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Abstract of the Dissertation

A Framework for Pervasive Context Awareness

by

Chenguang Shen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Mani B. Srivastava, Chair

The proliferation of pervasive computing devices with unprecedented sensing, communica-

tion, and computation capabilities has enabled continuous and ubiquitous monitoring of users

and their surrounding environments. While smartphones have evolved from only communi-

cation devices into powerful personal computing platforms, connected devices such as smart-

watches, cameras, motions sensors, thermostats, and energy meters, collectively dubbed as

the Internet of Things, are also rapidly permeating our living spaces. The continuous stream

of richly annotated, real-time data made available by tapping into the spectrum of sensors

available on these devices has led to the emergence of a sprawling ecosystem of context-aware

apps. These apps use sensors such as GPS, microphone, accelerometer, and gyroscope to

make diverse inferences about user activities and contexts.

Typical context-aware apps employ a suite of machine learning algorithms to extract

semantically meaningful inferences from sensor data. However, today’s connected devices

and mobile operating systems are not designed to support sensing and inference workloads.

Compared with the rich network stack on pervasive devices, where one can leverage protocols

and abstractions in different layers, context inference apps are composed in a monolithic

fashion. That is, developers have to implement all data collection and inference logic using

the raw data. As a result, the development and execution of context inference apps today are

accompanied by myriad difficulties. First, the limited sensor coverage from running inferences

on a single device and the need of hand-picking high-level features have made it challenging
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to achieve high inference accuracy in building the classification model of apps. Second,

the continuous execution of complex algorithms on the main app processor of smartphones

and the use of energy-hungry sensors have resulted in high energy consumption of inference

apps, especially when they are executed on battery-powered pervasive devices. Finally, the

monolithic development practice limits the adoption of inference apps onto heterogeneous

devices, and requires enormous amount of efforts from app developers in composing the apps.

In this dissertation we make three research contributions towards building a framework

for pervasive context awareness:

• We first showcase that context-aware inferences can benefit from heterogeneous con-

nected devices such as smartwatches. We develop an example app to autonomously in-

fer workout exercises of users from only sensors on a commercial smartwatch, achieving

90% classification accuracy for both cardio and weightlifting exercises while extending

the watch battery life by up to 19 hours compared with prior approaches.

• Having identified the problems from our example app, we then perform three optimiza-

tions of context inference apps. We have achieved (1) comparable inference accuracy

as traditional models and acceptable latency using deep learning without hand-picking

features; (2) up to 30× speed-up of deep learning tasks using mobile GPUs and up to

60% energy saving of off-loading inference tasks from the CPU to the DSP; and (3)

up to 37% accuracy improvement and up to 67% less energy consumption for context-

aware apps from watch-phone coordinations.

• Finally, we close the loop by proposing the design and implementation of a program-

ming framework for context inference apps, with a set of programming abstractions

and an associated runtime. The framework helps reduce development tasks by up to

4.5× and source lines of code by up to 12×. It also tackles runtime challenges and

achieves 3× better inference accuracy by handling environmental dynamics.

With this work we have also created an open-source toolkit for developing and executing

context inference apps using heterogeneous pervasive devices.
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CHAPTER 1

Introduction

The proliferation of pervasive computing devices with unprecedented sensing, communica-

tion, and computation capabilities has enabled continuous and ubiquitous monitoring of

users and their surrounding environments. While smartphones have evolved from only com-

munication devices into powerful personal computing platforms, connected devices such

as smartwatches, cameras, motions sensors, thermostats, and energy meters, collectively

dubbed as the Internet of Things, are also rapidly permeating our living spaces. The contin-

uous stream of richly annotated, real-time data made available by tapping into the spectrum

of sensors available on these devices has led to the emergence of a sprawling ecosystem of

context-aware apps. These apps use sensors such as GPS, microphone, accelerometer, and

gyroscope to make diverse inferences about user activities and contexts, including trans-

portation mode [RMB10, RSD10], location [KKE10], workout exercise [CCC07], conversa-

tion episode [RAP11], mood and stress [ESK11, LLL13], physiological state [NDA13b], and

nutrition intake [DYN10].

Context-aware apps employ a suite of machine learning algorithms to extract semantically

meaningful inferences from sensor data. Underlying the various types of context inferences,

we abstract out a canonical inference pipeline, shown in Figure 1.1. Apps today typically

subscribe to raw sensor data streams, where hardware fabric, device drivers, and system

services work in concert to pass the sensor samples to apps. There are mainly two phases in

the lifetime of an inference app:

• Learning: The app first collects data and ground truth labels to perform the model

training. It extracts features to reduce the dimensionality of sensor data. The features,

together with ground truth labels collected from the user, are used to learn a model
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Figure 1.1: A canonical pipeline for context inferences.

for this pipeline. This learning phase is typically done in the cloud because of the

complexity of learning algorithms, and the learned model is shipped to the mobile

device for classification execution. In reality, many context-aware inference apps are

shipped with a model previously learned, so the app is ready for classification after

installation.

• Classification: Also called Prediction. The app collects new data and, with the

model, it performs classification over the stream of extracted features to infer context

labels (i.e. which class the current context falls under). The context label is later

used as the evidence for other decisions or actions. The inference pipeline can also be

updated adaptively at runtime.

However, today’s connected devices and mobile operating systems are not designed to

support sensing and inference workloads. Compared with the rich network stack on pervasive

devices, where one can leverage protocols and abstractions in different layers, sensing and

inference tasks are treated as second-class citizens on these devices. Apps are composed in

a monolithic fashion, that is, developers have to implement all data collection and inference

logic using the raw data. As a result, development and execution of context inference apps

today are accompanied by myriad difficulties, summarized as follows:

Limited sensor coverage and inference accuracy: For inference executions, the first
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challenge is achieving high inference accuracy. Due to the monolithic development practice,

most context-aware inference apps run on a single device, e.g. a smartphone, and therefore

require a user to carry the phone for accurate sensor readings. Whenever the user leaves the

phone elsewhere, e.g. on a desk, to focus on other tasks or to charge the phone, the sensors

cannot capture any meaningful data. Taking the example of an activity tracking app, the

user would still perform various kinds of activities with the phone away from him/her, but

the inference app on the phone would not be able to report correct activity labels, and would

normally classify he/she as not moving. The above situation will result in limited sensor

coverage in terms of the app’s ability to capture human movement changes and therefore

poor inference accuracy.

Moreover, some user activities such as workout exercises typically involve movements of

different body segments such as hands, arms, waists, and legs, and they cannot be accurately

monitored by a single smartphone. The inability of context-aware apps to leverage sensing

devices other than smartphones has greatly limited their sensing and inference coverages.

Recent work has shown that wearable devices, e.g. smartwatches, can be used to assist

smartphones for context inferences such as activity recognition [VSM15, SBS15] but did not

quantify the benefit of doing so.

The inference accuracy of apps is also limited by other factors. For example, traditional

machine learning models rely on the successful choice of features, or the so-called feature

engineering process, to yield satisfying accuracy.

High energy consumption: The limited battery capacity of pervasive connected de-

vices calls for a detailed study and optimization of energy consumption of context-aware

apps. The algorithms used in these apps, including feature computations and classifications,

are computationally intensive and power hungry. Additionally, they often need to run in the

background continuously to monitor user contexts and behaviors for just-in-time feedback,

notifications, and interventions. Currently most always-on context-aware apps run on the

main app processor of smartphones representing a significant portion of the phone’s overall

workload and energy consumption. This situation is usually exacerbated by the use of power-
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hungry sensors like GPS and cellular radios. For example, Ju et al. [JLY12] reported that

apps consume 4% - 22% of CPU cycles for inference executions, and Kansal et al. [KSB13]

observed a reduction of phone standby time from 430 to 12 hours when an app is continu-

ously using the Android proximity API. The high power consumption of context-aware apps

and the reduction in battery life as a result will only get worse as apps with even more

sophisticated context inference capabilities emerge.

Monolithic development paradigm: Although pervasive sensing devices can in the-

ory enable a wide variety of inferences, developing context-aware apps in practice is arduous

because the tight coupling of apps to specific hardware and the lack of inference abstractions

require each app to implement the sensing and inference logic on specific hardware devices.

This monolithic approach is problematic for both app developers and end users. App devel-

opers must employ expertise in data science and machine learning in order to create effective

feature computation and classification algorithms. They have to write device-specific logic to

collect data, implement various feature computation blocks, train a machine learning model,

and wire all feature blocks and classifications together to complete an inference pipeline.

This complicates the development process and hinders broad distribution of their apps.

Moreover, because apps are tightly coupled with hardware, it remains challenging to

leverage heterogeneous devices for context inferences. In the monolithic approach, an app

developed for a particular device cannot leverage other heterogeneous devices. This includes

selecting appropriate devices from the current deployment, handling dynamics such as user

mobility and intermittent network connections, and partitioning the computation across

different devices.

For end users, each sensing device they install is limited to a small set of inference apps

even though the hardware capabilities may be useful for a broader set of apps. Existing

solutions from both mobile operating systems [gooa, appb] and the mobile sensing com-

munity [CLL11, KSB13] either focus on smartphones only or lack flexibility to configure

inference pipelines.

While recent work has attempted to tackle these challenges individually, each attempt
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is isolated and has limitations, as discussed in Section 1.2. This dissertation first creates

an example app to showcase the benefit of running context inferences on a non-smartphone

device, then describes a set of optimizations on the inference accuracy and energy efficiency of

inferences, and finally proposes the design and implementation of a programming framework

for developing context inference apps on pervasive connected devices.

1.1 Contribution

In this dissertation we make three key research contributions, summarized as follows.

1.1.1 Motivating Example: Leveraging Smartwatches for Context Inferences

In Chapter 2, we first showcase that context-aware inferences are not only limited to smart-

phones apps, but can also benefit from other sensing devices such as smartwatches. We

propose the design and implementation of MiLift, a workout tracking system on commercial

off-the-shelf (COTS) smartwatches. MiLift leverages a new generation of Android smart-

watches such as the Moto 360 [mota], which benefit from powerful hardware resources,

Bluetooth Low Energy radios, and a rich set of sensors. As users normally wear smart-

watches for longer periods of time than carrying smartphones, watches can extend sensor

coverage of workout tracking and therefore improve its inference accuracy. MiLift applies

automatic segmentation to eliminate the burden on users. Using a single smartwatch, MiLift

can accurately and efficiently track both cardio and weightlifting exercises without requiring

inputs from users. Additionally, MiLift applies optimization techniques such as context-

aware duty-cycling and lightweight repetition detection to continuously inferring contexts

on smartwatches. MiLift is not only a proof-of-concept example of leveraging the benefits of

wearable devices, but also motivates our following work on accuracy and energy optimiza-

tions, as well as the multi-device inference framework.
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1.1.2 Accuracy and Energy Optimization of Context Inferences

To address the challenges associated with context inference apps today, in Chapter 3 we

describe a set of efforts to maximize the inference accuracy and to minimize the energy

consumption of apps. We first apply deep learning, e.g., Recurrent Neural Networks (RNN),

for training the classification models from mobile sensor data. We have shown that RNN can

achieve comparable inference accuracy as traditional models while eliminating the need for

feature engineering in development and feature calculation at runtime. Second, we explore

the off-loading of computation from main app processors (CPU) to co-processors available

in mobile System-on-Chip (SoC) architectures, such as Graphic Processing Units (GPU)

and Digital Signal Processors (DSP). The off-loading helps context inferences achieve better

performance and energy efficiency. Last, we propose the use of both smartwatches and

smartphones to improve always-on context inferences. The coordination can help increase

the sensor coverage and inference accuracy by alternating the inference execution across

devices at any given time. We also discuss two energy optimization techniques enabled by

the coordination, including energy-efficient inference partitioning and eliminating energy-

hungry sensors. Observations from these optimizations can be adopted by developers today

to improve the context inference executions in their apps.

1.1.3 Closing the Loop: A Programming Framework for Context Inferences

Finally, we tackle the monolithic development paradigm used by today’s context-aware app

developers. We posit that inference logic for context awareness, traditionally left up to

apps, ought to be abstracted out as a system service, thus decoupling “what is sensed and

inferred” from “how it is sensed and inferred”. Such decoupling enables apps to work in

heterogeneous environments with different sensing devices while at the same time benefiting

from shared and well trained inferences. In Chapter 4, we propose Beam, a programming

framework and associated runtime which provides apps with inference-based programming

abstractions. Beam introduces the key abstraction of an inference graph to not only de-

couple applications from the mechanics of sensing and drawing inferences, but also directly
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Category C1 C2 C3 C4

Mobile workout tracking apps • ◦
Mobile health frameworks • ◦ •
Weightlifting tracking systems ◦ •
Emerging apps (VimoFit [vim]) • •
MiLift (this work) • • • •

Table 1.1: Summary of prior workout tracking approaches and whether they meet our design
challenges, C1: single-device sensing; C2: automatic segmentation; C3: weightlifting exercise
tracking; and C4: efficient resource usage. ◦ denotes partial fulfillment.

aid in addressing three important challenges: (1) device selection in heterogeneous environ-

ments, (2) efficient resource usage, and (3) handling device disconnections. Context-aware

apps simply specify their inference requirements, while the Beam runtime bears the onus

of identifying the required sensors in the given deployment and constructing an appropriate

inference graph.

Based on the above findings on composing and running context inferences across multiple

devices, we create and release a suite of open-source toolkit apps to assist developers in

data collection, inference composition, and inference execution on Android. The design and

implementation of the toolkit are described in Chapter 5.

1.2 Related Work

Apps on smartphones explore a variety of human contexts including transportation modal-

ity [RMB10] [HNT], social interactions [XLL13] [NDA13a], and physical and mental healthi-

ness [RMM10] [LFR12] [LLL13] [HXZ13]. Recently the emergence of the Apple Watch [appa],

Android smartwatches (e.g., the Moto 360 [mota]), and the Microsoft Band [msb] also

prompts the development of context inferences on smartwatches and wearable devices

[MPA14] [SBS15] [NGG15] [LGM15].

We group prior work in to the following categories and highlight our contributions.
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1.2.1 Workout Tracking

Existing solutions of workout tracking and management using mobile devices can be sum-

marized into the following categories (shown in Table 1.1):

Mobile workout tracking apps including RunKeeper [run], Strava [str], and MapMyRun

[mapb] focus on cardio exercise tracking and management using a single smartphone. Due

to the limited sensor coverage when using phones, these applications only support specific

types of cardio exercises and require users to manually start and stop workout sessions.

Mobile health frameworks such as Google Fit [gooc], Apple HealthKit [hea], and Mi-

crosoft Health [msh] provide APIs for both app developers and data scientists. Each frame-

work also provides an app for users to manage workout tracking. Typically built-in as part

of the mobile operating systems, the resource usage of these frameworks are well optimized.

However, they mostly focus on cardio exercises and do not support tracking of weightlifting

exercises. The front-end apps require manual selection of workout types as well.

Weightlifting tracking systems: The weightlifting classification system in MiLift is mo-

tivated by several prior work in this space. Chang et al. [CCC07] performs free weight

exercise tracking using two wearable accelerometers, one in a user’s glove and one in a waist

pocket. Their system can automatically classify types of free weight exercises and count reps.

MyoVibe [MLN15] and Burnout [MLN16] embeds wearable sensors in fitness clothing and

leverages muscle vibrations to identify muscle activations and to estimate fatigues during ex-

ercises. RecoFit [MSG14] provides a model to segment exercises from non-exercise activities

and count weightlifting exercises, but does not study the feasibility of running continuous

tracking on user devices. NuActiv [CSG13] uses a smartwatch and a smartphone to track ex-

ercises and everyday activities by decomposing activities into semantic attributes. It applies

zero-shot attribute-based learning for recognizing newly unseen types of exercises. Pernek

et al. [PHK13] achieves repetition detection of weightlifting exercises using Dynamic Time

Wrapping. FEMO [DSY15] tracks repeating patterns of free weight exercises by instrument-

ing dumbbells with RFID sensors and measuring frequency shifts caused by Doppler Effect.

myHealthAssistant [SBV11] employs multiple customized sensors on a user’s body and uses
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a smartphone as a hub to track weightlifting exercises. Mortazavi et al. [MPA14] can count

reps of weightlifting exercises but call for manual type selection.

Emerging apps and web services including the VimoFit app [vim], the Atlas wrist-

band [atl], and the Microsoft Band API [ban] aim at autonomous workout tracking. Al-

though some of them support rep counting for guided workouts, they still require certain

manual inputs from users. Section 2.5.3 shows the high energy consumption of VimoFit

and compares it with MiLift. Other services such as JEFIT [jef], WorkoutLabs [wor], and

Gymwolf [gym] provide workout management and guidance from self-report workout data.

Different from prior work, MiLift is the first end-to-end system on commercial smart-

watches that uses automatic segmentation to track both cardio and weightlifting exercises

without requiring users to start/stop tracking and/or select workout types. MiLift also

tackles challenges such as single device sensing and efficient resource usage described in

Section 2.2.

1.2.2 Deep Learning on Mobile and Wearable Sensor Data

There have been several attempts to perform deep learning on mobile sensor data. Deep-

Spying [BR15] leverages RNN for keystroke detection from smartwatch accelerometer data,

but achieves very limited overall detection accuracy (around 70%). Hammerla et al. [HHP16]

uses RNN for activity recognition on a datset with wearable sensor data, but provides no

implementation or profiling on mobile devices. Ross et al. [RRP14] benchmarks OpenCL

back-end functions on a mobile GPU, but focuses on low-level matrix operations instead

of neural network operations. Tschopp et al. [Tsc15] profiles the performance of running

Convolution Neural Networks on CPUs and on GPUs with OpenCL, but does not study

the consequences of performing mobile inference workloads on mobile processors. Deep-

Ear [LGQ15] and Bhattacharya et al. [BL16] apply deep learning on mobile and wearable

sensor data for inferences and profile the classification on DSPs, but do not consider mo-

bile GPUs which are more suitable for parallel tasks. DeepX [LBG16] and LEO [GLR16]

manage to execute deep neural networks on mobile GPUs using CUDA or OpenCL, but
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do not consider Recurrent Neural Networks (RNN) to explore the temporal correlation in

time-series data. In contrast, our work is the first to provide an end-to-end example of per-

forming context inferences on mobile and wearable sensor data using RNN. We have shown

that by leveraging mobile GPUs, RNN can achieve comparable accuracy and latency as the

traditional feature calculation plus classification models.

1.2.3 Leveraging Heterogeneous Processors in Mobile SoC

To address the power-hungry nature of context-aware apps on mobile phones, several re-

searchers have recently explored leveraging low-power processors. Priyantha et al. [PLL11]

uses an external MSP430 microcontroller for off-loading frequent sampling of sensor data.

Ra et al. [RPK12] examines the partitioning of different modules of a sensing app between

an app processor and low-power processors to reduce the overall energy consumption. How-

ever, the low-power processors used in these experiments are low-end microcontroller class

processors optimized for sampling and buffering, and not capable of meaningfully doing more

complicated context inferences. Moreover, such low-end processor cores are deeply embed-

ded in the hardware fabric and unlikely to be exposed to app developers. Philosophically,

these work target off-loading of simple frequent tasks from the main app processor, whereas

our work explores off-loading of computationally intensive tasks.

Among other work in this space is Lin et al. [LWZ12] which compares heterogeneous

loosely coupled processor cores, e.g. Cortex-A9 + Cortex M3, with tightly coupled processor

cores with identical instruction set architectures but different power-performance operating

points, e.g. ARM big.LITTLE [arm]. They implement Distributed Shared Memory (DSM)

between the Cortex-A9 and Cortex-M3 [LWL12], which enables efficient data exchange be-

tween the two asymmetric processors. Based on this model, they propose K2, a prototype

OS distributing both app and OS workloads on the TI OMAP4 SoC [TIa], by reusing most

of the Linux 3.4 source code [LWZ14].

Although using mobile GPUs for general-purposed computing tasks is a relatively new

field of research, there has been a number of attempts from different vendors and the open

10



source community. The NVIDIA CUDA [cud] is the most widely used framework for deep

learning and has a large developer community. It is supported by most popular deep learning

frameworks as the processing back-end, such as Tensorflow [ten], Theano [the], Torch [tor],

and Caffe [JSD14]. However, the CUDA driver is not open-source, and therefore it can run

on only a few mobile devices with NVIDIA mobile GPUs, such as the NVIDIA Tegra [NVI]

tablets and the Google Project Tango [tan] tablets. The open-source solution OpenCL can

be used by Torch or Caffe using custom implementations, and supports GPUs from different

vendors including the popular Ardeno GPU on Qualcomm Snapdragon SoCs [sna]. But

OpenCL as of today only supports low-level functions such as matrix operations instead of

neural networks operations. It is also no longer officially supported by Android. Google’s

Renderscript [ren] is the official solution of GPU computing on Android since the version

4. It can run on most stock Android phones but support only low-level BLAS functions as

well. Besides, developers have no control on where the code runs. There are also emerging

solutions such as the NVIDIA Vulkan [vul] and Memkite on iOS [mem], but they either lack

details now or do not support mobile GPUs.

1.2.4 Context Inferences on Smartwatches

Recent work has started leveraging smartwatches to assist context inferences running on

smartphones and other devices. Vigneshwaran et al. [VSM15] uses smartwatches for activity

recognition. Mortazavi et al. [MPA14] executes exercise counting on smartwatches. Shoaib

et al. [SBS15] makes preliminary investigation into the fusion of data from watch and phone

sensors. Liu et al. [LKL15] uses watches to detect unsafe driving behaviors. Recently Huang

et al. proposes WearDrive [HBC15] as an energy-efficient storage system for wearables which

can be adopted by apps in this work for further optimization of the energy cost of storage and

communication. Unlike prior work, this work conducts a systematic study on the accuracy

and energy implications of performing context inferences across both the phone and the

watch.
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1.2.5 Programming Framework for Context Inferences

Beam’s inference graph draws inspiration from data-flow graphs used in a wide range of sce-

narios such as routers [KMC00], operating systems [Rit84, MP96], data-parallel computation

frameworks [IBY07, goob], and Internet services [WCB01]. Beam is the first framework that

provides inference abstractions to decouple apps, inference algorithms, and devices, using

the inference graph for device selection, efficiency, and disconnection tolerance.

Beam is also motivated by the following categories of work:

Device abstraction frameworks: HomeOS [DMA12] and other platforms [hom, rev,

VKP06, ABY14] provide homogeneous programming abstractions to communicate with de-

vices. For instance, HomeOS apps can use a generic motion sensor role, regardless of the

sensor’s vendor and protocol. These approaches only decouple device-specific logic from

apps, but are unable to decouple inference algorithms from apps. Moreover, they cannot

provide device selection or inference partitioning capabilities.

Cross-device frameworks: Rover [JdT95], an early distributed object programming frame-

work for mobile apps, allows programmers to partition client-server apps; it provides abstrac-

tions such as relocatable objects and queued remote procedure calls to ease app development.

Sapphire [ZSV14], a more recent framework, requires programmers to specify per-object de-

ployment managers which aid in runtime object placement decisions, while abstracting away

complexities of inter-object communication. MagnetOS [LRW05] dynamically partitions a

set of communicating Java objects in a sensor network with a focus on energy efficiency.

Like these frameworks, channels in Beam abstract away local and remote inter-module com-

munication.

Macro-programming frameworks [BHS07, GGG05, LAH06] provide abstractions to al-

low apps to dynamically compose dataflows [MWM06, NMW07]. Semantic Streams [WZL06]

and Task Cruncher [TKN10] address sharing sensor data and processing across devices. How-

ever these approaches focus on data streaming and simple processing methods, e.g., aggrega-

tions, rather than generic inferences, and do not target general purpose devices e.g., phones,

PCs. In addition, they do not address device selection or inference partitioning at runtime.
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Mobile sensing frameworks: Existing work has focused only on apps requiring continuous

sensing on a single mobile device. Kobe [CLL11], Auditeur [NDA13a], and Senergy [KSB13]

propose libraries of inference algorithms to promote code re-use and explore single device

energy-latency-accuracy trade-offs. Other work [LHL14, JLY12, KLJ08, KSB13] has focused

on improving resource utilization by sharing sensing and processing across multiple apps on

a mobile device. None of these approaches address problems such as modular inference com-

position, device selection with user mobility, inference partitioning across multiple devices,

or handling disconnections.

Beam fundamentally differs from the above prior work by using the inference graph to

decouple apps from sensing and inferences, aid in device selection to operate in heterogeneous

environments, and support global resource optimizations.

1.3 Organization

The rest of this dissertation is organized as follows:

• Chapter 2 discusses the design and implementation of MiLift, which automatically

segments exercises from non-workout activities so that users do not need to manually

start/stop tracking or select exercise types. MiLift can achieve above 90% precision

and recall for tracking both cardio workouts and weightlifting exercises. It can also

extend the battery life of a Moto 360 watch by up to 8.25× (19.13h) compared with

previous approaches.

• Chapter 3 discusses three techniques we have proposed to improve the inference accu-

racy and energy efficiency of context-aware apps, including (1) applying deep learning

on mobile sensor data, achieving comparable accuracy and acceptable latency without

hand-picking features; (2) exploiting co-processors for context-aware apps, with up to

30× speed-up when running deep learning tasks on mobile GPUs and up to 60% en-

ergy saving when off-loading inference tasks to DSPs; and (3) exploring watch-phone

collaborations which result in up to 37% accuracy improvement and up to 67% less
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energy consumption for context-aware apps.

• Chapter 4 proposes and evaluates Beam, a programming framework and associated

runtime for multi-device context inference apps. Using Beam, we develop two repre-

sentative apps (Quantified Self and IFTTT Rules), where we show up to 4.5× lower

number of tasks and 12× lower source line of code in development effort. Moreover,

Beam results in up to 3× higher inference accuracy due to its ability to select de-

vices in heterogeneous environments, and Beam’s dynamic optimizations match hand-

optimized apps for network resource usage.

• Chapter 5 describes the design and implementation of our open-source toolkit for

composing and executing context inference apps.

• Chapter 6 presents our concluding remarks.
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CHAPTER 2

Motivating Example: Context Inferences on

Smartwatches

In this chapter, we use workout tracking as an example app to showcase that context-

aware inferences are not only limited to smartphones apps, but can also benefit from other

sensing devices such as wearables. This not only a proof-of-concept example of leveraging the

benefit of wearable devices, but also motivates our following work on accuracy and energy

optimizations, as well as the multi-device inference framework.

2.1 Motivation and Contribution

The emergence of mobile sensing devices such as smartphones and wearables has enabled

ubiquitous and continuous context inferences, including various types of health monitoring

and workout tracking apps. The unique location of mobile devices on human bodies and

their abilities to capture human movements have made them ideal targets to track phys-

ical workout exercises of users. With rising obesity and cardiovascular diseases linked to

physical inactivity, such workout tracking can provide quantitative data on users’ everyday

activities and assist both users and physicians in achieving better health care, rehabilitation,

and self-motivation [PGR08, CBV15, KMH13]. Compared with self-reporting, the use of

mobile devices for workout tracking can provide more accurate summaries for both cardio

and weightlifting exercises and avoid over- or under-estimations [RMB10, GTV14]. Although

there are a variety of approaches for mobile workout tracking, they lack the ability to au-

tomatically segment workout activities and therefore impose substantial burdens on users,

such as requiring users to manually start/stop tracking or to select exercise types. Failure to
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Figure 2.1: Illustration of 15 weightlifting exercises considered in this chapter (image
sources [wor, gym]) and repeating patterns in gravity sensor data traces collected from our
user study. x-axis shows time in s and y-axis shows 3-axis gravity readings in m/s2. Type
1-10 are machine exercises, and 11-15 are free weight exercises.

provide timely inputs may lead to inaccurate tracking results and/or excessive energy con-

sumption. These burdens have made prior approaches less attractive compared with simple

self-reporting.

For example, smartphone apps such as RunKeeper [run] and Strava [str] can only track

specific types of exercises (e.g. running and biking) and require users to manually start

and stop tracking. Mobile health monitoring frameworks such as Apple HealthKit [hea] and

Google Fit [gooc] leverage both smartphones and wearable devices but require users to specify

the type of workouts. While most previous work focused on monitoring cardio workouts, a

few considered tracking weightlifting exercises [CCC07, MPA14, DSY15]. However, these

approaches introduce extra user burdens such as the use of multiple sensors and energy-

hungry algorithms while still requiring certain degrees of user inputs for accurate tracking.

Recently there have been attempts from commercial apps to perform automatic exercise

segmentation, as seen in the Pocket Track feature of RunKeeper [poc] and the VimoFit

app [vim]. Nevertheless, they focus on limited types of exercises or consume excessive battery

energy.

In this chapter, we describe the design and implementation of MiLift, a workout tracking

system that uses automatic segmentation to eliminate the burden on users. MiLift leverages
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a new generation of Android smartwatches such as the Moto 360 [mota], which benefit from

powerful hardware resources, Bluetooth Low Energy radios, and a rich set of sensors. Using

a single smartwatch, MiLift can accurately and efficiently track both cardio and weightlift-

ing exercises without requiring inputs from users. Additionally, MiLift applies optimization

techniques such as context-aware duty-cycling and lightweight repetition detection to con-

tinuously inferring contexts on smartwatches.

We highlight the research contributions of MiLift as follows:

First, MiLift can automatically segment both cardio workouts and weightlifting exercises

from non-workout activities using a two-stage classification model. It is the first system to

apply and fully evaluate such an automated algorithm in workout tracking. Unlike previous

tracking approaches, users do not need to provide any manual inputs to MiLift, such as

selecting types of exercises or starting/stopping exercise sessions. MiLift runs in the back-

ground on a smartwatch and also provides a UI to visualize the workout summary of users

for management. From our user study, MiLift’s automatic segmentation feature is proven

valuable to individuals who regularly perform gym exercises.

Second, MiLift can track both weightlifting machines and free weight (dumbbell) exer-

cises, as shown in Figure 2.1. MiLift meets real-world user requirements during weightlifting

exercises, including (1) automatically detect the start and stop of weightlifting sessions (sets);

(2) count repetitions (reps) of exercises; (3) classify the type of exercises. Our evaluation

on a dataset of 2528 sets of weightlifting exercises (24408 reps) collected by 22 users shows

that MiLift can achieve above 90% average precision and recall for both weightlifting session

detection and exercise type classification. The average error of rep counting in MiLift is 1.12

reps (out of an average of 9.65). Weightlifting detection in MiLift requires no model training

and is user-independent.

Finally, to achieve efficient resource usage, MiLift employs two techniques that have not

been applied to wearable context inferences by prior work: a context-aware duty-cycle opti-

mization and a lightweight revisit-based weightlifting detection algorithm. Our experiments

on a Moto 360 smartwatch indicate that watch battery lives can be extended by up to 8.25×
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(19.13h) by running MiLift instead of unoptimized tracking apps. Even with a continuous

execution of MiLift, the watch battery can last for more than a day and therefore will not

require extra charging by users.

The MiLift app is open-source and available on Github [mil].

2.2 Challenges and Design Choices

We discuss several key challenges towards an autonomous and efficient workout tracking

system and highlight the design choices made in MiLift.

2.2.1 C1: Single-device Sensing

Workout tracking apps running on smartphones cannot accurately sense user activities when

the phone is placed away from the user. Moreover, workout exercises typically involve

movements of different body segments such as hands, arms, waists, and legs and cannot

be accurately monitored by a single smartphone. Prior tracking algorithms either placed

more than one sensing device (e.g. a phone and a watch) on a user [CCC07, CSG13] or

required instrumentation of weightlifting equipment [DSY15]. In contrast, smartwatches are

less intrusive since most users wear them for the majority of the day. Watches can sense

wrist orientations and partial torso movements whereas smartphones, typically carried in

pockets, can only capture body postures. Therefore MiLift uses a single smartwatch to

replace smartphones and other sensors previously used for workout tracking.

2.2.2 C2: Automatic Segmentation

Most workout tracking apps require users to manually choose workout types and start/stop

the tracking of each session. If a user fails to mark the session end in time or even forgets to

do so, the tracking algorithm could overestimate the current session and/or consume exces-

sive energy. To eliminate user burdens, MiLift can detect a user’s activity transitions and

automatically segment different workout exercises using a two-stage classification model: it
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first applies a lightweight classifier on low-power inertial sensor data to determine high-level

user activities such as non-workout, walking, running, and weightlifting, and only starts de-

tailed weightlifting analysis upon detection of weightlifting exercises. This multi-stage model

is motivated by prior work on hierarchal activity classification [KLL10, ZMN10, XSW11].

2.2.3 C3: Weightlifting Exercise Tracking

Medical researchers have shown that weightlifting exercises (or weight training, strength

training) can help improve metabolic function and muscle strength [PFB00, CHS05]. Al-

though free weight exercises, such as those using dumbbells and barbells, can sometimes

lead to greater muscle activities than machine-based weightlifting exercises [MF94], both

should be combined to maximize training outcome [CDS05, PFB00]. Most workout tracking

apps monitor cardio activities such as walking and running, but few can efficiently track

weightlifting exercises, including the following metrics:

• Number of sets : each set is a workout session that includes several repetitions of the

same weightlifting exercise.

• Number of repetitions (reps) in a set: each rep is an instance and the basic unit of a

particular weightlifting exercise.

• Type of the exercise: for example, dumbbell bicep curl.

MiLift exploits repeating patterns of human arms during weightlifting exercises as demon-

strated in Figure 2.1, and performs weightlifting classification include set detection, rep

counting, and exercise type classification. MiLift considers 10 types of weightlifting machine

exercises (#1-#10) and 5 types of dumbbell-based free weight exercises (#11-#15).

2.2.4 C4: Efficient Resource Usage

The limited battery capacity of mobile devices calls for a detailed study and optimization

of energy consumption of workout tracking services. We propose that the battery life of

a smartwatch should last for at least 16 hours (a full day except sleeping) even with con-

tinuous workout tracking, so that users do not need to charge the watch during the day.
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Figure 2.2: State transitions of a user’s workout activities.

Previous approaches can rapidly drain out device batteries because of the continuous nature

of inference executions and the use of complex algorithms for weightlifting tracking such

as Dynamic Time Wrapping (DTW) [PHK13]. MiLift applies two techniques to achieve

efficient resource usage on watches: 1) a context-aware duty-cycling optimization, and 2) a

lightweight algorithm for weightlifting detection.

2.3 System Architecture

In this section, we propose the system architecture of MiLift, describe the implementation

of a two-stage classification model, and discuss optimization techniques.

2.3.1 Overview

MiLift aims to track workout activities of a user using only a smartwatch (C1). Exercises

of a user can be categorized into three groups: non-workout (still), cardio workouts such

as walking and running, and weightlifting. Figure 2.2 describes state transitions of these

exercises. A user can start weightlifting or cardio workouts from the non-workout state.

However, we assume that a user cannot perform weightlifting right after a cardio workout or

vice versa because there has to be a short transition period to non-workout first, for example,

taking a rest or preparing for the next exercise. State transitions also take place within each

group: the user can switch between walking and running during a cardio session or take rests

between weightlifting sets.
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Figure 2.3: MiLift architecture and state transitions.

Motivated by the state transitions of user activities, MiLift uses a two-stage classification

model to accurately and efficiently track workout activities, shown in Figure 2.3. The model

contains two stages:

S1: High-level activity classification: S1 aims at detecting high-level activity state

transitions of a user shown in Figure 2.2 and tracking cardio workouts. It implements a

lightweight algorithm to label a data window with activities including non-workout, walking,

running, and weightlifting. If walking or running is detected, session duration and step counts

are logged. Once weightlifting is detected, MiLift wakes up the weightlifting classification

module described below which involves more complicated computations.

S2: Weightlifting classification: This module analyzes inertial data and performs de-

tailed weightlifting classification (C3) including set detection, rep counting, and type classi-

fication. We have implemented an autocorrelation-based algorithm and a lightweight revisit-
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based algorithm to achieve efficient resource usage (C4).

To perform automatic segmentation on user activities and eliminate the burden on users

to manually start/stop tracking of sessions (C2), MiLift transits between S1 and S2 based on

current user contexts. The state transition also helps preserve battery energy of smartwatches

(C4).

2.3.2 High-level Activity Classification

In MiLift, inertial data samples from smartwatches are first labeled by a high-level activity

classifier. Motivated by prior work on mobile sensing [MSS06, RMB10, HNT], the classifier

takes a window of 3-axis accelerometer data and generates an activity label such as non-

workout, walking, running, or weightlifting. The classification pipeline includes:

Sampling and preprocessing: MiLift uses a 1s classification window on accelerometer

data sampled at 50Hz. The choice of 1s window size is also seen in previous activity

recognition work [RMB10, HNT] so that the data window contains enough samples for feature

functions but also keeps only one type of activity in a single window. Data is buffered for

each second and then sent to the next stage for feature extraction.

Feature extraction: This submodule takes an 1s window of accelerometer data and reduces

its dimension by applying a set of feature functions in both time and frequency domains.

Features considered in our system are mean, variance, range, root mean square (RMS), mean

absolute deviation (MAD), magnitude, skewness, kurtosis, quartiles, median, and energy

coefficients between 1-5Hz from Discrete Fourier Transform (DFT). For each feature, MiLift

fuses three accelerometer axes by computing on each axis separately and then taking an

average. To improve performance and reduce feature calculation workload, we apply two

feature selection algorithms implemented in scikit-learn [PVG11] including the univariate

statistical test and the tree-based feature ranking. These two selection algorithms rank

features based on their significances and select 7 of them for use in MiLift, including mean,

standard deviation, MAD, range, the 1st quartile, the 2nd quartile, and DFT at 5Hz. The

feature vector is then sent to the next stage for classification.
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Classification: The classification module takes a feature vector as input and generates

an activity label for each window (i.e., every second). We have implemented two cate-

gories of classification models. The first approach uses Conditional Random Fields (CRF)

to continuously label each data window represented by the feature vector. CRF is com-

monly used for sequence labeling tasks such as part-of-speech tagging and image segmenta-

tion [SM06]. Prior studies also use CRF for tasks on sensor data such as room occupancy

inference from motion sensors and human activity recognition from wearable accelerome-

ters [YTS14, LLN11, VVL07, NDH10].

In MiLift, CRF is used to exploit the temporal correlation among workout activities.

Each state yt in CRF corresponds to a ground truth activity label at time t, and each

accelerometer feature vector is used as an observation xt. The joint probability of a state

sequence y and an observation sequence x is modeled as:

pλ(y|x) =
1

Zλ(x)
· exp(

n∑
j=1

m∑
i=1

λifi(y,x))

where n is the total time considered, f is a set of m feature functions internally used by

the CRF (not to be confused with our accelerometer features), λ is a weight vector for all

feature functions, and Z serves as a normalization term. Because most CRF implementations

only accept nominal (string) observations, they cannot process floating-point accelerometer

features. Therefore we use a k-means algorithm to group each feature into a cluster and use

the corresponding integer cluster ID as an input observation to CRF. We have considered

different numbers of k-mean clusters including 4-20 for the best CRF training performance.

In addition to the continuous CRF, our second approach for high-level activity classifi-

cation applies an instance classifier to label each 1s window and then uses a Hidden Markov

Model (HMM) to smooth the label series. We consider three popular instance classifiers

including Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM).

Parameters of all models are tuned in the training stage, such as maximum depths for DT,

number of trees and size of feature subsets used for each split for RF, and kernel types

for SVM. These models label each individual 1s window independently. However, adjacent
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Figure 2.4: Sensor traces comparison of dumbbell single arm row performed by two users,
showing that gravity sensor can best demonstrate the repeating patterns.

windows are temporal-correlated as workout activities are continuous and would not transit

frequently within a short period. For example, a user may briefly raise his or her arms while

sitting in the office but instance models may classify this action as weightlifting. We apply an

HMM classifier to smooth output activity labels of instance classifiers and filter out unlikely

activity transitions for better accuracy. To generate the HMM model, we use ground truth

activity labels as hidden states and output labels from instance classifiers as observations.

2.3.3 Weightlifting Classification

The second state in the two-stage classification model of MiLift is a weightlifting classifica-

tion module. It is waken up by the high-level activity classifier when users are performing

weightlifting exercises. This module achieves three tasks: (1) detecting weightlifting ses-

sions and label boundaries of sets, (2) counting number of reps (repetitions) in each set, and

(3) classifying type of current weightlifting exercise. The weightlifting classification module
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must conserve battery energy of smartwatches (C4).

2.3.3.1 Sensor Choice

There are several available inertial sensors on a smartwatch that can capture human motions,

including but not limit to accelerometers and gyroscopes. A gravity sensor is a low-power

software sensor fusing both accelerometer and gyroscope [andb]. Gravity sensor data can

reflect wrist orientations of users and can be a good indicator of repeating weightlifting

exercises with wrist movements. Using the dumbbell single arm row exercise as an example,

Figure 2.4 demonstrates the ability of different sensors to capture weightlifting exercises.

Sensor data traces collected from two users each performing one set of exercises are compared

with ground truth motion traces captured by an OptiTrack Prime 13 tracking system [optb].

For both users, the gravity data is less noisy than the accelerometer and gyroscope data

and can better highlight the repeating pattern in signal traces generated by weightlifting

exercises. Moreover, amplitudes of the gravity data across two users are more consistent

compared with the other two sensors, indicating that gravity sensor can better identify types

of weightlifting exercises across different users. Therefore MiLift uses the Android gravity

sensor for weightlifting detection. However, we acknowledge that single-point sensing has

limited coverage on the human body and discuss this issue in Section 2.6.

Figure 2.5 (a) demonstrates a trace of gravity sensor data during a user’s weightlifting

exercise session (bicep curl machine). This session can be clearly identified by repeating

patterns in the gravity sensor trace. Moreover, since the corresponding gravity data are

cyclical, each rep in this session can be identified and the number of reps can be counted. In

contrast, we see arbitrary patterns recorded during non-workout periods shown in Figure 2.5

(b). Therefore, MiLift quantifies repeating patterns in gravity data to detect weightlifting

sessions and count reps, using two approaches including an autocorrelation-based algorithm

and a revisit-based algorithm. MiLift then classifies the type of the detected weightlifting

activity.
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Raw gravity sensor data for: (a) weightlifting exercises, (b) non-weightlifting movements, and (c) non-workout still period.

Output of autocorrelation-based weightlifting classification algorithm for (a) (b) (c).

Output of revisit-based weightlifting classification algorithm for (a) (b) (c).
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Figure 2.5: Results of applying autocorrelation-based algorithm and revisit-based algorithm
on gravity sensor data for three cases: weightlifting (bicep curl), non-weightlifting move-
ments, and non-workout still period.

2.3.3.2 Autocorrelation-based Weightlifting Detection

Weightlifting session detection: Autocorrelation is a technique for examining the peri-

odicity of a signal series. It calculates correlation between a sample window at time t and

another same-size window with an offset in time known as the lag `. The output of an

autocorrelation series can be represented as a function of `:

R` =
ST
t St−`

|St| · |St−`|

where St is a w−element vector representing a signal window with size w starting from time

t. If a sample window and another window with lag ` have similar signal patterns, the

autocorrelation value R` will be close to 1 indicating significant similarity between these two

windows. We apply a threshold value Thresac on R` to identify weightlifting sessions. In

order to capture periodicity of weightlifting exercises, we choose a small window size but

longer than the typical duration of a rep (6s from our analysis) to cover all possible rep
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lengths.

For weightlifting session detection, we apply autocorrelation using 1s sliding windows

on gravity data to capture all possible sessions. Figure 2.5 (d)(e)(f) plot autocorrelation

results when applied on three different cases of sensor readings shown in Figure 2.5 (a)(b)(c).

The figures also show the threshold Thresac used for repetition detection as well as both

ground truth and detected weightlifting sessions. When autocorrelation is performed on a

weightlifting session, the output values are close to 1 and demonstrate spike patterns (shown

in (d)). A peak in autocorrelation results is aligned with a valley in raw data because this is

the beginning of a new rep and autocorrelation discovers the maximum similarity between

current window and the previous one. MiLift applies Thresac on peaks from autocorrelation

results to identify a weightlifting session. In contrast, when the input signal trace indicates no

repeating wrist motion, for example when a user is adjusting the weights, the autocorrelation

output values show no peaks and are relatively low (shown in (e)). However, one exception

exists that can lead to constant high autocorrelation values. When a user’s wrist is stationary

during breaks and gravity readings are relatively constant, the output values can remain

close to 1 (shown in (f)). Our algorithm filters out such cases by removing sessions with

consistently high autocorrelation values but no spike patterns.

Another issue in this algorithm is which axis should we consider for autocorrelation.

From the gravity signals shown in Figure 2.1, there is no universally dominant axis with

the most obvious peak-valley patterns. In MiLift, we explored three techniques to select the

best gravity axis: (1) summing up absolute values of each axis; (2) taking absolute values

of sums of each axis; (3) performing autocorrelation on each axis separately and choosing

the best result. Our experiment indicates the last strategy is the most robust against false

positives and demonstrates the best accuracy among the three.

Rep counting: After weightlifting sessions are detected and labeled, the rep counting part

is achieved by simply performing a naive peak detection on autocorrelation results. Because

non-repeating signals are already filtered out, the number of reps can be derived by simply

counting peaks.
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2.3.3.3 Revisit-based Weightlifting Detection

Although the autocorrelation-based algorithm can effectively detect repetitions in time-series

data, it can incur O(wL) overhead upon arrival of each new gravity sample where L is the

maximum lag of interest and w is the window size, leading to heavy computations (challenge

C4). We propose a lightweight algorithm which quantifies revisit events in gravity sensor data

to detect weightlifting sessions and count reps with less computation and better efficiency.

Weightlifting session detection: Figure 2.5 (a) shows that gravity signal demonstrates

repeating patterns during weightlifting sessions. This implies that gravity sensor readings

(i.e., (gravx, gravy, gravz)) with similar values can be found within a short time frame,

typically not longer than the period of a rep. For example, the gravity reading marked

as t1 has a similar value to sample t2 about one second later. A necessary condition of a

weightlifting session is that repeating patterns of sensor readings are seen within a short

time window whose length is similar to the typical length of one rep (6s from our analysis),

indicating that the majority of gravity samples in this window have a similar sample within

the same window. However, the strategy of comparing sensor data windows whenever a new

sample arrives can cause high overhead, as seen in autocorrelation. Instead, we present a

heuristic algorithm to discover repeating patterns in the signal stream, called the revisit-based

approach:

First, each sample of sensor readings (gravx, gravy, gravz) is discretized at an interval

of I giving it a discretized value vector D where:

D =
(⌊gravx

I

⌋
· I,
⌊gravy

I

⌋
· I,
⌊gravz

I

⌋
· I
)

Therefore two similar samples will share the same D value. Our experiments indicate the

best choice of I is 0.6.

Second, we maintain a hash table H to store incoming samples where D is used as the
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key and timestamp t of current sample is used as the value:

H[D ] = t

Next, we define that a revisit event occurs when a hash collision happens, for instance,

when a sample with a key D and a timestamp t arrives, the key D already exists in H with

a value t′ (H[D ] = t′). The revisit time frame Trevisit of this event is defined as the time

difference between two samples with the same discretized value D :

Trevisit = t− t′

Since we only use revisit events to identify reps, we set a threshold value Thresrevisit as 6s

to cover the longest possible rep. We only consider revisit events with Trevisit < Thresrevisit.

H[D ] is then updated with value t.

Finally, we define revisit event generation rate to represent the number of revisit events

generated in the past 1s at a given time. A high revisit event generation rate suggests that

revisit events with small revisit time frames are generated frequently within a short period

of time and thus indicating the occurrence of repeating patterns, which can then identify

an ongoing weightlifting session. We apply a threshold value Thresrv on the revisit event

generation rate of each second to select significant (high) values.

The above revisit-based algorithm only takes O(1) time to update the revisit event gener-

ation rate when a new sensor reading arrives and can significantly reduce computational cost

compared with the O(wL) overhead incurred for each new sample by the autocorrelation-

based algorithm.

Figure 2.5 (g)(h)(i) plot results of our revisit-based algorithm on three different input

traces shown in Figure 2.5 (a)(b)(c). The figures also show the threshold Thresrv used for

repetition detection as well as both ground truth and detected weightlifting sessions. If

input signals have cyclical patterns due to repeating motions, the revisit event generation

rate raises and remains high until the end of current weightlifting session (shown in (g)). In
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Figure 2.6: Two cases that can lead to failures of naive peak detection. Left: for bicep curl
if we only consider upper peaks, each rep will be counted twice. Right: for ab crunch the
weightlifting session boundary looks similar to a rep leading to a false count.

contrast, revisit event generation rates are much lower if there is no repeating pattern in the

input trace (shown in (h)). However, whenever a user is stationary and the gravity readings

are relatively constant, revisit events will be generated at a high rate equal to the sensor

sampling rate. Our algorithm excludes this situation by discarding any sensor reading that

has the same discretized value D as its immediate predecessor. As shown in Figure 2.5 (i),

this effectively prevents stationary motions from being detected as weightlifting.

Rep counting: After the beginning and end of weightlifting sessions are detected, our

revisit-based algorithm performs peak detection on raw gravity sensor data to count reps.

However, this is more difficult than the peak detection step involved in the autocorrelation-

based algorithm because noises in raw data are not filtered out and therefore we cannot

simply count peaks for the number of reps.

There are three issues preventing an accurate rep counting using naive peak detection on

raw gravity data. First, a dominant axis that presents the most distinct repeating patterns

out of three gravity axes has to be selected. Second, neither upper peaks nor bottom peaks

(valleys) always better indicate repeating patterns. As shown in Figure 2.6 left, simply

counting peaks yields double-counting errors because upper parts of bicep curl reps sink in

the middle resulting in vertically reversed w-shapes in the signal, i.e. two peaks. Third, the

weightlifting session boundaries detected above may not be precise. Figure 2.6 right shows
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that if we consider bottom peak (valley) values, the valley at t = 0 satisfies all constraints

even if it is not a rep but the end of this session.

To address the first issue, we select the axis with the largest range between the maximum

and minimum value within the session to reduce ambiguities during rep counting. Next, we

have to decide whether the number of reps should be derived by counting peaks or valleys.

We use vertical displacements within a small delta time (i.e. second derivatives) to capture

spikiness of peaks/valleys where a larger displacement indicates a spikier peak/valley. For

both peaks and valleys, we compute the average vertical displacement V and count the

one with larger V as number of reps to improve the counting accuracy. In the example of

Figure 2.6 left, valleys should be considered since they have larger vertical displacements

than peaks. Finally, to reduce false rep counts from weightlifting session boundaries, we

consider the three axes as a whole when ambiguity occurs at the beginning or end. Taking

the example of Figure 2.6 right, the average reading of three gravity axes at t = 0 is different

from any other detected valleys, allowing us to remove it as a false rep count.

Both the weightlifting detection algorithms require no model training. Because neither

algorithm considers any user-specific feature, our proposed weightlifting algorithms are user-

independent as well.

2.3.3.4 Weightlifting Type Classification

In routine weightlifting exercises, a user is not only interested in statistics such as the num-

ber of sets and reps, but also the type of weightlifting exercises performed in each set.

Once weightlifting sessions are detected and numbers of reps are calculated, MiLift starts

weightlifting type classification and labels each detected session with an exercise type.

Our intuition for weightlifting type classification is that wrist positions of a user during

different weightlifting exercises will lead to unique orientations of a smartwatch. To quantify

watch positions, MiLift aggregates 3-axis gravity sensor readings from the current weightlift-

ing session and computes a set of features for each axis, including mean, standard deviation,

minimum, maximum, and range. MiLift then applies an SVM classifier to label the type of
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# of participants 22 Duration of non-workout 14.88h
# of weightlifting types 15 Duration of walking 9.22h
# of weightlifting sets 2528 Duration of running 7.95h
# of weightlifting reps 24408 Duration of weightlifting 36.15h

Total duration: 68.20h

Table 2.1: Summary of data collection in our user study.

the current session. We choose SVM here because of the relative simplicity of this classifi-

cation problem and the ability of SVM to generate confidence scores for each class of types,

which can be used to determine if an exercise type is unseen. To fine tune performance of the

SVM classifier we have considered different kernels such as linear, Gaussian (with different

radius r), and polynomial (with different degree d).

Another significant aspect of type classification is the ability to determine whether a new

sample instance belongs to known exercise types during training or a new type of exercise.

To identify new types, MiLift takes advantage of confidence scores reported by the SVM

classifier. For each incoming instance, a vector of confidence scores is calculated by the

SVM, representing the probability that this instance belongs to each known type class. If

the maximum probability in this vector falls below a certain threshold Thresconf , MiLift

determines this instance belongs to a new type of weightlifting exercise and asks the user for

a correct label. This also enables MiLift to perform active learning by re-training the model

once a new exercise type is seen. We plan to address this topic in the future (Section 2.6).

2.3.4 Context-aware Optimization

To achieve both automatic segmentation (C2) and efficient resource usage (C4), MiLift takes

advantage of available user contexts and applies a context-aware state transition mechanism.

Figure 2.3 shows the transition among two classification states, S1 and S2.

S1: MiLift executes the high-level activity classification in this state. It involves sampling

of low-power accelerometer and incurs only lightweight computation and low energy con-

sumption. Because a user typically keeps the same activity for a period of time and will not
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switch activities frequently within seconds, MiLift duty-cycles the execution of S1 by a 20%

schedule. MiLift classifies a 1s window every 5s so that it is able to capture most activity

transitions while conserving battery energy. Note we design the 20% duty-cycle schedule as

a system parameter and it can be changed based on user preferences and current battery

states.

Moreover, to prevent everyday activities from being mis-classified as gym exercises (i.e.

reducing false positives), S1 opportunistically leverages coarse location contexts such as those

inferred from network accesses or WiFi signatures. For a given user, workout exercises mostly

take place near similar locations (e.g. a gym) or WiFi networks (e.g. gym WiFi hotspots).

MiLift can automatically learn the typical exercise location of a user after the first few app

uses and from WiFi connection histories. If a coarse location is known from recent queries

or WiFi scans initiated by the OS or other apps, it can be compared with the user’s typical

exercise locations. Once weightlifting is detected by S1, only when the two locations match

will MiLift transit to S2. The opportunistic use of coarse locations as opposed to querying

exact GPS coordinates ensures no additional energy is consumed.

S2: MiLift performs the more sophisticated weightlifting classification in this state. Al-

though S2 is designed to be lightweight and efficient, the complexity of this state is relatively

higher than S1 because of the computation incurred by each new sensor reading. Therefore it

is triggered by S1 and only starts executing upon detection of weightlifting exercises. When

no new weightlifting exercise is detected for a certain timeout (e.g. 5min), MiLift transits

back to S1 and performs the simpler high-level activity classification.

Although performing duty-cycled classification will not prevent the watch from being

waken up frequently, i.e. the watch will still have to perform sensing and classification in

S1 every 5 seconds, Section 2.5.2 and Section 2.5.3 have proven such an optimization to be

effective since the watch can last for more than a full day with this two-stage classification

model running continuously. This is because most of watch battery energy is spent on

data sampling and computation rather than simply remaining power-on. Nevertheless, we

acknowledge that the use of low-power co-processors (e.g. DSPs and dedicated sensor hubs)

for always-on sensing and computation tasks will further reduce the energy consumption of
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Figure 2.7: Screenshots of the MiLift Android app. Left: a calender for workout manage-
ment; Right: a workout activity summary of a given date.

context inferences, as discussed in Section 2.6.

2.4 Implementation

Hardware device: The commercial off-the-shelf watches we used for data collection include

Moto 360 [mota], Moto 360 Sport [motb], LG G Watch R [lgw], and ASUS ZenWatch

2 [asu]. For experiments on energy profiling we used the Moto 360 which has a 1GHz

OMAP3 CPU, 512MB RAM, 4G flash storage, and a 3.8V/320mAh Lithium-ion battery.

We have implemented a smartwatch data recording app that logs accelerometer and gravity

sensors from the watch. Users were also assisted by Google Nexus 5 phones during data

collection. Although we used four different watch models for data collection, the recording

app implements the same sampling frequency even when running on different models.

User study: Our data collection campaign was performed as part of a user study that

involves 22 participants1. Participants are aged from 19 to 27 and consist of both males and

females. All participants regularly engage in gym exercises. We have collected 68.2 hours

1Our user study is approved by UCLA under IRB#16-000303.
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of workout data in total, including 2528 weightlifting sets (24408 reps), as summarized in

Table 2.1. For ground truth recording, we used the Moves app [mov] to log cardio activities

and let participants manually record set/rep counts in weightlifting exercises. In addition, we

asked each participant to finish a post-completion survey on workout tracking (Section 2.5.3).

Offline analysis: With the collected data, we first conducted an offline analysis to train

classification models. The high-level activity classifier and the weightlifting type classifier

were implemented using the scikit-learn library [PVG11] in Python. The HMM smoothing

of high-level activities and weightlifting classification algorithms including session detection

and rep counting were implemented in Matlab.

Android implementation: We implemented MiLift as an Android app using Android 5.1.1

(API 22). MiLift contains two components: a watch app that performs workout tracking

and a phone app that provides visualization and assistance for workout management. The

watch app executes real-time classifications as a background service and does not require

user inputs. Multiple open-source projects were used to port trained classification model to

Android, including CRF++ [crf] and jahmm [jah]. Figure 2.7 left shows the MiLift workout

calendar where users can choose a particular day to view their progresses. Figure 2.7 right

displays workout activities performed in a given day showing durations for cardio workouts

and rep counts for weightlifting exercises.

2.5 Evaluation

We first evaluate MiLift using a set of micro-benchmarks including accuracy (Section 3.4.4.3)

and power (Section 2.5.2) profiling of classification models. We then use a macro-benchmark

to analyze the effect of MiLift on required user tasks and smartwatch battery lives compared

with previous approaches (Section 2.5.3).
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Figure 2.8: Weighted average precision and recall of high-level activity classification (10-fold
cross validation).

2.5.1 MiLift Tracking Accuracy

2.5.1.1 Accuracy of High-level Activity Classification

The high-level activity classifier is the first state of the two-stage classification model and

aims at detecting high-level activities of users before triggering the weightlifting classifier.

To select the best model for this classification task, we first used a 10-fold cross validation to

examine the performance of the four classifiers, including the continuous graph model CRF

and three instance classifiers RF+HMM, DT+HMM, and SVM+HMM. The best parameters

selected for each classifier include maximum depth of 8 for DT, 64 classifiers and 4 features

used at each split for RF, and linear kernel for SVM. For CRF, input feature values are first

transformed to integers using cluster centers trained from k-means clustering algorithm, and

our parameter tuning has chosen the use of 16 clusters for best CRF performance. Figure 2.8

plots the weighted average precision and recall for all four models from the cross validation,

including results before and after HMM smoothing for the three instance classifiers. Among

the four models DT+HMM and RF+HMM has the best overall performance (nearly 90%)

but CRF only performs slightly worse (around 85%). As discussed in Section 2.3.2, the

results suggest that HMM smoothing is crucial in reducing false positives and increasing the

overall performance of all three instance classifiers.

We then used the best model parameters selected from cross validation to showcase

real-world performances of the high-level activity classifiers. We had one user collected

an all-day data trace consisting of 15 hours of continuous accelerometer data. This trace
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Figure 2.9: Weighted average precision and recall of high-level activity classification (15-hour
all-day trace).

CRF RF+HMM DT+HMM SVM+HMM

1.6 MB 105.1 MB 45 KB 5.6 MB

Table 2.2: Memory footprints of high-level classifiers.

includes the user walking around school, sitting during classes and study, running in a gym,

and performing weightlifting exercises. Our entire dataset described in Section 2.4 is divided

into two parts: all but this 15-hour data trace is used to train the high-level classifiers and this

trace itself is used as the testing set. Figure 2.9 plots the resulting weighted average precision

and recall for classifications on the all-day trace. All four models achieve above 90% average

precision and recall. Among them, DT+HMM and CRF have the best overall accuracy

but the other two models perform only slightly worse. The results above have proven that

the high-level activity classification models in MiLift can successfully separate non-workout

activities from gym exercises in real-world user scenarios. Moreover, continuous graphical

models (e.g., CRF, HMM) can effectively increase the accuracy of time-series classification

tasks by exploiting temporal correlations in data.

Finally, with RAM becoming another power-hungry component in mobile SoC as RAM

power can exceed CPU power in certain workloads [CH10], another factor in choosing clas-

sification models is the memory footprint. Table 2.2 compares the size of the four trained

models. DT+HMM and CRF have much smaller model sizes compared with the other two

because of the relative simplicity of their model structures. Considering both their clas-

sification precision/recall performances and the memory footprints, we have chosen to use
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Figure 2.10: Weightlifting detection performance, reported by users and by types of exercises
(as shown in Figure 2.1).

DT+HMM and CRF for implementation in MiLift.

2.5.1.2 Accuracy of Weightlifting Classification

Session (set) detection and rep counting: We first evaluate the accuracy of weightlift-

ing session detection and rep counting using our two proposed algorithms. Figure 2.10 (a)

illustrates the weighted average precision and recall of session (set) detection based on users.

In general, both algorithms demonstrate high overall accuracy, as autocorrelation-based ap-

proach achieves 97.5% precision and 90.7% recall while revisit-based approach yields 95.7%

precision and 92.6% recall. Figure 2.11 shows three common cases seen in our user study

that lead to errors in weightlifting set detection: (a) some users tend to take short pauses

within a set, possibly because of tiredness; (b) users can sometimes finish the last rep in an

incorrect posture; (c) some users may adjust their body postures (including wrist orienta-

tions) during a set. All three cases can cause irregular patterns in sampled gravity data and

set detection errors from both approaches.

For rep counting, both the autocorrelation-based and the revisit-based approach have
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Figure 2.11: Three common error sources of weightlifting session (set) detection seen in our
user study.

similar average errors, shown in Figure 2.10 (b). Here the rep counting error is defined

as the difference between the true number of reps and the number of reps counted by our

algorithms in each set. On average the autocorrelation-based algorithm and the revisit-based

algorithm report errors of 1.125 and 1.122 reps per set, respectively. Some rep counting

errors are caused by cases shown in Figure 2.11, because inaccurately detected session (set)

boundaries can lead to rep miscounts as well. Other errors are results of unconventional

postures and actions performed by some users during weightlifting exercises. Participants

can sometimes incorrectly log ground truth leading to errors as well. Nevertheless, the rep

counting errors are insignificant considering a user performs 9.65 reps on average within each

set. In addition, the errors are only slightly greater than user expectations from our survey

(Table 2.4).

To study the root cause of errors, we report session (set) detection and rep counting results

based on the type of weightlifting exercises. Figure 2.10 (c) plots the recall or detection rate
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of each exercise type shown in Figure 2.1. Note that the precision metric is not applicable

here since a workout trace may contain multiple types of exercises and therefore we cannot

identify false positive sessions for each exercise type. Both algorithms can nearly perfectly

identify all sessions of bicep curl (#1), tricep extension (#2), tricep dip (#9), and dumbbell

lateral raise (#14). However, seated row (#6), pec fly (#7), and rear deltoid (#8) are not

well captured by either approach. This is because the vertical displacements in gravity data,

i.e. the range between peaks and valleys, are small in all three axes for these exercises,

making both algorithms susceptible to noises. Seated row does not involve substantial wrist

motions and will not affect gravity readings much. Though both pec fly and rear deltoid

require large forearm movements, the wrist trajectories of users fall into a horizontal plane

and the watch rotates around z-axis in the global frame (perpendicular to the ground). Such

rotation will not cause significant changes in gravity readings.

Although free weight exercises can in general cause more complicated body movements

than machine-based exercises, MiLift’s performances on session detection and rep counting

for free weight exercises are similar to those for machine-based exercises. For free weight

exercises, MiLift has high errors detecting dumbbell bench press (#15) due to similar reasons

stated above. It is also worth noting that keeping body motions stable while performing

dumbbell bench press exercises is known to be difficult even for experienced gym users,

which adds more noises to the sampled gravity data.

Figure 2.10 (d) reports rep counting errors by exercise types and shows similar error

trends as seen in Figure 2.10 (c): type #6-#8 and #15 have higher rep counting errors than

others. Lat pulldown (#3) and dumbbell single arm row (#13) also have relatively high

errors due to unclear repetition patterns shown in gravity data traces from some users.

Weightlifting Type Classification: We have chosen a Gaussian SVM with r = 0.05

for MiLift to determine the type of weightlifting exercises in a session and identify unseen

exercise types. We used a 10-fold cross validation on the entire weightlifting dataset to test

the performance of this classifier, which shows a precision of 89.71%, a recall of 89.53%, and

an F1-score of 89.48% (all weighted average) for all 15 exercise type classes. Figure 2.12

left plots the confusion matrix of all exercise types from cross validation, suggesting that
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Figure 2.12: Left: confusion matrix of weightlifting type classification. Right: ROC curve
of leave-one-type-out experiments.

our SVM model has good performance on all classes and does not bias towards certain

weightlifting types.

Another important benchmark of weightlifting type classification is the accuracy of iden-

tifying newly unseen types. Section 2.3.3.4 proposes our algorithm in MiLift to identify new

types by applying a threshold value Thresconf on confidence scores generated by the SVM.

We evaluated the performance of this approach by conducting a leave-one-type-out cross val-

idation. For each weightlifting type, we trained an SVM model using data from all other 14

types, and used this model to classify the entire dataset including instances of the 14 known

types and the 1 unknown type. Because an instance of an unknown type can be similar to

instances of one or more of the known types, the accuracy of identifying unknown types de-

pends on the value of Thresconf . A smaller Thresconf will allow more instances of unknown

types to be correctly identified but will also lead to more false positives. Figure 2.12 right

plots the ROC curve (true positive rate over false positive rate) of identifying unknown types

obtained by adjusting Thresconf from 0.1 to 0.8. The results illustrate our SVM model can

achieve a true positive rate of 85% with about 10% false positive rate indicating an effective

classifier in determining new types.

The micro-benchmark results show that MiLift can accurately track both cardio and

weightlifting workouts (C3).
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2.5.2 Energy Efficiency of MiLift Models

Table 2.3 compares the average power consumptions of MiLift at different classification

states and the battery life estimations if each state is executed continuously on a Moto 360

smartwatch. We also measured the sleeping power of the watch (S0) for comparison. There

are two conclusions we can draw from the results:

First, the two high-level classification models DT+HMM and CRF are energy efficient

after the 20% duty-cycle optimization discussed in Section 2.3.4. If only executing these two

models, the watch battery can last for more than 16 hours meeting the efficiency challenge

(C4). This is achieved even with the duty-cycle executions frequently waking up the watch,

indicating that sampling and classification are more energy hungry for the watch than re-

maining awake. Out of the two models, DT+HMM is about 25.96% more energy efficient

than CRF in terms of watch battery life because of DT’s lower classification complexity than

CRF.

Second, in terms of watch battery life, our revisit-based weightlifting classification algo-

rithm is 41.34% more energy efficient compared with the autocorrelation-based approach,

due to less computation incurred by each new sensor sample (O(1) compared with O(wL)

as discussed in Section 2.3.3). Note that our micro-benchmarks estimate watch battery lives

assuming each state is executed continuously. During real-world executions, weightlifting

classification S2-A or S2-R does not need to be executed continuously but will only be trig-

gered by the high-level activity classifier S1-D or S1-C. Section 2.5.3 presents an empirical

study showing how our two-stage model improves the battery life of smartwatches.

2.5.3 User Task and Battery Life Analysis

To evaluate MiLift in real-world scenarios, we conducted a macro-benchmark by empirically

comparing MiLift with previous approaches using two metrics: (1) number of tasks a user

needs to perform for accurate workout tracking, and (2) the battery life of a smartwatch

running continuous tracking. We assumed the watch is used only during the day (16h), and

the user performs weightlifting exercises for 12.5% of the time every day (2h). Each approach
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State Description Power
(mW)

Battery
Life (h)

S0 Sleep 13.10 97.47
S1-D High-level activity classification (DT+HMM) 47.08 25.83
S1-C High-level activity classification (CRF) 58.83 20.67
S2-A Weightlifting classification (autocorrelation) 159.58 7.62
S2-R Weightlifting classification (revisit) 112.91 10.77

Table 2.3: Average power consumption and battery life benchmarks of Moto 360. Showing
battery life estimations if executing each state continuously.

is described as follows:

Baseline app 1: To continuously track cardio workout activities, app 1 runs an always-on

cardio activity classifier during the entire day. However, users have to manually start and

stop weightlifting classification before and after each weightlifting session (12.5% of the day).

Users need to manually select workout types and manually count sets/reps for weightlifting

exercises as well. This app is similar to previous mobile workout tracking apps.

Baseline app 2: To reduce manual input from users, app 2 continuously executes both the

cardio activity classifier and the weightlifting classifier all day. Users still have to manually

select workout types and manually count sets/reps for weightlifting exercises. This app is

similar to existing weightlifting tracking systems.

Baseline app 3: The VimoFit workout tracking app [vim] executes continuously for the entire

day. Users need to manually start and stop tracking but the type of exercises and set/rep

counts can be automatically determined.

MiLift: MiLift automatically segments exercises from non-workout activities and does not

require any manual input from users. It uses a two-stage classification model to duty-cycle

the executions for efficient resource usage.

We used power profiles from Section 2.5.2 to estimate watch battery lives for baseline

app 1, app 2, and MiLift. For app 3 (VimoFit) we performed a separate experiment to

log its battery usage. For app 1, app 2 and MiLift, we used the more efficient DT+HMM

approach as the high-level (cardio) activity classifier. App 1 and 2 implemented the more tra-
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Linear Scale Question (1 to 5) Score

Do you find it useful that MiLift can automatically detect ongoing
exercises (cardio and weightlifting)?

4.13± 0.83

Do you find it useful that MiLift can detect the type of exercises you
are performing?

4.47± 0.74

Do you find it useful that MiLift can automatically detect and count
weightlifting sessions (sets)?

4.67± 0.62

Do you find it useful that MiLift can count number of reps (repeti-
tions) in weightlifting exercises?

4.73± 0.59

Short Answer Question # of Rep

What is the max rep counting error you can tolerate? 0.8± 0.49

Table 2.4: Survey questions and answers. For scale questions, 1 (5) stands for strongly
disagree (strongly agree).

ditional autocorrelation-based algorithm for weightlifting detection, while MiLift considered

the revisit-based algorithm.

User tasks: We first present the results of our user survey (Section 2.4) in Table 2.4.

Users find the features of MiLift valuable, including automatic exercise segmentation, exer-

cise type detection, weightlifting set detection, and weightlifting rep counting. This proves

that tracking approaches without automatic exercise segmentation can be less attractive to

active exercisers. Next, Table 2.5 compares the user tasks required in different approaches,

suggesting that all three baseline apps rely on certain user tasks to accurately track exer-

cises. Although baseline app 3 can automatically detect types of weightlifting exercises, the

detection accuracy was poor. In our experiments, VimoFit was only able to correctly classify

3 of the 15 exercise types. In contrast, MiLift removes the burden on users and can provide

fully autonomous workout tracking for both cardio and weightlifting exercises.

Energy efficiency: MiLift can extend watch battery life by 18.25% (3.31h), 241.56%

(15.17h), and 824.57% (19.13h) compared with these three baseline apps, respectively. For

baseline app 2 and app 3 the watch battery will run out before the end of the day forcing

users to charge the watch. The VimoFit app used for baseline app 3 currently also keeps

the watch screen on during executions therefore greatly exacerbating its power consumption.

The energy saving of MiLift is achieved by the low-power weightlifting detection algorithm
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Approach User Tasks Battery
Life

Baseline 1 (1) Manually start/stop weightlifting sessions; (2) Manually
select workout types; (3) Count weightlifting sets and reps.

18.14h

Baseline 2 (1) Manually select workout types; (2) Count weightlifting sets
and reps.

6.28h

Baseline 3 (1) Manually start/stop weightlifting sessions. 2.32h
MiLift None 21.45h

Table 2.5: User task and watch battery life comparisons of MiLift and baseline approaches.

and the context-aware optimization.

The macro-benchmark suggests that MiLift can significantly better preserve battery

power of smartwatches than previous approaches (C4) and remove user burdens (C2).

2.6 Discussion

We discuss potential improvements for future work:

Sensing scope and system generalization: Although MiLift can detect a variety of

weightlifting exercises including both machine workouts and free weights, exercises which do

not involve wrist motions cannot be tracked. This includes both single-arm exercises not

performed on the watch-wearing hand and other types of exercises such as leg-based ones.

We argue that incorporating other non-intrusive sensors such as shoe motion sensors can

cover more exercise types. Beyond cardio and weightlifting exercises, algorithms proposed

in MiLift can be generalized to detect any exercise or human activity that involves repeating

motions, including but not limited to rock climbing, hiking, and racket sports. However,

tracking exercises with mild body movements such as yoga may require coordination of

multiple sensors.

Energy optimization: We plan to leverage strategies proposed by prior work to further

optimize the energy consumption of MiLift, such as offloading sensing and prepossessing from

the main processor in mobile SoCs to low-power co-processors [PLL11, GLR14, LGQ15], ex-

ploiting the coordination of multiple mobile devices and the cloud [MVS15, SSP16, CZW15],
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and exploring the correlation among possible user contexts [Nat12] other than the coarse lo-

cation used in this work. These optimization techniques will help save energy budgets of

smartwatches for other possible workloads.

Active learning: The weightlifting type classification in MiLift can determine if an instance

belongs to an unknown type class. However, currently MiLift does not use such new instances

to reinforce its classification model. We plan to implement an active learning system similar

to [CSG13] where MiLift would query users for a ground truth label whenever it detects a

new type of exercise and then improve the model.

Weight tracking and quality assessment: Prior work has shown that incorrect usages

of weightlifting equipment can lead to ineffective training or even injuries. Researchers have

proposed several metrics to indicate exercise quality [SBV11, DSY15]. Currently MiLift

cannot track the amount of weights used in each exercise. However, we observed that users

demonstrate different inertial patterns with different weights. This includes changes of peak-

to-peak intervals and noise patterns in the accelerometer/gravity data traces. Therefore a

similar quality assessment module can be added to MiLift to track weights and to provide

exercise feedbacks.

2.7 Summary

In MiLift the combination of a two-stage classification model and a lightweight weightlift-

ing detection algorithm has enabled autonomous and efficient tracking of both cardio and

weightlifting workouts. MiLift automatically segments exercises from non-workout activities

so that users do not need to manually start/stop tracking or select exercise types. Our eval-

uations indicate that MiLift can achieve above 90% precision and recall for tracking both

cardio workouts and weightlifting exercises. MiLift can also extend the battery life of a Moto

360 watch by up to 8.25× (19.13h) compared with previous approaches. Finally, our user

study suggests MiLift’s automatic segmentation ability is valuable to individuals actively

engaging in gym exercises.
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CHAPTER 3

Accuracy and Energy Optimization of Context

Inferences

After proposing the design and implementation of an example context inference app that

leverages smartwatches, we then describe a set of efforts to optimize the inference accuracy

and energy consumption of context-aware apps. Observations from these optimizations can

be adopted by developers today to improve the context inference executions in their apps.

3.1 Overview and Challenges

As proposed in Chapter 1 the development and execution of context-aware apps today are

accompanied by myriad challenges, including poor inference accuracy as a result of limited

sensor coverage, high energy consumption, and monolithic development practice. In this

chapter, we discuss the first two challenges in detail, while Chapter 4 presents our effort in

creating a programming framework for context-aware inference apps.

3.1.1 Inference Accuracy

One commonly used metric to quantify the performance of a context inference model is the

inference accuracy. Accuracy is used as a statistical measure of how well a classification

model correctly identifies or excludes a condition. It is the proportion of true results (both

true positives and true negatives) among the total number of cases examined [Met78]. Other

popular metrics include precision, recall, and f-score [Faw06, OD08].

We summarize challenges that limit the inference accuracy of context-aware apps as
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follows:

• Model performance largely depends on hand-picked features (I-1). Tra-

ditional machine learning models used in context inferences take calculated features

rather than raw sensor data as inputs due to their inability to process high-dimensional

data. This requires developers to select a set of aggregation functions, i.e. features

or attributes, as the correct representation of the data. For example, human activity

classification models typically aggregate 3-axis accelerometer data using features such

as mean, variance, Discrete Fourier Transforms (DFTs) [MSS06, RMB10]. This pro-

cess, also known as the feature engineering, is often critical for achieving high model

accuracy but requires domain expertise and experience. Features today often contain

near human-level understanding of the data, and therefore the process of selecting the

best features often requires complicated algorithms such as these presented in prior

work [KJ97, GE03]. In summary, the performance of a machine learning model (e.g.

inference accuracy) will largely depend on the success of feature engineering and feature

selection. Failures to pick appropriate features or to select top ones can significantly

reduce the inference accuracy of a model.

• Single device sensing provides limited coverage on users (I-2). The perfor-

mance of a model, such as accuracy, precision, and recall, also depends on the relative

position of the phone to the user [PPC12]. For instance, most activity recognition apps

rely on inertial sensor readings and require the user to carry the smartphone. When-

ever the user leaves the phone elsewhere (e.g. on a desk) to focus on other tasks or to

charge the phone, the sensors cannot capture any meaningful data, resulting in limited

sensor coverage in terms of their ability to capture human movement and therefore

poor inference accuracy. During those periods of time the user would still perform

various kinds of activities, but the inference app on the phone would not be able to

report correct activity label, and would normally classify the user as not moving.
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3.1.2 Energy Consumption

A large amount of mobile and embedded devices used for pervasive context inferences are

battery-powered and have limited energy budget due to their restricted dimensions. This

calls for a detailed study and optimization of energy consumption of context-aware apps.

The problem of high energy consumption seen in some context inference apps today can

be attributed to the following causes:

• Continuous executions and use of energy-hungry sensors (E-1). Context in-

ference apps often need to run in the background continuously to monitor user contexts

and behaviors for just-in-time feedback, notifications, and interventions. This situation

is usually exacerbated by the use of energy-hungry sensors like GPS and cellular radio.

For example, Ju et al. [JLY12] reported that apps consume 4% - 22% of CPU cycles for

inference executions, and Kansal et al. [KSB13] observed a reduction of phone standby

time from 430 to 12 hours when an app is continuously using the Android proximity

API.

• Inability to use specialized low-power co-processors (E-2). Currently most

always-on context-aware apps run on the main app processor of smartphones repre-

senting a significant portion of the phone’s overall workload and energy consumption.

Modern mobile platforms are sophisticated system on chips (SoCs) where the main app

processors are complemented by multiple co-processors. Recently, chip vendors have

undertaken efforts to make these previously hidden co-processors such as the Graph-

ics Processing Unit (GPU) and the Digital Signal Processor (DSP) programmable.

However, today’s alway-on context inference apps do not leverage these specialized

low-power co-processors and therefore must keep the main app processor awake for

sensing and inference tasks.

• Complex feature computation and classification algorithms (E-3). The al-

gorithms used in context-aware inference apps, including feature computations and

classifications, are computationally intensive and energy hungry. In particular, feature
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computation works on high-dimensional raw sensor data and can be more time- and

energy-consuming than classifications. For instance, one of our proof-of-concept im-

plementations performing activity recognition using Support Vector Machine (SVM)

shows that feature extraction takes about 10× more time compared to the SVM clas-

sification. The high power consumption of context-aware apps and the reduction in

battery life as a result will only get worse as apps with even more sophisticated context

inference capabilities emerge.

3.1.3 Design Choices

We describe a set of efforts to maximize the inference accuracy and to minimize the energy

consumption of context-aware apps.

• Applying deep learning algorithms We propose the use of deep learning, such

as Recurrent Neural Networks (RNN), for context inferences. Using workout tracking

as an example, we have shown that RNN can work on high-dimensional raw data for

classification and therefore eliminates the need for feature engineering. RNN helps

remove the dependency of model accuracy on successful feature selection (Challenge

I-1) and avoid feature computation at runtime (Challenge E-3) while achieving similar

inference accuracy compared with previous classification models. This part is discussed

in Section 3.2.

• Exploiting low-power co-processors We explore the energy and performance im-

plications of off-loading computation from a main app processor (CPU) to a low-power

co-processor available in mobile System-on-Chip (SoC) architectures (Challenge E-2).

We study the off-loading of the computation associated with machine learning algo-

rithms in context-aware apps, such as classification used in traditional machine learning

models and deep learning models, to a Digital Signal Processors (DSP) or a Graphics

Processing Unit (GPU), respectively. We have implemented several frequently used

algorithms and measured their performance and energy profiles on GPUs and DSPs.

Our results indicate that off-loading to the DSP reduces energy consumption by up to
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60% with negligible effect on application latency, while off-loading to GPU can result

in up to 30× speed-up in executing deep learning workloads. This part is discussed in

Section 3.3.

• Exploring watch-phone coordinations We investigate whether the coordination

between watches and phones can be leveraged to tackle the challenges of context-

aware inferences. We quantify the benefit of using both the watch and the phone

for context inferences. Based on an example user daily routine, we achieve up to

37.4% improvement in inference accuracy due to the increased device sensor coverage

made possible by the watch (Challenge I-2). Moreover, we report the energy saving of

running inferences across both the watch and the phone. We demonstrate up to 67.3%

less energy consumption by using an optimal partitioning of inferences between devices,

and up to 61.0% less by replacing the high-power phone GPS with the low-power watch

accelerometer (Challenge E-1).

The rest of this chapter describes our design details and resulting improvements from the

above efforts.

3.2 Applying Deep Learning for Mobile Context Inferences

3.2.1 Overview

The performance of traditional machine learning algorithms depends heavily on the repre-

sentation of the data they are given. Each piece of information included in the representation

is known as a feature [GBC16]. As discussed in Section 3.1, the process of selecting features

is often critical for achieving high model accuracy but requires domain expertise or even

complicated feature selection algorithms. Deep learning solves this problem by introducing

representations that are expressed in terms of other, simpler representations. Deep learning

enables building complex models directly from raw data or very simple representations while

learning the right representations of data in the process.
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There are two important research questions in terms of applying deep learning for mobile

sensing and inferences tasks:

• Can we achieve comparable inference accuracy as traditional models? We want to use

deep learning to avoid hand-picking features, but still would like comparable accuracy

as previous approaches.

• Can we get desired performance running deep learning on mobile devices? Deep neural

networks, especially Recurrent Neural Networks (RNN) can be much more complex

than traditional models. We need to perform a detailed benchmark on whether running

these models on mobile devices can meet the real-time requirement of inferences.

3.2.2 Task: High-level Activity Classification

We use MiLift’s high-level activity classification (Section 2.3.2) as the example task for

benchmarking deep learning on mobile sensor data. The task is making classifications about

a user’s high-level activity, including walking, running, weightlifting, and still, from 50Hz

smartwatch accelerometer data. This can be viewed as a sequential classification task on

time-series data. Vanilla neural networks typically take fixed-sized input vectors and gener-

ates fixed-sized output vectors with a fixed amount of computation. They are not suitable for

classifying time-series data because each input only looks at individual data vectors without

considering the temporal correlation among the data.

To better classify sequential data, we turn to Recurrent Neural Networks (RNN) [Pin87,

Pea89, WZ89, FN93]. RNNs have traditionally been used for mining temporal pattern from

time-series data, such as building market models [Moz89] [Wer88] and natural language

processing tasks [BDV03] [MKB10]. Recently RNNs have also been used for mobile sensing

tasks such as keystroke detection [BR15] and activity recognition [HHP16]. RNN is a natural

fit for our high-level activity classification task because exercise activities are continuous

in time rather than isolated samples. RNN can operate on sequences of vectors [Kar15]

such as the accelerometer data stream with timestamps in this task and leverage temporal

correlations.
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Figure 3.1: Training workflow of using RNNs for high-level activity classification.

3.2.3 Training Workflow

Figure 3.1 shows our RNN training workflow, with the main steps described as follows:

1. We apply 1 second windows on 3-axis accelerometer data at 50Hz (150 samples per

second).

2. To leverage the sequential information, we put 120 windows as a batch to train and

test the RNN.

3. We have tuned the RNN to use the following parameters: 4 x 128 hidden layers, cross-

entropy objective function, SGD optimizer, softmax activation, and L2 regularization.

4. Finally the RNN is trained and saved by Tensorflow [ten].

Using our entire dataset collected for MiLift (68 hours), training of the above RNN model

takes about 40 minutes on an NVIDIA TITAN X graphics card.
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Figure 3.2: Classification precision and recall comparison of RNN and traditional models.

Inference Pipeline Latency (1s window)

Features + Decision Tree + HMM 1 ms
Features + CRF + HMM 10 ms

RNN 600 ms

Table 3.1: Latency comparison of RNN and traditional models.

3.2.4 Evaluation

Our first research question is on the inference accuracy of deep learning models. With the

trained RNN, we now compare it with previous models using the metric of weighted average

precision and recall on high-level activity classifications, with the results shown in Figure 3.2.

RNN has achieved comparable accuracy even without requiring hand-picking features. Note

that the focus of this work is not on fine tuning the performance of RNNs. Although its

accuracy results are lower than the best performing CRF, we can definitely apply other

techniques from ML community to further improve the RNN.

The second question is whether RNN can meet the real-time latency requirement. We

implement an end-to-end example of running RNN on real-time sensor data using a Nexus

5X phone. In terms of model size, because we have a relatively small number of hidden layers,

the RNN model is only around 500KB and is even smaller than CRF and RF. However, as

we can see from Table 3.3, the much more complex RNN has led to a significant slow-down in

classification latency (i.e. time to classify a 1 second window). This is mostly because mobile

CPUs today are not optimized to execute highly parallel tasks such as RNN classifications.

Although the latency still fall in the one-second window size and will not cause any notable
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Mobile SoC App Processor (CPU) Co-processor Used By

Qualcomm Snapdragon 821
Dual Kyro 2.15GHz +
Dual Kyro 1.59GHz

Hexagon 680 DSP,
Adreno 530 GPU

Google Pixel,
Pixel XL

Apple A10
Dual Hurricane 2.34GHz +
Dual Zephyr (ARMv8-A)

M10 Motion Processor,
6-core GPU

Apple iPhone 7,
iPhone 7 Plus

Samsung Exynos 8890
Quad Exynos M1 2.3Ghz +
Quad Cortex-A53 1.6GHz

ARM Mali-T880 GPU
Samsung Galaxy S7,

Galaxy Note 7

HiSilicon Kirin 950/955
Quad Cortex-A72 2.5GHz +
Quad Cortex-A53 1.8Ghz

ARM Mali-T880 GPU
Huawei Mate 8,

Huawei P9

NVIDIA Tegra X1
Quad Cortex-A72 1.9GHz +
Quad Cortex-A53 1.3Ghz

Maxwell GPU
NVIDIA Shield TV,

Google Pixel C

Table 3.2: Specifications of latest mobile SoCs.

delays to the user. The slow-down motivates us to seek leveraging mobile GPUs for better

performance. On a desktop, using the Titan X for RNN tasks can yield a 30× speed-up

compared with a quad-core i7 CPU. Similarly, we expect certain degree of speed-ups if the

classification can be executed on mobile GPUs.

3.3 Exploiting Co-Processors in Mobile SoCs

In this section, we describe two optimizations of leveraging heterogeneous cores in mobile

SoCs, including off-loading deep learning tasks to mobile GPUs, and executing the classifi-

cation phases of traditional machine models on mobile DSPs [SCR, SCC14].

3.3.1 Background: Processor Heterogeneity

To motivate the benefits of leveraging processor heterogeneity, we start by showcasing the

specifications of the latest mobile SoCs. Mobile processors are no longer simply app pro-

cessors, but sophisticated system-on-chips (SoCs) where the main app processors are com-

plemented by a set of heterogeneous processors. Table 3.2 summarizes the specifications of

mainstream mobile SoCs today. The types of heterogeneity in mobile SoCs can be summa-

rized as loosely-coupled or tightly-coupled.

Loosely-coupled: ARM developed big.LITTLE [arm], which couples relatively slower,

lower-power processor cores with more powerful and power-hungry ones. The intention being

to create a multi-core processor that can adjust better to dynamic computing needs and use
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less power than clock scaling alone. The big.LITTLE is a tightly-coupled heterogeneous ar-

chitecture because the big cores and the little cores typically have cache coherence and share

the same instruction set architectures. Nevertheless they have different power-performance

operating points. As shown in Table 3.2, major mobile SoC manufacturers today all adopt

the big.LITTLE architecture.

Tightly-coupled: Mobile SoCs also include a set of embedded processors such as Digi-

tal Signal Processors (DSPs) and Graphic Processing Units (GPUs) that handle specialized

work such as media processing and low-level sensor I/O. These loosely-coupled heterogeneous

processors typically have no cache coherence with the app processor, and have different in-

struction set architecture with app processors. The co-processors are usually hidden from

the app developers and are instead limited to running prebuilt firmware provided by the

platform manufacturer. Recently, conscious efforts are being undertaken by various mobile

processor vendors to expose the co-processor heterogeneity to the app developers and pro-

vide them with the ability to program the DSPs. The Qualcomm Hexagon DSP [hex] is a

representative example of such an embedded processor on mobile SoC. It comes with custom

programmability and operates in the ultra low power range.

We use the Hexagon DSP in Qualcomm Snapdragon and the GPU in NVIDIA Tegra in

this work as examples to showcase the benefits of leveraging processor heterogeneity.

3.3.2 Using Mobile GPUs for Deep Learning

3.3.2.1 Overview

As described in Section 1.2.3, today there are several different architectures of leveraging

mobile GPUs for deep learning. We choose the CUDA approach [cud] by running it on an

NVIDIA Jetson development board with the NVIDIA Tegra processor [NVI] because the

GPU in Tegra fully supports and is optimized for CUDA. Looking back at our RNN training

workflow, after we export the model weights and topology, the mobile GPU can load the files

and instantiate the RNN model. With this model, the GPU can then perform classification

on sensor data.
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Case GPU vs CPU Speed-up Projected Latency

RNN classification with CUDA 15× 40ms
BLAS with Renderscript 30× 20ms

Table 3.3: Speed-ups of running RNNs on a mobile GPU vs CPU.

3.3.2.2 Evaluation: Performance Speed-ups

Since the Jetson board does not support accessing real-time sensor data on its mobile GPU,

we have created two example cases to demonstrate the speed-up of running RNN classification

on the GPU compared with on the CPU.

1. We have implemented a complete RNN classification pipeline by running Torch [tor]

and CUDA on the Jetson’s Maxwell GPU. This case profiles the execution of the entire

RNN classification pipeline on a mobile GPU.

2. We profile the GPU speed-ups using Google’s Renderscript [ren] on commercial An-

droid phones. In this case, we only compare the matrix operations in the Renderscript

BLAS library by running a set of benchmarks on the GPU and the CPU of a Nexus 5

phone.

The results of the latency speed-ups and projected real latency on GPUs are shown in

Table 3.3. As we can see, the two cases yield 15 − 30× speed-ups when running on GPUs

compared to on CPUs. Plugging this speed-up into the 600 ms baseline latency, where

RNNs are used for high-level activity classification on real-time sensor data, we can expect

a final latency of 20-40 ms, which is comparable or even better than the latency of CRF

and DT + HMM. Once the mainstream DL framework such Tensorflow, Torch, and Caffe

fully incorporates CUDA or OpenCL drivers, we expect to see similar numbers even with

the model running on real-time data
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3.3.3 Leveraging DSPs for Classification

We start by describing the off-loading of the classification phase of inference onto the DSP.

Compared to feature extraction, classification computation is more unstructured, possibly

leading to a larger saving by the DSP off-load. While feature extraction itself can be compu-

tationally intensive in many apps, our initial focus is on the classification. Later we also study

and explore the benefits of executing learning algorithms on mobile devices in Section 3.3.4.

3.3.3.1 Classification Algorithm

We have chosen Support Vector Machine (SVM), Gaussian Mixture Model (GMM), and

Random Forest (RF) as representative models to explore initially, since they are used by a

variety of apps. Our implementation of SVM classification is based on libsvm [CL11]. The

GMM classification code in C is based on the Voicebox [VOI] MATLAB toolbox. The RF

classification implementation is based on the open source librf [Lee]. We choose SVM and

GMM classifications to test the DSP’s capability to performance arithmetic computation,

while the RF classification is mostly used to test the DSP’s ability to execute conditional

statements.To exploit the energy and performance implications of the off-load, we execute

and profile the classification phase on both the CPU and the DSP, and the evaluation results

will be shown in Section 3.3.3.3.

Example Application. We use publicly available datasets to train the classification models

for latency and energy profiling. Traditionally SVM and RF are used for general classifica-

tion problems, and we use the daily activity dataset collected by TU Darmstadt [HFS08],

which includes accelerometer features over a 7-day time period, collected from two wearable

accelerometer sensors in pocket and wrist. We have trained an SVM model to classify the

action scenario of each sample as one of {dinner, commuting, lunch, work, undefined}. Each

sample is obtained over a 400ms window, and consists of 13 features. We randomly select

5000 samples from the dataset from training and 200 samples for classification.

GMM is mostly used for speech related classification tasks, and we use the speaker
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recognition application where a GMM model is trained for each speaker. For each sound

clip a likelihood score is calculated which represents the probability of the sample being

generated by the GMM. The speaker corresponding to the maximum likelihood is set as the

output. We use the TIDIGITS dataset [tid] as the input, and a set of MFCC features on 3s

sound clip at 8KHz is used as one sample. To simplify the problem, we select 5 speakers

for the training and testing (there are more than 200 speakers in the original dataset), and

each speaker model has 9 mixture models.

Memory Optimization. There are two reasons that drive us to optimize the memory

footprint of classification algorithms: (1) Although smartphones today are equipped with

powerful processors and large amount of RAM, the DSP itself may only have limited access

to RAM, therefore the data and code for classification must be able to fit into the RAM

accessible to DSP; (2) In reality, even the DSP can access the shared the memory with

the CPU and save all data and code in the shared memory, such access can be expensive.

On the one hand the access to shared memory with CPU will add penalty to performance,

consuming extra processor cycles. On the other hand, more memory usage will also lead

to higher energy consumption [CH10]. Therefore we have optimized the run-time memory

footprint of our classification implementations.

We first model the run-time memory footprint of the SVM, GMM, and RF classifiers,

only considering the data memory used to store the models:

MemorySVM = NSVM ·NSVi · Lfeature · unitSize (3.1)

MemoryGMM = Nspeaker ·Nmixture · Lfeature · 2 · unitSize (3.2)

MemoryRF = Nnode · nodeSize =
∑
i

Ntree · unitsPerNode · unitSize (3.3)

The SVM memory model is shown in Equation 2.1. Since an SVM is only able to perform
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binary classification, we use the one-to-one vote to solve multi-class problem, one SVM needs

to be trained for a two-class classification problem. Therefore a total of NSVM = n(n− 1)/2

SVMs will be required for a multi-class problem with n classes. For each SVM, a set of

Support Vectors (SV) have to be stored for the classification, and the size of each SV depends

on the number of features Lfeature and the unit size to store each number unitSize. For

example, the unit size will be 4 bytes if integer is used to store a number in C.

Similarly, the GMM memory model is shown in Equation 2.2. A GMM model is trained

for each speaker, and contains a number of mixture models (Nmixture). Each mixture model

will store the mean and covariance matrices, whose sizes will again depend on the dimension

of feature space Lfeature, and the unitSize used.

Different from SVM and GMM memory model, the size of an RF does not directly depend

on the number of features and the number of classes. Since RF is a set of trees trained on

a randomly selected subset of the training dataset, using a number of randomly selected

features, the size of an RF will depend on the total number of trees in the forest, as well as

the size of each tree. The memory model of RF is shown in Equation 2.3.

Because all models must be loaded in to the main memory for the execution of the clas-

sification, the run-time memory footprint of classification algorithms mostly depend on the

size of the classifiers. We first identify that compiler flags such as -O2, -Os, -static,

-fpack-struct will help reduce the size of the binary code of the classification implemen-

tations, without changing the programming logic and classification accuracy.

Furthermore, more substantial memory optimization can be achieved by trading the

classification accuracy. One common property of the three memory models is that they all

depend on the unit size of each number stored in the model. Therefore we start to reduce

the unit size by using single-precision floating numbers or even integers instead of double-

precision floating point numbers. Moreover, different storing units will affect the mathemat-

ical arithmetics in the algorithms. All of SVM, GMM, and RF classification algorithms use

a set of mathematical operations such as multiplication, addition, and exponentiation. As

DSPs typically do not have specialized floating-point processing units, transforming most of
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Figure 3.3: Memory optimization for SVM.

the floating-point arithmetic in the original implementations to be fixed-point will not only

help reduce the memory footprint, but also improve the performance of the classification on

DSP.

Since the accuracy of the classification algorithm should not be sacrificed by this opti-

mization, we conduct an experiment to show the trade-off between memory footprint and

the classification accuracy. Figure 3.3 (a) shows the change in classification accuracy1 as

we change the precisions of all floating-point numbers used in the classification algorithm.

The accuracy can be largely preserved even if only two digits after decimal point are kept

for each floating-point number. Figure 3.3 (b) shows the run-time memory footprint of the

same algorithm implemented in different basic unit data types, i.e. double, float, short int.

By scaling the rounded floating-point numbers to short integers in the SVM classification

algorithm, we have reduced 66% of the run-time data memory used by the algorithm.

Similar, Figure 3.4 shows that by replacing double-precision floating point with short

integers in GMM classification, the accuracy remains almost the same, but run-time memory

footprint is reduced by 44%. As discussed above, eliminating the number of floating-point

operations also leads to better performance of the classification algorithm on the DSPs.

Even in DSPs that do support floating point, such as those found in the latest generation of

Snapdragon processors, the memory constraints remain and moving away from floating-point

to the more compact fixed-point representation is beneficial.

1Here we are running the same classification model on the same dataset, so the change in accuracy is
only caused by the change of data type used in the algorithm.
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Figure 3.4: Memory optimization for GMM.

We also try to eliminate the dynamic memory allocations in the open-source implemen-

tations such as libsvm and librf. For example, our SVM implementation mSVM [msv] uses

only 84KB of static memory, while the original libsvm uses 238KB static memory plus

132KB dynamic memory. Similarly, our mRF implementation [mrf] uses 266KB of static

memory, compared to the librf’s 310KB static memory and 300KB dynamic memory.

Generalization of Memory-Accuracy Trade-off. The idea of using smaller units to save

model and the use of fixed-point operations instead of floating point as a result, can generally

lead to smaller memory footprint and better performance for all problems. However, it is

unclear how to balance the trade-off between memory footprint and classification accuracy.

To address this issue, we plan to develop a profiling tool. Given the trained model and

training data, the tool will give the possible unit types used to store each number, and the

corresponding classification accuracy. The user can specify a maximum tolerable reduction

in accuracy, and the tool will select the possible unit type with best memory footprint.

3.3.3.2 Experimental Platform

In order to verify the feasibility of off-loading classification algorithms to DSP and show

potential gain in energy efficiency, we implemented the above mentioned classification al-

gorithms on mobile development platforms with open programmable DSPs, including a TI

Pandaboard ES [TIb] and a Qualcomm Snapdragon development tablet [QUAb], both run-

ning Android JellyBean. The Pandaboard has an OMAP 4460 SoC on board, which includes
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a dual-core Cortex-A9 ARM CPU at 1.2GHz and a TI C64x low-power DSP at 500MHz.

The Qualcomm tablet is shipped with a Snapdragon 800 SoC, which has a quad-core Krait

CPU at 2.3GHz and a Hexagon DSP. Both the TI and the Qualcomm DSPs are running

their own real-time OS (RTOS). In order to execute our implementations on the DSP, we

use two RPC infrastructures proposed by TI and Qualcomm respectively. These libraries

enable RPC calls from the kernel running on the CPU to the RTOS running on the DSP.

Since the SVM, GMM, and RF implementations are in C, they can be compiled for native

execution both on the CPU and the DSP with the latter being accessed using RPC.

For power measurement, we use two external Agilent 34410A digital multi-meters con-

nected to a Agilent E3631A DC power supply to measure the total energy consumption

of the experimental platforms. We also use two on-board resistors to measure the energy

consumption of the CPU and DSP subsystems.

3.3.3.3 Evaluation

We profile the SVM, GMM, and RF classification code on CPU or DSP individually, showing

the difference in latency and device-level energy consumption. Since we are only off-loading

the classification phase of the inference pipeline, the app processor (CPU) still collects sensor

data and extracts features, then passes the feature vector to classification implementations

on either CPU or DSP.

3.3.3.4 Performance Profile

Figure 3.5 shows the latency profiling result for SVM and GMM classifications respectively,

executed on both the TI Pandaboard and the Qualcomm tablet. We define latency as the

time to classify one sample. Note that the SVM classification implementation profiled here

is using fixed-point arithmetics, but the GMM implementation is not yet fully optimized for

fixed-point and is still using single precision floating-point arithmetics.

Although running the classification on DSP instead of CPU incurs certain overhead in

terms of latency, it is still well within the range that is acceptable from the app perspective.
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Figure 3.5: Latency profiling result for SVM and GMM.

Since the feature vector of a sample are computed over a sliding window of sensor data, the

actual classification is duty-cycled by the window size. The current classification result will

be valid until the next complete window. Therefore the latency is acceptable as long as it is

smaller than the window size. In the activity recognition app, the user can hardly discern the

increase of latency from 1ms to 9ms/3ms because each sample is calculated from a 400ms

sliding window. In the GMM app, the window length is 3s, therefore the execution on DSP

is still sufficient because it takes less than 3s to recognize one clip. Generally, off-loading

classification computation to DSP will lead to only negligible latency overhead.

Energy Profile. We then explore the energy implication brought by off-loading compu-

tation to DSP with the intuition that despite the increased latency, the specialized ISA of

the DSP will result in overall improvement in energy efficiency. We use SVM classification

on the TU daily activity dataset as an example application, since the SVM code is fully

optimized for fixed-point execution. Our experiments profile the energy saving of the entire

platform due to the off-load in two cases.

In the first case, a fixed number of samples are classified over a fixed amount of time, on

the CPU or the DSP of the Qualcomm tablet, with result shown in Figure 3.6 (a). Overall

the tablet consumes about 6.4% less energy when the classification execution is on the DSP,

and the saving percentage is 70% when the baseline energy consumption of the tablet is

excluded.

However, in real-world scenarios the context-aware apps often do not have the luxury

of executing only a fixed number of classifications. Instead, the inference has to be exe-
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Figure 3.6: Energy profiling of SVM classification.

cuted continually, providing timely context to the user. Therefore we conduct the second

experiment, where the classification phase is executed continually on the CPU or the DSP,

respectively. We are classifying 300 samples as a group to amortize the overhead. This

is common in reality because the inference often operates on a sliding window, and the

classification algorithms run on blocks of samples and not on individual samples.

As is shown Figure 3.6 (b), the Pandaboard consumes about 17% less energy when the

continuous execution of classification is on the DSP instead of the CPU, and the energy

saving for the Qualcomm tablet is about 60%. Both results have proved that DSP off-load

for classification computation is a promising solution for energy efficient context inference

on mobile phones. Note that the Qualcomm Snapdragon SoC has a more powerful and

power-hungry CPU as well as a lower power DSP compared to the TI OMAP4, therefore

off-loading computation to the DSP results in a much larger energy saving in the Qualcomm

tablet than in the TI Pandaboard.

Note that the 17% and 60% empirical energy savings described above are achieved by

off-loading unoptimized classification code to the DSP. The code is compiled by standard gcc-

based cross-compiler for the CPU and the DSP. Our ongoing work focuses on the optimization

of these algorithms using libraries provided by the Qualcomm DSP, which would potentially

offer better performance and energy efficiency. Furthermore, we are working on the off-load

of feature extraction computations in addition to classifications as well.

Although the performance and energy profiling are conducted on two mobile development

boards, the idea of off-loading computation to DSP can be applied to mainstream mobile

phones in the commercial market as well, as shown by Tabel 3.2.
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3.3.4 Learning on DSPs

We have so far only considered off-loading the classification phase to DSP. Learning, on the

contrary, has traditionally been off-loaded to the cloud side for execution due to its high

complexity. Nevertheless, there are several reasons that prompt us to study the feasibility

and benefits of executing classifier learning on the smartphone, either on the main app

processor or low-power processors such as the DSP:

• Performing learning on the mobile device enables timely updates of machine learning

models. As the app collects new data and ground truth labels, model can be updated

on-the-fly. This will also enable timely feedback to the user.

• It also reduces network communications. Previously all new samples and labels must be

uploaded to the cloud for updates of the model. With learning capability on the phone,

such communication can be eliminated, which will possibly lead to energy saving and

longer battery life.

• It enables the mobile device to learn or reinforce the model even without network

connectivity.

• The power density of mobile SoCs has been constantly increasing in recent years and

hence we come across the utilization wall or dark silicon effect [EBS11, OH05]. Modern

smartphones area shipped with powerful processors, and performing learning on the

phone help increase the utilization of mobile SoC, while reducing the dark silicon effect.

It has been proved by previous work [RLC12] that mobile SoC can be fully utilized to

perform intense parallel tasks, such as learning, for sub-second bursts.

However, even with the above benefits, the resource constraints on smartphones and mo-

bile devices, especially limited memory, remains and will make the execution of classifier

learning challenging. In this section, we describe the incorporation of on-line learning algo-

rithms to help reduce the complexity and run-time memory footprint of learning. Specifically,

we use Stochastic Gradient Descent (SGD)-class algorithm to train an SVM. Our evaluation
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results have shown that SGD-based solver can significantly reduce the running time and

memory footprint of learning compared to traditional SVM solvers.

3.3.4.1 Background: SVM

Recall the task to train a linear SVM, given a set of training data ~xi and labels yi. The goal

is to find a hyperplane denoted by its normal vector ~w, which can separate the training data,

so that ~xi · ~w − b ≥ 1 for all positive samples and ~xi · ~w − b ≤ −1 for all negative samples.

Specifically, the training is trying to minimzing ||~w|| with subject to yi(~w · ~xi− b) ≥ 1 for all

~xi, 1 ≤ i ≤ n. This can be formalized as solving the following objective function:

arg min
~w,b
{1

2
λ||~w||2 + C

n∑
i=1

L(1− yi(~w · ~xi − b))} (3.4)

where the first term is the L2-regularization term and the second one is the L1-loss term

using hinge loss function.

Popular implementation of SVM solver, such as libsvm [CL11], uses Sequential Minimal

Optimization (SMO) to solve the above objective function. We omit the details of the SMO

algorithm since it is not the focus of this work. SMO-class algorithm is a general solution

for SVM and supports all types of kernel functions. However, it also suffers from high

complexity with poor performance on hign-dimensional data and big datasets. In addition,

the algorithm must load all training samples into the main memory, making it infeasible for

execution on devices with limited RAM. In terms of model size, the SVM model trained by

libsvm saves all support vectors used in the training, therefore the model can be huge for

big datasets.

To improve the performance on large datasets, a variant of libsvm, liblinear [FCH08],

aims at reducing the training complexity. liblinear uses Dual Coordinate Descent (DCD)

[HCL08] instead of SMO. Although DCD only supports linear SVM, it greatly improves the

training performance on large dataset. In addition, it reduces the model size of trained SVM

by storing only the w vector, i.e. linear combination of all support vectors, instead of all the

support vectors. However, liblinear is still not an on-line algorithm and it has to load all
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samples to the main memory for training. Therefore it does not solve the memory footprint

issues for execution on mobile devices.

3.3.4.2 Stochastic Gradient Descent based SVM

In this section we describe the use of on-line learning algorithm, Stochastic Gradient Descent

(SGD), to reduce the complexity and memory footprint of linear SVM training.

3.3.4.3 Stochastic Gradient Descent

To minimize the above object function iteratively, a class of gradient descent (GD) [RHW85]

based algorithms is often used. Generally, GD computes the gradient of the object function

based on the entire training set, and update the weight vector ~w accordingly. Instead of using

the full training set, another class of algorithms, Stochastic Gradient Descent (SGD) [Bot10,

Bot12], uses a single randomly picked sample in each iteration to estimate the gradient of

the objective function.

We describe the general steps to solve an linear SVM using SGD here. We rewrite the

object function as:

Obj(~w) =
1

2
λ||~w||2 +

1

n

n∑
i=1

L(~w, ~xi, yi) (3.5)

where L is the hinge loss function:

L(~w, ~xi, yi) = max(0, 1− yi ~wi · ~xi) (3.6)

In each iteration i, the update of w involves the following steps:

1. A sample (~xi, yi) arrives

2. Compute y′i = ~wi · ~x based on the current ~wi

3. Compute the value of loss function L(~wi, ~xi, yi)
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4. Update weights ~wi according to:

~wi+1 = (1− λ)~wi − η
δL

δ ~wi
L(~wi, ~xi, yi)

where η is the learning rate being adjusted at each step.

The SGD algorithm is originally designed for learning over very large dataset, because

the update in each iteration only accesses one randomly picked sample instead of all samples,

which significantly reduces the complexity and memory footprint of the algorithm. If one

assumes that the input data are randomly drawn from the ground truth distribution, each

new incoming sample can be used as the random picked sample, effectively enabling on-

line learning on the streaming input data. However, the SGD solver may note converge to

optimal solution in one pass. It often requires several passes on the same training set to

achieve the accuracy of SMO/DCD solver. As we will discuss in 3.3.4.4, the performance

and memory advantage over SMO/DCD still hold even if SGD has to run multiple passes.

Implementation. Because SGD eliminates the need to store the entire training set in the

memory, and the model can be updated on-the-fly using one sample at each time, it is a nat-

ural fit for execution under resource constraints on mobile devices. Given this observation,

we apply SGD to develop SGD-SVM, an on-line solver for linear SVM capable of executing

linear SVM learning on the CPU of mobile devices or even low-power co-processor such as

the DSP. Our implementation is based on existing open-source code [Bot], and can execute

on the main app processor (ARM CPU) as well as the Qualcomm Hexagon DSP. The im-

plementation is iterative so that it can work on stream of input data. We also added file

I/O module to support libsvm format input file. The implementation only supports binary

classification right now.

3.3.4.4 Evaluation

We compare the performance, accuracy, and memory footprint of executing SGD-based

SVM learning on the Hexagon DSP, against libsvm (SMO) and liblinear (DCD). We use the
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Figure 3.7: Comparison of learning time using different SVM solvers.

Hexagon DSP simulator to profile and benchmark our implementation, and the profiling of

same implementation on a desktop machine with quad-core i7-2600K @ 3.4GHz is used as a

baseline. We also profile unmodified implementations of libsvm and liblinear as comparisons.

Dataset. Two datasets are incorporated for the benchmark. The small dataset is the

TU-darmstadt daily activity dataset described in Section 3.3.3.1. To test the feasibility

of learning over larger and more-complex dataset on the DSP, we also use the MNIST

handwritten digits dataset [Yan]. Each sample in the MNIST dataset has 781 vision-based

features, and should be classified as one of the handwritten digits. We train the linear SVM

using 60000 samples and test on 10000 samples. Both the activity classification and digit

recognition are converted into binary classification problems.

Performance. Figure 3.7 reports the learning (training) time using different SVM solvers.

The execution time on DSP is measured on the Hexagon simulator (700MHz). As shown in

the results, it is not even feasible to execute unoptimized libsvm and liblinear on the DSP

to learn over the large MNIST dataset due to the memory constraints. From the results

on x86 i7 CPU processors, SGD-SVM is about 300000× faster than libsvm and 200× faster

than liblinear. For the smaller activity dataset, SGD-SVM is about 47× faster than liblinear

on the DSP, and 420× faster than libsvm & 330× faster than liblinear on the x86 i7 CPU.

Given the great performance improvements, even if SGD-SVM requires multiple passes on

the same training set, it still takes less time to train overall.

In addition, the time used by the DSP to update the model in each iteration is very
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Figure 3.8: Comparison of accuracy of libsvm and SGD-SVM.

Figure 3.9: Comparison of static memory usage.

small. It takes the DSP about 1/60000s in the larger dataset, and 0.01/5000s in the smaller

dataset, in each incremental update step. Note that we omit the I/O time during which the

DSP simulator read data form file, since we anticipate the DSP will have direct access to

audio or sensor data in a real setting.

Accuracy. Recall that the SGD algorithm may not converge to optimal solution after one

pass on the training dataset. Figure 3.8 compares the model accuracy learned by SGD-SVM

after different number of passes to the model accuracy trained by libsvm, which is used

as optimal accuracy here. After the first pass, the SGD-SVM model accuracy is already

near optimal. In addition, the model accuracy is very close or even identical to optimal

accuracy after a few passes. The result here proves that using SGD-SVM instead of libsvm

will only degrade the model accuracy slightly. The performance improvement of SGD-SVM

will remain the same even it executes for several passes to achieve near-optimal accuracy.

Memory. We discuss the memory implication of SGD-SVM compared to libsvm and liblin-

ear in terms of dynamic memory usage, static memory usage, and model size:
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• Dynamic memory. Both libsvm and liblinear must store all samples in memory prior

to the start of the learning. For the larger MNIST dataset with 60000 training samples

and 781 features per sample, merely storing each data unit requires about 89MB of

run-time dynamic memory even short integer is used. Obviously such great amount of

run-time memory cannot be allocated on the DSP, and even on the CPU can be very

expensive. For the smaller activity dataset, the required memory to store all training

samples is 137KB. On the contrary, SGD-SVM in on-line mode only needs to store

one sample at each time, which is only about 1.5KB for the large data set ad 26 bytes

for the small dataset. The great save in run-time memory footprint again justifies the

benefits of using SGD based on-line learning algorithms.

• Static memory. Since the binary file has to be loaded into memory for execution,

static memory usage also matters, including compile-time code memory and data mem-

ory. Figure 3.9 shows the comparison of binary file size using different SVM solver

implementations. As of now SGD-SVM uses a bit more static memory (about 40KB)

than libsvm and libnear because it is not yet fully-optimized in memory footprint.

However, the significant reduction in dynamic memory usage by SGD-SVM will easily

offset its additional static memory usage.

• Model size. The SVM model has to be saved in the main memory for the classification

later. libsvm stores all support vectors and therefore the model size depends on both

the size of training set and the dimension of the feature space. Using libsvm, the

model learned over the larger MNIST dataset will be about 29MB, and the one learned

over the smaller dataset will be about 86KB. Instead of storing all support vectors,

liblinear and SGD-SVM only stores the ~w vector, and the model size only depends on

the dimension of the feature space. The model learned will be only 1.5KB for the

larger dataset, and 26 bytes for the smaller one.

In general, SGD-SVM significantly reduces the memory footprint of SVM learning com-

pared to libsvm and liblinear. Machine learning researchers have proposed other approach

such as Truncated Descent [LLZ09] to further decrease the model size learned from SGD
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based on-line learning.

3.3.4.5 Discussion

As currently the SGD-SVM takes stream of input samples and use each new incoming sample

to estimate the gradient, the randomness of the picked sample is limited by the temporal

correlation of samples generated by analog front end and ADC in the sensors. To address

this issue, the SGD-SVM can conduct sub-sampling on the input stream and randomly

drop some of the new samples. Alternatively, the SGD-SVM can buffer a limited amount

of historical data, and refine the model periodically. Buffering and learning in batch will

increase the randomness of the training data, therefore yield better model accuracy. For

example, the learning algorithm may collect and buffer one hour of data, shuffle the dataset,

and update the model every hour. In both cases, the temporal correlation among samples

can be removed.

Given that SGD-SVM cannot converge to optimal model accuracy after one pass, we

propose two use cases of SGD-SVM on the DSP or app processor of mobile devices:

1. On-line learning. The learning algorithm can buffer no historical data at all and op-

erate in pure ”on-line” mode. In this case SGD-SVM can achieve pretty good accuracy

by learning over the training set in one pass. Alternatively, SGD-SVM can operate in

batch mode, as described above.

2. Accelerator. One can also image the use of SGD-SVM as an accelerator. Such

an accelerator can run continuously on the DSP to update the model to reduce the

workloads on CPU, while the entire training dataset is stored in the memory accessible

to the app processor (CPU). Since all training data are available, SGD-SVM can run

multiple passes on the training dataset to achieve near-optimal accuracy. In this mode,

the total number of memory access to all samples in SGD-SVM is still smaller compared

to libsvm, even if SGD-SVM requires multiple passes. In addition, the use of SGD-SVM

will reduce the complexity of learning and accelerate the computation.
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It is also an interesting topic to study the memorization and generalization of SGD-

trained model. For example, test if SGD-SVM can generalize to new class labels that it has

not seen before (or it has only seen a limited number of samples in this class).

3.4 Wearable-Mobile Coordination

The sensing, computation, and communication capabilities of modern smartwatches make

them ideal candidate to improve the inference accuracy and energy efficiency of always-

on context inference. Although in the MiLift app we have considered sensors from only a

smartwatch, combining sensors for the watch and the phone when both devices are available

can possibly provide further optimizations opportunities. We are also motivated by the

intuition that the sensing and inference computation can be alternated between the watch

and the phone for maximum sensor coverage.

In this section, we investigate whether watch-phone coordinations can be leveraged to

tackle the two major drawbacks associated with always-on context inference apps by study-

ing the following key research questions:

Q1: Can we leverage smartwatches to increase sensor coverage and inference accuracy?

We examine whether inferences running on the watch alone can provide sufficient accuracy

with reasonable energy consumption (i.e. the watch can last for a full day). The execution

can then be off-loaded to the watch whenever the phone is unavailable for better coverage

and accuracy.

Q2: Can smartwatches help reduce energy consumption of context inferences? By per-

forming inferences on the watch and replacing power-hungry phone sensors with low-power

watch sensors, the energy resource of the phone can be preserved. However, it is important

to balance the power and energy trade-off between the watch and the phone due to the

reduced battery capacity of the watch.
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Part Apple Watch Moto 360 Watch Nexus 5 Phone

CPU 520MHz S1 1GHz OMAP3 2.3GHz Krait 400
RAM 512MB 512MB 2GB

Storage 8GB 4GB 16/32GB
Radio BLE/Wi-Fi/NFC BLE/Wi-Fi BLE/Wi-Fi/NFC

Battery 3.8V 205mAh 3.8V 320mAh 4.3V 2300mAh
Weight 25g 49g 130g

Sensors

Accelerometer,
gyroscope,
pedometer,
heart rate,
microphone

Accelerometer,
gyroscope,
pedometer,
heart rate,

microphone,
light

Accelerometer,
gyroscope,
pedometer,
microphone,

compass,
proximity,
light, GPS

Table 3.4: Comparison of device hardware platforms. (Showing specifications for Apple
Watch 38mm Sport.)

3.4.1 Background: Smartwatch Basic Profiles

To answer the two key research questions raised above, we first compare the hardware plat-

forms and basic energy profiles of several state-of-the-art commercial devices: the Apple

Watch, the Moto 360 smartwatch and the LG Nexus 5 phone.

3.4.1.1 Hardware specifications

Table 3.4 compares the hardware specifications of popular smartwatches and smartphones.

Smartwatches today have rather powerful CPUs, RAM, and radios considering their tiny

and lightweight nature, enabling them to execute standalone apps without any assistance

from phones. Both the Apple Watch and the Moto 360 watch provide a rich set of radios

and sensors similar to smartphones today. They are also shipped with optical-based heart

rate sensors which complement the phone’s inability to obtain accurate human heart rate

readings. However, the battery capacity of smartwatches is much smaller than smartphones

because of the device volume and weight limits. Due to the similarity between the Apple

Watch and the Moto 360, we have chosen the latter one as an example to benchmark our

app scenarios.
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Device Power (W) Current (mA) Lifetime (h)

Moto 360 screen off 0.013 3.283 97.472
Moto 360 screen on 0.550 142.520 2.245

Nexus 5 screen off 0.254 58.913 37.343
Nexus 5 screen on 1.853 435.260 5.057

Table 3.5: Comparison of device power profiles.

3.4.1.2 Basic power profiles

To further analyze the feasibility of running context inferences on smartwatches, we created

basic power profiles of a Moto 360 watch and a Nexus 5 phone (Table 3.5). We measured

the power consumption of the watch and the phone using the experimental setup described

in Section 3.4.4.1, with the two devices connected via BLE. We profiled the two devices for

screen off (sleeping) and screen on, respectively, because their normal power consumptions

are typically between these two extreme cases. Compared with the Nexus 5 phone, the Moto

360 watch has a lower power consumption in general. However, the power difference between

sleeping and screen on is much more significant on the watch than on the phone. While

the low-power nature of the smartwatch suggests the possibility for execution of context

inferences, the much smaller battery capacity of the watch requires detailed studies of the

power and energy trade-offs so that inference executions on the watch will not significantly

reduce its battery life.

3.4.1.3 App development

Both iOS and Android have provided watch app development frameworks. Starting from

the Apple watchOS 2, the watch will be able to host native apps with the WatchKit frame-

work [wat]. Similarly, the Android SDK offers a set of Wear APIs [anda] that support watch

app development and manage the communication between phone and watch. On both plat-

forms, the programming paradigm of watch apps remains the same as mobile apps, and the

SDKs support shared libraries between watch apps and phone apps.
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Goal Approach Results

#1 Compare the inference accuracy using different watch/phone
sensor combinations.

Section 3.4.4.3

#2 Create accuracy and power profiles of standalone inference ex-
ecutions on the watch.

Section 3.4.4.4

#3 Increase sensor coverage and inference accuracy by executing
inferences on the watch when the phone is not available.

+37.4% accuracy (Sec-
tion 3.4.4.5)

#4 Partition the computation across both watch/phone for better
energy efficiency.

−67.3% energy (Sec-
tion 3.4.4.6)

#5 Replace power-hungry phone sensors with low-power watch sen-
sors.

−61.0% energy (Sec-
tion 3.4.4.7)

Table 3.6: Summary of design goals.

3.4.2 Design Goal

We discuss how we can leverage the watch-phone coordination to improve inference accuracy

and to reduce energy consumption of always-on context inferences. Table 3.6 summarizes

the design goals and corresponding evaluations.

3.4.2.1 Example App Scenarios

To showcase the benefit of watch-phone collaborations we have selected two example app

scenarios for benchmarks:

App 1: High-level Activity Recognition (AR). We use the MiLift’s high-level activ-

ity recognition introduced in Section 2.3 as the first example app. To study the accuracy

and energy implications of watch-phone collaboration, we consider accelerometers on both

the watch and the phone. We compose the inference by choosing several different sensor

combinations (SC):

• SC1: Watch accelerometer only.

• SC2: Phone accelerometer only.

• SC3: Watch accelerometer and phone accelerometer.

• SC4: Phone accelerometer and phone GPS.
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Figure 3.10: Inference pipeline of (a) the AR app, and (b) the HR Monitor app.

• SC5: Watch accelerometer, phone accelerometer, and phone GPS.

There are several reasons for selecting the above sensor combinations. First, the comparison

of SC1, SC2, and SC4 shows the accuracy and energy implication of running inferences on

the watch (Goal #1, #2) and demonstrates whether the watch can be used to increase the

device sensor coverage (Goal #3). Second, with SC5 we study the optimal inference partition

between the watch and the phone to balance the cost of computation and communication

(Goal #4). Finally, the study of SC3 and SC4 suggests the possibilities of replacing high-

power GPS with low-power watch accelerometers (Goal #5).

App 2: IFTTT Rules (HR Monitor) We use the IFTTT Rules app described in Sec-

tion 4.2 as the second example app. In this work, we consider a specific rule in the personal

health space: a heart rate monitoring app (HR Monitor). This app monitors heart rate of

a user during workout sessions and generates a notification whenever the heart rate reading

exceeds a certain threshold. There are two reasons that the HR monitor can benefit from

executions on smartwatches: (1) most smartwatches today are shipped with optical-based

heart rate sensors enabling them to accurately capture human heart rate readings; (2) be-

cause users are more likely to wear a watch than to carry a phone during a workout session,

generating notifications on the watch can give better in-time feedbacks to users.

The inference pipelines of the two example apps are shown in Figure 3.10.
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3.4.2.2 Prerequisite Goals

Because of their distinct locations on human bodies, sensors on smartwatches and smart-

phones can capture different information about user contexts and behaviors, and the accuracy

of context inferences will depend on the choice of sensors. We research the effect of various

watch/phone sensor combinations on inference accuracy (Goal #1). Moreover, we study

whether inference executions on the watch can provide sufficient inference accuracy while

not consuming excessive battery power (Goal #2).

3.4.2.3 Increasing Inference Accuracy

The research question Q1 seeks to increase the sensor coverage and inference accuracy using

smartwatches. The hardware comparison in Section 3.4.1.1 suggests that smartwatches today

have powerful computation resources and a rich set of sensors enabling watch apps to draw

inferences from the sensors. In addition, smartwatches are less intrusive wearable devices

than smartphones. Unlike the smartphone usage pattern where the user can sometimes

leave the phone away from human body, smartwatch users are more likely to keep wearing

the watch throughout the entire day except for very specific periods such as during sleep.

While phone placements can greatly affect sensor readings i.e. a phone cannot capture

meaningful human movements when not carried by a user, watch sensors can provide better

sensor coverage by remaining on the human wrist for longer time. If the Goal #1 and #2

are satisfied, the watch can help increase the sensor coverage and inference accuracy by

continuing the always-on execution even when the phone is away from the user (Goal #3).

Such situations can be identified when movements are detected by the watch but not by the

phone.

3.4.2.4 Reducing Energy Consumption

The research question Q2 asks how we can reduce the energy consumption of context infer-

ence executions with the help of smartwatches. Our main goal is to extend the battery life
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of the phone without consuming excessive energy on the watch. While the low-power nature

of the watch makes it an ideal target to perform inferences, the smaller battery capacity of

smartwatches calls for a careful investigation of the watch-phone energy trade-offs.

In this work, we discuss two energy optimizations: First, context inference apps typically

consist of several modules, such as sampling, feature computation, and classification. The

partition of these modules across devices can not only affect the amount of computation on

the watch and the phone but also change the amount of data transmitted between devices.

It remains unclear how we can balance the energy trade-off of inter-device transmissions and

local computation on the watch. Therefore we study the optimal partitioning of inferences for

the best energy efficiency (Goal #4). While most watch apps today are merely a UI for the

corresponding phone app, we have quantified the benefit of executing certain computations

on the watch. Second, given that sensors on smartwatches can provide additional information

about user behaviors and contexts, the inference apps can minimize its energy consumption

by eliminating the use of high power sensors such as GPS (Goal #5). Moreover, spreading

the execution across both the watch and the phone enables inferences to be continued on

the other device if one device runs out of battery power.

3.4.3 Implementation

For both the AR app and the HR Monitor app, we have implemented a watch app on a Moto

360 smartwatch and a phone app on a LG Nexus 5 smartphone. The apps were developed

under Android 5.1.1 SDK (API 22). We used the Android Wear DataMessage API for

BLE data communications between devices. The watch app or phone app can execute

standalone in off-line mode generating activity labels using only watch sensors or phone

sensors, respectively. The two apps are also able to coordinately compose the inferences

using both watch and phone sensors.

Figure 3.10 shows the inference pipeline of both apps. For the AR app, the pipeline

includes sampling and buffering, feature extraction, and classification. The AR app reads

accelerometer on the watch and both accelerometer and GPS on the phone, and generates
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activity label every second. The HR Monitor inference pipeline includes two modules: the

sampling and buffering module that captures heart rate, and the inference and notification

module that detects excessive heart rate and alerts the user about possible risks. Both

inference pipelines can be partitioned across the watch and the phone. The computation

on each device and the amount of BLE data transmitted will change based on different

partitions. Section 3.4.4.6 discusses the optimal module partition.

Note that both app implementations offer two execution modes: always-on and periodic.

In always-on mode, the app continuously reads sensor data in the background and generates

activity labels for notification and/or logging. In periodic mode, the user can configure the

inference to execute for a certain period of time tinference at a given time interval tinterval. One

example could be execute activity recognition for 10 minutes every hour. The implementation

uses the Android AlarmManager to achieve periodical inference executions which will be

leveraged to configure and optimize the duty-cycle of inferences in Section 3.4.4.4.

3.4.4 Evaluation

We evaluate the accuracy and energy implications of watch-phone collaboration for context

inferences using a Moto 360 watch. The evaluations are summarized in Table 3.6.

3.4.4.1 Experimental Setup

To profile the power consumption of the watch, we tore down a Moto 360 smartwatch and

placed an Adafruit INA219 High Side DC Current Sensor Breakout2 between the battery and

the main board. Using an Arduino to read the current and voltage measurements from the

breakout, we then calculated the power consumption of the watch. For the Nexus 5 phone,

however, we cannot have a similar setup because the phone battery prevents it from booting

when extra resistance is detected. Instead, we calculated the phone power by taking current

and voltage readings available in the Android file system generated by the internal power

2https://www.adafruit.com/products/904
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Time Event

8:00AM Wake up. Turn on watch/phone. Start AR app.
8:00 - 8:30AM Shower and breakfast.
8:30 - 9:00AM Drive from home to work.
9:00AM - 1:00PM Sit at office, walk around sometimes.
1:00 - 1:30PM Lunch.
1:30 - 5:30PM Sit at office, walk around sometimes.
5:30 - 5:45PM Drive from work to gym.
5:45 - 7:15PM Workout at gym. Use HR Monitor app.
7:15 - 7:30PM Drive from gym to home.
7:30 - 9:00PM Dinner at home.
9:00 - 10:00PM Entertainment (e.g. watch TV/movie).
10:00 - 11:30PM Reading.
11:30PM - 12:00AM Shower and prepare to sleep.
12:00AM Stop AR app. Charge watch/phone. Go to sleep.

Table 3.7: An example daily routine of a user.

gauge3. For both the watch and the phone we use a linear discharging model to estimate

the lifetime of the battery due to the small current draw. In terms of inference accuracy,

we used the scikit-learn implementation to compare the performance of classification models

used in the AR app.

3.4.4.2 App Scenario Revisited

Section 3.4.2.1 describes the usage scenario of the two inference apps proposed in this work.

To consider the realistic usage of the two apps in a user’s daily life, we created an example

daily routine of a user, including the usage of AR and HR Monitor app, shown in Table 3.7.

In this daily routine, the user wears the watch in the day (16 hours) and charges it while

sleeping (8 hours). The smartphone is used throughout the entire day and is normally

charged at night as well. The user typically starts the AR app, both on the watch and on

the phone, after he or she wakes up in the morning. The AR app will keep running until the

user goes to bed at night. The user only uses the HR Monitor app during workout everyday.

We made several key observations from the above daily routine:

• The watch must last for at least 16 hours so that the user does not have to charge it

3On an LG Nexus 5 phone, the power measurements are available in
/sys/class/power supply/battery/.

82



SC1 SC2 SC3 SC4 SC5
0.5

0.6

0.7

0.8

0.9

1

Sensor Combination

A
cc

ur
ac

y

 

 

DT
RF
SVM

Figure 3.11: Accuracy comparison of three classification models for AR.
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Figure 3.12: Precision and recall scores of the decision tree model for AR.

during the day.

• Since the user frequently uses the phone throughout the day, battery energy of the

phone should be conserved as much as possible.

• The AR app is used for 16 hours every day.

• The HR Monitor app is used for 1.5 hours every day.

Although the daily routine shown here is only an example, we stress that a personalized

routine for each user can be automatically learned by inference apps. For instance, the

Optimized app [opta] discovers the daily schedule of the user during the initial usage period,

and accepts user edits and tagging to improve the schedule. Inference apps can then adjust

their executions based on the learned user schedule.
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Scenario Power (W) Current (mA) Est. Lifetime (h)

Sleep, screen off 0.013 3.283 97.472
Idle, screen on 0.550 142.520 2.245

AR app 0.213 55.929 5.721 (always-on)
HR Monitor app 0.112 28.998 11.035 (always-on)

Table 3.8: Power and battery life of a Moto 360 watch with and without inference apps
running.

3.4.4.3 Micro-benchmark: Model Accuracy of the AR App

To achieve Goal #1, we compare the inference accuracy of classification models used in

the AR app using different watch/phone sensor combinations described in Section 3.4.2.1.

Figure 3.11 shows the accuracy comparison of models achieved by a 10-Fold cross validation

using our collected activity dataset. All reported accuracy is calculated using the model

trained with best parameters in scikit-learn, and we create a different model for each sensor

combination. The results suggest that the accuracy of DT is mostly better than those of

RF and SVM. Considering the simplicity of the decision tree compared with the other two

models, we have chosen DT for the implementation on the phone and the watch. To ensure

that the trained decision tree model is not biased towards any of the three classes, Figure 3.12

plots the average precision and recall scores from 10-Fold CV of DT. The precision and recall

scores are consistent with the accuracy number, therefore overall accuracy will be used as

the performance metrics for classification models. The model accuracy of different sensor

combinations will be used to calculate the real inference accuracy proposed in Section 3.4.4.5.

3.4.4.4 Micro-benchmark: Standalone Executions on Watches

As described in Goal #2, we must ensure that the standalone inference executions on the

watch will yield sufficient accuracy while at the same time not significantly reducing the

battery life of the watch.

Inference Accuracy. We compare the inference accuracy of AR using only the watch with

other solutions. For the AR app, according to Figure 3.11, the DT accuracy using SC1
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Figure 3.13: Illustration of true execution time.

- only watch accelerometer (87.50%) is better than using SC2 - only phone accelerometer

(84.90%), but worse than using SC4 - phone accelerometer and GPS (91.36%). However,

these accuracy metrics do not consider the fact that the phone may be away from human

body. As discussed in Section 3.4.4.5, the real inference accuracy of AR using SC1 is much

higher than using SC2 or SC4. For the HR Monitor app, because both the watch and the

phone executions must use the same heart rate sensor on the watch, the inference accuracy

will not change regardless of where it runs.

Energy Consumption and Duty-cycle Optimization. Table 3.8 shows the comparison

of watch power and estimated battery life with and without always-on inferences running.

All power and current numbers shown are from measurements of the entire watch. In this

experiment, the AR app executes continuously in the background on the watch sampling the

accelerometer at 50Hz and generates one activity label every second. The HR Monitor app

samples the heart rate sensor at 1Hz. The battery life of the watch significantly reduces with

the inference running always-on, to about 6 hours and 11 hours respectively. Both lifetimes

fall under 16 hours and will require the user to charge the watch during the day.

However, inferences do not have to be always-on throughout the day. Instead, they can

be duty-cycled based on the daily routine of the user. For example, during normal working

hours, the user is mostly sitting at the desk, therefore the AR app can periodically check

(e.g. run for 1s every 5s) and start continuous execution only when significant movements

are detected. In addition, the HR Monitor app only needs to be turned on whenever the user

starts working out each day, and can be switched off after exercise finishes. The true execution
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Figure 3.14: Change of watch battery life with different true execution times.

time TTrueExec of an app can be divided into two parts: the continuous execution part

TContExec and the duty-cycle execution part TDutyCycleExec, as demonstrated in Figure 3.13.

It can be modeled as follows:

TTrueExec = TContExec + TDutyCycleExec

= TContExecTotal

+ PDutyCycle ∗ TDutyCycleExecTotal

(3.7)

Where TContExecTotal is the duration of continuous execution, TDutyCycleExecTotal is the duration

of duty-cycled execution, and PDutyCycle is the percentage of the duty-cycle. Based on the

schedule in Table 3.7, for the AR app the execution can be duty-cycled when the user is

sitting during work (8h), dinner (1.5h), and reading (1.5h), at a certain percentage (e.g. 20%

or execute for 1s every 5s), giving a total true execution time of 7.2h. For the HR Monitor

app, the execution is always-on only during the workout (1.5h), and remains off otherwise,

resulting in a true execution time of 1.5h. The duty-cycle schedule can be changed based on

the personalized daily routine of the user and the inference history.

Figure 3.14 plots the change in battery life with different true execution times of the AR

and HR Monitor app. Using the duty-cycle optimization, the AR app and the HR Monitor

app execute for 7.2h and 1.5h each day, respectively. The corresponding watch battery life

is 16.7h and 65.4h. Both the numbers are above 16h, and therefore the reduction in battery

life caused by the inference executions is insignificant because it will not require the user to
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Figure 3.15: Real inference accuracy of AR with an example daily routine of a user (Table 3.7)

charge the watch during the day. In reality inference executions can be alternated across the

phone and the watch, and the energy consumption of the watch can be further reduced.

3.4.4.5 Improving Accuracy: Increasing Sensor Coverage

For Goal #3, we quantify the accuracy improvement as a result of increased sensor coverage

from watch-phone coordination.

We define real inference accuracy as a weighted average of inference accuracy numbers

considering the location of the device, shown as follows:

AccReal =
1

TTotal
(AccWithPhone ∗ TWithPhone

+ AccWithoutPhone ∗ TWithoutPhone)

(3.8)

If the inference samples sensor data from the watch (e.g. SC1, SC3, and SC5), AccWithPhone

will be the inference accuracy using sensors from both the phone and the watch, andAccWithoutPhone

will be the accuracy using only watch sensors. If the inference takes only phone sensor data

(e.g., SC2 and SC4), AccWithPhone will be the accuracy using only phone sensors. How-

ever, when the phone is placed elsewhere (AccWithoutPhone), the inference cannot capture any

meaningful inertial data. Given that there are other techniques to infer the user activity,

such as using GPS and time of day as heuristics, we set AccWithoutPhone in these cases to be

50%. Finally, TTotal is the total time of the day except sleep (16h).

According to our example daily schedule in Table 3.7, assume the user only carries the
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phone during half of the working hours (4h) plus during driving (1.5h) and lunch (0.5h), the

phone is with the user for merely 6 out of the 16 hours in a day, and is placed elsewhere

for the remaining 10h. On the contrary, the user wears the watch throughout the entire

day. Therefore the total duration that the user carries the phone (TWithPhone) is 6h each day,

while the total duration that the user does not carry the phone (TWithoutPhone) is 10h.

Figure 3.15 shows the real inference accuracy of the AR app considering the routine

above. Relying solely on the phone sensors for AR will lead to a poor real inference accuracy

due to the limited sensor coverage of the phone, as seen in the case of SC2 (64.78%) and SC4

(65.51%). Accuracy gets notably improved with the help of smartwatches. Using only the

watch sensor (SC1) will result in a real accuracy of 87.50%, or 35.1% improvement compared

with using phone only. Moreover, by fusing the watch and phone sensors together, the real

accuracy of AR can be improved to 87.85% or by 35.6% without the GPS (SC3), and to

89.01% or by 37.4% with the GPS (SC5). The improvement of fusing sensors from both

devices is not significant, partly because the accuracy is already rather good using only the

watch sensors. For the HR Monitor app, although accuracy will remain the same whether

the inference is on the watch or on the phone, the app is made possible only because of the

heart rate sensor available on smartwatches.

Finally, although the values of TWithPhone, TWithoutPhone, and the resulting accuracy im-

provements all depend on the daily schedule of a user, we emphasize that a user would

typically not carry the phone for an extended period of time in everyday life but would

wear the watch for longer. This will lead to TWithoutPhone > TWithPhone and therefore similar

accuracy improvements as shown above.

3.4.4.6 Energy Optimization: Optimal Inference Partition

To achieve Goal #4, we discuss the optimal module partitioning of the inference pipelines

shown in Figure 1.1. If the inference uses only sensor data from the watch, for example, the

AR app with SC1 and the HR Monitor app, there exists several partition strategies:

AR app: 1. Execute the full pipeline on the watch, and notify the user in real time (AR-
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Figure 3.16: Average power consumption of (a) the watch with different partitions of the
AR app; (b) the phone with different partitions of the AR app; (c) the watch with different
partitions of the HR Monitor app; (d) the phone with different partitions of the HR Monitor
app; (e) the phone with the AR app using and not using GPS.

P1); 2. Sample sensor data and perform feature extraction on the watch, send the calculated

features to the phone, and perform classification on the phone (AR-P2); 3. Sample sensor

data on the watch, send the raw data to the phone via BLE, and perform feature extraction

& classification on the phone (AR-P3).

HR Monitor app: 1. Execute the full pipeline on the watch, and send the user alerts

in real time (HR-P1); 2. Execute the full pipeline on the watch, but log data to SD card

(HR-P2); 3. Perform sampling and buffering on the watch, send raw heart rate data to the

phone via BLE, and notify the user on the phone (HR-P3).

Figure 3.16 (a) and (b) illustrate the average power consumption of the watch and the

phone running the AR app respectively, with different partitions of the inference pipeline.

Figure 3.16 (c) and (d) show results for the HR Monitor app. Since we assume both inferences

use a 1s classification window, the average power consumption is equivalent to the energy

consumption of the device. For AR-P1, HR-P1, and HR-P2 we use the sleeping power

consumption of the phone because there is no computation or communication on the phone.

For both apps executing the entire pipeline on the watch (P1) yields the optimal energy

efficiency. For the AR app, the energy consumption of AR-P1 is 15.5% less on the watch

and 21.8% less on the phone than AR-P3, respectively. For the HR Monitor app, the energy

savings of HR-P1 on the watch and on the phone compared with HR-P3 are 67.3% and 49.0%

respectively. This is mainly because energy consumed for computation is much less than the

cost of transmitting data through BLE, especially when high-dimensional raw data is being

used as seen in AR-P3 and HR-P3. The results also suggest that performing computation
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on the watch can be more energy efficient than simply use the watch as a UI device.

When an inference uses sensor data from both the watch and the phone, as seen in the AR

app with SC3 and SC5, we only need to compare AR-P2 and AR-P3 in Figure 3.16 (a) and

(b) because a phone app is always required to coordinate sensor data from both devices and

to complete the inference. In this case, it is more energy efficient to send calculated features

from the watch to the phone (AR-P2) than sending raw data (AR-P3). The energy saving

is 7.1% on the watch and 5.5% on the phone again because of less BLE data transmission.

3.4.4.7 Energy Optimization: Replacing High-power Sensor

According to Goal #5, the additional low-power sensors on the smartwatch can replace the

high-power ones required before in context inferences. As shown in Section 3.4.4.5, using

watch accelerometers and phone accelerometers (SC3) for the AR app can result in similar

or even better real inference accuracy compared with solutions that use phone GPS (SC4

and SC5). Therefore we study the use of smartwatches in context inference to eliminate the

use of phone GPS and to reduce the energy consumption of the phone. Figure 3.16 (e) shows

the average power consumption of the phone when the AR app is running using different

sensor combinations, with the watch sending calculated feature to the phone (AR-P2) in the

last collaboration case. By replacing the phone location sensor used in the AR app with the

watch accelerometer, the phone consumes 61.0% and 35.5% less energy compared with the

cases where GPS locations and network locations are used, respectively.

Although our experiments did not consider the power consumed by other workloads

and cellular radios, the reduced energy consumption of inferences can nevertheless extend

the battery life of both the watch and the phone enabling them to execute more workload

during the day.
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3.5 Summary

In this chapter we quantify the benefit of using deep learning and heterogeneous devices and

processors for pervasive context inferences:

• We have achieved comparable inference accuracy as traditional models and acceptable

latency using deep learning without hand-picking features.

• We propose that certain stages of the inference pipeline can be off-loaded from main

app processors to CPUs and DSPs. We have shown up to 30× latency speed-up from

running deep learning tasks on mobile GPUs and up to 60% energy saving from off-

loading sensing tasks to mobile DSPs.

• We also propose that context inferences can be executed across smartwatches and

smartphones. From the watch-phone coordination, with two example inferences we

demonstrate an accuracy improvement of up to 37% from the increased device sensor

coverage. We also showcase a 67% energy saving from partitioning inferences across

watches and phones, and a 61% saving as a result of replacing energy-hungry sensors

with watch inertial sensors.
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CHAPTER 4

Putting It Together: A Programming Framework for

Context Inferences

Motivated by the MiLift app and our observations from optimizing the accuracy and energy

consumption of context inference apps, we realize that ad-hoc optimizations and algorithms

may limit the adoption by developers at a larger scale. In this chapter, we propose a frame-

work with a set of programming abstractions and an associated runtime for the development

and execution of context inference apps. The framework helps app developers compose

inferences in a modular and systematic fashion while tackling a set of runtime challenges.

4.1 Design Challenge and Contribution

Connected sensing devices, such as cameras, thermostats, in-home motion, door-window,

energy, water sensors [ama], collectively dubbed as the Internet of Things (IoT), are rapidly

permeating our living environments [bcc11], with an estimated 50 billion such devices in use

by 2020 [Eva11]. In theory, they enable a wide variety of apps spanning security, efficiency,

healthcare, and others. But in practice, developing IoT apps is arduous because the tight

coupling of apps to specific hardware requires each app to implement the data collection

logic from these devices and the logic to draw inferences about the environment or the user.

Unfortunately, this monolithic approach where apps are tightly coupled to the hardware,

is limiting in two important ways. First, for app developers, this complicates the development

process, and hinders broad distribution of their apps because the cost of deploying their

specific hardware limits user adoption. Second, for end users, each sensing device they

install is limited to a small set of apps, even though the hardware capabilities may be useful
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Figure 4.1: Improvement in occupancy and activity inference accuracy by combining multiple
devices in a lab deployment. For occupancy, sensor set 1 = {camera, microphone} in one
room and set 2 ={PC interactivity detection} in a second room. For physical activity, set 1
= {phone accelerometer} and set 2 = {wrist worn FitBit [fit]}.

for a broader set of apps. How do we break free from this monolithic and restrictive setting?

Can we enable apps to be programmed to work seamlessly in heterogeneous environments

with different types of connected sensors and devices, while leveraging devices that may only

be available opportunistically, such as smartphones and tablets?

To address the problem of monolithic app development for connected devices, we start

from an insight that many inferences required by apps can be drawn using multiple types

of connected devices. For instance, home occupancy can be inferred by either detecting

motion or recognizing people in images, with data sampled from motion sensors (such as

those in security systems or Nest [nes]), cameras (e.g. Dropcam [dro], Simplicam [sim]),

microphone, smartphone GPS, or using a combination of these sensors, since each may have

different sources of errors. We posit that inference logic, traditionally left up to apps, ought

to be abstracted out as a system service, thus decoupling “what is sensed and inferred” from

“how it is sensed and inferred”. Such decoupling enables apps to work in heterogeneous

environments with different sensing devices while at the same time benefiting from shared

and well trained inferences. Consequently, there are three key challenges in designing such

a service:

Device selection: The service must be able to select the appropriate devices in a de-

ployment that can satisfy an app’s inference request (including inference accuracy). Device

selection helps apps to run in heterogeneous deployments. It also helps apps to operate in
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settings with user mobility where the set of usable devices may change over time. More-

over, apps can leverage multiple available devices to improve inference accuracy, as shown

in Figure 4.1.

Efficiency: For inferences that are computationally expensive to run locally on user devices,

or to support deployments that span geographical boundaries, the service should be able to

offload computation to remote servers. In doing so, the service should partition computation

while efficiently using network bandwidth.

Disconnection tolerance: The service should be able to handle dynamics that can arise

due to device disconnections and user mobility.

To address these challenges concretely, we propose Beam, an app framework and associ-

ated runtime which provides apps with inference-based programming abstractions [SSP15a,

SSP15b, SSP16]. It introduces the key abstraction of an inference graph to not only

decouple apps from the mechanics of sensing and drawing inferences, but also directly aid

in addressing the challenges identified above. apps simply specify their inference require-

ments, while the Beam runtime bears the onus of identifying the required sensors in the

given deployment and constructing an appropriate inference graph.

Inference graphs are made up of modules which are processing units that encapsulate

inference algorithms; modules can use the output of other modules for their processing logic.

Beam introduces three simple building blocks that are key to constructing and maintaining

the inference graph: typed inference data units (IDUs) which guide module composability,

channels that abstract all inter-module communications, and coverage tags that aid in device

selection. The Beam runtime instantiates the inference graph by selecting suitable devices

and assigning computational hosts for each module. Beam also mutates this assignment

by partitioning the graph at runtime for efficient resource usage. Beam’s abstractions and

runtime together provide disconnection tolerance.

Our implementation of the Beam runtime works across Windows PCs, tablets, and

phones. Using the framework, we develop two realistic apps, eight different types of in-

ference modules, and add native support for many different types of sensors. Further, Beam
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supports all device abstractions provided by HomeOS [DMA12], thus enabling the devel-

opment of a variety of inference modules. We find that for these apps: 1) using Beam’s

abstractions results in up to 4.5× fewer development tasks and 12× fewer source lines of

code with negligible runtime overhead; 2) inference accuracy is 3× higher due to Beam’s

ability to select devices in the presence of user mobility; and 3) network resource usage due

to Beam’s dynamic graph partitioning matches hand-optimized versions for the apps.

4.2 Beam Overview

In this section, we first describe two representative classes of apps and distill the challenges

an inference framework should address. Next, we describe the key abstractions central to

Beam’s design in addressing the identified challenges.

4.2.1 Example Apps

Our motivation for designing Beam are data-driven-inference based apps, aimed at homes [sma,

nes], individual users [quaa, mapa, WCC14, WCB11, RAP11] and enterprises [KAB05,

RPG07, BNJ11, sho, iBe]. We identify the challenges of building an inference framework

by analyzing two popular app classes in detail, one that infers environmental attributes and

another that senses an individual user.

Rules: A large class of popular apps is based on the ‘If This Then That (IFTTT)’

pattern [ift, UMP14]. IFTTT enables users to create their own rules connecting sensed

attributes to desired actions. We consider a particular rules app which alerts a user if a high

risk appliance, e.g., electric oven, is left on when the home is unoccupied [SKB13]. This app

uses the appliance-state and home occupancy inferences.

Quantified Self (QS) [quaa, mapa, MBM08, FFO12, ABS05] disaggregates a user’s daily

routine by tracking her physical activity (walking, running, etc), social interactions (loneli-

ness), mood (bored, focused), computer use, and more.

Using these two popular classes of apps we address three important challenges they pose:

95



PC Activity

Fitness Activity

Quantified Self App

Social Interaction FitBit Activity Phone ActivityPC Activity

 

Social Interaction

Camera 
Adapter

Fitbit 
Adapter

Acc./GPS 
Adapter

PC Event 
Adapter

Mic 
Adapter

PC Event 
Adapter

Mic 
Adapter

Camera 
Adapter

Home Mic Home Camera Home PC Work Mic Work Camera Work PC Fitbit
Phone GPS, 

Accelerometer

Figure 4.2: Inference graph of modules for the Quantified Self (QS) app. Adapters are
device driver modules.

Mic 
Occupancy

Mic 
Adapter

Home
Occupancy

Appliance 
usage

Energy meter 
Adapter

Rules App

PC Activity

PC Event 
Adapter

 

Camera 
Occupancy

Camera 
Adapter

Figure 4.3: Inference graph for the Rules app.

device selection, efficiency, and disconnection tolerance, as detailed in Section 4.1. Next, we

explain the key abstractions in Beam aimed at tackling these challenges.

4.2.2 Beam Abstractions

In Beam, app developers only specify their desired inferences. To satisfy the request, Beam

bears the onus of identifying the required sensors and inference algorithms in the given

deployment and constructing an inference graph.

Inference Graphs are directed acyclic graphs that connect devices to apps. The nodes in

this graph correspond to inference modules and edges correspond to channels that facilitate

the transmission of inference data units (IDUs) between modules. While these abstractions

are described in more detail below, Figure 4.2 shows an example inference graph for the

QS app that we later build and evaluate. The graph uses eight different devices spread
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Figure 4.4: Overview of different Beam components in a deployment with 2 Engines.

across the user’s home and workplace, and includes mobile and wearable devices. The app

requests a top-level inference as an IDU and Beam dynamically selects the modules that

can satisfy this inference based on the devices available. For example, in Figure 4.2, to

satisfy the app’s request for inferences pertaining to fitness activities Beam uses a module

that combines inferences drawn separately from a user’s smartphone GPS, accelerometer,

and Fitbit device, thus forming part of the inference graph for QS. Figure 4.3 shows the

inference graph for the Rules app.

Composing an inference as a directed graph enables sharing of data processing modules

across apps and other modules that require the same input. In Beam, each computing device

associated with a user, such as a tablet, phone, PC, or home hub, has a part of the runtime,

called the Engine. Engines are computational hosts for inference graphs. Figure 4.4 shows

two engines, one on the user’s home hub and another on her phone; the inference graph for

QS (shown in Figure 4.2) is split across these engines, while the QS app runs on a cloud

server. For simplicity, we do not show another engine that may run on the user’s work PC.

IDU: An Inference data unit (IDU) is a typed inference, and in its general form is a tuple

<t,e,s>, which denotes any inference with state information s, generated by an inference

algorithm at time t and error e. The types of the inference state s, and error e, are specific

to the inference at hand. For instance, s may be of a numerical type such as a double
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1 <Spec>

2 <ControlParameters> <!-- Module parameters -->

3 <Param name="sampleSize" type="int" value="5"/>

4 </ControlParameters>

5

6 <Output> <!-- Output channel IDU spec -->

7 <Inference type="Beam.IDU.HomeOccupancyIDU"/>

8 </Output>

9

10 <Input> <!-- Input channels -->

11 <InputBlock type="OR">

12 <InputChannel Mode="FreshPush">

13 <Module type="Beam.Modules.PCActivity"/>

14 <Module type="Beam.Modules.MicOccupancy"/>

15 <Module type="Beam.Modules.CameraOccupancy"/>

16 </InputChannel>

17 </InputBlock>

18 </Input>

19 </Spec>

Listing 4.1: Module specification of Home Occupancy.

(e.g., inferred energy consumption), or an enumerated type such as high, medium, or low.

Similarly, error e may specify a confidence measure (e.g., standard deviation), probability

distribution, or error margin (e.g., radius). IDUs abstract away “what is inferred” from “how

it is inferred”. The latter is handled by inference modules, which we describe next.

Inference Modules: Beam encapsulates inference algorithms into modules. Inference

modules consume IDUs from one or more modules, perform certain computation using IDU

data and pertinent in-memory state, and output IDUs. Special modules called adapters

interface with underlying sensors and output sensor data as IDUs. Adapters are device

drivers that decouple “what is sensed” from “how it is sensed”. Inference developers specify

(i) a module’s input dependencies (either as IDU types or as modules), (ii) the IDU type

it generates, and (iii) its configuration parameters. Modules have complete autonomy over

how and when to output an IDU, and can maintain arbitrary internal states. Listing 4.1

shows a specification for the Home Occupancy inference module in the Rules inference graph

(Figure 4.3). It lists (i) input dependencies of PC Activity OR Mic Occupancy OR Camera

Occupancy, (ii)HomeOccupancyIDU to be the type of output it generates, and (iii) a control

parameter, sampleSize, that specifies the temporal size of input samples (in seconds) to
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consider in the inference logic. app developers request the local engine for desired inferences,

for example:

engineInstance.Request(

Beam.Modules.ModHomeOccupancy,

tags, Mode.FreshPush);

These are satisfied by inference modules implemented by inference developers, and apps

receive IDUs via a callback.

Channels: To ease inference composition, channels link modules to each other and

to apps, abstracting away the complexities of connecting modules across different devices.

Channels provide support for disconnections tolerance and enable optimizations such as

batching IDU transfers for efficiency. Every channel has a single writer and a single reader

module. Modules can have multiple input and output channels. Channels connecting mod-

ules on the same engine are local. Channels connecting modules on two different engines,

across a local or wide area network, are remote channels. Remote channels enable apps

and inference modules to seamlessly use remote devices or modules. Channels can be either

configured to deliver IDUs to the reader as soon as the writer pushes it (FreshPush, as seen

in Listing 4.1 line 12), or to deliver IDUs in batches thus amortizing the cost of computation

and network transfers.

Coverage Tags: Coverage tags help manage sensor coverage. Each adapter is associated

with a set of coverage tags which describes what the sensor is sensing. For example, a location

string tag can indicate a coverage area such as “home” and a remote monitoring app can use

this tag to request an occupancy inference for this coverage area. Coverage tags are strongly

typed. Beam uses tag types only to differentiate tags and does not dictate tag semantics.

This gives apps complete flexibility in defining new tag types. Adapters are assigned tags

by the respective engines at setup time, and are updated at runtime to handle dynamics

(Section 4.3.1).

Beam’s runtime also consists of a Coordinator which interfaces with all engines in a

deployment and runs on a replicated server that is reachable from all engines. The coordi-
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nator maintains remote channel buffers to support reader or writer disconnections (typical

for mobile devices). It also provides a place to reliably store state of inference graphs at

runtime while being resistant to engine crashes and disconnections. The coordinator is also

used to maintain reference time across all engines. Engines interface with the coordinator

using a persistent web-socket connection, and instantiate and manage the parts of inference

graphs local to them.

4.3 Beam Runtime

In this section, we describe how the Beam runtime uses the inference graph to aid in device

selection, efficient graph partitioning, and handling device disconnections.

4.3.1 Device Selection

Beam simplifies app development by automatically selecting devices that match its inference

request in heterogeneous deployments and in the presence of user mobility. Beam leverages

the device discovery mechanism in HomesOS [DMA12] to discover and instantiate adapter

modules for available sensors in the deployment.

apps request their local Beam engines for all inferences they require, including the cov-

erage associated with each inference. All app requests are forwarded to the coordinator.

Using inference module specifications and devices with matching coverage tags available in

the deployment 1, the coordinator recursively resolves all required inputs of each module.

A module’s coverage tag set includes tags from the downstream modules it processes data

from.

Handling environmental dynamics: Movement of users and devices can change the

set of sensors and devices that satisfy an app’s requirement. For instance, consider an app

that requires camera input from the device currently facing the user at any time, such as the

camera on her home PC, work PC, or smartphone. In such scenarios, the inference graph

1The requested tag must match one of the adapter tags.
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needs to be updated dynamically. Beam updates the coverage tags to handle such dynamics.

Tags of location type (e.g., “home”) are assumed to be static and are only edited by the

user. For tags of type user, the sensed subject is mobile and hence the sensors that cover it

may change. The coordinator’s tracking service manages the coverage tags associated with

adapters on various engines.

The user tracking service updates the coverage tags as the user moves. When a user

leaves home for work, the tracking service removes the user tag from device adapters on the

home PC and adds them to adapters on her smartphone. When she arrives at work, the

tracking service removes the user tag from her smartphone and add them to adapters on her

work PC. The user tracking service relies on device interactions. When a user interacts with

a device, it updates the tags of all sensors on the device to include the user’s tag.

Finally, changes in coverage tags (e.g., due to user movements) or device availability (e.g.,

device disconnections and re-connections) will result in the coordinator reselecting devices

for requested inferences and recreating the graph accordingly.

4.3.2 Inference Partitioning for Efficiency

Beam uses the inference graph for partitioning computation across devices and optimizing

for efficiency.

Graph creation and partitioning: The Beam coordinator maintains a set of inference

graphs in memory as an incarnation. When handling an inference request, the coordinator

first incorporates the requested inference graph into the incarnation, re-using already run-

ning modules, and merges inference graphs if needed. Once the coordinator finishes resolving

all required inputs for each module in the inference graph, it determines where each module

should run using the optimization schemes described next. The coordinator then initializes

remote channels and partitions the graph into engine-specific subgraphs which are sent to

the engines. Whenever the tracking service updates coverage tags, e.g. due to user move-

ments, the coordinator re-computes the inference graphs and sends updated subgraphs to

the affected engines. Next, the engines receive their respective subgraphs, compare each
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subgraph to existing ones, and update them by terminating deleted channels and modules

before initializing new ones. Engines ensure that exactly one inference module of each type

with a given coverage tag is created.

Optimizing resource usage: In Beam, optimizations are either performed reactively,

i.e., when an app issues/cancels an inference request, or proactively at periodic intervals.

Beam’s default reactive optimization determines where each module should run by par-

titioning the inference graph to minimize the number of remote channels. Let G(V,E) be

an inference graph, where V represents the nodes (inference modules), and E represents its

adjacency matrix. In E, eij is the cost of the edge (channel) connecting module i to module

j; eij = 0 if two modules are not connected directly. Beam’s optimizer determines potential

partitions of the inference graph and picks the partition with the minimum cost. To deter-

mine a partition P|V |×|D|, Beam assigns each module i ∈ V to run on a device d ∈ D. That

is, pid = 1 if module i runs on device d and pid = 0 otherwise. We define the cost matrix

of a partition P of the inference graph as C|D|×|D| = P TEP , where cd1d2 denotes the sum

of the cost of all channels from device d1 to device d2. Since the reactive optimizer aims at

minimizing the number of remote channels, here eij = 1 for all connected modules i and j

in the graph. An adapter module runs on a device co-located with the sensor, and an app

runs on the device requested by the user. Beam solves the following linear program to find

P with the minimum cost:

Minimize
∑

∀d1,d2∈D,d1 6=d2

cd1d2

subject to
∑
d∈D

pid = 1 ∀i ∈ V

pid ∈ {0, 1} ∀i ∈ V, ∀d ∈ D

Beam’s default proactive optimization minimizes the amount of data transferred over

remote channels by solving the same linear program but using the data rate profile of each

edge as eij. Engines profile their subgraphs, and report profiling data (e.g., per-channel data

rate or estimated per-module CPU utilization) to the coordinator periodically. Other po-
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tential optimizations can minimize CPU/memory usage at engines, or IDU delivery latency.

Beam allows for modular replacement of optimizers. The coordinator applies optimizations

by re-configuring inference graphs and remapping the engine on which each inference module

runs.

Scatter node optimization: The coordinator further optimizes the inference graph by

finding remote channels which have the same writer module, and whose readers reside on a

common engine (Re). For each such set of edges (E), it adds a single remote channel edge

from the writer to a new scatter node at Re. The scatter node is then set as the writer for all

edges in E, in effect, replacing multiple remote channels with one and reducing the amount

of wide-area network transfers by a factor of |E|.

4.3.3 Disconnection Tolerance

Beam’s remote channels always go through the coordinator and support reader/writer dis-

connections by using buffers at the coordinator. Thus, a channel is split into three logical

components: writer-side, reader-side, and coordinator-side (present only in remote chan-

nels). A channel’s writer-side and coordinator-side component buffer IDUs. Channels offer

two guarantees: i) readers do not receive duplicate IDUs, and ii) readers receive IDUs in

FIFO timestamp order. Beam specifies a default size for remote channel buffers but also

allows app developers to customize buffer sizes based on deployment scenarios, e.g., network

delays and robustness.

Internally, channels assign sequence numbers to IDUs. They are used for reader-writer

flow control, and in remote channels for applying back-pressure on the writer-side component

when the coordinator-side buffer is full, e.g., when a reader is disconnected. Currently, the

writer-side and coordinator-side buffers use the drop-tail policy to minimize data transfer

from writer to coordinator in the event of a disconnected/lazy reader (as opposed to drop

head). This design implies that after a long disconnection a reader will first receive old

inference values followed by recent ones.

Channels and modules do not persist data. If necessary, apps and modules may use a
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Adapter Inference Module

PC Event PC Activity
PC Input PC Occupancy

Phone GPS Semantic Location
Accelerometer

Fitbit
Fitness Activity

Energy Meter (HomeOS) Appliance Usage
Camera (HomeOS) Camera Occupancy
PC Mic/Tablet Mic Mic Occupancy
PC Mic/Tablet Mic Social Interaction

Table 4.1: Sample adapters and inference modules.

temporal data store, such as Bolt [GSP14], to make inferences durable.

4.4 Implementation

Our Beam prototype is implemented in C# as a cross-platform portable service that can

be used by .NET v4.5, Windows Store 8.1, and Windows Phone 8.1 apps. The Beam

inference library has sample implementations for 8 inference modules and 9 adapters (listed

in Table 4.1). It also includes a HomeOS-adapter that allows Beam to leverage various

other device abstractions provided by HomeOS [DMA12], such as the camera and energy

meter device drivers used by some of our sample inferences. Each Beam module has a single

data event queue and a thread to deliver received IDUs (akin to the actor model [Arm10,

BBG14, BGK11]). All communication between the coordinator and engine instances uses

the SignalR [sig] library, and Json.NET [jso] is used for data serialization. The engine library,

coordinator, sample adapters, and tracking service are implemented in 6614, 952, 1824, and

219 (total=9609) source lines of code respectively.

4.4.1 Sample apps

We implement the motivating apps described in Section 4.2.1 in Beam. Inference graphs of

Rules and Quantified Self (QS) are shown in Figure 4.3 and Figure 4.2, respectively. Device

adapters such as Microphone, Camera, and PC Event adapters are shared by both inference
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graphs. For common inference modules such as the PC Activity inference, Beam instantiates

only one of them across these graphs. Changes in coverage tags and device availability

caused by user mobility prompt Beam to re-select appropriate devices for inference graphs.

For instance, PC Activity for QS might either be drawn from the home PC or the work PC

depending on the user’s current location.

4.4.1.1 Rules app

The Rules app requires the Appliance Usage and Home Occupancy inferences implemented

as follows.

The Appliance Usage inference module reads aggregated power consumption of a home

from a whole-home power meter, or a utility smart-meter, and disaggregates it to determine

the set of appliances that are on at any given instant, using the CO algorithm from [Har92],

configured with 10 commonly owned home appliances [BKP14]. The whole-house power

readings are generated using our power-sensor adapter, which interfaces with an Aeon ZWave

whole-house meter [aeo].

The Mic Occupancy inference module reads audio samples using the PC Microphone

adapter at a sampling rate of 8 kHz (in 4 second frames), and filters out background noise

(such as wind, fans, etc.) [HXZ13]. If after filtering, the audio sample still indicates sound

is present, the inference output is ‘occupied’.

The PC Activity module infers the current activity a user is performing on a PC (described

in Section 4.4.1.2).

The Camera Occupancy module receives streaming video input from an adapter provided

by the HomeOS web-cam driver. The input video is of 640×480 resolution and streams at a

frame rate of 1 fps. The module compares consecutive frames in the video. If any significant

difference indicating possible human movement is detected [BJM13], the inference output is

‘occupied’.

The Home Occupancy module combines Mic Occupancy, Camera Occupancy, and PC

Activity modules, to produce a Home Occupancy inference, outputting ‘occupied’ if one of
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the following is true: Mic Occupancy, Camera Occupancy, or PC Activity 6= No activity.

4.4.1.2 Quantified Self (QS) app

QS tracks a user’s fitness activities, social behaviors, and computing activities on a PC. It

is implemented as a Windows Azure web app. Users view plots of their data at leisure on

the QS webpage. The inference modules used by this app are described as follows.

The Social Interaction (Is Alone) module detects the presence of human voice, outputting

‘user not alone’ when human voice is present (likely due to conversations with others, though

false positives may arise due to TV sounds and background noises). It computes the mel-

frequency cepstral coefficients (MFCC) [DM80, Mer76] over a 200 ms window of the micro-

phone adapter data at 44.1 kHz and uses a decision tree [Qui86] to classify if human voice

is present. The module also incorporates movement detection by analyzing video streams

from the camera.

The PC Activity inference module reads the name of the currently active desktop window

from the PC-event adapter using a Win32 system call. It then classifies the name into one

of the known PC activity categories (coding, web browsing, social networking, emailing,

reading etc.) using a pre-configured mapping. It also infers the psychological state of the

user (bored vs. focused) using the features proposed in [MIC14], including window switches,

web page switches, time spent browsing Facebook.com, and time spent using e-mail.

The Fitness Activity module implements the algorithm from [RMB10] to infer human

transportation modes (still, walking, driving) using the phone accelerometer. It also uses

the Fitbit [fit] API to fetch users’ FitBit activity logs, and combines it with accelerometer-

based inferences.

4.4.2 APIs

Listings 4.1 and 4.2 show how app and inference developers leverage the Beam APIs using

the Home Occupancy inference as an example.
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Inference developers provide an XML specification for each inference module (Listing 4.1)

configuring its parameters as well as the input and output channel IDU types. They then im-

plement the module using Beam’s APIs (Listing 4.2, line 1-19) extending the InferenceModuleBase

helper class. The module is first initialized with control parameters (line 5). It receives in-

puts in the DataReceived callback (line 9), performs the implemented inference logic (line

11), and sends result IDUs to output channels (line 14-16).

1 // Inference developers implement module logic

2 public class ModHomeOccupancy:InferenceModuleBase {

3 // Read parameters from the specification XML file

4 public override void Initialize(ModuleSpec spec) {

5 this.paramList = spec.getControlParams();

6 // set state and initialize using parms ...

7 }

8 // Callback to receive IDUs from input channel(s)

9 public override void DataReceived(IChannel channel, List<IIDU>

inputSignals) {

10 // Compute occupancy based on input

11 HomeOccupancyIDU inferenceResult =

12 computeOccupancy(inputSignals);

13 // Push result IDUs to output channel(s)

14 if (!changedSinceLastPush(inferenceResult))

15 foreach (IChannel ch in outputChannels)

16 ch.Push(inferenceResult);

17 }

18 // ...

19 }

20 // App developer: request inferences from engine

21 public class QSApp : InferenceModuleBase {

22 void startInference() {

23 // Get an instance of the local engine

24 Beam.Engine engine = Beam.Engine.Instance;

25 // Prepare coverage tags

26 List<CoverageTag> tag = new List<CoverageTag>();

27 tag.Add(new PersonCoverageTag("User1"));
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28 // Register for inference notifications

29 engine.Request(Beam.Modules.ModHomeOccupancy, tag, Mode.FreshPush,

this);

30 }

31 // Callback to receive IDUs from input channel(s)

32 public override void DataReceived(IChannel channel, List<IIDU>

occupancyInferences ) {

33 // Perform actions based on IDUs received ...

34 }

35 }

Listing 4.2: Example usage of the Beam API.

App developers simply request a specific inference module, e.g. Home Occupancy (List-

ing 4.2, line 20-35). The app specifies coverage tags (line 26-27), and invokes the local

engine’s Request method (line 29) to register for inference notifications. Beam then instan-

tiates the required inference graph and returns a channel to the app with the requested

module as writer. Result IDUs are received by the app via the DataReceived callback (line

32).

4.5 Evaluation

We evaluate how Beam’s inference graph abstraction simplifies app development, benchmark

its performance, and evaluate its efficacy in addressing the three key challenges identified in

Section 4.1. Our evaluation uses micro-benchmarks as well as the two motivating apps from

Section 4.4.1.

First, in Section 4.5.2 we quantify how Beam’s abstractions simplify app development

and evaluate the overhead of graph creation. Then, in Section 4.5.3, we evaluate how Beam’s

device selection in a real-world deployment with user mobility improves inference accuracy.

Next, in Section 4.5.4, we show the impact of Beam’s inference graph partitioning to optimize

for efficient resource usage. Finally, in Section 4.5.5 we showcase Beam’s ability to handle

device disconnections.
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For our experiments, the Beam coordinator runs on a Windows Azure VM (with AMD

Opteron Processor, 7 GB RAM, 2 virtual hard disks, running Windows Server 2008 R2);

the engines run on desktop machines (with AMD FX-6100 processor, 16 GB RAM, running

Windows 8.1) and a Windows Phone (Nokia Lumia). Both sample apps, Rules and Quan-

tified Self (QS), run on the same VM as the coordinator; local engines run in the cloud, a

home PC, phone, and a work PC.

4.5.1 Development Approaches

To quantify the reduction in development effort achieved by Beam, we explore different ap-

proaches that a developer may adopt to design such apps.

Monolithic-All Cloud (M-AC). In this approach, the app is developed as a monolithic

silo without the use of any framework. All app logic is tightly coupled to the sensing de-

vices, and all collected data is relayed to cloud services, as is the case with Xively [xiv] and

SmartThings [sma]. The cloud service runs the app’s data processing and inference logic.

Monolithic-Cloud and Device (M-CD). In this approach, an app developer hard-codes

the division of inference logic across the cloud VM and end devices [opta, WCC14]. Thus,

sensor values are processed to some degree on the end device before being uploaded to the

cloud VM which hosts the remainder of the app logic. Depending on the deployment and re-

source constraints, the developer may need to hand-optimize the resource usage (e.g., CPU,

memory, or network usage).

Monolithic-using inference libraries (M-Lib). This approach is similar to the previous

one (M-CD), except that app developers may use libraries of inference algorithms tuned

by domain experts, thus leading to some reduction in development effort [CLL11, NDA13a,

KSB13].

Monolithic-using sensor hub systems (M-Hub). Platforms such as HomeOS [DMA12],

Homeseer [hom], and others [rev], facilitate the development of apps by providing homoge-

neous device-based programming abstractions. Typically, these platforms implement sensor

drivers and regulate access to different sensors; apps still implement inference logic.

Beam. In this approach, an app on any of the user’s devices simply presents its inference
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Application components and their description

Sensor driver: Handled by M-Hub and Beam
One driver per sensor type.

Inference logic: Handled by M-Lib and Beam
For each inference an application requires, at least one inference component is needed,
e.g., incorporating feature extraction techniques, inference algorithm, learning model, etc.

Parameter tuning: Simplified by Beam
An application must also incorporate logic to match its inference logic with the under-
lying sensors (for a range of sensors), e.g. configuring sensor-specific parameters such as
sampling rate, frame rate for cameras, sensitivity level for motion sensors, etc.

Cloud service: Simplified by Beam
Depending on the development approach, an application may require several cloud ser-
vices, e.g., a storage service for data archival, an execution environment for hosting in-
ference logic, authentication services, etc.

Device disconnection tolerance: Handled by Beam
Since devices such as smartphones, tablets, may have intermittent connectivity, develop-
ers need to appropriately handle disconnections.

User interface (UI): Simplified by Beam
Typical applications require certain UI components, e.g., to allow configuration of sensors
for data collection, or for users to view results.

Table 4.2: Components of inference-based applications.

requests to the local Beam instance. Using the inference graph abstraction, Beam bears the

onus of device selection, optimizing for efficiency, and handling disconnections. Note that

using Beam does not preclude the M-Hub approach where all sensing and inference logic

run locally on a single hub device (e.g., a home hub). We refer to such scenarios built using

Beam’s inference abstractions as Beam-Hub, with the engine and coordinator running locally

without needing an external network connection.

4.5.2 Evaluation of Inference Abstraction

In this section we highlight the saving in app development effort using Beam’s inference

graph abstraction and quantify the overhead of graph creation.
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Figure 4.6: SLoC using different development approaches in the two apps (Rules, QS)

4.5.2.1 Comparison of Development Effort

We implement our representative apps using the different development approaches described

above and present a quantitative comparison of the development effort using two metrics:

(i) number of development tasks and (ii) number of source lines of code (SLoC). Number

of development tasks is defined as the number of architectural components that need to be

designed, implemented, and maintained for a complete functioning app. To analyze devel-

opment effort in greater depth, these components can further be categorized based on the
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function they perform (Table 4.2). This metric captures the diverse range of tasks develop-

ers of apps for connected devices are required to handle. Although comparing the number

of tasks provides insight into the development effort required for each approach, different

components often require varying levels of implementation efforts. Thus, to distinguish in-

dividual components, we also measure the number of source lines of code (SLoC) required

for the components in each approach.

Figures 4.5 and 4.6 show the number of development tasks and number of SLoC, respec-

tively, for the Rules and QS apps using the different development approaches. We observe

that for the Rules app, Beam reduces the number of development tasks by 4.5×, and the

number of SLoC by 4.8×, compared with M-AC and M-CD. Similarly, for the QS app, Beam

reduces the number of development tasks by 3×, and the number of SLoC by 12×, compared

with M-AC and M-CD.

Number of development tasks: As shown in Figure 4.5, the approaches of Monolithic-

All Cloud (M-AC) and Monolithic-Cloud and Device (M-CD) have similar number of de-

velopment tasks for both the Rules (on left) and the QS app (on right). M-CD requires

developers to hard-code the division of tasks between end-point devices and cloud servers,

thus statically optimizing for better resource usage than M-AC (Section 4.5.4).

Compared with M-AC and M-CD, the M-Lib approach reduces developer effort. It lever-

ages existing libraries which provide implementations of inference algorithms and also handle

their training and tuning. Similarly, in the M-Hub approach, developer effort is reduced due

to existing sensor driver implementations provided by the platform. Finally, when using

Beam, app developers do not need to design or implement sensor drivers, inference logic,

tuning timing parameters, or handling disconnections. app developers only need to decide

their required inferences, and develop app-specific components, e.g., user interface, third-

party authentication, etc.

Number of SLoC: As shown in Figure 4.6, we observe that for all approaches, the SLoC

count is generally proportional to the development task count. For most approaches SLoC

is dominated by tasks of developing sensor drivers and inference logic. For instance, the
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Sample scenario 1 (local inference) Sample scenario 2 (remote inference)
App1’s request App2’s request App1’s request App2’s request Reevaluation

Total 232.54 ± 1.63 246.71 ± 16.62 237.43 ± 12.76 230.24 ± 3.53 -
Request and
subgraph
transfer

230.35 ± 1.68 246.24 ± 16.62 236.13 ± 12.75 229.73 ± 3.47 -

Coordinator
(graph creation)

1.05 ± 0.14 0.16 ± 0.01 0.90 ± 0.04 0.20 ± 0.07 0.12 ± 0.01

Coordinator
(split graphs)

0.06 ± 0.01 0.12 ± 0.01 0.06 ± 0.01 0.15 ± 0.07 0.11 ± 0.01

Engine
(instantiate
subgraphs)

1.05 ± 0.13 0.16 ± 0.03 0.30 ± 0.08 0.12 ± 0.04 0.40 ± 0.10

Table 4.3: Inference graph setup times (in ms) in two sample scenarios, with one standard
deviation.

Social Interaction inference in QS contributes more than 9796 SLoC. Both Beam and M-Lib

help alleviate this complexity. Beam improves upon M-Lib by handling the complexity of

implementing sensor drivers, disconnection tolerance, and optimizing resource usage, etc.

4.5.2.2 Overhead of Inference Graph Creation

We study the time taken by Beam to satisfy requests for a single Mic Occupancy inference,

which in turn uses the PC Mic adapter. We consider two sample scenarios, 1) apps request

for a local inference, and 2) apps request for a remote inference. In both cases, app 1 initiates

a request first, followed by app 2, with the same coverage tag.

In both scenarios, the overhead of instantiating and maintaining the inference graph

at end-points is minimal and dwarfed by the latency of transferring the request to the

coordinator and receiving back the subgraphs.

Table 4.3 shows the overhead of graph creation for each of the scenarios. In both cases,

the second request uses less time for graph creation at the coordinator, since much of the

graph already exists when the second request arrives (e.g., module specifications are not

re-read). Likewise, in both scenarios, time spent at the engine(s) in applying the subgraph is

lower for the second request as compared to the first request. Further, it is lower in scenario

2 because the inference graph is split across two engines. Lastly, the coordinator performs a

periodic re-evaluation based on the channel data rates and applies the proactive optimization
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Figure 4.7: Beam’s tracking service improves inference accuracy (measured against ground
truth) significantly over other approaches all of which fail to select devices in the presence
of user mobility.

discussed in Section 4.3.2. The time taken to perform the re-evaluation is minimal.
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4.5.3 Device Selection

Unlike other approaches described in Section 4.5.1, the inference graph in Beam can select

devices for apps even in heterogeneous environments with user mobility, resulting in increased

inference accuracy. We demonstrate this using the PC Activity inference in the context of

the QS app (inference graph in Figure 4.2).

We perform an experimental lab deployment with two locations - a lab which acts as

‘home’ and an office. Movements from home to office are used to simulate user commuting.

We compute Beam’s inference accuracy against manually-collected ground truth data from

the deployment, and compare it to three other development approaches that may be used

in the absence of a Beam-like tracking service. The first approach performs the PC Activity

inference using only inputs from the home PC, while the second approach uses only inputs

from the work PC. We assume that the home PC goes into sleep after a certain period

of user inactivity, while the work PC remains on even after the user leaves. In the third

approach, the inference is drawn using simultaneous inputs from both the home and work

PCs. However, when the two inputs conflict, the output is set to ‘Other’.

Figure 4.7 shows a comparison of inference accuracy for these different schemes over a

ten minute interval of using the QS app. Inferring PC-based activities using only the home

PC works accurately until the user leaves home, but deviates significantly from ground truth

once the user has left. Similarly, using only the work PC can only accurately compute the

PC-based activities of the user after the user arrives at work. On the other hand, using

both the work and home PC without a tracking service often produces conflicting results,

for instance, when home PC and work PC both generate PC Activity inferences during user

commuting. Beam’s tracking service correctly identifies the location of the user and triggers

the inference graph to re-select appropriate devices, achieving inference accuracy 3× higher

than the best performing scheme above. Using the tracking service, Beam’s smartphone

engine can also correctly indicate that the user is ‘Mobile’ while commuting. Table 4.4

summaries these accuracy improvements.

Although the above experiments are performed in a lab setting with a simulated commut-
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Setup Accuracy

Home PC only, without tracking service 29.68%
Work PC only, without tracking service 26.94%
Home PC and work PC, without tracking service 4.59%
Home PC and work PC, with Beam’s tracking service 88.16%

Table 4.4: Accuracy of PC Activity Inference compared to ground truth (a summary of
Figure 4.7).
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Figure 4.8: Total bytes transferred over the wide area for a 60 minute run of the Rules and
QS apps using different approaches. Y-axis is in log scale.

ing scenario, having a longer commuting time will only reduce the accuracy of non-Beam

approaches, since only Beam with the tracking service can infer user commuting and all

other approaches will yield incorrect results. Finally, we expect to observe a similar accu-

racy improvement for other inferences that require handling of sensor coverage, e.g. the

Social Interaction inference in the QS app.

4.5.4 Efficient Resource Usage

Next, we illustrate that Beam can match the resource usage of hand-optimized apps by

partitioning the inference graph across devices. We also evaluate different optimization

schemes used in Beam. Although we consider network usage to benchmark Beam in this

dissertation, we expect similar optimizations can be performed on other resources such as

CPU usage, latency, and energy.
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Figure 4.9: Sample configurations of the Mic Occupancy inference, with different optimiza-
tion goals.

Graph partitioning: For the Rules and QS apps, we compare Beam’s data trans-

fer overhead (i.e., number of bytes transferred over the wide area) with that of different

approaches (M-AC, M-CD, M-Lib, M-Hub). Figure 4.8 shows the total number of bytes

transferred over the wide area in one hour, for the sample apps using different approaches.

Medians and standard deviations across three runs are reported. M-AC incurs the largest

overhead, because it transfers all sensor data from the device to a cloud VM for processing.

On the other hand, the M-CD, M-Lib, and M-Hub approaches are optimized to perform

most of their processing at the edges before transferring data to the cloud VM. Beam auto-

matically partitions the inference graph using both reactive and proactive optimizations and

comes close to matching the network transfer overhead incurred by M-CD; it incurs a slightly

higher overhead for transferring control messages such as forwarding the app’s request to the

coordinator, receiving the part of the inference graph to instantiate, sending channel data

rates to coordinator (for proactive optimization), acknowledgments, etc. Note that, when

the M-Hub approach is used for the Rules app, there is no wide area IDU transfers because

all required sensors are present locally at home.

Optimization schemes: Next, we evaluate the effect of different optimization schemes

in Beam. We focus on a simple inference graph, where two apps running on cloud servers
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Figure 4.10: Network resource consumption over a 100 seconds interval for configurations in
Figure 4.9. Y-axis is in log scale. IDUs are generated every 4 seconds.

subscribe to the Mic Occupancy inference. Figure 4.9 shows the three configurations that

result from Beam optimizations in isolation and Figure 4.10 shows their network resource

consumption over a 100-second interval. Beam’s default reactive optimization (Figure 4.9

#1) minimizes the number of remote channels resulting in a large amount of microphone

data being transmitted over the wide area. Beam’s proactive optimization notices these

large uploads and uses channel data rates to re-evaluate and re-partition the inference graph

(Figure 4.10 at 20 s), thus moving the Mic Adapter closer to the edge (Figure 4.9 #2), and

reducing wide area transfers significantly. Finally, enabling Beam’s scatter node optimization

(Figure 4.9 #3) halves the network overhead, for two consumer apps, compared with the

proactive optimization without the scatter node.

4.5.5 Handling Disconnections

In this section we quantify the ability of the Beam inference graph to handle device discon-

nections. Remote channels in Beam buffer data at both the coordinator and at the writer

endpoints to tolerate reader and writer disconnections. The size of these buffers and the

writer’s sending rate determine the time window for which disconnections are lossless, and

can be sized as per the deployment scenario. Figure 4.11 shows a time series plot of the

number of IDUs and data messages received by a reader over a 100 seconds interval. The
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Figure 4.11: Remote channel time trace. Write rate is 10 values per second, and writer buffer
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writer produces ten IDUs every second. Each IDU produced is pushed out in a separate

data message until a reader disconnection at t=15s results in data buffering, first at the

coordinator, and then at the writer. We constrain the channel buffers at the writer and

coordinator ends to 100 IDUs each, thus supporting buffering of only 20 seconds worth of

IDUs in this configuration, forcing the remaining IDUs to be dropped. When the reader

reconnects at t=80 s, the 200 buffered IDUs are batched in a small number of data messages

and delivered to the reader, showing Beam’s support for tolerating device disconnections.

4.6 Discussion

We discuss potential improvements to Beam.

Error and error propagation: Beam currently supports typed errors such as proba-

bility distributions (e.g. mean and standard deviation), and error margin (e.g. center and

radius). Although error propagation has been studied in the field of artificial intelligence

(e.g. neural network [RHW88]), there is no prior work on error propagation in mobile context

sensing. We are investigating techniques to enable inference module developers to implement

customized error propagation functions for specific inferences, so that Beam can propagate

the error from a module’s inputs to its output.
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Actuation and timeliness: Many in-home devices possess actuation capabilities, such

as locks, switches, cameras, and thermostats. apps and inference modules in Beam may

want to use such devices. If the inference graph for these apps is geo-distributed, timely

propagation and delivery of such actuation commands to the devices becomes important

and raises interesting questions of what is the safe thing to do if an actuation arrives “late”.

Data archival and correlation mining: Prior work has shown that exploiting the

correlation among inferences can effectively reduce sensing cost [Nat12]. While Beam mod-

ules do not currently store data either at the engines or the coordinator, apps and modules

may use a temporal datastore, such as Bolt [GSP14], to make inferences durable. Storing

and querying archived inference data will allow inference developers to perform correlation

mining to improve inferences.

Data privacy: While we do not address privacy concerns in our work, we believe the use

of inferences can enable better data privacy controls [CSR14]. For example, users may allow

an app to access the occupancy inference (using a camera) instead of the raw image data used

for drawing the inference. This prevents the leakage of private information by preventing

other inferences that can be drawn using the raw data. Moreover, Beam’s coverage tags

allow the user to define fine-grained controls, for instance, allowing an app to access activity

inference only for a certain user tag.

4.7 Summary

Context inference apps using connected sensing devices are difficult to develop today because

they must incorporate all the data sensing and inference logic, even as devices move or

are temporarily disconnected. We design and implement Beam, a framework and runtime

for context inference apps using connected devices. Beam introduces the inference graph

abstraction which is central to decoupling apps, inference algorithms, and devices. Beam

uses the inference graph to address the challenges of device selection, efficient resource usage,

and device disconnections. Using Beam, we develop two representative apps (Rules and QS),

where we show up to 4.5× lower number of tasks and 12× lower source line of code in app
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development effort, with negligible runtime overhead. Moreover, Beam results in up to 3×

higher inference accuracy due to its ability to select devices in heterogeneous environments,

and Beam’s dynamic optimizations match hand-optimized apps for network resource usage.
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CHAPTER 5

Context Awareness Toolkit

Based on the above findings on composing and running context inferences across multiple

devices, we have created a suite of open-source toolkit apps to assist developers in different

stages of building context inferences apps, including:

• The Data Collector that helps developers collect sensor data and ground truth labels

from users as part of data collection campaigns.

• The Inference Composer that automatically composes and exports an inference

pipeline from a collected dataset, including the training and tuning of machine learning

models. It also supports manual configuration of an inference.

• The Inference Executor that takes an exported inference pipeline from Inference

Composer and performs runtime optimizations of inference executions by partitioning

a pipeline across multiple devices.

The above apps are open-source and available on Github [too].

5.1 Data Collector

Because most context inference apps use data-driven machine learning models to make deci-

sions, the first task of building inferences is always to collect data and ground truth from a

set of users, such as the user study seen in MiLift. The data collection campaigns in various

situations have the same or very similar workflow, that is, collecting sensor data and saving

them for model training. However, the exact configuration of data collections may vary in

a number of aspects, such as the type of devices, type of sensors, sampling frequencies, etc.
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Therefore for each new data collection campaign, developers often need to write a different

data collection app and cannot re-use previous code. Moreover, there are very limited sup-

port from the mobile operating systems and existing solutions for collecting ground truth

labels.

To address these problems, we propose Data Collector, an Android app for helping de-

velopers collect a set of sensor data from users, including the ground truth label.

5.1.1 Design

The basic workflow of Data Collector is described as follows:

• Data Collector provides a set of APIs for app developers to specify the set of sensors

to be considered, including device types, sensor types, sensor configurations, as well as

ground truth configurations.

• Target users then install Data Collector, which collects data based on the developer’s

configuration. The app runs on the target user’s phone, continuously sampling sensor

data and periodically querying ground truth labels (if necessary) until the desired

amount of data has been collected.

• Finally, Data Collector outputs the data in a serialized or structured human-readable

format, and developers can save the data for later use.

The schema used by Data Collector to represent sensor data and ground truth labels is

shown in Figure 5.1. The main abstractions of a dataset include:

• DataType represents both the DeviceType (e.g. smartwatch, smartphone, Fitbit, etc.)

and the SensorType (e.g. accelerometer, gyroscope, GPS location, etc.).

• DataInstance is a single instance of sensor data which contains a timestamp and an

array of value representing the different channels of sensors.

• LabelType represents the type of a ground truth label collected from users. Each label

could be a real number, an integer, a string (nominal value), or a sensor type.
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Figure 5.1: Schema of data representation used by Data Collector.

• Each DataLabel is an instance of a ground truth label, identified by a LabelType and

the corresponding value LabelValue.

• Each DataVector is a basic entry in a dataset. It contains a hash map from a DataType

to a list of DataInstance.

• Each LabelledDataVector inherits the DataVector class but also stores a list of

ground truth labels using a hash map from a LabelType to a list of DataLabel.

5.1.2 Implementation

Data Collector is implemented as an Android app. It provides a Data Collection Configurator

for developers to configure a data collection and then calls a background service Data

Collection Service for sampling and saving sensor data as a DataVector. The ground

truth label collection is implemented using the Android Alarm and BroadcastReceiver and

periodically queries labels from users.
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1 // Configure type of sensor data to collect

2 DataCollectionConfigurator configurator =

3 new DataCollectionConfigurator();

4 configurator.addSensorTypeToVector(

5 DeviceType.ANDROID_PHONE,

6 SensorType.ANDROID_ACCELEROMETER);

7 configurator.addSensorTypeToVector(

8 DeviceType.ANDROID_PHONE,

9 SensorType.ANDROID_GRAVITY);

10

11 // Configure label collection

12 LabelType labelType = new LabelType(

13 "ground_truth",

14 LabelDataType.NOMINAL);

15 labelType.setInterval(10);

16 labelType.addCandidateNominalValue("Activity A");

17 labelType.addCandidateNominalValue("Activity B");

18 labelType.addCandidateNominalValue("Activity C");

19

20 // Pass Configurator to DataCollectionService

21 DataCollectionService.configureDataCollection(

22 DeviceType.ANDROID_PHONE,

23 configurator.getDataVector());

24

25 // Start the data collection

26 DataCollectionService.startDataCollection();

27

28 // Stop the data collection and obtain the data as CSV

29 DataVector result = DataCollectionService.stopDataCollection();

30 result.dumpAsCSV("path_to_data.csv");

Listing 5.1: API example of the Data Collector.

Listing 5.1 shows an example of using Data Collector’s APIs to configure a data collection.

Developers invoke the configurator and specify the types of sensor data to be collected (line 2-

9). They then request labels of nominal type (strings) to be collected and specify the possible

candidate strings (line 12-18). Finally, developers use the Data Collection Service to

start the data collection (line 26), and write the collected data to a CSV file after stopping

the collection (line 29-30).

5.2 Inference Composer

Next, we describe the design and implementation of Inference Composer, a Python program

that provides high-level APIs for training machine learning models from data generated
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Figure 5.2: Workflow of Inference Composer.

by Data Collector. While Beam tackles the challenges of creating inference abstractions

and leveraging heterogeneous devices at runtime, this app complements Beam by providing

assistance on model training.

Compared with prior frameworks for mobile sensing and inference, such as Kobe [CLL11],

Auditeur [NDA13a], and Senergy [KSB13], our Inference Composer app offers two new fea-

tures. First, it eases the inference model training by offering an automatic training mode,

where a set of default classifiers are trained on a dataset and the model with the best per-

formance is returned to the developer. Second, it closes the gap between popular machine

learning frameworks (e.g. scikit-learn [PVG11], Tensorflow [ten], etc.) and mobile operat-

ing systems such as Android. Inference Composer can export an inference pipeline trained

by these frameworks (in Python) to a JSON file that can be parsed, initialized, and ex-

ecuted on Android using the Inference Executor app described in Section 5.3. In doing

so it saves trained classification models in the form of Predictive Model Markup Language

(PMML) [pmm] which can then be loaded by the Inference Executor.

5.2.1 Design

The workflow of Inference Composer is shown in Figure 5.2. Machine learning experts (i.e.

inference developers) create Beam-style inference modules by implementing a ModuleBase
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interface. Each inference module must implement two methods:

• process() takes a data vector, performs inference computation, and returns a data

vector.

• export() saves the module itself in JSON format, including transforming scikit clas-

sifiers to PMML.

Inference Composer is shipped with a module library which includes default inference mod-

ules such as pre-processing functions, feature calculation functions, and classifiers.

App developers then feed sensor data into Inference Composer. We offer two modes of

composing inferences:

Manual mode: App developers use the API to specify the sensors to be considered, pre-

processing functions, feature functions, and classification models (given that these modules

exist in the current module library). By supplying a dataset obtained from Data Collector,

an inference pipeline can be trained based on the specifications and saved to a JSON file.

Automatic mode: App developers use the API to pick a specific inference and specify cer-

tain criteria, for example, a thresholding inference accuracy or simply requesting a classifier

with the best accuracy. Based on the dataset, Inference Composer automatically selects the

right classifier and feature algorithms (if required) from the current module library to meet

the criteria, and returns the trained inference pipeline.

After an inference pipeline is created, it can be exported to a JSON file by invoking the

export() method of each of its member inference module. An example of the JSON file is

also shown in Figure 5.2.

5.2.2 Implementation

Inference Composer is implemented in Python and provides wrapper functions for both

scikit-learn [PVG11] and Tensorflow [ten], enabling it to leverage both traditional machine

learning models and deep neural networks. It provides a set of default inference modules
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1 # Pre-processing

2 pre_processor = Preprocess.Preprocess(

3 _window_size=1,

4 _data_columns=data_columns,

5 _operators=[Preprocess.MOVING_AVG_SMOOTH]

6 )

7 processed_data = pre_processor.process(raw_data)

8

9 # Feature calculation

10 feature_calculator = Feature.Feature(

11 _window_size=1,

12 _data_columns=data_columns,

13 _features=features

14 )

15 feature_vector = feature_calculator.process(processed_data)

16

17 # Train default classifiers and show performance

18 classifiers = Classifier.Classifier(

19 _feature_mapper=feature_calculator.get_mapper(),

20 _model_path=MODEL_PATH,

21 _cross_validation=True,

22 _cv_fold=10

23 )

24 classifiers.add_default_classifiers()

25 classifiers.process(feature_vector)

26

27 # Export the trained pipeline to JSON,

28 # including automatically transforming model to PMML

29 export_inference([pre_processor, feature_calculator, classifiers])

Listing 5.2: API example of Inference Composer.

but also allows inference developers to add new modules using the ModuleBase interface.

In order to export scikit classifiers into PMML, Inference Composer uses tools provided by

the open-source jpmml project, including jpmml-model [jpmb] and sklearn2pmml [jpmc].

Listing 5.2 illustrates the use of Inference Composer APIs to create and export an inference

pipeline. Developers configure pre-processing (line 2-7), feature calculation (line 10-15), and

classifiers (line 17-25) using existing inference modules. They can export the entire inference

as a JSON file after specifying each modules (line 29).
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Figure 5.3: Architecture of Inference Executor.

5.3 Inference Executor

Inference Executor is an Android app for actualizing an inference pipeline generated by

Inference Composer and optimizing its execution across devices. The runtime loads a saved

inference pipeline from a JSON file, including loading classifiers from PMMLs, and instan-

tiates the pipeline using Java implementations of inference modules available in a module

library. The runtime partitions modules in a pipeline and considers different devices as tar-

gets for the execution. In this work, we consider the specific case of executing an inference

between a smartwatch and a smartphone, similar to the scenario proposed in Section 3.4.

5.3.1 Design

Figure 5.3 shows the system architecture of two Inference Executor apps running on a smart-

phone and a smartwatch, respectively. An Inference Manager (mobile or wear) runs on

each device and is responsible for coordinating and managing the execution between devices.

On each device, Inference Manager invokes an Inference Executor to load an Inference

Pipeline from a JSON file, and to instantiate required Inference Module based on loaded

parameters as well as existing modules in the current library. Inference Executor also
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serves as a runtime container for performing the actual sensing and inference workloads.

Finally, a Communication Manager coordinates the communication between devices, includ-

ing but not limited to controlling module placements, managing sensor sampling, sending

notifications, etc. Specifically, a dedicated part called Watch Dog monitors other devices for

connectivity and availability to support runtime optimizations.

In the case of watch-phone coordination, the Mobile Inference Manager running on a

smartphone loads an Inference Pipeline and splits it into a phone part and a watch part.

It then uses the Communication Manager to send the watch part to the Wear Inference

Manager. Both managers then coordinates the execution of this inference.

5.3.2 Implementation

Inference Executor uses the Android Alarm and BroadcastReceiver for periodic inference

execution. Inference pipelines are parsed using the JSON library of Java, and we use the

jpmml-evaluator [jpma] open-source library to parse and evaluate the PMML classification

models exported by Inference Composer. Finally, the communication between devices is

achieved using Android’s Wear API [anda], which opportunistically uses either Bluetooth

LE of WiFi for data transmission.

Similar to Inference Composer, Inference Executor has a set of default inference modules

in its Java module library. It also provides an interface for creating new modules.

To perform an inference in Inference Executor, app developers specify a pointer to the

JSON pipeline file, the interval and duration of the current inference execution, and an

optimization goal as one of the following:

• Phone only: Always perform the inference on a smartphone.

• Watch only: Always perform the inference on a smartwatch.

• Maximize coverage: Start the entire inference on a smartwatch and use a phone to

monitor the connectivity and significant motions on the watch. Upon the detection of

watch not moving or disconnected, move the entire inference to phone. As shown by
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our experiments in Section 3.4.4.5, this approach maximizes the inference accuracy by

using whichever device available at a time.

• Minimize transmission: Start with a random module partition across the two devices.

Monitor the amount of data transferred between devices. If the data rate is greater

than a certain threshold, re-partition the inference pipeline and restart the inference

execution. Similar to Beam’s default optimizer shown in Section 4.5.4., this approach

minimizes resource usage by reducing the amount of remote data transfer.
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CHAPTER 6

Conclusion

In this dissertation we have made three key research contributions towards improving the

development and execution of context-aware inference apps on pervasive connected devices:

• By proposing MiLift as an example app of running context inferences on a non-

smartphone wearable device, we prove that context inferences have the potential of

leveraging the unique characteristics of heterogeneous devices for better inference ac-

curacy and energy efficiency. MiLift achieves 90% classification accuracy for both

cardio and weightlifting exercises while extending the watch battery life by up to 19

hours compared with prior approaches. It performs fully autonomous workout tracking

and requires no manual input from users. MiLift is also used to motivate our following

work, such as optimizing the inference accuracy and energy consumption of context

inference apps, and the multi-device inference framework.

• We perform a set of optimizations for context inference apps that can be adopted

by developers today. We have achieved comparable inference accuracy as traditional

models and acceptable latency using deep learning without hand-picking features, up

to 30× latency speed-up of deep learning tasks using mobile GPUs and up to 60%

energy saving of off-loading inference tasks from the CPU to the DSP, as well as up to

37% accuracy improvement and up to 67% less energy consumption for context-aware

apps from watch-phone coordinations.

• We design and implement Beam, a framework and runtime for context inference apps

using connected devices. Beam fills the gap between raw sensor data and high-level

contexts by introducing the inference graph abstraction which is central to decoupling
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apps, inference algorithms, and devices. Beam uses the inference graph to address the

challenges of device selection, efficient resource usage, and device disconnections. Beam

helps reduce development tasks by up to 4.5× and source lines of code by up to 12×,

while achieving 3× higher inference accuracy by handling environmental dynamics.

• We release a suite of open-source toolkit apps to assist developers in data collection,

inference composition, and inference execution on Android.
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