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Abstract In this paper we introduce novel regularization
techniques for level set segmentation that target specifically
the problem of multiphase segmentation. When the multi-
phase model is used to obtain a partitioning of the image in
more than two regions, a new set of issues arise with respect
to the single phase case in terms of regularization strategies.
For example, if smoothing or shrinking each contour indi-
vidually could be a good model in the single phase case, this
is not necessarily true in the multiphase scenario.

In this paper, we address these issues designing enhanced
length and area regularization terms, whose minimization
yields evolution equations in which each level set function
involved in the multiphase segmentation can “sense” the
presence of the other level set functions and evolve accord-
ingly. In other words, the coupling of the level set function,
which before was limited to the data term (i.e. the proper
segmentation driving force), is extended in a mathematically
principled way to the regularization terms as well. The re-
sulting regularization technique is more suitable to eliminate
spurious regions and other kind of artifacts. An extensive
experimental evaluation supports the model we introduce
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in this paper, showing improved segmentation performance
with respect to traditional regularization techniques.

Keywords Image segmentation · Multiphase flows · Level
set methods · Length regularization · Area regularization

1 Introduction

Image segmentation is one of the most studied problems in
image analysis and many different approaches to segmen-
tation have been introduced in the past. Among these, vari-
ational models based on the solution of partial differential
equations (PDEs) have become increasingly popular in the
last decade. They can be categorized into two different sub-
groups: region-based (Zhu et al. 1995; Zhu and Yuille 1996;
Yezzi et al. 1999; Samson et al. 1999, 2000a, 2000b; Chan
and Vese 2001; Tsai et al. 2001; Paragios and Deriche 1999,
2002; Rousson et al. 2003; Kim et al. 2005) and edge-based
methods (Caselles et al. 1997; Kass et al. 1988; Malladi
et al. 1994, 2004; Park and Keller 2001; Nguyen et al. 2003;
Sapiro 1996, 1997; Kichenassamy et al. 1995; Goldenberg
et al. 2001). Region-based approaches offer an advantage
over edge-based segmentations in that they do not rely on
edge detection, which can be sensitive to noise and clutter.
Also, region-based algorithms are generally less dependent
on initialization since they exploit global information of the
image statistics.

A fundamental variational approach to region-based im-
age segmentation was first presented by Mumford and Shah
(1985), where the authors minimized a functional to approx-
imate the image in a piecewise smooth way, penalizing at
the same time the excessive length of the contours between
regions. Later on, Chan and Vese minimized this functional
within the level set framework (Osher and Sethian 1988), for
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both piecewise constant (Chan and Vese 2001) and smooth
approximations of the image. In their work the authors rep-
resented two partitions as the positive and negative sub-level
sets of a Lipschitz continuous function φ and they evolved
φ in order to minimize the variance of each partition. Ro-
bustness to spurious noisy pixels is obtained by introducing
two regularizing terms in the cost function, which penalize
respectively the length of the contour (i.e. the zero level set
of φ) or the area of the region inside the contour. In sum-
mary the energy function to be minimized can be written as
the sum of three different contributions:

E = Ed + μEl + νEa (1)

where Ed is the data term (i.e. the term which carries in-
formation about the image content), El is the term penaliz-
ing the length and Ea is the one penalizing the area, while
μ and ν are two scalar weighting coefficients. Most of the
literature in region-based segmentation targets the choice
of the data term Ed and several variants have been pro-
posed, such as extensions to include higher order statis-
tics (Dambreville et al. 2006; Kim et al. 2005; Rathi and
Michailovich 2006), to cast the problem in a probabilistic
framework (Paragios and Deriche 1999, 2002) or in a clas-
sification framework (Samson et al. 1999, 2000a, 2000b),
to include additional information in the form of shape prior
(Cremers et al. 2004, 2006; Cremers 2006; Raviv et al. 2005,
2006; Dambreville et al. 2006) (for other variants see Zhu
and Yuille 1996; Yezzi et al. 1999; Aubert et al. 2003 and
references therein).1

Much less attention has been devoted to improve the reg-
ularization terms El and Ea . For example, the length of
the contour can be replaced with a geodesic length with a
metric based on the image gradient (Caselles et al. 1995,
1997; Paragios and Deriche 2002). This would penalize the
presence of a contour more in a flat region than in corre-
spondence of a high gradient region. For other contribu-
tions in this direction we refer the reader to Caselles et al.
(1997), Paragios and Deriche (2002) and references therein.
All these cited contributions targeted the binary segmenta-
tion case, i.e. the single level set function, also known as
single phase case. When the multiphase model is used, a
new set of issues arise that, to the best of our knowledge,

1Throughout this paper we adopt the data term introduced by Chan and
Vese (2001) and then extended to the multiphase scenario in Vese and
Chan (2002). This data-driven cost function, which aims at minimizing
the variance of each partition, can be written as follows:

ECV
d =

N∑

i=1

∫

Ω

(
u0(x) − ci

)2
χi(x)dx (2)

where N is the number of regions/segments, u0 is the original image, ci

and χi for i = 1, . . . ,N are the means and the characteristic functions
of each segment. In the 4-region case, (2) specializes in (43).

Fig. 1 (Color online) (a) Original image. (b, c, d, e) Comparison be-
tween the segmentations obtained using the traditional multiphase reg-
ularization approach (left column) and the proposed method (right col-
umn)—in both cases the data term is the one proposed by Vese and
Chan (2002). In (b) and (c) we compare the 4 regions obtained using
the two different regularization techniques. The areas within the green
boxes are magnified in (d) and (e) to show that the spurious regions
(highlighted within the green circles), present using the traditional reg-
ularization (d), are instead absent if the proposed method is applied (e)

have not been addressed in the literature. This paper can be
considered a contribution in this direction.

Specifically, while smoothing contours can be a good reg-
ularization model in the single phase case to avoid the pres-
ence of boundaries wrapping around noisy spurious pixels,
this does not necessarily hold true in the multiphase case.
This problem becomes crucial in segmenting complex nat-
ural images (see Fig. 1 for example, where the segmentation
is obtained using the 4-regions Chan-Vese model described
in Vese and Chan 2002), where many of these spurious re-
gions arise, particularly in correspondence of objects bound-
aries (that is where two level set functions can change sign
simultaneously). The reason why traditional regularization
based on smoothing is not enough to get rid of these spuri-
ous regions is explained pictorially in Fig. 2. Here two ex-
tremely smooth surfaces are running parallel and spatially
close to each other. The multiphase segmentation model can
produce a spurious region located between the two bound-
aries. The traditional length and area regularization terms,
which act on each contour independently, would not get rid
of this spurious region since the two contours are already
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Fig. 2 (a) Two level set
functions running parallel and
close to each other. The two
black lines are the zero level
sets. (b) Projection of the zero
level sets on the image plane,
showing the resulting
multi-phase segmentation. Note
the presence of a small spurious
region between the two
interfaces. Traditional
regularization techniques, based
on smoothing (i.e. length
regularization) or shrinking (i.e.
area regularization) each
contour independently from the
other contours, are not suitable
for getting rid of this region

sufficiently smooth. Therefore there is a need to rethink the
regularization terms in a multiphase perspective, introduc-
ing the possibility for each contour to “sense” the presence
of the other contours and evolve accordingly.

The main contributions of this paper are targeting these
issues and can be summarized as follows:

– Formulation of a length regularization term El , in which
smoothing happens selectively, depending on the recipro-
cal position of the contours.

– Formulation of an area regularization term Ea , in which
shrinking/expanding is conditioned on the presence of
other contours, providing a more principled regularization
effect.

– Extensive experimental validation of the proposed regu-
larization models.

This paper is organized as follows. In Sect. 2 we briefly
review regularization techniques in presence of a single level
set function, while Sect. 3 extends the concepts to the mul-
tiphase scenario. In particular, Sect. 3.1 deals with length
regularization, while Sect. 3.2 is concerned with area regu-
larization. After presenting experimental results in Sect. 4,
we briefly conclude in Sect. 5.

2 Single Phase Length and Area Regularizations

In single phase level set segmentation a curve C, the bound-
ary of an open set Ri(C) ∈ Ω (i.e. C = ∂Ri(C)), is implic-
itly represented as the zero level set of a Lipschitz function
φ : Ω �→ R (Osher and Sethian 1988). The function φ is
positive for the points within the set Ri(C) and negative
elsewhere (i.e. for the points within Ro(C) = Ω\Ri(C)).
Therefore the Heaviside function H(φ), along with its com-
plementary (1 − H(φ)), can serve as an indicator function

for the points in Ri(C) and Ro(C) respectively (Chan and
Vese 2001):

χ1 = H(φ) =
{

1 if φ > 0

0 elsewhere
(3)

χ2 = (
1 − H(φ)

) =
{

1 if φ < 0

0 elsewhere
(4)

As mentioned in the introduction, the length regularization
term is expressed as a term proportional to the length of the
contour (Chan and Vese 2001). Translating this concept us-
ing a formal notation we can write:

El1 =
∫

Ω

|∇χ1(x)|dx =
∫

Ω

|∇χ2(x)|dx

=
∫

Ω

∣∣∇H
(
φ(x)

)∣∣dx =
∫

Ω

δ
(
φ(x)

)|∇φ(x)|dx (5)

In order to compute the Euler-Lagrange equation for the
function φ such that the penalty term is minimized, we need
to consider slight regularizations of the functions H and δ.
We denote these regularized functions as Hε and δε , and
from now on we will proceed informally using them in place
of the non-regularized ones. For a formal proof of existence
of minimizers for the non-regularized case (i.e. ε = 0) we
refer the reader to Appendix A, while an extensive analy-
sis of the behavior in the limit (i.e. as ε → 0) is presented
in Appendix B. Minimizing (5) using calculus of variations,
we obtain the PDE that evolves the level sets in the proxim-
ity of the zero level set under a motion by mean curvature,
enforcing the smoothness of the contour:

∂φ(x)

∂t
= δε

(
φ(x)

)
div

( ∇φ(x)

|∇φ(x)|
)

(6)

As mentioned in the introduction, a second regularization
term can be expressed in terms of the area of the region in-
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side of the contour (i.e. χ1) (Chan and Vese 2001). Using
the same notation as above, we can write this term as:

Ea1 =
∫

Ω

χ1(x)dx =
∫

Ω

H
(
φ(x)

)
dx (7)

Minimizing using calculus of variations yields the PDE
which shrinks the contour, getting rid in this way of small
spurious regions:

∂φ(x)

∂t
= −δε

(
φ(x)

)
(8)

The use of the flows in (8) and (6), along with the one that
minimizes the data term, are perfectly suitable in the case of
binary segmentation (i.e. background/foreground segmenta-
tion using only one level set function). On the other hand, in
the following section we will demonstrate that, for the multi-
region segmentation case, a reformulation of the traditional
regularization term is needed in order to achieve accurate
and reliable results.

3 Multiphase Length and Area Regularizations

The use of only one level set function φ, discussed in the
previous section, can provide a separation of the image into
only two segments, corresponding respectively to the pos-
itive and negative sub-level sets of φ. In Vese and Chan
(2002) the authors showed how K level set functions can
be used to construct up to N = 2K different indicator func-
tions and therefore to represent up to N different regions.
Using this convention, in the case of N = 4 regions, we can
write the four characteristic functions as:

χ1 = Hε(φ1)Hε(φ2) =
{

1 if φ1 > 0 and φ2 > 0

0 elsewhere

χ2 = Hε(φ1)
(
1 − Hε(φ2)

) =
{

1 if φ1 > 0 and φ2 < 0

0 elsewhere

χ3 = (
1 − Hε(φ1)

)
Hε(φ2) =

{
1 if φ1 < 0 and φ2 > 0

0 elsewhere

χ4 = (
1 − Hε(φ1)

)(
1 − Hε(φ2)

)

=
{

1 if φ1 < 0 and φ2 < 0

0 elsewhere

In the general case, the N indicator functions χi with i =
1, . . . ,N are given by all the possible sign combinations of
the K level set functions φj , with j = 1, . . . ,K .

In the following we design novel multiphase regulariza-
tion terms, such that, during the regularization process, the
contours could sense the presence of the other nearby con-
tours and evolve accordingly. In particular we require the

regularization term (i.e. combination of area and length reg-
ularization) to satisfy the following two properties:

1. the effect of the regularization must not separate two
overlapping contours,

2. two contours running close to each other must either snap
onto each other or move apart from each other, due to the
regularization term.

This section is composed of two parts: Sect. 3.1 concern-
ing the length term and Sect. 3.2 concerning the area term.
In each part, for the sake of clarity and readability, we will
start discussing about the 4 regions case (i.e. two level set
functions φ1 and φ2) and then we will generalize our model
to the N regions case.

3.1 Length Regularization

3.1.1 Four Regions Case

In the 4 regions case, the ideal length regularization term
(i.e. the effective total length of the contour) can be written
as:

El2 = 1

2

4∑

i=1

∫

Ω

|∇χi(x)|dx (9)

Unfortunately the minimization of this term using calculus
of variation leads to an extremely complicated expression,
due to the coupling of the two level set functions φ’s, not
easily implementable. The solution provided by Vese and
Chan (2002) consists in a simplification of the problem, de-
coupling the dependency of the length term upon the two
level set functions. The simplified term they introduced is
the following:

El2 =
2∑

i=1

∫

Ω

∣∣∇Hε

(
φi(x)

)∣∣dx

=
2∑

i=1

∫

Ω

δε

(
φi(x)

)|∇φi(x)|dx (10)

The main drawback of this model consists in the fact that
some parts of the contours (i.e. the overlapping parts) are
counted twice (see Fig. 3). Therefore nothing guarantees
that two overlapping contours will not separate during the
evolution process, since separating or merging contours
does not change the regularization cost function in use. This
can potentially violate Property 1 stated at the beginning of
the section.

In order to always enforce this property, we need to re-
design the length term, making sure that it represents the ef-
fective total length of the contour (i.e. without counting any
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Fig. 3 (a) and (e) Two level set functions φ1 and φ2 (the zero level
set is marked in black). (b) The correspondent segmentation in four
regions. (f) The ground truth boundaries. (c) and (d) Regularization
using (10) for ε = 1 and ε = 5 respectively. Notice that the overlapping
parts are counted twice. (g) and (h) Regularization using (11) for ε = 1
and ε = 5 respectively

part twice) as in (10), but with a more approachable formu-
lation than the one in (9). The solution we propose consists
in subtracting from (9) a term which compensates for those
segments where two contours are overlapping.

El2 =
2∑

i=1

∫

Ω

∣∣∇Hε

(
φi(x)

)∣∣dx

− γ

∫

Ω

∣∣∇Hε

(
φ1(x)

)∣∣∣∣∇Hε

(
φ2(x)

)∣∣dx

=
2∑

i=1

∫

Ω

δε

(
φi(x)

)|∇φi(x)|dx

− γ

∫

Ω

δε

(
φ1(x)

)|∇φ1(x)|δε

(
φ2(x)

)∣∣∇φ2(x)|dx

(11)

where γ is a constant coefficient. If the point x0 belongs to
the zero level set of only one of the two level set functions
φi ’s (let us assume w.l.o.g. that is on the zero level set of
φ1), we have that:

δε(φ1(x0)) = δε(0)

δε(φ2(x0)) ≈ 0

δε(φ1(x0))δε(φ2(x0)) ≈ 0

Assuming the φi ’s being signed distance functions (i.e.
|∇φi(x)| = 1 ∀x ∈ Ω), the contribution of the point x0 to
the whole integral is therefore δε(0). We want to choose the
constant coefficient γ , such that the contribution of a point
x1, which belongs to the zero level set of both φi ’s, is still
δε(0) (note that, if x1 does not belong to both zero level sets,
the term that multiplies γ in (11) vanishes and hence the

value of γ is irrelevant at those locations). This will prevent
from counting x1 twice, as it happens with the cost function
by Vese and Chan in (10). By simple algebra we obtain:

γ = 1

δε(0)
(12)

For a more formal explanation regarding the choice of this
normalization coefficient γ we refer the reader to Appen-
dix B. Minimizing (11) w.r.t. φ1 (or equivalently φ2) using
calculus of variations and parameterizing the descent via a
virtual time variable t , we obtain the following PDE, which
evolves φ1 in the direction of steepest descent of the cost
function:

∂φ1(x)

∂t
= δε

(
φ1(x)

)[
1 − 1

δε(0)
δε

(
φ2(x)

)|∇φ2(x)|
]

× div

( ∇φ1(x)

|∇φ1(x)|
)

(13)

The term within the square brackets can be viewed as an
adaptive coefficient for the curvature term. In the case of the
regularizing term proposed by Vese and Chan (10), this co-
efficient is constant equal to 1, providing a smoothing effect
which does not sense the presence of the other level set func-
tion φ2. On the other hand, in the proposed model the coeffi-
cients depends upon φ2 and therefore provides a smoothing
coupled with the information provided by φ2.

Since δε(z) is a function which attains its maximum for
z = 0, the term within the square brackets is always greater
than or equal to zero. This prevents the flow from becoming
a negative motion by mean curvature and therefore retains
the well-posedness of the PDE (13). We will show that this
is true not only for K = 2 (i.e. two level set functions), but
for any choice of K ≥ 2.

In addition, expressing the cost in terms of the effective
length of the contour (i.e. making sure that the contribution
of each point belonging to at least one contour is always
δε(0)) has the consequence of enforcing Property 1. In fact,
if two contours are overlapping at a particular location x,
it is straightforward to see that the term within the square
brackets in (13) vanishes, preventing the regularization ef-
fect from separating the contours. We visually demonstrate
this property in Fig. 4.

An attempt to solve the problem of designing a cost func-
tion that truly represents the length of the multiphase con-
tour is briefly described by Vese (2003). In this paper the
author modifies (10), to take into account the parts of the
contour counted twice, as follows:

E#
l2 =

∫

Ω

∣∣∇H
(
φ1(x)

)∣∣dx

+
∫

Ω

∣∣∇H
(
φ2(x)

)∣∣(2 − H
(
φ1(x)

)

− H
(−φ1(x)

))
dx (14)
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Fig. 4 First row: Evolution using the traditional length term (10).
(a) Initial configuration, (b, c) Two stages of the evolution. Second
row: Evolution using the proposed length term (11). (e) Initial config-
uration, (f, g) Two stages of the evolution. Note that the overlapping
parts of the contours are not separated by the proposed regularization,
while that is not the case if the traditional regularization is used

There are two main drawbacks which differentiate this solu-
tion from the one proposed in this paper. First of all (14) re-
quires the function H to be the ideal step function (in partic-
ular, H needs to be defined continuous from the right, that is
H(0) = 1). In numerical implementation, H is usually regu-
larized such that H(z) = 1−H(−z), which would make the
term (2 − H(φ1(x)) − H(−φ1(x))) in (14) constantly equal
to 1 and therefore ineffective. On the other hand, the model
proposed in this paper maintains its properties also upon reg-
ularization of the step functions. In addition, the term in (14)
is not symmetric with respect to φ1 and φ2, which means that
the evolution equation of φ1 will differ from the one of φ2.
This desirable symmetry property is instead achieved by the
proposed term, see (11).

3.1.2 N Regions Case

In the general case, i.e. in the case of N regions represented
via K level set functions, we construct the K-component
vector:

Ψ (x) = [∣∣∇Hε

(
φ1(x)

)∣∣,
∣∣∇Hε

(
φ2(x)

)∣∣, . . . ,
∣∣∇Hε

(
φK(x)

)∣∣]T

Denoting ei the K-dimensional indicator vector, which has
all zeros except a one at index i, we can write the general
expression for the regularization cost function in differential
form as:

elK(x) =
K∑

i=1

eT
i Ψ (x)

+ −1

δε(0)

K−1∑

i1=1

K∑

i2=i1+1

(eT
i1
Ψ (x))(eT

i2
Ψ (x))

+
( −1

δε(0)

)2 K−2∑

i1=1

K−1∑

i2=i1+1

K∑

i3=i2+1

(eT
i1
Ψ (x))

× (eT
i2
Ψ (x))(eT

i3
Ψ (x))

+ · · ·

+
( −1

δε(0)

)K−2 2∑

i1=1

. . .

K∑

iK=iK−1+1

(eT
i1
Ψ (x)) . . .

× (eT
iK

Ψ (x))

+
( −1

δε(0)

)K−1

(eT
1 Ψ (x)) . . . (eT

KΨ (x)) (15)

The integral form of the regularization term is then obtained
integrating elK over the domain:

ElK =
∫

Ω

elK(x)dx (16)

With the following lemma, we prove that the value of (16)
represents the effective length of the contour (i.e. no parts
are counted twice). As explained for the 4 regions case, this
will ensure that Property 1 is always satisfied.

Lemma 1 For any point x0 ∈ Ω belonging to the zero level
set of n level set functions (1 ≤ n ≤ K), the value of elK(x0)

is approximately δε(0), regardless the value of n.

Proof In this case, in fact, the vector Ψ (x0) has n entries
equal to δε(0) and the rest of the entries are approximately
zero. We can therefore re-write (15) as:

elK(x0) = δε(0)

(
n

1

)

+ −1

δε(0)

(
δε(0)

)2
(

n

2

)

+
(

1

δε(0)

)2(
δε(0)

)3
(

n

3

)

+ · · ·

+
( −1

δε(0)

)K−1(
δε(0)

)K
(

n

K

)
(17)

Therefore we have that:2

elK(x0) = δε(0)

K∑

k=1

(−1)k−1
(

n

k

)

= δε(0)

n∑

k=1

(−1)k−1
(

n

k

)

= −δε(0)

[
n∑

k=0

(−1)k
(

n

k

)
− 1

]
(18)

2Note that
(
n
k

) = 0 if k > n.
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Now from a basic property of the binomial coefficient we
have:

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk (19)

which implies for x = 1 and y = −1:

n∑

k=0

(−1)k
(

n

k

)
= 0 (20)

Substituting (20) into (18) concludes the proof. �

Minimizing (16) w.r.t. φ1 (the derivation for the other φi ,
with i = 2, . . . ,K , is identical) using calculus of variations
and parameterizing the descent, as done before, via the vari-
able t , we obtain the following evolution equation for φ1:

∂φ1(x)

∂t

= δε(φ1(x))

[
1 + −1

δε(0)

K∑

i2=2

(eT
i2
Ψ (x))

+
( −1

δε(0)

)2 K−1∑

i2=2

K∑

i3=i2+1

(eT
i2
Ψ (x))(eT

i3
Ψ (x))

+ · · ·

+
( −1

δε(0)

)K−2 3∑

i2=2

. . .

K∑

iK=iK−1+1

(eT
i2
Ψ (x)) . . .

× (eT
iK

Ψ (x))

+
( −1

δε(0)

)K−1

(eT
2 Ψ (x)) . . . (eT

KΨ (x))

]

× div

( ∇φ1(x)

|∇φ1(x)|
)

(21)

To guarantee the well-posedness of the PDE (21), we need to
show that the quantity within the square brackets is always
greater than or equal to zero for any point in the domain. In
order to accomplish this, we need the following Lemma.

Lemma 2 Let K ∈ N and let y ∈ R
K . Moreover, let yi de-

note the i-th component of y. Assume that 0 ≤ yi ≤ 1, for
i = 1, . . . ,K . Define the quantity

fK(y) = 1 −
K∑

i2=2

yi2 +
K−1∑

i2=2

K∑

i3=i2+1

yi2yi3 + · · ·

+ (−1)K−2
3∑

i2=2

. . .

K∑

iK=iK−1+1

yi2 . . . yiK

+ (−1)K−1y2 . . . yK (22)

Then

fK(y) ≥ 0 (23)

Proof We will proceed by induction. In the case of K = 2
we have:

f2(y) = 1 − y2 (24)

which is greater than or equal to zero, since by definition
0 ≤ y2 ≤ 1. We now show that for K = m, we have that
fm(y) ≥ 0 if we assume that fm−1(y) ≥ 0. In fact, fm(y)

can be re-written in the following way:

fm(y) = 1 −
(

ym +
m−1∑

i2=2

yi2

)

+
(

ym

m−1∑

i2=2

yi2 +
m−2∑

i2=2

m−1∑

i3=i2+1

yi2yi3

)
+ · · ·

+ (−1)m−2

(
ym

3∑

i2=2

. . .

m−1∑

im−1=im−2+1

yi2 . . . yim−1

+ y2 . . . ym−1

)
+ (−1)m−1ymy2 . . . ym−1 (25)

Now separating the terms where ym is present from the other
ones, one can see that:

fm(y) = (1 − ym)fm−1(y) (26)

Since 0 ≤ ym ≤ 1 by definition and fm−1(y) ≥ 0 by induc-
tion hypothesis, we conclude that also fm(y) ≥ 0. �

The following result is a consequence of the above
Lemma.

Corollary 1 The quantity within the square brackets in (21),
is always greater than or equal to 0 for any x ∈ Ω .

Proof Define

Ψ̄ (x) := 1

δε(0)
Ψ (x) (27)

Hence the quantity within square bracket in (21), can be
rewritten as:

1 −
K∑

i2=2

Ψ̄i2 +
K−1∑

i2=2

K∑

i3=i2+1

Ψ̄i2Ψ̄i3 + · · ·

+ (−1)K−2
3∑

i2=2

. . .

K∑

iK=iK−1+1

Ψ̄i2 . . . Ψ̄iK

+ (−1)K−1Ψ̄2 . . . Ψ̄K
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where we dropped the dependency of Ψ̄ upon x for the sake
of clarity. Since, Ψ̄ (x) is the normalized version of Φ(x) by
δε(0), we have that 0 ≤ Ψ̄i(x) ≤ 1, for i = 1, . . . ,K . Then
the result follows from Lemma 2. �

3.2 Area Regularization

3.2.1 Four Regions Case

For the 4 regions case, similarly to what has been done for
the length in (10), a naive version of the area regularization
term can be written as:

Ea2 =
2∑

i=1

∫

Ω

Hε

(
φi(x)

)
dx (28)

Minimizing this term leads to a shrinking force that acts
independently on each level set function φi . The lack of
a term which couples the two level set functions prevents
them from sensing each other’s position during the evolu-
tion. Reasoning along the lines of what we have done for
the length term, we modify (28) by considering that it does
not faithfully represent the area of the partitions. In fact the
area term as defined in (28) penalizes three partitions out of
four (i.e. all the partitions for which at least one level set
function is positive). In addition, the partition where both φ1

and φ2 are positive is penalized twice as much as the oth-
ers.

The idea we apply to modify this term is to penalize only
half of the partitions. In particular, we introduce a coupling
term such that only partitions with only one level set func-
tion being positive are penalized:

Ea2 =
2∑

i=1

∫

Ω

Hε

(
φi(x)

)
dx

− 2
∫

Ω

Hε

(
φ1(x)

)
Hε

(
φ2(x)

)
dx (29)

The PDE corresponding to the steepest descent minimiza-
tion of (29) with respect to φ1 is:

∂φ1(x)

∂t
= −δε

(
φ1(x)

)[
1 − 2Hε

(
φ2(x)

)]
(30)

The evolution equation for φ2 is obtained interchanging φ1

and φ2 in (30). The coefficient within the square brack-
ets is important since it forces two contours spatially close
to each other to snap onto one another or to move away
from each other, preventing the formation of contours run-
ning close and parallel to each other. For example, let us
assume that φ1 and φ2 are concentric, with φ2 laying in-
side the region where φ1 is positive. The term within the

Fig. 5 Effect of the evolution under the area regularization force, for
all the possible combinations of signs of two concentric level set func-
tions. Solid arrows: proposed area regularization. Empty arrows: stan-
dard area regularization (Vese and Chan 2002)

square brackets will be positive for the PDE regulating the
evolution of φ1, forcing its contour to shrink, while nega-
tive in the case of φ2, forcing its contour to expand. The
resulting coupled evolution will see the zero level set of φ1

shrinking and snapping onto the expanding zero level set
of φ2. Other possible situations are pictorially represented
in Fig. 5 and compared with the regularization using the
standard area term. With the standard regularization, for half
of the possible configurations, the two contours either both
shrink or expand. This does not contribute to removing con-
tours that are close and parallel to each other, and in turn
would yield non-desirable double edges in a segmentation
process. On the other hand, using the proposed area reg-
ularization, every possible configuration corresponds to a
situation in which two contours spatially close are forced
to either snap onto one another or move away from each
other. Therefore this term guarantees that Property 2 is al-
ways satisfied. In addition, if x belongs to both contours,
the term within the square brackets in (30) vanishes, (since
Hε(0) = 1/2). This guarantees that Property 1 is always sat-
isfied as well. In Fig. 6, we show the evolution of two level
set functions under the traditional and the proposed regular-
ization term.

3.2.2 N Regions Case

In the case of N regions represented via K level set
functions, we can write the area-penalizing cost function
as:

EaK(x) =
∫

Ω

eaK(x)dx (31)
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Fig. 6 First row: Level set evolution using the traditional area term (a)
Initial configuration, (b, c) Two stages of the evolution. Second row:
Evolution using the proposed area term, (e) Initial configuration, (f, g)
Two stages of the evolution. Note that using the traditional regulariza-
tion the two contours shrink independently. On the other hand, using
the proposed regularization, the parts of the contours that are close to
each after few iterations snap onto each other

where

eaK(x) =
K∑

i=1

Hε(φi(x))

+ (−2)1
K−1∑

i1=1

K∑

i2=i1+1

Hε(φi1(x))Hε(φi2(x))

+ (−2)2
K−2∑

i1=1

K−1∑

i2=i1+1

K∑

i3=i2+1

Hε(φi1(x))

× Hε(φi2(x))Hε(φi3(x))

+ · · ·

+ (−2)K−2
2∑

i1=1

. . .

K∑

iK=iK−1+1

Hε(φi1(x)) . . .

× Hε(φiK (x))

+ (−2)K−1Hε(φi1(x)) . . .Hε(φiK (x)) (32)

In the following we show that this term takes value 1, if x
belongs to a region characterized by an odd number of pos-
itive level set functions, and 0 elsewhere. In this way half of
the partitions is penalized and the other half is favored (pro-
viding a principled extension of the two regions (i.e. one
phase) case, in which the region where φ is positive is pe-
nalized and the complementary region is therefore favored).
This will ensure that, as in the case of the 4 regions term,
Properties 1 and 2 are always satisfied.

Lemma 3 For every point x ∈ Ω , let K0 be the number
of level set functions such that φi(x) > 0, or equivalently

Hε(φi(x)) = 1. We then have:

eaK(x) =
{

1 if K0 is odd

0 if K0 is even
(33)

Proof Considering that Hε(φi(x)) is approximately either 1
or 0, we can rewrite (32) as:

eaK(x) =
(

K0

1

)
+ (−2)1

(
K0

2

)
+ (−2)2

(
K0

3

)

+ · · ·
+ (−2)K−2

(
K0

K − 1

)
+ (−2)K−1

(
K0

K

)
(34)

or in a more compact way:

eaK(x) =
K∑

k=1

(−2)k−1
(

K0

k

)

=
K0∑

k=0

(−2)k−1
(

K0

k

)
+ 1

2
(35)

Now, rewriting the basic property of the binomial coefficient
in (19) as:

(x + y)K0

y
=

K0∑

k=0

(
K0

k

)
xn−kyk−1 (36)

and choosing x = 1 and y = −2 yields:

− (−1)K0

2
=

K0∑

k=0

(−2)k−1
(

K0

k

)
(37)

Combining (35) and (37) we obtain:

eaK(x) = 1 − (−1)K0

2
(38)

which concludes the proof. �

Minimizing (31) w.r.t. φ1 (the derivation the other φi ,
with i = 2, . . . ,K , is similar) using calculus of variations
and parameterizing the descent via the variable t , we obtain
the following evolution equation for φ1:

∂φ1(x)

∂t

= −δε(φ1(x))

[
1 + (−2)1

K∑

i2=2

Hε(φi2(x))

+ (−2)2
K−1∑

i2=2

K∑

i3=i2+1

Hε(φi2(x))Hε(φi3(x))
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+ · · ·

+ (−2)K−2
3∑

i2=2

. . .

K∑

iK=iK−1+1

Hε(φi2(x)) . . .

× Hε(φiK (x))

+ (−2)K−1Hε(φi2(x)) . . .Hε(φiK (x))

]
(39)

The following Lemma shows that for every point x such that
φi(x) = 0 for at least one of the i = 2, . . . ,K , then the term
within the square brackets goes to zero (we assume as usual
that Hε(0) = 1/2). This guarantees that Property 1 holds
true.

Lemma 4 Let K ∈ N and let y ∈ R
K . Moreover, let yi de-

note the i-th component of y. Define the quantity

fK(y) = 1 + (−2)1
K∑

i2=2

yi2 + (−2)2
K−1∑

i2=2

K∑

i3=i2+1

yi2yi3

+ · · ·

+ (−2)K−2
3∑

i2=2

. . .

K∑

iK=iK−1+1

yi2 . . . yiK

+ (−2)K−1y2 . . . yK

assume w.l.o.g. that yK = 1/2 (the function is invariant to
permutations of the components of y). Then

fK(y) = 0 (40)

Proof Reasoning along the lines of Lemma 2 we can rewrite
fK(y) as:

fK(y) = (1 − 2yK)fK−1(y) (41)

Since yK = 1/2 by hypothesis, the proof is complete. �

Summarizing this Section, we have introduced two new
formulations for the length and area regularization terms.
We have demonstrated that their combined effect satisfies
the two desirable properties listed at the beginning of the
section. In Fig. 7 we pictorially show the effect of the com-
bination of these two regularization terms on the evolution
of two interacting contours.

4 Experimental Evaluation

In this section, we provide both a qualitative and a quantita-
tive comparison of the performance of the proposed regular-
ization techniques with traditional multiphase regularization

Fig. 7 First row: Evolution using the traditional length and area terms
(Vese and Chan 2002), (a) Initial configuration, (b, c) Two stages of the
evolution. Second row: Evolution using the proposed length and area
terms, (e) Initial configuration, (f, g) Two stages of the evolution

techniques. To achieve this, we compare segmentation re-
sults obtained using the same data term (i.e. Ed in equation
(1)) but changing the two regularization terms (El and Ea).
As a data term to drive the segmentation, we chose to use
the popular Chan Vese term (Chan and Vese 2001, 2002),
which aims to minimize the variance of the partitions.

In order to obtain a quantitative evaluation of the seg-
mentation results, we compared the performance of our al-
gorithm on the Berkeley Segmentation Data Set (BSDS)
benchmark. The BSDS is composed of 100 images and
for every image several human segmentations are provided.
These human segmentations are considered ground truth and
are used to compute precision (p) and recall (r) as mea-
sures of the accuracy of the segmentation. Precision is the
probability that a pixel indicated as a boundary pixel by the
segmentation algorithm is truly a boundary pixel. Recall is
the probability that a true boundary pixel in the ground truth
is correctly detected by the algorithm. Then the F-measure,
i.e. the harmonic mean of precision and recall (F = 2pr

p+r
), is

presented as a measure of performance.
In Fig. 8, we compare the F-measures obtained by the

two different regularization techniques using the 4-region
(i.e. two level set functions) segmentation model. The re-
sults are obtained by varying μ and ν, respectively the co-
efficients of the length and area term as in (1). From the
plots we can make the following important observations.
First, the peak in the overall performance is reached using
the proposed regularization technique. Second, we observe
that the area term Ea , which uses the traditional regular-
ization approach, was only detrimental to the overall seg-
mentation (notice how the performance keeps dropping as
the coefficient of the area term ν is increased). On the other
hand, it becomes a useful regularizing contribution to the
segmentation in our proposed regularization approach since
the best scores are actually achieved choosing ν = 1. Third,
the results are in general less sensitive to parameter tuning
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Fig. 8 F-measure plots comparing the proposed regularization
schemes with the traditional ones for the 4-region segmentation model.
The coefficient μ is the weight of the length term El , while ν is the
weight of the area term Ea

using the proposed regularization since the performance de-
creases more slowly from the peak if the optimal parameter
configuration is altered. This confirms the intuition that the
proposed formulation, being more principled, is more robust
than the traditional one.

Figure 9, which compares the F-measures obtained us-
ing the 8-region (i.e. three level set functions) segmenta-
tion model, is less informative than the previous one since
the 8-region model is often too redundant for segmenting
the images in the BSDS (as evidenced by the experiments
presented in Bertelli et al. (2008)) and therefore the per-
formance is lower than the one obtained using the 4-region
model. Nonetheless we can still observe the same type of be-
havior manifested by the 4-region experiments, in the sense
that the proposed regularization schemes outperform the tra-
ditional regularization on a wide range of parameter config-
urations. Also notice how the F-measure plots slowly de-
cay using the proposed method, in contrast with a more
pronounced drop for the traditional regularization methods,
demonstrating the inherent robustness of our approach.

Figure 10 illustrates how critical the choice of effective
multiphase regularization is in the case of volumetric seg-
mentation. In this example we show the segmentation of a
three-dimensional CT scan in 4 regions (bone, muscle, fat
and air, see Fig. 10(a)).3 In Fig. 10(b) the 3D model of
phase 1 (i.e. the rib cage) demonstrates that, using the tradi-
tional length and area regularization terms, it is not possible
to remove many spurious isolated pixels. These noisy pixels
are generated by two zero level set surfaces running almost

3High resolution versions of these results are available at: http://vision.
ece.ucsb.edu/~lbertelli/research.html.

Fig. 9 F-measure plots comparing the proposed regularization
schemes against the traditional ones for the 8-region segmentation
model. The coefficient μ is the weight of the length term El , while
ν is the weight of the area term Ea

parallel to each other locally. Since nothing is constraining
or forcing the surfaces to stick to each other and given that
these surfaces are already sufficiently smooth, the traditional
regularization terms, which smooths or shrinks each surface
independently, are not able to get rid of these spurious pix-
els. On the other hand, Fig. 10(c) illustrates how, after only
10 iterations of the proposed regularization, these noisy re-
gions are completely eliminated.

In the last example (Fig. 11) we visually compare the ef-
fect of the two regularization flows on the same image seg-
mentation task. In particular, we are interested in inspecting
the effect of the area term Ea , which, in the case of the pro-
posed scheme, enforces the validity of Property 2 described
at the beginning of Sect. 3. The image to be segmented
in 4 regions is the one shown in Fig. 11(a). Figure 11(b)
shows the situation in terms of the level set functions af-
ter 500 iterations using the traditional regularization terms
with μ = 100 and ν = 1. The green edge is the zero level
set of φ1 and the red one is the zero level set of φ2. Notice
how double edges are clearly visible all around the wings
of the butterfly, demonstrating how the traditional scheme
is not able to cope with these situations. We now want to
show what happens if the area term weight ν is significantly
increased. Figure 11(c,d) show the final segmentation us-
ing proposed and traditional area regularization terms re-
spectively, starting from the configuration in Fig. 11(b). Us-
ing the proposed area term, double edges disappeared com-
pletely (Fig. 11(c)). On the other hand, the detrimental ef-
fect of the traditional area regularization term is shown in
Fig. 11(d), where some double edges are removed, but at
the expense of desirable edges, as depicted in the green cir-
cles. In addition, notice how some double edges are still

http://vision.ece.ucsb.edu/~lbertelli/research.html
http://vision.ece.ucsb.edu/~lbertelli/research.html
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Fig. 10 (a) Segmentation of a volumetric CT scan in 4 regions (bone,
muscle, fat and air). (b) Segmentation using the traditional length and
area regularization terms. The zoom depicts the presence of many

spurious isolated pixels that cannot be eliminated with this approach.
(c) These artifacts are completely eliminated after applying only 10
iterations of the proposed regularization techniques

Fig. 11 (Color online) (a) Original image. (b) Situation after 500 it-
erations using the traditional regularization terms with μ = 100 and
ν = 1. The green edge is the zero level set of φ1 and the red one is
the zero level set of φ2. Double edges are clearly visible all around the
wings of the butterfly. (c) Steady state solution after setting ν = 160 us-
ing the proposed regularization scheme, starting from the configuration
in (b). Double edges are completely disappeared. (d) Steady state so-
lution after setting ν = 160 using the traditional regularization scheme,

starting from the configuration in (b). Areas with the presence of dou-
ble edges are highlighted in red, while areas with missing edges are
circled in green. (e, f, g, h) Snapshots of the evolution using the pro-
posed regularization. Edges close to each other sense their reciprocal
presence and they evolve accordingly (in this case snapping onto each
other, see edges pointed by the arrows). (i, j, k, l) Snapshots of the
evolution using the traditional regularization. Contours shrink regard-
less of their reciprocal position
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present regardless of how large the area coefficient is (see
red circles). Finally snapshots of the evolution presented in
the bottom two rows exemplify the importance of guaran-
teeing Properties 1 and 2: With the proposed regularization,
contours sense each other and are able to snap onto each
other, removing spurious regions. On the other hand, con-
tours shrink irrespectively of their reciprocal position under
the traditional regularization process, which can have detri-
mental effects as shown by the final segmentation result in
Fig. 11(d).

5 Conclusion

In this paper we presented effective regularization tech-
niques for multiphase level set based image segmentation.
In particular, we reformulated the traditional length term
to penalize the effective length of the multiphase contour
and the area term to penalize half of the existing partitions.
Mathematically this yields regularization equations in which
the different level set functions involved in the segmenta-
tion process are coupled to each other, guaranteeing that the
evolution of one of them affects the evolution of the oth-
ers. In turn, this guarantees that Properties 1 and 2 are en-
forced. This is in contrast with traditional approaches, where
this coupling is granted only by the data term (i.e. the term
driving the segmentation), not in the regularization term. We
qualitatively and quantitatively demonstrated that the seg-
mentation results obtained using the proposed regularization
technique outperforms the ones obtained via the traditional
regularization.
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Appendix A: Existence of Minimizers

We now want to formally prove the existence of minimizers
for the proposed cost functional, when characteristic func-
tions are used in place of their mollified regularizers. We
now restrict our attention, without loss of generality, to the
two phases (4 regions) case. The N regions scenario can be
treated in a similar fashion. The functional F(χE1 , χE2) :
BV (Ω) × BV (Ω) �→ R that we are trying to minimize can
be written as

F (χE1 , χE2) = D(χE1 , χE2) + μL(χE1 , χE2)

+ νA(χE1 , χE2) (42)

where χE1 : Ω �→ R and χE2 : Ω �→ R are the characteristic
functions of the sets E1 and E2 of finite perimeter, which
therefore belong to the space of bounded variations BV (Ω).
D(χE1 , χE2) is the data term, defined along the lines of Chan

and Vese (2001) as

D(χE1 , χE2) =
∫

Ω

(u0 − c1)
2χE1χE2

+
∫

Ω

(u0 − c2)
2χE1(1 − χE2)

+
∫

Ω

(u0 − c3)
2(1 − χE1)χE2

+
∫

Ω

(u0 − c4)
2(1 − χE1)(1 − χE2) (43)

In order to define L(χE1 , χE2), we introduce ∂E1 as the
perimeter of set E1 and Π(∂E1) as the measure of the
perimeter. We can then write our proposed length term as

L(χE1 , χE2) = Π(∂E1) + Π(∂E2) − Π(∂E1 ∩ ∂E2) (44)

Similarly, in order to define A(χE1 , χE2) we introduce
Λ(E1) as the measure of the area of set E1. The proposed
area term becomes then

A(χE1 , χE2) = Λ(E1) + Λ(E2) − 2Λ(E1 ∩ E2) (45)

In proving the existence of the minimizer we proceed along
the lines of Chan and Vese (1998), using the following ba-
sic result regarding bounded variation spaces (Evans and
Gariepy 1992) (other similar ideas can be found in Chung
and Vese 2009).

Result 1 Consider the Banach space BV (Ω) endowed with
the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω) (46)

If (un)n≥1 is a bounded sequence in BV (Ω), then there ex-
ists a subsequence (unj ) of (un) and a function u ∈ BV (Ω),
such that unj → u strongly in L1(Ω) as nj → ∞, and

|Du| ≤ lim
nj →∞ inf |Dunj | (47)

If u and (un) are characteristic functions, i.e. u = χE and
(un) = (χn

E), then (47) reads in terms of perimeters as

Π(∂χE) ≤ lim
nj →∞ infΠ

(
∂χ

nj

E

)
(48)

We now prove the existence of the minimizer:

Theorem 1 If u0 ∈ L∞(Ω)4, then the following minimiza-
tion problem

inf
χE1 ,χE2

F(χE1 , χE2), [χE1 , χE2 ] ∈ BV (Ω) × BV (Ω)

χE1 ∈ {0,1}dx-a.e., χE2 ∈ {0,1}dx-a.e. (49)

has a solution.

4We can assume, without loss of generality, that the original image u0
is bounded, since it is the result of a sensor acquisition and therefore
its values are bound to be in the sensor range.
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Proof Let ([χn
E1

, χn
E2

])n≥1 be a minimizing sequence of F ,
i.e.

inf
χE1 ,χE2

F (χE1, χE2) = lim
n→∞ F

(
χn

E1
, χn

E2

)
(50)

Then there exist a constant M > 0 such that (we can see in
fact that by choosing χn

E1
≡ 1 and χn

E2
≡ 1 the functional is

bounded by ‖u0‖L2(Ω))

F
(
χn

E1
, χn

E2

) ≤ M (51)

By making use of (42), where all three term are positive, we
can also write

L
(
χn

E1
, χn

E2

) ≤ M (52)

By construction, see (44), L(χn
E1

, χn
E2

) is also bounded from
below by:

max
(
Π

(
E1

n
)
,Π

(
En

2

)) ≤ L
(
χn

E1
, χn

E2

)
(53)

which leads to the desired bound on the two measures of
perimeters

max
(
Π

(
En

1

)
,Π

(
En

2

)) ≤ M (54)

The two areas are bounded by the area of the domain, there-
fore we can write

max
(
Λ

(
En

1

)
,Λ

(
En

2

))

= max
(‖χn

E1
‖L1(Ω),‖χn

E2
‖L1(Ω)

) ≤ |Ω| (55)

We demonstrated that the sequence [χn
E1

, χn
E2

] ∈ BV (Ω) ×
BV (Ω) and therefore, by virtue of Result 1, we have the
existence of a minimizer [χE1 , χE2 ] ∈ BV (Ω) × BV (Ω).
Hence χE1 and χE2 are two minimizers of F in the space of
characteristic functions of finite perimeter. �

Appendix B: Behavior in the Limit for ε → 0

We now want to formally prove that for ε → 0 the length
term of the cost functional (L(χE1 , χE2)) becomes the mea-
sure (in a measure theoretic sense) of the contour of the
multi-phase level set model, as claimed in the paper. First
of all, we formulate the length cost functional in (44) in
terms of the two level set functions (φ1 and φ2) and by using
mollified Heaviside functions. We will describe a generic
mollified Hε as the convolution between H and a molli-
fier ηε (positive, even and monotonically decreasing away
from 0),5 where ε is the parameter that regulates the smooth-

5Note that these assumptions have been made to simplify the notation
of this proof, but similar considerations can be extended to other types
of mollifiers as well.

ness of the mollifier (limε→0 ηε = δ). Hence we can write

Lε(φ1, φ2)

=
∫

Ω

∣∣∇(
(ηε ∗ H)(φ1)

)∣∣ +
∫

Ω

∣∣∇(
(ηε ∗ H)(φ2)

)∣∣

−
∫

Ω

γ
∣∣∇(

(ηε ∗ H)(φ1)
)∣∣∣∣∇(

(ηε ∗ H)(φ2)
)∣∣ (56)

where γ is chosen as a normalizing factor such that the func-
tion

Cε

(
φ2(x, y)

) = γ
∣∣∇(

(ηε ∗ H)
(
φ2(x, y)

))∣∣ (57)

attains value 1 on the zero level set of φ2, that is

Cε

(
φ2(x, y)

) = 1 if φ2(x, y) = 0 (58)

In this way, in the limit, the function

χ∂E2 = lim
ε→0

Cε = lim
ε→0

γ
∣∣∇(ηε ∗ χE2)

∣∣ (59)

becomes the indicator function for the boundary of the set
E2 (i.e. the subset of Ω , where φ2 = 0).6 Now we can use
the results in Evans and Gariepy (1992) to show that in the
limit

lim
ε→0

Lε(φ1, φ2) =
∫

Ω

|∇H(φ1)| +
∫

Ω

|∇H(φ2)|

−
∫

Ω∩∂E2

|∇H(φ1)| (61)

We can notice in fact how the same measure theoretical
properties (demonstrated in Evans and Gariepy 1992 and ex-
ploited by Chan and Vese 1998, 2001) that apply to the first
two integrals apply also to the last one, which is simply dif-
fering from the first two in that it is computed on a subset of
the domain Ω .

We now prove that the method is stable for ε → 0. We
will make use of the same compactness results that was used
to prove the existence of minimizers. We would like to point
out that this proof was not present in Chan and Vese (1998,
2001), but we feel it can be important to complete the argu-
ment.

Define

hε
1 = (ηε ∗ H)(φ1) and hε

2 = (ηε ∗ H)(φ2) (62)

6If we assume |∇φ| = 1, then γ becomes a constant and its explicit
expression can be written as

γ = 1

(ηε ∗ H)′(0)
(60)

We would like to point out the choice of γ = 1/δε(0), made in the
paper, is a particular case of (60).
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We can now write the mollified versions of (43), (44) and
(45) in terms of hε

1 and hε
2.

Dε

(
hε

1, h
ε
2

)

=
∫

Ω

(u0 − c1)
2hε

1h
ε
2 +

∫

Ω

(u0 − c2)
2hε

1

(
1 − hε

2

)

+
∫

Ω

(u0 − c3)
2(1 − hε

1

)
hε

2

+
∫

Ω

(u0 − c4)
2(1 − hε

1

)(
1 − hε

2

)
(63)

Lε

(
hε

1, h
ε
2

) =
∫

Ω

|∇hε
1| +

∫

Ω

|∇hε
2| −

∫

Ω

γ |∇hε
1||∇hε

2|
(64)

Aε

(
hε

1, h
ε
2

) =
∫

Ω

hε
1 +

∫

Ω

hε
2 − 2

∫

Ω

hε
1h

ε
2 (65)

Therefore

Fε

(
hε

1, h
ε
2

) = Dε

(
hε

1, h
ε
2

) + Lε

(
hε

1, h
ε
2

) + Aε

(
hε

1, h
ε
2

)
(66)

Finally let
[
gε

1, g
ε
2

] = arg inf
hε

1,h
ε
2

Fε

(
hε

1, h
ε
2

)
(67)

The existence of a minimizer for (67) can be demonstrated
along the lines of Theorem 1.

Theorem 2 The sequence ([g1/n

1 , g
1/n

2 ])n≥1 ∈ BV (Ω) ×
BV (Ω) admits a subsequence ([g1/nj

1 , g
1/nj

2 ])n≥1 ∈
BV (Ω) × BV (Ω) such that, there exists a vector [g1, g2]
bounded in BV (Ω) × BV (Ω) such that

([
g

1/nj

1 , g
1/nj

2

]) → [g1, g2] (68)

strongly in L1(Ω) as nj → ∞,

|Dg1| ≤ lim
nj →∞ inf

∣∣Dh
1/nj

1

∣∣ (69)

and

|Dg2| ≤ lim
nj →∞ inf

∣∣Dh
1/nj

2

∣∣ (70)

Proof We need to show that the sequence ([g1/n

1 , g
1/n

2 ])n≥1

is bounded in BV (Ω) × BV (Ω) (a bound independent
of n), then the proof follows by applying Result 1.

We begin by noting that choosing h
1/n

1 ≡ 1 and h
1/n

2 ≡ 1
we have

Fε

(
h

1/n

1 , h
1/n

2

) ≤ ‖u0‖L2(Ω) = M (71)

since Lε = 0 and Aε = 0. Therefore, in light of (67), we
have

Fε

(
g

1/n

1 , g
1/n

2

) ≤ M (72)

from which we deduce bounds on the length and area terms
as well (since all three terms in (66) are positive)

Lε

(
g

1/n

1 , g
1/n

2

) ≤ M (73)

Aε

(
g

1/n

1 , g
1/n

2

) ≤ M (74)

Therefore we have

max
(|Dg

1/n

1 |(Ω), |Dg
1/n

2 |(Ω)
) ≤ M (75)

max
(||g1/n

1 ||L1(Ω), ||g1/n

2 ||L1(Ω)

) ≤ M (76)

which demonstrates that the sequence ([g1/n

1 , g
1/n

2 ])n≥1 is
bounded in BV (Ω) × BV (Ω) and hence completes the
proof. �
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