the peptide may have a post-translational modification

not captured by the search algorithm. In case of Shewanella oneidensis MR-1,

only ≈ 10% of the 14.5 million spectra were reliably identified [48]. We show

that MS-Dictionary is able to find identifications for some previously unidentified

spectra.

We selected all (≈ 600 thousands) spectra of charge 2 from the Shewanella
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dataset within the PrecursorMass range from 1100 to 1200 Da (the typical mass

range for length 10 peptides). All these spectra were searched against Shewanella

proteome with MS-Dictionary (generated with spectral probability 1e-9), InsPecT,

and X!Tandem. The same analysis was repeated with a decoy database of the

same size. A spectrum is considered identified if any of the reconstructions is

present in the six frame translation of the Shewanella genome (target database).

Figure 3.10 demonstrates that InsPecT and MS-Dictionary significantly improve on

X!Tandem (at 5% FDR, X!Tandem, InsPecT and MS-Dictionary identified 3272,

4184 and 4137 peptides respectively). We further rescored InsPecT identifications

using MS-GF spectral probabilities achieving an even better performance for the

hybrid InsPecT ⊕ MS-GF hybrid tool (4299 peptide identifications at 5% FDR).

Figure 3.11 shows the Venn diagrams of peptides identified by X!Tandem, InsPecT,

MS-Dictionary, and InsPecT ⊕ MS-GF.

To further illustrate applicability of MS-Dictionary in proteogenomics ap-

plications we extended the analysis of Shewanella proteome described above (Fig-

ure 3.10) to the seven times larger 6-frame translation of Shewanella. We se-

lected all spectra from Shewanella dataset, that were not identified in the InsPecT

database search, with the ParentMass range from 1100 to 1200 Da and with

MS-GF scores above 50 (24,814 spectra).9 MS-Dictionary generated spectral dic-

tionaries for these spectra, at three different values of SpectralProbability. The

same analysis was repeated with a decoy database of the same size. A spectrum is

considered identified if any of the reconstructions is present in the six frame trans-

lation of the Shewanella genome (target database). Table 3.3 shows the number

of new peptides identified by MS-Dictionary in each database that were not found

in the earlier database search. For SpectralProbability = 10−10, 1007 new pep-

tides are identified from 6211 spectra in the target database, while only 6 peptides

(from 6 spectra) are identified in the decoy database, corresponding to a peptide

level false discovery rate of 0.6%. As the SpectralProbability is lowered, the false

9While most spectra with MS-GF scores above 50 correspond to high quality peptide iden-
tifications by both InsPecT and X!Tandem, a significant portion of them may have borderline
InsPecT/X!Tandem scores. As discussed in Chapter 2, such low scores may reflect deficiencies
of the underlined scoring approaches.
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discovery rate turns into zero at 2 × 10−11 with 794 peptide identifications. 280

of them were previously identified by InsPecT (from other higher-quality spectra)

but 514 represent new peptide identifications. Interestingly, 512 (99.6 percent)

of them map to the known protein sequences (including contaminants), provid-

ing further confirmation that these identifications are correct. Indeed, since the

size of the Shewanella protein database is only ≈ 15% of the size of six-frame

Shewanella translation, one expects that only 15% of these proteins would hit the

Shewanella database by chance. Moreover, out of 512 peptides, 508 are matched to

expressed proteins (confirmed by at least two InsPecT identifications in [48]) and 2

are matched to proteins with a single identified peptide, confirming the expression

of these proteins.

A closer look at the two peptides that fall outside the annotated proteins

reveals two frameshifts. The first peptide, IAVGLSSANFGR, maps downstream

of the gene SO 2754 which is annotated as “hypothetical sodium-type flagellar

protein MotY”, and has length 122 aa. BLAST [14] query of the peptide against

other Shewanella strains shows that the peptide is conserved in four other strains

and contained in longer proteins of length 289. By aligning the nucleotide sequence

of Shewanella oneidensis MR-1 against these other strains, we find a sequencing

error (insertion of an extra A at nucleotide position 362) that results in a stop

codon and early truncation of the gene with only 122 amino acids. The second

peptide SDIGWGSQIR falls in the region of the gene SO 0991 (peptide chain

release factor 2) which is now annotated in TIGR as a programmed frameshift (but

has the correct protein sequence missing from fasta files because of the frameshift).

These examples show that new peptide identifications from MS-Dictionary not

only increase coverage for annotated genes but also provide clues for correcting

gene annotations.

We note that peptide identifications reported here based on the spectra

in 1100 to 1200 Da PrecursorMass range only, and their number is expected

to be much larger if spectra of other masses are also included. Spectra in lower

or higher mass ranges also show similar trends as spectra in the 1100 to 1200

Da range (data now shown). MS-Dictionary, thus, has the potential to provide a



49

significant number of new peptide identifications from spectra that were missed in

the traditional database searches.

3.3.6 Searching the six-frame translation of human genome

with MS-Dictionary

While mass spectrometry have been successfully used for bacterial gene pre-

dictions [63, 64, 65, 66, 48, 53, 87], the proteogenomic studies of large eukaryotic

genomes are still in infancy. Even the fastest MS/MS database search tools become

impractical in such studies since they require searches in huge databases resulting

from the 6-frame translations of eukaryotic genomes (≈ 2.5 billion amino acids for

repeat-masked human genome). Tanner et al., 2007 [68] and Edwards, 2007 [88]

made a step towards proteogenomic searches of human genome by combining the

EST and MS/MS analysis. While this approach is very valuable it can only be suc-

cessful if the same exons are supported by both EST and MS/MS data. The largest

proteogenomic analysis conducted so far is the search of the six-frame translation

of Arabidopsis thaliana that resulted in the discovery of nearly 800 new genes

using InsPecT.1 While InsPecT is 10 times faster than X!Tandem and 60 times

faster than SEQUEST (Payne et al., 2008 [89]), it becomes too slow in searches

of the translated mammalian genomes. Since neither InsPecT, nor X!Tandem can

search the translated human genome,10 we ran InsPecT on a 124 times smaller

database and assumed that its running time is proportional to the database size.

The running time of InsPecT is estimated at 42 seconds per spectrum11, while

MS-Dictionary takes less than 1 second per spectrum on average on a desktop

machine with 2.16Ghz Intel processor. Below we demonstrate that MS-Dictionary

can search the translated human genome and identify over 10,000 human peptides

with low FPR. Recently, Tanner et al., 2007 [68] demonstrated that such peptides

can significantly improve the accuracy of traditional de novo gene prediction tools

and boosted the accuracy of GeneID predictions by 0.65 correct exons per gene on

10Both tools report unexpected errors on the translated human genome.
11This is a lower bound that does not account for overhead caused by indexing/partitioning of

large databases.
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average.

MS-Dictionary generates the spectral dictionary for each spectrum and

uses fast pattern matching to match the spectral dictionary against the indexed

database.12 We used a simple partitioning/indexing that divides the translated hu-

man genome into 124 equally sized sub-genomes. Generating a spectral dictionary

with 10,000 reconstructions takes 0.1 seconds per spectrum and pattern matching

of a spectral dictionary against all 124 databases (including I/O overhead) takes

0.8 seconds per spectral dictionary on average. This results in less than 1 second

running time, a 40-fold speed-up over InsPecT.13

To benchmark MS-Dictionary we used the human HEK293 MS/MS dataset

generated in Steve Briggs’ lab. We focus on 48,926 doubly-charged peptides with

tryptic C-terminus identified by InsPecT14 (InsPecT version 20070613, human IPI

database version 3.18) with 2.5% false discovery rate (for detailed description see

[68, 90]). We removed 17,821 peptides that span the exon boundaries (these pep-

tides cannot be identified by searching the translated human genome) resulting

in 31,105 peptides. Since most peptides in HEK293 are represented by multiple

spectra, we randomly selected one spectrum out of all spectra of the same peptide.

We further searched 31,105 spectra against the translated human genome (version

48 from Ensembl ftp server ftp://ftp.ensembl.org) with masked repeats and with

corrected parent mass as described before. For each spectrum, we generated a

spectral dictionary with SpectralProbability = 10−11 and limited the maximum

size of spectral dictionaries to 10,000. Each peptide in the spectral dictionary was

matched (without errors) against the translated human genome.

The searches in the translated human genome are not expected to identify

all spectra reliably identified in the human protein database. Indeed, Castellana

et al., 20081 “lost” ≈ 30% of all identifications of peptides falling within exons

after switching from protein database to the translated genome database of Ara-

bidopsis thaliana. Such losses are unavoidable since many reliable identifications in

12Indexing the entire 6-frame translation of the human genome takes less than an hour.
13We estimate that optimized indexing/partitioning or running MS-Dictionary on a large

shared memory machine would further reduce the running time.
14While MS-Dictionary generates both tryptic and non-tryptic peptides, we selected doubly-

charged peptides with tryptic C-terminus to simplify benchmarking.
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the protein database turn into statistically insignificant identifications in the much

larger translated genome. For example, while the SpectralProbability = 10−10

makes sense for searching the human protein database, it results in very high

error rates (FPR=25%) in a ≈ 100 times larger translated human genome. There-

fore, all peptide identifications with SpectralProbability ≥ 10−10 will be lost after

switching from the protein database to the translated human genome.15 We have

therefore chosen SpectralProbability = 10−11 as a threshold resulting in estimated

FPR=DatabaseSize · SpectralProbability = 2.5 · 109 · 10−11 = 0.025. Since 9,470

out of 31,105 peptides (30%) have SpectralProbability exceeding 10−11, they can-

not be identified in any sensible database search against the translated human

genome. It leaves us with 21,635 peptides that can be potentially identified in the

translated human genome.

MS-Dictionary identified 10,266 out of 21,635 spectra in the translated hu-

man genome. 98.9% of the identified peptides fall into the human proteins and only

1.1% fall into non-coding regions.16 To further estimate FPR of our experiment,

we selected a single run (25,746 spectra), picked out unidentified doubly-charged

spectra in this run (16,205 spectra), and used MS-Dictionary to generate spectral

dictionaries and match them against the translated human genome. MS-Dictionary

identified only 71 spectra in this experiment, corresponding to FPR 0.44%.

Therefore, MS-Dictionary reliably identifies ≈ 10, 000 peptides from hu-

man proteins without knowing the human proteome. However, it also “looses”

≈ 11, 000 peptides that can be potentially identified in searches of the translated

human genome. Figure 3.12 illustrates that while MS-Dictionary identifies a

large fraction of peptides of length 10-13, the performance deteriorates for shorter

and longer peptides. Since the SpectralProbability threshold has to be low in

proteogenomic applications, only very high quality spectra of shorter peptides rep-

resent reliable identifications (only 23% of spectra of length 9). This does not

indicate the poor performance of MS-Dictionary but rather reflects the stringent

15In particular, all peptides of length 8 and shorter are likely to be lost since
SpectralProbability even of a single peptide of length 8 is rather high (≈ 0.4 · 10−10).

16While most spectral dictionaries have zero or one hit in the human genome, 1.8% of them
have multiple hits (typically 2 hits).
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threshold. For the spectra of length more than 14 aa, the performance of MS-

Dictionary deteriorates because of the limited size of spectral dictionaries. Further

algorithmic developments (e.g. generating dictionaries of long tags) are needed to

address this shortcoming of MS-Dictionary.

3.4 Discussion

In this chapter, we demonstrate the importance of obtaining multiple de

novo peptide reconstructions and describe MS-Dictionary tool for generating these

reconstructions. We emphasize that the number of generated reconstructions must

not be fixed a priori, as done by existing de novo tools, but decided dynamically for

the given spectrum since the number of plausible reconstructions varies from spec-

trum to spectrum. We use the generating function approach [78] that allows one to

determine the set of reconstructions that must be reported. The ability to generate

spectral dictionaries makes this method useful for hybrid de novo based database

search, by increasing the likelihood of finding the correct peptide while keeping the

number of false identifications low. MS-Dictionary identifies new peptides from

spectra that were not identified with regular database search. MS-Dictionary can

be modified to search for mutations and polymorphisms by simply substituting the

exact pattern matching by error-tolerant pattern matching of spectral dictionaries

against databases.

Future work will focus on developing this hybrid approach into a viable

tool for peptide identification by extending it to highly-charged spectra and im-

proving the efficiency of this approach in case of longer peptides. Deteriorated

performance for highly-charged and long peptides is an important limitation of

all de novo approaches to spectral interpretations. The existing de novo peptide

sequencing tools are aimed at charge 2 peptides with the single exception of GBST

algorithm [72] that is best suited for tag generation rather than full length de novo

peptide sequencing, the focus of this chapter. All tools we tested also deteriorated

while searching longer peptides in very large databases. For example, InsPecT and

X!Tandem would correctly identify only 16% and 11% of all length 14 peptides
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in the de novo peptide sequencing framework (Table 3.2). While MS-Dictionary

improves on these tools, its accuracy is also rather low (18%). This observation

reveals the shortcomings of existing de novo and database search tools that often

score the incorrect peptides higher than the correct peptides. Frank et al., 2007 [86]

recently discussed the “homeometric peptides” that represent the key obstacle for

developing better de novo algorithms (they become more pronounced with the in-

crease in the peptide length). This problem is partially alleviated by generating

all reconstructions with a given SpectralProbability and further matching them

against a database (Figure 3.9).

3.5 Acknowledgements

This chapter, in full, was published as “Spectral Dictionaries: Integrating

De Novo Peptide Sequencing with Database Search of Tandem Mass Spectra”. S.

Kim, N. Gupta, N. Bandeira, and P. A. Pevzner. Molecular & Cellular Proteomics,

vol. 8, no. 1, pp. 53-69, 2009. The dissertation author was the primary author of

this paper.



54

Table 3.1: Comparison of MS-Dictionary and PepNovo reveals that MS-
Dictionary outperforms PepNovo for all peptide length (Shewanella dataset).

% correct amino acids % correct peptides
Length PepNovo MS-Dictionary PepNovo MS-Dictionary

8 88.7 92.2 51.1 58.1
10 85.8 91.2 38.2 49.6
12 79.7 87.2 23.1 34.5
14 71.1 81.7 11.8 17.8
16 61.1 79.0 3.8 12.9
18 56.8 74.2 1.5 7.6
20 49.8 65.6 0.3 3.3

Table 3.2: Accuracy of InsPecT and X!Tandem against a database of all pep-
tides, estimated as the percentage of spectra for which the correct peptide will be
identified with maximal score in the database search. PepNovo and MS-Dictionary
accuracy (percentage of spectra for which the correct peptide is a top-scoring pep-
tide) is added for comparison. Peptides that differ by amino acid substitutions I/L
and K/Q with similar masses are considered valid reconstructions.

Length InsPecT X!Tandem PepNovo MS-Dictionary
7 63 51 54 57
8 59 47 51 58
9 48 41 45 51
10 42 35 38 50
12 18 22 23 35
14 16 11 12 18



55

Table 3.3: MS-Dictionary identification of Shewanella spectra that were not iden-
tified in the InsPecT search in [48]. For different values of SpectralProbability (first
column), the number of peptide identifications (IDs) on the target database (sec-
ond column) and the decoy database (third column) are reported. The numbers in
parentheses represent the corresponding number of spectral identifications (many
spectra correspond to the same peptide identification). The target database here is
the six-frame translation of the whole Shewanella genome containing ≈ 10 million
aa, and a decoy database of the same size is used. The fourth column provides the
false discovery rate (FDR) at the peptide level (ratio of decoy and target database
peptide IDs), and the fifth specifies the number of new peptides identified in the
target database that were not observed in the InsPecT search. The number in
parenthesizes in the last column shows the number of new peptides mapped to
the protein-coding regions and illustrates that while the protein database is only
15% of the size of the six-frame translation, 97.1%-99.6% of these peptides are
mapped to the protein database. These peptides are missed by InsPecT either due
to borderline p-values (as shown in [78], the generating function of MS-Dictionary
results in better separation between correct and erroneous hits than the scoring
functions of InsPect and X!Tandem) or due to absence of good peptide sequence
tags.

SpectralProbability IDs(target) IDs(decoy) FDR New Peptides
1e-9 1169(8771) 29(64) 0.025 768(746)
1e-10 995(6171) 6(6) 0.006 652(646)
5e-11 914(5327) 2(2) 0.002 595(591)
2e-11 794(4269) 0(0) 0 514(512)
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Figure 3.1: Two approaches to peptide identification: traditional approach
based on comparing spectra to the database (red) and the hybrid approach based
on constructing spectral dictionaries and fast database lookup (blue). The red lines
illustrate that in traditional searches every spectrum should be compared to every
peptide in the database with a given parent mass (the running time scales linearly
with the database size). The blue lines illustrate that every peptide in the spectral
dictionary should be checked for presence in the database (the running time is
negligent if the database is pre-processed as a hash table or a suffix tree). The
running time of the de novo-based approaches is nearly independent of the database
size (it is dominated by the time required to generate the spectral dictionaries).
The fast database lookup can be implemented either as exact matching or as error-
tolerant lookup (to search for mutations/polymorphisms).
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Figure 3.2: Left, Probability P (x|y) of a peptide symbol y generating a spec-
trum symbol x. Right, The amino acid graph G for all peptides with parent mass
7 and only two possible “amino acids” A and B with masses 2 and 3 correspond-
ingly. The highlighted path corresponds to the G-peptide 0101001 corresponding
to AAB (masses of consecutive amino acid masses are 2,2,3). Two other G-peptides
with parent mass 7 are 0100101 (ABA) and 0010101 (BAA). The probability of
a spectrum s = s1 . . . sn being generated by a peptide π = π1 . . . πn is defined as
P (s|π) = Πn

i=1(si|πi). This is illustrated above with π = 10101001 and s = 0001101
(P (s = 0001101, π = 10101001) = θ · (1− θ)3 · ρ2 · (1− ρ)).

Figure 3.3: Correlation between InsPecT and MS-Dictionary scores computed
on randomly selected 50,000 spectra (correlation coefficient is 0.96).
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Figure 3.4: (a) Comparison of template-free (solid line) and template-based
(dashed line) recalibrations for a single spectrum. Each blue dot represents a 2-
D point (m, Frac(m)) for a mass m (for every peak in the rescaled and filtered
spectrum). Each red dot represents a 2-D point (m, Error(m)) for a b- or y-
peak with mass m and the difference between the theoretical and experimental
mass of the peak equal to Error(m) (for every b- and y- peak in the original
spectrum). (b) MS-Recalibration performance on 1745 identified spectra of length
10 in the Shewanella dataset. The template-based recalibration uses the positions
of theoretical b- and y-ions in the spectrum to fit the positions of b- and y-ions in
the experimental spectrum using the least-squares fit algorithm. The template-free
MS-Recalibration does not require knowledge of the theoretical b- and y- ions. The
error distribution for non-calibrated spectra is shown for comparison. The average
error is 0.13 before recalbration, 0.07 after MS-Recalibration, and 0.06 after the
template-based recalibration. Before recalibration, only 79% of b/y ions are within
mass error 0.2 Da as compared to 96% after MS-Recalibration (similar to 98% for
the template-based recalibration).
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Figure 3.5: (a) Different fragment ions have different rank distributions (statis-
tics is given for all spectra of length 10 from the Shewanella dataset). (b) Distribu-
tions of mass errors of y peaks depends on their intensity (statistics is given for all
spectra of length 10 from the Shewanella dataset). The high intensity peaks (solid
curve) tend to have more accurate mass measurements than the lower intensity
peaks (dashed curve). The fractional parts of very low intensity peaks (peaks of
rank higher than 150) are centered around zero after rescaling (dashed-dot curve).
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(a)

(b)

Figure 3.6: Two optimal de novo interpretations (a) LHEALPDPEK and (b)
HLEALGAFYK for a particular spectrum.
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(a)

(b)

Figure 3.7: (a) Correct peptide FINVIMQDGK as identified by InsPecT
database search and (b) YPNVMLQDGK, a de novo reconstruction, for a par-
ticular spectrum. The former gets a score of 111 compared to a higher score 123
of the latter.
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Figure 3.8: Fraction of the spectra for which the correct peptide (as identified
by the database search) has a suboptimal de novo score (depending on the length
of the spectra). The distribution is shown for MS-Dictionary and PepNovo scoring
functions.
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Figure 3.9: MS-Dictionary accuracy as a function of the spectrum length. Per-
centage of spectra that were correctly reconstructed by MS-Dictionary (i.e. the
correct peptide was present in the spectral dictionary) are shown on the y-axis. Ac-
curacies are computed for three different values of SpectralProbability, viz. 10−10,
10−9 and 10−8. Comparison with PepNovo (counting the percentage of spectra
for which PepNovo reconstructs the correct peptide) is shown. As the number of
reconstructions for length 14 aa and above is often larger than our allowed limit
of 100,000 reconstructions per spectrum, the same set of reconstructions being
generated for different SpectralProbability values.
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Figure 3.10: Comparison of the number of peptide identifications by various
approaches, viz. InsPecT, X!Tandem, MS-Dictionary, and InsPecT ⊕ MS-GF.
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number of peptide identifications for different score thresholds (corresponding to
different false discovery rates).
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Figure 3.11: Venn diagram showing the overlap between peptides identified by
different approaches at 5% false discovery rate. (a) Overlap between InsPecT,
X!Tandem and MS-Dictionary. (b) Overlap between InsPecT, X!Tandem and
InsPecT ⊕ MS-GF.
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Figure 3.12: The percentage of peptides identified by MS-Dictionary in the
translated human genome as compared to all peptides identifies in searches of hu-
man protein database. Spectral dictionaries were generated for the 21,635 selected
spectra from HEK293 dataset and searched against the translated human genome.
For each spectrum, if correct peptide is contained in the dictionary of the spectrum,
we regarded the spectrum as identified.



Chapter 4

Spectral Profiles and Their

Applications for de Novo Peptide

Sequencing

4.1 Introduction

Recent advances in de novo peptide sequencing have enabled tag-based

peptide identification tools (e.g., Inspect [25] and Paragon [47]) that are orders of

magnitude faster than traditional MS/MS database search approaches (e.g., Se-

quest [24] and Mascot [5]). However, reliable full-length de novo peptide sequencing

remains an elusive goal, and even the most accurate de novo tools correctly recon-

struct only 30–45% of peptides [35]. We argue that accurate full length de novo

peptide sequencing may be an unattainable goal for many spectra since they do

not provide enough information to disambiguate between correct and incorrect re-

constructions. Spectra often have variable local quality (along the peptide length)

making some regions not amenable to de novo sequencing. For example, spectra

of peptides DGEAAENTDAQK and DSVAAENTDAQK are very similar making

it nearly impossible to reliably reconstruct these peptides de novo (the combined

mass of G and E is close to the combined mass of S and V). In such cases, it makes

more sense to reconstruct a gapped peptide D[186]AAENTDAQK rather than a

67
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contiguous peptide. While gapped peptides are less informative than full-length

peptides, we argue that there is little difference between these two representations.

Indeed, in most applications, de novo peptide sequencing is not the final goal in

analyzing a spectrum but rather a prelude to error-tolerant database searches and

other applications like metaproteomics [91, 59, 92, 93]. We argue that long gapped

peptides are nearly as good for such applications as full-length de novo reconstruc-

tions. For example, the gapped peptide D[186]AAENTDAQK has 9 continuous

amino acids and thus, for all practical applications, is at least as useful as any

peptide of length 9 (or length 11 if one counts D and [186] as separate “letters”).

Since most mass-spectrometrists view peptides of length 9 as useful as peptides

of length 12, generating sufficiently long gapped peptides is nearly as useful as

generating full-length reconstructions (the full length of D[186]AAENTDAQK is

12).

In this chapter we introduce the notion of a spectral profile (Fig. 4.1) that

enables accurate de novo sequencing of gapped peptides and reveals the variable

spectral quality along the peptide length. For example, for peptides of length

11-12, our MS-Profile tool correctly reconstructs 65% of gapped peptides as com-

pared to 46%, 28% and 26% correct reconstructions of full or truncated full-length

peptides by PepNovo+ [35, 94], MS-Dictionary [3], and PEAKS [38]. Gapped

peptides occupy a niche between peptide sequence tags (that in most applications

are limited to tags of length 3) and full-length reconstructions: they are nearly as

accurate as short tags and, at the same time, typically have a unique match in the

protein database. E.g., for peptides of length 12, the average length of gapped re-

constructions is 8.9, typically resulting in a single hit even when searching against

the largest databases used in proteomics today.1

A spectral profile is a novel representation of tandem mass spectra with

“intensities” of all masses varying from 0 to 1. Every peptide of length n defines

n prefix masses representing masses of the first i amino acids (for 1 ≤ i ≤ n). The

spectral profile at mass x is the proportion of peptides with prefix mass x among all

1We define the length of the gapped peptide as the number of masses and amino acids de-
scribing the peptide. For example, the length of the gapped peptide [186]DK[246]FK is 6, while
the length of a 3-aa long peptide sequence tag [307]GTP[421] is 5.
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high-scoring interpretations of the spectrum. Thus, the spectral profile compactly

represents information about all high-scoring de novo reconstructions (spectral dic-

tionary) even if there are billions of such reconstructions (see [3]). Spectral profiles

are conceptually similar to the motif profiles [95] that are used in various areas

of bioinformatics (e.g., in regulatory genomics). While motif profiles in regulatory

genomics compactly represent all known binding sites of a transcription factor, a

spectral profile compactly represents all high-scoring de novo reconstructions of

an MS/MS spectrum. However, while motif profiles represent the center of grav-

ity of known motifs, spectral profiles represent the center of gravity of unknown

high-scoring de novo reconstructions (spectral dictionaries). This makes comput-

ing spectral profiles challenging since in many cases spectral dictionaries cannot

be explicitly generated [3]. This chapter extends Chapter 3 by showing how to

compute spectral profile of any spectrum without explicitly generating its spectral

dictionary. We further show how to use spectral profiles for generating reliable

gapped peptides.

The difficult challenge in de novo spectral interpretations is how to figure

out which ion type every peak represents (e.g., how to distinguish b-series peaks

from y-series peaks) and how to analyze the widely varying intensities in a single

probabilistic framework. The spectral profile collapses all possible ion type inter-

pretations and varying intensities into a single ion type (b-ion) with rigorously

defined probability. In difference from real MS/MS spectra (that contain peaks

corresponding to b- and y-ions, various neutral losses, etc.), spectral profiles only

represent (putative) b-ions. In some sense, spectral profiles represent a trade-off

between (hard-to-interpret but compact) real spectra and (easy-to-interpret but

huge) spectral dictionaries. We emphasize that spectral profiles are different from

“scored spectra” (e.g., sequence spectra [80, 62] or prefix residue mass spectra [25])

that are commonly used for de novo sequencing and MS/MS database searches.

While profile probabilities are global (i.e., they take into account complex depen-

dencies between all peaks in the spectrum), scored spectra take into account only

a few local satellite peaks explaining a given mass.

Similar to the diverse applications of motif profiles, spectral profiles have a
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multitude of applications that we describe below. Fig. 4.2 illustrates recently im-

plemented alternative approaches to peptide identification: peptide sequence tag

approaches [25, 47, 96, 97] and full length de novo reconstruction approaches [59,

92, 3, 56] (see also lookup-peak approach [46]). While these approaches signifi-

cantly speed up conventional peptide identification tools, each of them presents

certain challenges, leading to deteriorating performance on long (15+ aa) pep-

tides. Most of these approaches do not automatically adjust to varying spectral

qualities or different peptide lengths. For example, InsPecT generates the same

number of tags for every spectrum while a more sensible approach would be to

generate a larger number of tags for long peptides (tag generation deteriorates for

longer peptides) or for low-quality spectra. While MS-Dictionary [3] generates an

adaptive but large number of full length reconstructions (for both high- and low-

quality spectra), dictionaries of spectra of long peptides may become so large that

their generation becomes impractical. To overcome this problem, we show how

to quickly construct spectral profiles of even huge dictionaries without explicitly

generating them.

MS-Profile currently works in two modes (Fig. 4.3). In the first mode, the

input is an MS/MS spectrum and a spectral probability threshold (described be-

low) and the output is a spectral profile. In the second mode, the constructed

spectral profile, in addition to a de novo reconstruction, and a MinProbability

threshold (described below) serve as an input, and the output is a gapped pep-

tide. MS-Profile in the second mode represents a new de novo peptide sequencing

tool that improves accuracy of de novo reconstructions produced by other tools

(e.g., PepNovo+, PEAKS, or MS-Dictionary). In particular, it generates gapped

peptides that can be used for mutation-tolerant database searches and speed up

existing database search tools. MS-Profile is available both as open source software

and as a web server.

4.2 Methods

What is the spectral profile? For the sake of simplicity, we will first
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introduce the notion of a spectral profile under the assumption that amino acid

masses are integer2. Given a peptide p1 . . . pn, we define its prefix masses as a series

mass(p1),mass(p1) +mass(p2), . . . ,
i∑

j=1

mass(pj), . . . ,
n∑

j=1

mass(pj)

where
∑n

j=1mass(pj) = k is defined as the parent mass. We further represent

the peptide p1, . . . pn as a k-mer boolean vector P = x1 . . . xk, where xt = 1, if

t represents a prefix mass, and xt = 0, otherwise (see [3, 29, 79] for applications

of boolean spectra and peptides). Given a set of boolean peptides Dictionary =

{P1, . . . , Pm}, we define the spectral profile as simply the center of gravity of all

peptides (boolean vectors) in the set, i.e., Profile(Dictionary) = 1
m

∑m
j=1 Pj. This

definition assumes that all peptides in the Dictionary are equally likely.

Kim et al., 2008 [3] introduced the notion of spectral dictionary and de-

scribed an MS-Dictionary approach to peptide identification. Given a spectrum

Spectrum and a score threshold Threshold, Dictionary(Spectrum, Threshold) is

defined as the set of all peptides with scores above the Threshold. We define the

spectral profile Profile(Spectrum, Threshold) as Profile(Dictionary(Spectrum,

Threshold)).

When the Dictionary is explicitly given, computing Profile(Dictionary)

amounts to computing the center of gravity of k-dimensional boolean vectors from

Dictionary. While MS-Dictionary [3] is capable of quickly generating spectral

dictionaries for short peptides (less than 15 aa), the spectral dictionaries of spectra

of long peptides are so large (even for sensible choices of Threshold) that MS-

Dictionary becomes impractical. For example, for a typical spectrum of a 15-aa

long peptide, the spectral dictionary consists of ≈ 4 ·109 high-scoring peptides that

would typically result in statistically significant database hits [3]. Below we show

how to quickly generate spectral profiles of such huge dictionaries without explicitly

generating the dictionary. MS-Profile takes only ≈ 0.2 seconds to generate the

spectral profiles even for spectra of long peptides. Thus MS-Profile bypasses the

2One can always adjust the “granularity” of mass measurements (e.g., by multiplying all
masses by 1000 in case of accurate mass measurements) and to safely assume that the masses of
amino acids become integer after this transformation.
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need to explicitly generate large spectral dictionaries that limited applications of

MS-Dictionary in the case of long peptides.

Computing spectral profiles. The transformation of spectra into spec-

tral profiles can be done efficiently by the forward-backward dynamic programming

algorithm [98]. For the sake of simplicity, we first represent a spectrum with parent

mass k as a boolean spectrum S = s1 . . . sk, where si = 1 if there is a peak at mass

i in the spectrum, and si = 0, otherwise. This representation assumes that spectra

are discretized and all masses are integers. Below we use the term mass of pep-

tide/spectra to refer to the dimension of the corresponding vectors (parent mass

k). The score (denoted as Score(P, S)) between a boolean peptide P = p1 . . . pk

and a boolean spectrum S = s1 . . . sk (of the same mass) is defined as
∑k

j=1 pj · sj.
When peptide P and spectrum S differ in mass, we define Score(P, S) as −∞ .

Define Sprefixi as s1, . . . si and Ssuffixi as sk−i+1, . . . sk. Given a spectrum

S = s1 . . . sk, define Pprefix(i, t) as the set of all boolean peptides P ∈ Pprefix(i, t)
with length i and Score(P, Sprefixi ) = t. Let xfwd(i, t) be the size of Pprefix(i, t). As

shown in [78], xfwd(i, t) can be computed using the forward dynamic programming:

xfwd(i, t) =
∑

all amino acids a

xfwd(i−mass(a), t− si)

We initialize xfwd(0, 0) = 1, xfwd(0, t) = 0 for t > 0, and set xfwd(i, t) = 0

for negative i.

Given a spectrum S = s1 . . . sk, define Psuffix(i, t) as the set of all boolean

peptides P ∈ Psuffix(i, t) with length k−i and Score(P, Ssuffixk−i ) = t. Let xbwd(i, t)

be the size of Psuffix(i, t). The variable xbwd(i, t) can be computed using the reverse

dynamic programming:

xbwd(i, t) =
∑

all amino acids a

xbwd(i+mass(a), t− si+mass(a))

We initialize xbwd(k, 0) = 1, xbwd(k, t) = 0 for t > 0, and set xbwd(i, t) = 0

for i > k.

Given a score threshold Threshold to generate a Dictionary, it is easy to
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see that the size of the Dictionary can be computed as follows:

|Dictionary| =
∑

t>Threshold

xfwd(k, t)

Below we demonstrate that Profile(Spectrum, Threshold) = f1 . . . fk can

be computed using the forward-backward algorithm:

fi =
1

|Dictionary|
∑

t+t′>Threshold

xfwd(i, t) · xbwd(i, t′).

Indeed,

fi =
#peptides x1 . . . xk ∈ Dictionary with xi = 1

|Dictionary| .

Every peptide in Dictionary with xi = 1 can be decomposed into Pref = x1 . . . xi

and Suff = xi+1 . . . xk peptides. Since all peptides in the Dictionary score above

Threshold, Score(Pref, s1 . . . si) + Score(Suff, si+1 . . . sk) > Threshold. Thus,

the number of such peptides is given by
∑

t+t′>Threshold xfwd(i, t) · xbwd(i, t′). Con-

versely, concatenation of two arbitrary peptides Pref = x1 . . . xi and Suff =

xi+1 . . . xk contributes to the Dictionary as long as Score(Pref, s1 . . . si) + Score(

Suff, si+1 . . . sk) > Threshold. Since the number of such concatenations with

xi = 1 is given by
∑

t+t′>Threshold xfwd(i, t) · xbwd(i, t′), fi can be computed by the

forward-backward algorithm as described above.

Figure 4.4 illustrates computing a spectral profile. In practice, we compute

spectral profiles for a fixed spectral probability [78] (rather than for a fixed score

threshold). The spectral probability of a Peptide-Spectrum Match (PSM) is de-

fined as the total probability of all peptides with scores exceeding the score of the

PSM.3 One can also define a spectral probabilty depending on a score Threshold

as the total probability of all peptides with scores above Threshold (the total prob-

ability of all peptides in the corresponding spectral dictionary). Given a spectral

probability p, one can approximate the E-value as p ·DatabaseSize. See [3, 78] for

the background on spectral probabilities and spectral dictionaries. For each spec-

trum, MS-Profile dynamically sets Threshold as the minimum score s such that

3The probability of a peptide is defined as the product of probabilities of its amino acids.
Amino acid probabilities are pre-defined depending on the frequencies of amino acids in a protein
database [78].
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the spectral probability of the reconstructions with scores above s doesn’t exceed

a predefined spectral probability (e.g., 10−8) and computes the spectral profile.

For example, the spectral profile in Fig. 4.1 was computed for spectral probability

10−8. The spectral profile remains stable for a range of spectral probabilities.

Note that the simple boolean model for scoring peptide-spectrum matches

can easily be extended to more complicated models without any algorithmic changes.

Indeed, MS-Profile uses MS-Dictionary’s scoring model [78] that considers various

features such as ion types, peak intensities and mass errors.

4.3 Results

Dataset. We used the Standard Protein Mix database consisting of 1.1 mil-

lion spectra generated from 18 proteins using 8 different mass spectrometers [99].

For this study, we considered only the charge 2 spectra generated by Thermo

Electron LTQ where 1388 peptides of length between 7 and 20 are reliably identi-

fied with false discovery rate 2.5% using Sequest [24] and PeptideProphet [11] in

the search against the Haemophilus influenzae database appended with sequences

of the 18 proteins (567,460 residues). Although this chapter focuses on doubly

charged spectra, MS-Profile can also be applied to MS/MS spectra of higher

charges as long as additive scoring model for highly charged MS/MS spectra is

available.

For each peptide, we randomly selected one representative spectrum and

formed a dataset of 1388 PSMs grouped by the length of their peptide identifica-

tions. To avoid computational artifacts introduced by errors in the parent mass,

the parent masses of the spectra is corrected according to the Sequest identifica-

tions. Below, we refer to this dataset as the Standard dataset. Throughout this

chapter, we measure accuracy of a de novo sequencing tool as the percentage of

spectra with error-free reconstructions among all spectra in the Standard dataset.

Fig. 4.5 shows the distribution of spectral probabilities (false positive rates)

of the Standard dataset. Most PSMs (91%) have spectral probabilities lower than

10−8. We used 10−8 as the spectral probability threshold to generate spectral
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profiles.

Table 4.1 shows the results of de novo peptide sequencing of the Standard

dataset with PEAKS, PepNovo+, and MS-Dictionary. PEAKS and MS-Dictionary

correctly reconstructed peptides for less than 30% of the spectra and the accuracy

of both tools greatly deteriorates as the peptide length increases. PepNovo+ re-

ported shorter de novo reconstructions (especially for spectra of long peptides) by

allowing gaps in the start and the end of the peptides, resulting better accuracy

than the other tools. Below we show that MS-Profile improves the accuracy of

these tools at the cost of a small reduces in the length of reconstructed peptides.

De novo sequencing of gapped peptides. De novo peptide sequencing

algorithms usually correctly recover some amino acids within a peptide and misin-

terpret others. The key challenge is to figure out which portions of the peptide are

reconstructed incorrectly and to limit reconstructions to highly accurate portions.

Gapped peptide reconstruction addresses this challenge by reporting only reliably

reconstructed regions of the peptide.

Given a Peptide = x1 . . . xk, a Profile = f1 . . . , fk, and a parameter

MinProbability, we define GappedPeptide(Peptide, Profile,MinProbability) =

g1 . . . gk as gi = xi if fi ≥ MinProbabilty and gi = 0 otherwise. Fig. 4.1 shows a

spectral profile for the spectrum of peptide STVAGESGSADTVR and (incorrect)

de novo reconstruction SSLAGESGSADTVR. One can notice that while profile

values for most prefix masses in STVAGESGSADTVR are relatively high (0.207,

0.084, 0.475, 0.518, 0.310, 0.522, 0.791, 0.718, 0.730, 0.709, 0.323, 0.149, 0.353),

the profile value for one prefix mass falls below 0.1. This low profile value points

to an unreliable portion of the reconstruction. Converting peptide STVAGES-

GSADTVR into a gapped peptide (with MinProbability = 0.1) results in a (cor-

rect) gapped peptide S[200]AGESGSADTVR. Increasing MinProbability to 0.2

results in a shorter gapped peptide S[200]AGESGSAD[200]R.

MS-Profile generates gapped peptides as follows. For each spectrum, it first

constructs the spectral profile and generates optimal de novo reconstructions by

backtracking its forward matrix. Indeed, since MS-Profile uses the MS-Dictionary

scoring [3], the reconstructions are the same as reconstructions generated by MS-
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Dictionary. Both PEAKS and MS-Dictionary may generate (a small number of)

multiple optimal de novo reconstructions, and we first convert them into a single

consensus reconstruction. For example, the set of reconstructions YWAGELTR,

YWASVLTR, YWAVSLTR, YWAEGLTR will be converted into a single consen-

sus reconstruction YWA[186]LTR by retaining only the prefix masses present in

all reconstructions. Next, MS-Profile discards all prefix masses in the consensus

reconstruction whose corresponding profile values are below MinProbability as

described above. The remaining prefix masses represent the gapped peptide gen-

erated by applying MS-Profile to MS-Dictionary (referred to as MS-Profile(MS-

Dictionary)). Fig. 4.6 compares the accuracy of de novo reconstructions gen-

erated by MS-Dictionary and the gapped peptide generated by MS-Profile(MS-

Dictionary). is defined as the percentage of the error-free reconstructions among

all recontructions for the Standard dataset. Applying MS-Profile increases the per-

cent of correct reconstructions from 28% to 42% while decreasing the average length

of reconstructions from 12.8 to 9.1 amino acids when MinProbability = 0.1. We

remark that the Standard dataset contains some low-quality spectra that are nearly

impossible to reconstruct in de novo fashion. One can increase the accuracy by in-

creasing the MinProbability threshold. For example, when MinProbability = 0.2,

the accuracy increases to 50% while the average length of gapped peptide decreases

to 7.9. When MinProbability = 0.3, the accuracy increases to 54% while the av-

erage length of gapped peptide becomes 7.2.

PepNovo+ and PEAKS represent some of the most accurate de novo pep-

tide sequencing tools. MS-Profile can be used to convert PepNovo+ and PEAKS

reconstructions into gapped peptides resulting in MS-Profile(PepNovo+) and MS-

Profile(PEAKS) tools. Applying MS-Profile to PepNovo+ increases the percent

of correct reconstructions from 46% to 65% while decreasing the average length

of reconstructions from 11.0 to 8.9 amino acids (MinProbability = 0.1). Apply-

ing MS-Profile to PEAKS increases the percent of correct reconstructions from

26% to 48% while decreasing the average length of reconstructions from 12.6 to

9.2 amino acids (MinProbability = 0.1). Although gapped peptides generated by

MS-Profile(PepNovo+) and MS-Profile(PEAKS) are shorter than PepNovo+ and
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PEAKS reconstructions, they are still long enough to uniquely identify most pep-

tide even in large protein databases. Fig. 4.7 compares the accuracy and lengths

of PepNovo+, PEAKS, MS-Profile(PepNovo+), and MS-Profile(PEAKS) recon-

structions.

PepNovo+ allows users to generate up to 2000 reconstructions per spec-

trum. When multiple reconstructions are generated, the probability of at least one

of them being correct increases. For each reconstruction, we generate a gapped

peptide using MS-Profile(PepNovo+). Since different PepNovo+ reconstructions

may correspond to the same gapped peptide, the number of gapped peptides gen-

erated by MS-Profile(PepNovo+) is typically smaller than the original number of

PepNovo+’s reconstructions. While the number of gapped peptides generated by

MS-Profile(PepNovo+) is 3-15 times smaller than the number of PepNovo+’s re-

constructions, the length of the reconstructed gapped peptides is typically sufficient

to ensure a unique database hit. Fig. 4.8 compares accuracy and length of peptides

and gapped peptides generated by PepNovo+ and MS-Profile(PepNovo+) for the

top 100 and the top 1000 reconstructions. Again, MS-Profile(PepNovo+) outper-

forms PepNovo+ while generating much smaller numbers of gapped peptides.

The improved performance of MS-Profile(PepNovo+) in generating gapped

peptides suggests that it can be used for database filtration in the same way as

peptide sequence tags in InsPecT [25]. For the Standard dataset, we ran InsPecT

to generate 1, 10 and 25 tags of length 3 and 4 and measured for how many

spectra InsPecT generates at least one correct tag (Fig. 4.9). The same number

of gapped peptides is also generated by MS-Profile(PepNovo+). It turned out

that the best gapped peptide is longer and more accurate than the best tag of

length 3 (the gapped peptide is correct for 65% of spectra while the best 3 aa

long tag is correct for 44% of spectra). Also, top 10 and 25 gapped peptides are

roughly as accurate as the same number of tags of length 3. For 83% of spectra,

at least one of top 10 gapped peptides are correct while for 80% of spectra, at

least one of top 10 tags of 3 aa are correct. For 86% of spectra, at least one of

top 25 gapped peptides are correct while for 88% of spectra, at least one of top

25 tags of 3 aa are correct. This is surprising, since gapped peptides generated
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by MS-Profile(PepNovo+) represent a much better filter for database search than

InsPecT tags. To test the filtering efficiency, we matched each spectrum’s top

gapped peptide and its top 3 aa tag against the Swiss-Prot database (Release

56.4, 145 million residues) counting the number of false matches to the database.

While 90% of gapped peptides have no false matches, only 29% of tags have no

false match. The average number of false matches is 1.6 for gapped peptides,

fifty times smaller than 80.3 false tag matches on average. The average number

of false matches is a key parameter in filtration-based MS/MS searches since it is

roughly proportional to the time required for peptide identification [25]. Therefore,

fifty-fold reduction in the number of false matches can potentially translate into

fifty-fold speed-up as compared to (already fast) InsPecT. The contrast between

gapped peptides and tags is particularly pronounced in searches against very large

databases like proteogenomic six-frame translation searches of the repeat-masked

human genome of size 2.7 billion residues [3]. Gapped peptides longer than 8

aa (63% of spectra in the Standard dataset) are expected to have only 0.24 false

matches in this database while 3 aa tags are expected to have 1400 false matches

on average.

This comparison suggests that MS-Profile can significantly improve on pre-

vious filtration approaches to MS/MS database searches. In difference from peptide

sequence tags (that typically have many false hits in a database), gapped peptides

typically have few false hits (if any) thus speeding up the database searches. We

comment that use of gapped seeds in traditional BLAST-like genomics searches is

well studied [100].

Evaluating spectral profile probabilities. Some de novo sequencing

programs output the reliability of predicted amino acids. For example, PepNovo+

defines features that reflect the reliability of each predicted amino acid and con-

verts the feature vectors into probabilities [57]. PEAKS recently added a similar

function that computes the reliability of an amino acid a by locally permuting the

reconstruction around a, computing the score difference between the original and

permuted reconstructions, and using the pre-learned distribution of the difference

to assign the reliability of a [101]. MS-Profile differs from these tools since instead
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of learning, it rigorously computes a probability that a prefix mass is present in a

high-scoring de novo peptide reconstruction.

We show that the spectral profile probabilities approximate the empirical

accuracy of the prefix mass (represented by the profile peak) being correct. To

compute the accuracy of the profile value p (for p = 0.1, 0.2, . . . 0.9, 1.0), we bundled

all the profile peaks with values between p − 0.05 and p + 0.05 and measured

the fraction of correct peaks among them. If the empirically computed fraction

of correct peaks of the profile value p is close to p then our estimate of profile

probabilities is unbiased. Fig. 4.10 shows that it is indeed the case: the empirical

accuracy of the profile peaks with probability p is slightly above p. The slightly

higher empirical accuracy (as compared to profile values) is likely a consequence of

using the same spectral probability threshold 10−8 for all spectra while in reality

most PSMs have much lower spectral probabilities (Fig. 4.5).

4.4 Discussion

While peptide sequence tags were first proposed in 1994 [60], it took 10

years for this idea to become an integral part of the new generation of fast MS/MS

database search tools [25, 47]. It took such a long time because a seemingly simple

problem of generating accurate sequence tags turned out to be more difficult than

originally thought. We demonstrated that gapped peptides occupy an important

niche between long but inaccurate full-length peptide reconstructions and short

but more accurate peptide sequence tags. This niche provides certain advantages

since gapped peptides represent a more stringent filter that may enable very fast

MS/MS database searches that in many cases will amount to a simple look-up in

a database. Spectral profiles reveal poor quality spectra (or poor quality regions

within long peptides) that other methods have difficulties analyzing. MS-Profile

follows a different route to error-tolerant peptide identifications than OpenSea [59]

and SPIDER [92]. Instead of trying to generate (unreliable) full-length reconstruc-

tions and approximately matching them against the database, MS-Profile generates

reliable gapped peptides and matches them against the database exactly.
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Some de novo sequencing tools such as Lutefisk [32], PEAKS [38] and Pep-

Novo+ [94] can generate gapped peptides typically trimming the full length pep-

tides in the beginning/end. Even when internal gaps are allowed (Lutefisk and

PEAKS), they are limited to gaps of 2 aa or shorter. For long peptides where

multiple consecutive peaks are missing, it is hard to generate correct gapped pep-

tides when only short gaps are allowed. On the other hand, PepNovo+ improves

on these tools by allowing long gaps in the start/end of the peptides. As a result,

PepNovo+ has a tendency to generate incorrect solutions when it tries to recon-

struct all amino acids in the middle. To the best of our knowledge, MS-Profile is

the only program that allows both short and long gaps regardless of the position.

Secondly, MS-Profile can convert any de novo reconstructions into gapped peptides

thus making it a useful addition to various de novo peptide sequencing tools.
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Table 4.1: Accuracy and average length of PEAKS, PepNovo+ and MS-
Dictionary for the Standard dataset. PEAKS (online 2.0), PepNovo+ (release
20080724) and MS-Dictionary (release 20071107) were run with parent mass and
fragment mass tolerance 0.5 Da, fixed modification of C+57, no optional mod-
ifications and without any enzyme preference. In difference from PEAKS and
MS-Dictionary, PepNovo+ allows gaps at the start/end of peptides thus giving
PepNovo+ significant leverage when it comes to the reported accuracy of recon-
struction. Although MS-Dictionary is designed for generating spectral dictionaries
(rather than ensuring that the correct reconstruction has the top score), it can be
used in de novo mode as well (it has slightly higher accuracy than PEAKS while
generating slightly longer peptides). PEAKS and MS-Dictionary have a tendency
to output de novo reconstructions that are longer than the correct peptides (e.g.,
for petides of length 11-12, the average length of PEAKS and MS-Dictionary re-
constructions is 12.1 and 12.2). Accuracy of each tool is defined as the percentage
of the error-free reconstructions among all recontructions for the Standard dataset.

Peptide Length
PEAKS PepNovo+ MS-Dictionary

Accuracy Length Accuracy Length Accuracy Length
7-8 0.59 8.1 0.65 7.8 0.54 7.8
9-10 0.33 10.0 0.54 9.3 0.40 9.9
11-12 0.27 12.1 0.47 10.4 0.31 12.2
13-14 0.12 14.1 0.36 12.0 0.14 14.2
15-16 0.10 16.0 0.34 13.2 0.12 16.1
17-18 0.07 16.9 0.29 14.1 0.02 18.3
19-20 0.05 19.0 0.38 14.0 0.04 20.8
Total 0.26 12.6 0.46 11.0 0.28 12.8
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Figure 4.1: An example of the spectral profile. (Top) An MS/MS spectrum of
the peptide STVAGESGSADTVR with b- and y-peaks painted green and blue,
respectively. (Middle) The spectral profile of the above spectrum. The overall
height of each peak represents the probability of the peak being a correct prefix
mass. Each peak is represented as a multi-colored bar where various colors (sub-
peaks stacked on top of each other) correspond to various amino acids (amino acids
are color-coded). Similarly to a motif profile, the height of each colored sub-peak
(corresponding to an amino acid X) represents the probability of a prefix with
terminal amino acid X ending at the given mass position. (Bottom) The database
match (DBMatch), full-length de novo reconstruction (DeNovo) and gapped pep-
tide (Gapped) of the spectrum at the top panel. The painted rectangles represent
the tags of length 1 ending at each position of the de novo reconstruction: the
width of each rectangle corresponds to the mass of the amino acid and the height
corresponds to the probability of the length 1 tag being correct. While the De-
Novo reconstruction is incorrect, the Gapped reconstruction (generated using the
spectral profile) is correct. The consecutive amino acids S and L are represented
as a 200 Da gap since the value of the spectral profile at the position separating S
and L is low.
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Figure 4.2: Various filtering approaches to peptide identifications. The tag-
based approach (e.g., InsPecT [25], Paragon [47]) extracts short (usually length 3)
peptide sequence tags and filters databases by considering only peptides that match
tags. Full length de novo approaches either reconstruct a single full-length peptide
and find sequence matches (e.g., MS-BLAST [91], OpenSea [59] and SPIDER [92])
or generate multiple full length reconstructions and find sequence matches to the
protein database (RAId [56] and MS-Dictionary [3]). Spectral profiles represent
an alternative approach to peptide identification generating gapped peptides and
matching them to the database.
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MS-Profile (mode 1)

SpectralProbability = 10-8 

Spectrum

Spectral Profile

MS-Profile (mode 2)

STVAGESGSADTVR

S[200]AGESGSA[315]R

MinProbability = 0.2

Gapped peptide

De novo reconstruction

Figure 4.3: Overview of the MS-Profile tool. MS-Profile works in two modes:
mode 1 is for the spectral profile generation and mode 2 is for the gapped peptide
generation.
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Figure 4.4: An example of the dynamic programming algorithm for comput-
ing the spectral profile of a “toy” boolean spectrum 011010100 with four peaks
at masses 2, 3, 5, and 7 Da (parent mass 9). MS-Profile algorithm is illus-
trated with the help of a toy amino acid model (only two amino acids with
masses 2 and 3 Da) and a simplified discretized spectrum. The scoring function
Score(Peptide, Spectrum) used for this illustration is the number of matching
peaks between boolean peptide and boolean spectrum. There are only five pep-
tides with parent mass 9: 3222 (score 3), 2322 (score 3), 2232 (score 2), 2223
and 333 (score 1). These five peptides correspond to 9-dimensional boolean vec-
tors: 001010101, 010010101, 010100101, 010101001 and 001001001. If one consid-
ers all peptides with scores 1 and above, the spectral profile is a 9-dimensional
vector (0, 3

5
, 2

5
, 2

5
, 2

5
, 2

5
, 3

5
, 0, 1) representing the center of gravity of these 5 vectors.

However, if one consider the dictionary of all peptides with scores 2 and above
then the spectral profile (0, 2

3
, 1

3
, 1

3
, 2

3
, 0, 1, 0, 1) is the center of gravity of 3 peptides

001010101, 010010101, 010100101. The forward-backward dynamic programming
generates the spectral profile without explicitly generating any of the peptides in
the dictionary. For the threshold 1 (peptides of scores 2 and above are considered),
the size of the spectral dictionary is 3 and the spectral profile of the dictionary
is (0, 2

3
, 1

3
, 1

3
, 2

3
, 0, 1, 0, 1). Numbers in red and green (mass 2) and yellow (mass 3)

arrows represent paths to reach the dictionary with the threshold 1.
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Figure 4.5: Distribution of spectral probabilities for PSM in the Standard
dataset. A bar at position i represents the portion of spectra with spectral proba-
bilities varying from 10−i−0.5 to 10−i+0.5.
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(a)

(b)

Figure 4.6: (a) Accuracy of best-scoring reconstructions generated by MS-
Dictionary and the gapped peptide generated by MS-Profile (MS-Dictionary) for
different peptide lengths (MinProbability = 0.1) If the length of a gapped peptide
is less than 5 (5.6% of the spectra in the Standard dataset), we counted it as
incorrect (even if the gapped peptide is correct) to penalize very short gapped
reconstructions. (b) Average length of reconstructions generated by MS-Dictionary
and the gapped peptides generated by MS-Profile (MS-Dictionary) for various
peptide lengths.
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(a)

(b)

Figure 4.7: (a) Accuracy of best-scoring reconstructions generated by Peaks,
PepNovo+, MS-Profile(Peaks) and MS-Profile(PepNovo+) for different peptide
lengths. The reconstructions are converted into gapped peptides using MS-Profile
with MinProbability = 0.1. If the length of a gapped peptide is less than 5,
we consider it incorrect. (b) Average length of best-scoring reconstructions and
gapped peptides for different peptide lengths. The length of PepNovo+ reconstruc-
tions is not proportional to the peptide length because PepNovo+ allows variable
length gaps at the start and end of the peptide.
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(a)

(b)

Figure 4.8: Accuracy (a) and length (b) of top 100 PepNovo+ recon-
structions (PepNovo+(#Recs=100)), top 1000 PepNovo+ reconstructions (Pep-
Novo+(#Recs=1000)), MS-Profile gapped peptides converted from top 100
PepNovo+ reconstructions (MS-Profile(PepNovo+ #Recs=100)) and MS-Profile
gapped peptides converted from top 1000 PepNovo+ reconstructions (MS-
Profile(PepNovo+ #Recs=1000)).
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(a) (b)

(c)

Figure 4.9: Comparison of accuracy of InsPecT tags and gapped peptides gen-
erated by MS-Profile. InsPecT (release 20080404) was run with parent mass and
fragment mass tolerance 0.5Da, fixed modification of C+57, no optional modifica-
tions and without any enzyme preference. Same number of InsPecT tags of length
3, InsPecT tags of length 4 and MS-Profile(PepNovo+) gapped peptides are gen-
erated and their accuracies are shown. (a) accuracy of 1 tag or gapped peptide.
(b) accuracy of 10 tags or gapped peptides. (c) accuracy of 25 tags or gapped
peptides.
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(a)

(b)

Figure 4.10: (a) The distribution of the average number of profile peaks per
spectrum for different profile values generated by MS-Profile. The number of cor-
rect peaks is represented by blue bars; the number of incorrect peaks is represented
by red bars stacked on the blue bars. A peak at position p corresponds to the pro-
file values between p− 0.05 and p+ 0.05. (b) The empirical accuracy (the number
of correct profile peaks divided by the number of total profile peaks) of profile
peaks for different profile values. The diagonal line is shown for reference.



Chapter 5

Database Search of CID, ETD,

and CID/ETD Pairs

5.1 Introduction

Since the introduction of electron capture dissociation (ECD) in 1998 [102],

electron-based peptide dissociation technologies have played an important role in

analyzing intact proteins and post-translational modifications [103]. However, un-

til recently, this research-grade technology was available only to a small number

of laboratories since it was commercially unavailable, required experience for the

operation, and could be implemented only with expensive FT-ICR instruments.

The discovery of electron-transfer dissociation (ETD) [104] enabled an ECD-like

technology to be implemented in (relatively cheap) ion-trap instruments. Nowa-

days, many researchers are employing the ETD technology for tandem mass spectra

generation [105, 106, 107, 108, 109, 110].

While the hardware technologies to generate ETD spectra are maturing

rapidly, software technologies to analyze ETD spectra are still in infancy. There

are two major approaches to analyzing tandem mass spectra: de novo sequenc-

ing and database search. Both approaches find the best-scoring peptide either

among all possible peptides (de novo sequencing) or among all peptides in a pro-

tein database (database search). While de novo sequencing is emerging as an

92
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alternative to database search, database search remains a more accurate (and thus

preferred) method of spectral interpretation, so here we focus on the database

search approach.

Numerous database search engines are currently available, including SE-

QUEST [24], Mascot [5], OMSSA [13], X!Tandem [49], and InsPecT [25]. How-

ever, most of them are inadequate for the analysis of ETD spectra because they

are optimized for collision induced dissociation (CID) spectra that show different

fragmentation propensities than those of ETD spectra. Additionally, the existing

MS/MS tools are biased towards the analysis of tryptic peptides because trypsin is

usually used for CID, and thus not suitable for the analysis of non-tryptic peptides

that are common for ETD. Therefore, even though some database search engines

support the analysis of ETD spectra (e.g. SEQUEST, Mascot and OMSSA), their

performance remains suboptimal when it comes to analyzing ETD spectra. Re-

cently, an ETD-specific database search tool (Z-Core) was developed; however it

does not significantly improve over OMSSA [111].

We present a new database search tool (MS-GFDB) that significantly out-

performs existing database search engines in the analysis of ETD spectra, and

performs equally well on non-tryptic peptides. MS-GFDB employs the generating

function approach (MS-GF) that computes rigorous p-values of PSMs based on

the spectrum-specific score histogram of all peptides [3].1 MS-GF p-values are

dependent only on the PSM (and not on the database), thus can be used as an

alternative scoring function for the database search.

Computing p-values requires a scoring model evaluating qualities of PSMs.

MS-GF adopts a probabilistic scoring model (MS-Dictionary scoring model) de-

scribed in Kim et al., 2009 [3], considering multiple features including product ion

types, peak intensities and mass errors. To define the parameters of this scoring

model, MS-GF only needs a set of training PSMs.2 This set of PSMs can be ob-

tained in a variety of ways: for example, one can generate CID/ETD pairs and use

peptides identified by CID to form PSMs for ETD. Alternatively, one can generate

1The term “p-value” here and the term “spectral probability” used in Kim et al., 2008 [78]
are synonymous. Throughout this chapter, we use “p-value”, because it is more generally used.

2A thousand PSMs of unique peptides is usually sufficient.
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spectra from a purified protein (when PSMs can be inferred from the accurate

parent mass alone) or use a previously developed (not necessary optimal) tool to

generate training PSMs. From these training PSMs, MS-GF automatically derives

scoring parameters without assuming any prior knowledge about the specifics of

a particular peptide fragmentation method (e.g. ETD, CID, etc.) and/or pro-

teolytic origin of the peptides. MS-GF was originally designed for the analysis

of CID spectra, but now it has been extended to other types of spectra gener-

ated by various fragmentation techniques and/or various enzymes. We show that

MS-GF can be successfully applied to novel types of spectra (e.g. ETD of Lys-N

peptides [112, 113]) by simply re-training scoring parameters without any modifi-

cation. Note that although the same scoring model is used for different types of

spectra, the parameters derived to score different types of spectra are dissimilar.

We compared the performance of MS-GFDB with Mascot on a large ETD

data set and found that it generated many more peptide identifications for the same

false discovery rates (FDR). For example, at 1% peptide level FDR, MS-GFDB

identified 9,450 unique peptides from 81,864 ETD spectra of Lys-N peptides while

Mascot only identified 3,672 unique peptides, ≈ 160% increase in the number

of peptide identifications (a similar improvement is observed for ETD spectra of

tryptic peptides).3 MS-GFDB also showed a significant 28% improvement in the

number of identified peptides from CID spectra of tryptic peptides (16,203 peptides

as compared to 12,658 peptides identified by Mascot).

The ETD technology complements rather than replaces CID since both

technologies have some advantages; CID for smaller peptides with small charges,

ETD for larger and multiply charged peptides [114, 115]. An alternative way to

utilize ETD is to use it in conjunction with CID because CID and ETD generate

complementary sequence information [114, 116, 117]. ETD-enabled instruments of-

ten support generating both CID and ETD spectra (CID/ETD pairs) for the same

peptide. While the CID/ETD pairs promise a great improvement in peptide iden-

3The peptide level FDR is defined as the number of unique peptides in the decoy database
over the number of unique peptides in the target database at a certain threshold. At 1% spectrum
level FDR, MS-GFDB identified 22,003 spectra, while Mascot identified 9,027 spectra, a 140%
increase in the number of identified spectra for ETD spectra of Lys-N peptides.
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tification, the full potential of such pairs has not been fully realized yet. In the case

of de novo sequencing, de novo sequencing tools utilizing CID/ETD pairs indeed

result in more accurate de novo peptide sequencing than traditional CID-based

algorithms [117, 118, 119]. However, in the case of database search, the argument

that the use of CID/ETD pairs improves peptide identifications remains poorly

substantiated. A few tools are developed to use CID/ETD (or CID/ECD) pairs

for the database search but they are limited to pre-processing/post-processing of

the spectral data before/after running a traditional database search tool [120, 121].

Nielsen et al., 2005 [116] pioneered the combined use of CID and ECD for the

database search. Given a CID/ECD pair, they generated a combined spectrum

comprised only of complementary pairs of peaks, and searched it with Mascot.4

However, this approach is hard to generalize to less accurate CID/ETD pairs gen-

erated by ion-trap instruments since there is a higher chance that the identified

complementary pairs of peaks are spurious. More importantly, using traditional

MS/MS tools (like Mascot) for the database search of the combined spectrum is in-

appropriate, because they are not optimized for analyzing such combined spectra;

a better approach would be to develop a new database search tool tailored for the

combined spectrum. Recently, Molina et al., 2008 [120] studied database search

of CID/ETD pairs using Spectrum Mill (Agilent Technologies, Santa Clara, CA)

and came to a counterintuitive conclusion that using only CID spectra identifies

12% more unique peptides than using CID/ETD pairs. We believe that it is an

acknowledgement of limitations of the traditional MS/MS database search tools

for the analysis of multiple spectra generated from a single peptide.

In this chapter, we modify the generating function approach for interpret-

ing CID/ETD pairs and further apply it to improve the database search with

CID/ETD pairs. In contrast to previous approaches, our scoring is specially de-

signed to interpret CID/ETD pairs and can be generalized to analyzing any type

of multiple spectra generated from a single peptide. When CID/ETD pairs from

4The combined spectrum is a pseudo-spectrum generated from the set of pairs of peaks sup-
porting the same backbone cleavage. The pair may come from the same spectrum (e.g. two
peaks with the sum of masses equals to the parent mass) or different spectra (e.g. a peak from
CID spectrum and a peak from ECD spectrum with the mass difference 16.02 Da, representing
a possible pair of y and z fragment ions).
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trypsin digests are used, MS-GFDB identified 13% and 27% more peptides com-

pared to the case when only CID spectra and only ETD spectra are used, respec-

tively. The difference was even more prominent when CID/ETD pairs from Lys-N

digests were used, with 41% and 33% improvement over CID only and ETD only,

respectively.

Assigning a p-value to a PSM greatly helped researchers to evaluate the

quality of peptide identifications. We now turn to the problem of assigning a p-

value to a Peptide-Spectrum-Spectrum Match (PS2M) when two spectra in PS2M

are generated by different fragmentation technologies (e.g. ETD and CID). We

argue that assigning statistical significance to a PS2M (or even PSnM) is a prereq-

uisite for rigorous CID/ETD analyses. To our knowledge, MS-GFDB is the first

tool to generate statistically rigorous p-values of PSnMs.

The MS-GFDB executable is available at http://proteomics.ucsd.edu. It

takes a set of spectra (CID, ETD or CID/ETD pairs) and a protein database as

an input and outputs peptide matches. If the input is a set of CID/ETD pairs,

it outputs the best scoring peptide matches and their p-values (1) using only CID

spectra, (2) using only ETD spectra and (3) using combined spectra of CID/ETD

pairs.

5.2 Methods

5.2.1 Digestion of cell lysate

HEK293 cells were grown to confluence, harvested and resuspended in ly-

sis buffer (50 ammonium bicarbonate, 8 M urea, Complete EDTA-free protease

inhibitor mix (Roche Applied Science), 5 mM potassium phosphate, 1 mM potas-

sium fluoride and 1 mM sodium orthovanadate) and incubated for 20 min at 4 ◦C.

An insoluble fraction was spun down at 1,000 g for 10 min at 4 ◦C and the protein

content of the supernatant was determined using the 2DQuant Kit (GE Health-

care). Per 1 mg of lysate 45 mM dithiothreitol were used for reduction (30 min

at 50 ◦C) and 100 mM iodoacetamide for subsequent alkylation (30 min at RT).

Trypsin digests were generated by digestion of 1 mg cell lysate with 1.25 g Lys-C
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for 4 h at RT followed by dilution to 2 M urea and digestion with 15 µg Trypsin

for 16 h at 37 ◦C. Lys-N digests were made by digestion of 1 mg cell lysate with

5 µg Lys-N for 4 hours at RT, dilution to 2 M urea, and another digestion with 5

µg Lys-N for 16 h at 37 ◦C.

5.2.2 Peptide pre-fractionation by strong cation exchange

(SCX)

Fractionation of peptides was performed as described earlier [122, 123]. In

detail, digests were acidified with formic acid and loaded onto two C18 cartridges

using an Agilent 1100 HPLC system operated at 100 µl/min with 0.05% formic acid

in water. Peptides were then eluted from the C18 cartridges using 80% acetonitrile

and 0.05% formic acid in water onto a PolySULFOETHYL A column (200 mm x 2.1

mm column, PolyLC). Separation of different peptide populations was performed

at 200 µL/min using a non-linear gradient as follows: 0 to 10 min 100% solvent A

(5 mM KH2PO4, 30% acetonitrile, 0.05% formic acid), 10 to 15 min from 0 to 26%

solvent B (350 mM KCl, 5 mM KH2PO4, 30% acetonitrile, 0.05% formic acid), 15

to 40 min from 26 to 35% solvent B and from 40 to 45 min from 35 to 60% solvent

B, and from 45 to 49 min from 60 to 100% solvent B. Fractions were collected in 1

min intervals for 40 min, dried down in a vacuum centrifuge, and resuspended in

10% formic acid.

5.2.3 Mass spectrometry

SCX fractions were analyzed on a reversed phase nano-LC-coupled LTQ Or-

bitrap XL ETD (Thermo Fisher Scientific). An Agilent 1200 series HPLC system

was equipped with a 20 mm Aqua C18 (Phenomenex) trapping column (packed

in-house, 100 µm inner diameter, 5 µm particle size) and a 400 mm ReproSil-Pur

C18-AQ (Dr. Maisch GmbH) analytical column (packed in-house, 50 µm inner

diameter, 3 µm particle size). Trapping was performed at 5 µL/min solvent C (0.1

M acetic acid in water) for 10 min, and elution was achieved with a gradient from

10 to 30% (v/v) solvent D (0.1 M acetic acid in 1:4 acetonitrile : water) in solvent
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C in 110 min, followed by a gradient of 30 to 50% (v/v) solvent D in solvent C in

30 min, followed by a gradient of 50 to 100% (v/v) solvent D in solvent C in 5 min

and finally 100% solvent D for 2 min. The flow rate was passively split from 0.45

mL/min to 100 nL/min. Nano-electrospray was achieved using a distally coated

fused silica emitter (360 µm outer diameter, 20 µm inner diameter, 10 µm tip

inner diameter, New Objective) biased to 1.7 kV. The instrument was operated in

data dependent mode to automatically switch between MS and MS/MS. Survey

full scan MS spectra were acquired from m/z 350 to m/z 1500 in the Orbitrap with

a resolution of 60,000 at m/z 400 after accumulation to a target value of 500,000

in the linear ion trap. The two most intense ions at a threshold of above 500 were

fragmented in the linear ion trap using CID at an AGC target value of 30,000 and

ETD with supplemental activation at an AGC target value of 50,000. The ETD

reagent AGC target value was set to 100,000 and the reaction time to 50 ms.

5.2.4 Data processing

From every raw data file recorded by the mass spectrometer, representing

a single SCX fraction, two different peaklists containing either CID or ETD frag-

mentation data were generated using Proteome Discoverer (version 1.0, Thermo

Fisher Scientific) with a signal-to-noise threshold of 3 and the following settings for

the ETD-non-fragment filter: precursor peak removal with 4 Da, charge-reduced

precursor removal with 8 Da, and removal of known neutral losses from charge-

reduced precursors with 8 Da within a window of 120 Da. Single-fraction peaklists

of the major peptide-containing SCX fractions for Trypsin-derived and Lys-N-

derived peptides were then merged into four larger peaklists, denoted CID-Tryp,

ETD-Tryp, CID-LysN and ETD-LysN. The whole data set is composed of 168,960

CID/ETD pairs. 87,096 pairs (51,233 with charge 2+, 24,854 with charge 3+

and 11,009 with charges 4+ and larger) are from the Trypsin digests and 81,864

(24,284 with charge 2+, 28,168 with charge 3+ and 29,412 with charges 4+ and

larger) are from the Lys-N digests. All the data sets are available on Tranche

(http://proteomecommons.org/tranche/). Spectra with precursor charges from

2+ to 7+ were considered in the further analyses.
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5.2.5 Mascot analysis

Mascot (version 2.3.0, Matrix Science) was used to search the peaklists

against an in-house built database (74,190 entries; 31,263,418 amino acids) assem-

bled from the IPI human database (version 3.52, http://www.ebi.ac.uk/ipi) plus

common contaminants (target database). A decoy database was constructed by

reversing all sequences and slightly scrambling entries using MaxQuant (version

1.0.13.8; http://www.maxquant.org) [124]. The target and decoy databases were

searched separately to estimate FDRs. The following parameters were used for

database searching: 50 ppm precursor mass tolerance, 0.5 Da fragment ion toler-

ance, up to 2 missed cleavages allowed, carbamidomethyl cysteine as fixed modifi-

cation, no variable modifications. The enzyme was specified as either Trypsin or

Lys-N and the instrument type either ESI-TRAP or ETD-TRAP.

5.2.6 MS-GF training

MS-GF takes a set of peptide-spectrum matches (PSMs) as a training set

and outputs a file containing scoring parameters. All spectra in the training set

are assumed to be generated using the same fragmentation method and the same

enzyme. Below we describe the following 5 steps for generating MS-GF scoring

parameters: (1) partitioning the training set, (2) selecting precursor offsets for

removal, (3) selecting ion types, (4) computing peak rank distributions and (5)

computing peak error distributions. We remark that steps (2) and (3) were miss-

ing in the previous MS-GF version [78] thus forcing users to specify the ion types

manually. Note that by adding the steps (2) and (3), MS-GF can now automati-

cally learn scoring parameters from any type of spectra with any precursor charges.

Partitioning the training set

Fragmentation propensities of mass spectra strongly depend on the precur-

sor charge [125] and the peptide length [3].5 Therefore, we use different sets of

5The differences in the fragmentation propensity between peptides of similar lengths (like 7
and 8 amino acids) are typically small as compared with differences between peptides with very
different lengths (like 7 and 20 amino acids).



100

scoring parameters depending on the precursor charge, and the peptide length.

To generate the scoring parameters, we partition the training set by the precursor

charge of the spectrum and the estimated peptide length inferred from the precur-

sor mass of the spectrum. Then, for each partition, we learn the parameters using

only spectra belonging to this partition. In addition, since different types of peaks

have different propensities with respect to the relative positions in the spectrum

(e.g. peaks corresponding to doubly charged ions only appear in the lower part

of the spectrum), we learn the parameters separately for the lower and the upper

halves of the mass range.

Selecting precursor offsets for removal

ETD spectra often possess precursor peaks, charge-reduced precursor peaks,

their neutral losses and side-chain losses [126]. While those peaks usually have high

intensities, they do not contribute useful information for peptide identifications.

We therefore remove these peaks to avoid a risk of erroneously interpreting them

as other ion types. To figure out which the peaks have to be removed, we use the

offset frequency function (OFF) [33]. OFF is a histogram of the peaks observed at

a relative offset from a specific m/z in the spectrum. Here we use the OFFs from

the precursor mass and charge-reduced precursor m/z’s.

First we filter all spectra in the training set to remove noisy peaks as follows:

given a peak at mass m, we retain the peak if it is among the top k (k = 6 by

default) peaks within a window of size 100 Da around m. Then we compute the

OFFs from the precursor m/z and all possible charge-reduced precursor m/z’s. If

a certain offset is observed in more than a predefined portion of the spectra (15%

by default), we mark the offset for removal. Later, all peaks observed at marked

offsets are filtered out (see Figure 5.3).

Selecting ion types

For each partition of the training set, we select ion types to be used for

scoring using the OFF of the prefix and suffix residue masses as described in

Dancik et al., 1999 [33]. We represent an ion type by a triplet of (charge, prefix or
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suffix, offset) and consider all possible prefix and suffix ions with charges 1 to the

precursor charge and integer offsets from -38 to +38. If we observe an ion type at

more than a predefined portion of all cleavage sites in the filtered spectra (15% by

default), we select the ion type.

Computing peak rank distributions

For each selected ion type at a certain partition, we compute the probability

of a peak of rank i being the ion type (ion rank probability) from rank 1 to

MaxRank (150 by default). We also compute the probability of a peak of rank i

being an ion type that is not selected (noise rank probability). As described in [3],

the log of the ion rank probability over the noise rank probability at certain rank

serves as the rank score of a peak.

Computing peak error distributions

Instead of setting up a fixed mass error threshold (e.g. 0.5 Da for ion

traps) and assigning the same score to all peaks within this error threshold, we

vary scores depending on the mass error. To do this, for each selected ion type at

each partition, we compute the mass error histogram of all peaks of ranks within

MaxRank assigned to that ion type (ion error probability). We also compute a

similar histogram using ion types that are not selected (noise error probability).

The log ratio of the ion error probability over the noise error probability serves as

the error score of a peak.

Training scoring parameters for CID-Tryp, ETD-Tryp, CID-LysN, and

ETD-LysN

We first generated initial scoring parameter files for the four data sets (CID-

Tryp, ETD-Tryp, CID-LysN and ETD-LysN) using PSMs with Mascot scores cor-

responding to peptide level FDRs less than 1% as a training set. Using these

initial parameter files, we ran MS-GFDB and selected PSMs with MS-GF p-values

corresponding to peptide level FDRs less than 1%. These PSMs were used as a

new training set to build the final scoring parameter files.
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5.2.7 MS-GFDB search (for CID or ETD spectra)

Since MS-GFDB automatically pre-processes spectra, we converted each

raw data file into an mzXML file using ReAdW 4.3.1 [127] and used the mzXML

file in the MS-GFDB search (as opposed to using Proteome Discoverer for noise and

(charge-reduced) precursor filtering). MS-GFDB searches were carried out against

the same database with the same parameters as were used for Mascot searches.

MS-GFDB uses two scores: the MS-GF score and the p-value (both are

computed by MS-GF). The MS-GF score is used to evaluate the quality of a

PSM and the p-value is used to assess the statistical significance of a PSM. To

compute the MS-GF score, MS-GF first converts every spectrum into a Prefix-

Residue Mass (PRM) spectrum [25, 33] using scoring parameters specific to a

particular fragmentation technique and enzyme. The PRM spectrum is a scored

version of a spectrum having a score at every mass up to the parent mass of the

spectrum.6 As described in Danč́ık et al., 1999 [33], the score of a PRM spectrum at

massm represents the log likelihood ratio that the peptide from which the spectrum

was derived contains a prefix of mass m.7 The MS-GF score of a peptide against

a spectrum is defined as the sum of scores in the PRM spectrum corresponding

to prefix masses of the peptide. To compute the p-value, MS-GF generates the

score histogram of all peptides using the generating function approach (see [78] for

details on the generating function approach). The p-value of a peptide with match

score s is defined as the area under the histogram where the score value (x-axis) is

equal or larger than s. Fig. 5.1 illustrates the procedure to compute p-values with

MS-GF.

Given a spectrum and a protein database, MS-GFDB computes MS-GF

scores for all the peptides in the database (similarly to SEQUEST or Mascot),

finds the peptide with the best score and reports its p-value.8

6One can define the granularity of a mass depending on the resolution of the mass spectrum.
Throughout this chapter, the granularity is set as 1 Da (equivalent to the fragment ion toler-
ance 0.5 Da). While this chapter focuses on MS/MS spectra with inaccurate fragment masses,
MS-GFDB can be adapted to analyze spectra with accurate fragment masses by changing the
granularity.

7Every peptide of length n defines n− 1 prefix masses representing masses of the first i amino
acids (for 1 ≤ i < n).

8MS-GFDB search takes only ≈ 0.1 second per spectrum against a database containing 31 mil-
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5.2.8 MS-GFDB search (for CID/ETD pairs)

MS-GFDB combines a pair of tandem mass spectra generated from a single

precursor ion (using different fragmentation techniques) and matches the combined

spectrum against a database. Given a pair of spectra, it first converts each spec-

trum into a PRM spectrum (using fragmentation-specific parameters for each type

of spectrum) and generates a summed PRM spectrum. The Summed PRM spec-

trum of two PRM spectra (with the same parent mass) is calculated by adding two

PRM scores (log likelihood ratios) corresponding to the same mass. For example,

if at mass 500, two PRM spectra have scores 7 and 3, correspondingly, the summed

PRM spectrum has score 7+3=10 at mass 500. Note that summing PRM scores

at mass m is equivalent to multiplying the probabilities that mass m is a prefix

mass of the peptide from which each spectrum was derived. This summed PRM

model assumes that ion types are independent within the same spectrum [129] and

when coming from different spectra [79], the assumption that proved to be useful

in other applications. The score histogram of a CID/ETD pair is computed using

the summed PRM spectrum and is used to compute p-values. Fig. 5.2 illustrates

the flow of the p-value computation for CID/ETD pairs. This method improves

on the previous method proposed by Nielsen et al. [116] in that it merges evidence

for a certain backbone cleavage (represented as a PRM score) using a probabilistic

model, whereas the approach in [116] only retains a peak if it has a complemen-

tary peak or discards a peak if not. Therefore, the approach in [116] results in

much stricter peak filtering, making it difficult to distinguish between correct and

incorrect peptide identifications. For example, given a CID/ETD pair with a poor-

quality CID spectrum and a high-quality ETD spectrum, the method in [116] is

unlikely to interpret the pair, since the CID spectrum does not help to identify

“complementary pairs of peaks” and the resulting spectrum contains only a few

peaks identified from the ETD spectrum itself. In contrast, the summed PRM

lion amino acids for a computer with Core i7 2.7Ghz CPU with 12GB memory. We have recently
published a study to further speed up MS-GFDB using gapped peptides (MS-GappedDictionary,
Jeong et al., 2010 [128]), an approach that is similar to using peptide sequence tags in In-
spect [25]. MS-GappedDictionary uses MS-GF scores to generate gapped peptides that are used
for fast database scan like peptide sequence tags. Combining MS-GappedDictionary and MS-
GFDB enables orders of magnitudes speed-up.
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scores retain most of the sequence information in the ETD spectrum contributing

to successful peptide identifications.

Note that this method can be generalized to the case of analyzing more than

two tandem mass spectra generated from a single precursor ion (e.g. by adding a

high energy collisional dissociation (HCD)/beam-type CID spectrum).

5.3 Results

5.3.1 Analysis of individual spectra

For each of the CID-Tryp, ETD-Tryp, CID-LysN and ETD-LysN data sets,

we compared the performance of MS-GFDB with Mascot by counting the number

of identified peptides for each FDR (peptide-level FDR) using the separate target-

decoy search approach [130]. For all the four data sets, MS-GFDB outperformed

Mascot (Fig. 5.4). For example, at 1% FDR, MS-GFDB identified 14,409 peptides

in ETD-Tryp while Mascot identified 5,310 peptides. The difference is more notable

for ETD spectra than CID spectra and for Lys-N digests than trypsin digests. This

indicates that Mascot is poorly optimized for the analysis of new data types while

MS-GFDB automatically adapts to novel types of data. Even in the case of the

CID-Tryp data set where Mascot has been subjected to a decade-long development,

MS-GFDB identified ≈ 30% more peptides across entire FDR range. Similar

results were obtained using the spectrum-level FDR.

MS-GFDB also outperformed SEQUEST and OMSSA (data not shown).

To boost the performance of existing MS/MS database search tools, Peptide-

Prophet [11], iProphet and Percolator [131, 132] rescore their PSMs, resulting in

a significant increase in the number of peptide identifications [133]. However, MS-

GFDB outperformed even PeptideProphet, iProphet and Percolator which take

advantage of extra information unavailable to MS-GF such as the score distribu-

tion of all PSMs and the retention time information (Figure 5.5 and Figure 5.6).

In this experiment, we used the same data for both training and testing of

the performance, thus raising a valid concern about over-fitting. This was done

because we observed that MS-GF parameters characterize a particular protocol
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(e.g. ETD for a particular enzyme) and are rather stable with respect to specific

data sets, i.e. variable data sets with the same protocol result in similar MS-GF

parameters. To address this concern, we demonstrated that if we derive MS-GF

scoring parameters from a training data set A and apply it to a test data set B,

the results hardly change as compared to deriving MS-GF scoring parameters from

the data set B and apply it to the same data set B (see Figure 5.7).

For further analyses below, PSMs with FDRs below 1% were selected from

the four data sets using MS-GFDB; if multiple spectra of the same charge are

matched to the same peptide, only that with the best score was chosen. From

CID-Tryp/ETD-Tryp/CID-LysN/ETD-LysN data set, 16,203/14,409/8,893/9,450

PSMs were selected and denoted by CID-Tryp-Confident/ETD-Tryp-Confident/

CID-LysN-Confident/ETD-LysN-Confident.

5.3.2 Comparison of ion fragmentation statistics across dif-

ferent spectral data sets

The spectra of the same peptide are different depending on the fragmenta-

tion methods and precursor ion charges. Moreover, spectra of peptides produced

by one enzyme (e.g. tryptic peptides ending with Lys or Arg) do have different

fragmentation propensities than spectra of peptides produced by other enzyme

(e.g. Lys-N peptides starting from Lys) [122, 134]. The common knowledge that

ETD spectra are mainly comprised of c and z· ions (and their neutral losses) while

CID spectra are of b and y ions (and their neutral losses) is insufficient for de-

signing a good scoring function since one has to know the propensities (likelihood)

of these ions and many other neutral losses [135]. To analyze such propensities

for different types of spectra, we measured the probability of a certain ion type

being observed (Fig. 5.8) and plotted the distribution of a peak of a given rank

being a certain ion type (Fig. 5.9 and 5.10) as presented in [3, 33].9 Note the high

abundance of c ions with high intensities in Fig. 5.9 (d), confirming the previously

published result [112]. Features shown in Fig. 5.8, 5.9 and 5.10 were automatically

9Rank of a peak is defined as the number of peaks (in the same spectrum) with intensities
higher than or equal to intensity of the peak [3].
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derived by MS-GF scoring functions and contributed to the improved performance

of MS-GFDB over other tools.

5.3.3 Pitfalls of “intersection” and “union” approaches to

identifying CID/ETD pairs

It is believed that utilizing CID/ETD pairs is helpful to improve confidence

of peptide identifications since the identification from one method cross-validates

the other. However, there is no consensus on how to utilize CID/ETD pairs for the

database search. The common practice is to run database search for CID spectra

and ETD spectra separately as if the pairing is not even known, identify confident

PSMs using a pre-defined threshold (e.g. peptide level FDR 1% or a pre-defined

score threshold) and take the intersection of CID PSMs and ETD PSMs (intersec-

tion approach). For example, in CID-Tryp and ETD-Tryp there are 50,765 spectral

pairs where either CID or ETD spectra (or both) are confidently identified with

MS-GFDB within the peptide level FDR 1%. In 32,431 spectral pairs (representing

12,093 distinct peptides), the CID identification and ETD identification were the

same, indicating that these identifications are reliable (Fig. 5.11 (a)). To measure

the FDR of these “intersection” spectral pairs, we repeated the same procedure

with the identifications to the decoy database and obtained 8 pairs (representing

5 peptides) where CID and ETD identifications agree (Fig. 5.11 (b)); hence, the

peptide level FDR corresponds to 5/12, 093 = 4.1 · 10−4. While taking the in-

tersection improved the confidence of the resulting peptide identifications (12,093

peptides at FDR close to 0), at the same confidence level, MS-GFDB identified

7% more peptides using only CID spectra (not shown in Fig. 5.11)!10 This indi-

cates that this approach is inefficient considering the half of the instrument time

was wasted generating ETD spectra that did not help to improve the number of

peptide identifications.

The poor performance of the intersection approach can be explained by the

10For Lys-N digests, we identified 5,788 peptides using the intersection approach with a corre-
sponding to 3.5 ·10−4 FDR; at the same FDR, MS-GFDB identified a similar number of peptides
using only CID spectra.
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dependencies in scores of CID and ETD spectra from the same pair. Examination

of hits in the decoy database revealed that a high scoring PSM for CID spectra

often corresponds to a high scoring PSM for ETD spectra from the same pair. As a

result, contrary to the common belief, the intersection approach has limited ability

to remove incorrect PSMs. On the other hand, many hits in the target database

have high scores for CID spectra and low scores for ETD spectra (or vice versa),

thus reducing the number of correct PSMs returned by the intersection approach.

Similarly, it is possible to take the “union” of identified peptides (all sig-

nificant CID identifications plus all significant ETD identifications) to get more

peptide identifications. For instance, from the above 50,765 spectral pairs, one

may take the 4,073+12,093+2,280 = 18,446 peptides, corresponding to FDR (154

+5+137)/18,446 = 1.6%.11 At the same FDR level, MS-GFDB identified 16,636

peptides only from CID spectra, thus this union approach resulted in 11% increase

in the number of peptides. While this improvement in the number of peptides

(with a larger FDR) is meaningful, our proposed approach results in a comparable

number of identified peptides at a stricter level of confidence (1% FDR instead of

1.6%).

5.3.4 Identifications from combined CID/ETD spectra

Given a CID/ETD pair, one can generate a “combined spectrum” and

search a database with the combined spectrum. We used the summed PRM spectra

as described above (denoted by MS-GFDB CID/ETD) and compared its perfor-

mance with MS-GFDB using only CID spectra (MS-GFDB CID) or ETD spectra

(MS-GFDB ETD). MS-GFDB CID/ETD identified more peptides across entire

FDR range compared to MS-GFDB CID or MS-GFDB ETD for both trypsin

digests and Lys-N digests (Fig. 5.12). For example, at 1% FDR, MS-GFDB

CID/ETD identified 18,342 peptides from CID/ETD pairs of trypsin digests and

12,561 peptides from LysN digests, corresponding to 13%, 27%, 41% and 33% im-

provement over when CID-Tryp, ETD-Tryp, CID-LysN and ETD-LysN data sets

11Spectral pairs where CID and ETD identifications disagree (red numbers in Fig. 5.11) were
discarded.
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are separately used, respectively. If we consider spectra of charge 3 and larger

(where ETD has advantages over CID), the improvement becomes even more sig-

nificant: 23%, 30%, 68% and 21%.

The improved performance of MS-GFDB CID/ETD is due to the proba-

bilistic model for constructing combined spectra. We remark that a brute-force

approach to constructing combined spectra actually reduces the number of peptide

identifications.

5.4 Discussion

We demonstrated that the generating function approach is easily adaptable

to the analysis of novel types of spectra. For all types of spectral data sets we have

tested, MS-GFDB outperformed state-of-the-art MS/MS database search tools.

We further demonstrated how to utilize the combined CID/ETD spectra generated

from CID/ETD pairs using MS-GFDB.

We emphasize that MS-GFDB analyzes all different data sets in exactly

the same way using different scoring parameters that are automatically derived by

the same training procedure. While it may seem counterintuitive that the MS-GF

scoring function (defined as a simple dot-product of vectors) improves on more

complex scoring functions used in traditional MS/MS tools, it was made possible

by deriving rigorous MS-GF p-values using the generating function approach. We

are not claiming that MS-GF scores are “better” than Mascot scores, but we do

show that p-values derived from MS-GF scores greatly improve on Mascot scores.

This observation emphasizes the importance of rigorous p-values that remain un-

available for popular tools like Mascot and SEQUEST.

The problem of analyzing spectral pairs from the same precursor is re-

lated to the problem of combining database search scores of MS2 and MS3 spectra

from the same peptide addressed by Olsen and Mann, 2004 [136], Bandeira et al.,

2008 [79] and Ulintz et al., 2008 [137]. Olsen and Mann, 2004 and Bandeira et

al., 2008 developed a probabilistic scoring model for MS3 spectra and used it to

adjust the MS2 score by summing the MS2 and MS3 scores. While this approach is
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similar to our approach in that both use the sum of (log-likelihood) scores as the

score of a pair, it did not provide a rigorous framework to compute the p-value of

the pair. On the other hand, Ulintz et al., 2008 developed an approach searching

the database separately for MS2 and MS3 spectra and adjusting the probabilities

of both spectra if the top scoring sequences match (similar to the intersection ap-

proach described above). In contrast, our approach considers all possible cases

(e.g. including peptides having poor scores against CID spectrum and good scores

against ETD spectrum) and uses them to compute p-values, something that was

missing in previous studies.

ETD has certain advantages over CID in the analysis of peptides with post-

translational modifications (PTMs) [112, 138, 139, 140]. MS-GFDB can be used

to identify modified peptides. When PTMs are selected in advance (restrictive

search for PTMs), MS-GFDB only needs to add the masses of amino acids with

PTMs to the standard 20 amino acid set. In the analysis of a sample of phos-

phorylated peptides, MS-GFDB identified about 30-40% more peptides from CID

spectra and about 60-90% more peptides from ETD spectra than Mascot . The

gain from MS-GFDB over Mascot in this data set was smaller than in the other

data sets described above. This is because we used the parameters trained from

unmodified spectra to score spectra of phosphorylated peptides. It is well known

that some post-translational modifications (PTMs) like phosphorylation change

the fragmentation propensity of the spectrum, especially in the case of CID spec-

tra [141]. Therefore, to efficiently analyze such PTMs, one needs to develop a

scoring function that is specific to the target PTM [89]. Designing a PTM-specific

scoring function and the generating function for modified peptides is beyond the

scope of this chapter.
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Figure 5.1: Computing p-values with MS-GF for a single spectrum. Given
a tandem mass spectrum, MS-GF converts the spectrum into a PRM spectrum
(scored version of the tandem mass spectrum). The score of a PRM spectrum
at mass m represents the log likelihood ratio that the peptide from which the
spectrum was derived contains a prefix of mass m. Negative peaks in the PRM
spectrum represent masses more likely to represent incorrect rather than correct
prefix masses. Such negative peaks in the PRM spectrum usually correspond to
low-intensity or missing peaks in the experimental spectrum. The PRM spectrum
is used to compute the MS-GF score of any peptide against the spectrum. Then,
MS-GF computes the histogram of the MS-GF scores of all peptides against the
spectrum using the generating function approach. Finally, MS-GF computes the
p-value of a peptide as the area under the histogram with MS-GF scores equal or
larger than the MS-GF score of the peptide.
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Figure 5.2: Computing p-values with MS-GF for CID/ETD pairs. Given a
CID/ETD pair, MS-GFDB converts each spectrum into a PRM spectrum and
merges two PRM spectra by summing scores of peaks sharing the same mass. This
“summed” PRM spectrum is used to generate the score histogram of all peptides
and p-values are computed using the histogram.



113

Figure 5.3: Example of the offset frequency function (OFF) from the (charge-
reduced) precursor m/z. Shown is the OFF from the charge 2 (charge-reduced)
precursor m/z of charge 3 spectra in ETD-Tryp data set. The horizontal axis
represents the distance (in m/z) from the charge-reduced precursor m/z. The
vertical axis represents the probability that a peak of the corresponding offset
exists. For example, in about 40% of the charge spectra in ETD-Tryp data set,
there exists a peak with m/z corresponding to the charge 2 precursor m/z minus
22. All the offsets over a predefined probability (0.15 by default) are marked for
removal.
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Figure 5.4: Number of identified peptides with Mascot and MS-GFDB from
(a) charge 2 spectra in CID-Tryp and ETD-Tryp, (b) charge 2 spectra in CID-
LysN and ETD-LysN, (c) charge 3 spectra in CID-Tryp and ETD-Tryp, (d) charge
3 spectra in CID-LysN and ETD-LysN, (e) spectra with charges 4 and larger
in CID-Tryp and ETD-Tryp, and (f) spectra with charges 4 and larger in CID-
LysN and ETD-LysN. The number of peptide identifications is plotted against the
corresponding peptide level FDR. Solid curves represent MS-GFDB and dashed
curves represent Mascot. Green curves represent CID and blue curves represent
ETD. Mascot ion scores and MS-GFDB p-values were used for computing FDRs.
FDRs were separately computed for spectra of precursor charge 2, precursor charge
3, and precursor charge 4 and larger. For all the cases considered, MS-GFDB
outperformed Mascot.
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Figure 5.5: Number of identified spectra (out of 61,020 spec-
tra) with SEQUEST, OMSSA, OMSSA+iProphet, SEQUEST+iProphet,
OMSSA+SEQUEST+iProphet and MS-GFDB. False discovery rates were
calculated using the combined TDA. OMSSA+PeptideProphet and SE-
QUEST+PeptideProphet show similar results as OMSSA+iProphet and SE-
QUEST+iProphet, respectively and thus are not shown. MS-GFDB outperformed
all other tools.
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Figure 5.6: Number of identified peptides with Percolator at varying FDRs
from the (a) trypsin digests (b) Lys-N digests. MS-GFDB and Mascot results
were also shown for reference. Posterior error probabilities were used to compute
FDRs. Percolator significantly improved on Mascot (especially for ETD spectra
from trypsin digests), but identified less peptides than MS-GFDB at the same
FDR.
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Figure 5.7: Number of identified spectra in the ISB Lys-C data set with MS-
GFDB, using the scoring parameters derived from the ISB Lys-C data set from the
Coon lab (solid line) and ETD-Tryp data set from the Heck lab (dashed line). The
specific choice of the training data set does not significantly affect the MS-GFDB
results
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Figure 5.8: Probabilities of various ion types for the four types of (a) charge
2 spectra and (b) charge 3 spectra (see [33] for similar analysis). Spectra in
CID-Tryp-Confident, ETD-Tryp-Confident, CID-LysN-Confident and ETD-LysN-
Confident were used. All the spectra were filtered to remove noisy peaks as follows:
given a peak at mass M , we retained the peak if it is among the top six peaks
within a window of size 100 Da around M . Precursor ions (or charge-reduced pre-
cursor ions) and their derivatives were also filtered out. A colored bar represents
the probability (y-axis) of a certain type of ion (x-axis) being present in a filtered
spectrum. Each data set is color coded. For example, a charge 2 spectrum in
CID-Tryp-Confident generated from a length 10 peptide is expected to have 10-1
(number of potential cleavage sites) × 0.76 (probability of y ion) = 6.8 y ions,
while a charge 2 spectrum in ETD-Tryp-Confident is expected to have only 9 ×
0.26 = 2.3 y ions. In MS-GFDB, all ion types with probabilities exceeding 0.15
are used for scoring.
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Figure 5.9: Rank distributions of different ion types for different data sets:
(a) CID-Tryp-Confident, (b) CID-LysN-Confident, (c) ETD-Tryp-Confident and
(d) ETD-LysN-Confident. Only charge 2 spectra were considered and all spectra
were filtered to remove precursor ions (or charge-reduced precursor ions) and their
derivatives. For each data set, 10 different ion types with highest probabilities
were selected and the probability of a peak of a given rank (x-axis) being a certain
ion type (color-coded) is plotted for peaks with rank 1 to 100. The black curve
(labeled as unexplained) represents the peaks that are not explained by any of the
10 selected ion types. For example, for CID-Tryp-Confident charge 2, the highest
ranked peak represents a singly charged y ion with probability 0.7, a doubly charged
y ion (y2) with probability 0.1, a singly charged b ion with probability 0.04, etc.
It remains unexplained with probability 0.1.
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Figure 5.10: Analog of Figure 5.9 for charge 3 spectra. The rank distributions
for charge 3 spectra are different from those for charge 2 spectra.
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Figure 5.11: Venn diagrams of (a) spectral pairs identified against the IPI-
Human database within peptide level FDR 1% and (b) spectral pairs identified
against the decoy database with p-values corresponding to peptide level FDR 1%
or less. The number of peptides (the number of spectral pairs in parentheses) are
shown. Numbers in boxes correspond to the number (percentage in parentheses)
of spectral pairs where CID and ETD identifications disagree.
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Figure 5.12: Number of identified peptides with MS-GFDB CID/ETD from (a)
charge 2 spectral pairs in CID-Tryp and ETD-Tryp, (b) charge 2 spectral pairs
in CID-LysN and ETD-LysN, (c) charge 3 spectral pairs in CID-Tryp and ETD-
Tryp, (d) charge 3 spectral pairs in CID-LysN and ETD-LysN, (e) spectral pairs of
charges 4 and larger in CID-Tryp and ETD-Tryp, and (f) spectral pairs of charges
4 and larger in CID-LysN and ETD-LysN. Number of identified peptides with
MS-GFDB are also shown for reference. The number of peptide identifications is
plotted against the corresponding peptide level FDR. FDRs were separately com-
puted for spectra of precursor charge 2, precursor charge 3 and precursor charge
4 and larger. Red curves represent MS-GFDB CID/ETD, green curves represent
MS-GFDB CID and blue curves represent MS-GFDB ETD. For all the cases con-
sidered, MS-GFDB outperformed both MS-GFDB CID and MS-GFDB ETD.



Chapter 6

Universal and Sensitive Database

Search Tool

6.1 Introduction

MS instruments and experimental protocols have greatly advanced over the

last decade. Several new fragmentation technologies like ETD [104] and Higher-

energy Collisional Dissociation (HCD) [142] emerged and high-precision mass spec-

trometers like Orbitrap and FT-ICR became widely available. While trypsin re-

mains a dominant protease in proteomics studies, digesting proteins with diverse

proteases is becoming popular [143]. Empowered by these changes, MS researchers

now have diverse choices with respect to the questions: “what fragmentation

method to use?”, “how accurate should be the measurements of the mass-to-charge

(m/z) ratios?”, “what proteases to use?”, and “what PTM to focus on (e.g. phos-

phorylation)?”. Depending on these choices, the resulting tandem mass (MS/MS)

spectra vary in fragmentation propensities and precision. Therefore, unlike in the

past when low-precision CID spectra of tryptic peptides dominated the field, spec-

tral datasets generated today are very diverse.

The key to interpreting MS/MS spectra is how to score a PSM. There are

two types of approaches to scoring a PSM formed by a peptide P and a spectrum S.

The first is to compare S against a “theoretical” spectrum predicted from P using

123
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pre-defined rules (database scoring) [24]. The second is to compare S against

a spectrum previously identified as being generated from P if this spectrum is

available (library scoring) [7]. This library scoring yields more discriminative scores

than the database scoring, since predicting theoretical spectra remains difficult.

However, in contrast to the database scoring that can be used to identify any

peptide, the library scoring is applicable only to identify some peptides contained

in the spectral library, a collection of previously identified PSMs. In this chapter,

we propose a database scoring algorithm having better discriminating power as

compared to existing library scoring algorithms.

Since existing spectral libraries are still incomplete, database search is

the most commonly used approach to interpret spectra. Unfortunately, existing

MS/MS database search tools such as SEQUEST [24] and Mascot [5] have not kept

pace with the increased diversity of the data because they are largely optimized for

low-precision CID spectra of tryptic peptides [1]. Many efforts have been invested

into making MS/MS search tools compatible with new types of data. For example,

several pre- or post-processing strategies have been proposed [144, 145], resulting in

small improvement in the performance of database search tools. To further boost

the performance, MS/MS database search tools are combined with statistical mod-

eling tools like PeptideProphet [11], and Percolator [131]. These tools do not find

new Peptide-Spectrum Matches (PSMs), but rather re-score PSMs reported by a

database search tool using more complex scoring and output high-scoring PSMs.

While they often improve the performance of a database search tool, their per-

formance is negatively affected when the database search tool fails to find correct

PSMs [146]. Another downside of the pre- or post-processing strategies and sta-

tistical modeling tools is that since they are usually not integrated into database

search tools, using them complicates the analysis of MS/MS spectra. Moreover,

since different laboratories employ different combinations of tools (see Figure 6.1),

even for the same data, the capabilities of analyzing the data vary widely and

the results obtained in one laboratory are practically impossible to reproduce in

another laboratory.

We advocate using universal database search tools that perform well for
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diverse types of spectral datasets. To address this need, we developed MS-GF+, a

universal database search tool that works well (i.e., identifies more peptides than

all other MS/MS tools we tested) for spectra generated using diverse configurations

of MS instruments and experimental protocols. We emphasize that MS-GF+ is

not customized for specific spectral datasets but rather uses a robust probabilistic

model that works well across all datasets.

MS-GF+ is universal because it automatically derives scoring parameters

from thousands of PSMs without prior knowledge of the type of the spectra [146].

We represent various types of spectra as a graph where paths represent spectral

types (Figure 6.1). For each spectral type, MS-GF+ further divides the PSMs into

subgroups depending on the precursor ion charge and m/z. Afterwards, it learns

scoring parameters separately for each path and each subgroup. To score a PSM,

MS-GF+ uses a different set of scoring parameters depending on the spectral type

and the subgroup.

MS-GF+ can train the scoring parameters for any spectral type (including

spectral types not specified in Figure 6.1) or use the pre-trained scoring parameters.

MS-GF+ provides an user interface, taking over the authority to train scoring

parameters to the users and making training as easy as running a database search.

This is useful to the researchers who use novel MS instruments or experimental

protocols. Even researchers using a common configuration (e.g. CID of trypsin

digests) will be able to benefit from this function, because spectra generated in

different laboratories may vary.

MS-GF+ addresses the following limitations of most existing MS/MS tools

(including MS-GF [78] and MS-GFDB [146]): inability to estimate E-values accu-

rately for PSMs formed by modified peptides and limited ability to take advantage

of accurate m/z values in high-precision MS/MS spectra. In addition, MS-GF+

greatly reduces running time (as compared to MS-GFDB, see Figure 6.2), and

features an improved usability due to ProteoSAFe, a user-frendly interface for

searches, reports and data management.1

1 To-ju Huang, Claudiu Farcas, Jeremy Carver, Natalie Castellana, Ari Frank, Sangtae Kim,
Jian Wang, Pavel A. Pevzner, Vineet Bafna, Ingolf Krüger, and Nuno Bandeira. ProteoSAFe: A
Scalable, Accessible, and Flexible Software Environment for Proteomics Analysis, in preparation.
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We demonstrate the performance of MS-GF+ using various datasets: spec-

tra of tryptic peptides generated using CID, HCD and ETD in combination with

either linear ion trap or Orbitrap readout; spectra of multiple enzyme digests; spec-

tra of phosphopeptides; and spectra or a novel protease alpha-lytic protease (αLP).

For all these datasets, we show that MS-GF+ greatly outperforms state-of-the-art

tools for peptide identification.

6.2 Methods

Mass spectrometers are usually divided into High-precision (denoted by

H) and Low-precision (denoted by L) instruments. Depending on whether the

precursor and product ions are measured with Low or High-precision, the spectra

are divided into LL, LH, HL, and HH spectra (LH spectra are hardly ever used in

proteomics studies).

MS-GF+ takes a spectral dataset Spectra and a protein database Protein

DB as an input and outputs a set of scored PSMs along with statistical significance

estimates.2 The workflow of MS-GF+ comprises the following 4 steps: generating

PRM spectra, searching a protein database, computing E-values of PSMs, and esti-

mating FDRs. Below we describe each step as well as how MS-GF takes advantage

of HH spectra.

6.2.1 Generating PRM spectra

Rescaling mass values

Transformation of experimental spectra into vectors (PRM spectra) requires

binning. To support this transformation, MS-GF+ is designed under the assump-

tion that amino acid masses are integers. MS-GF+ uses nominal masses as integer

masses of amino acids. While this enables efficient computing of MS-GF+ scores,

it causes rounding errors because peaks in the spectrum correspond to real rather

2ProteinDB can be regarded as a long string generated by concatenating all protein sequences
(with delimiters).
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than nominal masses of amino acid sequences. To minimize the rounding errors,

MS-GF+ rescales every mass m into 0.9995m [3, 62, 46]. This dramatically re-

duces the rounding errors (Table 6.5), so one can estimate the nominal mass of a

peptide (or a peak) of mass m by simply taking [0.9995m] where [x] represents the

closest integer to x. For example, for a peptide “RESCAILINGMASSES” of mass

1705.776, [1705.776 ·0.9995 = 1704.92] = 1705 represents the correct nominal mass

of the peptide. We investigated all 188 million unique peptides of length up to 20

in the human IPI database (version 3.87), and the estimation was inaccurate only

for 874 peptides. Even if we consider peptides of length up to 40, only 0.07% had

estimation errors.

Peptide variant

A (non-modified) peptide is defined as a string over the alphabet A of 20

standard amino acids. MS-GF+ is a restrictive MS/MS database search tool that

allows a user to specify a set of allowed modifications. Let A+ be an extended

amino acid set containing both unmodified and modified amino acids. For an (un-

modified) amino acid a ∈ A, let Mod(a) ⊂ A+ be the set of both unmodified and

modified amino acids associated with a. For example, if T (Thr) and T ∗ (phos-

phorylated Thr) are in A+, Mod(T ) = {T, T ∗}. Given a peptide P = a1 . . . ak,

define PV = pv1 . . . pvk as a variant of P if pvi ∈ Mod(ai) for all i (1 ≤ i ≤ k).

Throughout this chapter, we abbreviate the peptide variant as variant.

Incorporating ion types and ranks

Many database search tools convert a peptide into a “theoretical” spec-

trum and compare it with an experimental spectrum using scoring functions of

various complexity. MS-GF+ converts spectra into PRM spectra [146, 25]. A

PRM spectrum of a spectrum S is an M -dimensional vector with integer values

where M is the nominal parent mass of S.3 We denote the nominal parent mass

3 Here, we consider nominal parent masses representing the sum of nominal masses of amino
acids of the peptide generated the spectrum. Since in many cases, the precise nominal parent
mass is unknown (e.g. MS instruments often choose 2nd or 3rd isotope peak instead of mono-
isotope peak from MS1 spectrum), multiple PRM spectra are generated separately for each
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of S as ParentMass(S). The conversion from an experimental spectrum to a PRM

spectrum proceeds as follows.

A spectrum S = {(mz1, rank1), . . . , (mzl, rankl)} is represented as a set of

ranked peaks where the ith highest intensity peak gets rank i (mzj and rankj rep-

resent m/z and rank of jth peak, respectively). An ion type is represented as a

triplet of integers charge, offset, and sign representing whether the ion type is a

prefix ion (sign = 1) or a suffix ion (sign = −1). For example, the singly-charged

b-ion and y-ion correspond to ion types (1, 1, 1) and (1, 19, -1), respectively. Given

an ion type ion = (charge, offset, sign), one can turn a spectrum S of nominal

parent mass M into Sion = {(prm1, rs1), . . . , (prml, rsl)} using the following trans-

formation:

prmj =

{
[mzj · charge · 0.9995]− offset if sign = 1

M −
(
[mzj · charge · 0.9995]− offset

)
if sign = −1

rsj = RankScore(ion, rankj),

where RankScore(ion, rank) is a pre-computed function that takes an ion type

ion and an integer rank and returns a probabilistic log-likelihood score defined

in [146, 3].4 Assume that I is a set of ion types contributing to scoring. The PRM

spectrum of S (denoted by PRM(S) = s1 . . . sM) is computed as follows:

si =
∑

ion∈I

max({rs | (prm, rs) ∈ Sion and prm = i} ∪ RankScore(ion,∞)),

where RankScore(ion,∞) represents the score given when ion is missing.

We also define a PRM spectrum of a variant as follows. Let Mass(a) be

the nominal mass of a (possibly modified) amino acid a. For example, Mass(T ) =

101 and the mass of phosphorylated Thr is Mass(T ∗) = 181. Given a variant

PV = pv1 . . . pvk, define the mass of PV as Mass(PV ) =
∑k

i=1 Mass(pvi). Given

a variant PV = pv1 . . . pvk of mass M , we define its PRM spectrum (denoted by

PRM(PV )) as a 0-1 vector m1 . . .mM with (n− 1) 1s, such that mi = 1 if i equals

to Mass(pv1) + . . .+Mass(pvj) (1 ≤ j ≤ k).

possible nominal parent mass, and the score of a peptide of mass M is computed from the PRM
spectrum of parent mass M .

4In practice, RankScore(ion, rank) also accounts for the location of the observed peak and
the precursor charge and mass of the spectrum, which are omitted here for simplification.
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Removing precursor-related peaks

Some types of spectra (e.g., ETD spectra) often feature high-intensity pre-

cursor peaks, charge-reduced precursor peaks, and their neutral and side-chain

losses. While these peaks are not informative, they may artificially inflate scores

of false PSMs if they fall in the positions of certain ion types. MS-GF+ removes

precursor-related peaks prior to generating PRM spectra to eliminate a risk of

erroneously interpreting them as other ion types. The information on which peaks

to remove is automatically pre-computed from a training set [146].

Scoring a peptide-spectrum match

The MS-GF+ score of a PSM (PV, S) is defined as MSGFScore(PV, S) =

PRM(PV ) · PRM(S) if Mass(PV ) = ParentMass(S) and −∞ otherwise. The

MS-GF+ score represents the log likelihood ratio described in [3].

6.2.2 Searching a protein database

We define ProteinDB+ as the set of all variants (with respect to an ex-

tended amino acid set A+) derived from ProteinDB. The goal of MS-GF+

database search is to solve the following database search problem:

Database search problem. Given a spectral dataset Spectra and a protein

database ProteinDB, for each spectrum S ∈ Spectra find a variant PVS,ProteinDB

such that

PVS,ProteinDB = arg max
PV ∈ProteinDB+

MSGFScore(PV, S).

Solving this problem involves the following three steps: (1) for every spectrum S ∈
Spectra, computing PRM(S), (2) for every variant PV ∈ ProteinDB+, computing

PRM(PV ), and (3) for every pair of (PV, S) where Mass(PV ) = ParentMass(S),

computing MSGFScore(PV, S) = PRM(PV ) · PRM(S). To execute these steps

efficiently, one may simply execute the step (1) and (2), store all PRM(S) and

PRM(PV ) in the main memory and execute the step (3). But this is often infeasible

because the number of variants is usually too large to fit all PRM(PV ) in the main
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memory. Alternatively, one may consider executing the step (2) on the spot for

each spectrum, but this is prohibitively slow.5

Instead of storing both PRM(S) and PRM(PV ), MS-GF+ stores only

PRM(S) for all spectra in the main memory, and indexes them by parent masses.

Since PRM spectra compactly represent experimental spectra, MS-GF+ can store

over 200,000 PRM spectra in the main memory of 4GB. Rather than finding the

best scoring peptide for each spectrum, MS-GF+ then finds the best scoring spec-

trum for each variant. Formally, MS-GF+ solves a slightly different problem: for

each variant PV ∈ ProteinDB+, find a spectrum SPV,Spectra such that

SPV,Spectra = arg max
S∈Spectra

MSGFScore(PV, S) = arg max
S∈SpectraMass(PV )

MSGFScore(PV, S),

(6.1)

where SpectraMass(PV ) represents the set of spectra S with ParentMass(S) equals

to Mass(PV ). This problem can be solved efficiently by enumerating variants

PV ∈ ProteinDB+ one by one, generating PRM(PV ) on the spot, and computing

MSGFScore(PV, S) = PRM(PV ) · PRM(S) for all pre-computed PRM(S) where

S ∈ SMass(PV ). Once SPV,Spectra is found for all variants PV , finding PVS,ProteinDB

is trivial because

PVS,ProteinDB = arg max
PV ∈{PV |SPV,Spectra=S,PV ∈ProteinDB}

MSGFScore(PV, S).

In practice, to save the memory, instead of recording SPV,Spectra for every PV , MS-

GF+ records the best scoring variant PV ∗ while enumerating PVs, and updates

PV ∗ to PV whenever it finds PV where SPV,Spectra = S and MSGFScore(PV, S) >

MSGFScore(PV ∗, S).

Similar to pFind [147], MS-GF+ uses a suffix array (a lexicographically

sorted list of all the suffixes of ProteinDB [148]) to further optimize the database

search. Protein databases (particularly, eukaryotic ones) contain many similar pro-

teins, so many peptides appear in multiple copies in a database (repeated peptides).

For example, the IPI human database (version 3.87) contains about 130,000 fully-

tryptic peptides of length 10, but the number decreases to about 50,000 if only

5For the IPI human database, executing the step (2) alone takes 54 seconds, considering
partially tryptic peptides of lengths between 6 and 40, and two variable modifications Oxidation
of Met and protein N-term Acetylation.
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unique peptides are considered. If a protein database is indexed as a suffix array,

peptide occurrences from the same repeated peptide appear in neighboring indices

in the suffix array. So, instead of searching peptides according to their ordering in

the original database file, MS-GF+ searches peptides according to their ordering

in the suffix array, and uses the longest common prefix data structure [148] to score

each unique peptide only once (Figure 6.2 (b)).

Pre-filtering of low-quality spectra

Since some MS/MS spectra feature limited fragmentation (or excessive

number of unexplained peaks), they are unlikely to be identified by MS-GF+ (or

most other database search tools). MS-GF+ filters out such low-quality spectra

prior to searching a database, leading to a reduction in running time. As shown by

Frank et al. [90], such filtration also increases the number of identified PSMs at a

fixed FDR (since the number of spurious PSMs decreases). Existing methods [90,

149, 150] often use machine learning techniques to separate high and low-quality

spectra. In addition to computing arg maxPV ∈ProteinDB+ MSGFScore(PV, S), MS-

GF+ also has capability to compute DeNovoScore(S) = maxPV Score(PV, S),

where maximum is taken over all variants rather than over PV ∈ ProteinDB+ as

before. Since DeNovoScore represents the log-likelihood ratio, spectra S with neg-

ative DeNovoScore(S) are likely to represent spurious PSMs, and can be discarded.

Note that DeNovoScore(S) can be computed using fast linear-time dynamic pro-

gramming algorithms [33].

Comparison with MS-GFDB

MS-GF+ achieved an order of magnitude speedup compared to MS-GFDB.

Furthermore, pre-processing of the database required to run MS-GF+ is much

faster as compared to MS-GFDB which uses indices from peptide masses to the

peptide locations (Figure 6.2). The indexing in MS-GFDB had to be repeated

even for the same protein database depending on the chosen enzymes and allowed

amino acid modifications. In contrast, MS-GF+ uses a suffix array of a protein

database that needs to be constructed only once, i.e., it does not depend on the
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chosen enzyme and allowed modifications. Also suffix arrays in MS-GF+ can be

constructed much faster than indices in MS-GFDB while being more memory-

efficient [147].

6.2.3 Computing E-values

Given a spectrum S, a score threshold t, an extended set of amino acids

A+, and a database size N , we define E-value(S, t,A+, N) as the expected num-

ber of variants PV (as defined by A+) with MSGFScore(PV, S) ≥ t in a ran-

dom protein database of size N . To compute E-value(S, t,A+, N), we first com-

pute spectral E-value E-value(S, t,A+), the expected number of variants PV with

MSGFScore(PV, S) ≥ t given a single random peptide. A single random peptide

models a random peptide starting at a fixed position in a random protein database.

We consider a set of all possible (unmodified) peptides of length k (where

k is a large number) and select a random peptide uniformly from this set (i.e.

the probability of selecting a peptide is 1
20k

).6 We say that a peptide P produces

a variant PV if PV is a variant of a prefix of P . For example, PEPT ∗ and

PEPTI are produced by PEPTIDE. Given a spectrum S, let PV(t) be the set

of all variants PV with MSGFScore(PV, S) ≥ t. For every variant PV , there are

20k−|PV | peptides of length k producing a variant PV (|PV | stands for the number

of amino acids in PV ). Therefore, expected number of variants per random peptide

with a score equal or better than t is

E-value(S,A+, t) =
∑

PV ∈PV(t)

20k−|PV |

20k
=

∑

PV ∈PV(t)

20−|PV |.

Since a variant is a string over the alphabet A+, this expression can be computed

using the generating function approach [78]. Given a spectrum S with PRM(S) =

s1 . . . sM , consider a direct acyclic graph called an amino acid graph G(V,E,A+)

with V = {0, . . . ,M} and E = {(i, j)|j − i ∈ Mass(a) for a ∈ A+}, where the

score of a vertex i is defined as si, the probability of an edge is defined as 1
20

, the

6In practice, to reflect different frequencies of amino acids in a database (e.g. Leu is usually

more common than Trp), we define the probability of a peptide P = a1 . . . ak as
∏k

i=1 Prob(ai)
where Prob(a) is the frequency of amino acid a in a protein database. Note that this does not
change the algorithm to compute spectral E-values.
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score of a path is defined as the sum of scores of its vertices, and the probability of

a path is defined as the product of probabilities of its edges. A path in an amino

acid graph represents a variant. Therefore, E-value(S,A+, t) equals to the sum of

probabilities of all paths from 0 to M with scores equal or better than t, and can

be computed using parametric dynamic programming [3, 78, 151].

While spectral E-values are useful for evaluating statistical significance of

individual PSMs (independently of the database), they need to be transformed into

E-value(S, t,A+, N) to take into account the fact that the database search repre-

sents “multiple testing” where multiple variants (arising from different database

peptides) are scored against a spectrum [152]. E-values can be approximated as

follows:

E-value(S, t,A+, N) = E-Value(S, t,A+) ·N,

where N is the size of the database.7

6.2.4 How to benefit from high-precision MS/MS spectra?

While it may appear that addressing all LL, HL, and HH spectra is a simple

matter of tuning parameters that control the error tolerance, the situation is more

complex. Here we explain how MS-GF+ takes advantage of high-precision product

ion peaks.

Database search of HL and HH spectra

Let RMass(a) be the real mass of an amino acid a. For a variant PV =

pv1 . . . pvk, let RMass(PV ) =
∑k

i=1 RMass(pvi), and RParentMass(S) be the real

parent mass of a spectrum S. We previously defined MSGFScore(PV, S) = PRM

(PV ) ·PRM(S) if Mass(PV ) = ParentMass(S) and −∞ otherwise. Note that

the condition Mass(PV ) = ParentMass(S) is weak, i.e., it may be satisfied even

when real mass RMass(PV ) significantly deviates from RParentMass(S). To take

advantage of accurate parent masses in HL and HH spectra, this condition has to

7Since protein databases contain many repeated peptides in practice, it is important to reflect
an effective size of the database that is estimated as the number of unique peptides of certain
length.
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be redefined to RMass(PV ) − ∆ < RParentMass(S) < RMass(PV ) + ∆, where

∆ is the precursor mass tolerance. To solve the database search problem for this

modified definition of MSGFScore, the equation 6.1 should be changed as follows:

SPV,Spectra = arg max
S∈Spectra

MSGFScore(PV, S) = arg max
S∈SpectraRMass(PV )

MSGFScore(PV, S),

(6.2)

where SpectraRMass(PV ) represents the set of spectra S ∈ Spectra satisfying

RMass(PV )−∆ < RParentMass(S) < RMass(PV ) + ∆.

Scoring HH spectra

In [3], we introduced an abstract model (seemingly unrelated to mass spec-

trometry) and described a probabilistic process of transforming a Boolean string

into another Boolean string. Below, we describe a transformation of a Boolean

string into a directed acyclic graph (DAG) and generalizes this model for scoring

real PSMs.

Let P = p1 . . . pM be a Boolean string called a peptide. Let GS = (V,E,A+)

be a labeled DAG called a G-spectrum with vertices V = {0, . . . ,M}, and edges

E = {(i, j)|j− i ∈ Mass(a) for a ∈ A+}. We define the Boolean label of vertex i as

vi and edge (i, j) as ei,j. The probability of P generating GS is defined as follows:

Prob(GS|P ) =
∏

i∈V

ProbV(vi|pi) ·
∏

(i,j)∈E

ProbE(ei,j|pi, pj),

where ProbV(x|y) is a 2× 2 matrix representing the probability of a peptide char-

acter (0 or 1) generating a vertex label, and ProbE(x|y, z) is a 2 × 4 matrix rep-

resenting the probability of a pair of peptide characters generating an edge label

(Figure 6.3). In practice, β1 ≈ β2 ≈ β3.

When applying this model for scoring a peptide P and a G-spectrum GS,

we consider a test comparing two hypotheses: one assuming GS is generated by P

and the other assuming GS is generated by a string consisting of all zeros (denoted

by O). The score of (P,GS) (denoted by Score(P,GS)) is defined as follows (see
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Figure 6.4 for an example):

Score(P,GS) = log
Prob(GS|P )

Prob(GS|O)

= log

∏
i∈V ProbV(vi|pi) ·

∏
(i,j)∈E ProbE(ei,j|pi, pj)∏

i∈V ProbV(vi|0) ·∏(i,j)∈E ProbE(ei,j|0, 0)

=
∑

i∈V

log
ProbV(vi|pi)
ProbV(vi|0)

+
∑

(i,j)∈E

log
ProbE(ei,j|pi, pj)
ProbE(ei,j|0, 0)

≈
∑

i∈{i|i∈V,pi=1}

log
ProbV(vi|1)

ProbV(vi|0)︸ ︷︷ ︸
VertexScore(i)︸ ︷︷ ︸

vertex scoring

+
∑

(i,j)∈{(i,j)|(i,j)∈E,pi=1,pj=1}

log
ProbE(ei,j|1, 1)

ProbE(ei,j|0, 0)︸ ︷︷ ︸
EdgeScore(i,j)︸ ︷︷ ︸

edge scoring

(6.3)

Note that in the last equation, only the edges (i, j) where pi = 1 and pj = 1

contribute to the edge scoring because β1 ≈ β2 ≈ β3.

We now explain how to convert a spectrum S into a G-spectrum given A+

and I. Vertex and edge sets are constructed as described earlier. For simplicity,

suppose that I = {(1, 0, 1)} (i.e. only singly charged prefix ion with an offset zero

contributes to the scoring). Given a constant δ called a fragment mass tolerance,

two peaks of S with m/z x and y form a duo if y − x is approximately equal to a

mass of an amino acid, i.e., RMass(a)−δ < y−x < RMass(a)+δ for a ∈ A+. The

vertex label vi and the edge label ei,j of GS are defined as follows: vi = 1 if there

exists a peak of mass x satisfying [0.9995 · x] = i and vi = 0 otherwise; ei,j = 1,

if there exists a duo of peaks with masses x and y such that [0.9995 · x] = i and

[0.9995 · y] = j, and ei,j = 0 otherwise.

In practice, we generate multiple G-spectra for a single spectrum, one for

each ion ∈ I. To generate a G-spectrum for ion = (charge, offset, sign) with a

real offset roffset, (e.g. real offset of the singly-charged b-ion is 1.008), we convert

S = {(mz1, rank1), . . . , (mzl, rankl)} into S ′ = {(mass1, rank1), . . . , (massl, rankl)}
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using the following transformation:

massj =

{
mzj · charge− roffset if sign = 1

RParentMass(S)−
(
mzj · charge− roffset

)
if sign = −1

Each peak of S representing ion corresponds to a peak of this converted spectrum

S ′ representing an ion type (1, 0, 1). Therefore, the vertex and edge labels of the

G-spectrum for ion are defined exactly the same as outlined before, but using S ′

instead of S (Figure 6.5).

In reality, integer instead of Boolean values are used for vertex and edge

labels of G-spectra. Given a converted spectrum S ′, first all peaks (x, rank) are

removed if there exists another peak (x′, rank′) where [0.9995 ·x] = [0.9995 ·x′] and

rank > rank′. The vertex label vi is defined as follows: vi = rank if there exists

a peak (x, rank) satisfying [0.9995 · x] = i and vi = 0 otherwise. For an integer

m, let AminoAcid(m) be the set of amino acids a ∈ A+ satisfying Mass(a) = m

(e.g. AminoAcid(128) = {Gln,Lys}). The edge label ei,j is defined as follows:

ei,j = [100 · mina∈AminoAcid(j−i)(y − x − RMass(a))] if there exists a duo of peaks

with masses x and y such that [0.9995 · x] = i and [0.9995 · y] = j, and ei,j = ∞
otherwise. The constant 100 is multiplied to discretize the real-valued errors into

bins of size 0.01 Da.

In this G-spectrum representation, vertex labels encode the information on

the intensities of individual peaks, and the edge labels encode the information on

the mass errors of pairs of peaks assuming they represent consecutive peaks of the

same ion type. Note that edge labels are independent on peak intensities.

Given a set of G-spectra of S, we generate a PRM graph (instead of a

PRM spectrum) of S. A PRM graph is a direct acyclic graph with a vertex set

V = {0, . . . ,M} and and edge set E = {(i, j)|j − i ∈ Mass(a) for a ∈ A+}, where

the score of a vertex i is the sum of VertexScore(i) over all G-spectra of S, the

score of an edge (i, j) is the sum of EdgeScore(i, j) over all G-spectra of S, the

probability of an edge is defined as 1
20

, the score of a path is defined as the sum

of scores of its vertices and edges, and the probability of a path is defined as the

product of probabilities of its edges. Note that a path of a PRM graph represents

a peptide (or a variant), and the score of a path represents the score of the peptide
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represented by the path.

Given a PRM graph, one can compute spectral E-values of peptides (or

variants) using the generating function approach [78]. The generating function

approach works for any DAG as long as the score of a path (variant) in the DAG

is represented as the sum of scores of the vertices along the path. While the PRM

graph has scores both on vertices and edges, it can be converted into a DAG having

scores only on vertices by substituting every edge (i, j) into a new vertex ij and

two edges (i, ij) and (ij, j). Thus, the generating function approach can be applied

to this “PRM graph” scoring model.

In theory, one can apply this PRM graph scoring model to all HH, HL,

and LL spectra. However, for HL and LL spectra, using this PRM graph scoring

model does not significantly improve over the simpler PRM scoring model because

while the running time roughly doubles, the number of peptide identifications only

slightly increases (less than 5%). Thus, we apply the PRM graph scoring model

only to HH spectra. For HH spectra, we found that it is beneficial to convert multi-

ply charged product ion peaks into singly charged ion peaks (charge deconvolution)

prior to generating PRM graphs. We use the following simple algorithm for the

charge deconvolution: if two peaks are separated by (mass of 13C−mass of 12C)/c

within a small tolerance (e.g. 0.01 Da), we assume they are charge c and convert

them into charge 1.

Are spectral E-values accurate?

E-values reported by MS-GF+ are accurate for LL spectra, but slightly

biased for HL or HH spectra. This is because there is a discrepancy between the

search space of the database search and the E-value computation presented in the

previous section; in the high-precision setting, peptides considered are those with

masses matching the parent mass of the input spectrum within a narrow toler-

ance (e.g. 10 ppm) (see Equation 6.2); but in the E-value computation, peptides

considered are those with masses matching the nominal parent mass of the input

spectrum. For HL and HH spectra, MS-GF+ E-values are larger than they should

be (conservative estimation) when a strict precursor mass tolerance (e.g. 10ppm)
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is used.

6.2.5 Estimating FDRs

Existing MS/MS database search tools output a set of PSMs and estimate

the FDR of this set (fraction of erroneous PSMs) using the Target-Decoy Approach

(TDA). In addition to computing the FDR via TDA, MS-GF+ also provide a

possibility to estimate the FDR via E-values of PSMs (denoted by Expected FDR

or EFDR) without using TDA [153]. Since MS-GF+ E-value estimates are accurate

for LL spectra but conservative for HH or HL spectra, MS-GF+ EFDRs are also

accurate for LL spectra but conservative (higher than they should be) for HH and

HL spectra (Figure 6.6).

Peptide identifications are usually reported for a fixed FDR either at the

PSM-level (FDR for identified PSMs) or the peptide-level (FDR for identified

peptides). Since a single peptide often generate multiple spectra, the same PSM-

and peptide-level FDR may result in vastly different set of identified PSMs. MS-

GF+ reports peptide-level FDRs along with PSM-level FDRs. To compute peptide

level FDRs, for PSMs matched to the same peptide, MS-GF+ retains only the

PSM with the lowest spectral E-value. The peptide-level FDR is calculated as

NdecoyPep/NtargetPep where NtargetPep (NdecoyPep) is the number of retained target

(decoy) peptides with spectral E-values equal or smaller than t.

6.3 Results

6.3.1 MS-GF+ Scoring

Database search tools use a scoring function Score(P, S) to evaluate a PSM

of P and S and further compute statistical significance (e.g. E-values) of the result-

ing PSMs. Let PS be a peptide that generated S. A scoring function is adequate for

S (with respect to a protein database ProteinDB) if the correct peptide attains

the maximal score in the database, i.e., maxP∈ProteinDB Score(P, S) = Score(PS, S).

A “good” scoring function should satisfy the following conditions:
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(a) it should be adequate for the great majority of spectra,

(b) the algorithm for PSM scoring should be fast,

(c) the algorithm for computing statistical significance of PSMs should be fast and

accurate.

MS-GF+ uses a very simple dot-product scoring Score(P, S) = P ∗ · S∗ after con-

verting peptide P and spectrum S into vectors P ∗ and S∗ referred to as Prefix-

Residue-Mass (PRM) spectra [146, 25]. Conversion of a spectrum S into a PRM

spectrum S∗ uses a probabilistic model that ensures that the resulting dot-product

scoring is adequate [3] (condition (a)). At the same time, it makes scoring and

computing accurate E-values fast [78] (condition (b) and (c)). This “PRM scoring”

model contrasts with many other database search tools using sophisticated scoring

functions [24, 13, 49, 154] that often make it difficult to satisfy the condition (c).

The scores of PSMs reported by existing MS/MS database search tools

are often poorly correlated with their statistical significance (e.g., E-values). It

is important to rank PSMs based on their statistical significance, because such

ranking (rather than ranking based on “raw scores”) often dramatically increases

the number of identified spectra [78, 155]. This observation explains why the

condition (c) is important. Many database search tools estimate an E-value of

a PSM based on an approximation of a tail of the score distribution specific to

the spectrum using peptides in the database [13, 49, 155]. Since this approach

often results in biased estimates of statistical significance [78], MS-GF+ adopted

the generating function approach to rigorously compute E-values of PSMs using

the score distribution of all peptides [78]. The PRM scoring model is essential

here, because the generating function approach is applicable only to the scoring

functions that can be represented as a dot-product of vectors [153]. Adopting the

generating function approach improves both the accuracy of E-value estimates and

increases the number of identified peptides.

The key part of the generating function approach is the assumption that

amino acids have integer masses (otherwise the parametric dynamic programming

is difficult to implement). However, rounding amino acids to integers introduce
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rounding errors. These rounding error reduces after rescaling by 0.9995, making it

appropriate for LL and HL spectra (Online Method). However, for HH spectra, the

rounding error remains too large even after rescaling, prohibiting MS-GF+ from

benefiting from precise product ion peaks. A possible solution to this problem

is to change the constant used for rescaling. For example, for a scaling constant

274.335215 (e.g. mass(G) = 57.021464 ∗ 274.335215 = 15642.995586 ≈ 15643), the

rounding error is bounded by 2.5 parts per million (ppm), which is appropriate

for analyzing HH spectra. However, since the time complexity of the generating

function algorithm is proportional to 1 over the rescaling constant, this makes

computing E-values prohibitively slow. Here we present a new scoring algorithm

taking advantage of accurate product ion masses while not substantially increasing

the running time of MS-GF+ (Online Methods).

6.3.2 Datasets

For benchmarking MS-GF+, we collected publicly available datasets that

were previously studied [143, 156, 157] as well as datasets obtained with a novel

protease. Overall, we used 18 datasets (≈ 2.38 million spectra from human, yeast,

mouse, and Schizosaccharomyces pombe reflecting the diversity of MS data, corre-

sponding to 16 distinct spectral types.

Human datasets with varying fragmentations and instruments

Five human datasets corresponding to the spectral types (CID,Low,Sta

ndard,Trypsin), (CID,High,Standard,Trypsin), (ETD,Low,Standard,Trypsin),

(ETD,High,Standard,Trypsin), and (HCD,High,Standard,Trypsin) contain 38,

401, 33,586, 30,451, 25,734, and 37,810 spectra respectively. These datasets are

generated in the Heck laboratory (Utrecht University). HEK293 whole cell lysates

were digested by trypsin and analyzed by LTQ-Orbitrap Velos (Thermo Fisher

Scientific, Bremen), using combinations of one of the 3 fragmentation modes CID,

ETD, and HCD, and either ion trap or Orbitrap readout for product ion m/z. The

detailed experimental procedures are described in [156].
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Yeast datasets with varying enzymes

Ten yeast datasets corresponding to the spectral types (CID,Low,Standard,

Trypsin), (CID,Low,Standard,LysC), (CID,Low,Standard,ArgC), (CID,Low,

Standard,GluC), (CID,Low,Standard,AspN), (ETD,Low,Standard,Trypsin), (

ETD,Low,Standard,LysC), (ETD,Low,Standard,ArgC), (ETD,Low,Standard,

GluC), and (ETD,Low,Standard,AspN), contain 333,203, 278,336, 114,351, 81,

669, 251,974, 72,463, 246,428, 204,860, 88,403, and 262,635 spectra, respectively.

These datasets were generated in the Coon laboratory (University of Wisconsin

Madison). Yeast whole cell lysates were digested separately, with either trypsin,

LysC, ArgC, GluC, or AspN, separated into 12 fractions via strong cation ex-

change (SCX) chromatography and analyzed in triplicate with an ETD-enabled

LTQ-Orbitrap mass spectrometer, where peptide fragmentation was accomplished

either with CID or ETD using the decision-tree acquisition mode [115].8 We down-

loaded 180 (5 enzymes × 12 fractions × 3 replicates) spectrum files (Thermo RAW

format) and converted each raw file into two mgf files one containing CID and the

other containing ETD spectra using “msconvert” in ProteoWizard [158] with “no

filtering” option. The conversion was unsuccessful for 6 out of 180 files (5 from Arg-

C and 1 from Glu-C digests). These 6 files were removed in the further analyses.

The detailed experimental procedures are described in [143].

Mouse dataset of phosphopeptides

A mouse dataset corresponding to the spectral type (CID,Low,Phospho-

rylation,Trypsin) contains 181,093 spectra. This dataset was generated from the

Gygi laboratory (Harvard Medical School). Nine mouse organ proteins were di-

gested with trypsin and the resulting peptides were fractionated via SCX. Phos-

phopeptides were enriched via immobilized metal affinity chromatography and an-

alyzed in duplicates via LC-MS/MS on an LTQ-Orbitrap mass spectrometer. Out

of 9 organ tissues analyzed, we used the spectra generated from the brain tissue.

The detailed experimental procedures are described in [157].

8In the decision-tree acquisition mode, the mass spectrometer automatically determines the
fragmentation method based on the charge of m/z of precursor ions.
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Spectra of αLP digests

Two datasets corresponding to the spectral type (CID,Low,Standard,αLP)

and (ETD,Low,Standard,αLP) contain 49,167 spectra each. These datasets were

generated in the Komives laboratory (University of California, San Diego). The

detailed experimental procedures to generate these datasets are as follows. Wild-

type S. pombe cells were lysed in: 50mM Tris-HCl pH: 8.0; 150mM NaCl; 5mM

EDTA; 10% Glycerol; 50mM NaF; 0.1mM Na3VO4; 0.2% NP40 and stored at

−80◦C. The debris was pelleted and then the supernatant was collected. The

pellet was extracted according to [159]. Briefly, the pellet was resuspended in 200

ul of 0.1 M NaOH, 0.05 M ETDA, 2% SDS, and 2% beta-mercaptoethanol and

incubated at 90◦C for 10 minutes. Acetic acid was added to 0.1M and vortexed

followed by an additional incubation at 90◦C for 10 minutes before clarification by

centrifugation and Methanol/chloroform extraction. The pellet was resuspended in

100 mM Tris containing 0.1% sodium deoxycholate with TCEP at 5 mM. Free thiols

were capped with n-ethylmaleimide. Excess reagent was removed by ultrafiltration

with amicon-4 10 kDa centrifugal devices. The protein was then quantified and

exchanged into 6M guanidine for digestion overnight by αLP. The digests were

quenched by the addition of formic acid to 1%, followed by desalting by sep-

pak (Waters, Milford, MA). Peptides were then fractionated with Electrostatic

Repulsion-Hydrophilic Interaction Chromatography [160]. Fractions were assayed

for protein concentration using a BCA assay and pooled into 18 fractions of equal

protein concentration, evaporated to dryness and resuspended in 100 uL of 0.2%

FA. Nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was

performed with a LTQ XL mass spectrometer equipped with ETD. 10 ul of each

fraction (≈ 1 ug) was injected onto a 12 cm × 75 um I.D.C18 column prepared

in house and eluted in 0.2% FA with a gradient of 5% to 40% ACN over 60 min

followed by wash and re-equilibration totaling 90 minutes of MS data per run.

The flow was split about 1:500 to a flow rate of about 250 nL/min. A survey scan

was followed by data dependent fragmentation of the 4 most abundant ions with

both CID and ETD with supplemental activation. The maximum MS/MS ion

accumulation time was set to 100 ms. Fragmented precursors were dynamically
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excluded for 45 seconds with one repeat allowed.

6.3.3 Comparison of MS-GF+ and Mascot+Percolator

We compared the numbers of identified PSMs at 1% FDR for MS-GF+ and

Mascot+Percolator (Table 6.5 for database search parameters). Mascot+Percolator

(Mascot version 2.3.02 supporting Percolator) was used for the comparison be-

cause it represents the current state-of-the-art method for peptide identification.

We also tested several other tools like InsPecT and OMSSA but do not report

their results because they identified significantly fewer PSMs as compared to Mas-

cot+Percolator.

Figure 6.7 (a) shows the benchmarking results for the five human datasets

generated with varying fragmentations and instruments [156], corresponding to

the following spectral paths: (CID,Low,Standard,Trypsin), (CID,High,Standard,

Trypsin), (ETD,Low,Standard,Trypsin), (ETD,High,Standard,Trypsin), and (HCD

,High,Standard,Trypsin). While Percolator greatly increases the number of iden-

tifications as compared to Mascot, for all these datasets, MS-GF+ identified sig-

nificantly more PSMs (8-38%) than Mascot+Percolator. We also compared the

number of identifications reported by the original study [156] which also used

Mascot+Percolator along with in-house pre- and post-processing tool. In this

comparison, MS-GF+ also showed an improved performance (identifying 16-55%

more PSMs).

To figure out how each tool benefits from high-precision product ion peaks,

for the 3 out of 5 human datasets representing HH spectra, we ran MS-GF+,

Mascot+Percolator, and Mascot using the parameters for HL spectra, i.e., using

0.6 Da fragment mass tolerance for Mascot and Mascot+Percolator, and using the

scoring model for low-precision spectra for MS-GF+. For every tool, the number

of identifications was higher when the parameters for HH spectra were used, but

the difference varied depending on the dataset and the tool (Figure 6.7 (b)). For

example, the difference was the largest for (CID,High,Standard,Trypsin) for MS-

GF+ but for (HCD,High,Standard,Trypsin) for Mascot and Mascot+Percolator.

Figure 6.7 (c) shows the comparison for the ten yeast datasets generated
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with varying fragmentations (CID or ETD) and enzymes (Trypsin, LysC, ArgC,

GluC, or AspN) [143]. Again, for all these datasets, MS-GF+ identified signifi-

cantly more PSMs (34-168%) than Mascot+Percolator (Figure 6.7 (c)). In [143],

using OMSSA (and in-house tools for pre- and post-processing), the authors re-

ported for each dataset the number of identified peptides at 1% peptide-level FDR

that are matched to proteins identified at 1% protein-level FDR. We compared

these numbers with the numbers of identified peptides at 1% peptide-level FDR

using MS-GF+ (Figure 6.7 (d)). Note that this comparison is unfair because pep-

tide identifications by MS-GF+ were not filtered out according to the protein that

they are matched to. However, even after considering that, the results show that

for most of the datasets, MS-GF+ identified many more peptides than the original

report.

To see whether our scoring model can capture the fragmentation propensi-

ties specific to phosphopeptides, we generated a scoring parameter set for (CID,

Low,Phosphorylation,Trypsin) and compared the numbers of identified PSMs for

MS-GF+ with and without using the phosphorylation-specific parameter set, Mas-

cot+Percolator, and InsPecT [25, 89] equipping with a dedicated scoring model

for (CID,Low,Phosphorylation,Trypsin) (Figure 6.8). Interestingly, without phos-

phorylation-specific scoring parameters, MS-GF+ outperformed both tools, iden-

tifying 37% and 44% more PSMs than Mascot+Percolator and InsPecT, respec-

tively. With phosphorylation-specific parameters, MS-GF+ identified 9% more

PSMs (and 12% more PSMs of phosphopeptides), confirming that our scoring

model successfully captures phosphorylation-specific fragmentation propensities.

This function to easily train modification-specific scoring parameters (or any other

experimental protocol that changes the fragmentation propensities) will greatly

benefit MS researchers studying protein post-translational modifications.

6.3.4 Using MS-GF+ to identify peptides produced by αLP

MS-GF+ was applied to the study of αLP using two S. pombe datasets cor-

responding to (CID,Low,Standard,αLP) and (ETD,Low,Standard,αLP). Prior to

this study, the cleavage specificity of αLP was unknown. We ran Mascot+Percolator,
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OMSSA, and MS-GF+ by specifying ‘None’ as an enzyme. Mascot+Percolator

and OMSSA performed very poorly for this novel spectral type. For example,

Mascot+Percolator identified only 871 PSMs for (CID,Low,Standard,αLP) and no

PSM for (ETD,Low,Standard,αLP) at 1% FDR. In contrast, MS-GF+ identified

3,535 and 2,829 PSMs from the (CID,Low,Standard,αLP) and (ETD,Low,Stan-

dard,αLP) dataset using the scoring parameters for (CID,Low,Standard,Trypsin

) and (ETD,Low,Standard,Trypsin), respectively (Figure 6.9). The poor per-

formance of Mascot+Percolator is because the scoring functions of Mascot and

OMSSA are not adequate (correct peptide did not attain the maximal score) for

most of the spectra due to the large search space (i.e. no enzyme is specified and the

precursor mass tolerance was 2.5Da). In fact, for the human dataset correspond-

ing to (ETD,Low,Standard,Trypsin), when no enzyme was specified and precursor

mass tolerance was 2.5Da, Mascot identified no PSM at 1% FDR, whereas MS-

GF+ identified 10,937 PSMs, only 34% less as compared to the fully-tryptic search

with 7 ppm precursor mass tolerance.

Using the identified PSMs by MS-GF+, we trained scoring parameters for (

CID,Low,Standard,αLP) and (ETD,Low,Standard,αLP). When these αLP-specific

scoring parameters were used, the number of identified PSMs further increased to

4,788 (+35%) and 3,313 (+17%) for (CID,Low,Phosphorylation,αLP) and (ETD,

Low,Phosphorylation,αLP), respectively, showing the usefulness of MS-GF+ for

studies of new proteases.

αLP represents a new protease alternative to trypsin, greatly increasing

the PTM and protein sequence coverages, but generating spectra with unusual

fragmentation propensities. We emphasize that the capabilities of αLP are not

obvious when Mascot+Percolator or another tool is used, because they fail to

identify αLP peptides. The details on αLP protease will be discussed in a separate

paper.

6.3.5 Running time of MS-GF+

We measured the running time of MS-GF+ and Mascot+Percolator for LL,

HL, and HH spectra using the human datasets corresponding to (CID,Low,Stan-
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dard,Trypsin) and (HCD,High,Standard,Trypsin), separately for a fully-tryptic

search and a semi-tryptic search. For all the searches, MS-GF+ showed similar

running times as compared to Mascot+Percolator (Figure 6.10).

6.3.6 Comparison of MS-GF+ with spectral library search

We compared the performance of MS-GF+ with the leading spectral library

search tool SpectraST [6]. For this comparison, we downloaded the NIST spec-

tral library (release date May 26th, 2011) containing 310,688 spectra generated

from 190,539 unique peptides, and constructed a sequence database containing

these 190,539 unique peptides. For the human dataset corresponding to (CID,

Low,Standard,Trypsin), we ran MS-GF+ against this database by specifying the

following set of common variable modifications: Oxidation of Met, Pyro-glu of

Gln and Glu, Acetylation of protein N-term, Pyro-carbamidomethylation of Cys.

Due to the reduced search space, MS-GF+ identified 19,002 PSMs in this search,

13% more as compared to the search against the entire IPI human database (Fig-

ure 6.11). For the same dataset, we also ran SpectraST search against the NIST

spectral library and compared the number of identified PSMs with MS-GF+.9 To

get the best result, we ran SpectraST 5 times with varying precursor mass tol-

erance values (0.05Th, 0.1Th, 1Th, 2Th, and 3Th), and selected the maximum

number of identifications obtained when 2 Th was used. Interestingly, SpectraST

identified almost the same number PSMs (18,999 PSMs) as compared to MS-GF+.

This indicates that if MS-GF+ use the peptide sequence information in the spec-

tral library, it shows comparable performance without using any information on

the spectra in the library.10 We also compared the running time of SpectraST and

MS-GF+ (against the database containing the library peptides), and both tools

showed similar running times.

9Artificial decoy spectral library [161] was used to estimate the FDR.
10The search space was larger for MS-GF+ because it contains subsequences of peptides and

all possible peptide variants with respect to the modifications.
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6.4 Discussion

Our analysis showed that for diverse types of spectral datasets, MS-GF+

identifies more PSMs as compared to other existing tools for peptide identification

including database search tools like Mascot, OMSSA, and InsPecT, a statistical

modeling tool Percolator, and even a spectral library search tool SpectraST. In

addition, MS-GF+ is as fast as other tools. Furthermore, MS-GF+ simplifies the

computational pipeline for peptide identification because it does not require any

additional pre- or post-processing tool.

The comparable performance of MS-GF+ over SpectraST indicates that ac-

cess to previously identified spectra does not necessarily translate into significant

improvement in accurate peptide identification. It implies that scoring methods

that compare Spectrum-Spectrum Matches (SSMs) are also important. In contrast

to the highly sophisticated methods for PSM scoring used in database searches,

the library SSM scoring has not matured enough and is largely based on simple

spectral cosine scores rather than statistical significance. We emphasize that the

generating function approach for accurately computing E-values significantly con-

tributes to the improved performance of MS-GF+. For example, when E-values

instead of MS-GF scores were used to cut-off the results, the number of identified

PSMs increased approximately by 70%, 50%, and 20% for LL, HL, and HH spec-

tra, respectively. The performance of spectral library searching tools will thus be

improved by developing rigorous methods for computing statistical significance of

SSMs.

In a recent review, Noble and MacCoss pointed out that “the field (of MS)

is still missing a generic analysis platform that can be adapted automatically and

in a principled fashion to handle spectra produced by any given fragmentation

protocol” [162]. With MS-GF+, we believe the field has made a step towards

achieving this goal.
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Figure 6.1: Spectral types as paths in the graph representing possible choices of
the fragment method (Fragmentation), the instrument measuring product ion m/z
(Instrument), the protocol used to prepare a sample (Protocol), and the enzyme
used to digest proteins (Enzyme). ‘Low’ in Instrument indicates low-resolution
instruments (e.g. linear ion-trap), ‘High’ indicates high-resolution instruments
(e.g. Orbitrap, FT-ICR), and ‘TOF’ indicates time-of-flight instruments. ‘Phos-
phorylation’ and ‘N-acetylation’ in Protocol indicate that spectra are generated
from phosphopeptides and peptides containing N-terminal acetylation, respec-
tively. A path in the graph represents a spectral type. For example, the green
path (CID,Low,Phosphorylation,Trypsin) represents low-precision CID spectra of
trypsin digests generated from a sample enriched for phosphopeptides. The blue,
red, and green paths represent spectral types of the spectral datasets used in re-
cent studies by Frese et al. [156], Swaney et al. [143], and Huttlin et al. [157],
respectively. Different combinations of analysis tools were used for different stud-
ies. Frese et al. used an in-house tool for peak filtering, de-isotoping, and charge
deconvolution, Mascot for database search, Percolator for re-scoring, and Rocker-
Box [163] for peptide-level FDR control. Swaney et al. used an in-house tool
for peak filtering, OMSSA [13] for database search, and an in-house tool for for
both peptide- and protein-level FDR control. Huttlin et al. used an in-house tool
for re-calibrating peak masses, Sequest for database search, an in-house tool for
re-scoring, and peptide- and protein-level FDR control. The same datasets were
analyzed by MS-GF+ without using any additional tool using scoring parameters
trained separately for different spectral types.
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Figure 6.2: Two approaches for searching a protein database. (a) MS-GFDB’s
approach to use indices from peptide masses to peptides. (b) MS-GF+’s approach
to use suffix arrays. See Online Methods for details.
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generating an edge label x.
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Figure 6.4: Illustration of the MS-GF+ scoring. A simplified amino acid model
(only two amino acids A and B with masses 2 and 3, respectively) was used.
The peptide ABAA is converted into its Boolean representation P = 010010101.
The spectrum S is converted into a labeled DAG GS. The number in the vertex
represents its label. The color of the edge represents its label (0 for grey and 1 for
black). The vertex i is colored depending on the peptide character i (white for 0
and black for 1). The procedure to compute Score(P,GS) is illustrated. All edges
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four edges with ei,j = pi = pj = 0.
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set 1.008 contributes to the scoring. The spectrum S is given and converted into
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duo (solid) or does not form a duo (dashed) for a fragment mass tolerance 0.01 Da.
A G-spectrum GS is constructed from S ′. The number in the vertex represents its
label. The color of the edge represents its label (0 for grey and 1 for black).
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Figure 6.6: Accuracy of the EFDR reported by MS-GF+ and the FDR via TDA
for LL spectra (a) and HL spectra (b). The factual FDR was used as an estimator
of true FDR. The EFDR is accurate for LL spectra but biased for HL spectra (and
also HH spectra).
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Figure 6.7: Comparison of MS-GF+ and other tools for diverse spectral types.
The numbers of identified PSMs (a-c) or peptides (d) at 1% FDR are shown.
Numbers above bars represent the percentages of increase in the number of identi-
fications for MS-GF+ compared to other tools. (a) Results for the human datasets
with varying fragmentations and instruments. MS-GF+, Mascot+Percolator, and
Mascot results are shown along with the results in [156]. (b) Increase in the number
of identifications due to the availability of high-precision product ion peaks. For
the three human datasets representing HH spectra, MS-GF+, Mascot+Percolator,
and Mascot were run using search parameters for HL spectra. The results of these
searches (denoted by HL) are compared with the numbers of identifications for
the regular searches using search parameters for HH spectra (denoted by HH).
(c) Results for the yeast datasets with varying fragmentations and enzymes. MS-
GF+ and Mascot+Percolator results are shown. (d) Comparison of MS-GF+ and
the results in [143] that used OMSSA along with in-house post-processing tools
for the yeast datasets. The numbers of (unique) peptides at the peptide-level 1%
are shown. In [143], only the number of identified peptides matched to proteins
identified at 1% protein-level FDR was counted while for MS-GF+, the number of
identified peptides was counted regardless of their matched proteins.
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Figure 6.8: Comparison of MS-GF+, Mascot+Percolator, and InsPecT
for the dataset corresponding to (CID,Low,Phosphorylation,Trypsin). The
numbers of identified PSMs of all peptides (left) and phosphorylated pep-
tides (right) at 1% FDR are shown. MS-GF+ was executed twice with
the parameter set for (CID,Low,Standard,Trypsin) (denoted by MS-GF+) and
for (CID,Low,Phosphorylation,Trypsin) (denoted by MS-GF+ (phosphorylation
specific parameters)). Numbers above the bars are the percentages of in-
crease in the number of identifications for MS-GF+ (phosphorylation spe-
cific parameters) as compared to MS-GF+, Mascot+Percolator, and InsPecT.
MS-GF+ outperformed Mascot+Percolator and also InsPecT equipped with
a phosphorylation-specific scoring model. When the scoring parameters for
(CID,Low,Phosphorylation,Trypsin) was used, MS-GF+ identified 9% more PSMs
(12% more PSMs of phosphopeptides) as compared to MS-GF+ using scoring pa-
rameters for (CID,Low,Standard,Trypsin).
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Figure 6.9: Comparison of MS-GF+, Mascot+Percolator for
the datasets corresponding to (CID,Low,Phosphorylation,αLP) and
(ETD,Low,Phosphorylation,αLP). MS-GF+ was executed twice with the
parameter set for (CID,Low,Standard,Trypsin) (denoted by MS-GF+) and
for (CID,Low,Standard,αLP) (denoted by MS-GF+ (αLP-specific parameters)).
Shown on the top of the bars are the percentages of increase in the number of iden-
tified PSMs for MS-GF+ compared to Mascot+Percolator. Mascot+Percolator
performed poorly on these datasets. In contrast, MS-GF+ identified a respectable
number of PSMs.
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Figure 6.10: Running time of MS-GF+ and Mascot+Percolator when NTT=0
(a) and NTT=1 (b). Average running time per spectrum is shown in second. LL,
HL, HH represent LL, HL, and HH spectra, respectively. When NTT=0, MS-GF+
was 80% and 50% faster for LL and HL spectra, respectively, but 30% slower for
HH spectra as compared to Mascot+Percolator. When NTT=1, MS-GF+ was
210% and 40% faster for LL and HL spectra, respectively, but 40% slower for HH
spectra as compared to Mascot+Percolator.
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Figure 6.11: Comparison of MS-GF+ and SpectraST. For the MS-GF+ search,
a database containing peptides in the NIST spectral library was constructed and
searched (denoted by MS-GF+ (NIST)). For the SpectraST search, the NIST
spectral library was searched (denoted by SpectraST (NIST library)). MS-GF+
results for the search against the IPI human database was shown for reference
(denoted by MS-GF+ (IPI)). The numbers above bars represent the increase in
the percentages of the number of identified PSMs for MS-GF+ (NIST) compared
to MS-GF+ (IPI) and SpectraST (NIST library).
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Table 6.2: Database search parameters used for MS-GF+ and Mas-
cot+Percolator searches. The number of tolerable termini (NTT) indicates the
maximum number of peptide termini (0, 1, or 2) that is not consistent with the
specificity of the enzyme. For example, for trypsin, NTT=0 means that only fully-
tryptic peptides are considered in the search. For αLP digests, NTT was set to 2
because the cleavage specificity of αLP was unknown. For other non-tryptic en-
zymes, NTT was set to 1 (instead of 0 for trypsin) because they often produce pep-
tides that are not perfectly consistent with their cleavage specificities. The number
of 13C was set to 1 to correct the error of choosing 13C rather than 12C peak during
the MS1 peak detection. MS-GF+ does not take the fragment mass tolerance as
an input, and rather implicitly assumes 0.5 Da tolerance for all spectra. For HH
spectra, it benefits from accurate product ion peaks using the PRM graph scoring
model (Online Method). MS-GF+ does not take the number of missed cleavages
as an input, and rather allows peptides with any number of missed cleavages. For
all the tools, the decoy search option was enabled for all searches to estimate the
FDR. Note that a large precursor mass tolerance (50 ppm) was used for Mascot
to provide sufficient training data for the Percolator algorithm [156]. Since Perco-
lator gives a penalty to peptide identifications whose parent masses deviate from
the precursor ion masses of the spectra, using a wide precursor mass tolerance
increases rather than decreases the number of identifications. For Mascot searches
for the human datasets, the precursor mass tolerance was set to 7 ppm because
it produces more identifications. For the InsPecT search for the mouse dataset,
the precursor and fragment mass tolerances were set to 2.5 Da and 0.5 Da, respec-
tively, because using a narrower precursor mass tolerance decreased the number of
identifications. To calculate the FDR, the spectral E-value, ion score, and F-score
were used for MS-GF+, Mascot, InsPecT, respectively. For Percolator, instead of
calculating the FDR, we used the q-value reported by Percolator.

Parameter MS-GF+ Mascot+Percolator
Precursor mass tolerance 7 ppm 50 ppm

Precursor mass tolerance (S. pombe) 2.5Da 2.5Da
Fragment mass tolerance N/A 0.6 Da (Low), 0.05 Da (High)

Number of missed cleavages N/A 2
Fixed modification Carbamidomethylation of Cys

Variable modifications (Default) Oxidation of Met, Acety of Prot N-term
Variable modifications (Mouse) Default + Phosph of Ser, Thr, and Tyr

Variable modifications (S. pombe) Default + Pyro-glu of Gln and Glu
Number of tolerable termini (NTT) 0 (trypsin), 2 (αLP), 1 (others)

Number of 13C 1
Protein Database (Human) IPI human (ver. 3.87) + contaminants
Protein Database (Yeast) UniProt yeast (release 2012 02)
Protein Database (Mouse) IPI mouse (ver. 3.87) + contaminants

Protein Database (S. pombe) Uniprot S. pombe
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