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Abstract

Online Display Advertising Causal Attribution and Evaluation

by

Joel Barajas Zamora

The allocation of a given budget to online display advertising as a marketing channel has

motivated the development of statistical methods to measure its effectiveness. Recent stud-

ies show that display advertising often triggers online users to search for more information

on products. Eventually, many of these users convert at the advertiser’s website. A key

challenge is to measure the effectiveness of display advertising when users are exposed to

multiple unknown advertising channels.

We develop a time series approach based on Dynamic Linear Models (DLM), to

estimate the impact of ad impressions on the daily number of commercial actions when no

user tracking is possible. This method uses aggregate observational data post-campaign and

does not require an experimental set-up. We incorporate persistence of campaign effects

and account for outliers in the time series without pre-defined thresholds. We analyze user

conversions for 2,885 campaigns and 1,251 products during six months for model selection.

The current industry practice measures the campaign causal effect on online con-

versions by running a randomized experiment focused on the ad exposures (using placebo

ads). This method ignores other campaign components, including user targeting in market-

places with competitor effects. We propose a novel randomized design to estimate campaign

and ad attribution in marketplaces. We determine the effect on the targeted users using the

xi



Potential Outcomes Causal Model and Principal Stratification. We analyze the impact of 2

performance-based (CPA) and 1 Cost-Per-Impression (CPM) campaigns with 20M+ users

for each campaign. We estimate a non-zero CPM campaign presence in the marketplace

effect (currently ignored by industry). Evidence suggests that CPA campaigns incentivize

targeting of users who buy regardless of the ad (always-buyers).

We propose a user targeting simulator that leverages data from campaign ran-

domized experiments. Based on the response of 37 million visiting users (targeted and

non-targeted) and their demographic user features, we simulate different user targeting

policies. We provide evidence that the standard conversion optimization policy shows sim-

ilar effectiveness to that of uniform targeting, and is significantly inferior to other causally

optimized targeting policies. These results challenge the standard practice of targeting users

with the highest conversion probability.

To guide the user targeting to optimize causally generated conversions, we analyze

the campaign on the conversion probability of the users who click on the ad as a behavioral

feature. We show that designing a randomized experiment to evaluate this effect is infea-

sible, and propose a method to estimate the local effect on the clicker conversions. Based

on two large-scale randomized experiments, performed for 7.16 and 22.7 million users, a

pessimistic analysis shows a minimum increase of the effect on the clicker conversion prob-

ability of 75% with respect to the non-clickers. This evidence contradicts a recent belief

that clicks are not indicative of campaign success.
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Chapter 1

Introduction

1.1 Motivation and Background

According to the Interactive Advertising Bureau (IAB) and PricewaterCoopers

(PWC), internet display advertising revenues in the U.S. totaled US $6.5 billion during the

first six months of 2014. This revenue amount represents 28% of the total online advertising

($23.1 billion) and constitutes an increase of 6% over the $6.1 billion reported over the same

period of 2013. Due to the proliferation of the tracking of online user activity, performance-

based Cost-Per-Action (CPA) campaigns accounted for 65% of the total campaigns. On

the other hand, 34% of campaigns were run under the more traditional Cost-Per-Impression

(CPM) business model1. In this context, determining the effectiveness of an online campaign

in achieving increased user commercial actions is usually employed to give credit to CPA

campaigns. This process is defined as campaign attribution.

Empirical evidence has demonstrated that improved attribution leads to more

1Source: IAB internet advertising revenue report. 2014 first six months’ results. http://www.iab.net/

media/file/IAB_Internet_Advertising_Revenue_Report_HY_2014_PDF.pdf
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Figure 1.1: Online Display Advertising evaluation framework. How can the effectiveness of
display advertising be measured when the user is exposed to various unobservable media
channels?

sales (or conversions) at a lower price for advertisers [80]. Also, a comprehensive survey of

marketers and agencies, performed by Econsultancy and Google, reports that 83% of the

respondents have engaged in attribution for less than two years by 2012 [32]. This gradual

acceptance of attribution methods poses more challenges as firms and advertisers explore

their benefits.

Recent studies show that display advertising often triggers online users to search

for more information about commercial products [3]. Eventually, many of these users suc-

cessfully convert at the advertiser’s website. A key challenge is measuring the effectiveness

of display advertising in such cases. Fig 1.1 shows what a user might see on visiting a site.

Given the number of messages from different advertisers, how should an advertiser attribute

credit for any conversion across multiple unobservable channels and media impressions?

To approximate the campaign effectiveness for thousands of campaigns, routinely

run by large ad networks, treatment evaluation techniques for observational (post-campaign)

studies have been developed and deployed. For instance, Google [22] and Yahoo! [84] have
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developed propensity scores based methods. Similarly, Turn Inc [78] implements a structural

equation-based method by regression analysis of the user channel exposures and conversions.

However, these approaches require user features, which are often missing and incomplete,

and the availability of multiple user channel exposure information. Besides, these methods

require a fixed time window, where ad networks track users and collect measures of interest.

As a result, estimation is aggregated for that time window.

The use of randomized experiments, also known as A/B testing in industry or field

experiments in economics, has demonstrated to be effective to evaluate the marginal effec-

tiveness of marketing campaigns without over-estimation [55]. More importantly, random-

ized experiments guarantee the causal attribution of these campaigns when the experiment

is designed correctly. The standard industry practice to design the randomized experiment

assumes the ad creative is the treatment to evaluate. Thus, the users are randomly sepa-

rated into two groups: study and control. Hence, when a targeting engine selects a visiting

user for ad exposure, the campaign ad is displayed to users in the study group, or a placebo

ad is displayed to users in the control group [87].

Recently, marketing campaigns are increasingly taking place on ad exchange plat-

forms. These platforms facilitate marketplaces where advertising spaces on websites are

bought and sold. Here, supply side platforms (SSP) provide visiting users to a publisher

website, and demand-side platforms (DSP) bid on these opportunities to display an ad to

these individual users in a real-time auction [79]. A survey of 49 media buyers indicates

that 87.8% intended to purchase digital advertising via real-time bidding (RTB). Similarly,

48% of 101 publishers planned to switch to an ad exchange platform by 2011 [31]. Even
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Figure 1.2: Search advertising instance where competitors appear next to state farm brand
keyword.

outside RTB exchanges, ad networks run internal auctions in regular basis [18].

In a competitive marketplace, the mere presence of the focal campaign has a

potential effect on the user conversions (campaign presence effect) by preventing other ads

from being displayed in this slot. As illustrated by Fig 1.2, competitors often target a similar

user population, and consequently the ad slot is valuable. To display a placebo ad in the

control group, the opportunity to advertise in a given ad slot must be consumed. However,

this placebo ad display would not occur had the campaign not existed. Hence, the effect of

the campaign presence in the marketplace represents a drawback of the standard industry

practice of using placebo ads in the randomized design. In the absence of the focal campaign

in the marketplace, other advertisers would have displayed their ads in the available ad
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slots, rather than a placebo ad. That is the relevant campaign counterfactual. Besides,

the external validity of campaign effects estimated in an environment assumed to be free of

competitors, to a marketplace with competitors, is likely to be inaccurate. Because media

buying is performed endogenously in a competitive market, the user targeting becomes

endogenous (or non-ignorable) and complicates the evaluation using placebo ads.

In the online advertising industry, user targeting is one of the most important

decisions in running a campaign. A survey of 100 marketers, agencies, and media plan-

ners indicates that respondents perceive the user targeting and the campaign optimization

capabilities as the main differentiators among ad networks [64]. This importance has moti-

vated the development of a whole research area to manage the campaign ranging from user

targeting to bidding policy development in ad exchanges [18, 43]. Also, online conversion

attribution methods have been developed by industry. These methods include: Last-Touch

Attribution (LTA) and Multi-Touch Attribution (MTA). LTA assigns the conversion credit

to the last campaign exposure (touch point) to a user in the path to conversion. Similarly,

MTA gives credit to the a set of touch points in this path [3].

The deployment of CPA campaigns, which generate revenue to ad networks based

on these industry attribution practices, has produced increasingly sophisticated targeting

engines. However, in these frameworks, credit must be given for an exposed and converter

user even if this ad exposure does not influence the user. Therefore, user targeting de-

velopment has focused primarily on optimizing online conversions by serving ads to the

users who are most likely to convert based on machine learning techniques [1]. Often the

evaluation of these algorithms is based on the prediction power of conversions (area-under-
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the-curve AUC or related methods [66]), which are likely to be not caused by the campaign

[55]. These practices do not guarantee a causal impact optimization and incentivize the

targeting of baseline users [14], those who convert regardless of the touch point (always-buy

users). As a result, current user targeting practices provide limited value to advertisers

when the objective is to increment conversion rates, as opposed to brand advertising via

CPM campaigns.

Identifying user behavioral response features that correlate with causally generated

conversions provides alternative signals to be optimized in the user targeting process. The

user click on a given displayed ad represents one of the earliest behavioral features that

advertisers consider as campaign success. However, the recent belief that user clicks are not

informative of this success is increasingly gaining acceptance in the research community and

industry. Dalessandro et al. (2012) concluded that user clicks do not correlate with user

conversions and that user targeting based on clicks is statistically indistinguishable from

random guessing [28]. These conclusions are drawn based on the power of user clicks to

predict conversions in observational data. However, a large percentage of these conversions

are likely to be unrelated to, and not caused by, the campaign, as it is standard in online

advertising attribution analysis [55].

A more accurate approach is to measure the campaign effect on the conversion

probability of the users who click on the ad (clickers) with a randomized experiment. Based

on this estimation, we can determine the importance of the click in the user targeting

optimization. However, to design such experiment one would need to randomize the users

into control/study groups after finding the clickers. This randomized design is not feasible
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because, the campaign must display the ad to the users of the study and the control groups

to observe the user selection introduced by the click event. Ideally, this user selection needs

to be known before the campaign, or the placebo ad is displayed to randomize the clicking

users properly.

1.2 Dissertation Contribution And Organization

We summarize the main contributions of this Dissertation to be the following:

1. An observational time series approach is proposed to estimate the campaign conversion

attribution for thousands of campaigns based on aggregate conversion and campaign

impression data.

2. We propose a new experimental design to estimate the effectiveness of online display

advertising campaigns in marketplaces. We show that this design eliminates the risk

of selection bias post-randomization for highly optimized performance based CPA

campaigns.

3. We propose a causal inference method to estimate the campaign local average treat-

ment effect (LATE) on the targeted users, and characterize this selection based on

the probability of targeting influenceable users. We find evidence that performance-

based CPA campaigns incentivize the targeting of users who buy regardless of the ad

exposure when compared with impression based CPM campaigns.

4. Motivated by the CPA campaign targeting incentives, we propose to optimize causally

generated conversions (campaign value) in the user targeting process. We propose an
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offline evaluation methodology based on randomized experiment logged data and test

different targeting policies.

5. We present a causal inference method to estimate the ad local treatment effect on the

users who click on the ad. We find evidence that user clicks correlate with causally

generated conversions, which suggests that the targeting optimization process should

incorporate this behavioral signal.

This Dissertation is organized in five parts as follows:

Part I: Background and Context

We discuss Introduction and Related work in this part. Online display advertising

general context and the challenges of campaign attribution are introduced. Also,

causal inference concepts and relevant literature is discussed.

Part II: Observational Analysis: Campaign Evaluation at Scale

A method to estimate the value of display advertising campaigns post-campaign (ob-

servational) is proposed. This approach adjusts for some confounding factors using

the predictions of a baseline Dynamic Linear time series Model. The analysis of thou-

sands of campaigns semi-automatically is achieved by analyzing aggregate campaign

impression and conversion time series only.

Part III: Campaign Attribution based on Randomized Experiments

We develop a dynamic analysis of the campaign conversion attribution based random-

ized experiments and aggregate conversion time series. We propose a novel random-

ized experimental design to model the appropriate campaign counterfactual, which
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includes the effect of the campaign presence in the marketplace. We contrast this

design with current industry practices based on detailed analysis of the Targeted Dis-

play Advertising and Real-Time Bidding in ad networks and exchanges. We propose

a causal inference approach in the Potential Outcomes causal framework, to analyze

and compare the user targeting of two performance-based CPA and one display based

CPM campaigns.

Part IV: From Prediction based to Causal based Targeting

We find evidence that standard user targeting objective of optimizing conversions

incentivize the targeting of users who convert regardless of the ad exposure, and

propose a user targeting offline evaluation based on a randomized experiment logged

data. We present a method to optimize the targeting of causally generated conversions.

Also, we present a causal inference method to estimate the value of the user clicks to

incorporate them as part of the objective function of the targeting process.

Part V: Closing Remarks

We conclude by discussing the business implications of the methods and results we

introduce here. Also, we discuss further research and field studies suggested by the

current Dissertation contributions.

This Dissertation is partially based on the publications: [5, 6, 7, 8, 10, 13]. Additional

publications developed as part of the current Dissertation include: [9, 11, 12, 53].
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Chapter 2

Related Work

According to a literature survey performed by Ha (2008), online advertising as

an advertising medium dates back to 1996, when Berthon et al. (1996) proposed a set of

“success” metrics [47, 15]. This review shows that the majority of the literature before

2008 relied on lab experiments or the analysis of observational data with rudimentary data

management. The author suggests the examination of the economic impact of online ads and

the assessment of their effectiveness, among others, as part of the future research agenda.

The high dependency of the web on online advertising as a business model has

surfaced the need for accurate assessment techniques of online campaigns. In this context,

the advertising industry has developed methods for online conversion attribution. These

methods include Last-Touch Attribution (LTA), Multi-Touch Attribution (MTA) and Al-

gorithmic Attribution. LTA attributes all credit for a user conversion to the last ad viewed

or clicked. Likewise, MTA heuristically split the conversion credit across the touch points

in the path to conversion [3]. Algorithmic Attribution often refers to prediction models
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that measure the correlation of user exposures with sales. These attribution modeling

tools are often well accepted by industry users as providers of data-driven insights [72].

Model driven MTA approaches have been proposed to model interacting channel effects

and their attribution [78, 59]. However, these methods assign attribution credit to every

user conversion-exposure co-occurrence while ignoring the counterfactual response without

exposures. More importantly, they do not attempt to achieve causal attribution.

Online Display Advertising poses unique challenges to measuring the causal effect

of online campaigns on the probability of user conversions. These challenges include small

user conversion propensity (typically in the order of 1 in 10,000 or less [12]), small average

causal effects and campaign lifts [58]. Moreover, a severe user selection bias is introduced by

sophisticated campaign management that targets users and executes the bidding policy in ad

exchanges [66, 24, 43, 18]. The analysis of observational studies (post-campaign) as an attri-

bution tool has been proposed to approximate the causal effect of online ads and overcome

the lack of a baseline in MTA. These approaches are categorized as: propensity-score-based

approaches [22, 84], time-series-based inference [52, 8], and survival-based modeling [62].

Despite enabling the semi-automatic analysis of many campaigns, overall, observational

studies are likely to over-estimate the campaign effectiveness [55]. In recognition of this,

evaluators increasingly rely on randomized experiments to estimate campaign causal effects

[27, 55, 87].

Previous work on online advertising evaluation based on randomized experiments

shows the impact of ad impressions at a web portal on user search activity [55]. This design

randomizes all user visits at ad serving time and does not consider the targeting engine.
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The randomization of user visits limits the power of this randomized design to measure

the effect on short-term observable signals, e.g. user search activity [55, 34]. The main

drawback occurs when a given user is assigned to different treatment arms at various visits.

For instance, the user conversion might take place at the advertiser website several hours

after the multiple user visits to any of the publisher websites.

Current industry practice for campaign evaluation based on randomized experi-

ments is to run a low-budget non-optimized CPM campaign and measure its effectiveness,

which is assumed to hold for a larger budget and optimized CPA campaign [87, 27]. The ex-

perimental design of this practice randomizes users once and keeps them in the same group

for the campaign duration. Also, this experimental framework runs a placebo campaign

with a user targeting equivalent to that of the focal campaign. However, this design does

not consider that the advertiser competes in a marketplace (ad exchange or ad network

internal auction) to secure the publisher ad slot [24, 43]. This practice is standard within

ad networks as well [18]. As a result, there is a selection effect due to the endogenous (non-

ignorable) auction outcome and despite the exogenous (controllable) decision to target a

given user. Therefore, the external validity of CPM campaign effects to CPA campaigns is

prone to inaccuracies due to different user targeting incentives [14]. Also, the effect of the

campaign presence in the marketplace, depicted by Fig 1.2, is not considered.

Test-control interference in marketplaces has been identified before when random-

ized users bid (demand) on scarce products (supply) [16]. The potential induced bias

comes from spillover effects on the product demand and bidding between test-control user

responses to the product supply. We note that in the marketplace of advertisers and pub-
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lishers, where the experimental design randomizes online users, advertisers bid on publisher

ad slots. This framework assumes enough product inventory (ad slots) to satisfy the de-

mand (ads to be displayed). Thus, increasing ad slots demand will have a negligible effect

on the user conversion probability.

In a recent economic literature review, Goldfarb (2014) surveys the online ad-

vertising literature based on the decreasing cost of user targeting [44]. Here, most of the

literature on ad effectiveness based on field experiments evaluates focused targeting prac-

tices [54, 45, 57]. Similarly, the idea of a market target segment in campaign evaluation

using randomized experiments has been addressed previously [34]. In practice, however,

large ad networks target users based on complex user history and behavior with the objec-

tive of targeting converting users for CPA campaigns [1, 25]. Pandey et al. (2011) provide

a comprehensive survey of “effective” targeting practices in terms of the standard objective

of serving ads to the users who are more likely to convert [66]. In a theoretical analysis,

Berman (2013) compares the user targeting of optimized CPA campaigns with the target-

ing of non-optimized CPM campaigns and suggests that CPA campaigns incentivize the

targeting of always-buy users [14]. However, empirical evidence supporting this analysis

has not been reported in the research or industrial literature. Overall, the comparison be-

tween CPA and CPM campaign performance based on their targeting has not been analyzed

thoroughly.

The impact of online advertising on user clicks has been addressed mainly in the

context of Search Advertising and with observational data [23, 60]. In online Display Ad-

vertising, Lewis and Reiley model the campaign effect on clicker conversions by analyzing
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observational data in a differences-in-differences approach, in spite of the availability of ran-

domized data [57]. Dalessandro et al. (2012) perform an analysis to assess the effectiveness

of optimizing user clicks in user targeting based on observational data. This analysis of

observational data tends to report correlations between user clicks and a large amount of

conversions not caused by the campaign [28]. Even when randomized experiments are per-

formed, the user clicks are often discarded due to the lack of effective techniques to model

them in the causal analysis [54].

In the causal inference literature, Potential Outcomes causal model analyzes the

individual potential outcomes for each of the treatments [75]. For two treatment arms, this

framework implies that half of the data is missing because we can never observe a unit

response in both arms. In this causal model, Principal Stratification has been successfully

employed to estimate the treatment effect when a selection bias is unavoidable in a random-

ized experiment [36]. The analysis of randomized experiments with noncompliance, where

the randomly assigned individuals might opt out of the experiment due to treatment side

effect [50, 51], is one of the most successful applications. Similarly, the analysis of right-

censored data due to non-ignorable individual death [76, 37], and the education program

assessment with truncated data due to student drop-out [88] are other problems addressed

by Principal Stratification. A different approach when intermediate variables, such as user

clicks, are observed in the “causal path” is to consider “causal mediation” or indirect effects

[69, 68]. However, Rubin illustrates the risk of biased analysis when indirect effect modeling

does not consider the potential outcomes adequately [74].

Other causal frameworks include the Structural Equation Model [68] and Econo-
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metric Causality [2, 48]. In this Dissertation, we approach the problem using Potential

Outcomes to model post-treatment variables with the use of the experimental data. We

note that the comparison of causal frameworks falls outside the scope of the current Dis-

sertation focus, and we do not address it here thoroughly.
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Part II

Observational Analysis: Campaign

Evaluation at Scale
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Chapter 3

Dynamic Conversion Attribution

Based on Ad Impressions

3.1 Introduction and Problem Context

Recent research on campaign evaluation has focused primarily on two approaches:

running randomized experiments (A/B testing), and bias correction based on user features

for observational data. Based on A/B testing, a detailed method to compare the impact

of user exposure to ad impressions is provided in [56]. Here, the authors verify the effect

of ad exposure to users on their commercial actions. Lewis et al. (2011) also recommend

running randomized experiments by addressing potential over-estimation issues due to user

activity bias [55]. However, A/B testing presupposes that the experiment can be set up

with the availability of tracking cookies to link ad impressions to the commercial actions.

Besides, randomized experiments are often expensive to set up, and they require the display
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of placebo ads. These limitations prevent A/B testing from being deployed at scale for

thousands of campaigns.

The authors of [22] propose to correct the bias in the user selection for ad exposure

in observational studies. However, this approach is widely based on the user features that

are often incomplete. Authors of [29] demonstrate the presence of long term and transient

impact of marketing campaigns on sales. They suggest the concept of persistence or con-

tinuing memory as the actual impact. Since A/B testing and the correction in [22] do not

consider the time lag between ad exposure and conversions, this continuing memory impact

is not properly measured.

An essential requirement for the methods discussed is the use of reliable and stable

tracking cookies. This requirement might not be highly relevant in scenarios where the ad

network measures the signal of interest after a few minutes in the publisher website, as in the

case of click through rates. However, user tracking is particularly important for commercial

actions since the time between campaign exposure of a user and the final user conversion

might be even days [61]. In practice, a large number of web users either reject tracking

cookies outright or frequently delete such cookies. We have identified that approximately

17% of the Advertising.com users are not tracked based on cookies1. The best practice

recommended is to discard those users [49]. Therefore, developing a time series approach,

which incorporates persistence, and relates commercial actions to ad impressions shown

to users with unreliable cookies, constitutes a significant contribution. Although there is

extensive time series research in marketing [35, 67], we are not aware of any research to

estimate dynamic campaign effects for online display advertising without user tracking.

1AOL Research and Development internal memo.
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3.2 Chapter Contribution

We develop an approach to evaluate the impact of online marketing campaigns

which differs from recent literature in three respects:

1. We focus on display advertising, where the actions are clearly commercial actions,

rather than surrogates such as search terms or clicks.

2. We consider the context where user tracking information is not available.

3. The proposed method uses aggregate data and is simple to implement without expen-

sive infrastructure.

We develop a Dynamic Linear Model (DLM) based method to model the impact

of ad impressions on actions [8]. In the absence of user tracking information, we account

for confounding effects by a base time series model. We rely on the prediction power of this

base model to capture the effects of other factors on commercial actions. Unlike query terms

or click through rates, user conversions are not immediately observed after user exposure,

and these are performed in the advertiser website. Thus, estimating this relationship is

challenging and provides the motivation for our work. Our contribution encompasses the

following:

• A time series model to estimate the dynamic effect of ad impressions on commercial

actions.

• A decay factor to model impression effects on actions which automatically provides

different lags.
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• The use of a base time series model of the actions to account for effects not attributed

to campaigns.

• A fully automated approach to process outliers based on t-errors without setting a

pre-determined threshold.

• A logarithmic model to account for the non-linear impact of ad impressions on daily

actions.

3.3 Chapter Assumptions

In this section, we state the main assumptions used in the current chapter. The

results and conclusions of this chapter are valid to the extent that these assumptions are

applicable.

1. A time series base model, which can be set by the analyzer, is assumed to account for

the conversion time series evolution in the absence of advertising campaigns (counter-

factual response).

2. The campaign aggregate dynamic effect on daily online conversions is assumed to be

a transfer function response of the daily number of ad exposures (impressions).

3. An exponentially decaying campaign effect is assumed. The decay rate is fit automat-

ically per product.

4. A dynamic evolving regression factor to account for the effect of the number of daily

impressions is assumed.
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Figure 3.1: (a) Commercial actions and (b) number of impressions through time. X-axis is
the time in dates.

5. For multiple campaigns running at the same time, the campaign effects are modeled

by additive (or superposition) DLMs.

6. A weekly seasonality effect, not attributable to online advertising campaigns, is as-

sumed.

7. Model parameters are assumed to be random, with standard non-informative conju-

gate prior distributions given in Appendices 3.A and 3.B.

8. The prior state distributions of the DLMs developed in this Chapter are multivariate

Normal distributions with zero mean and diagonal covariance matrix.

9. The above model components represent the structure we assumed in this Chapter.

Fig 3.3 illustrates the dependencies between the random variables of this structure in

a graphical model.

3.4 Methodology

This section is organized as follows: we define notation and the DLM. We illustrate

the case of one campaign and discuss the insights of the model. Then, we generalize this
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model to multiple campaigns and show two possible base models to describe commercial

actions when there are no active campaigns. We also present the log-transformation used

in our approach and explain how we handle outliers based on t-errors. Finally, a Bayesian

approach is detailed to fit the model using Gibbs sampling.

3.4.1 Notation and Definitions

Let T be the total number of days we observe commercial actions and impressions

and N the number of advertising campaigns running during the observed period. The

indices: t denotes discrete time in days, c indicates a particular campaign and k refers to

the number of forecast look ahead steps. Let X
(c)
t be the number of ad impressions at

time t for campaign c, and Yt be the number of actions at time t for a given product. Y1:t

represents the vector of [Y1, . . . , Yt].

We define the evolution of a latent state θt to be a stochastic process describing

the underlying behavior of the series. Assuming Yt is usually distributed conditional on

the state θt, and θt is Normally distributed conditional on the previous state θt−1, then we

define:

Yt = F ′
tθt + νt, νt ∼ N(0, Vt),

θt = Gtθt−1 + wt, wt ∼ N(0,Wt),

(3.1)

where Gt is the evolution, Ft is the observation matrix, νt is the observational noise with

variance Vt, and wt represents the state evolution with covariance matrix Wt. This is

referred to as a Dynamic Linear Model (DLM) [85, 63]. Under this representation, we can

update the distribution of θt|Y1:t efficiently in closed form using Kalman Filtering equations

[42, 71]. By choosing Gt and Ft, we can model different types of behavior of the time series.
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Figure 3.2: Time distribution of the last impression delivered to a user before performing
a commercial action for two products. Dotted line represents 95% cumulative probability.
x-axis is the number of days and y-axis the probability mass.

3.4.2 Modeling Campaigns

To model the effect of impressions on the number of commercial actions, we as-

sume a persistence component of campaigns as suggested in previous work [29, 56]. This

persistence modeling implies that impressions will affect the number of sales not only on

the day they are displayed but also days after. To verify this effect in online commercial

actions, we estimate the distribution of the number of days before the last impression that

a user who performs a commercial action saw. We perform this analysis for two campaigns

where user tracking is available. Fig 3.2 shows these distributions. If a user performs an

action at day t, and he or she sees the last impression from a related campaign at day t−k,

then k would be considered for this distribution. Note that for one product, just 0.25 of

the probability mass is assigned to the same date of the action and up to 18 days for the

95% of cumulative probability.

We let ξt be the effect of ad impressions on the number of commercial actions at
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time t. We define the following:

Yt = ξt + νt,

ξt = λξt−1 + ψtXt + w
(ξ)
t ,

ψt = ψt−1 + w
(ψ)
t ,

(3.2)

where λ represents the constant rate of decay of this effect. ψt is the impact per impression

which we allow to be dynamic over the duration of the campaign. We further constrain

λ ∈ [0, 0.88] to have a valid decay rate. This model can be expressed as a DLM as follows:

F ′ = [1, 0], θ′t = [ξt, ψt], w′
t = [w

(ξ)
t +Xtw

(ψ)
t , w

(ψ)
t ],

Gt =



λ Xt

0 1


 , Wt =



Wξ +X2

tWψ XtWψ

XtWψ Wψ


 , Vt = V.

(3.3)

Given the model parameters, (λ, V,Wξ,Wψ) and a prior mean and variance for the latent

state vector θ1 ∼ N(m0, C0), we estimate (θt|Y1:t,X1:t) using Kalman Filtering equations.

The commercial actions evolution modeling of Eq 3.3 represents a transfer response

function of the number of impressions Xt as defined by West and Harrison [85]. This model

allows us to incorporate lagged effects of Xt into future values of Yt+r at the state level. ξt

represent these effects. On the other hand, standard dynamic regression typically integrates

the aggregate effect at the observational level of the DLM [70, 71]. As a result, additional

complexity in the evolution covariance matrix Wt is incorporated when compared to typical

DLMs where this matrix is considered to be diagonal. Since the effect ξt is a function of

the dynamic regression coefficient of impressions ψt and the previous effect ξt−1, a non-zero

covariance term between ψt and ξt (equals to XtWψ) is included in the state evolution.

Similarly, the state variance of ξt depends on Xt and is equal to Wψ +X2
tWξ.
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We note that the model of Eq 3.2 does not include a bias or base model component.

This limitation attributes all the actions to impressions which is not necessarily valid. We

address this issue in section 3.4.3. By defining ξt, we automatically fit the number of

previous days with impact on Yt through λ unlike modeling a fixed lag in autoregressive

models [29].

Typically, multiple campaigns run simultaneously for a given product. Here, we

model each campaign independently and combine their effects linearly. Therefore, for N

campaigns we have:

Yt =
N∑

c=1

ξ
(c)
t + νt,

ξ
(c)
t = λ(c)ξ

(c)
t−1 + ψ

(c)
t X

(c)
t + w

(ξ,c)
t ,

ψ
(c)
t = ψ

(c)
t−1 + w

(ψ,c)
t .

(3.4)

We incorporate an independent rate of decay, λ(c), and a dynamic impression to action

conversion coefficient, ψ
(c)
t , for each campaign. In a similar manner to the analysis of one

campaign, we re-write the model from Eq 3.4 as a DLM, based on the definition of Eq 3.1,

as follows:

θ
′(c)
t = [ξ

(c)
t , ψ

(c)
t ], w

′(c)
t = [w

(ξ,c)
t +X

(c)
t w

(ψ,c)
t , w

(ψ,c)
t ],

W
(c)
t =



W

(c)
ξ +

(
X

(c)
t

)2
W

(c)
ψ X

(c)
t W

(c)
ψ

X
(c)
t W

(c)
ψ W

(c)
ψ


 ,

G
(c)
t =



λ(c) X

(c)
t

0 1


 , F ′(1:N) = [(1, 0)(1), · · · , (1, 0)(N) ],

θ
′(1:N)
t = [θ

′(1)
t , · · · , θ

′(N)
t ], G

(1:N)
t = diag[G

(1)
t , · · · , G

(N)
t ],

w
′(1:N)
t = [w

′(1)
t , · · · , w

′(N)
t ], W

(1:N)
t = diag[W

(1)
t , · · · ,W

(N)
t ].

(3.5)

Finally, we define M (1:N) as the DLM model where we include all campaigns 1, . . . , N in
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the analysis as follows:

M (1:N) = DLM
(
F (1:N), G

(1:N)
t , V (1:N),W

(1:N)
t , θ

(1:N)
t , w

(1:N)
t

)
. (3.6)

3.4.3 Base Model Definition

As discussed previously, model M (1:N) incorporates the effects of all N campaigns

on the number of actions. However, there is no base model to describe the number of

commercial transactions when there are no impressions. Also, the daily action time series

provides prediction capability due to time dependencies of the observations. These aspects

are highly relevant in separating the actions attributed to external factors from those we

attribute to campaigns. Let M (0) be a base model with no campaign contributions. Thus,

we define the full model M (0:N) as follows:

Yt = F̃ ′θ̃t + ν̃t, ν̃t ∼ N(0, Ṽ ),

θ̃t = G̃tθ̃t−1 + w̃t, w̃t ∼ N(0, W̃t),

(3.7)

where:

F̃ ′ = [F ′(0), F ′(1:N)], θ̃′t = [θ
′(0)
t , θ

′(1:N)
t ],

w̃′
t = [w

′(0)
t , w

′(1:N)
t ], W̃t = diag[W (0),W

(1:N)
t ],

G̃t = diag[G(0), G
(1:N)
t ],

(3.8)

leading to:

M (0:N) = DLM
(
F̃ , G̃t, Ṽ , W̃t, θ̃t, w̃t

)
. (3.9)

A key advantage of the modelM (0:M) from Eq 3.9 is that it allows us to incorporate

any DLM to attribute the time series of the actions. Thus, we can include any assumption

about the dynamics of the actions and model the remaining variability of the data by the

impressions. Fig 3.3(a) shows the graphical model for the model M (0:N). For this study,
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(a) (b)

Figure 3.3: (a) Graphical model for multiple campaigns and a base model, M (0:N). (b)
Model for multiple campaigns with outliers processing Mω(0:M).

we test two base models for the time series: a random walk and a weekly seasonal model.

In traditional linear regression, a bias component is used to place the predictive

variable around its expected value. Here, we use a dynamic bias, also known as the random

walk, as the standard base model choice [70]. Thus, we define M
(0)
b :

Yt = θ
(0)
b,t + ν

(0)
b,t , νt ∼ N(0, V

(0)
b ),

θ
(0)
b,t = θ

(0)
b,t−1 + w

(0)
b,t , w

(0)
b,t ∼ N(0,W

(0)
b ).

(3.10)

In Fig 3.1, we observe a seasonal component of the number of actions that synchro-

nizes with the day of the week [11]. Therefore, we define a base model to incorporate this

component, based on the assumption that there are commercial actions produced simply

because of the day of the week. To model this seasonality, we use the Fourier representation

of DLMs [85, 71]. We set the seasonal period to 7, ω = 2π/7, and define two harmonics to
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model this frequency as follows:

F
(0)
s = [1, (1, 0)ω , (1, 0)2ω ], θ

(0)
s,t = [θ

(0)
b,t , θω,t, θ

∗
ω,t, θ2ω,t, θ

∗
2ω,t],

Gω =




cos(ω) sin(ω)

− sin(ω) cos(ω)


 , G

(0)
s = diag[1, Gω , G2ω],

w
(0)
s,t = [w

(0)
b,t , wω,t, w

∗
ω,t, w2ω,t, w

∗
2ω,t],

W
(0)
s = diag[W

(0)
b ,Wω,W

∗
ω ,W2ω,W

∗
2ω].

(3.11)

We refer to this model as M
(0)
s .

3.4.4 Log-Transformation

To relax the assumption of a linear impact of ad impressions, Xt, on actions, Yt,

we use the log transformation for both variables. Assuming ξt = 0 for illustrative purposes,

we consider the following model for one campaign:

Zt = log(Yt), X∗
t = log(Xt),

Zt = θ
(0)
t + ψtX

∗
t + ν̃t, Yt = exp

{
θ
(0)
t + ν̃t

}
Xψt

t .

(3.12)

This model is multiplicative for Yt. If ψt < 1, the effect of ad impressions on actions

decreases as more of them are shown. As shown in Fig 3.6, the daily number of impressions

is more dynamically changing than the number of commercial actions. By assuming this

model, we smooth these changes of the time series of impressions. This smoothing supports

the intuition of steady contributions through time.

Since the logarithm is a monotonic function f(Yt), the median of Yt is the same as

the inverse transform of the median of Zt, f
−1(Zt). In general, the cumulative distribution

for Yt is the same as the cumulative distribution of the inverse transform of the Zt, cdf(Yt) =
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Algorithm 1 Generative Model to Handling Outliers

Draw p|α ∼ Dir(α)

for t← 1 to T do

Draw ηt|p ∼Mult(1, p)

Draw ωt|ηt ∼ Γ(ηt2 ,
ηt
2 )

Set V ∗
t = ω−1

t V

end for

cdf(f(Yt)). This is a crucial property for model fitting, described in section 3.4.6, as we

simply transform X1:T , Y1:T to the new space X∗
1:T , Z1:T for all campaigns and model Z1:T

with M (0:N) as in section 3.4.3.

3.4.5 Handling Outliers in the Model

Given that advertisers collect the commercial action data, there is no control over

this process by the Ad network [61]. As a consequence, very often we observe outliers

or drastic changes in the daily number of actions. These sudden changes could be very

problematic because they move our estimates and consequently increase their variance.

One approach to handling outliers is to give weights to the observations based on

the variance modeled for each output Yt [85]. For this analysis, we use a simplification

of the model presented in [70]. We switch from using the Normal distribution for Yt to

using a t-distribution with a set of degrees of freedom to choose from. Those degrees of

freedom range from highly long-tailed distributions (small number of degrees of freedom)

to approximately Normal distributions (a large number of degrees of freedom). We use the

Normal-Gamma mixture to represent this t-distribution [41].

30



Fig 3.3(b) shows the graphical model for all campaigns with outliers handling. In

this model, all changes are introduced at the observation level with a hierarchical model

to handle an individual number of degrees of freedom for each Yt. Algorithm 1 shows the

generative model for the observational variance when we process the outliers. As illustrated,

we now have an independent variance for each observation. This variance is the product

of a time-invariant V and ωt that we draw from a Gamma distribution with ηt degrees

of freedom. Conditional on ω1:T , we have a DLM model M (0:M) with V ∗
t = ω−1

t V for

t = 1, . . . , T . The possible values for ηt are predefined a priori. We fix these values to be

the set {1, 2, . . . , 10, 20, . . . , 50} whose cardinality equals the dimension of the multinomial

and its Dirichlet prior.

3.4.6 Inferring the Model Parameters

In this section, we provide the details of the model fitting. We assume all pa-

rameters to be random variables and follow a Bayesian approach. We have a set of static

variables (not indexed by time), and dynamic variables (stochastic processes). As obser-

vations, we have the daily number of actions for each product, and impressions for each

campaign. Since we obtain the conditional posterior distribution of each random variable

in closed form, we follow a Gibbs sampling approach. This method provides a set of sam-

ples used to estimate the statistics of interest. Algorithm 2 defines the static and dynamic

variables in addition to the observations and illustrates the sampling procedure we develop.

We refer to the latent variables, θ1:T , in the DLM as hidden states in this section.
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Algorithm 2 Gibbs Sampling Algorithm

Define D1:T =
{
Y1:T ,X

(1:N)
1:T

}

Initial guess Φ0 =
{
λ(1:N),W

(1:N)
ψ ,W

(1:N)
ξ ,W (0), Ṽ

}0

Initial guess Ω0 = {ω1:T , η1:T , p}
0

for s← 1 to N0 +Ns do

Draw θs1:T ∼ p
(
θ1:T |Φ

s−1,Ωs−1,D1:T

)
using FFBS

Draw Φs ∼ p
(
Φ|θs1:T ,Ω

s−1,D1:T

)
using Eqs from Appendix 3.A.

Draw Ωs ∼ p (Ω|θs1:T ,Φ
sD1:T ) using Eqs from Appendix 3.B.

end for

Gibbs Sampling

The main focus to fit the model is to estimate the posterior distribution of the

static variables and hidden states given the observed data. We define:

D1:T =
{
Y1:T ,X

(1:N)
1:T

}
, Ω = {ω1:T η1:T , p} ,

Φ =
{
λ(1:N),W

(1:N)
ψ ,W

(1:N)
ξ ,W (0), Ṽ

}
.

(3.13)

We sample θ1:T |Φ,Ω,D1:T based on Forward Filtering Backward Sampling (FFBS) method

explained below. We provide the distributions to sample from Φ|θ1:T ,Ω,D1:T and Ω|θ1:T ,Φ,D1:T ,

in Appendices 3.A and 3.B respectively.

To process outliers, we sample Ω|θ1:T ,Φ,D1:T based on the generative model de-

tailed in Algorithm 1. Here, conjugate priors are set for ωt, p and a non-conjugate prior

for ηt. Nonetheless, ηt is a discrete random variable and can take only a small number

of values. This constraint on the number of possible values facilitates the estimation of

the normalization constant for ηt|ωt,D1:T to estimate their posterior distribution. By fixing
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ωt = 1 for t = 1, . . . , T in all Gibbs iterations, we obtain the modelM (0:N) without handling

outliers.

FFBS is a method to sample the hidden states θt conditional on the static variables

or parameters in a DLM [70, 20]. This approach an alternative to sample from the joint

random vector θ1:T ,Φ|D1:T . In this framework, depicted in Fig 3.4, samples are generated

backward after filtering conditional on the already generated states as follows:

1. Estimate p(θt|Φ,D1:t) = N(mt, Ct) for t = 1, . . . , T using Kalman Filtering equations

2. Draw θT |D1:T ∼ N(mT , CT )

3. For t = T − 1, . . . , 1 draw θt|θt+1,D1:T ∼ N(ht,Ht)

ht = mt +CtG
′
t+1R

−1
t+1(θt+1 − at+1),

Ht = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct,

Rt+1 = Gt+1CtG
′
t+1 +Wt,

at+1 = Gt+1mt.

(3.14)

The initial state distribution is assumed to be approximately a non-informative prior dis-

tribution: θ0 ∼ N(0,σ20I), where σ
2
0 =1e-12, 0 is a vector of zeros, and I represents the

identity matrix.

In general, by using FFBS we estimate the distribution of the hidden states given

the observations up to time t. Then, we sample the state variables at time T , and conditional

on this value, we sample the state variables at time T − 1 (backward). This procedure

provides a randomly generated sample given the observations up to time T .

Often a question by advertisers is what percentage of actions can be attributed to

campaigns. To address this question, we use an alternative model in which the campaign
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Figure 3.4: FFBS representation. In forward filtering, p(θt|D1:t) for t=1, . . . , T are esti-
mated. In backward sampling, θs1:T |D1:T are sampled recursively from p(θt|D1:T , θt+1) for
t=T − 1, . . . , 1.

effects are constrained to be positive ψt, ξt > 0 in addition to the base model trend [11].

We constrain these components at the time we sample them in the Gibbs iterations. We

use the approach from [73] to draw from a constrained multivariate Normal distribution.

Posterior Random Sample

Given a set of samples of the posterior distribution for the variables, θ1:T ,Φ,Ω,

we use the log-transformation and obtain their empirical distribution. As shown in section

3.4.4, we estimate Z1:T and X∗
1:T from Eq 3.12 for all campaigns. Then, we draw a posterior

distribution sample of Z1:T that we inversely transform to Yt. Thus, no further changes are

necessary to implement the model described.

To evaluate the model fitting, we use the median and 90% credible intervals. We

also evaluate model prediction based on one-step ahead forecasting, Y k=1
t |Dt−1, estimated
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using the samples we generate in FFBS at the filtering stage. Thus, we define:

Ŷt|M
(0:N) ≈ Median(F ′θst ), Ŷt|M

(0:N)
log ≈ Median(exp(F ′θst )),

ω̂t|ωM
(0:N) ≈ Median(ωst ), Ŷ k=1

t |M (0:N) ≈ Median(Y k=1,s
t ),

(3.15)

for s = 1, . . . , Ns Gibbs samples. These estimates are used in section 3.5 and 3.6.1 to

evaluate campaigns and model fitting.

3.4.7 Implementation Details

Numerical issues can cause a naive application of the Kalman filter to produce

matrices C1:T that cannot be legitimate posterior covariance matrices, because they are not

positive definite. This is also a problem in FFBS from Eq 3.14 as we could potentially get

negative semi-definite matrices and singular matrices R−1
t+1 [70]. To overcome these issues,

we use singular value decomposition (SVD) based approaches from [83] for filtering and

[89] for backward sampling. During forward filtering, when a campaign becomes active we

augment the state with the new campaign. Then, we set a large prior variance, and zero

mean for this new campaign’s state as if it were at the beginning of the time series. In the

transition from active to inactive, we take the marginal distribution of the remaining active

campaigns and base model by discarding the inactive campaign covariances.

3.5 Campaign Evaluation

In the absence of user tracking information, we account for confounding effects

in campaign evaluation by a base time series model. This time series model accounts for

commercial action attribution when campaigns are not active (control). In this framework,
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we present two campaign evaluation approaches. We interpret the model and evaluate the

campaign performance dynamically. Also, we use the variability attributed to a campaign

as a whole. This attributed variability is based on the dynamic model fitting with and

without the campaign of interest.

To interpret the model for campaign evaluation, we estimate the proportion of

actions attributed to a campaign as follows:

Y
(c)s
t |M (0:N) = F ′θst − F

′¬cθ¬cst , π
(c)s
t = Y

(c)s
t /Yt,

Y
(c)s
t |M log(0:N) = exp(F ′θst )− exp(F ′¬cθ¬cst ).

(3.16)

Here, θ¬cs are the posterior state samples attributed to the base model and all campaigns ex-

cept campaign c. ForM (0:N) this is the same as Y
(c)s
t = ξ

(c)s
t . Nonetheless, for log-transform

model M log(0:N) this is not the case. This measure provides the expected difference at-

tributed to campaign c, respect to other campaigns and confounding effects. Here, we have

daily samples of the campaign effects π
(c)s
t .

We also estimate the variability attributed to a given campaign, R2(c), by fitting

the model without campaign c and calculating the difference with the full model. This

approach measures the improvement in model fitting by campaign impressions. We estimate

this variability attribution with respect to the data variance, the base model error variance,

and error variance of the model with all campaigns except this campaign c as follows:

R2(c|var(Yt)) =
MSE(M (0:N¬c))−MSE(M (0:N))

var(Yt)
,

R2(c|M (0)) =
MSE(M (0:N¬c))−MSE(M (0:N))

MSE(M (0))
,

R2(c|M (0:N¬c)) = 1−
MSE(M (0:N))

MSE(M (0:N¬c))
.

(3.17)

Here, MSE stands for the mean squared error. These metrics estimate the variability

attribution of campaign c given that all other campaigns are present with respect to: the

36



data variance var(Y ), the base model M (0), and full model without campaign c, M (0:N¬c).

For these measures, we do not process outliers since this process weights the observations

based on how they deviate from the others. Given that the model is run multiple times to

estimate MSE for M (0) and M (0:N¬c) these outliers are estimated differently.

3.6 Validation and Results

In this section, we describe the model fitting evaluation metric, data description

and settings, and experimental results. We compare several versions of our model and

discuss each of its components. Also, we compare our results with A/B testing. This

comparison with results from randomized experiments is the standard approach used to

evaluate the effects of marketing campaigns when controlled experiments can be run, and

users can be tracked. Finally, we validate our model with a public synthetic dataset.

3.6.1 Model Fitting Evaluation

To measure model fitting, we use the mean squared error (MSE) per product

time series. This approach provides a distribution of product MSEs. Then, we take the

average MSE over products for model selection. However, since the product conversions

are different in nature, ranging from email subscriptions to actual economic transactions,

the time series of commercial actions have different central level and variability for various

advertisers. Thus, we evaluate the model fitting base on the mean relative squared error
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(MRSE). Given the modelM with fitted Ŷt and ω̂t we have for each product in the dataset:

MRSEf (M) = 1
T

∑
t ω̂t|M

(
Yt−Ŷt|M

Yt

)2
, Yt > 0,

MRSEfω=1 (M) = 1
T

∑
t

(
Yt−Ŷt|M

Yt

)2
.

(3.18)

This measure represents the mean squared error proportion relative to the observed Yt. As

a result, MRSE is normalized across different scales of the number of daily actions and

eliminates any bias to high volume conversion series in the fitting evaluation. We provide

these two evaluations given that our model processes outliers. If some outliers produce

large errors for MRSEω=1, then we might under-estimate the model fitting even though

this is accounting for these sudden changes correctly. To evaluate model prediction, we use

one-step-ahead forecast estimates Ŷ k=1
t to calculate MRSE, denoted as MRSEk=1.

3.6.2 Data Description and Settings

For this study, we analyze all the transactions for 2, 885 marketing campaigns

associated with 1, 251 products during six months, from January 1st to June 31st, 2011. We

aggregate the daily actions and impressions by products and by campaigns. In general, a

campaign is associated with a product when this is set up. We use these associations to relate

actions with impressions. These relations suggest multiple campaigns targeting actions

for the same product, and campaigns targeting actions for multiple products. In these

experiments, we measure the performance of a campaign for each product independently.

We define a 30-second threshold as the minimum time between two actions for the same

user. This constraint prevents multiple clicks for a single action from being counted several

times. We use N0 = 1000 samples for burn-in and Ns = 4000 for the posterior distribution.
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(a) (b)

Figure 3.5: (a) Model fitting and (b) proportion of actions attributed to campaign in Fig
3.1. X-axis is time in dates.

3.6.3 Experimental Results

We are not aware of other approaches in the literature to estimate the campaign

effects of online display advertising without user tracking. Thus, in this section we compare

different variants of our model, based on model fitting and prediction. We evaluate the base

model power by testing two models: random walk, and weekly seasonal model. The impact

of the log transformation is evaluated based on fitting and prediction power. We also show

qualitative results to analyze the model performance and the outlier handling. To illustrate

the power of campaign impressions, we evaluate the fitting improvement provided by the

incorporation of each campaign using R2 as discussed above in section 3.5.

Qualitative Results

Fig 3.5 shows the model fitting and proportion of actions attributed to ad impres-

sions shown in Fig 3.1. For this example, we use the model Msωlog (we process outliers,

use the log transformation, and assume the weekly seasonal base model). As shown, the

seasonal base model seems to be a good choice given the evident weekly periodicities in com-

mercial actions. We observe that the method attributes the peak in daily actions during
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(a) (b)

(c) (d)

Figure 3.6: (a) Commercial actions. (b) Ad impressions. (c) Median weights fitted for
outliers. (d) Model fitting with 90% credible intervals. X-axis is the time in dates.

Table 3.1: Model variants used for experimentation.

Model Process

Outliers

Aggregate

Camp

Log

Transform

Positively

Constrained

Mω X

MωAgg X X

Mω+ X X

Mω+Agg X X X

Mω log X X

Mω logAgg X X X

Mω log+ X X X

Mω log+Agg X X X X
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Table 3.2: Model evaluation results averaged over products. MRSE from Eq 3.18 is used for:
fitted errors MRSEf , one step forecast errors MRSEk=1, non-weighted (ωt = 1, t = 1 : T )

fitted and one step forecast errors MRSEfω=1, MRSEk=1
ω=1. 95% credible intervals are shown.

Estimates scaled by 10−2.

Random Walk Base model M
(0)
b , MRSE

Model Fitted Forecast Fitted Forecast

ωt = 1 ωt = 1

Mω 7.91± 1.85 61.77± 7.13 14.87± 2.40 72.13± 7.58

MωAgg 9.79± 2.73 57.65± 8.75 16.63± 3.60 68.21± 9.31

Mω+ 15.78± 3.15 59.99± 8.06 21.79± 3.56 65.97± 7.89

Mω+Agg 14.86± 2.74 53.41± 6.53 21.44± 3.15 62.03± 6.55

Mω log 1.33± 0.32 13.25±2.21 5.49± 1.02 20.00± 2.57

Mω logAgg 1.48± 0.32 11.76±2.42 5.75± 1.03 18.52± 2.76

Mω log+ 1.87± 0.37 13.87± 2.77 5.70± 1.15 19.39± 3.08

Mω log+Agg 1.84± 0.42 12.70± 2.87 7.33± 1.52 21.10± 3.61

Weekly Seasonal Base model M
(0)
s , MRSE

Mω 8.26± 2.13 61.13± 7.34 12.65± 2.11 70.75± 7.67

MωAgg 8.06± 2.00 58.56± 7.05 13.40± 2.47 71.47± 7.87

Mω+ 13.69± 3.23 62.11± 7.85 16.34± 3.10 68.55± 8.11

Mω+Agg 10.32± 2.15 59.39± 7.06 14.18± 2.47 66.14± 7.33

Mω log 0.72±0.14 15.51± 2.81 3.92±0.92 21.20± 3.12

Mω logAgg 0.64±0.13 12.45± 2.20 4.43±1.05 19.14± 2.83

Mω log+ 1.48± 0.27 15.07± 2.44 4.22± 0.95 19.39± 2.79

Mω log+Agg 1.20± 0.22 15.31± 2.43 3.24±0.74 19.16± 2.81

the first half of the time series to a gradual daily increase in the number of impressions.

Fig 3.6 shows the conversions and impressions series with the model fitting for
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other product. Similarly to Fig 3.5 and 3.1, there is a clear weekly seasonal component in

the action series. In contrast to this previous instance, outliers are evident. The median of

the posterior distribution for weights, ω̂t, is also shown. The observation Yt is likely to be

an outlier when ω̂t is low. If ω̂t is zero, Yt is treated as a missing value. Thus, if we observe

sudden changes in the action series and these are not present in the impression series, the

outlier handling weights them automatically.

Quantitative Results

To provide a review of the model, we test different variants and discuss the benefits

of each component. Table 3.1 shows the various variants of the model we run. We incor-

porate the processing of outliers to interpret the elements of the model and estimate the

actions attributed to impressions. Model MAgg stands for the model where we aggregate

the impressions from all campaigns associated with a given product. Our goal is two-fold:

1)Modeling the impact of the set of campaigns as a whole on actions. 2)Hierarchically

disaggregating campaigns to evaluate the effects of each one in detailed. In practice, these

models are deployed in sequence.

Table 3.2 shows the results for the models based on fitting and prediction. Fore-

cast errors for positively constrained models M+ should not be interpreted in the same

manner as the other models because we estimate these errors in the filtering step of FFBS.

In general, performance estimates based on MRSE instead of MRSEω=1 are more robust be-

cause they diminish the effect of the outliers on the performance measure. When comparing

the model performance for the aggregated campaigns versus modeling them separately, we

observe comparable performance. We observe better performance when we include the log
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Table 3.3: Averaged campaign evaluation results π̄(c). Distribution of campaign effect
with positive and negative 90% credible intervals (±), positive intervals (+), and negative
intervals (-).

Model % attributed Campaign Effect

Interval Sign

(+) (-) (±)

Random Walk Base model

Mω 14.07 ± 1.36 23.13 0.71 76.09

MωAgg 19.07 ± 2.63 40.96 2.01 57.03

Mω log 21.31 ± 1.63 18.65 0.58 80.71

Mω logAgg 24.75 ± 2.40 34.44 1.31 64.25

Weekly Seasonal Base model

Mω 10.39 ± 1.23 19.66 1.31 78.96

MωAgg 16.10 ± 1.91 34.33 1.56 64.11

Mω log 19.84 ± 1.64 14.83 0.60 83.98

Mω logAgg 21.09 ± 2.28 25.24 0.36 73.18

transformation consistently. This performance result clearly suggests that the relationship

between actions and impressions is not linear. Comparing the two base models analyzed, we

observe that weekly seasonal base model results show better fitted MRSE than the random

walk. However, the predictive power of both models is equivalent. Based on fitted MRSE,

the performance of the constrained models is lower than without this constraint consis-

tently. We expect this performance since the imposed constraint might not be optimal for

the MRSE measure.
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Table 3.4: Attributed variability results.

RandWalk M
(0)
b WeekSea M

(0)
s

Measure Mean Std Dev Mean Std Dev

R2(c|var(Yt)) 0.1241 0.2704 0.0667 0.1750

R2(c|M (0)) 0.2804 0.3827 0.3002 0.3701

R2(c|M (0:N¬c)) 0.4967 0.4114 0.4703 0.3729

Table 3.3 shows the campaign performance based on the models fitted. We observe

that the models with the best fitting show the largest percentage of campaigns with positive

and negative values in the 90% credible interval of the impressions effect on actions. These

results illustrate the challenge of discarding the zero effect of advertising on online conver-

sions, when compared to the effect on other signals as online search activity [55]. Table

3.4 depicts the mean and variance over all the campaigns, for the variability attribution

based on R2 (Eq 3.17). This attribution metric represents the fitting power improvement

provided by the incorporation of campaign c. We observe that the variability attribution

with respect to the base model residuals R2(c|M (0)), and the other campaigns residuals,

R2(c|M (0:N¬c)), are of similar values. However, the variability attribution with respect to

the variability in the data is lower for the weekly seasonal base model. This variability lower

attribution is because, under the seasonal base model, the campaign effect varies based on

the day of the week.
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3.6.4 Comparison with A/B Testing

One of the motivations for a dynamic model is to reduce the impact of time as a

confounder on campaign evaluation. In this context, running a randomized experiment to

test the effects of a campaign (A/B testing) has been suggested recently in the context of

online advertising [55]. In this section, we compare our results, assuming no user tracking,

with A/B testing for two campaigns in the UK during 27 days. These are independent

campaigns run for independent products. For campaign 1, we use daily action data from

5 previous months, in addition to the duration of the campaign, in the estimation. For

campaign 2, we only use the 27 days of action and impression data. Unlike the experiments

presented in [55], we choose the users based on a targeting algorithm (considered to be a

black box). We then randomly decide whether or not to expose the user to the ad impression

to measure the effect on the targeted population.

We count the users who are first exposed to the campaign and later perform the

action of interest (exposed and actor, NAct
Exp) or not (exposed and non-actor, N¬Act

Exp ). For

the control group, we select the users who are targeted first but the ad is delivered to them

randomly. We find if the user performs an action (actor and non-exposed, NAct
¬Exp) or not

(non-actor and non-exposed, N¬Act
¬Exp). We use standard Beta conjugate prior distribution

to estimate the distribution of the probability of action given the data. Thus, the posterior

distribution becomes:

P (η1|· ) ∝ P (η1)η
NAct

Exp

1 (1− η1)
N¬Act

Exp = Beta(1 +NAct
Exp, 1 +N¬Act

Exp ). (3.19)

Here, η1 is the likelihood of a user acting given exposure and Beta is the Beta distribution.

Similarly, we estimate the posterior distribution for the probability of action given non-
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Table 3.5: A/B testing comparison with the attribution given by Mωlog and Mωlog+ for
the RandWalk model.

Method Campaign 1 Campaign 2

Low Med High Low Med High

A/B 0.009 0.199 0.458 -0.034 0.115 0.312

Mωlog 0.076 0.289 0.421 -0.049 0.347 0.809

Mωlog+ 0.133 0.272 0.623 0.094 0.180 0.519

exposure η0. We estimate the change in probability of action respect to the control group

γA/B=(η1−η0)/η0. This estimation is achieved by sampling from the distribution in Eq 3.19

for η0 and η1, and calculating the distribution for the statistic γA/B. For our method, we

estimate the mean increase of actions attributed to the campaign respect to those attributed

to other campaigns and the base model.

Table 3.5 shows the results for A/B testing and our method. We note that credible

intervals in A/B testing are not tight as the probability of action is small, and the actions

are sparse. Even when we run a randomized experiment, the sparsity of user conversions is

an issue when we measure the campaign effects with a proper targeting algorithm as in a real

scenario. We have one positive effect campaign in the 90% credible interval and one leaning

towards positive effect in this interval. We compare these results with those obtained by

our method incorporating the log transformation method and handling outliers. We obtain

similar credible interval to that of A/B testing for Campaign 1. For Campaign 2 the zero

effect is included in the 90% credible intervals but the effect is also leaning towards positive

values. For positively constrained contributions, we have similar estimates for Campaigns 1

and 2, but with a larger credible interval. We do not compare with the weekly seasonal base
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model as few daily data points (4 weeks of data) are used. Overall, the median estimates

for the two variants tested fall in the credible interval of A/B testing, except Mωlog for

campaign 2. Similarly, the median estimates for A/B testing fall in the credible intervals of

the proposed method. Larger intervals are the major difference between methods.

3.6.5 Synthetic Data Evaluation

To test our method with a ground truth, we use a public synthetic dataset,

PROMO [86]. This dataset assumes a multiplicative model and different kinds of season-

ality in sales not generated by campaigns. As only active/inactive indicators are available

for each day, we incorporate inactive campaign days with zero impressions and active days

with a fixed number of impressions. We use products with less than 6 relevant campaigns

with the first 365 days of data. For this study, we consider 39 campaigns and 14 products.

Employing our method, we recover the days the campaigns are active based on ability to

discard the zero daily effect of the 90% credible interval, ξ
(c)
t . We estimate the following:

effDays Effective campaign days detected correctly

NeffDays Non-effective campaign days detected correctly

effDays-Prod Effective campaign days detected correctly per product

NeffDays-Prod Non-effective campaign days detected correctly per product

effCamp Effective campaigns detected correctly

Table 3.6 provides the results for the PROMO dataset. We detect around 85% of effective

campaigns. As a baseline, the winning team of the competition, which generates this
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Table 3.6: Results of Mωlog and Mωlog+ for the RandWalk base model in the PROMO
dataset.

Method effDays NeffDays effDays NeffDays effCamp

Prod Prod

Mωlog 0.633 0.833 0.732 0.862 0.846

Mωlog+ 0.636 0.787 0.735 0.833 0.821

dataset, reported 78% of recall [86]. In this context, recall is equivalent to effCamp. We

also detect 73% of the days a campaign is active per product. Note that in this scenario,

there is no user tracking. Therefore, the use of A/B testing, or any population-based

method, is not possible.

We have presented a time series based approach to measure the effects of online

display marketing campaigns when user tracking is not available. We have modeled the

impact of ad impressions on commercial actions through a DLM and provided daily effect

estimates. We have incorporated persistence of campaign effects, through a decay factor,

and accounted for outliers automatically without any threshold. We have presented several

different campaign evaluation measures: 1)R2, the standard measure in marketing. 2)The

linear model typically assumed in regression analysis. 3)The dynamic bias base model, the

standard choice in regression. 4)Positively constrained campaign impact. Although some

measures perform better than others under certain circumstances, they are intended to

provide a spectrum of choices for the practitioner at the time of evaluating a campaign.

Nonetheless, we have found that a model in the log-scale is more effective in representing

the relationship between ad impressions and commercial actions. Results indicate that a

seasonal base model will give less attribution to campaigns.
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Despite being able to estimate the campaign attribution at scale for thousands of

campaigns, multiple factors might potentially confound the campaign attribution results.

Thus, combining randomized experiments and the dynamic analysis of campaign effects

proposed in this chapter enables us to estimate the campaign causal attribution at different

points in time. We provide this methodology and analysis in Chapter 4.

Appendix

3.A Sampling distributions for Φ

We assume approximate non-informative priors for Φ. IG(α, β) represents Inverse

Gamma distribution with shape α and rate β. TN(m,C, a, b) refers to the Normal dis-

tribution truncated at [a, b]. T c0 and T cf represent the start and end times of campaign c.

T c=T cf − T
c
0 +1. For priors, [αv0, α

(0)
w0, (αξ0, αψ0)

(1:N)]=0.5; [βv0, β
(0)
w0 , (βξ0, βψ0)

(1:N)]=10−6.

Thus, the sampling distributions become:

Ṽ ∼ IG(αv , βv), αv = αv0 +
T−1
2 ,

SSy =
∑T

t=1 ωt(Yt − F̃
′θt)

2, βv = βv0 +
1
2SSy,

(3.20)

W (0) ∼ IG(α0
w, β

0
w), α0

w = α0
w0 +

T−2
2 ,

β0w = β0v0 +
1
2

∑T−1
t=1 (θ

(0)
t+1 −G

(0)θ
(0)
t )2,

(3.21)

W
(c)
ξ ∼ IG(α

(c)
ξ , β

(c)
ξ ), α

(c)
ξ = α

(c)
ξ0 + T c−2

2 ,

ξ̂
(c)
t+1=λ

(c)ξ
(c)
t +ψ

(c)
t+1X

(c)
t+1, β

(c)
ξ = β

(c)
ξ0 + 1

2

∑T c
f
−1

t=T c
0
(ξ

(c)
t+1 − ξ̂

(c)
t+1)

2,

(3.22)

W
(c)
ψ ∼ IG(α

(c)
ψ , β

(c)
ψ ), α

(c)
ψ = α

(c)
ψ0 +

T c−2
2 ,

β
(c)
ψ = β

(c)
ψ0 + 1

2

∑T c
f
−1

t=T c
0
(ψ

(c)
t+1 − ψ

(c)
t )2,

(3.23)
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λ(c) ∼ TN
(
m(c), C(c), 0, 0.88

)
,

m(c) =

∑Tc
f
−1

t=Tc
0
(ξ

(c)
t+1−ψ

(c)
t+1X

(c)
t+1)ξ

(c)
t

∑Tc
f
−1

t=Tc
0
(ξ

(c)
t )2+1

, C(c) =
W

(c)
ξ

∑Tc
f
−1

t=Tc
0
(ξ

(c)
t )2+1

.
(3.24)

We truncate the rate of decay λ to [0, 0.88] which is equivalent to [0, 5.44] days for

the effect to decay by 50%. Note from Eq 3.20 that ωt weights the squared difference in the

observation variance.

The Inverse Gamma prior distribution of the variance parameters that we assume

considers a prior sample size of 1 (α = 0.5), and an approximately negligible prior sum-of-

squared errors (β = 10−6). This prior distribution choice is a proper conjugate prior and

guarantees that the posterior distribution is proper. The effect of the prior distribution

of the observational variance on the posterior fitting of the attribution results is negligible

because of the series length (six of months of daily observations, T = 182). The effect

of the prior choice on the fitting of the campaign-specific variance parameters depends on

the duration of the campaign. We find that the impact of this prior distribution is not

significant as long as the model is observable. For the current model, a campaign should be

active at least for four days with non-zero impressions given that other campaigns and the

base models are observable.

3.B Sampling distributions for Ω

We sample Ω|θ1:T ,Φ,D1:T based on the generative model in Algorithm 1. Γ(α, β)

is the Gamma distribution with shape α and rate β. We use a Dirichlet prior, α=1, for p.
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This procedure leads to the following sampling distributions:

ωt ∼ Γ(αω, βω), αω = ηt+1
2 , βω = 1

2 Ṽ
−1(Yt − F̃

′θt)
2, (3.25)

ηt ∼ p(ηt = i), p(ηt = i) ∝ Γ(ωt|
i
2 ,

i
2)pi,

(3.26)

p ∼ Dir(α+Ny), Ny = [Ny1, . . . , NyL]
′, Nyi =

∑T
t=1(ηt = i). (3.27)

We set ηt to be {1, 2, . . . , 10, 20, . . . , 50} whose cardinality, L, equals the dimension

of the multinomial and its Dirichlet prior. We note that the prior distribution of ηt (the

number of degrees of freedom of the t-distributed weighted errors) is not a conjugate prior.

However, given that the number of possible values for ηt is countable and small, we sample

ηt from Eq 3.26 using inverse transform sampling [30].
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Part III

Campaign Causal Attribution

based on Randomized Experiments
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Chapter 4

Dynamic Causal Attribution: An

Aggregated Approach

4.1 Introduction and Problem Context

The allocation of a given budget to online display advertising as a marketing

channel has motivated the development of statistical methods to measure its effectiveness

accurately. The use of randomized experiments, also known as A/B testing in the industry,

has demonstrated to be effective to evaluate marketing campaigns without over-estimating

their effects [55, 12]. These methods require a time window where users are tracked, and

the metrics of interest are collected. As a result, the estimation is aggregated for that time

window. This aggregation is a limitation as often sales are affected by seasonal effects.

For instance, detecting which days of the week a given campaign is more effective provides

insights to understand and improve the campaign.
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4.2 Chapter Contribution

We propose a time series approach to estimate the effects of marketing campaigns

on the daily number of sales or conversions. We consider the randomized design proposed by

Barajas et al. (2012) in targeted display advertising [12], which is detailed in Chapter 5 [7].

In this framework, users are randomized into control and study groups before any decision

has been made in the targeting process, as in the case of the standard Intention-to-Treat

effect estimation [50].

We aggregate the daily number of conversions over all the users and consider these

sales time series for the control and the study groups. Fig 4.3 shows the observed sales

series for both treatment groups of two campaigns. We decompose these series jointly into

weekly and trend components using Dynamic Linear Models (DLM) [70]. Based on this

framework, we infer the daily mean causal effect as the sales trend differences between both

series. We model both series jointly and estimate the average causal effect directly. We

smooth effects during the sales evolution diminishing the sparsity issues of online sales.

4.3 Chapter Assumptions

In this section, we state the main assumptions used in the current chapter. The

results and conclusions of this chapter are valid to the extent that these assumptions are

applicable.

1. We refer to tracking cookies as users in the experimental design and estimation. We

consider stable user cookies born before the campaign starts and that are active in

the entire ad network.
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2. The treatment assignment is assumed to be independent of the treatment effect, i.e.

random assignment.

3. We do not consider interference or spillover effects between control and study groups.

User interference might occur, but the impact of this interference on the user conver-

sion probability is assumed to be negligible.

4. We assume a DLM to model the evolution of daily number of conversions for both

treatment groups. The conversion time series and the latent evolving state are as-

sumed to be Normally distributed random variables.

5. We assume that both control and study groups share a common background conversion

series evolution. Thus, we consider the causal effect of the series trend component

only.

6. The prior state distribution of the DLM developed in this chapter is a multivariate

Normal distribution that is fitted automatically by maximum likelihood estimation.

7. The above model components represent the structure we assumed in this Chapter.

Eq 4.1 illustrates the model equations of this structure.

4.4 Methodology

We define yctt and ystt as the total number of online conversions observed for users in

the control and study groups respectively. We model both series jointly and assume a weekly

seasonal component to be the same for both groups. Thus, we analyze the campaign effects

on the sales trend only. We assume a latent space model, using a DLM, where we model a
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Figure 4.1: Dynamic linear model assumed for campaign attribution. This model assumes
a background base model shared by both control and study treatment groups. We consider
the dynamic campaign attribution at the sales trend level.

seasonal and trend sales components for both treatment groups at the state evolution. We

define:

yctt = F ′(0)θ
(0)
t + F ′(tr)θ

ct(tr)
t ,

ystt = F ′(0)θ
(0)
t + F ′(tr)θ

ct(tr)
t + F ′(tr)θ

st(tr)
t .

(4.1)

θ
(0)
t represents the state of a shared (background) base model, which we assume to be a

weekly seasonal model. θ
ct(tr)
t is the trend model for the control group, and θ

st(tr)
t is the

difference in sales trends attributed to the campaign. F (0) and F (tr) represent observational

matrices to model the trend and the base components respectively. This model is depicted

by Fig 4.1.

We consider the case of unbalanced probabilities of user assignment to the study

group z = 1, and to the control group z = 0, which the randomized design fixes. We write

this model as a 2-D DLM as follows:

Yt = F ′θt + νt, νt ∼ N(0, V ),

θt = Gθt−1 + wt, wt ∼ N(0,W ),

(4.2)
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where:

Yt = [yctt , y
st
t ]

′, θt = [θ
ct(tr)
t , θ

st(tr)
t , θ

(0)
t ]′,

F ′=



p(z = 0) 0

0 p(z = 1)


×



F ′(tr) 0 F ′(0)

F ′(tr) F ′(tr) F ′(0)


 .

(4.3)

We set F (tr) and F (0) to model a random walk trend and a weekly seasonal component. We

use the Fourier representation for two harmonics defined defined by Eq 3.11 of Chapter 3.

Similarly, G is constructed as the superposition of the basic components assumed. Thus,

these matrices are fixed based on these simpler models1. This representation allows us to

model the expected trend difference between the treatment groups in the evolution. Also,

we enforce the seasonal base model, in this case, a weekly seasonal component.

The parameters of the model of Eqs 4.2 and 4.3 that need to be fitted are the

observational and evolution covariance matrices {V ,W}, and the initial state prior distri-

bution, {m0, C0} where θ0 ∼ N(m0, C0). Thus, we define the model parameter set to be

Φ = {V,W,m0, C0}. To guarantee a unique optimal fitting of the parameters, we consider

the matricesW and V to be diagonal. We calculate the Maximum Likelihood (ML) estimate

of these parameters using an Expectation-Maximization (EM) approach [42]. Given the pa-

rameters Φ = {V,W,m0, C0}, we estimate the distribution of the latent states P (θt|Y1:T )

for t = 1, . . . T using the Kalman filtering and backward smoothing equations (E-step). We

then optimize the augmented likelihood after replacing the expected values for each state

(M-step). For details of the optimization see [42]. These steps are performed iteratively

until convergence. Figure 4.2 illustrates this EM-based fitting process.

Given the ML estimates Φ∗, we smooth the time series to calculate the expected

1See [70] pages 89-95 for the random walk trend, and 102-106 for the Fourier seasonal models to set these
components.
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Figure 4.2: EM iterations used to calculate the Maximum Likelihood estimator of the DLM
model parameters where Φ = {V,W,m0, C0}.

causal trend difference attributed to the campaign. Fig 4.3 shows the trend component fitted

for the study group for two campaigns. We estimate the causal lift (CLt) as the percentage

change in sales trends, due to the campaign, with respect to the control trend: CLt =

100 × F ′(tr)θ
st(tr)
t /F ′(tr)θ

ct(tr)
t . We use the Delta method to approximate the distribution

of the ratio of two Normal random variables [21]. We set the initial parameter values of

the EM fitting process randomly. We run the model multiple times with different random

initialization values without significant changes in the average attribution results.

4.5 Results

Fig 4.3 shows the results for two real campaigns. As illustrated, the attribution

is not evident from the observed data. This lack of clarity of the campaign attribution is a

consequence of the seasonal component that affects both series, and typical noisy conversion

data.
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(a) (b) (c)

Figure 4.3: Dynamic Causal Attribution for Campaign 1 (top) and Campaign 2 (bottom).
(a) Observed conversions adjusted based on p(z) (y-axis represents the number of con-
versions). (b) Series trend fitted for the study group (y-axis represents the number of
conversions). (c) Dynamic causal attributed lift CLt in percentage (%). x-axis represents
days.

We observe from the causal lift evolution that there are positive and negative effects

of Campaign 1 at different times. Even when the observed data suggests this positive impact,

comparing point by point is highly problematic, and it does not provide any statistical

support. This behavior shows a campaign with immediate effects where at the beginning of

the campaign users wait to buy, probably to survey the competition. Then, the campaign

effects peak to fade gradually to the prior campaign sales level. Thus, no significant brand

advertising effect is observed in the short term.

For Campaign 2, positive attribution results are evident from the observed data

towards the end of the series. As a consequence, the causal campaign lift shows an increasing

tendency. Note that even when several points of the study series are greater than those in the
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Table 4.1: Mean attribution lift (%) estimated from the trend differences and the raw data.

Method Campaign 1 Campaign 2

Low Med High Low Med High

MCL - Trend 1.31 3.11 4.91 17.03 19.47 21.90

MCL - Raw -5.03 1.31 7.65 8.29 14.50 20.71

control series, the actual increase is hard to obtain by inspection. This analysis illustrates

that Campaign 2 provides delayed effects after the campaign is finished, as opposed to

Campaign 1.

Table 4.1 shows the average campaign effects estimated from the series trends,

and from the raw data. We obtain the mean causal lift (MCL - Trend) as the average CLt

for the campaign duration for both treatment groups. We compare this measure with the

raw estimation (MCL - Raw), obtained from the sample mean of the observed data points

without using the time sequence. As depicted, this raw measure is noisier and does not

provide any insight into the time when the campaign is more effective.

4.6 Impact and Limitations

We have presented a time series based approach to attribute trend differences to

marketing campaigns. We attribute these differences using causal estimates based on a

randomized experiment. We constrain the evolution to be smooth to avoid sudden changes

in the attribution. This method provides disaggregated estimates that allow us to obtain

marketing insights about the time that the campaign is effective.

The analysis of two campaigns shows different campaign attribution levels at vari-
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ous points in time while the campaigns are running. Overall, we observe a small performance

at the beginning of those campaign followed by a performance boost. These results show a

typical cold-start campaign phase that eventually improves as more data is available from

user campaign exposures.

The current Chapter approach complements the observational analysis of Chapter

3 to estimate the campaign causal effect evolution when randomized data is available.

We focus the current aggregate analysis on calculating the causal attribution of the online

display advertising channel for budget allocation2. However, a user-level evaluation analysis

is required to guide and improve the campaign user targeting. We address the campaign

evaluation at the user level in Chapters 5 and 6.

2See [52] for a budget allocation application of campaign attribution.
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Chapter 5

User-Level Causal Evaluation:

Defining the Campaign

Counterfactual

5.1 Introduction and Problem Context

User-level campaign evaluation is often performed with the objective of improving

future ad exposures. In this context, running randomized experiments (or field experiments)

is becoming the standard approach to measuring the marginal effectiveness of online cam-

paigns, and guaranteeing a causal attribution [27, 55, 87]. In this practice, the ad creative is

assumed to be the treatment to evaluate, and users are randomly separated into two groups,

study and control. Hence, when a targeting engine selects a visiting user for ad exposure,

the campaign ad is displayed to users in the study group, or a placebo ad is displayed to
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users in the control group [87].

The full deployment of this framework is limited by the cost of showing placebo ads,

which typically consist of charity ads, and the potential revenue loss resulting from yielding

the opportunity to advertise to control users. As a consequence, a low-budget randomized

experiment is often performed, followed by a larger-budget investment that purports to

generalize (external validity) the measured effect of this campaign without further testing

[27].

Recently, marketing campaigns are increasingly taking place on ad exchange plat-

forms. These platforms facilitate marketplaces where advertising spaces on websites are

bought and sold. A survey of 49 media buyers indicates that 87.8% intended to purchase

digital advertising via real-time bidding (RTB) by 2011 [31]. Similarly, outside RTB ex-

changes, ad networks run internal auctions in regular basis [18]. Consequently, the external

validity of campaign effects estimated in an environment assumed to be free of competitors,

to a marketplace with competitors, is likely to be inaccurate. Because media buying is per-

formed endogenously in a competitive market, the user targeting complicates the evaluation

using placebo ads. Moreover, to display a placebo ad, the opportunity to advertise must

be consumed, and the campaign must exist in the marketplace (campaign presence effect).

Otherwise, its absence introduces competitor (synergizer) effects.

5.2 Chapter Contribution

We focus on the marginal causal attribution of single-product online conversions

to online display campaigns (single channel) run on hundreds of publisher websites, given
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Figure 5.1: Online advertising optimization loop. The focus of this chapter is the measure-
ment (attribution) box.

all other advertising channel exposures or prior branding effect. We report that the current

industry practice confounds three campaign effects. These effects are the ad effect on

exposed users, the strategic impact of the campaign presence in a competitive market, and

the targeting (selection) effect of the media buyer. We summarize the elements of our

contribution below in this context.

Expand the scope of attribution in marketplaces to the overall campaign We

propose to perform continuing evaluation and estimate the campaign attribution for

the current running conditions instead of isolating the ad creative effect. In this new

perspective, the entire campaign, which includes: 1)The campaign presence in the

marketplace and 2)The ad creative, is now the treatment to evaluate. Consequently,

we propose a new randomized design that considers all the visiting users where the

control treatment arm is not exposed to placebo ads. We argue that this is the right

campaign counterfactual in a marketplace. This design cost, which is minimal in terms

of revenue loss, enables us to perform continuing evaluation and attempts to close the

feedback loop for campaign causal optimization displayed by Fig 5.1. The proposed
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design is simple to implement and estimate and does not suffer from endogenous

targeting.

Capture the effect of the campaign presence in the marketplace We propose a sec-

ond randomized design that separates the ad effect from the impact of the campaign

presence in the marketplace. We show the risks of a selection effect for the standard

campaign evaluation practice of using placebo ads in a marketplace, which is a conse-

quence of endogenous user targeting. Contrary to the case of paid search effectiveness

analyzed by Blake et al. (2014), we find evidence of a campaign presence effect [17].

This effect, which is an ineluctable consequence of running the campaign, is ignored

in the standard practice, and significantly change the campaign attribution.

5.3 Chapter Assumptions

In this section, we state the main assumptions used in the current chapter. The

results and conclusions of this chapter are valid to the extent that these assumptions are

applicable.

1. We refer to tracking cookies as users in the experimental design and estimation. We

consider stable user cookies born before the campaign starts and that are active in

the entire ad network.

2. The treatment assignment is assumed to be independent of the treatment effect, i.e.

random assignment.

3. No interference or spillover effects are considered between control and study groups.
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User interference might occur, but the impact of this interference on the user conver-

sion probability is assumed to be negligible.

4. Stable Unit Treatment Value Assumption (SUTVA). We assume that the treatment

status of any user does not affect the potential outcomes of the other users, i.e. no

interference between users is assumed.

5. We model the user conversions as a random events, with a predetermined probability

for each treatment arm. Thus, the converting users are conditionally independent of

each other given this probability.

6. The user ad exposure is assumed to be binary (targeted or non-targeted) without

considering the number ad exposures. Similarly, the visiting user indicator and the

converting user indicator do not consider the multiple instances of these events for a

given user (see table 5.4).

7. Model parameters are assumed to be random, with standard Jeffrey’s conjugate prior

distribution. Indicator random variables are assumed to be Bernoulli distributed with

prior distribution: Beta(0.5,0.5).

5.4 Experimental Design for Attribution in Marketplaces

We discuss the framework of online Targeted Display Advertising in a marketplace

to design the randomized experiment with the right counterfactual. Then, we analyze the

randomized design using placebo ads as in the current industry practice. We show the risk

of selection bias of this design in Targeted Display Advertising. We present our proposed
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Table 5.1: Description of the variables used in chapter 5.

Term Description

Z∈{C,P,S} Random treatment assignment

Y∈{0,1} Converting user indicator

B∈{No,Yes} Decision to bid indicator

A∈{Lose,Win} Auction output indicator

D∈{0,1} Targeted user indicator

W∈{0,1} Ad exposure indicator

i ∈ N Variable index for the i-th user

Nydz ∈ N User count given Y = y,D = d, Z = z

∆select ∈ [−1, 1] Statistic to test for equivalent user selection for placebo ads

∆convert ∈ [−1, 1] Statistic to test for equivalent user populations for placebo ads

model and indicate the campaign attribution estimated by this design in terms of the ad

creative effect and the impact of the campaign presence in the marketplace. Finally, we

show that the proposed method is cost-effective for continuous campaign evaluation.

5.4.1 Targeted Display Advertising in Marketplaces: Overview

In Targeted Display Advertising, marketing campaigns are often run by advertisers

working closely with a given ad network. The mechanism for displaying an ad is depicted

by the decision tree of Fig 5.2(a). This mechanism is based on conducting an auction for

every visiting user who is provided by a supply-side platform (SSP) or publisher websites.
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Table 5.2: Performance metrics analyzed chapter 5. Lifts are in the range: ∈ [−1,∞).
Average Treatment Effects (ATE) are in the range: ∈ [−1, 1].

Metric Lift Description

ATECamp liftCamp Overall campaign average effect on all visiting users

ATEAd ACLAd Average effect of the ad creative on targeted users

ATEMarket ACLMarket Average effect of the campaign presence in the market-

place on targeted users

LATEAd liftad Local average treatment effect of the campaign on tar-

geted users (developed in Chapter 6)

(a) (b)

Figure 5.2: Online targeted display advertising flow for a given user visit.

To target users, advertisers develop user profiles of the target market segment based on

demographics and other features. In practice, however, the ad network employs a highly

sophisticated algorithm, illustrated by the decision node B of Fig 5.2(a), to determine if

a user should be targeted. In performance-based Cost-per-Action (CPA) campaigns, this

decision is based on user behavior and history, and how likely the user is to convert, among

other features [66, 1]. If the campaign decides to bid through a demand-side platform (DSP)
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in the ad exchange (B=Yes), it submits the bid through Real Time Bidding (RTB) [79].

This action illustrated by the chance (endogenous) node A of Fig 5.2(a). If the campaign

wins the advertising slot (A=Win), the campaign ad is displayed to the user. Otherwise,

other advertiser shows an ad. For cost-per-display (CPM) campaigns, the decision to bid is

set to B=Yes, and the bidding strategy is determined by guaranteed delivery contracts or

the spot market [43] 1. Outside of ad exchanges, these targeting and auction processes are

routinely run by large ad networks [18]. For the effects of the current analysis, we consider

the aggregate targeting engine output (chance node D of Fig 5.2(b)) to refer to targeted

users. Here, D=1 if the user is targeted, i.e. if B=Yes and A=Win, and D=0 otherwise.

5.4.2 Campaign Evaluation using Placebos: The Standard Practice

The standard approach to evaluating an online marketing campaign is to use ran-

domized experiments assuming the creative ad design, including the advertising message,

is the treatment to evaluate. Lewis et al. (2011) propose randomly assigning the visiting

users at serving time. Their goal is to see the focal ad (study), or the placebo ad in the

form of a charity ad assumed to be an unrelated ad (control) [55]. Fig 5.3(a) illustrates

this process. This framework is too limited to be applied to the standard Targeted Display

Advertising in a marketplace. In this method, none of the components discussed earlier in

this Section are considered. Also, the randomizing user visits limit the power of this design

because a given user might be assigned to both treatment arms during different visits.

The current industry practice is to randomize the visiting users once and keep

1Recently a minimum performance level constraint has been imposed on CPM campaigns. However, the
optimization of the user targeting is minimal here when compared with CPA campaigns.
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(a) (b)

(c) (d)

Figure 5.3: (a) User randomization framework proposed by authors of [55] without user
targeting selection. (b) Standard industry randomization practice with placebo ads. (c)
Proposed randomization design for campaign attribution. (d) Randomization framework
with disaggregated campaign effects.

them in the same arm throughout the whole experiment, as depicted by Fig 5.3(b) [87].

Because the media buying is performed endogenously in a competitive market, the user

targeting indicator D becomes a post-treatment variable. Conditioning the analysis on its

realization might introduce a post-treatment bias2. Moreover, the targeting engine routinely

incorporates user activity feedback, such as user clicks and visits, to improve the targeting

[1], which would not be the case for the placebo ad.

More generally, these practices focus on the ad evaluation, without considering

2A post-treatment variable is a random variable whose realization is available after the randomization
assignment has been performed. As a result, the treatment can potentially affect this realization [36]
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the effect of the campaign presence in the marketplace. Also, the ad is often evaluated

with a low-budget CPM campaign, and the effects are assumed to hold for larger-budget

CPA campaigns (Chittilappilly in [27] describes a general industry practice ). However, the

external validity of CPM campaign effects to CPA campaigns is prone to inaccuracies due

to the CPA targeting incentives [14], and the market interactions [64].

5.4.3 Proposed Randomized Design

We propose evaluating the overall campaign, including the ad and the campaign

presence in the marketplace. This new perspective implies that the campaign is now the

treatment to evaluate. We randomize the visiting users before making any decision in the

decision tree of Fig 5.3(c), and keep them in the same group for the campaign duration. As

a result, users in the control group are not exposed to placebo ads. This design aggregates

the ad and campaign presence in the marketplace effects analyzed in detailed below. Our

goal for this randomized design is not to predict or generalize the campaign performance for

future long-term exposures that are the objective of randomized experiments. Our goal is

to evaluate the campaign performance under the current conditions to attribute credit to its

overall performance, which is the key attribution problem of interest to online advertisers.

In the context of the campaign loop of Fig 5.1, our focus is short-term (mid-flight) ad

prediction where both effects are stable.

To disaggregate the proposed design of Fig 5.3(c), we consider the design of Fig

5.3(d), where Z ∈ {Control,Placebo,Study} = {C,P, S}. To avoid a selection effect, two

assumptions of the observed targeting in the study and placebo arms need to be tested:
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Assumption 1. Statistically equivalent user selection; the marginal probability of user tar-

geting is the same for both treatment arms

Assumption 2. Statistically equivalent targeted populations; the marginal conversion prob-

ability of the non-targeted users is the same for both treatment arms

Testing Assumption 1 indicates whether the marginal targeting policy (aggregated

over all user segments) is the same for both placebo and study arms in the average. Testing

Assumption 2 indicates whether the user marginal targeting process (aggregated over all

user segments) provides statistically equivalent populations. If the non-targeted populations

are equivalent, in terms of conversion probability, then the complementary populations are

statistically equivalent as a consequence of user randomization. Although rejecting Assump-

tion 1 suggests non-equivalent user targeting, testing Assumption 2 is what determines the

presence of a selection effect (bias) in the observed data.

Let Yi(Zi) be the i
th user conversion indicator under the treatment Zi, and assume

Assumption 2 holds. Similarly, assume P (Yi(C)|Di = 1, Zi = C) is known for the control

group, in which the targeted user indicator Di is not observed; we address this estimation

in Section 6.4 of Chapter 6. Thus, the ad average treatment effect ATEAd,i, and the average

treatment effect of the campaign presence in the marketplace ATEMarket,i are defined as

follows:

ATEAd,i = E[Yi(S)|Di = 1, Zi = S]− E[Yi(P )|Di = 1, Zi = P ],

ATEMarket,i = E[Yi(P )|Di = 1, Zi = P ]− E[Yi(C)|Di = 1, Zi = C].

(5.1)

The proposed randomized design of Fig 5.3(c) takes the entire campaign as treatment, and
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estimates the campaign average treatment effect (ATECamp,i) as follows:

ATECamp,i = E[Yi(S)|Zi = S]− E[Yi(C)|Zi = C]

=
∑

∀d

P (Di = d)× E[Yi(S)|Di = d, Zi = S]

−
∑

∀d

P (Di = d)× E[Yi(C)|Di = d, Zi = C].

(5.2)

Given that Yi is affected only for the users whom the ad is displayed to, i.e. {∀i : Di=1},

all other terms of Eq 5.2 cancel out except for this sub-population. Thus, by substituting

for ATEAd,i and ATEMarket,i from Eq 5.1 we have:

ATECamp,i = P (Di = 1)× {E[Yi(S)|Di = 1, Zi = S]− E[Yi(C)|Di = 1, Zi = C]}

= P (Di = 1)× {ATEAd,i +ATEMarket,i} .

(5.3)

Therefore, the campaign effect of the proposed design, depicted by Fig 5.3(c), provides the

aggregated ad and campaign presence effects. These are weighted by the probability of

displaying the campaign/placebo ad. This weighting term is a consequence of a larger user

population considered by the campaign (of all visiting users), rather than the sub-population

of exposed users required to compute ATEAd,i.

The standard evaluation using placebo ads identifies ATEAd,i as the “campaign”

effect. However, the estimation of the campaign economic value (campaign attribution)

based on ATEAd,i alone does not incorporate ATEMarket,i, which is a consequence of dis-

playing the ad. Therefore, the summation of these two effects must be considered. We

analyze the value of ATEMarket,i, for different scenarios in Appendix 5.A. Similarly, we

discuss the cost of the proposed design in terms of potential revenue loss and targeted ad-

vertising in Appendix 5.B. We show that this randomized design is the one with lowest

potential revenue loss when compared with the standard practice, and the most suitable for
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continuing evaluation.

Remark 1. The design of Fig 5.3(c) identifies the right counterfactual to estimate ATECamp

(Eq 5.2) when the objective is to calculate the campaign attribution. Fig 5.3(d) design dis-

aggregates ATECamp into ATEAd and ATEMarket (Eq 5.3), which are both campaign effects.

Remark 2. To estimate ATEMarket (Eq 5.1), the expected conversion probability of users

who would be targeted if in the study group but are actually in the control group, E[Yi(C)|Di =

1, Zi = C], needs to be inferred. The user’s targeting indicator, Di, is not observed for the

control group. Section 6.4 addresses this estimation problem.

Remark 3. One might be inclined to believe that the three-arm design described by Fig

5.3(d) can be easily analyzed, as an extension of the standard randomized experiment of

Fig 5.3(b), which includes a placebo arm. We reiterate that the error in that logic, and the

reason for a different counterfactual and estimation method, is that the publisher slot must

be captured and assigned to the campaign or placebo ad.

5.5 Results: Campaign Evaluation using Placebo Ads

To illustrate the effect of the campaign presence in the marketplace, and the risk of

conditioning the ad effect on post-treatment (endogenous) variables, we ran a large-scale ex-

periment. Here we consider three treatment groups, Zi ∈ {Control,Placebo,Study}={C,P, S}

(Fig 5.3(d) design), collaboratively with an advertiser in the financial information services

sector. We implemented the standard practice to evaluate online campaigns and ran a low-

budget CPM campaign, where user conversions are economically equivalent. The advertiser
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Table 5.3: Campaign data based on the experimental design of Fig 5.3(d) to disaggregate
the campaign effects. Campaign active duration: 16 days. {0, 1} represents unobserved
user selection for ad exposure indicator.

Wi Di Yi Zi Count CPM Campaign

0 {0,1} 0 C N0
{0,1}C 57,492,247

0 {0,1} 1 C N1
{0,1}C 8,131 Zi Count Placebo

0 0 0 S N0
0S 9,938,896 P N0

0P 9,817,552

0 0 1 S N1
0S 1,246 P N1

0P 1,182

1 1 0 S N0
1S 3,618,467 P N0

1P 3,713,430

1 1 1 S N1
1S 607 P N1

1P 583

sells multiple products, and other campaigns were run simultaneously to market those prod-

ucts. Table 5.3 shows the aggregated data (Campaign CPM) based on the notation of Table

5.3, and Table 5.4 shows user activity statistics. Given that the users were randomized once

before the user targeting were performed, there was a selection effect induced by condition-

ing the analysis on the observed targeting indicator. Here, the auction process prevented

this indicator from being controllable (endogenous media buying). To verify that there was

no selection effect, we now test the Assumptions 1 and 2 of Section 5.4.3.

Define the targeting indicatorDi under the treatments, Zi={P, S}, to be {D
P
i ,D

S
i }.

To estimate the ad effect conditional on the observed Dz
i , we define ∆

select
i and ∆convert

i as:

∆select
i = P (DS

i = 1|Zi = S)− P (DP
i = 1|Zi = P ),

∆convert
i = P (Yi(S) = 1|DS

i = 0, Zi = S)− P (Yi(P ) = 1|DP
i = 0, Zi = P ).

(5.4)

Then, we define the hypotheses: Hselect
0 : ∆select

i = 0, Hconvert
0 : ∆convert

i = 0. We test
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Table 5.4: User activity statistics for CPM Campaign of Table 5.3. Mean and standard
deviation (Std) are displayed. Visits/user is the number of visits per user. Convs|Yi = 1
is the number of conversions per converting user. Imps/user is the number of ad exposures
per targeted user (Di = 1)

Zi = C Zi = P Zi = S

Variable Mean Std Mean Std Mean Std

Visits/user 18.18 93.67 18.22 93.40 18.22 94.04

Convs|Yi = 1 1.03 0.36 1.03 0.18 1.04 0.33

Zi = P,Di = 1 Zi = S,Di = 1

Mean Std Mean Std

Visits/user 54.42 132.91 54.40 133.12

Convs|Yi = 1 1.02 0.16 1.05 0.46

Imps/user 1.68 1.35 1.70 1.39

these hypotheses, and estimate their lifts (∆select
i Lift, ∆convert

i Lift), by sampling the Beta

distribution as in the case of the liftCamp estimation of Section 6.4.2 3. The testing results

of Table 5.5 suggest rejecting Hselect
0 (∆select

i Lift= [−2.84%,−2.75%,−2.65%]), and not

rejecting Hconvert
0 (∆convert

i Lift= [−2.80%, 4.12%, 11.41%]). As a result, the change of the

user targeting probability was not enough to reject the assumption that the sampled placebo

and campaign populations are equivalent in conversion rates4.

We estimate the lift effect of the ad ACLAd, based on ATEAd of Eq 5.1 in Section

5.4.3, which is the standard “campaign” attributed effect. We report a positively leaning

effect (ACLAd = [−2.78%, 6.74%, 17.97%]). We perform the analysis of Section 6.4.1 to

3We calculate the t-statistic for these conversion probability differences and the results are equivalent.
However, the estimation of the lifts requires other approximations.

4We expect larger effects for CPA campaigns where the targeting of placebo ads must be equally
optimized.
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Table 5.5: Campaign disaggregated results, and validation of the placebo campaign based
on 90% credible intervals. {Low, Med, High} are the {0.05, 0.5, 0.95} quantiles

∆select(1e-3) ∆convert(1e-6)

Low Med High Low Med High

-7.81 -7.53 -7.26 -3.50 4.95 13.30

∆select Lift(%) ∆convert Lift(%)

Low Med High Low Med High

-2.84 -2.75 -2.65 -2.80 4.12 11.41

ATEAd(1e-5) ATEMarket(1e-5) LATEAd(1e-5)

Low Med High Low Med High Low Med High

-0.46 1.06 2.70 -4.80 -2.79 -0.62 -3.83 -1.69 0.44

ACLAd(%) ACLMarket(%) liftad(%)

Low Med High Low Med High Low Med High

-2.78 6.74 17.97 -24.02 -15.06 -3.70 -18.88 -9.15 2.62

calculate E[Yi(C)|Di = 1, Zi = C], and estimate ATEMarket lift, ACLMarket, based on Eq

5.1. We estimate a negative effect of the campaign presence in the marketplace and discard

the zero effect of the 90% credible interval (ACLMarket = [−24.02%,−15.06%,−3.70%]). We

know that the focal campaign competed in the marketplace against interacting campaigns

run to advertise other products of the same brand. As a result, the presence of the current

campaign alone prevented the other ads of the same advertiser from being displayed. Similar

spillovers across product campaigns have been detected before by Sahni et al. (2014) in

the context of email coupon promotions [77]. Note that this negative effect moves the

campaign effect significantly based on the local campaign effect of Eq 6.4: LATEad, liftad

77



(liftad = [−18.88%,−9.15%, 2.62%]). Therefore, assuming that ATEMarket is a confounding

effect and should be eliminated misses an important component of the campaign attribution.

In this context, the campaign must exist in the marketplace to obtain the benefits of the

ad, which makes ATEMarket 6= 0.

5.6 Impact and Limitations

We have shown that evaluating an online advertising campaign involves more than

evaluating just the ad. As we have discussed in Section 5.4.3, the marketplace interactions

imply that the final decision to display the campaign/placebo ad is not entirely controllable

(endogenous) in the randomized experiment. We demonstrate this phenomenon with the

evaluation of a campaign using placebo ads in Section 5.5. We can not expect that an

ad tested in a controlled environment, as assumed by the exploratory evaluation of CPM

campaigns, will have the same performance in a real marketplace. Similarly, the effects of

being in the marketplace are ineluctable if the ad is to be displayed. Consequently, the right

placebo is the complete absence of the campaign, and the randomized experiment becomes

the measuring tool that runs with minimal cost.

The proposed experimental design assumes the overall campaign to be the treat-

ment to evaluate. Based on this design, all visiting users are exposed to the campaign, and

the campaign effect on the users exposed to ad becomes a local treatment effect (LATE).

This framework is similar to the Intention-to-Treat standard analysis where the randomiza-

tion of individuals occurs before the delivery of the treatment [50]. For the case of targeted

display advertising, analyzing the LATE of the campaign on the exposed users enables us
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to characterize the campaign user targeting. We address this estimation in Chapter 6 for

targeting-optimized CPA campaigns and non-targeted optimized CPM campaigns.

Appendix

5.A Effect of the Campaign Presence in the Marketplace

Analysis

Based on the three-arm design of Fig 5.3(d), Zi ∈ {Control,Placebo,Study} =

{C,P, S}, we define πi(Zi) to be the competitors’ targeting policy. Let π0,i denote the

competitors policy if the focal campaign does not exist (πi(C) = π0,i). Let π1,i be the

alternative policy competitors execute with probability α as a consequence of the campaign

presence in the marketplace. If competitors are not interested in user i with probability

1 − α, they will not compete to target this user and πi(Zi) = π0,i : ∀Zi ∈ {P, S}. Let β

represent the probability that competitors would win the opportunity to advertise in the

control group, but lose against the focal or placebo campaigns, and their ads have an effect

on Yi. These definitions lead to the distributions:

P (πi(Zi) = π0,i|Zi) =





1 if Zi = C

1− α if Zi ∈ {P, S}

,

P (πi(Zi) = π1,i|Zi) = 1− P (πi(Zi) = π0,i|Zi),

P {E [Yi(C)|πi(C) = π0,i]− E [Yi(P )|πi(P ) = π1,i] 6= 0} = β.

(5.5)

The parameter β ∈ [0, 1] is related to α ∈ [0, 1] through a competitors policy change

function, β = fπ(α) ∈ [0, 1]. Similarly, the effect ATEMarket,i is related to β based on a
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competitors effect function, ATEMarket,i = fATE(β) ∈ [−1, 1]. Some special cases include

(proof of these cases is trivial based on Eq 5.5):

• If α = 0 ⇒ β = fπ(0) = 0 ⇒ ATEMarket,i = 0: average competitors policy is not

affected by the campaign.

• If α > 0 ∧ β = fπ(α) = 0 ⇒ ATEMarket,i = 0: competitors advertising will not have

any effect on Yi.

• If β = fπ(α) > 0⇒ α > 0: a competitors effect greater than zero is likely only if the

focal campaign is likely to affect their average ad delivery policy

• β = fπ(α) > 0 ⇐⇒ ATEMarket,i 6= 0: an average campaign presence effect implies a

non-zero probability of competitors effect on Yi and vice versa.

5.B The Cost of the Randomized Design

We analyze the cost of the proposed design of Fig 5.3(c) where no placebo ad is

displayed, and Zi ∈ {Control,Study} = {C,S}. Let NExp be the number of users for whom

the opportunity to advertise is won. For the control group, there is a potential revenue loss,

proportional to the campaign effect value (V al(ATECamp,i)), if these users were exposed to

the campaign. Because no ad impression is displayed to these users, a campaign budget

surplus remains from not displaying these ads (Cost(AdDisplay)). Thus, for all visiting

users NT , the design cost (Cost(Design)) becomes:

Cost(Design) = P (Zi = C)× [NT × V al(ATECamp,i)−NExp × Cost(AdDisplay)] . (5.6)
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If this budget surplus is used to display campaign ads to a larger population in the study

group, we have ATE∆
Ad,i and ATE∆

Market,i to be the average campaign effects on these

additional exposed users. As a result, substituting Eq 5.3 in Eq 5.6 and given NExp =

P (Di = 1)×NT , the design cost (Cost(Design∆)) results into:

Cost(Design∆) = P (Zi = C)×NExp

×V al([ATEAd,i +ATEMarket,i]− [ATE∆
Ad,i +ATE∆

Market,i]).

(5.7)

Let [ATEAd,i+ATEMarket,i]− [ATE
∆
Ad,i+ATE∆

Market,i] = ǫ. Given an optimal user targeting

policy, where the users with highest potential causal impact are most likely to be targeted,

then ǫ > 0 and ǫ << ATEAd,i + ATEMarket,i. Therefore, the cost of experimentation is

reduced to a function of a small number.
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Chapter 6

Campaign Local Effect on the

Targeted Users: Evaluating User

Targeting Business Models

6.1 Introduction and Problem Context

In online advertising, user targeting is one of the most important decisions in

running a campaign. A survey of 100 marketers, agencies, and media planners indicates that

survey respondents perceive the user targeting and the campaign optimization capabilities

as the main differentiators among ad networks [64]. This importance has motivated the

development of online conversion attribution methods by the industry. These methods

include: Last-Touch Attribution (LTA) and Multi-Touch Attribution (MTA). LTA assigns

the conversion credit to the last campaign exposure (touch point) to a user in the path to
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conversion. Similarly, MTA gives credit to the a set of touch points in this path [3]. As

a result, the deployment of cost-per-action (CPA) campaigns, which generate revenue to

ad networks based on these attribution practices, has produced increasingly sophisticated

targeting engines. These targeting engines mostly aim to display ads to converting users [66,

1]. However, these practices do not guarantee a causal impact optimization and incentivize

the targeting of baseline users [14], those who convert regardless of the touch point (always-

buy users).

Ad exposures are often considered to be a consequence of user activity [22, 55],

or even a potential “coincidence” [87] in the ad effectiveness literature. However, in reality

these decisions are frequently optimized by the targeting engine. Although the recent lit-

erature has addressed the evaluation of focused targeting practices using field experiments

[54, 45], the attention to assessing the user selection effect of standard targeting engines for

CPA campaigns has been minimal.

6.2 Chapter Contribution

Given the randomized design of Fig 5.3(c) of Chapter 5, the estimation of the

campaign attribution is straightforward (Eq 6.3). However, by Remark 2 the conversion

probability of the users of the control group who would be targeted needs to be inferred.

We develop a methodology to estimate the user conversion probability of the users

in the control group who are statistically equivalent to those targeted in the study group

using Potential Outcomes causal model and Principal Stratification [75, 36] 1. The proposed

1Although other causal frameworks have been developed, mainly the Structural Equation Model [68] and
Econometric Causality [2, 48], we approach the problem using Potential Outcomes. This framework allows
us to model post-treatment variables with the use of the experimental data formally. There has been a long

83



approach allows us to estimate the effect of the campaign presence in the marketplace

analyzed in Chapter 5. Also, we estimate the local treatment effect of the campaign on

the targeted users and characterize this campaign targeting in terms of influenceable user

classes [26].

Compared to prior literature that evaluates focused targeting practices [54, 45], we

analyze the aggregated targeting performance of CPM and CPA campaigns. By comparing

the probability of targeting always-buy users, we find evidence supporting the hypothesis

that CPA campaigns incentivize the targeting of these users [14]. This evidence raises

questions concerning the external validity of ad effects estimated in a standard evaluation

CPM experiment to the CPA campaign deployment scenario.

6.3 Chapter Assumptions

In this section, we state the main assumptions used in the current chapter. The

results and conclusions of this chapter are valid to the extent that these assumptions are

applicable.

1. We refer to tracking cookies as users in the experimental design and estimation. We

consider stable user cookies born before the campaign starts and that are active in

the entire ad network.

2. The treatment assignment is assumed to be independent of the treatment effect, i.e.

random assignment. This independence condition is a requirement for the methodol-

ogy developed in this Chapter.

debate in the comparison between causal models, which falls outside the scope of this analysis and is not
discussed here.
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3. Stable Unit Treatment Value Assumption (SUTVA). We assume that the treatment

status of any user does not affect the potential outcomes of the other users, i.e. no

interference between users is assumed.

4. We model the user conversions and ad exposures as a random events, with predeter-

mined probabilities for each treatment arm. Thus, the converting users are condition-

ally independent of each other given a predetermined probability, and the ad-exposed

users are conditionally independent of each other given a predetermined probabilities.

5. The user ad exposure is assumed to be binary (targeted or non-targeted) without

considering the number ad exposures. Similarly, the visiting user indicator and the

converting user indicator do not consider the multiple instances of these events for a

given user (see table 6.5).

6. Only the targeted users, those who are exposed to the ad, are subject to the campaign

effect as illustrated by Fig 6.1. Section 6.5.2 validates this assumption.

7. The probabilities of positively affected users and negatively affected users are the same

(non-zero value) for the non-targeted population.

8. Model parameters are assumed to be random, with standard Jeffrey’s conjugate prior

distribution. Indicator random variables are assumed to be Bernoulli distributed with

prior distribution: Beta(0.5,0.5).

9. The above model components represent the structure we assumed in this Chapter. Eq

6.2 illustrates the joint distribution between the random variables of this structure.
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Table 6.1: Description of the variables used in chapter 6.

Term Description

Z∈{C,P,S} Random treatment assignment

Y∈{0,1} Converting user indicator

D∈{0,1} Targeted user indicator

W∈{0,1} Ad exposure indicator

θdz ∈ [0, 1] Probability of Y = 1 given D = d, Z = z

psel ∈ [0, 1] Probability of D = 1

θ
(s)
0z , p

(s)
sel,z ∈ [0, 1] Parameters obtained by repeated randomization for validation

∆
(s)
psel,∆

(0)
θ0 ∈ [−1, 1] Difference statistics between repeated randomized groups

i ∈ N Variable index for the i-th user

Nydz ∈ N User count given Y = y,D = d, Z = z

Nobs,Nsamp Observed/sampled count sets

Nburnin,Ns ∈ N Burn-in/Gibbs number of samples

a0, b0 ∈ (0,∞] Beta prior parameters

U∈{Per+,Per−, AB,NB} Influenceable user category indicator defined by Eq 6.8

Θ Parameter Set of Eq 6.2: {θ0, θ1C , θ1S , psel}

6.4 Estimation Methodology

6.4.1 Campaign Causal Effect on the Users Exposed to the Ad

The Potential Outcomes Causal Model analyzes the potential individual outcomes

for each of the treatments [75]. For two treatment arms, this framework implies that half
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Table 6.2: Performance metrics analyzed in chapter 6. Lifts are in the range: ∈ [−1,∞).
Average Treatment Effects (ATE) are in the range: ∈ [−1, 1].

Metric Lift Description

ATECamp liftCamp Overall campaign average effect on all visiting users

LATEAd liftad Local average treatment effect of the campaign on tar-

geted users

SelEff liftsel User selection effect introduced by the targeting engine

P (D = 1|U) Probability of targeting user influenceable category U

ATRBCamp Campaign attributed converting users, with respect to N1
0S+N1

1S , es-

timated based on ATECamp (left of Eq 6.6)

ATRBAd Campaign attributed converting users, with respect to N1
0S+N1

1S , es-

timated based on LATEAd (right of Eq 6.6)

(a) (b)

Figure 6.1: User segments based on control/study (Zi) and non-selected/selected (Di)
groups. (a) Observed segments. (b) Idealized segments to estimate the campaign effects on
the targeted users.

of the data is missing because we can never observe a unit response in both arms. If the

treatment assignment is independent of the treatment effect (i.e. random assignment), then

the causal estimates are unbiased. A necessary assumption of this causal model is the Stable
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Table 6.3: Observed user counts based on the user potential outcomes. Ny
dz, where Di = d,

Zi = z, Yi = y, are user counts for the given values of Y,Z,D. Missing values are presented
as *.

User Potential Outcomes Treatment Principal

Counts Control Study Assignment Stratum

Ny
dz Wi(C) Yi(C) Wi(S) Yi(S) Zi (Wi(C),Wi(S)) Di

N0
{0,1}C 0 0 * * C (0,*) *

N1
{0,1}C 0 1 * * C (0,*) *

N0
0S 0 * 0 0 S (0,0) 0

N1
0S 0 * 0 1 S (0,0) 0

N0
1S 0 * 1 0 S (0,1) 1

N1
1S 0 * 1 1 S (0,1) 1

Unit Treatment Value Assumption (SUTVA), which implies that the treatment status of

any unit does not affect the potential outcomes of the other units. Thus, the user responses

are exchangeable given the induced treatment effect.

The Principal Stratification modeling provides a framework to estimate treatment

effects conditional on post-treatment (non-ignorable) variables, which might be affected by

the treatment [36]. The key element in this context is the identification of user classes, or

strata, with equal treatment effects and probability of treatment assignment. Given the

proposed randomized design of Fig 5.3(c), where Zi ∈ {Control,Study} = {C,S}, the user

exposure to the ad is a post-treatment variable. Here the targeting process is performed

for the study group and is not for the control group 2. Let Wi indicates if a user is exposed

2Note that the current analysis holds for the randomized design of Fig 5.3(d) as well if only the control
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to the ad (Wi = 1) or not (Wi = 0). To define the principal strata, we model the potential

outcomes for Wi(C), Wi(S). Since the ad is never shown to the users of the control group

(Wi(C) = 0), the user principal strata, WP
i , are defined as follows:

WP
i =








Wi(C)

Wi(S)








=








0

0


 ,




0

1







, Di =





0 if WP
i = (0, 0)′

1 if WP
i = (0, 1)′

. (6.1)

Table 6.3 depicts the observed and missed data in the potential outcomes notation. This

definition guarantees that the selection effect in the control group is the same as that of the

study group (ignorable), Di(C) = Di(S) = Di, based on the potential conversion probability

(Assumption 1 of Chapter 5). Di indicates whether the user is targeted had he/she been

assigned to the study group (targeted-if-assigned, Di = 1), or not (never-targeted, Di = 0).

Consequently, we do not observe Di in the control group, which is illustrated by Fig 6.1(a).

We define the probability ofDi to be Bernoulli distributed with parameter psel, and

the probability of user conversion Yi to be Bernoulli distributed with parameters θdz for the

four combinations Di = d, Zi = z, and Y = {Yi : ∀i}, Z = {Zi : ∀i}, D = {Di : ∀i}. Let the

targeted user indicator for those assigned to the control arm be DC
i , and for those assigned

to the study arm be DS
i . Therefore, assuming Θ = {θdz, psel : ∀d ∈ {0, 1},∀z ∈ {C,S}} are

random variables, we have:

P (Y,Z,D,Θ) = P (Θ)
∏

∀i

P (Di = d|psel)P (Yi(Zi)|Di = d, Zi = z, θdz)P (Zi = z) . (6.2)

One concern of the model of Eq 6.2 is that distribution parameters {θ0C , θ1C} are not

identifiable, and a constraint based on {θ0S , θ1S} needs to be imposed. That is, for given

values of θ0C and θ1C the same likelihood value is produced if we switch these parameter

and study arms are analyzed.
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values. Given that the randomized assignment is independent of the potential outcomes

of never-selected users (Yi ⊥ Zi|Di = 0), we do not consider any campaign effect on this

sub-population as depicted by Fig 6.1(b) (Assumption 2)3. This constraint ensures that the

model parameters are identifiable and leads to: θ0S = θ0C = θ0,Θ = {θ0, θ1C , θ1S , psel}.

We note that in a sequential setting, the targeting engine employs the user conver-

sion data to estimate the user targeting likelihood of the next visiting user: P (D+i|Y,D).

However, based on SUTVA and the predefined probability of targeting assumed, the user

targeting indicator is exchangeable, P (Di|psel) : ∀i.

The inference objective of the joint distribution of Eq 6.2 is to estimate the pos-

terior distribution of the parameters Θ given the observed data from Table 6.3. Calculat-

ing this posterior distribution in closed form is intractable because DC must be observed.

Thus, we implement a Markov Chain Monte Carlo (MCMC) based approach using Gibbs

sampling depicted by Algorithm 3. We denote the set of observed counts as Nobs (step

1). Given an initial guess for Θ0 (step 4), we sample DC and estimate the counts Ny
dC :

∀d ∈ {0, 1},∀y ∈ {0, 1} based on the probability of DCy
i (steps 6-8). We denote these sam-

pled counts as Nsamp =
{
Ny
dC : ∀d ∈ {0, 1},∀y ∈ {0, 1}

}
(step 2). Given the augmented user

counts, {Nobs, Nsamp}, we sample each parameter of Θ conditional on Θ−θ, which is the set Θ

without θ (steps 9-11). The sampling distributions of the parameters {θ0, θ1C , θ1S , psel}, are

Beta(a0, b0) distributions with a Jeffreys conjugate prior parameters, {a0 = 0.5, b0 = 0.5}

(step 3). We test other prior parameters in Appendix 6.A. This sampling process is repeated

for Nburnin+Ns times (steps 5-12). After discarding a set of burn-in samples, Nburnin, a set

3This constraint is also known as exclusion restriction in the context of the causal inference based on
randomized experiments with non-compliance [50].
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Algorithm 3 Gibbs Sampling Algorithm based on the joint distribution of Eq. 6.2

1: Input: Nobs =
{
Ny
dS , N

y
{0,1}C : ∀d ∈ {0, 1},∀y ∈ {0, 1}

}
from Table 6.3

2: Define Nsamp =
{
Ny
dC : ∀d ∈ {0, 1},∀y ∈ {0, 1}

}

3: Set a0 = 0.5, b0 = 0.5

4: Initial guess Θ0 = {θ1z, θ0, psel}
0, ∀z ∈ {C,S}

5: for i← 1 to Nburnin +Ns do

6: Set P (DCy
i = 1|Θ, Nobs) =

psel(θ1C)
y(1− θ1C)

(1−y)

psel(θ1C)y(1− θ1C)(1−y) + (1− psel)(θ0)y(1− θ0)(1−y)
,

∀y ∈ {0, 1}

7: Draw Ny
1C |Θ, Nobs ∼ Binomial

(
Ny

{0,1}C , P (D
Cy
i = 1|Θ, Nobs)

)
, ∀y ∈ {0, 1}

8: Set Ny
0C = Ny

{0,1}C −N
y
1C , ∀y ∈ {0, 1}

9: Draw θ
(i)
1z |Θ−θ1z , Nsamp, Nobs ∼ Beta

(
a0 +N1

1z, b0 +N0
1z

)
, ∀z ∈ {C,S}

10: Draw θ
(i)
0 |Θ−θ0 , Nsamp, Nobs ∼ Beta

(
a0 +N1

0C +N1
0S , b0 +N0

0C +N0
0S

)

11: Set apsel = a0 +
∑

∀z∈{C,S},∀y∈{0,1}N
y
1z, bpsel = b0 +

∑
∀z∈{C,S},∀y∈{0,1}N

y
0z

12: Draw p
(i)
sel|Θ−psel , Nsamp, Nobs ∼ Beta(apsel, bpsel)

13: end for

14: return ΘNburnin+1:Nburnin+Ns

of samples of the posterior distribution is obtained, Θ1:Nsamples. These samples Θ1:Nsamples

are used to estimate the variability (or heterogeneity) of the local campaign effect and lift

of Eq 6.4 below, and the targeting analysis of Section 6.4.3.

Remark 4. We use the power of user randomization to estimate the conversion probability

of the statistically equivalent users in the control group, to those targeted in the study group,

without relying on user features. We take advantage of the fact that there is no campaign
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effect on the non-targeted users. Given randomized user treatment assignments, the propor-

tion of users statistically equivalent to those targeted in the study group must be the same

in both treatment groups for large populations in average. Therefore, the proposed model

guarantees that the targeting and the conversion probabilities are balanced for both control

and study groups.

6.4.2 Campaign Effect Estimation

We estimate the average campaign treatment effect (ATECamp) on the overall

visiting users and the lift (liftCamp) as follows:

ATECamp = E(Yi(S)|Zi = S)− E(Yi(C)|Zi = C), liftCamp =
ATECamp

E(Yi(C)|Zi = C)
. (6.3)

Assuming a Jeffreys conjugate prior distribution, {a0 = 0.5, b0 = 0.5}, the posterior distri-

bution becomes Beta(a0 + N1
z , b0 + N0

z ) where N1
z , N

0
z are the number of converting and

non-converting users of the z group. We sample from these posterior distributions to provide

credible intervals for both ATECamp and liftCamp.

The local average treatment effect by the campaign on the targeted users (LATEAd,

and the lift (liftad) are estimated from the posterior distribution of Θ as follows:

LATEAd = E(Yi(S)|Di = 1, Zi = S)− E(Yi(C)|Di = 1, Zi = C),

LATEAd = θ1S − θ1C , liftad =
θ1S − θ1C

θ1C
.

(6.4)

Based on the samples Θ(1:Ns) obtained by the Gibbs sampling procedure of Section 6.4.1,

credible intervals are estimated from the set {LATEAd, liftad}
(1:Ns). The analysis of Section

5.4.3 and Eq 5.3 leads to:

ATECamp = P (Di = 1)× {ATEAd +ATEMarket} = P (Di = 1)× LATEAd. (6.5)
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Here, ATEAd,i is the ad effect that would be estimated using ad placebos, and ATEMarket,i is

the effect of the campaign presence in the marketplace. Therefore, LATEAd is the campaign

effect on the targeted users of the study group.

We estimate the proportion of converting users attributed to the campaign with re-

spect to those in the study group, based on ATECamp and LATEAd (ATRBCamp, ATRBAd):

ATRBCamp = ATECamp ×

∑
∀y∈{0,1},∀d∈{0,1}N

y
dS

N1
0S +N1

1S

, ATRBAd = LATEAd ×
N0

1S +N1
1S

N1
0S +N1

1S

.

(6.6)

Given that the campaign impacts only the targeted users, these metrics have to match.

These attribution metrics provide the campaign value in terms of causally generated user

conversions and represent the output of the measurement block of Fig 5.1.

6.4.3 User Targeting Characterization

To characterize the user targeting of converting users performed by the targeting

engine, we estimate the user selection effect (SelEff) and the lift (liftsel) as follows:

SelEff = E(Yi(C)|Di = 1, Zi = C)− E(Yi(C)|Di = 0, Zi = C),

SelEff = θ1C − θ0, liftsel =
θ1C − θ0

θ0
.

(6.7)

Note that targeting converting users, whose performance is measured by SelEff, is a com-

mon objective of the targeting engine [66]. The business model in the industry for CPA

campaigns, namely last-touch and multi-touch attribution [3], incentivizes this targeting

practice. Thus, being part of a converting user path is enough to attribute credit to the

campaign.

To characterize the causal user targeting process, we partition the users into four
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influenceable categories [26], Ui as follows: Per+, positively influenced user, persuadable;

Per−, negatively influenced user, anti-persuadable; AB, converting user with no effect,

always-buy ; NB, non-converting user with no effect, never-buy. Given the targeting in-

dicator Di, the probability of a user category Ui is defined as:

P (Ui = Per+|Di,Θ) ∝ P (Yi(S) = 1|Di, Zi = S,Θ)P (Yi(C) = 0|Di, Zi = C,Θ),

P (Ui = Per−|Di,Θ) ∝ P (Yi(S) = 0|Di, Zi = S,Θ)P (Yi(C) = 1|Di, Zi = C,Θ),

P (Ui = AB|Di,Θ) ∝ P (Yi(S) = 1|Di, Zi = S,Θ)P (Yi(C) = 1|Di, Zi = C,Θ),

P (Ui = NB|Di,Θ) ∝ P (Yi(S) = 0|Di, Zi = S,Θ)P (Yi(C) = 0|Di, Zi = C,Θ).

(6.8)

Since Yi and Di are Bernoulli distributed, we have:

P (Yi(Zi) = y|Zi,Di,Θ) = θydz(1− θdz)
1−y, P (Di = d|,Θ) = pdsel(1− psel)

1−d. (6.9)

We estimate the probability of targeting a user given Ui by Bayes theorem as follows:

P (Di = 1|Ui,Θ) =
P (Di = 1|Θ)P (Ui|Di = 1,Θ)∑

∀d∈{0,1} P (Di = d|Θ)P (Ui|Di = d,Θ)
. (6.10)

This estimation provides the basis to characterize the targeting engine4.

Remark 5. We estimate the probabilities of persuadable, anti-persuadable, always-buy,

and never-buy user categories, despite not using user features, because we observe the coun-

terfactual user response in both control and study treatment groups. We incorporate user

features to characterize these categories in Chapter 7.

4Since the campaign effect is not considered for the non-targeted users, P (Ui =Per+i |Di =
0)=P (Ui =Per−i |Di = 0).
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6.5 Results

In this Section, we discuss the data collection and processing and validate the

model assumptions based on user randomization. We then present the analysis of two

CPA campaigns (Fig 5.3(c) design5). Finally, the user targeting is analyzed for these two

CPA campaigns, and the CPM campaign analyzed in Chapter 5 (Table 5.3), based on the

targeting policy they executed.

6.5.1 Data Collection and Description

We ran two large-scale randomized (or field) experiments (Fig 5.3(c) design) col-

laboratively with two European advertisers in the mobile communications and the public

transportation service sectors. The user targeting was optimized in real time by a sophisti-

cated targeting engine that valued the user and managed the bidding process for both CPA

campaigns. User conversions were economically equivalent for both campaigns. We are not

at liberty to disclose the ad content or the identity of the advertiser.

We randomly assigned the visiting users using the last two digits of the timestamp

their cookies were born. This rule separated the users and kept them in their assigned group

while the campaign was active and is validated in Section 6.5.2. We only consider those

users whose cookies were born before the campaign started and remained active in the ad

network6. We perform this selection to avoid user contamination and guarantee that we do

not miss user tracking due to cookie deletion

5We present a power analysis of the campaign effect estimation in Appendix 6.B. This study illustrates
the difficulty in measuring this effect in Targeted Advertising even when even when tens of millions of users
are part of the experiment.

6We assume that the cookie deletion event is independent of the campaign effect (ignorable or exogenous).
Thus, no bias is introduced by focusing on users with stable cookies.
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Table 6.4: Campaign data based on notation of Table 6.3. Duration for CPA Campaign 1:
30 days, CPA Campaign 2: 28 days.

Count N0
{0,1}C N1

{0,1}C N0
0S N1

0S N0
1S N1

1S

Campaign 1 1,560,146 400 12,010,058 2,387 5,708,558 2,599

Campaign 2 2,803,640 734 18,681,097 3,170 2,584,728 2,685

Table 6.5: User activity statistics for the campaigns of Table 6.4. Mean and standard
deviation (Std) are displayed. Visits/user is the number of visits per user. Convs|Yi = 1
is the number of conversions per converting user. Imps/user is the number of ad exposures
per targeted user (Di = 1).

Campaign 1

Zi = C Zi = S Zi = S,Di = 1

Variable Mean Std Mean Std Mean Std

Visits/user 36.25 162.21 36.49 175.98 83.50 332.74

Convs|Yi = 1 1.14 0.40 1.19 0.59 1.19 0.59

Imps/user - - - - 3.47 8.41

Campaign 2

Zi = C Zi = S Zi = S,Di = 1

Mean Std Mean Std Mean Std

Visits/user 37.32 218.13 37.16 223.23 160.93 637.71

Convs|Yi = 1 1.32 0.73 1.33 0.84 1.35 0.87

Imps/user - - - - 2.63 5.71
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Table 6.6: Validation of model conditions expressed by Fig 6.1(b). Testing procedure is
detailed by Eq 6.11. Results reported based on 90% credible intervals. {Low, Med, High}
are the {0.05, 0.5, 0.95} quantiles

Campaign 1 Campaign 2

Low Med High Low Med High

∆psel(1e-3) -2.65 0.02 2.71 -0.89 0.01 0.91

Campaign 1 Campaign 2

Low Med High Low Med High

∆θ0(1e-5) -1.71 0.03 1.70 -1.22 0.02 1.23

Given a user timeline of events, we focus on those events recorded after the first

visit to any publisher website where the ad was potentially displayed. We mark the user

as targeted in the study group (Zi = S,Wi = 1,Di = 1) if at least one ad exposure was

recorded (otherwise Wi = 0,Di = 0). If one conversion has been registered after one

ad exposure, and before the campaign ended, the user is considered to be targeted and

converter (Wi = 1,Di = 1, Yi = 1). No ad exposure was performed for the users in the

control group (Zi = C,Wi = 0), and consequently the user targeting indicator is missing

(Di = ∗). The user counts based on the notation of Table 6.3 are depicted by Table 6.4,

and Table 6.5 shows user activity statistics.

6.5.2 Model Validation: Randomization

The estimation methodology of Section 6.4.1 relies on user randomization, and the

condition of no campaign effects on the non-targeted users illustrated by Fig 6.1(b). To test
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these conditions, we analyze the CPA campaigns of Table 6.4 where the design of Fig 5.3(c)

is implemented. We randomly partition the users of the study group into two sub-groups,

where the targeting indicator DS
i is observed. This process generates both simulated control

(Zi = C) and study (Zi = S) groups, where DC
i and DS

i are observed. We define psel,z to

be the targeting probability, psel, for the z random group. We perform this partition 3, 000

times, obtain the method-of-moments estimate for {p
(s)
sel,z,θ

(s)
0z }, and calculate:

∆
(s)
psel = p

(s)
sel,S − p

(s)
sel,C , ∆

(s)
θ0 = θ

(s)
0S − θ

(s)
0C . (6.11)

Zero values for ∆psel and ∆θ0 verify the conditions of the model (user selection Assumptions

1 and 2 of Chapter 5), and the randomization procedure. Table 6.6 reports the credible

intervals for these statistics, and shows that they are centered at 0 for both campaigns.

Therefore, we conclude that psel is equal for both treatment arms, and that no campaign

effect is present in the non-targeted users. We also conclude that the user randomized

assignment is independent of the treatment effects and provides the basis for the effect

estimations to be causal.

6.5.3 Campaign Effect Results

Fig 6.2 depicts the estimation results for the CPA campaigns of Table 6.4. Here,

we use Nburnin = 2, 000 burn-in iterations and Ns = 10, 000 samples for the Gibbs sampling

framework of Algorithm 3. As illustrated, the posterior distribution for liftad is skewed

because liftad is a ratio of random variables. The posterior distributions for {θ0, θ1C , θ1S}

are illustrated by the boxplots of Fig 6.2(a) and (b). A significant difference is evident

between the conversion rates for the targeted (θ1C , θ1S) and the non-targeted (θ0) groups,
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(a)

(b)

Figure 6.2: Model fitting results for: (a) Campaign 1, (b) Campaign 2. From left to
right, posterior distribution for liftad, and the box plot for θ0, θ1C , θ1S where y-axis is the
conversion probability.

which is measured by SelEff and liftsel of Eq 6.7. As indicated by Table 6.7, we obtain a

median liftsel = {89%, 444%} for Campaign 1 and 2 respectively.

For comparison purposes, we estimate the campaign effect on the targeted users

by assuming that we do not observe the control group response, LATEI2CAd . This naive effect

estimation is used by last-touch or multi-touch attribution when only the focal campaign

is run (single channel). Similarly, we estimate the campaign effect without correcting for

post-treatment bias (or its endogeneity), LATEpostAd . These effects are defined as follows:

LATEI2CAd = E[Yi|Wi(S) = 1, Zi = S]− E[Yi|Wi(S) = 0, Zi = S],

LATEpostAd = E[Yi|Wi(S) = 1, Zi = S]− E[Yi|Wi(C) = 0, Zi = C].

(6.12)
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Table 6.7: Attribution results based on 90% credible intervals. {Low, Med, High} are the
{0.05, 0.5, 0.95} quantiles.

Campaign 1 Campaign 2

Low Med High Low Med High

LATEI2CAd (1E-4) 2.40 2.56 2.73 8.34 8.68 9.01

liftI2Cad (%) - 129 - - 511 -

LATEpostAd (1E-4) 1.73 1.99 2.24 7.39 7.76 8.13

liftpostad (%) - 77.54 - - 296 -

ATECamp(1E-5) 0.23 2.49 4.64 -0.37 1.35 3.01

liftCamp(%) 0.84 9.71 19.61 -1.35 5.15 12.19

LATEAd(1E-5) 0.85 7.90 14.48 -3.21 11.42 25.49

liftad(%) 1.89 21.04 46.33 -3.00 12.36 32.43

SelEff(1E-5) 1.12 1.77 2.48 6.16 7.55 8.97

liftsel(%) 55 89 126 359 444 534

ATRBCamp(%) 0.85 8.90 16.51 -1.36 4.91 10.96

ATRBAd(%) 0.96 9.05 16.59 -1.42 5.05 11.26

Table 6.7 shows the campaign effects on the overall user population, ATECamp,

and on the targeted population, LATEAd. Here, the zero effect is not included in the

90% credible intervals for Campaign 1. Campaign 2 is leaning towards positive values but

with a small negative range in the credible interval. In addition, we observe variations of

less than 0.2% between median ATRBAd and ATRBCamp: {9.05%, 8.90%} for Campaign

1; {5.05%, 4.91%} for Campaign 2. This result shows consistency between LATEAd and

ATECamp, and confirms the campaign effect analysis of Section 5.4.3. We note the severe
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Table 6.8: User selection median probabilities based on Eqs 6.8–6.10. Campaign 1 and
Campaign 2 are CPA optimized campaigns (Table 6.4). Campaign 3 is CPM non-optimized
campaign (Table 5.3).

Campaign 1 Campaign 2 Campaign 3

P (Di = 1|Ui = Per+) 0.5211 0.4583 0.3276

P (Di = 1|Ui = Per−) 0.4732 0.4296 0.3497

P (Di = 1|Ui = AB) 0.6728 0.8217 0.4180

P (Di = 1|Ui = NB) 0.3221 0.1215 0.2669

P (Ui = Per+|Di = 1) 4.55E-4 1.04E-3 1.68E-4

P (Ui = Per−|Di = 1) 3.76E-4 9.24E-4 1.85E-4

P (Ui = AB|Di = 1) 1.71E-7 9.59E-7 3.11E-8

P (Ui = NB|Di = 1) 0.9992 0.9980 0.9996

over-estimation by the last-touch attribution effect (and by the effect without correcting

for post-treatment bias) when compared with the causal lift (liftI2CAd and liftpostAd vs liftAd);

that is, for Campaign 1: 129% and 77.54% vs 21.04%; for Campaign 2: 511% and 296% vs

12.36%.

6.5.4 User Targeting Characterization Results

We analyze the user targeting process of the CPA campaigns of Table 6.4 (Cam-

paign 1 and Campaign 2) based on the analysis of Section 6.4.3, and compare them with

the targeting of the CPM campaign of Table 5.3 (Campaign 3). Table 6.8 shows the user

targeting characterization results. The probability of never-buy users, is large in the tar-
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geted population (P (Ui = NB|Di = 1) > 0.99 for all campaigns), which is a consequence of

low conversion rates. Using Bayes theorem as in Eq 6.10, we observe that the probability of

targeting a never-buy user is the lowest as there is no incentive to target this user category

(P (Di = 1|Ui = NB) = {0.32, 0.12, 0.27} for Campaign {1,2,3} respectively). Similarly, the

probability of targeting a persuadable user is significantly lower for the CPM Campaign 3

than for the CPA Campaigns 1 and 2 by as much as 37% (0.52−0.33 = 0.19 with respect to

0.52, where P (Di = 1|Ui = Per+) = {0.52, 0.46, 0.33} for campaigns {1, 2, 3} respectively),

showing the positive effect of the targeting optimization.

As discussed in Section 6.4.3, liftsel provides the conversion probability change in

the targeted population (selection effect). CPA last-touch business model suggests that

increasing this difference is beneficial for the overall campaign effect. We estimate that

Campaign 2 (liftsel = 444%) has a superior performance to Campaign 1 (liftsel = 89%)

under the CPA policy of targeting converting users. However, we estimate a significantly

larger probability of targeting an always-buy user for Campaign 2 than for Campaign 1

(P (Di = 1|Ui = AB) = {0.82, 0.67} for campaigns {1,2} respectively). Campaign 2 is

more effective in optimizing user conversions than Campaign 1 by a factor of five (444% vs.

89%). However, Campaign 2 is 22% (0.82 − 0.67 = 0.15 with respect to 0.67) more likely

to target always-buy users. This analysis shows that the well-accepted policy of targeting

users with the highest conversion probability does not necessarily improve the campaign

value to the advertiser. Moreover, we estimate that this probability of targeting always-

buy users is as much as 96% larger for CPA Campaign 2 when compared to the CPM

Campaign 3 (0.82 − 0.418 = 0.402 with respect to 0.418). Therefore, the external validity
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(or extrapolation) of the ad effect estimated for a CPM campaign to a CPA campaign,

assumed under the standard evaluation practice, is highly prone to inaccuracies. Because

we observe that the targeted populations are fundamentally different.

6.6 Impact and Limitations

By characterizing the campaign targeted population of CPM and CPA campaigns

in Section 6.5.4, we have demonstrated that the external validity of ad effects tested under

CPM based targeting to CPA based targeting is inaccurate. This inaccuracy is because the

targeted populations between these campaign business models are fundamentally different.

In CPA campaigns, the decision to target users is often driven by the user propen-

sity to convert. As a result, we have found evidence showing that CPA campaigns incentivize

the targeting of users who are going to buy in any case, which does not add value to the

advertiser. On the other hand, purely non-optimized CPM campaigns are less effective than

CPA campaigns to target users with positive effect.

The current analysis and results provide a potential opportunity to advertisers

to act upon and improve the user targeting policy to optimize causal estimates. We de-

velop a user targeting method to maximize the causal effect of the campaign in Chapter 7

diminishing the targeting of users who buy regardless of the ad exposure.
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Appendix

6.A The Prior Probability and a Method of Moments: Ro-

bustness Checks

Given the Bayesian method of Section 6.4, we analyze the effect of different Beta

prior parameters, and compare them with a method of moments which is derived now.

Since Di is observed for the study group, the estimation of psel and θ1S in the study group

is straightforward based on the method of moments. Similarly, θ0 is approximated based

on the observed conversions of the non-targeted users in the study group. As the observed

conversion probability of the control group is a mixture of θ0 and θ1C weighted by 1− psel

and psel respectively, and {θ0, psel} are shared by both arms (approximation), the estimation

of θ1C becomes:

p̂sel =
N1

1S +N0
1S

N1
1S +N0

1S +N1
0S +N0

0S

, θ̂1S =
N1

1S

N1
1S +N0

1S

,

θ̂0 =
N1

0S

N1
0S +N0

0S

, θ̂1C =
1

p̂sel

[
N1

{0,1}C

N1
{0,1}C +N0

{0,1}C

− θ̂0(1− p̂sel)

]
.

(6.13)

This approach does not account for the data sample size and requires several approxima-

tions. Despite these limitations, we provide a robustness check based on this estimator.

Table 6.9 compares this point estimator with the Bayesian method of Section 6.4 for dif-

ferent prior rates: a0/(a0 + b0); assuming a prior sample size: a0 + b0 = 1. Results show

that more intuitive prior rate choices for low conversion rates {0.01,0.001}, do not affect

results more than 0.9% in median liftAd and its credible interval. We use the Jeffreys prior,

{a0 = 0.5, b0 = 0.5}, because increasingly skewed prior distribution are more likely to be

numerically unstable in the Gibbs sampling. The method of moments of Eq 6.13 shows
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Table 6.9: Prior rate effect on the liftAd (%) estimation given a prior sample size: a0+b0 = 1,
based on Algorithm 3, compared with the method of moments of Eq 6.13 (Moments).
Nburnin = 2, 000. Ns = 10, 000. {Low, Med, High} are the {0.05, 0.5, 0.95} quantiles.

Prior Rate Campaign 1 Campaign 2 Campaign 3

a0
a0 + b0

Low Med High Low Med High Low Med High

0.5 2.15 21.15 46.51 -2.64 12.10 31.10 -19.09 -9.32 2.79

0.01 2.63 21.89 47.20 -2.26 12.99 31.86 -18.98 -9.01 3.10

0.001 2.51 21.53 47.55 -2.34 12.57 31.37 -19.58 -9.48 2.51

Moments - 20.55 - - 11.99 - - -9.59 -

discrepancies of less than 1% liftAd when compared with this prior choice.

6.B Estimation Power Analysis

In major firms, we have observed that the proportion of users used as the control

group is typically determined based on the belief that large user populations are easily

available by intuition. However, we show that poorly designed experiments lead to wide

credible intervals containing the zero effect in the targeting advertising framework studied

by the current chapter. Given the parameter values of Fig 6.3, we estimate liftad as a

function of: the total user population, the user targeting probability psel, and a set of true

liftad values. We generate the counts of Table 6.3 assuming the point estimate from Eq 6.13

is perfect. Given these count sets, we fit the model using the Bayesian approach of Section

6.4. Fig 6.3(a) shows that even when the user population is 40 million, the credible interval

includes zero for all the randomized designs analyzed, P (Zi = S) = {0.95, 0.92, 0.89, 0.86}.

If we naively set 5% of the users as control group (P (Zi = S) = 0.95), a typical industrial
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Millions of Users P (Di = 1|psel) True lif tad (%)

(a) (b) (c)

Figure 6.3: Estimation power as a function of: (a) total user population in millions, (b) user
targeting probability, (c) campaign lift on the targeted users (%). 90% credible intervals
are displayed. y-axis represents estimated liftad. Parameters: Population: 37,158,296,
θ1C=1.48E-3, θ1S=1.56E-3, liftad=5.40%, P (Zi = S)=0.95, psel=0.3, θ0=1E-3. Parameter
source: [55].

practice, the experiment will be useless. When the user targeting probability is psel = 0.4,

we observe that the zero effect is discarded of the 90% credible interval when 11% (P (Zi =

S) = 0.89) or higher user population is used as control group, which is depicted by Fig

6.3(b). Fig 6.3(c) displays that true liftad values as low as 6% are detected when 14%

(P (Zi = S) = 0.86) of users are assigned to the control group. This analysis indicates the

need for performing a similar analysis at the time of designing the experiment based on

parameter predictions.
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Part IV

Changing the User Targeting

Paradigm: From Prediction based

to Causal based Targeting
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Chapter 7

Campaign Mid-flight Causal

Optimization

7.1 Introduction and Problem Context

User targeting development has focused largely on optimizing user conversions by

serving ads to the users who are most likely to convert [66]. Often the evaluation of these

algorithms is based on the prediction power of conversions, which are liable to be not caused

by the campaign [55]. This standard framework has lead to a limited targeting effect of

performance-based campaigns, cost-per-action (CPA) campaigns, on causally generated (or

incremental) conversions [7]. Moreover, as illustrated in Chapter 6 and by Berman (2013) in

[14], the optimization of user conversions increases the probability of targeting always-buy

users who do not contribute the campaign causal effect. Besides, this practice often leads

to large discrepancies when one tests these algorithms with a randomized experiment.
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The use of randomized experiments is becoming the standard practice to measure

accurately the casual ad effect on user conversions [55]. Given that randomized experiments

are expensive, the generated data should be leveraged as much as possible. However, the use

of this dataset has been limited to the ad effectiveness estimation only without leveraging

its power on user targeting.

7.2 Chapter Contribution

We propose a user simulator that leverages the data of randomized experiments

by considering all the visiting users to the publisher websites [12, 7]. We analyze the effect

of the user targeting policy measured by 1) the campaign/placebo exposure difference, and

2) the overall campaign effect. We take advantage of the user influenceable categories of

Chapter 6 in Section 6.4.3 to optimize the overall campaign effect.

To evaluate the impact of the user targeting policy, we predict the user conversion

response of the campaign and placebo ad exposures (targeted users) and the response of

those who are not targeted. Based on the data of a randomized experiment for 37 million

users, 8 million targeted users, and demographic user features, we simulate the standard

conversion optimization policy and three targeting algorithms. We simulate the user target-

ing for both the focal and the placebo campaigns, and estimate the ad average causal effect.

We estimate that the conversion optimization provides similar effectiveness to a uniform

targeting and significantly inferior the causally optimized targeting.

We show the value of continuing evaluation by optimizing the user targeting as-

suming short-term ex-ante external validity of the overall campaign effects. Also, we take
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advantage of the user influencable categories of Chapter 6 in Section 6.4.3 in this opti-

mization. Thus, we expand the effect estimation model of Chapter 6 in Section 6.4.1 to

incorporate user features in the effect estimation. Based on this estimation, we test differ-

ent user targeting policies for mid-flight overall campaign optimization, in the context of

the control loop of Fig 5.1. Our results suggest that optimizing user targeting significantly

impacts campaign effects.

7.3 Chapter Assumptions

In this section, we state the main assumptions used in the current chapter. The

results and conclusions of this chapter are valid to the extent that these assumptions are

applicable.

1. We refer to tracking cookies as users in the experimental design and estimation. We

consider stable user cookies born before the campaign starts and that are active in

the entire ad network. We assume the demographic user features to be finite and

countable (e.g. Male, 35-44 years old, 50K-75K income). Data providers infer these

features based on user online activities and associate them to tracking cookies.

2. The treatment assignment is assumed to be independent of the treatment effect, i.e.

random assignment. This independence condition is a requirement for the methodol-

ogy developed in this Chapter.

3. Stable Unit Treatment Value Assumption (SUTVA). We assume that the treatment

status of any user does not affect the potential outcomes of the other users, i.e. no
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interference between users is assumed.

4. We model the user conversions and ad exposures as a random events, with predeter-

mined probabilities for each treatment arm. Thus, the converting users are condition-

ally independent of each other given a predetermined probability, and the ad-exposed

users are conditionally independent of each other given a predetermined probabilities.

5. The user demographic missing features are independent of the campaign causal effect

and balanced between randomized treatment arms.

6. The user demographic feature stratification is assumed to capture all the important

heterogeneity between individuals. Thus, the individual causal effect based on this

features is not biased [38, 39].

7. The user ad exposure is assumed to be binary (targeted or non-targeted) without

considering the number ad exposures. Similarly, the visiting user indicator and the

converting user indicator do not consider the multiple instances of these events for a

given user.

8. Model parameters are assumed to be random variables. The user propensity to convert

or to be targeted as a function of user demographics is assumed to be a probit function

fitted by probit regression. The posterior distribution of the regression parameters is

assumed to be Multivariate Normal distributed by Laplace approximation.

9. The above model components represent the structure we assumed in this Chapter. Eq

7.2 illustrates the joint distribution between the random variables of this structure.
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Figure 7.1: Randomized design used for user targeting simulations.

7.4 Methodology

7.4.1 User Targeting Simulation based on Ad Effectiveness Optimization

The standard practice to estimate the ad causal effect is to run a randomized

experiment where the online visiting users are randomly assigned to the placebo or the

study treatment arms. For those assigned to the study group, the campaign ad is displayed,

while a placebo ad is displayed to the users of the placebo group. In practice, a placebo

campaign, which replicates the targeting performed by the focal campaign, is run to show

the placebo ads as discussed by Chapter 5 in Section 5.4. Fig. 7.1 depicts this process that

considers the Study/Placebo treatment arms. To analyze the effect of the user targeting

on the Ad effectiveness optimization, we simulate the user targeting for the focal and the

placebo campaigns.

We define the following indicator variables for each user i: Zi for {Control, Placebo,

Study} assignments {C,P, S}; Di for non-targeted/ targeted users {0, 1}; Yi for non-

converting/converting users {0, 1}; and Xi for feature segments defined to be finite and
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countable. For the current analysis, we consider the Placebo/Study treatment arms (Zi ∈

{P, S}). We calculate the user counts by segments, Ny
dz|Xi given Di = d, Zi = z, Yi = y,

Xi, leading to the set:

Nobs =
{
Ny
dz|Xi : ∀d ∈ {0, 1},∀z ∈ {P, S},∀y ∈ {0, 1},∀Xi

}
. (7.1)

Thus, the cardinality of Nobs becomes: #{Nobs} = 8×#{Xi∀i}.

We use the data, Nobs, to simulate a given targeting function, Ftarg(Xi), based

on Algorithm 4. We model the user response to the campaign and the placebo ads,

P (Yi = 1|Di = 1, Zi = z,Xi) = θ1z|Xi : ∀z ∈ {P, S}, as well as the response of the non-

targeted population, P (Yi = 1|Di = 0, Zi = z,Xi) = θ0z|Xi : ∀z ∈ {P, S}, through a probit

transformation as illustrated by steps 3–4 of Algorithm 4. Here, glmfit([N1|X,N0|X])

represents standard probit regression fitting given the vectors of successes and failures

N1|Xi, N
0|Xi, and feature vector Xi.

We consider the audience-by-segment constraint NV isit
z |Xi, and the observed tar-

geted users as a fixed campaign budget N budget
1z (steps 5–6). We define a budget mul-

tiplier λ to guarantee that all this budget is consumed by the user targeting, which in-

cludes the probability of user segments P (Xi) (steps: 10–11). The min function en-

forces the visiting population segment constraints (NV isit
remain|Xi). The while loop of steps

9–15 re-distributes the remaining budget in case NV isit
remain|Xi is exhausted for any seg-

ment. We aggregate the user counts over Xi to generate the four counts given Zi = z:

Nnew
z,agg =

{
Ny,new
dz : ∀d ∈ {0, 1},∀y ∈ {0, 1}

}
.

This simulation is run for both treatment arms z ∈ {P, S} independently, and the

ad effect is measured based on a t-test of ATE=E(Yi|Di = 1, Zi = S)−E(Yi|Di = 1, Zi =
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Algorithm 4 User Targeting Campaign Simulation

1: Input: Targeting function Ftarg(Xi), User Counts

Nobs
z = {Ny

dz|Xi : ∀d ∈ {0, 1}, ∀y ∈ {0, 1}, ∀Xi}.

2: Output: Aggregated User Counts After Targeting Nnew
z,agg = {Ny,new

dz : ∀d ∈ {0, 1}, ∀y ∈ {0, 1}}

3: Set [γ̂0z , γ̂1z]=[glmfit
([
N1

0z|Xi, N
0
0z|Xi

]
, ∀Xi

)
, glmfit

([
N1

1z|Xi, N
0
1z|Xi

]
, ∀Xi

)
]

// Probit Approximation

4: Set [θ̂0z , θ̂1z]|Xi = [Φ(X ′
i γ̂0z),Φ(X

′
i γ̂1z)], ∀Xi // Observed Conversion Propensity

5: Set NV isit
z |Xi = N1

1z +N0
1z +N1

0z +N0
0z|Xi, ∀Xi // Audience per Segment Xi

6: Set N budget
1z =

∑
∀Xi

(N1
1z +N0

1z)|Xi // Observed Budget

7: Set N1,new
1z |Xi = N0,new

1z |Xi = 0, ∀Xi // Set Counts

8: Set N budget
remain = N budget

1z // Initialize Remaining Budget

9: while N budget
remain > 0 do

10: Set P (Xi) = NV isit
remain|Xi/

∑
∀Xi

NV isit
remain|Xi, ∀Xi

11: Set λ = N budget
remain/

(∑
∀Xi

N budget
remain × Ftarg(Xi)× P (Xi)|Xi

)
// Budget Multiplier

12: Set
[
N1,new

1z , N0,new
1z

]
|Xi =

[
N1,new

1z , N0,new
1z

]
|Xi

+min
(
λ× Ftarg(Xi)×N

budget
remain × P (Xi), N

V isit
remain|Xi

)
×
[
θ̂1z , 1− θ̂1z

]
|Xi, ∀Xi

// User Targeting

13: Set NV isit
remain|Xi = NV isit

z − (N1,new
1z +N0,new

1z )|Xi, ∀Xi // Remaining Audience

14: Set N budget
remain = N budget

1z −
(∑

∀Xi
[N1,new

1z +N0,new
1z |Xi]

)
// Remaining Budget

15: end while

16: Set
[
N1,new

0z , N0,new
0z

]
|Xi = NV isit

remain ×
[
θ̂0z , 1− θ̂0z

]
|Xi, ∀Xi // Non-Targeted User Counts

17: Set Nnew
z,agg =

{∑
∀Xi

Ny,new
dz |Xi : ∀d ∈ {0, 1}, ∀y ∈ {0, 1}

}
// Aggregate User Counts

P ) = θ1P − θ1S , using {N
y,new
1z : ∀z ∈ {P, S},∀y ∈ {0, 1}}. We use the average treatment

effect for each user feature segment, ATE(Xi) as the optimal ad effectiveness targeting rules.
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7.4.2 User Targeting based on Campaign Effectiveness Optimization

To optimize the overall campaign mid-flight, we estimate the campaign effect given

the user feature segments (Xi). This estimation provides the user targeting rules to con-

struct the user targeting function Ftarg(Xi). We address this development by replacing

the Bernoulli distributions of the estimation model of Chapter 6 in Section 6.4.1 (Eq 6.2)

with probit regressions conditional on Xi. In this manner, the campaign effects conditional

on Xi : ∀Xi are estimated and used to guide the target engine. For the current Section

analysis, we consider the Control/Study treatment arms of the experimental design of Fig

7.1 (Zi ∈ {C,S}). Let Φ(x) be the standard Normal cumulative density function, and

ΘX = {γ0, γ1C , γ1S , βsel}, then:

P (Y,Z,D,ΘX |X) = P (ΘX)
∏

∀i

P (Di = d|βsel,Xi)P (Yi(Zi)|Di = d, Zi = z, γdz ,Xi)P (Zi),

P (Di|βsel,Xi) = Φ(ηβi ), ηβi = X ′
iβsel, P (Yi|Di, Zi, γdz ,Xi) = Φ(ηdzi ), ηdzi = X ′

iγdz.

(7.2)

This model exploits the power of user randomization, and balances the treatment groups

in the inference of DC
i |Xi based on the propensity of being targeted.

To estimate the model of Eq 7.2, we provide a Gibbs-sampling based approach

depicted by Algorithm 5. We calculate the user counts of Control and Study treatment arms

(Table 6.3) for all user feature combination segments, assumed to be finite and countable:

Nobs
Camp =

{
Ny
dS |Xi, N

y
{0,1}S |Xi : ∀d ∈ {0, 1},∀y ∈ {0, 1},∀Xi

}
, (7.3)

whose cardinality becomes #{Nobs
Camp} = 6×#{∀Xi}.

We sample the missing targeting indicator, DC
i |Xi : ∀Xi, following a similar

logic to that of Algorithm 3 (steps: 5-9). We fit binomial probit regression functions
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Algorithm 5 Gibbs Sampling Algorithm based on the joint distribution of Eq. 7.2

1: Input: Nobs
Camp =

{
Ny

dS|Xi, N
y

{0,1}S|Xi : ∀d ∈ {0, 1}, ∀y ∈ {0, 1}, ∀Xi

}

2: Define Nsamp|Xi = {N
y
dC |Xi : ∀d ∈ {0, 1}, ∀y ∈ {0, 1}}, ∀Xi

3: Initial guess Θ0
X = {γ0, γ1z, βsel}

0
, ∀z ∈ {C, S}

4: for i← 1 to Nburnin +Ns do

5: Set P (Di = d|βsel, Xi) = (Φ(ηβi ))
d(1− Φ(ηβi ))

1−d, ηβi = X ′
iβsel, ∀Xi

6: Set P (Yi(Zi) = y|Dz
i = d, Zi = z, γdz, Xi) = (Φ(ηγdz

i ))y(1− Φ(ηγdz

i ))1−y,

ηdzi = X ′
iγdz, ∀Xi

7: Set P (DCy
i = 1|ΘX , D

s, Y, Z,Xi)

=
P (Di = 1|βsel, Xi)P (Yi(C) = y|Di = 1, Zi = C, γdz , Xi)∑

∀d∈{0,1}

P (Di = d|βsel, Xi)P (Yi(C) = y|Di = d, Zi = C, γdz, Xi)
, ∀Xi

8: Draw Ny
1C |ΘX , Nobs, Xi ∼ Binomial

(
Ny

{0,1}C |Xi, P (D
Cy
i = 1|Θ, Nobs, Xi)

)
,

∀y ∈ {0, 1}, ∀Xi

9: Set Ny
0C |Xi = Ny

{0,1}C |Xi −N
y
1C |Xi, ∀y ∈ {0, 1}, ∀Xi

10: Set {γ̂1z, Σ̂1z}=glmfit
([
N1

1z|Xi, N
0
1z|Xi

]
, ∀Xi

)
, ∀z ∈ {C, S}

11: Set {γ̂0, Σ̂0}=glmfit
([
N1

0C +N1
0S |Xi, N

0
1C +N0

0S |Xi

]
, ∀Xi

)

12: Set {β̂sel, Σ̂sel}=glmfit
([∑

∀z∈{C,S},∀y∈{0,1}N
y
1z|Xi,

∑
∀z∈{C,S},∀y∈{0,1}N

y
0z|Xi

]
, ∀Xi

)

13: Draw γ
(i)
1z |ΘX,−γ1z

, Nsamp, Nobs, X ∼ MVN
(
γ̂1z, Σ̂1z

)
, ∀z ∈ {C, S}

14: Draw γ
(i)
0 |ΘX,−γ0

, Nsamp, Nobs, X ∼ MVN
(
γ̂0, Σ̂0

)

15: Draw β
(i)
sel|ΘX,−βsel

, Nsamp, Nobs, X ∼ MVN
(
β̂sel, Σ̂sel

)

16: end for

17: return ΘNburnin+1:Ns

X

based on these user counts. We use a standard fitting function to calculate the Maximum

Likelihood estimate of the regression coefficients and its covariance matrix, (steps 10-12:

{γ̂, Σ̂}=glmfit([N1|Xi, N
0|Xi], ∀Xi)). This fitting strategy avoids the fitting of probit re-
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Algorithm 6 User Targeting Simulator for the Campaign Effectiveness Optimization

1: Input: Targeting function Ftarg(Xi), Non-zero Effect Indicator function Fsig(Xi),

LATEAd Sign function FLATEsign (Xi), Sign Certainty weights wsig = {w−, w±, w+}, User

Counts Nobs
Camp as defined by Eq 7.3.

2: //Set segment weighting function Dtarget
w (Xi), based on inputs: Ftarg(Xi), Fsig(Xi),

FLATEsign (Xi), w
sig

3: Define Dtarget
w (Xi) =





w± × Ftarg(Xi) if Fsig(Xi) = false

w+ × Ftarg(Xi) if Fsig(Xi) = true and FLATEsign (Xi) = +

w− × Ftarg(Xi) if Fsig(Xi) = true and FLATEsign (Xi) = −

4: Set Nnew
S,agg to the output of Algorithm 4 with inputs:

FTarg(Xi) = Dtarget
w (Xi), Nobs

z = Nobs
S |Xi,∀Xi

// Simulate Campaign Targeting, Zi = S

5: Set Nnew
Camp,agg =

{∑
∀Xi

Nobs
C |Xi, N

new
S,agg

}
// Aggregate User Counts

6: return Nnew
Camp,agg

gressions with millions of data points. Based on these estimates, the regression parameters

are sampled from multivariate normal distributions (steps 13-15: MVN(γ̂, Σ̂)) by Laplace

approximation method [40]. Θ
(1:Ns)
X samples are employed to generate credible intervals for

the effect estimates conditional on user features Xi
1.

To simulate a given targeting function, we execute the Algorithm 6, which aggre-

gates the user counts of the study group (Zi = S) given: 1) a targeting function Ftarg(Xi);

2) a non-zero effect indicator function Fsig(Xi), and 3) LATEAd sign function FLATEsign (Xi).

1We note that an Expectation-Maximization based point estimate can be fitted by iteratively estimating
the expected missing targeting indicators (step 7 expression), and fitting the regression parameters given
this expectation (steps 10-12). As a point estimator, this method would not provide parameter credible
intervals.
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Given the posterior distribution samples (ΘNburnin+1:Nburnin+Ns

X ), the user conversion prob-

abilities are estimated based on the logit transformation of Eq 7.2 for all feature segments.

We employ Eq 6.8 to estimate the median probability of the influenceable user categories of

the targeted population given the user features (P (Ui|Di = 1,Xi)) to determine Ftarg(Xi).

We define Fsig(Xi) to be the inclusion/non-inclusion of the zero LATEAd|Xi effect in the

90% credible intervals, and FLATEsign (Xi) to be the sign of LATEAd|Xi. In addition, a sign

certainty weighting set, wsig = {w−, w±, w+}, is fixed. These functions are combined into a

segment weighting Dtarget
w (Xi) (steps: 1-3). We simulate the user targeting for the users of

the study group, Nobs
S |Xi,∀Xi, by executing Algorithm 4. We use Dtarget

w (Xi) as targeting

function for this simulation (step: 4). We aggregate the user counts of the Control group

over Xi, N
obs
C |Xi, and concatenate them to the aggregated Study user counts after target-

ing, Nnew
S,agg (step: 5). This process generates the six counts of Table 6.3 that are analyzed

by the Algorithm 3 of Section 6.4.1 to estimate the local average treatment effect on the

users exposed to the ad.

7.5 Results

7.5.1 Ad Effectiveness Results

We consider the user features: age, gender and income; segmented by value ranges

(finite and countable). We ran the focal and placebo campaigns that generate the logged

data as CPM campaigns in an exploratory phase. The campaign running time is two weeks.

For Zi = S, the total and targeted population sizes are 18.74 and 4.01 million. For Zi = P ,

the total and targeted population sizes are 18.70 and 4.09 million. We consider the missing
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Table 7.1: Simulator Validation. Targeting functions are trained and tested with the same
data. ATE intervals, estimated based on a t-test, are shown for 0.10 significance level.

Ftarg(Xi) ATE lift Ftarg(Xi) ATE lift

(1e-6) (%) (1e-6) (%)

1(Random) 3.76±9.83 7.37 θ11|Xi 2.92±10.0 5.46

ATE(Xi) 5.63±9.62 11.77 -ATE(Xi) -1.74±10.3 -2.94

ATE+(Xi) 8.74±9.53 19.26 -ATE−(Xi) -6.68±10.9 -9.78

values as a feature value (81.4% of the users have one or more feature values missing). We

use the first half of the campaign as training and the second half for testing. We fit the

conversion probabilities (θ1P , θ1S) in the training set with probit regressions as done by

steps 3–4 of Algorithm 4.

We test the following targeting policies with training data: uniform, F (Xi) =

1; conversion optimization, θ11|Xi; and maximization/minimization of ATE, {ATE(Xi),

−ATE(Xi)}. We also test a variant of the ATE maximization, where we set the segments

with negative ATE to the minimum positive ATE (ATE+(Xi)). Likewise, we test the mini-

mization of ATE (−ATE−(Xi)). Table 7.1 shows the results. As expected, maximizing ATE

shows the best performance, and minimizing ATE the worst (lift= 19.29% for ATE+(Xi),

and lift= −9.78% for −ATE−(Xi)). Both estimations are far from the uniform targeting

(lift= 7.37%) validating the simulator.

Table 7.2 shows the testing results. We estimate that the performance of the user

conversion optimization (θ11/(1 − θ11)
2) is similar to that of a uniform targeting (10.91%

versus 11.01%). The best performance is provided by optimizing the lift and setting the

2We note that more sophisticated hierarchical classifiers are available for this prediction problem [82]
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Table 7.2: Targeting Policy Testing Results. ATE intervals, estimated based on a t-test,
are shown for 0.10 significance level.

All Users No Missing Features

Ftarg(Xi) ATE(1e-5) lift(%) ATE(1e-5) lift(%)

1 (Uniform) 1.35±1.74 11.01 2.21±4.26 14.06

θ11/(1− θ11)|Xi 1.38±1.77 10.91 1.98±3.85 12.25

ATE(Xi) 1.45±1.73 12.00 2.45±4.39 16.25

ATE+(Xi) 1.69±1.76 13.72 2.92±3.55 19.92

lift+(Xi) 1.78±1.76 14.47 3.00±3.42 20.87

negative segments to the minimum positive lift (lift+(Xi) with 14.47%), which is the only

significant effect at 0.10 statistical level (1.78±1.76e-5). We show the effect results estimated

for users with no missing features, which depict the same directional results with larger

intervals.

7.5.2 Overall Campaign Effectiveness Results

We leverage demographic user features to optimize the user targeting mid-flight,

i.e. in the middle of the campaign. For the visiting users of the CPM campaign discussed in

Section 7.5.1, we know the gender, age, and income. These features are segmented by ranges,

to make them finite and countable. For the current analysis, we consider the control/study

treatment arms (Zi ∈ {C,S}). We partition the campaign data in duration by half and

train the model of Eq 7.2 based on Algorithm 5 for the first half. We perform standard

dummy variable feature coding required to run the probit regression based distributions for

categorical features. We test different user targeting policies, based on the user response
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Table 7.3: Averaged campaign effect results for different targeting functions based on Al-
gorithm 6 using the first half of campaign 3 as training and testing in the second half.
Targeting policies: (a) Per+ vs Per−, (b) Per+ vs {Per−∪ AB}, (c) Per+ vs ¬Per+, (d)
Y=1 vs Y=0. Second half campaign duration: 7 days.

wsig = {1, 1, 1} wsig = {0.6, 1, 1.1}

Targeting Function LATEAd liftAd LATEAd liftAd

Ftarg(Xi) (1e-5) (%) (1e-5) (%)

(a)
P (Ui = Per+|Di = 1,Xi)

P (Ui = Per−|Di = 1,Xi)
1.27 9.86 1.18 8.53

(b)
P (Ui = Per+|Di = 1,Xi)

P (Ui = Per− ∪AB|Di = 1,Xi)
1.51 11.93 1.47 10.80

(c)
P (Ui = Per+|Di = 1,Xi)

1− P (Ui = Per+|Di = 1,Xi)
1.78 14.28 1.80 13.40

(d)
P (Yi = 1|Di = 1, Zi = S,Xi)

P (Yi = 0|Di = 1, Zi = S,Xi)
1.60 11.72 - -

wsig = {0.8, 1, 1.2} wsig = {0.8, 1, 1.1}

(a)
P (Ui = Per+|Di = 1,Xi)

P (Ui = Per−|Di = 1,Xi)
1.51 11.49 1.85 14.42

(b)
P (Ui = Per+|Di = 1,Xi)

P (Ui = Per− ∪AB|Di = 1,Xi)
1.63 12.52 1.65 12.63

(c)
P (Ui = Per+|Di = 1,Xi)

1− P (Ui = Per+|Di = 1,Xi)
1.92 14.74 1.93 14.89

(d)
P (Yi = 1|Di = 1, Zi = S,Xi)

P (Yi = 0|Di = 1, Zi = S,Xi)
- - - -

categories of Eq 6.8 in Section 6.4.3 for each user segment Xi, on the second half of the

campaign.

Table 7.3 shows the results where four targeting algorithms are tested. We use

the optimization of conversion probability ((d) Y=1 vs Y=0, wsig = {1, 1, 1}) as baseline

because this targeting policy is the standard practice given observational data. We estimate

that this practice is reasonably effective when compared with other targeting algorithms
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based on causal effects ((d)11.72% versus (b)11.93% or (a)9.86% average liftAd)
3. However,

optimizing (c) Per+ vs ¬Per+ shows the highest performance given wsig = {1, 1, 1} (14.28%

liftAd). We note that the user targeting of the observational data is exploratory (CPM

campaign); consequently the selection effect here is significantly smaller than those of CPA

campaigns typically used. As a result, the performance of the standard practice (d) is likely

to be inferior in reality.

We test three weighting frameworks based on the inclusion/non-inclusion of the

zero campaign effect in the 90% credible intervals of the user demographic segments in train-

ing. Intuition suggests that avoiding segments with negative-only intervals and boosting

segments with positive-only intervals greatly would increase the performance dramatically.

However, these parameters require tuning, and a modest decrease of the segments with

negative-only intervals and an increase of the segments with positive-only intervals show to

be more effective.

We find that wsig = {0.8, 1, 1.1} show the highest performance of the weighting

frameworks we test ((c)14.89% average liftAd). This analysis shows the value of the experi-

mental design and the estimation to optimize the user targeting in as illustrated by Fig 5.1.

We caution the reader of the limitations of this study including the quality of the user fea-

tures (cookie-based features), and the percentage of users with missing features estimated

to be at 75%.

3Credible intervals are in the range of ±20% for all targeting functions evaluated. The short evaluation
time, seven days, and the observed budget, which is kept constant in the simulation, are among the reasons.
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7.6 Impact and Limitations

We have proposed a user targeting simulator that uses data from standard ad

effectiveness causal estimation. We have found evidence that the standard practice of

optimizing the conversion probability does not optimize the causal effect of the ad. We

have shown that the user targeting makes a difference in the ad evaluation even when the

randomized design displays placebo ads. This result contradicts the standard evaluation

practice of measuring the effect with a non-optimized campaign, which is assumed to hold

for future optimized exposures. We have shown the value of continuing evaluation and also

the leverage of user features to improve the user targeting. In a measurement-optimization

cycle (mid-flight optimization), the use of randomized experiments potentially enables the

transfer of learning from attribution to user targeting and ex-ante optimization.

In the current analysis, we find the demographic user features that correlate with

incremental conversions, as opposed to observed conversions. These targeting rules are

often campaign-specific. However, behavioral user responses that correlate with incremental

conversions are more generally valid across campaigns. This external validity of behavioral

features has been demonstrated in the targeting of converting users before [66]. Thus,

identifying those features provides an opportunity to optimize incremental conversions when

continuing evaluation is not affordable. Characterizing user search activity in document

retrieval [19],or interactively [33] potentially correlates with causally generated conversions.

Similarly, user concept extraction characterized by product categories represent other highly

informative behavioral signal [81]. In this context, we study the value of user clicks as a

correlated signal with incremental conversions in Chapter 8.
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Chapter 8

Are User Clicks Valuable to Causal

Targeting?: A Potential Outcomes

Approach

8.1 Introduction and Problem Context

Recent developments in online campaign attribution and evaluation have demon-

strated the effectiveness of display advertising on user conversion and search keywords

probabilities [57, 55, 12]. These findings have motivated advertisers and ad networks to

measure the effectiveness of campaigns in metrics other than user clicks. The belief that

user clicks are not informative to measure the success of a campaign is increasingly gaining

acceptance in the research community and industry. Dalessandro et al. (2012) concluded

that user clicks do not correlate with user conversions and that user targeting based on clicks
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is statistically indistinguishable from random guessing [28]. These conclusions are drawn

based on the power of user clicks to predict conversions in observational data. However, a

large percentage of these conversions are likely to be unrelated to, and not caused by, the

campaign, as it is standard in online advertising attribution analysis [55].

A more accurate approach is to measure the campaign effect on the conversion

probability of the users who click on the ad (clickers) with a randomized experiment. Based

on this effect, we can determine the importance of the click in the user targeting opti-

mization. However, to design such experiment one would need to randomize the users into

control/study groups after finding the clickers. This randomized design is not feasible be-

cause the online ad must be displayed to the users of the study and the control groups to

observe the user selection introduced by the click event.

8.2 Chapter Contribution

We propose to estimate the local average campaign effect on the clicker conversions

based on the standard campaign evaluation randomized design. We compare the effect on

the conversion probability of the clickers and the non-clickers to determine if the click event

provides relevant information to separate users with higher or lower campaign impact. To

the best of our knowledge, the proposed method is the first approach in the ad effectiveness

measurement literature that estimates this effect based on randomized experiments.

We approach the problem in two phases: the randomized design, and the causal

modeling given this design. For the randomized design, we discuss the issues that prevent

us from designing an experiment focused solely on the clicking users. We illustrate the
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randomized design we employed, which is focused on the measurement of the ad exposure

effectiveness.

In the casual modeling phase, we propose a method in the Potential Outcomes

causal model to estimate the campaign effect on the clicker conversions based on the ran-

domized experiment to measure the ad exposure effect. We use Principal Stratification [36]

to condition the campaign effect on the user click event. This framework allows us to model

the treatment causal effect conditional on post-treatment variables, which are affected by

the treatment and consequently are non-ignorable [75]. The proposed approach closes the

gap between a purely observational analysis of the effect on the clicker conversions and the

analysis of this effect with focused randomized experiments. As the problem is different

from previously addressed problems by Principal Stratification, we solve the identifiability

problem, typical of these problems, with mild and reasonable assumptions in online ad-

vertising. The uncertainty of the estimations is modeled in a Bayesian framework and a

Gibbs-sampling based inference approach.

We analyze the effectiveness of the estimation method with simulated data, and

discuss the results for two large-scale randomized experiments in detailed. Finally, we

discuss the impact and benefits of the estimation approach in the ad effectiveness literature,

as well as the impact of the results for user targeting and attribution.

8.3 Chapter Assumptions

In this section, we state the main assumptions used in the current chapter. The

results and conclusions of this chapter are valid to the extent that these assumptions are
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applicable.

1. We refer to tracking cookies as users in the experimental design and estimation. We

consider stable user cookies born before the campaign starts and that are active in

entire ad network.

2. The treatment assignment is assumed to be independent of the treatment effect, i.e.

random assignment. This independence condition is a requirement for the methodol-

ogy developed in this Chapter.

3. Stable Unit Treatment Value Assumption (SUTVA). We assume that the treatment

status of any user does not affect the potential outcomes of the other users, i.e. no

interference between users is assumed.

4. We model the user conversions and use clicks as a random events, with predetermined

probabilities for each treatment arm. Thus, the converting users are conditionally

independent of each other given a predetermined probability, and the ad-exposed

users are conditionally independent of each other given a predetermined probabilities.

5. The user click is assumed to be binary (clicker or non-clicker) without considering

the number clicks or ad exposures. Similarly, the converting user indicator does not

consider the multiple instances of this event for a given user.

6. We consider the ad exposure effect and the local effect on the clickers to be positive.

Thus, the ad exposure must have a positive effect on the user conversion probability

of the targeted population for the analysis of this Chapter to be valid.

127



7. Model parameters are assumed to be random, with standard Jeffrey’s conjugate prior

distribution. Indicator random variables are assumed to be Bernoulli distributed with

prior distribution: Beta(0.5,0.5). Positive-effect constraints are imposed on the prior

distribution of the probability of conversion.

8. The above model components represent the structure we assumed in this Chapter. Eq

8.2 illustrates the joint distribution between the random variables of this structure.

8.4 Randomized Design

The current practice to estimate the campaign causal effect is to run a randomized

experiment assuming the ad creative is the treatment to evaluate. In this context, the online

visiting users are randomly assigned to the control or the study groups before the campaign

starts. These users are maintained in the assigned group during the entire duration of the

campaign. For those assigned to the study group, the campaign ad is displayed. While a

placebo ad (assumed to be entirely unrelated to the advertiser running the campaign) is

shown to the users of the control group [55, 87]. Then, the online users are tracked, based

on tracking cookies or e-mail sign-ups, to observe if they convert in the advertiser website

or not. In practice, the placebo ads are displayed by running a placebo campaign, which

replicates the user selection (or targeting) performed by the advertising campaign.

Following a similar logic, to design a randomized experiment to estimate the cam-

paign effect on the clicker conversions one can run a placebo campaign to replicate the

clicking user selection. Then, a placebo ad would be displayed to the users in the control

group once this selection is observed to the placebo campaign. Unfortunately, running such
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Figure 8.1: Randomized Design. The user clicks and conversions are collected for the user
population of interest.

a design is not feasible because the clicking user population segment cannot be observed

without showing the campaign ad. This prevents us from running a randomized experiment

focused on the sub-population of clicking users.

To avoid relying on fully observational data, whose effectiveness to estimate the

causal attribution has been severely questioned in Online Advertising [55], we take advan-

tage of the randomized design used in standard campaign evaluation. Thus, we randomly

assign the users to control and study groups and focus on those selected by the ad-network

targeting engine. This user population represents the universe of users for the effects of the

current Chapter. Fig 8.1 illustrates the randomized design. As a consequence of this de-

sign, the user selection introduced by the user clicks becomes a post-treatment variable, or

a random variable that is affected by the campaign [36]. In the Potential Outcomes causal

model, this variable is non-ignorable. Also this variable must be modeled to estimate causal

campaign effect on these user sub-populations [75]1.

1In Econometric causality, the user clicking indicator would be endogenous because this variable is not
controllable by the experimenter [48].
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8.5 Campaign Causal Estimation

8.5.1 Potential Outcomes and Principal Stratification

Potential Outcomes Causal Model, also known as Rubin Causal Model (RCM)[75],

is based on the analysis of units, treatments, and potential outcomes. Fundamentally, RCM

analyzes the unit potential outcomes to each of the treatments. For two treatment arms,

control and study, this framework implies that half of the data is missing because we can

never observe the response of a unit in both arms. Thus, the causal inference problem is

addressed as a missing value inference problem. This problem is commonly approached with

a Bayesian parametric model to estimate the mean posterior distribution. RCM incorpo-

rates the treatment assignment mechanism to offer a clear distinction between randomized

experiments and observational studies. If the treatment assignment is independent of the

treatment effect (i.e. random assignment), then the causal estimates are unbiased. Stan-

dard notation in RCM is to consider the variable of a user i for a given treatment arm Zi

as Yi(Zi). In spite of the ability to model the treatment effect on post-treatment variables

S, typically the primary interest is to estimate the treatment effect on Y conditional on S.

However, this is not straightforward because Si(0) 6= Si(1), and consequently Si is not ig-

norable. Therefore, conditioning the effect estimates of the observed values of S introduces

a post-treatment bias.

Principal Stratification modeling provides a framework to determine unbiased

treatment effect conditional on post-treatment variables [36]. The key element of this

method is the identification of user classes, or strata, SPi with equal treatment effects

and probability of treatment assignment. Thus, the probability of SPi must be independent
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Table 8.1: User counts based on the user potential outcomes. Ny
cz, where Ci = c, Zi = z,

Yi = y, are user counts for the given values of Y,Z,C. Missing values are presented as *.

User Potential Outcomes Treatment Principal

Counts Control Study Assignment Stratum

Ny
cz Si(0) Yi(0) Si(1) Yi(1) Zi (Si(0), Si(1)) Ci

N0
{0,1}0 0 0 * * 0 (0,*) *

N1
{0,1}0 0 1 * * 0 (0,*) *

N0
01 0 * 0 0 1 (0,0) 0

N1
01 0 * 0 1 1 (0,0) 0

N0
11 0 * 1 0 1 (0,1) 1

N1
11 0 * 1 1 1 (0,1) 1

(or ignorable) of the treatment assignment Zi, to enforce that no treatment effect on the

strata is allowed in the inference process.

8.5.2 Campaign Causal Effect on the Clicker Conversions

The randomized design of Fig 8.1 allows us to record the user clicks for both

treatment groups. However, a user click on the campaign ad is not comparable to a click

on a placebo ad. As a result, the user selection made by the clicker indicator in the study

group is missing in the control group.

We define the following indicator random variables for each user i: Zi for con-

trol/study group user assignments {0, 1}, Si for non-clicker/clicker users {0, 1}, Yi for non-

converting/converting users {0, 1}. Given that the user must be in the study group to click

the ad, the users of the control group never click the ad and consequently Si = 0 for these
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users. Therefore, we define the principal strata SPi , or user classes Ci as follows:

SPi =








Si(0)

Si(1)








=








0

0


 ,




0

1







, Ci =





0 if SPi = (0, 0)′

1 if SPi = (0, 1)′
. (8.1)

Table 8.1 illustrates the observed and missed data in the RCM notation. Ci = 1 are the

users who click on the ad when they are assigned to the study group (clicker-if-assigned).

Ci = 0 are the users who do not click on the ad regardless of the treatment group they are

assigned to (never-clickers). Based on these definitions, we let Ci to be Bernoulli distributed

with parameter π. Yi is Bernoulli distributed with parameters θcz for the 4 combinations

Ci = c, Zi = z. Assuming a Bayesian approach to the parameter estimation, we define

Θ = {θcz, π} as random variables.

Similar to the case of randomized experiments with noncompliance [50, 4], this

model is not identifiable if no further constraints are imposed. To estimate the campaign

effect on the clicker conversions, we observe the stratum indicator Ci and the conversion

indicator Yi for the users in the study group Zi = 1. These observed indicators allow

us to estimate the user conversion probability for both strata in the study arm without

constraints. By randomization, we know that the probability of observing this user selection

π is the same in both treatment groups, which follows from the definition of the principal

strata [36]. However, the user conversion probability for both principal strata users in the

control group {θ10, θ00} are not identifiable. Thus, to guarantee the model is identifiable we

assume positive campaign effect. This assumption translates into θc1 ≥ θc0 for c = {0, 1}.

Therefore, letting the indicator function be IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.
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Assuming a prior distribution P (Θ), we have the joint distribution:

P (Y,Z,D,Θ)= P (Θ)I[0,θ01)(θ00)I[0,θ11)(θ10)

×
∏

∀i

P (Ci = c|π)P (Yi|Ci = c, Zi = z, θcz)P (Zi = z).
(8.2)

We assume standard conjugate Beta prior distributions for the Bernoulli distributed random

variables Θ = {θcz, π} for c = {0, 1} and z = {0, 1}. For numerical stability, we use

the Jeffreys prior distribution, Beta(0.5.0.5), which assumes a prior sample size of 1. We

experiment with different prior probability but with the same sample size of 1. Given the

number of users employed to estimate the conversion probabilities θcz, the effect of these

prior probabilities becomes negligible.

We note that Balke and Pearl (1997) have reported in the context of imperfect

compliance that estimating these effects is not feasible with no constraints [4]. They provide

a set of bounds based on a method of moments assuming a large sample of individuals. The

model of Eq 8.2 is fitted without relying on those bounds. As a consequence of the positive

effect constraint and the full observance of the potential outcomes for the users of the study

group detailed above.

8.5.3 Model Estimation

The inference objective of the joint distribution of Eq 8.2 is to estimate the pos-

terior distribution of the parameters Θ given the observed data from Table 8.1. We denote

the set of observed counts as Dobs. We solve this inference problem using Gibbs sampling

by sampling from the conditional posterior distributions. Given an initial guess for Θ0 and

similar to standard mixture methods, we sample the missing user clicking indicator for the

users in the control group and estimate the counts Ny
c0 for c = {0, 1}, y = {0, 1}. We perform
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Algorithm 7 Gibbs Sampling Algorithm based on the joint distribution of Eq. 8.2

1: Input: Dobs =
{
Ny
c1, N

y
{0,1}0

}
for c = {0, 1}, y = {0, 1} from Table 8.1

2: Define Dsamp = {N
y
c0} for c = {0, 1}, y = {0, 1}

3: Set α0 = 0.5

4: Initial guess Θ0 = {θcz, π}
0, for c = {0, 1}, z = {0, 1}

5: for s← 1 to Nburnin +Nsamples do

6: Set P (Cyi0 = 1|Θ,Dobs) =
π(θ10)

y(1− θ10)
(1−y)

π(θ10)y(1 − θ10)(1−y) + (1− π)(θ00)y(1− θ00)(1−y)
, y =

{0, 1}

7: Draw Ny
10|Θ,Dobs ∼ Binomial

(
Ny

{0,1}0, P (C
y
i0 = 1|Θ,Dobs)

)
, y = {0, 1}

8: Set Ny
00 = Ny

{0,1}0 −N
y
10, y = {0, 1}

9: Draw θsc1|Θ−θc1 ,Dsamp,Dobs ∼ Beta
(
α0 +N1

c1, α0 +N0
c1

)
, c = {0, 1}

10: Draw θsc0|Θ−θc0 ,Dsamp,Dobs ∼ Beta
(
α0 +N1

c1, α0 +N0
c1

)
I[0,θc1) (θc0) , c = {0, 1}

11: Draw πs|Θ−π,Dsamp,Dobs ∼ Beta
(
α0 +

∑
z,yN

y
1z , α0 +

∑
z,yN

y
0z

)

12: end for

13: return ΘNburnin+1:Nsamples

this sampling step based on the probability of user clicking assignment, Cyi0. We denote

these sampled counts as Dsamp = {Ny
c0} for c = {0, 1}, y = {0, 1}. Given the augmented

user counts, {Dobs,Dsamp}, we sample the parameters Θ. The sampling distributions of

the user conversion probabilities for the study group and the probability of a clicking user,

{θc1, π}, c = {0, 1} are Beta distributions. For the constrained parameters, {θc0}, c = {0, 1},

the conditional posterior distributions become Beta distributions truncated to be non-zero

at the range [0, θc1) for c = {0, 1}. We sample from a truncated Beta distribution using
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the method detailed at [65]. This sampling process is repeated for Nburnin +Nsamples. Af-

ter discarding a set of burn-in samples, Nburnin, a set of random samples of the posterior

distribution is obtained, Θ1:Nsamples. Algorithm 7 illustrates this sampling process and the

posterior distribution expressions.

This inference procedure allows us to estimate the variability (or heterogeneity)

of the local campaign effect from the posterior random set of samples Θ1:Nsamples . Thus,

the local average campaign effect on the clicker, LATEClick, and non-clickers, LATENoClick,

conversions are estimated based on these posterior distribution samples as follows:

LATEClick = E[Yi|Ci = 1, Zi = 1, θ11]− E[Yi|Ci = 1, Zi = 0, θ10] = θ11 − θ10,

LATENoClick = E[Yi|Ci = 0, Zi = 1, θ01]− E[Yi|Ci = 0, Zi = 0, θ00] = θ01 − θ00.

(8.3)

Therefore, LATEClick and LATENoClick become random variables allowing us to determine

their posterior credible intervals. Also, we estimate the lifts by calculating the ad exposure

effect with respect to the conversion rate in the control group for both populations.

We estimate the proportion of attributed converting users for these subpopulations

with respect to the converting users in the study group (ATRBClick, ATRBNoClick) as

follows:

ATRBClick = LATEClick ×
(
N0

11 +N1
11

)
/
(
N1

01 +N1
11

)
,

ATRBNoClick = LATENoClick ×
(
N0

01 +N1
01

)
/
(
N1

01 +N1
11

)
.

(8.4)

These metrics provide the campaign value in terms of attributed converting users, based on

the campaign effect per user and the size of the population.
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8.6 Results

8.6.1 Validation

One of the main challenges to analyzing the campaign effect on the clicker con-

versions is the small probability of clickers. Lewis et al. (2011) reported a clicker rate of

0.254% in a large-scale online experiment for more than 35 million users [55]. Even sparser

is the probability of clicker and converter. In an exploratory campaign, where the user

targeting is not optimized, we collect only eight clickers and converters out of more than

11 million users in the study group. This gives a 7.1e-7 joint probability of clickers and

converters. Therefore, data sparsity prevents us from using large-sample approximations

such as those in [4, 88] or those based on Normal approximations [48, 55], and consequently

large posterior credible intervals are expected.

To analyze the power of the method to detect a given local campaign lift in the

clickers, we assume a set of parameters {Θ, P (Zi), NT } (NT is the total number of users)

and simulate the data counts of Table 8.1. For each parameter set, we randomly generate

100 sampled data count sets. Then for each set, we run the inference Algorithm 7, where

Nburnin = 200, Nsamples = 3, 000. Finally, we concatenate the posterior samples to obtain

Θ1:100×Nsamples and calculate {LATEClick}
1:100×Nsamples from Eq 8.3. Fig 8.2 shows the

simulation results and the parameter values. These are assumed as a function of (a) the

probability of a clicking user π, (b) the probability of a converting user in the study group

θ11. We expect that a successful campaign in optimizing clicks would increase these two

parameters.

Results from these simulated data experiments show that even when we do not
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(a) (b)

Figure 8.2: Boxplot of the posterior distribution of LATEClick based on simulated experi-
ments as a function of: (a) the clicker rate, (b) conversion rate of the clickers in the study
group. Assumed parameter values for: (a) {NT =23e6, P (Z) =0.5, θ11 =1e-3, θ01 =9.82e-5,
lift LATEClick =0.14, lift LATENoClick =0.14}, (b) {NT =23e6, P (Z) =0.5, π =6.8e-4,
θ01 =9.82e-5, lift LATEClick =0.14, lift LATENoClick =0.14}

observe the clicking user selection of the study group in the control group, we can infer the

campaign effect in this sub-population without any bias. The only necessary assumption is

to consider campaign positive effects, in spite of the low clicker rate. Both Fig 8.2(a)-(b)

show a skew distribution2. However, as we increase the clicker rate π in Fig 8.2(a), the

posterior distribution of LATEClick concentrates more at the true LATEClick. This analysis

shows that for a reasonable clicker rate of π = 0.20% or higher the effect distribution shows

an increasingly well-defined peak. Fig 8.2 (b) shows that as the conversion rate of the

clickers increases, the effect LATEClick increases too assuming a fixed lift. We also observe

that the skewness level decreases, even though the clicker rate is low π = 0.068%. However,

the credible interval is large due to the low-clicker rate assumed. Overall, the clicker rate

parameter shows to have a higher impact on the estimator power than the conversion rate

of the clickers.

We note that the lifts for LATEClick and LATENoClick are relative measures to

2The zero effect appears to be in the intervals because the boxplot function obtains them based on a
Normal approximation. Clearly the zero effect is not in the distribution as this is a constraint of Eq 8.2.
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Table 8.2: Campaign data based on notation of Table 8.1. Campaign active duration for,
Campaign 1: 16 days, Campaign 2: 28 days. {0, 1} represents unobserved clicking user
indicator.

Count Campaign 1 Campaign 2

N0
{0,1}0 3,621,409 11,431,495

N1
{0,1}0 314 961

N0
01 3,535,571 11,328,649

N1
01 347 1,014

N0
11 2,414 9,799

N1
11 2 8

the base conversion rates, which are different between clickers and non-clickers. In terms of

campaign attribution, the relevant measurements are LATEClick and LATENoClick. There-

fore, although the lifts are equivalent for the experiments of Fig 8.2, different values of

LATEClick and LATENoClick are tested assuming different campaign attribution for these

user populations.

8.6.2 Randomized Experiment Data Description

We ran two large-scale randomized experiments at the Advertising.com ad network

collaboratively with one advertiser in the financial information services sector. We randomly

assigned the users to control/study groups based on the timestamp the tracking cookie was

born. To avoid user contamination, we focused on the users whose cookie was born before

the campaign started. Then, for each user visit to the set of publishers’ websites, the

targeting engine selected those users eligible to see the ad. After this selection was made,
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the campaign ad was displayed to the users in the study group, and a charity ad (placebo

ad) was displayed to the users in the control group. Then, the users were tracked, based

on their unique cookie, to observe the user clicks on the ad and the user conversion at the

advertiser’s website. Fig 8.1 illustrates the randomized design, and Table 8.2 shows the

aggregated user counts collected for these experiments based on the notation of Table 8.1.

Although the advertiser might run the placebo and ad campaigns independently with the

same targeting setup, the user randomization needs to be performed by the ad network.

This process guarantees that no campaign or placebo ad is displayed to the incorrect group.

Both campaigns were run on a cost-per-thousand (CPM) business model. Thus,

the user targeting was not as optimized as in the case of conversion based attribution cam-

paigns. The goal is to explore campaign effectiveness inexpensively before the campaign

is fully deployed. This practice is standard in campaign budget allocation [27]. The cam-

paigns were run during different time periods. The same advertiser ran them, but they were

otherwise unrelated. For privacy reasons, we are not allowed to disclose the ad content or

the advertiser identity.

8.6.3 Campaign Evaluation Results

For comparison purposes, we estimate the ad click effect assuming we do not

observe the control group of users, ATEobsClick. We also estimate the ad click effect with

post-treatment bias, ATEpostClick. Both estimations are defined as follows:

ATEobsClick = E[Yi|Si(1) = 1, Zi = 1]− E[Yi|Si(1) = 0, Zi = 1],

ATEpostClick = E[Yi|Si(1) = 1, Zi = 1]− E[Yi|Si(0) = 0, Zi = 0].

(8.5)
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Table 8.3: Average campaign effect and attributed conversion percentage respect to the
number of converting users in the study group. Results obtained from the data of Table
8.2. {Low, Med, High} are the {0.05, 0.5, 0.95} quantiles. We estimate C2C ATRB as the
number of users who click and convert over the total converting users of the study group:
N1

11/(N
1
01 +N1

11).

Campaign 1 Campaign 2

Measure Low Med High Low Med High

Clicker Rate, π (%) 0.067 0.068 0.070 (%) 0.085 0.087 0.088

ATEobsClick (naive) (1e-4) -2.33 7.30 16.92 (1e-4) 2.54 7.26 12.00

lift ATEobsClick (%) -237 743 1720 (%) 282 811 1340

ATEpostClick (biased) (1e-4) -2.21 7.41 17.04 (1e-4) 2.54 7.26 12.00

lift ATEpostClick (%) -255 855 1960 (%) 306 870 1400

ATECamp (1e-5) 0.37 1.20 1.99 (1e-6) -0.33 6.13 12.50

lift ATECamp (%) 4.06 13.94 24.02 (%) -0.38 7.30 15.43

ATRBCamp (%) 3.74 12.17 20.20 (%) -0.37 6.80 13.87

LATENoClick (1e-5) 0.34 1.16 2.00 (1e-6) 0.89 5.82 12.20

lift LATENoClick (%) 3.81 13.46 24.21 (%) 1.04 6.97 25.13

ATRBNoClick (%) 3.48 11.78 20.22 (%) 0.99 6.45 13.53

LATEClick (1e-4) 0.35 4.61 13.72 (1e-4) 0.43 4.65 11.04

lift LATEClick (%) 7.28 150.77 874.20 (%) 7.21 145.85 813.12

ATRBClick (%) 0.02 0.32 0.95 (%) 0.04 0.45 1.06

C2C ATRB (%) - 0.57 - (%) - 0.78 -

ATEobsClick provides the conversion probability change of the clickers versus the non-clickers,

which is an intuitive measurement of the value of the click indicator. In a pure prediction
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optimization framework, this measure would represent the importance of the user click

indicator feature. ATEpostClick represents the campaign effect conditional on the user clicking

indicator without correcting for post-treatment bias introduced by this indicator, or its

endogeneity.

Table 8.3 shows the effect results for the overall campaign, ATECamp obtained

based on the user counts aggregated for the entire campaign, and the disaggregate effects

LATENoClick, LATEClick as defined by Eq 8.3. We set Nburnin = 2, 000, Nsamples = 20, 000

for the Gibbs sampling of Algorithm 7. In addition, the non-causal estimates, ATEobsClick

and ATEpostClick, are depicted.

Table 8.2 shows that the conversion rate for the clickers in the study group is close

to 10 times higher than for the non-clickers N1
11/(N

1
11 + N0

11)=8.27e-4 versus 9.81e-5 for

campaign 1, and 8.16e-4 versus 8.95e-5 for campaign 2. ATEobsClick shows this (naive) effect

estimation, based on the two-sample t-test with different variances3. We observe that the

upper interval bound of lift ATEobsClick for both campaigns larger than 1,000%. Likewise,

the lower interval bound of lift ATEobsClick for campaign 2 is over 300%. These results show

the over-estimation of the value of user clicks when the objective is to optimize conversion

prediction. Similarly, neglecting to correct the post-treatment induced bias (ATEpostClick) over-

estimates the campaign effect severely, which is close in magnitude to the naive estimation

ATEobsClick (in average: lift ATEobsClick=743% vs lift ATEpostClick=855% for campaign 1, and lift

ATEobsClick=811% vs lift ATEpostClick=870% for campaign 2). Therefore, not correcting the

post-treatment bias eliminates most of the power of the randomized experiment to estimate

3We consider the two-sample t-test to handle different control and study populations sizes. Thus, Ȳ1 = p̂1,

s2
Ȳ1

= p̂1× (1− p̂1), where p̂1 =
∑

Y 1
i /N1. The t-statistic is computed as: t = (Ȳ1− Ȳ2)/

√

s2
Ȳ1

/N1 + s2
Ȳ2

/N2.
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the campaign effect on the clicker conversions.

We observe a clicker rate of less than 0.1%, which is a consequence of non-optimized

campaigns. As a result, the average campaign effect, ATECamp, and the average local impact

in the non-clickers, LATENoClick, are similar because the vast majority of the users are non-

clickers Ci = 0. We observe a larger effect for the clickers than for the non-clickers. As

we discussed in section 8.6.1, we expect a skewed posterior distribution given the observed

clicker rate. This skewness is evident in the lift percentage estimation where the right-hand

tail is in the order of hundreds. In spite of the wide credible interval, we observe larger

campaign effect in users who click on the ad. We estimate this effect by analyzing the

lower quantile of LATEClick and the upper quantile of LATENoClick for both campaigns.

Therefore, a pessimistic scenario for the campaign effect on the clicker conversions shows

an increase of 75% (3.50e-5 - 2.00e-5 with respect to 2.00e-5) for campaign 1, and 252%

(4.30e-5 - 1.22e-5 with respect to 1.22e-5) for campaign 2, with respect to the campaign

effect on the non-clicker conversions. This analysis shows that, as intuition suggests, user

click probability is a measure of campaign success, and the user clicks on ads are not random

events as the previous literature suggests [28].

In terms of the overall campaign attribution, we note that a significant amount of

conversions attributed to the campaign is obtained from the non-clickers due to the user

volume of this sub-population. Only 2.63% of the campaign 1 attribution (ATRBClick=0.32

with respect to ATRBCamp=12.17) and 6.62% of campaign 2 attribution (ATRBClick=0.45

with respect to ATRBCamp=6.80) are associated to the clickers. Even when the effect on

the clicker conversion probability is 252% higher than for the non-clickers, the volume of
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non-clickers is more than 900 times greater (π/(1−π) =0.999/1e-3). Click-to-conversion at-

tribution framework (C2C ATRB) is a popular industry practice that assigns the conversion

credit to the campaign of the last user click. As a result, C2C does not assign any credit

to the conversions of non-clickers. We calculate the C2C attribution (C2C ATRB) percent-

age as % N1
11/(N

1
01 +N1

11). We note that the median campaign attribution is significantly

larger than C2C attribution for both campaigns (campaign 1: ATRBCamp=12.17% versus

C2C ATRB=0.57%, campaign 2: ATRBCamp=6.8% versus C2C ATRB=0.78%). This

comparison shows that the C2C attribution practice underestimates the causal attributed

value of the campaign.

8.7 Impact and Limitations

We have proposed a method to estimate the ad exposure effect on the clicker con-

version probability using randomized experiments. We have shown that the ad effect evalu-

ation is as biased as the naive observational estimation if the click-induced post-treatment

bias is not addressed. The crucial limitation of our approach is that we consider ad positive

effects only.

Contrary to the general belief that clicks do not measure campaign success, we find

that the ad exposure effect is higher for users who click the ad. In spite of the large credible

interval, a pessimistic analysis shows a substantial increase in the conversion probability

for the clickers when compared to the non-clickers. These results are consistent with the

most used business models based on clicks. However, campaigns also appear to increase

conversions among users who do not click, so attribution methods based solely on clicks are
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likely to be biased against campaigns. This contradicts the general belief in the advertising

industry that C2C conversion attribution models over-estimate the value of campaigns [3,

78]. We conclude that the population of clicking users is more valuable than the non-clicking

population. There is a correlation between user clicks and causal effect on user conversions.

Consequently, optimizing ads to increase user clicks, which are more frequent than user

conversions, may increase the effectiveness of ads. However, the targeting policy should not

optimize user clicks only, as a large percentage of users affected by the ad do not click on

it. A combined policy to target clickers and non-clickers should be considered.

The proposed method applies more generally to study the connection between

clicks and conversions using randomized experiments, including interventions designed to

increase conversions by increasing clicks. Similarly, recent evidence suggests different ad

exposure effects between conversion-optimized and CPM campaigns [7]. The reason users

click matters: the results would be quite different for clicks that result from ads that confuse

users.

There are many instances where ad exposure is randomized and click data are

available, but the is not used because advertisers assume that the clicks do not reveal user

intent. We have shown that better methods can use such data to advantage.
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Part V

Closing Remarks
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Chapter 9

Conclusion and Further Research

We have approached the evaluation of Online Display Advertising from the analysis

of observational conversion and impression time series data, to the detailed randomized

experimental design in a real targeting advertising system. In this chapter, we discuss

further research paths based on the Dissertation contributions.

The time series method we propose in Chapter 3 requires aggregated data without

the need for user tracking and features (often fragmented or incomplete). This method relies

heavily on the power of the time series model to predict the daily number of conversions

in the counterfactual case that the campaign is not run. Further developments of this

approach include the use of campaign metadata aiming at improving this counterfactual

prediction. The integration of propensity scores based methods for users with observable

features and the time-series-based attribution potentially improves the accuracy of both

attribution paradigms.

We have identified some drawbacks of the current industry practice to evaluate
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campaigns using randomized experiments in Chapter 5. One of those drawbacks includes

the disregard of the effect of the campaign presence in the marketplace (or the ad slot value).

Another limitation is the overlook of the user targeting confounding effect in the external

validity of the estimated results. We have proposed a causal inference method in the Po-

tential Outcomes causal framework to estimate the campaign effect on the targeted users,

and to identify the targeting capability to show ads to positively influenced users. We have

found evidence that performance-based CPA campaigns incentivize the targeting of users

who convert regardless of the campaign ad exposure. As a consequence of this result, we

have analyzed the impact of different user targeting policies to increment user conversion.

One fundamental assumption of randomized design is the Stable Unit Treatment Value As-

sumption (SUTVA), which implies that the treatment status of any user does not affect the

potential outcomes of the others. That is, no interference between users is assumed. There

are some situations where this assumption is potentially violated. Particularly, the case

of viral marketing oriented campaigns where the objective is to target the most influential

users in a social network. Although the recent literature has focused on the feasibility of

SUTVA and has proposed methods to account for network interference between individuals

in the evaluation of ranking feed algorithms [46], SUTVA is largely assumed in online ad-

vertising evaluation. Besides, these methods require observable interacting features to infer

the potential interference as in the case of network link information. Developing simple

and accurate approximations to account for SUTVA relaxations in the context of online

advertising evaluation is an open research area.

We have proposed an offline evaluation framework based on the user response pre-
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diction of the targeted and non-targeted groups of logged data of randomized experiments.

Also, a methodology to improve the campaign performance mid-flight (mid-campaign be-

fore it ends) has been developed. Our results show that the standard targeting practice of

serving ads to the users who are most likely to convert is similar to a uniform targeting,

and significantly inferior to the optimization of the campaign causal effect. The proposed

framework and results demonstrate the potential benefits and value of continuous random-

ized experimentation during the campaign duration, as opposed to the standard initial

evaluation of the ad offer and design based on a low-budget CPM campaign. The deploy-

ment of a causally conversion generating objective function in a real targeted campaign

needs to be tested. Similarly, the effective integration of logged observational ad exposure

data and machine learning aiming at optimizing causally-generated conversions, as opposed

to predicting conversions, is a research challenge. Also, theoretical economic studies that

consider different incentives of the current business models to show the benefits of targeting

with the objective of optimizing causal attribution require more research to be developed.

We have analyzed the user click behavioral feature as a potential user response that

correlate with causally generated conversions. We have estimated the ad exposure effect on

the conversion probability of the users who click on the ad, and compared this effect with

the effect on the conversion probability of the non-clickers. We have shown that designing

a focused randomized experiment to measure this effect on the clickers is not feasible and

proposed to use the randomized design employed for ad exposure evaluation. We have

developed a causal inference method, based on Potential Outcomes causal framework, to

estimate the local ad exposure effect on the clickers. Results indicate that the ad exposure
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effect on the conversion probability of the clickers is significantly larger than the effect on the

non-clickers based on a pessimistic analysis. As a result, optimizing user clicks maximizes

the causally generated conversions by the ad exposure. The method we have proposed

opens a path for more studies of the user clicks to validate further the conclusion of the

current analysis. Separating the campaign presence effect and the ad effect on the clickers

need to be modeled by combining click analysis approach of Chapter 8 and the targeting

effect estimation of Chapter 6. Similarly, by expanding the user click effect estimate with

user visits to the advertiser website, we potentially relate the impact on the clickers with

those who arrive at the advertiser website. Those users might visit the advertiser page

by different means (for instance by online search). Understanding what motivates a click,

and why many users who are affected by the campaign do not click on the ad, is an open

research problem.

We note that the campaign effect results we have estimated are mostly average

effects. A different approach to conversion attribution is to consider the probability of

causation for converting users given their complete user history and features, i.e. user

heterogeneity [38]. In this framework, the causal inference problem is approached at the

individual level, the converting user, and the goal is to determine if the campaign has caused

the user conversion. The fundamental challenge is that converting users are likely to be

unique, in terms of their demographic and behavioral features. Consequently, detecting

the right control users becomes troublesome without further assumptions, even when the

user randomization is assumed to be perfect [39]. This approach represents a further line

of research, particularly when the analysis of campaign average effects might hide critical
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advertising practices.

To conclude, the online display advertising evaluation research in economics has

focused primarily on the effect estimation with the objective of showing if a given campaign

is adding value. The results are often used in a budget allocation framework at the market-

ing channel level. On the other hand, the user targeting research has been developed mostly

in a Machine Learning framework and based on the use of large amounts of ad exposure

data (big data) by predictive analytic techniques. These two problems have been addressed

by two distinct research communities. As a result, the advertising effect estimation in a

measurement and user targeting optimization cycle has not been discussed thoroughly. In

the current Dissertation, we have approached this gap between these two research com-

munities with the objective of improving the measurement-optimization cycle. Overall, a

significant amount of research remains to be developed. Including the detailed modeling

of behavioral user features in the search of user signals and responses that correlate with

causally generated conversions, to effectively integrate a value generating user targeting.
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