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Abstract

In this report, a combined longitudinal and lateral eighteen-state vehicle chassis,

engine, and drive train model is developed and validated against existing longitudinal-only

and lateral-only vehicle models. The full-state model is simplified to a three-state model to

facilitate controller design. The control task in a combined maneuver is defined as the

simultaneous regulation of the vehicle’s longitudinal and lateral spacings through

application of throttle and steering. Two forms of a Sliding control law are derived based

on the reduced order model. One version is decoupled in the longitudinal and lateral

dynamics and forces, while the other retains the coupling terms. Nominal stability of the

controllers is shown.

Comparisons are drawn among the lateral Frequency Shaped Linear Quadratic

(FSLQ) and the coupled and decoupled Sliding controllers under the criteria of tracking,

ride quality, and robust performance. The coupling effects under moderate to severe

combined highway maneuvers are apparent. The coupled Sliding controller demonstrates

quicker response and tighter tracking than does the decoupled form. In comparison to

FSLQ, the Sliding formulation shows more consistent performance over the entire range

of vehicle velocities. Robustness of the Sliding controller is shown against unknown wind

disturbances and errors in vehicle mass estimates.

. . .
ill
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1. Executive Summary

As the ever-present problem of freeway congestion becomes more acute, greater

interest is being kindled on the subject of intelligent vehicles and highway systems (IVHS).

It is believed that through automation, traffic flow can be made more efficient, thereby

increasing highway volume throughput and relieving congestion. As one of the most

active players in IVHS-related research in the past decade, the California Partners of

Advanced Transit and Highways (PATH) Program has sponsored a number of projects

that delve into the practical and engineering issues surrounding the implementation of such

a system. Integral to this vision of IVHS is the successful realization of a functioning

Advanced Vehicle Control Systems (AVCS).

Research groups at UC Berkeley have recently demonstrated the feasibility of

AVCS with successful experiments involving vehicle longitudinal platooning and lateral

road-following [8] [13]. Specifically, the platooning tests require the vehicles to maintain

a constant front-to-back spacing between successive vehicles during a series of

longitudinal maneuvers. Lateral control in these tests is retained by the human driver. In

the road-following experiments, steering is under automatic control, and the driver retains

longitudinal control.

This report focuses on work done to build on the previous longitudinal and lateral

results, and to merge the two control tasks into a single, comprehensive problem. It

describes the efforts undertaken during the past year in the first phase of the project titled

Integrated Maneuvering Control for Automated Highway Systems Based on a Magnetic

Reference/Sensing System. Details of the vehicle modeling, control law development and

computer simulation results are presented. The report is divided into four main parts as

follows:

Chapter 2 documents the development of the vehicle simulation model. This

model is derived from basic physical principles and accurately describes the behavior of
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vehicle sprung mass, engine, drive train, and actuators in some detail. The model is

subsequently used in computer simulations to validate and compare various control laws

developed for combined vehicle control.

From this complete simulation model, a simple, reduced-order vehicle model

(SVM) is derived in Chapter 3. The reduced model takes advantage of physical

restrictions to eliminate a number of states and lessen the mathematical complexity. By

reducing the model to a tractable form, the analysis of the system is greatly facilitated, and

control law synthesis can more easily proceed.

Chapter 4 details the control law development. The control law is derived in two

forms. One version of the law retains all of the dynamic coupling terms of the SVM --

particularly, the coupling associated with the tire tractive forces. The other version is

predicated upon additional decoupling assumptions of the lateral and longitudinal

dynamics of the SVM. An observer with preview information is incorporated into the

control law in order to increase the ride quality performance.

Chapter 5 gives simulations results using the complete vehicle model. The control

laws developed in Chapter 4 are compared against the lateral Frequency Shaped Linear

Quadratic (FSLQ) control law [ 1 l] under the criteria of tracking, ride quality, and robust

performance.
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2. Vehicle Model

A mathematical model of a front-wheel driven, front-wheel steered automobile is

developed for simulation. It consists of 18 states and describes the dynamics of the

chassis, engine, tire, suspension, and steering and brake actuators in moderate fidelity.

This model also includes characteristic maps of the engine and torque converter. There

are no new experimental results presented in this section. Rather, this combined

longitudinal/lateral package draws from the earlier results of the Ford and Toyota models

[9] [ 111. As a consequence, its parameters retain a mix of the Towncar engine and Celica

chassis data. While it is expected that the performance of this hybrid plant may not

accurately reflect the behavior of either a Towncar or a Celica, its use in computer

simulations for controller validation is justified. The reason is that variations in the plant

parameters (as a reflection of the variations in the handling and power capabilities of

different vehicles) are not critical as long as the values of these parameters are known to

the controller. The contribution of this combined lateral and longitudinal simulation model

is its presenting an accurate representation of the plant structure.

The states of the combined vehicle model are described by:

Longitudinal position, velocity
Lateral position, velocity
Vertical position, velocity
Yaw, yaw rate
Pitch, pitch rate
Roll, roll rate
Engine speed
Manifold air mass
Speed of the ith wheel; i = 1,..,4

while the inputs into the vehicle are given by:

l a Throttle angle
l Tb r a k e Brake torque
l 6, Front wheel steering angle



In addition to the vehicle dynamics, which we consider as the “plant dynamics,”

there are also the dynamics of the actuators. The actuator states are the plant inputs,

while the actuator inputs are given by:

l a c Commanded throttle angle
. Tbrkc Commanded brake torque
l & Commanded front wheel steering angle

Other variables and parameters appearing in the model equations are:

P:
XI
CX(Y)  :
Froll :

hz :
h(5) :
. .
1s *

IX(Y) w :
ll(2)  :

m :
Ilqir in (out).

Mx(Y)(z):

VI

Sbl(b2)  :

Teng :
Tshaft :

Tturb  :

%rb  :

<i :

FAi(Bi)(Pi)

Fdamp, :

Fspringi :

Fxi(Yi)’

Vehicle side slip angle
Vehicle velocity angle
Longitudinal (lateral) wind drag coefficient
Rolling resistance of tires
Vertical distance from vehicle c.g. to roll center
Vertical (long.) distance from c.g. to pitch center
Tire slip ratio
Vehicle moment of inertia about -x (-y) (-z) axis
Longitudinal distance from c.g. to front (rear) axle
Vehicle mass
Mass of air entering (exiting) manifold
Moment about -x (-y) (-z) axis
Tire slip angle
Track of front (rear) axle
Engine torque
Drive shaft torque
Turbine torque
Turbine speed
Tire velocity angle
Net longitudinal (lateral) (normal) force on ith tire

Damping force of ith suspension joint

Spring force of ith suspension joint

Traction force of ith tire

A simple schematic of the vehicle model is provided on the following page. It

describes the six degrees of freedom of the sprung mass as well as the relationship

between the engine and drive train dynamics. The tires are numbered from left to right,

beginning at the front.



Figure 2.1. Vehicle schematic.
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2.1 Sm-unn mass

Under the small angle assumption, the vehicle sprung mass equations of motion

can be written as:

m[V, - V,,jr + h,e + h,$+ + h&q] = i FA, - C,Vz - Fro,, 2.1
i=l

m[Vy + V,\i, - h,$ + h,@ + h,0+] = f: FB, - CyVy’ 2.2
i=l

m[Vz+V&3-h$] = iF, - m g 2.3
i=l

I,[4 - f3\ji - b@] - (Iy - I#* = M, - BM, 2.4

I,[~+#+$\ir]-(I, -I,.)&J = My ++M, 2.5

I,[@+&$-&]-(I, -I,)& = M, +BM, -@MY 2.6

where the forces at each tire and the moments about center of mass are found from:

FA, = Fx, - 6i * Fyi i = 1,..,4 2.7

FB, = Fy, - & *FxI i = 1,..,4 2.8

FP, = Fspling,  +%mpi i = 1,..,4 2.9

Mx = (2 + UWl + (F + h,@)Fr,j - ($!- - h2$)FPz - (F _ hZ$)FP,

-(z-h,O)iFB,

2.10

i=l

M, = (I, +h,O)(FPj +FpJ-(I, -h,W(Fp, +FpJ-(z-h&F,,
i=l

2.11

Mz = (1, - h,e)(F,, + FB, > - (1, - h,8)(F,,  + FB, ) - (2 + h&F,,
2.12



2.2 Suspension

The suspension is modeled as four independent spring-dashpot systems [ 111. That
is, the spring and damper forces are completely determined by the local motion at each
wheel location. The spring force contains a linear Hookean term and a fifth-order
hardening term:

FSPri”& = C, (ei + C,es) i = 1,..,4 2.13

where the Ci’s are spring constants and ei is the suspension joint deflection at the ith tire.

The damping force is obtained as a piece-wise linear function of the suspension
deflection velocity.

Fdamp, =

:

Di,~i I Iki <W

Ki + DiZ (Ci - W) pi 2W

-Ki + Di2 (Ci - W) pi IW

2.14

where the Di’s, Ki’s, and w are constants describing the damping characteristics [ 1 I].

2.3 Tire model

The traction and cornering forces are obtained from Bakker-Pacejka curve-fits of
experimental data and are a function of the slip ratio (is), slip angle (v), and the tire normal
force (Fr) [ 11. The set of curves in Fig 2.2 represent fits based on tests from the Celica
tires (Yokohama P205/60R1487H  steel-belted radial) [12] under “ideal” laboratory
conditions. The longitudinal curve-fits (Fig 2.2a) were obtained from traction-only
experiments. Likewise, the lateral curve-fits (Fig 2.2b) were obtained from cornering-only
tests. Deviations from ideal conditions are reflected in changes in the force-slip curves.
The magnitude and shape of this change need to be determined by experimentation.
However, in the absence of experimental data, a multiplicative effect on the ideal force-slip
curves is currently assumed.
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The ith slip angle is defined as the angle between the ith tire’s orientation and its

velocity vector. Its magnitude can be expressed as the difference between the tire’s

steering angle, &, and its velocity angle, & ( vi = Si - ci ). Where, under small angle

assumptions, this angle can be found from:

2.15



Note that for small values of v, the cornering force can be approximated as:

FY = c,v = C,(S-5) 2.16

where CS, called the cornering stiffness, is the slope of the lateral force-slip curve and is

defined by:

2.17

The cornering stiffness is an important control parameter because it gives a direct

relationship between the input, 6, and the lateral force, F,. Unfortunately, it is also the

most difficult parameter to measure as it depends on the normal force, tire camber angle,

tire pressure and age, pavement material and weather conditions.

Again, we stress that the preceding curves are obtained from traction-only and

cornering-only tests. For combined traction and cornering maneuvers, Bakker [l]

proposed a modification of the tractive force equations by introducing a squared-norm

correcting factor 0:

o=JW 2.18

where the terms, i,, and vmax, refer to the values where the respective tractive forces are

maximum. The combined forces are then modified by:

2.19

Fy = v 1--Fy 2.20
v 0max

under the restrictions: i, < i,, and v < v,, . These restrictions should be checked in

computer simulations under typical highway operating conditions.
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2.4 Transmission and drive train

Balancing the moments about each wheel yields (Fig 2.4):

Jw$L, = fT$hafi  -&Tbmke - ‘w,  Fx, i = 1, 2 (front) 2.21a

Jw$%v,  = -;Ttmke - rw,q i=3,4 (rear) 2.21b

where J,, is the polar moment of inertia of the ith wheel, TbrAe is the total available

braking torque, and T.shaft is drive-shaft torque. This shaft torque is split evenly between

the right and left driving wheels and reflects differential action. Similarly, the brake torque

is also split evenly between the right and left wheels. However, the front/back distribution

of Tbrake follows a general “rule of thumb” 60/40 division.

Figure 2.3. Distribution of brake and drive torques.

.front rear

i=1,2 i=3,4

By neglecting the shaft and gear shift dynamics, the shaft torque can be taken as

proportional to the torque converter output:

Ttub = rgearrdrive  * ‘shaft 2.22

where rgear and rdrive are the appropriate gear and drive ratios.
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The afore-mentioned torque converter is a fluidic coupling between the engine and

drive shaft, and acts to provide a smooth speed transmission during gear shifting

operations. Consisting of a pump (input) and a turbine (output), the torque converter can

act in either thefluid  or locked modes. In thefluid mode, the input pump torque, Trump,

and output turbine torque, Tturb, are obtained from steady-state maps as a function of the

speed ratio across the torque converter [9]:

Tpump 2.23

where @,rb is the turbine speed and e&ns is the engine speed. In the locked position, the

speeds and torques across the converter are matched (i.e T,, = Tturb; qurnp = a&. In

contrast, the engine and pump speeds are always matched (OX+, = qump), regardless of

mode of operation due to the pump’s being attached directly to the engine.

Since gear shift dynamics are neglected, the turbine speed is simply related to the

wheel speed by:

1
%

rgear  rdrive
2.24

where W, is the average speed of the front two wheels.

2.5 Engine

The engine dynamics are described by the 2-state model utilizing ang and mi, [3].

Engine speed is governed by:

2.25
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where Jeng is the engine polar moment of inertia, Teng is the net engine torque, and Trump is

the pump torque coming from the torque converter. In this model, Teng is obtained from

steady-state maps as a function of engine speed and manifold pressure:

Teng = fmq mng &m ) 2.26

Under constant temperatures and ideal gas conditions, P,, is calculated from the

manifold air mass, mair . In turn, this state is governed by the control volume equation:

I-h,, = kair i n  - %ir out 2.27

The second term on the right hand side of 2.27 (rh,ir,,t) is obtained from maps similar to

engine torque maps, while the first term is influenced by the throttle angle, a, according

to:

%ir in = MAX* PRI(P,,)*TC(a) 2.28

where MAX is an engine-specific constant indicating the maximum intake airflow, PRI(.)

is the manifold pressure influence function, and TC(.) is the throttle characteristic function.

2.6 Actuators

The steering, brakes, and throttle actuators are three separate and radically

different systems. While there has been some work in identification of the brake actuation

system [5], the other actuator models are not completely understood. Nevertheless, as a

rough approximation, it is assumed that all three can be approximated as first-order

systems. Their approximate time constants and rate limits are shown in Table 2.1 below.

Table 2.1. Actuator parameters.

Brakes
Throttle
Steering

time const [ms] max rate  [degs/s]
75 -_-

8 450
125 0.2
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2.7 Model validation

The combined model is compared in open-loop simulations against the independent
longitudinal and lateral vehicle simulation models. Their responses to different throttle
and steering inputs and wind gust disturbances are plotted and qualitatively compared. It
is seen that the results do agree in form, but differed slightly in quantitative terms. This is
not surprising because the parameters of the combined model do not match completely
with either of the independent models due to parameter overlap. For instance, each model
had its own mass and tire characteristics. It is to be expected that with each set of those
values, the vehicle should have different acceleration and cornering. Hence, if the
combined model took one value each from the two models, its response should not be
identical to either model, but should lie somewhere in between. A single vehicle data set
is not used in the combined model because there are, currently, no one complete set of
parameters available.

Due to its complexity, this model is not explicitly used for controller design.

Instead, it is used to simulate the vehicle’s response to various control laws. These

simulation results give a good measure of the design, and allow the designer to make

decisions regarding the relative merits of each control law before implementing the

controller in actual field tests.
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3. Simplified Vehicle Model (SVM)

The simulation model, while fully describing the dynamic behavior of the vehicle, is

too complex for analysis and controller design. It is, therefore, necessary to make

assumptions that will reduce the model to a tractable form, yet still capture the

fundamental plant behavior. Simulations have revealed that the vertical, roll, and pitch

motions can be neglected without any appreciable loss in accuracy. If we further assume a

bicycle model, and if actuator and manifold dynamics are discounted, the plant can be

reduced to the following three equations:

i’, = -q[C,Vf +FrO,,  -mV jf]+m[LT,, -26,Fyf]Y
3.1

J* rr*w

Vy = -i[C,Vf -mV,\ir-2(FyI +Fy,)] 3.2

i@ = $,FYf -ZzFy ] 3.3
r

z

where J* and r* are the “effective” vehicle inertia and gear ratio, and T,,, is the net torque

that the engine “sees”.

J* = (m r2 + JW)(r*)2 + Jeng 3.4

r* = rdrivergear 3.5

Tot = Te,g - r*Tbmk 3.6

Note that in the above state equations, eqs 3.1-3, the wheel indices have been replaced by

the subscripts,f  (front) and r (rear).

Explicitly, the key assumptions used in the derivation of the simplified model are:

i>

ii)
negligible roll and pitch motions
no throttle, brake and steering actuator dynamics
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iii) no engine manifold dynamics
iv) bicycle model (i.e. the dynamics of left and right sides are identical)
v> V, = o,r, (no slip condition)

vi) Tturb  = Tpump (locked torque converter)

vii) C, >> F,

The synthetic inputs into the simplified model are Ttot and FY, . They are synthetic

in the sense that they are not the true inputs into the system, but can be directly obtained

by proper choice of a, Tbrake, and &. Note that the reduced state equations are still

nonlinear functions of the states. There is no attempt to linearize the system about an

operating point. Instead, the term deletions result from a direct comparison of relative

magnitudes over the entire vehicle operating range.

For convenience of notation, eqs 3.1-3 can be rewritten as:

i’, = f, + k,Ttot - k,S,F,, 3.7

\iy = f2 + k3Fy, 3.8

ii’ = f3+k4Fy, 3.9

where fr, f2, f3, and kr, k2, k3, are the appropriately defined nonlinear functions and
constants, respectively.
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4.0 Control Development

The task of controlling a nonlinear system can be approached in a number of ways.

A common technique is to first construct a linear approximation of the nonlinear system by

taking a Jacobean expansion about the operating point. Then, the well developed tools of

conventional linear controls can be applied to controller design. The main drawback to

this approach is that the approximation is only valid locally around the operating point. If

the operating range is large, or if the system is “highly nonlinear”, it is necessary to

linearize the plant about a number of operating points. Then, a separate linear controller

can be designed for each linearized plant. As the system moves between operating points,

the control gains are scheduled, or interpolated. This method, however, is

computationally burdensome because of the need to compute many controllers off-line.

An alternative method, called state feedback linearization is to use state feedback

to transform the original nonlinear system into an equivalent linear system. Thus, instead

of approximating the system dynamics, feedback is used to cancel the nonlinearities

directly. Then, a single controller can be designed for the equivalent system. Hence,

consistent performance is achieved over a wide range of operating conditions without the

need for intensive off-line computation and gain scheduling.

A control methodology which utilizes this state feedback linearization is Sliding

control. Sliding control is a technique by which the original nonlinear nth-order  control

problem is transformed into a stabilization problem in the scalar variable, S(x). This scalar

is a linear function of the states and is defined so that the system input appears upon the

first differentiation of S(x). The input can then be chosen to guarantee the convergence of

S(x) to the surface, S(x) = 0. Once on the surface, the convergence of the states follows.

Sliding Control can be applied to the tracking problem, by defining a tracking error

variable:

y@> = y - y&t)
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where y = h(x) is the system output and yd(t) is the desired trajectory. Define the desired

error dynamics on the surface, S(x,t) = 0, as:

y = y’-l +(r - l)hyrm2 + . . + Are17 = 0 4.2

where h is a positive constant and Y is the system relative degree, or number of

differentiations of the output required to reach the system input. Notice that
c 1
& + 1

r-l

defines a Hurwitz polynomial of relative degree I, and a single differentiation of S will

yield the control input. Then, the input, u, can be chosen so that

S(x,t,u) = -qs 4.3

where q is a positive constant. This yields a stable first order differential equation for S

which converges to the origin exponentially with rate IJ. Then, once “olz” the surface

S(x,t) = 0, the system error dynamics are defined by the Hurwitz polynomial in 4.2.

Hence, the Sliding control approach can be characterized as a two step pole-

assignment approach where the first assignment of r-1 poles is given by (p + h)T-’ and the

second assignment is given by (p + T$ . Here, the variable “p” is the Laplace variable.

The discussion thus far assumes that a u can be chosen in order to guarantee that S

satisfies 4.3. This condition requires perfect knowledge of the plant. Suppose, however,

that we know the plant only up to an additive term, i.e. fti,, = f,,, + 1, where fbrue is

the true plant, f,,, is the nominal plant, and f is the plant error. Suppose, further, that

the error term is bounded, ? I f,, .II Then, instead of 4.3, the best that can be expected

is:

s = -qs+i. 4.4
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Consequently, asymptotic convergence of S can no longer be assumed. Instead, we can

only guarantee that S be kept within a certain bound. Then, since the tracking error, 7 , is

obtained from S through a stable y-lth order filter (or alternatively, a sequence of r-l first-

order filters), i. e.

Qp) = l
(p + A)‘-’

S(P) 4.6

Thus, the bounds on S are reflected in the bounds on y .

Fortunately, it happens that in many instances, 1 is constant or is slowly time-

varying. In this case, we can add integral action to drive the tracking error to zero.

Instead of defining S as in 4.2, we write:

4.7

Note that the dynamic equation for S still has relative degree 1 since the relative degree of

I ydt is r+l. Then, for 1 = Kconst ,

4.8

and S converges to a surface defined by a constant. Once on the surface, the integral of

error converges to

3 wnst 4.9
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Then, from the convergence of the integral and uniform continuity condition on 7 , we get

that y converges to the origin. The uniform continuity of y stems from the physical

restrictions on the system and desired trajectory. The integral action provides an

additional benefit when the initial error is large by smoothing the transient.

4.1 Vehicle Control

4.1.1 outputs

The system’s outputs are defined as the longitudinal spacing error and the lateral

error from road center. Figure 4.1 shows the output configuration of the proposed

experimental setup.

Figure 4.1. Diagram of two vehicle system.

E : longitudinal spacing error
yS : lateral error
vder: desired heading angle

Mathematically, the longitudinal error is:

& = x Citr - Xlead  + SPacenom 4.10
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where g,, is the longitudinal position of the vehicle, xread is the preceding vehicle’s

position, and space,om is the nominal intercar spacing. The kinematics of the lateral sensor

are given by:

4.11

where vrd is the road (or desired) yaw angle, and d, is the longitudinal distance from

magnetometer to vehicle c.g.

For the vehicle control problem, we are interested in the simultaneous regulation

of E and y,, through the application of the throttle, a, and steering, &. Braking is not

considered in the present phase of the control development. We now have a two-input,

two-output control problem. The extension of single-input, single-output Sliding control

to multiple-input, multiple-output systems can be made by defining a separate scalar

variable, Si for each output, yi. Then, the inputs can be chosen so that the exponential

decays of the Si’s are simultaneously guaranteed in the absence of uncertainties.

Then, there is the question of how much coupling exists between the lateral and

longitudinal dynamics during a combined maneuver. Unfortunately, it is difficult to obtain

a definitive answer because the degree of coupling depends on a number of factors, such

as type and severity of maneuvers, and road and tire conditions. Therefore, two solutions

to the combined control problem are presented. One solution stresses some additional

decoupling assumptions to the SVM, while the other concentrates on an integrated

approach to controller design.



21

4.1.2 Decoupled control

In the decoupled controller design, two additional approximations of the simplified

model and output equations are made from the outset:

i’, = fl + wtot 4.12

In words, we assume that the longitudinal acceleration is not affected by the lateral tire
force and that the car’s forward speed can be treated as a parameter in lateral control.

To obtain the control surfaces, define:

Differentiating this expression yields:

d-
dt

Sl[I [ e: + 2&i: + AfE=
s2 Y, + 2% + GYS 1

4.14

4.15

v, - alead + 2hli: + ?+

\iy +VXi$+d,~+2k2y, +?&y, 1
Substituting in the decoupled state equations leads to:

fl - alead + 2h,k + A+
f2 + V,ij? + d,(f, - ijl,d) + 2h2ys + k;y,I[ wtot

+ k3Fy, +w4Fyf 1
4.16

By inspection, it is seen that 4.16 is decoupled in the synthetic controls, T,,, and

Fyf . Hence, it is a simple matter to choose the synthetic inputs, T,, des and FY, des , so
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that condition 4.3 is satisfied for both Sr and S:! in the absence of uncertainties. Choose

the inputs to be:

Ttot des = - k Lfl - alead + 2htC: + IL+ + TJlS,] 4.17

F 1
y,. des = -

(k3 + dsk,)
if2 +VxG+ds(f3  -*1,)+2h,Ys  +h22Ys  +rl2S2I

Then, in the presence of constant uncertainties, we get:

4.18

and asymptotically perfect tracking is achieved.

From the synthetic Ttot  des and Fyf des , the real controls can be obtained. The

desired throttle angle, ad,,, can be referenced from a look-up table based on the engine

speed, aeng , and desired engine torque, Tens des = T,, des . The desired steering angle is

found through the relation:

6 -fdes = ’ F
CSf

yf des -rf 4.19
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4. I .3 Couvled control

If the decoupling assumptions of the SVM are not made, the longitudinal and

lateral dynamics become coupled in the control. The cross-effects of the inputs on vehicle

motion in both the -x and -y directions are now assumed to be non-negligible. Under this

premise, the developed control laws become more complicated, with the added terms

reflecting the coupling dynamics.

Using the same surface definitions as before, but noting that the magnetometer’s

lateral acceleration is now j;, = Vy + Vx@ + V,$ + d,G , we obtain:

vx - alead + 2+ + ii+
vy + iT,iji  + V.$ + d,c + 2h2ys + k;y,I

4.20

fl - alead +23LtE+h:E
f2 + fl@ + V$ + d,(f, - &l) + 2h2ys + ?$y, 1

+

vtot - k26fFy

k3Fy, + (klTtot - k,$F,t )f + d,k,Fyf 1
The surface attraction equations are now quadratic and coupled in the steering and
torques.

In order to avoid solving for the squared terms, we define an equivalent control:

% = vtot - k26fFyf 4.21

fl - alead +23L16+?L;&
f2 +fl~+Vx$+ds(f3 -ijl,d)+2h& +x;y, 1

+ Qlk3Fyf + uq? + d,k,Fyf I
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The change of variable has the effect of decoupling the surface equations. The inputs can

be chose as:

4.22

F
1

yf des = -
(k3 + dsk,)

if2 +Vx$+ds(f3 -qrd)+2h2ys +GYs +r12%

+ (alead - 2&E  - h:E - rllSl)@l

Recall that in a combined maneuver, the cornering force equations are modified by:

Fy = z,Fy
v 0max

We make use of this force modification in the control to give a more accurate steering

command during a combined maneuver. For practical purposes, however, it is very

difficult to get an accurate estimate of the slip, is, and hence 0;. However, if we assume

isotropic behavior of the tires, then the above equation can be reduced to:

FYFy = -*FY
Ftot

4.23

where Fy = C,(S - 6) is the nominal cornering force, and F,, = dq is the net

resultant force (Fig 4.2).

Figure 4.2. Geometric interpretation
of the modified tractive forces.
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By introducing the concept of a modified cornering stiffness, Cl, the cornering

force can be expressed as:

Fy = C,*(S-5) 4.24

Making use of the above definition, and noting that Ftot = IFyI+IFxI, Cl canbe

approximated from:

cv = (,c:&x,) *csv IVI ’ 0

=a c;21vI+c~~Fxpz~v  = 0

3 c; = i?f + 4(csvold)2
21vold 1

where the traction force, Fx is calculated from:

front:

rear:

F =
Xf 2r2i*2 [rwr*Teng  -vx(Jeng  +2J,r*2N

W

F, =r 2rir1*2  [2vxJwr  *21
W

4.25

4.26

Utilizing the modified cornering stiffness, the desired steering angle is found to be:

6 1
fdes = -

Czf (k3  + d&d
[f2 +Vx$+ds(f3  -qrd)+2h2ys  +htYs

4.27

+ ll2S2 +(aled -2?q~-h:E-T11S1)Vl  + Sf

Then, from &es and the equivalent control, ueq &s, the desired torque can be found:

Ttot des = ki”eq des +k2sfdesFy,des] 4.28
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The coupling effects are apparent in the tractive forces and cross-products of

longitudinal and yaw errors. However, the question of how big a role the coupling terms

play in computing the control effort cannot be readily answered. Certainly, bounds can be

placed on the states and outputs. But while their relative magnitudes can be compared,

their relative contribution to controller performance, in a given maneuver, is more difficult

to quantify. A more holistic approach, such as a direct simulations comparison, is detailed

in the next chapter.

4.1.4 Controller implementation

In order to implement the control law, information on all states of the SVM is

needed. The longitudinal velocity (V,) is estimated from wheel speed measurements.

These measurements are relatively clean but may give offset errors in the estimate due to

inexactly known wheel radius and slip. The yaw rate ( + ) is measured with a yaw rate

sensor. The lateral velocity (V,) is obtained from integrating the estimate of the lateral

acceleration with respect to the body-fixed coordinates ( V, ). This quantity can be

calculated from lateral accelerometer measurements, jiXcel :

vy = Yaecel -rwOwul 4.29

However, this method of estimating V, suffers from both offset error and noisy sensor

measurements. At present, these state measurements are all assumed to be available.

The parameters utilized to compute the control effort may deviate substantially

from the nominal values. In particular, the estimates of mass, wind drag coefficient and

cornering stiffness are especially prone to fluctuations. Thus, the effects of the parameter

errors on the controller performance will also be investigated in simulation.
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Another important consideration is how the disturbance information is obtained.

Presently, the longitudinal disturbance (lead vehicle velocity and acceleration) is radioed

from the preceding car at regular intervals. The transmission is synchronized with the

controller update, and thus, presents little problem from the timing standpoint. On the

other hand, the lateral error and road curvature information are received from the

magnetic markers imbedded in the road. The frequency of these updates, which depend

on vehicle speed and marker spacing, do not coincide with the controller frequency. A

further complication stems from sudden step changes in road geometry. Often, the road

may change direction or increase curvature abruptly. These factors tend to excite the

controller to unnecessarily high activity and can lead to undesirable dynamic behavior and

decreased ride quality.

Thus, instead of relying purely on the discrete sensor readings, the controller could

be made to minimize a model of the lateral error, 9, , based on the measured error, the

present and future curvature information, and the vehicle states. This estimate can be

obtained from a simple 1 -state Luenberger observer of the form:

Es = vy +v,(W-Wdes)+d,(~-yrdes)+L(Y,Q -?s) 4.30

where L is the observer gain, ysQ is the measured lateral error, and vdes and \jldes are the

desired model yaw and yaw rate:

V
qdes = x

&node1
4.31

The measured lateral error, ysQ, is updated upon encountering a marker. In

between marker readings, ysQ is held constant in the observer equation (4.30). Other types

of observers will be investigated in the future to determine the best performance.

The motivation for using the modeled radius, pmdel, as opposed to the true radius,

is to provide a smooth transition between curves. As mentioned earlier, the changes in
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curvature are abrupt and discontinuous. However, by making use of a pm,&1 as reference,

we can better control the dynamics of the disturbance, thereby insuring the continuity of

7, and the control signal.

The model-generated radius is obtained from passing a previewed segment of the

road curvature through a shaping filter, h(t):

A(t) = lt+l’ ;(t)h(t - T)dT
mo e t

4.32

where t, is the preview segment.

Figure 4.3. Curvature model.

Filter

t, to tp tcl
Road Model-reference
Curvature Curvature

Define the curvature error as:

Ep@) = k(t) - -40 4.33
P model

Observe that this error is a function of both the preview length and the shaping filter

parameters (Fig 4.3). Since ride quality is an important consideration, we want to
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minimize the rate of change of p,&el. However, this tendency competes directly with the

minimization of E,, and hence, the minimization of the observer error, Ed.5 = yS - 9, .

Therefore, it is required that the filter parameters and preview segment be selected

so as to give the maximum trade-off between ride quality and observer error.

Unfortunately, it is difficult to obtain a closed-form analytical solution because z+,

depends also on the observer gain and the vehicle states. Consequently, a parametrization

study was conducted in order to obtain the “optimal” preview time and filter coefficients.

The simulations revealed the following set of parameters for the curvature shaping filter.

to = OS
t, = -0.8s
t, = -0.27s
t1 = 0.91s
kl = 0.74/s
kz = -0.74/s
k3 = 1.17/s
k&f = -1.17/s
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5. Computer Simulations

The complete vehicle simulation model is used to compare the performances of the

coupled and decoupled Sliding controllers under a number of different highway scenarios.

In addition, the study also includes comparisons between Sliding and the previously

wrought lateral FSLQ controller [ 131. The comparison is based on the following four

criteria: 1) tracking, 2) passenger comfort, 3) insensitivity to environmental

disturbances, and 4) robustness to parameter errors. Again, it should be noted that only

throttle and steering control are considered. Braking is not included in the study.

5.1 Nominal performance

A number of trials are conducted with accelerations and road curvatures of varying

magnitudes. The longitudinal accelerations ranged from [-O.O5g, O.l5g], while the lateral

accelerations are varied from [Og, 0.3g]. The tests simulated cornering-only, traction-

only, and combined maneuvers. The simulations revealed that the coupling due to the

kinematics terms are minor under “normal” highway operations, but that the coupling

between the tractive forces are significant. Under moderate maneuvers, the degree of

coupling is 20-30% (as measured by the reduction in the cornering stiffness). Under more

severe maneuvers, the figure approaches 50%. Correspondingly, there is an increase in

the tracking performance of the coupled controller over that of the decoupled form. The

margin of improvement varies according to severity and type of maneuvers. It is seen

that, typically, the greatest improvements occurred in maneuvers wherein the vehicle

accelerates during the middle of a turn.

The constant velocity comparisons between the lateral Sliding and FSLQ

controllers revealed minor advantages of the Sliding control in terms of tracking and ride

quality. However, this may be attributed to the fact that the FSLQ gains used in the

simulations had been tuned previously for the Toyota vehicle (the parameters of the
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simulation vehicle are not matched exactly with the Toyota). Hence, the FSLQ

performance obtained in these simulations may not be “optimal.” More telling, however,

are the comparisons made under combined maneuvers. Since the FSLQ controller is

derived from a linearized plant, it should be expected that quick changes in the velocity (or

operating point) will degrade controller performance. Simulations conducted with large

accelerations did indicate a degradation in the tracking performance of the FSLQ

controller. In contrast, the Sliding control exhibited fairly consistent performance over a

wide range of velocities and accelerations. It is also emphasized that the gains chosen for

the Sliding control are obtained without extensive off-line computations. Rather, the gains

are chosen directly by pole placement with minimal tuning. The set of gains chosen for

this study is: ql = 1.0, q2 = 2.8, hl = 0.6, h2 = 1.2.

coupled vs. decoupled

A comparison of the two Sliding controllers are presented for a sample trial. A

sketch of the test profile is shown in Fig 5.1 below. The road profile consists of a single

curve of radius, p = 140m. The vehicle is commanded to accelerate from 2Orn/s (45mph)

to 24mJs (54mph) beginning at the midpoint of the curve. This corresponds to a

maximum commanded longitudinal acceleration of vlead = 0.4m/s2,  and a maximum total

lateral acceleration of 3.5m/s2.

Figure 5.1. Commanded vehicle velocity and road curvature, I.
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The throttle inputs of the two controllers are plotted in Fig 5.2. Note the increase

in the throttle command at X = 430m corresponding to the onset of curve. The coupling

is apparent in the increased demand for power during the curved section despite the

velocity’s being constant. Note, also, the drop-off in throttle at X = 540m corresponding

to the end of curve. The differences between the coupled and controls are most apparent

at these two critical points, where it is seen that the decoupled input lags the coupled

input.

Figure 5.2. Comparison of throttle inputs, coupled vs. decoupled control.
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The plot of the longitudinal spacing errors is shown in Fig 5.3. As indicated in the

previous plot, the decoupled controller is more sluggish, and the result is that the vehicle

begins to drop off relative to its desired spacing (negative error) at the beginning of the

curve. Conversely, the coupled controller adequately compensates for the coupling forces

and the error remains close to zero. Then, as the vehicle exits the curve (X = 540m), the

decoupled error overshoots; whereas, the coupled controller again provides adequate

compensation.



33

Figure 5.3. Longitudinal tracking errors of coupled and decoupled control.
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As a measure of the passenger comfort level, the longitudinal jerks are plotted in

Fig 5.4 below. It is seen that the jerks are reasonable for both controls -- being well

within the generally acceptable 2m/s’ limits. These jerks are a strong function of the

particular choice of gains used in Sliding control. As a consequence, it is possible to shape

the jerk response directly by proper choice of gains. This tendency, however, competes

directly with the tracking demands, and it becomes an engineering judgment in

determining the acceptable trade-offs between passenger comfort and tracking

performance. As a possible direction for future research, we could formalize the

performance trade-offs and investigate this problem within an LQ optimization

framework.

Figure 5.4. Longitudinal ride comfort performance of Sliding controllers.
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A different test profile is used to demonstrate the effects of high traction demands

on lateral cornering performance (Fig 5.5). The profile consists of a severe acceleration

( i;cad = 1.8 m/s*) beginning at X = 460m. The velocity is ramped from 18rnLs (41mph) to

29rn/s (65mph). The curve of radius, p = 440m, represents a maximum lateral

acceleration of 1.3 m/s*. Thus profile II is a mild acceleration/high cornering maneuver,

whereas profile I is a high acceleration/mild cornering maneuver.

Figure 5.5. Commanded velocity and road curvature, II.
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The steering inputs are drawn in Fig 5.6 on the following page. Here, the

differences between the coupled and decoupled controls are not as obvious as in the case

with throttle. Yet, the lag of the decoupled controller is still noticeable. The lag is most

pronounced during the curve exit beginning at X = 540m. The small “dipsy-doodles” (at

X = 420m and X = 520m) before curvature changes indicate that the vehicle initiates a

lateral maneuver by first turning away from the direction of the curve. This results from

the curvature shaping filter, and mimics the human driver’s tendency to initially steer away

from the turn. It is known that by first turning away, we can finish the turn along a

smoother trajectory.
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Figure 5.6. Steering inputs of the coupled and decoupled controllers.
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The lateral errors are shown in Fig 5.7 below. The coupled control exhibits

consistently tighter tracking over the entire maneuver. Although, this difference is most

pronounced during the high longitudinal acceleration section, X = [500m, 600m].

Figure 5.7. Effect of traction force coupling on lateral tracking performance (YJ.
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The lateral jerks are shown on the following page in Fig 5.8. Again, the jerks are

within the maximum allowable limits. There are no discernible differences ride quality

between the coupled or decoupled controls.

Figure 5.8. Lateral ride comfort performance of Sliding controllers.
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Sliding vs. FSLQ

Having established that the coupling between the lateral and longitudinal tractive

forces can affect tracking performance during a combined maneuver, we now present

some simulation results comparing the relative performance of linear (FSLQ) and

nonlinear (Sliding) controls. The strengths of FSLQ are its nice robustness properties and

its providing a systematic approach towards balancing the trade-offs between ride comfort

and tracking. The drawbacks include extensive off-line computational demands and

inconsistent performance over the entire vehicle operating range. In order to illustrate this

point, we contrast the lateral tracking performance of the FSLQ and coupled Sliding

controllers under: 1) constant velocity maneuver, 2) quickly varying velocity maneuver.

Figures 5.9a,b on the following page compares the lateral errors, Y,, of the two

controls. In the constant velocity maneuver (Fig 5.9a) the curve radius is mild, p =

104Om, and the commanded velocity is 22&s (50mph). This represents a maximum

lateral acceleration of 0.5rn/s2. In the variable velocity maneuver, the speed is ramped

from 22rn/s to 36&s (80mph). The road curvature remains the same. From the figures,
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note that the lateral error of the Sliding control remains about the same in both cases. The

error for the FSLQ control, however, doubles in the variable velocity case.

Figure 5.9a.  Lateral error, Y,, in constant velocity maneuver, V, = 22m/s.
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Figure 5.9b. Lateral error, Y,, in variable velocity maneuver, V, = [22m/s, 36rn/s].
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5.2 Robust pecformance

Another important measure of control design is robust performance. In other

words, does the controller remain stable despite parametric uncertainties (nominal

robustness), and will the tracking error increase appreciably with departures from nominal

parameter values or under unknown disturbances (robust performance)? Simulations are
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conducted with the coupled Sliding control law to quantify its robustness. Its

performance under errors in mass and cornering stiffness estimates and under wind

disturbances are compared against the nominal case in the following set of plots.

mass error

The total mass of the vehicle includes passengers and any additional static loads,

and hence, is not constant. We can, however, place bounds on the amount the true vehicle

weight can deviate from the nominal value. Typically, we expect a range of f30%.

Shown below are simulation results with -20% and -30% mass errors. The same velocity

and road profiles as in Fig 5.1 are utilized. Figure 5.10a shows the longitudinal spacing

errors (E), and Fig 5. lob shows the lateral errors (Ys) under erroneous estimates of mass.

Figure 5.10a.  Longitudinal robustness against mass estimation errors.
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From Fig 5. lOa, it is seen that errors in the mass estimates have minimal effect on

the longitudinal tracking performance of the Sliding controller. The relative increase in

the maximum error is less than 10% for a mass error of 30%. The effect on lateral

tracking, conversely, is significantly larger (Fig 5. lob). The lateral error increases by

seven-fold in the 30% error case.
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Figure 5.10b. Lateral robustness against mass estimation errors.

15 I I I , I I
..’-._. x.1’.

$O-
/’ \

/ /. - -

/. /
-‘>‘\\ - Nominal

Y ii

? 5-
I’
I/

i\

‘1
E l

- - 20% error
-. - 30% error

p
O\Jv

.\\. . -___----- _ _ - - - - y-T.-I - -- -
\. -.__.-.-‘-’__..-.  -. __-.-

- 5 , , 1 I ! !
450 500 550 600 650 700 750 800

X [ml
Cornering stifhess error

Like the mass parameter, the cornering stiffness also suffers from large

uncertainties. Extraneous factors such as tire pressure, age, temperature, pavement and

payload all effect the tire’s cornering capabilities. These sundry variables make it

impossible to obtain an accurate estimate of the cornering stiffness off-line. Hence,

robustness against C, estimation errors is especially desirable. Errors of 20% and 30% in

the cornering stiffness estimates are considered below.

Figure 5.11. Lateral robustness against C, estimation errors.
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It is seen (Fig 5.11) that the lateral performance is very sensitive to cornering
A

stiffness. The maximum y, in the case of +30% C, error is almost 18cm. This represents

the outer limits of the magnetometer sensing range and is a cause for concern. This

problem may be overcome by adapting on the value of C, .
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Another approach is to introduce a switching term in the control. Recall that in

the controller derivation, a linear attraction term ,qS, was utilized to guarantee the sliding

condition (S=O) in the absence of uncertainties. However, when uncertainties are

introduced, the linear term can no longer guarantee the attraction of the surface, S=O. On

the other hand, it is well known that a switching term, qsign(S), can still guarantee surface

attraction as long as the magnitude of q is greater than the size of the model uncertainties.

Unfortunately, chattering problems associated with discrete-time implementation render

the switching solution impractical. Much effort has been devoted to eliminating the

chattering problem in literature. Some of these include saturation function/boundary layer

control [16], equivalent control [18], and robust observer/controller pair [2]. Some of

these results could be tailored to the combined vehicle control problem in the future.

Wind gusts

Finally, wind gusts are added to gauge the Sliding controller’s disturbance rejection

capability. Figure 5.12a shows the effects of a frontal 2Orn/s (45mph) wind gust on

longitudinal tracking. The 1 second gust begins at X = 540m. The effects of a side wind

gust on lateral performance is shown in Fig 5.12b.

Figure 5.12a.  Effects of front wind gust on longitudinal error.
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Figure 5.12b.  Effects of side wind gust on lateral error.
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The longitudinal error, E, is seen to peak at 8cm, while the maximum lateral error,

is 9cm. Considering the how rarely wind gusts will exceed 45 mph during normal freeway

conditions, these errors are very acceptable. It is concluded, therefore, that the Sliding

control provides adequate robustness against unknown wind disturbances.

Moreover, this robustness margin stands to improve with the introduction of some form of

the switching control discussed in the previous section on C, cornering stiffness estimation

errors.
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6. Conclusion

An 18-state vehicle chassis, engine and drive train model was developed and

validated against existing longitudinal-only and lateral-only vehicle models. The full-state

model was simplified to a 3-state model in order to facilitate controller synthesis. The

method of Sliding Mode was taken towards controller design. Two forms of the control

law were derived based on the reduced order model. One version was decoupled in the

longitudinal and lateral dynamics and forces, while the other retained the coupling terms.

Nominal stability of the surface controllers was shown.

To increase ride quality, a l-state lateral error observer with curvature preview

information was utilized in the control. The advanced curvature information was used to

generate a smooth, “favorable” desired lateral trajectory which maximized the trade-offs

between lateral jerk and tracking error. The favorability of this trajectory was determined

through extensive simulations.

The Sliding controllers were validated in closed-loop simulations with the

complete vehicle model, and comparisons were drawn against the lateral FSLQ controller.

Under moderate to severe maneuvers (as measured by the longitudinal and lateral

accelerations), the coupling in the tractive forces were significant. In these maneuvers, the

coupled form of the Sliding controller exhibited superior tracking. The Sliding controller

demonstrated similar performance to the FSLQ’s in constant velocity maneuvers.

Moreover, the level of the Sliding control’s performance remained constant under rapidly

changing velocities, whereas the FSLQ control’s performance was seen to degrade. The

robust performance of the Sliding control with the linear surface attraction term was

slightly disappointing. It was robust to wind disturbances, but lateral performance

degraded under errors in mass and cornering stiffness estimates.
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Future work

The surface controller’ sensitivity to parameter errors points to a possible need for

adaptation. The problem of mass adaptation has been investigated by Swaroop [ 171. The

variations of C, are of two types. One type arises from the coupling between the

cornering and traction forces. This type of variation is quickly time-varying and can be

substantial, according to the severity of the combined lateral and longitudinal maneuver.

The other type is due to tire or environmental conditions. These types are more slowly

time-varying, but are generally larger. Depending on loads and weather conditions, the

variations can exceed 100%. The challenge of a successful adaptation scheme is to

distinguish between the two types of variations and to correctly adapt on the desired

value.

Or, perhaps a robust control approach could be taken towards the problem of

cornering stiffness sensitivity. In this case, some form of a switching control could be

introduced.

Another area that needs investigation is the incorporation of brakes into the

combined control law. Presently, the simplified model is unable to accommodate the

braking effects because it assumes that the speeds across the torque converter are

matched. Under heavy braking and unlocked torque converter operation, this assumption

can be grossly violated. Consequently, the control model needs to be expanded to include

this effect. Also, the present simulation model assumes that the brakes are first-order.

This is an extreme oversimplification. A more accurate brake model can be included in the

simulation model in order to validate the braking control laws.

The analytical and numerical work to date was undertaken with the goal of

eventual implementation in the PATH test vehicles. At this juncture, the bulk of the

analytical work has been accomplished, and only some minor fine-tuning remains before

preliminary low speed field evaluations can begin. Validation of the longitudinal part of

the combined control is facilitated by the fact that it is very similar to the spacing control
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law currently implemented by Hedrick et. al. [8]. The lateral validation will take more

work since there are, as yet, no field-functioning lateral Sliding controllers. The

performance of the FSLQ controller will provide the yardstick for measuring the success

and practicality of the lateral part of the combined Sliding control.
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Appendix A. Vehicle model parameters

variable description value

moment of inertia about x-axis
moment of inertia about y-axis
moment of inertia about z-axis
engine inertia

ith gear inertia (1)
(2)
(3)
(4)

JW
m

wheel inertia
vehicle mass

479.6
2549.3
2782.1
0.2630

0.07582
0.08202
0.11388
0.13150
1.2825
1573

ho
h
l-4
h5
11
12

‘b

rw

vertical distance to c.g
vertical distance from c.g. to roll center
vertical distance from c.g. to pitch center
long. distance from c.g. to pitch center

distance from c.g. to front axle
distance from c.g. to rear axle
track of vehicle
wheel radius

0.487 b-4
0.30 b-4
0.25 [ml
0.10 [ml
1.034 b-4
1.491 [ml
1.450 [ml
.3044 b-4

%
csr
F

I.011

MAX
T man
Vman

CX

G
r,,,(i)

cornering stiffness of front tire 66366

cornering stiffness of rear tire 52812

total tire rolling resistance 274.7

maximum manifold intake airflow 684.109
manifold temperature 310.93
manifold volume 0.00447

wind drag coefficient x-dir
wind drag coefficient y-dir
ith gear ratio (1)

(2)
(3)
(4)

.45
2.1
0.4167
0.6817
1 .oooo
1.4993

k-m21

[kg-m21

[k-m21
k-m21
kg-m21

k-m21
[kg1

PI
[Nl

N

[CO1
[Ll
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Appendix B. Simplified Vehicle Model (SVM) derivation

In this appendix, the simplified vehicle model used for control design is derived from the
full simulation model. All assumptions are stated. To reiterate, the vehicle model is expressed by
the following state equations.

031)

W)

(J33)

034)

(J35)

036)

037)

038)

P39)

@lo)

(Bll)

G312)

m[VX -V,~+h,8+h,~~+h,@~]  = iFAi -C,Vz -Fro,,
i=l

m[‘jy +VXq-h2;i)+h46@+h4B@]  = iFBi -C,,V;
i=l

m[Vz +VX#-h,6] = iFPi -mg
i=l

I, [$ - eii, - (!I+]- (IY - 1,)6u,  = M, - 8M,

1,[6+@j?+&jr]-(I,  -1,)4@ = M, +QM,

I,[~+&$-&]-(I, -I,)& = M, +8M, -QMY

J,, &vi = ;Tshaft -; Tbrake -x,3,. i = 1,2 (front)
I , ,

JQ&~ = -fTbrake - rwiFxi i = 3,4 (rear)

ti eng = + iTeng - Tpump  1
ew

hi, = %tir in - mairout

dr.= &cLc -a]
T throt

Tbmke = L[TbrkC -Tbrake]
‘T brake
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By neglecting actuator and manifold dynamics and the roll (q), pitch (f), and vertical (z)
motions, the model can be reduced to:

(B13) m[vx - V,Url  = iFAi - C,Vz - Fro11
i=l

(B 14) m[VY + V,q] = iFni - CYV;
i=l

(Bl5) I,+ = M,

0316) 1 *J,.&. = i Tshaft  - i Tbrake - &v. Fx.1 I

J,,b,, = -ITI 1 5 brake - rw, Fxi

(B17) cil eng = + lTeng - Tpump  1
ew

i = 1,2 (front)

i = 3,4 (rear)

The x-moment about the unsprung mass, MX, can be expressed as:

w3) M, = llFB, +FB2W2(FB3  +F,++%A, -FA,)-FPA,  -FA,>

Under the bicycle model assumption (i.e. the dynamics of the left and right side of the
vehicle are identical), the moment expression becomes:

(B19) M, = &(FB, >-'%(FB~  >

The external forces are:

4
0320) c FAi = Wxf - WY, > + 2Fxr (6, = 0)

i=l
4

0321) c FBi = WY, - Wx, > + 2Fy,
i=l

where,

F
Xf

= F,, = F, , etc.
2
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Noting that the following is true:

Fy, -6fFx, = CSf (6, - Cf I- SfFx,

* = 6f(CSf  -Fxf)-csfcf

* = CSf6f  -Cs,rf  = Fy, (Cs, >’ Fx, >

the lateral forces can be rewritten as:

4

0322) c FB, = 2FYf +2F,,I
i= l

Further, by assuming that ti, f = b, r , The simplified state equations (B13-17) is

reduced to:

(~23) \i, = -‘[C,V,2 + Fro,,
m

- mVYjr - 2(Fx, + Fxr > - 2SfFy, I

(~24)

(~25)

(BW

0327)

vy = -+;
m

- mV,$ - 23, + Fy, >I

V = +yf -~&,I
Z

cb, = $ rTshaft  - Tbrake  - 2rw (Fx, -I- Fx, 11
W

ci> e n g  = + fTeng - Tpump 1
eng

The engine and brake torques, Teng and Tbrake, can be related to the traction forces by

assuming that the torque converter is locked. In other words, we assume:0 00 e n g  =
w
r *

ii) Tpump = r *Tshaft

where r* = rd,&-gex is the effective gear ratio.
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Under this assumption, the engine and wheel accelerations (B26-27) can be combined to yield:

(4 &eng = $ [Teng - r * Tshaft I
eng

* Tshaft = 5 rTeng -Jengoengl

* Tshaft = $ fTeng - Jeng 21

cb) hw = $ iTshaft - Tbrake - ‘wFxtlrt 1
W

* 0, = $15 (Ten, - Jeng %$I - Tbrake  - ‘w Fx,, I
W

* O,[J,, +4Jwr*2] = [r*Teng -r*’ Tbrake -rwr*2 F, ]t”t

Solving for Fxtot and substituting this into eq B23 yields:

F =xt, --&[r * Teng  - r *2 Tbrke - Ow(Jeng + 4J,r *2)]
rw ’

V,[l+
1

mr$r *2
(Jeng + 4J,r *2)] = - i [C,Vz + FrolI - mVy\ir -

a

L <Teng - r * TbrAe > + $Fy, 1
r,r*

define:
J * = mr$ *2 +Jeng +4J,r *2

Tot = Teng - r
*
Tbr;lke

The final form of the state equations of the simplified vehicle model is now:

VW q, = - (rT**,2 [C,Vz + Fro,, - mVYq]+ (rwr*)2 [L
J* rr* Tot + GfFy, I

W

(~29) VY = -i&V: -mVx+-2(FYf +FY,)]

(B30) ii’ = fVIFyf - lzFy,- 1
Z



Appendix C. Tire model (Bakker-Pacjeka)
Fitted on Yokohoma P205/60R1487H  steel-belted radials

(Cl)

(C2)

(C3)

(C4)

F, = D, sin(C, tan-‘(B,$,))  + S,,

Fy = D, sin(Cy tan-‘(B&>> + S,,

$, = (1-E,)(i, +S,,)+?tan’(B,(i, +S,,))
X

oy = (l-E,)(V+Shy)+~t~-l(By(~+S,,))
Y

traction (ix > 0)-

Bx =

cx =

Dx =

Ex =

traction (ix > 0)-

B = 22+F7 -1940
x

22+ F7 -1940
645645

cx = 1.35- “;;-y;”1.35 -
F7 - 1940

16125

Dx = 1750+1750 +
Fv -1940Fv -1940

.956.956

Ex = - 3 . 6- 3 . 6

s, = 0

s =
V X

0

s, = 0
s 0=

V X

B, =

c, =

D, =

E, =

S
h y  =

svy =

0 22+52OO-Fz
40000

1.26+
F, - 5200

32750

- 0.00003F;  + 1.0096F,  - 22.73

-1.6

0

0

(iv<braking

B = 22+F7 -1940
x 430

cx = 1.35 -“;$g”

Dx = 1750 + F7 -194o
.956

Ex = 0.1

s, = 0

svx = 0
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