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Detecting computational states of a program, where safety requirements have been violated, is the 

main task of a software tester. We focus on three critical safety requirements. First, finding 

maximum stack usage in event-based systems, in order to avoid stack overflow. Second and third, 

absence of data race and deadlock in parallel programs, respectively. We will present how 

particular states of computation, where the above mentioned requirement are violated, is reached. 

Directed testing has shown considerable success in both academy and industry. However, applying 

directed testing’s core form on programming paradigms, with a more complicated control flow is 

not nearly as successful as on sequential programs. The goal of this dissertation is to address how 

we can enhance directed testing to perform well with event-driven and parallel programs. 

For event-driven software we present a new approach, termed event-based directed testing. Our 

approach combines aspects of random testing and directed testing to generate challenging event 

sequences, for testing event-driven software. 

Our experiments show, we achieve significantly improved branch coverage and larger maximum 

stack sizes. 



 

xi 
 

For parallel programs, we also present a new dynamic technique to detect data races and deadlocks. 

Our technique combines previous work on concolic execution with a new constraint-based 

approach to drive an execution towards a concurrency bug candidate. Our technique has found 

almost twice as many real concurrency bugs as the four previous techniques combined. 
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CHAPTER 1 

Introduction 

 

As software systems become more complicated, checking their correctness becomes a 

tedious task. Software safety is a requirement which is a concern for all industries, but 

few address it correctly. We focus on three important safety requirements. First, focus on 

finding maximum stack usage in event-based systems to avoid stack overflow, and 

second, absence of data race, and third, absence of deadlock in parallel programs. The 

goal of this dissertation is to show how to reach to particular states during computation 

where a safety requirement is violated. Thus, we will show we can enhance directed 

testing to work well with event-driven and parallel programs. 

1.1. Analysis of Maximum Stack Size 
Testing event-driven programming has found pervasive acceptance, from high-performance 

servers to embedded systems, as an efficient method for interacting with a complex world. 

However, loose coupling of event handlers obscures control flow and makes dependencies hard 

to detect, leading to subtle bugs. Event-driven software on resource-constrained devices has the 

additional challenge that if swamped with events; the software may run out of memory. Thus, 

estimates of the maximum stack size can be of paramount importance [1]. 

For example, a poor estimate led to software failure and closure of a German railway station 

in 1995. Specifically, the designers had estimated that 3,500 bytes of stack space would be 

sufficient but actually 4,000 bytes were needed. As a result, the railroad station's computer 

experienced stack overflow and failed [2]. 

Intuitively, the maximum stack size during a run is the high water mark or the peak value of 

the stack pointer. We focus on a much-studied question about stack space for event-driven 

software: 

 

Q: what is the maximum stack size across all inputs? 

 

A programmer can use the answer to ensure that sufficient stack memory is available for a 

particular application. Additionally, the programmer can use the smallest or cheapest memory 

unit that has sufficient capacity and thereby help control size and cost. This is welcome for many 

event-driven applications that run in embedded systems for which physical size and hardware 

cost are major concerns. 

Like most other interesting questions about programs, the above question is undecidable. 

Ideally, we would answer the above question by running the program on all inputs, possibly 

indefinitely in case of nontermination. Each run has a maximum stack size and we can then take 

the maximum across all runs to get the answer to the question. The result is the true maximum 

stack size. 

The above question can be answered approximately by testing (running the program) and by 

static analysis (analyzing the program text). A testing approach underestimates the true answer 
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by finding the maximum stack size for some runs on some inputs. A static analysis overestimates 

the ideal answer by working with conservative abstractions of program constructs and values. In 

slogan form, we have the following relationships for maximum stack size: 

𝑡𝑒𝑠𝑡𝑒𝑑 ≤ 𝑡𝑟𝑢𝑒 ≤ 𝑠𝑡𝑎𝑡𝑖𝑐 
 

How close are tested and static? In some situations no nontrivial sound static analysis exists, 

and we have only the trivial sound static analysis that says that the stack is unbounded. A typical 

such scenario is an embedded system for which some of the event-driven software is written in 

assembly code. The assembly code usually contains instructions that add or subtract from the 

stack pointer, to enable the stack to shrink or grow. Can current nontrivial sound static analyses 

handle such instructions? The answer is Yes if the instructions add or subtract constants=; while 

the answer is No if the instructions add or subtract the contents of a register. If no nontrivial 

sound static analysis exists, then a programmer must use the best testing approach, and perhaps 

take a chance with an unsound static analysis. Such techniques are inherently unsafe and a 

standard engineering solution is to over-provision: if the testing approach estimates the 

maximum stack size to be n, then go with memory of size 2n, for example, though even 2n may 

be insufficient. 

If a sound static analysis exists, then we can use it to safely allocate the estimated amount of 

memory and be sure that no stack overflow will occur. Ideally we can find an optimal static 

analysis that always produces the true maximum stack size. However, static analysis must 

terminate, including for nonterminating programs, so usually static analysis is forced to be 

conservative and nonoptimal. For maximum stack size of event-driven software, the state-of-the-

art static analysis was presented in [3], [4] (See also [5], [6], [4] ) and has been implemented in 

multiple tools. In this paper we address the following question. 

 

Q: how good is the state-of-the-art static analysis of maximum stack size? 

 

We use testing to answer the above question. We have done an experiment with the state-of-

the-art testing approach [7] (see also [6]) on benchmarks that are event-driven assembly code 

programs. In those benchmarks, all arithmetic on the stack pointer either adds or subtracts 

constants, according to our manual inspection, so the static analysis is sound, we believe. We 

found a big gap between the estimates: the testing approach achieves a maximum stack size that 

on average is only 67 percent of that achieved by static analysis. Our benchmark suite consists of 

software for sensor nodes and proved to be a major challenge for the testing approach. For a 

different benchmark suite, Regehr [7] found that testing and static analysis are much closer. 

Our experiment raises a classical question that arises for a variety of problems that can be 

addressed with both testing and static analysis. Is the gap mostly due to weak testing or overly 

conservative static analysis? The answer is that better testing is possible and that the static 

analysis is near optimal for our benchmarks. We make those points by presenting two new 

testing approaches that almost match the static analysis. The first approach is called DTall and 

achieves a maximum stack size that on average is within 99 percent of that achieved by static 

analysis. The second approach is called VICE and achieves a maximum stack size that on 

average is within 94 percent of that achieved by static analysis. VICE is two orders of magnitude 

faster than DTall. Our results show that the state-of-the-art static analysis produces excellent 

estimates of maximum stack size. 
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1.2. Data Race Detection 
Concurrent programming with shared memory offers both the benefit of efficient execution 

and the pitfall of data races. Efficiency can be achieved when we let multiple processors run in 

parallel and exchange data via the shared memory. A data race arises when two processes 

simultaneously access a shared memory location and at least one of the two accesses is a write 

operation. Data races often result in hard-to-detects bugs and usually the programmers of 

concurrent software should try to avoid data races. 

One reason for why data races are problematic can be found in a seminal paper by Adve, 

Hill, Miller, and Netzer [8]. Their observation is that on suitable hardware, every execution of a 

data-race-free program is sequentially consistent. Sequential consistency was introduced by 

Lamport in 1979 and means that “the result of any execution is the same as if the operations of 

all the processors were executed in some sequential order, and the operations of each individual 

processor appear in this sequence in the order specified by its program” [9]. Sequential 

consistency provides a useful memory model that simplifies the task of producing correct 

concurrent programs. If programmers can avoid data races, they can use sequential consistency 

as their memory model. 

Researchers have developed many techniques to help programmers detect data races. Some 

of those techniques require program annotations that typically must be supplied by a 

programmer; examples include [10], [11]. Other techniques work with unannotated programs 

and thus they are easier to use. In this paper we focus on techniques that work with unannotated 

Java programs. We use 23 open-source benchmarks that have a total of more than 4.5 million 

lines of code, which we use “straight of the box” without annotations. 

We can divide race-detection techniques into three categories: static, dynamic, and hybrid. A 

static technique examines the text of a program without running it; a dynamic technique runs a 

program, possibly multiple times, and gathers information during those executions; and a hybrid 

technique does both. 

The advantage of a static technique is that if it is sound, then it will report every possible 

race, though it may also report false positives. We will show via experiments that the best 

existing static technique reports a large number of false positives that would be daunting to 

examine by hand. For our benchmarks, the Chord tool reports total 127136 data races. So, 

current static techniques are of little use to working programmers. 

The advantage of a dynamic technique is that it reports only real races. For example, for our 

benchmarks, the FastTrack, Goldilocks, CalFuzzer, and Pacer tools together report total 304 data 

races. So, current dynamic techniques give programmers valuable help, yet our experiments 

show that they leave many races to be discovered. 

The advantage of a hybrid technique is that it may be able to combine the best of both 

worlds, static and dynamic. The best existing hybrid technique appears to a technique by 

O'Callahan and Choi [12] that we call Hybrid, which for our benchmarks report a total 405 data 

races. This technique may produce both false positives and false negatives, yet the tool provides 

programmers with output of a fairly manageable size. 

In this study we focus on dynamic techniques. We will present a dynamic technique that 

reports significantly more real races than the previous techniques. 

The main shortcoming of the existing dynamic techniques is that when they search for an 

execution that lead to a real race, they often come up empty handed. We present a novel 

approach to execution search that gives much better results. The central concept in our approach 

is the standard notion of schedule, which is a sequence of events that must be executed in order. 
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The Challenge. Search for an execution that leads to a real race. 

Our Results. We present race directed scheduling that for given a race candidate searches for an 

input and a schedule that lead to the race. The search iterates a combination of concolic 

execution and schedule improvement. 

We have implemented race directed scheduling in a tool that does race detection for Java 

programs. As requested by the program chair, we use a pseudonym for our tool's name; we will 

refer to our tool as Racageddon in this dissertation. 

We use an existing hybrid technique to produce a manageable number of race candidates. 

For our benchmarks, our tool found 72 real races that were missed by the best existing 

dynamic techniques. Among the 304 real races found by the existing dynamic techniques, our 

technique found 272 of them. Our tool is fully automatic and its user needs no expertise on data 

races. Once our tool reports a race, it can replay the execution that leads to the race. 

In summary, the two main contributions of this paper are:  

 An effective and easy-to-use tool for dynamic race detection and  

 A large-scale experimental comparison of seven race detectors.  
1.3. Deadlock Detection 
Java has a concurrent programming model with threads, shared memory, and locks. The 

shared memory enables threads to exchange data efficiently, and the locks can help control 

memory access and prevent concurrency bugs such as data races. 

In Java, the statement: 

Synchronized(e) {s} 

first evaluates the expression 𝑒 to an object, then acquires the lock of that object, then 

executes the statement 𝑠, and finally releases the lock. 

Locks enable deadlocks, which can happen when two or more threads wait on each other 

forever [13]. For example, suppose one thread executes: 

 

Synchronized(A) { Synchronized(B) {} … } 
 

while another thread concurrently executes: 

 

Synchronized(B) { Synchronized(A) {} … } 

 

One possible schedule of the program lets the first thread acquire the lock of A and lets the 

other thread acquire the lock of B. Now the program is deadlocked: the first thread waits for the 

lock of B, while the second thread waits for the lock of A. 

Usually a deadlock is a bug and programmers should avoid deadlocks. However, 

programmers may make mistakes so we have a bug-finding problem: provide tool support to find 

as many deadlocks as possible in a given program. 

Researchers have developed many techniques to help find deadlocks. Some of those 

techniques require program annotations that typically must be supplied by a programmer; 

examples include [14] [15] [16] [17] [18] [19] [20] [21] [22]. Other techniques work with 

unannotated programs and thus they are easier to use. In this section we focus on techniques that 
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work with unannotated Java programs. We use 22 open-source benchmarks that have a total of 

more than 4.5 million lines of code, which we use “straight of the box” without annotations. 

We can divide deadlock-detection techniques into three categories: static, dynamic, and 

hybrid. A static technique examines the text of a program without running it. The best static tool 

is Chord [23] [24] which for our benchmarks reports 570 deadlocks, which include both false 

positives and false negatives. A dynamic technique gathers information about a program during 

one or more runs. Until now, four of best dynamic tools are DeadlockFuzzer [17], IBM ConTest 

[25] [26], Jcarder [27] and Java HotSpot [28], which together for our benchmarks report 75 real 

deadlocks. Finally, hybrid techniques may be able to combine the best of both worlds, static and 

dynamic. One of the best hybrid tools is GoodLock [29] which is highly efficient and for our 

benchmarks report a total 1275 deadlocks, which may include both false positives and false 

negatives. 

In this section we focus on dynamic techniques. The advantage of a dynamic technique is 

that it reports only real deadlocks. The main shortcoming of the previous dynamic techniques is 

that they mostly find deadlocks that occur after few steps of computation. Our experiments show 

that those techniques leave undetected many deadlocks that occur after one million steps of 

computations. We believe that this shortcoming stems from their approach to search for 

executable schedules. A schedule is a sequence of events that must be executed in order. A real 

deadlock is a combination of deadlock pattern, such as the one in the example above, and an 

executable schedule that leads to the deadlock. If that executable schedule is more than a million 

step of computation, then we refer to the deadlock as a rare deadlock. We will show how to do a 

better search for executable schedules and how to find rare deadlocks. 

The challenge. Help programmers find rare deadlocks. 

Our result. We present a technique that for a deadlock candidate searches for an input and a 

schedule that lead to the deadlock. 

We use GoodLock [29] to quickly produce a manageable number of deadlock candidates. 

Our technique combines previous work on concolic execution with a new constraint-based 

approach to drive an execution towards a deadlock candidate. We have implemented our 

technique in a tool called ConLock that finds real deadlocks in Java programs. For our 

benchmarks, our tool found almost twice as many real deadlocks as four previous techniques 

combined. Our technique is particularly good at finding rare deadlocks: it found 33 deadlocks 

that happened after more than one million computation steps, including 28 new deadlocks. Our 

tool is fully automatic and its user needs no expertise on deadlocks. Once our tool reports a 

deadlock, it can replay the execution that leads to the deadlock. 

In summary, the two main contributions of this study are:  

 An effective and easy-to-use tool for dynamic deadlock detection and  

 A large-scale experimental comparison of seven deadlock detectors.  

 

1.4. Contributions 
The event-Based directed testing algorithm has been implemented in VICE, a tool that 

automatically and accurately finds maximum stack usage of Virgil programs. The research 

contribution in VICE is “Testing Versus Static Analysis of Maximum Stack Size” [30]. 

The race directed scheduling technique has been implemented in Racageddon, a tool that 

automatically find data races in Java programs. Research contribution in Racageddon is “Race 

directed Scheduling of Concurrent Programs” [31]. 
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1.5. Outline 
In chapter 2 we discuss the core form of directed testing and its tools along with their 

strengths and limitations. We end the chapter with directed testing’s shortcomings and strengths. 

In chapter three we introduce event-based directed testing, and its application on finding 

maximum stack size. In chapter four we introduce race directed scheduling, a technique to find 

data races automatically. In chapter five we show how we could enhance directed testing to find 

rare deadlocks in Java programs. 
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CHAPTER 2 

State-of-Art Testing of Sequential Programs 

 

Software Testing has been experiencing its best practice for years. However, except few 

large corporations such as Microsoft (since 79% of developers also write test suites [32]) 

adoption of testing in industry is still poor. Automatic Testing and in particular automatic 

test input generation has received increased attention in both academy and industry. The 

main reason is most software suffers from low pressure, low quality, or outdated test 

suits, due to high cost of software testing [33].  In these situations automatic testing of 

software can provide extreme value.  

2.1. Background 
Despite progresses in Static Analysis, Symbolic Execution, and Model Checking, Software 

Testing, is still the predominant technique to ensure software reliability. However, testing still 

accounts for 50-80% of overall cost of software development [34].  

Many algorithms have been introduced to improve software testing, yet in practice; it is 

challenging, expensive, and rarely performed properly. In fact, to test a program test engineers 

develop a test harness to simulate the behavior of the program’s environment. More development 

is also needed to verify the functional correctness of a program. For example, adding assertion 

codes to check the program’s output. Hand-written tests are error-prone, expensive, and not 

exhaustive. Consequently, many errors that should have been reported during early stages of 

testing remain hidden until software deployment.  

Recent achievements in amplifying the power of computers, has recalled for automated 

testing. Random Testing is a proven technique for finding programs’ bugs. It can automatically 

generate many random test cases, and execute them to explore different paths of the program to 

find errors. Studies show random testing is more effective in contrast with manual testing [32]. It 

is an appealing technique, since it is fast, scalable, inexpensive, and has no space overhead. 

Nonetheless, random testing cannot confirm the correctness of a program, and suffers from poor 

code coverage. Therefore, it can test only a limited portion of all program’s testable paths, for 

example, the probability of reaching to the 𝑡ℎ𝑒𝑛 branch in the “𝑖𝑓(𝑥 == 5) 𝑡ℎ𝑒𝑛 …” is 
1

232 if 𝑥 

is a 4 bytes integer program input.  

Exhaustive Enumeration can also generate huge amount of test cases automatically, but many 

of them are meaningless, and cannot even take the program beyond the initialization phase.  

Further studies introduced Constraint/Specification Based Exhaustive Enumeration. It can 

generate all valid inputs that may satisfy a program’s constraints. Even though it generates data 

inputs selectively, yet many equivalent and redundant inputs test the same behavior of the 

program. For instance, assume a small program with four inputs all of which appear in at least 

one conditional. The program needs to exhaustively execute (𝟐𝟑𝟐)𝟒 =  𝟐𝟏𝟐𝟖 combinations to 

cover all valid input. This is extremely time-consuming even for a program with a limited 

number of inputs. In fact, McMinn [35] showed testing any reasonably-sized program with 

exhaustive enumeration is infeasible. 

Significant problems in random testing and exhaustive enumeration motivated studies for 

Symbolic Execution. Instead of generating concrete data inputs, like integer, symbolic execution 
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produces symbols that represent values. The program runs normally except variables may have a 

value in a symbolic form. A Constraint Solver or a Theorem Prover is used later to solve 

constraints which are collected through the execution, and later generates test cases. Symbolic 

execution provides better code coverage and avoids redundant test cases. However, current 

constraint solvers are not powerful enough to solve complex constraints, not even normal 

arithmetic formulas like(𝒚 > 𝒙𝟑 % 𝟐𝟏) . 𝟓 ≠ 𝟒𝟎. Given that, in large or complex program, 

collecting constraints become intractable, and solving them would be computationally expensive 

and time consuming. 

 

2.2. Directed Testing Era 
Directed Testing (A.K.A Concolic Testing: the term was suggested by Koushik Sen as a 

combination of CONCrete and symbOLIC execution) has received a great attention recently. It 

addresses the mentioned challenges associated with random testing and symbolic execution, and 

opened new windows for providing efficient and automated test generation tools.  

Directed testing enhances symbolic execution by running a program symbolically and 

concretely at the same time. A key feature in directed testing is whenever it cannot solve a 

constraint, symbolic values in the constraint are replaced by random concrete values. This will 

prevent discontinuation of symbolic execution, when the constraint solver encounters an 

undecidable constraint.  

To the best of our knowledge combining concrete and symbolic execution (with user 

feedback) was initially suggested by Larson and Austin [36]. In their method, software testers 

provide concrete values instead of a random input generator or a constraint solver. Moreover, 

only solvable constraints would be collected and later will be handed over to the solver. This 

lowers the path coverage, but decreases the computational cost.  

Later, Godfroid et al. pioneered the first directed testing tool called DART (Directed 

Automated Random Testing) [37]. In fact DART combined three algorithms: (1) Automated 

extraction of the program interface from source code , (2) Automated generation of a test driver 

to produce random test inputs, and (3) Directed generation of test inputs. DART’s experimental 

results suggest is has low space overhead, and improves code coverage. However, it can only 

handle constraints with integer types, so to find a new path, DART negates the last encountered 

constraint. DART, also cannot collect and solve constraints generated by a program e.g. dynamic 

data structure and pointer operations.  

CUTE and  jCUTE [38], and CREST [39] are further concolic tools introduced by Koushik 

Sen. Unlike DART, CUTE cannot automatically extract the program’s interface, while it is 

equipped with a more efficient constraint solver that  could handle complex data structure with 

pointers and dynamic data types. CUTE does not generate test inputs selectively; inputs are 

generated randomly and purified through rounds of executions. This lowers the coverage in 

practice.  

Further studies to improve the code coverage in concolic tools led to Hybrid Concolic 

Testing [40], and CESE (Concolic Execution with Selective Enumeration). Hybrid Concolic 

Testing combines random and concolic testing to expand the depth and width of the program 

state space exploration. It first tests the program randomly to improve the code coverage. Once 

random testing no longer has success in exploring new paths, concolic testing takes control of 

execution from the current state of the program. Consequently, Hybrid Concolic Testing uses 

random testing to reach deep states of the program with less execution, and uses concolic 

execution to explore new paths.  
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CESE is an automatic test input generator that interleaves selective enumeration with 

directed symbolic test generation. The algorithm initially converts the program input grammar to 

symbolic grammar. It furthermore, uses enumerative techniques to exhaustively enumerate all 

valid inputs which is accepted by the symbolic grammar. Finally, CESE uses a symbolic test 

generator to produce these enumerated symbolic inputs and runs them. Consequently, each 

CESE’s execution round is faster than symbolic execution.  

Recently, LIME concolic tool [41] is developed in Helsinki University. The main 

improvements in LIME over existing concolic tool like jCUTE are the following:  

1. The use of bitvector SMT solver Boolector [42] makes the symbolic execution more 

precise as integers are not considered unbounded.  

2. The twin class hierarchy instrumentation approach of LIME allows core classes to be 

instrumented. 

3. LIME architecture supports distributed testing. 

 

2.3. Directed Testing’s Limitations and Promises 
Applying directed testing on classic sequential programs has showed great success in both 

research and practice (For additional information see C. Pasareanu survey [43]). The idea has 

become popular enough to motivate its applications in various areas: database [44], web 

application servers [45] and clients [46], mobile sensor network [47], network card device driver 

[48].  However, in most of these works researchers exploited the directed testing core form and 

utilize it in a new algorithm to find bugs in the corresponding applications. The reason is using 

classical directed testing on more complicated program paradigms is not as successful as using it 

on sequential programs. Our experiments, confirms the usage directed testing’s core form in 

event-driven and parallel programs, not to be as successful as it was promised.  

In event-driven software, our evaluations showed traditional directed testing is only as good 

as genetic algorithm [7] in terms of code coverage, and it could explore 60% of benchmark’s 

code in average. Directed testing also showed poor performance in computing program’s 

functional requirements such finding maximum stack usage. We note that the directed testing 

approach achieves a maximum stack size that is only 67 percent of that achieved by static 

analysis.  

K.Sen et al. [38] reported the same unfortunate experience in using traditional directed 

testing on parallel programs. Beside, our experiments also approve that traditional directed 

testing could only detect limited number of concurrency bugs like data races and deadlocks.  

Our preliminary experiments show a gap to explore for enhancing directed testing. On the 

other hand other studies suggested that directed testing can be exploited to different 

programming paradigms.  In the next three chapters we explain in detail how we can improve 

core form of directed testing to efficiently and accurately handle problems we defined in the 

previous chapter. 
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CHAPTER 3 

Directed Testing of Event-Based Software 

 

For event-driven software on resource-constrained devices, estimates of the maximum 

stack size can be of paramount importance. For example, a poor estimate led to software 

failure and closure of a German railway station in 1995. Static analysis may produce a 

safe estimate but how good is it? In this paper we use testing to evaluate the state-of-the-

art static analysis of maximum stack size for event-driven assembly code. First we note 

that the state-of-the-art testing approach achieves a maximum stack size that is only 67 

percent of that achieved by static analysis. Then we present better testing approaches and 

use them to demonstrate that the static analysis is near optimal for our benchmarks. Our 

first testing approach achieves a maximum stack size that on average is within 99 percent 

of that achieved by static analysis, while the second approach achieves 94 percent and is 

two orders of magnitude faster. Our results show that the state-of-the-art static analysis 

produces excellent estimates of maximum stack size.  

3.1. Event Sequence in Event-Driven Software 
The classical notion of a program first consumes an input, then computes, and finally 

produces an output. In contrast, an event-based program receives its input via events during the 

program execution. The task of the event-based program is to process those events. 

For example, our benchmarks run on sensor nodes (Berkeley Motes) and receive events that 

are generated by devices that are connected to the CPU. Among those devices are a timer, an 

analog-to-digital converter (ADC), a universal synchronous asynchronous receiver/transmitter 

(USART) Atmel-usart10], and a serial peripheral interface bus (SPI) [49]. The sensor node can 

use the timer to wake itself up periodically, use the ADC to convert sensor data to digital form, 

use the USART for serial communication with terminals, and use the SPI to communicate on a 

synchronous serial data link with external devices in master or slave mode. 

Event-based programs such as sensor-network software are usually designed to run 

indefinitely (or until the battery dies). Thus, events can keep coming. Notice though that a finite 

test run consumes only a finite number of events. 

Each event consists of a name and a value. The name specifies the source of the event and 

also the event handler that will process the event. The value is input to the program. 

From the program's viewpoint, consecutive events have a wait time between them. This wait 

time can be completely arbitrary and depend on uncoordinated devices beyond the programs 

control. However, for a particular run we can record both the events and the wait times. Or, for 

the purpose of planning a test run, we can first generate an event sequence and then use that to 

test the program. 

In this chapter, we represent an event sequence as a sequence of triples: 

(𝑒𝑣𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑒𝑣𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒, 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒) 
The idea is to wait the number of milliseconds specified by wait time and then fire an event 

called event name and paired with event value. 

For example, here is our representation of an event sequence with four events: 
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[(main, 673,100), (m_intr, −8634756,200), (main, −991,400), (m_intr, 34,800)] 
The first event (main, 673,100) will occur after 100 milliseconds, the second event 

(m_intr, −8634756,200) will occur after 300 milliseconds, the third event (main, −991,400) 

will occur after 700 milliseconds, and the fourth event (m_intr, 34,800) will occur after 1,500 

milliseconds. 

Let us return to the evaluation of the state-of-the-art static analysis of maximum stack size. 

Our goal is to find an event sequence that achieves a large maximum stack size. For creating a 

suite of candidate event sequences, a designer must decide on the number of event sequences, the 

number of events in each event sequence, the event names, the event values, and the wait times. 

 

3.2. Seven Testing Approaches 
We now present seven testing approaches that all automatically test event-driven software 

without a human in the loop. Testing approaches 1-4 are from previous work, while 5-7 are new. 

How to determine the number of events in each event sequence. Our benchmarks work 

with 2--5 event handlers. For simplicity we want every event sequence for every benchmark to 

have the same number of events. We determined the number of events via the following 

preliminary experiment that anyone can repeat for any benchmark suite. First we noted that the 

number of events for our benchmark suite should be at least 5 such that we can hope to exercise 

every handler during a single run. Second we observed that more events may exercise longer 

program paths. The question is: when does an increase of the number of events begin to produce 

diminishing returns? We use testing approach 1 (see below for details) to run experiments with 

different numbers of events in each event sequence. We doubled the number of events, doubled 

it again, and so on, until we saw no major improvement in maximum stack size. We found that 

40 events in each event sequence appears to be a good number for our benchmarks so all our 

experiments use event sequences with 40 events. 

Now we must generate event sequences that each contains 40 event names, 40 event values, 

and 40 wait times. 

How to determine samples of wait times. Four of the testing approaches use samples of the 

wait times. We chose to fix three different samples and use them across all those four testing 

approaches. The number three is somewhat arbitrary; we wanted a number greater than one to 

give diversity in the experiments yet small enough that our experiments could finish in a 

reasonable time. We determined the three particular samples via the following preliminary 

experiment that anyone can repeat for any benchmark suite. For each benchmark we ran each 

event handler in isolation to determine the worst-case time to execute any handler alone (in any 

of the benchmarks). That worst-case time is the longest time any single handler may be able to 

block other handlers from running. Once we had that number, we divided the time interval from 

0 to that number into three equally sized intervals. Finally, from each of those three intervals we 

sampled a wait time using a uniform distribution. 

We will use the numbering (1-7) of the approaches throughout the paper. Those seven 

approaches span a wide variety of techniques that one might try. Ultimately, testing approach 7 

is the best we are able to do given a reasonable amount of time. Testing approaches 4-6 can be 

understood as restrictions of testing approach 7. 

Testing approach 1 is a form of random testing that tries 3,000 event sequences based on 

randomly chosen samples of event names and event values, and the three particular samples of 

wait times that we found as discussed above. The number 3,000 is somewhat arbitrary; we 
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wanted a number that was large enough to produce good results yet small enough that our 

experiments could finish in a reasonable time. 

We compare seven testing approaches: 

 

Approach # event names  event values  wait times  

 1 Sample  Sample  Sample  

 2 GA  GA  Sample  

 3 All  Sample  All  

 4 Sample  DT  All  

VICE: 5 SA-Tree  DT  Sample  

 6 All  DT  Sample  

DTall: 7 All  DT  All  

 

The experiments justified the use of three wait times because, somewhat surprisingly, we 

encountered some cases where a longer wait time leads to a larger stack size. This phenomenon 

stems from situations such as the following. Suppose we have reached a state S of the 

computation where a run of the handler for event B would reach a maximally large stack. 

Suppose also that in state S, events A and B have fired and the handlers for A and B are enabled. 

The hardware arbits deterministically which handler will run; and let us assume that the 

hardware chooses A. So, B will run later; possibly in a state with a smaller stack than state S so 

the run of B will fail to reach a maximally large stack. Can we get the hardware to choose B 

instead of A? One potential answer is: increase the wait time such that A isn't enabled in state S. 

Hence, a longer wait time has the potential to produce a larger stack size. Testing approach 1 is 

our base line; the other six approaches do better. 

Testing approach 2 is a genetic algorithm (GA) [7] that uses 20 generations of each 50 

event sequences, for each of the three chosen samples of wait times. We chose 20 generations 

and 50 event sequences because the total number of runs would be 20 × 50 × 3 = 3,000, which 

matches the number of runs with testing approach 1. The first generation has a randomly chosen 

sample of event names and event values. Each later generation hopes to improve on the previous 

one by swapping and mutating the event names and event values. Specifically we map a 

generation to a new generation in the following way. We first do 50 swaps of subsequences of 

length 25 among the event sequences. We then mutate one event in each event sequence; each 

mutation replaces the event name with a randomly chosen event name, and it replaces the event 

value with a randomly chosen event value. The fitness function is the maximum stack size 

observed during a run. 

Testing approach 3 is similar to testing approach 1 in that it samples the event values, but 

also goes much further in that it tries all combinations of i) all sequences (of length 40) of event 

names, and ii) all integer wait times in a wide interval. The interval of wait times is handler 

specific and defined as follows. The lower bound of the interval is 8 milliseconds; we found that 

going lower often caused testing to run out memory. The upper bound of the interval is the 

worst-case time to execute the handler for the previous event in isolation. Note that if the upper 

bound is high, trying all integer wait times in the interval may lead to a lengthy testing effort. In 

such a case, we recommend the use of a large number of samples drawn from a uniform 

distribution across the interval. 

Our preliminary experiment, mentioned in Section 1, tried testing approaches 1 and 2. When 

we found that the results from those approaches are suboptimal, we tried the much slower testing 
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approach 3 which gave just a small improvement. We concluded that we need a better approach 

to generate event values. 

Testing approaches 4--7 all use directed testing (DT) to generate event values. Directed 

testing [37] is based on concolic execution [50], which is a technique related to model checking 

[51], theorem proving [52], symbolic execution [53], and run-time monitoring and testing [11]. 

The idea of directed testing is to execute the code with concrete and symbolic values 

simultaneously, and to use the result to generate new inputs for another execution. The term 

concolic combines the words “concrete” and “symbolic”. In each round, the symbolic part of an 

execution collects constraints from each condition on the control-flow. Those constraints 

represent the executed control-flow path and they have the concrete input to the run as one of the 

possible solutions. We can now easily construct constraints for a different potential control-flow 

path by taking a prefix of the collected constraints and negating the last constraint from the 

prefix. Concolic execution will submit those new constraints to a constraint solver, and if they 

are solvable, the concolic execution will use the solution as concrete input to a new round of 

execution. In the first round, the input is chosen randomly. Experience shows that concolic 

execution achieves better branch coverage with fewer test cases than testing with random inputs. 

Testing approach 4 samples the event names, does DT to determine event values, and tries 

all integer wait times in a wide interval. In essence, testing approach 4 is standard DT applied to 

many combinations of event names and wait times. This gives a significant improvement over 

testing approach 3, yet falls well short of the results from static analysis. We conclude that we 

must do better to generate challenging event names. 

Testing approach 5 is the one we call VICE (Virgil Integrated Concolic Engine). Compared 

to testing approach 4, VICE handles event names more accurately and wait times less accurately. 

Specifically, VICE uses a novel technique called SA-Tree to generate event names, uses DT to 

determine event values and tries three samples of wait times. VICE is the fastest of the seven 

approaches and gives a good trade-off between testing time and quality of the results. 

Testing approach 6 does more than testing approach 5 by trying all sequences (of length 40) 

of event names, in addition to use DT to determine event values and to try three samples of wait 

times. However, the exhaustive coverage of the sequences of event names cannot improve on 

VICE because SA-Tree generates all event sequences that matter. We have included testing 

approach 6 in our experiments to demonstrate the large impact SA-Tree has on static analysis 

time. 

Testing approach 7 is the one we call DTall and is both the slowest and the closest to 

optimal. DTall uses DT to determine event values and it tries all combinations of i) all sequences 

(of length 40) of event names, and ii) all integer wait times in a wide interval. DTall comes close 

to the results from static analysis and demonstrates that the best known static analysis is near 

optimal for our benchmarks. 

 

3.3. VICE Example 
Overview. We now explain the initial portion of a run of VICE on the example program in 

Figure3.1, which is a simplified version of one of our benchmarks. The program has four if-

statements and two event handlers: main and m_intr. Our description of the example run is high 

level and ignores some details. VICE proceeds in phases that each consists of multiple rounds. 

We will explain just one phase with five rounds. During a phase, the event names stay 

unchanged in each round; the example uses the sequence of event names: (main, m_intr, main, 
m_intr). So, all event sequences in the example will have length four. 
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Round one. In the first round, the event sequence is random so we might begin with this 

event sequence:  

[(main, 673), (m_intr, −8634756), (main, −991), (m_intr, 34)] 
 

  (We don't list or discuss the wait times in this section.) The concolic execution will fire the 

first event and now let us say that before main calls transmitValue in line 09, the execution fires 

the second event and interrupts main. We now have two event handlers on the stack. Next m_intr 
calls transmitValue in line 24 and we collect the constraint 

𝑦 = 𝑎 

that relates the actual parameter (line 24) to the formal parameter (line 12). We use 𝑦 to denote a 

symbolic variable related to the program variable y, and similarly for 𝑎 and a. In the body of 

transmitValue in line 16, let us assume that the condition atomic_swap(sending,true) returns 

false. We collect constraints from the conditions of the if-statements provided that they are 

arithmetic or logical equations. So we don't collect any constraints from the if-statement in line 

16, while we do collect the constraint 

𝑎 > 2000 

from the if-statement in line 17 because (a>2000) failed: a has the value -8634756 so the 

execution doesn't take the branch that requires a > 2000. Now the second event handler 

terminates and we return to the first event handler. That event handler eventually calls 

transmitValue in line 09 and we collect the constraint 

𝑥 = 𝑎 

In the body of transmitValue we collect the same constraints as before and again the execution 

doesn't take the branch that requires a > 2000 because a has the value 673. Now the first event 

handler terminates. Later the execution fires the third and fourth events, and we can see that no 

new branches will be executed while handling those events. 

During the first round of concolic execution, the maximum stack size occurred when we had 

two event handlers on the stack and m_intr called transmitValue which, in turn, called 

atomic_swap. The execution took the same branch each time in lines 16 and 17, while it never 

reached line 27 or 29. 

After completion of the first round, we solve the three collected constraints above, pick a 

solution at random, and use it to help generate another event sequence. We use the four event-

handler names from before and pair each of them up with values from the picked solution to the 

constraints. For example, we may get the event sequence: 

[(main, 2833), (m_intr, 4756), (main, 77733), (m_intr, 6500)] 
 

Round two. In the second round of concolic execution, let us assume that the firing of events 

proceeds like in the first round. The execution will four times reach line 17 and find each time 

that the condition a > 2000 is satisfied. So, the execution will exercise a new branch and 

eventually call checks in line 18 and from the call collect the constraint 

𝑎 = 𝑠 ∧ 𝑏 = 𝑡 

In the body of checks we will in each of the four cases find that s is different from 5000 so 

also in this round the execution doesn't reach line 29. Along the way, we collect the constraint 

𝑠 = 5000 
In line 27. 
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During the second round of concolic execution, the maximum stack size occurred when the 

stack contained two event handlers and stack frames for transmitValue and checks. That 

maximum stack size is similar to the maximum stack size encountered in the first round. 

After completion of the second round, we find that the above constraints have a unique 

solution (𝑦 = 𝑥 = 𝑎 = 𝑠 = 5000 ) that we use to help generate another event sequence. And 

again, we use  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the four event-handler names from before and pair each of them up with values from the 

solution to the constraints. For example, we may get the event sequence 

 

00 program TestProgram { 

01  entrypoint main = TestMe.main; 

02  entrypoint timer_comp = testMe.m_intr; 

03  } 

04 

05  component TestMe { 

06   field sending:bool = false; 

07   method main(x:int):void { 

08    computeValue(); 

09    transmitValue(x); 

00   } 

11   method computeValue():void { ... } 

12   method transmitValue(a:int):void { 

13   local buffer:int, b:int; 

14   b = rand(100); 

15   local bufferSize:int = (a+b) * 256; 

16   if (atomic_swap(sending,true)) return; 

17    if (a > 2000) { 

18    buffer = checks(a,b); 

19    sending = false; 

20    return; 

21   } 

22  } 

23  method m_intr(y:int):void { 

24   transmitValue(y); 

25  } 

26  method checks(s:int, t:int):int { 

27   if (s==5000) { 

28    t=square(s); 

29    if (s<-5) return square(-s); 

30    else return 0; 

31   } 

32  return 1; 

33  } 

34  method square(root:int):int { ... } 

35  method rand(seed:int):int { ... } 

36  method atomic_swap(cur:bool,status:bool) 

37   :bool { ... } 

38 } 

 

Figure 0.1 Virgil Example Program. 
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[(main, 5000), (m_intr, 5000), (main, 5000), (m_intr, 5000)] 
 

Round three. In the third round of concolic execution, let us assume that the firing of events 

proceeds like in the second round. The execution will four times reach line 27 and find each time 

that the condition s==5000 is satisfied. So, the execution will exercise a new branch and 

eventually call square from which we collect the constraint: 

𝑠 = 𝑟𝑜𝑜𝑡 

Then the execution will reach line 29 and find that the condition s<-5 isn't satisfied. By the 

way, notice that the chance of reaching line 28 with event sequences generated randomly or by 

genetic algorithms is vanishingly small. We will collect the constraint 

𝑠 < −5 
During the third round of concolic execution, the maximum stack size occurred when the 

stack contained two event handlers and stack frames for the methods transmitValue, checks, and 

square, which is the highest so far. 

Rounds four and five. After completion of the third round, we find that the collected 

constraints are unsolvable (because we have both 𝑠 == 5000 𝑎𝑛𝑑 𝑠 < −5 ). We then repeatedly 

remove the last added constraint until we find that the remaining constraints are solvable, and 

then we proceed as before. We note that the third round has already achieved as much as one can 

do for the example program. VICE continues with a fourth and a fifth round until it notices that 

in two consecutive rounds, no improvements were achieved for the maximum stack size. At that 

point, the phase of the concolic execution terminates. 

 

3.4. VICE Description 
VICE uses six data types and six tools, see Figure 3.2.  

Types:  VirgilProgram =  see http://compilers.cs.ucla.edu/virgil 

  machineCode =  AVR assembly code 

  eventSequence =  (identifier × int × int)list 
  constraint =  a Virgil arithmetic or logical expression 

  nameSequence =  (identifier)list 
  prefixTree =  a prefix-tree of elements of nameSequence 

Tools:  concolic : (VirgilProgram × eventSequence) → (constraint × float) 
  compiler : VirgilProgram → machineCode 
  avrora : VirgilProgram × eventSequence → int 
  SA-Tree-Gen : VirgilProgram → prefixTree 
  random : nameSequence × int → eventSequence 
  generator : (nameSequence × int × constraint) → (eventSequence) 

 

Figure 0.2 VICE Data types and tools. 

Types. Each program that we test is a VirgilProgram, that is, a program in the Virgil 

programming language [54], which is an object-oriented language for resource-constrained 

devices. Virgil is a full-fledged language with classes, objects, loops, recursion, etc. 

We compile Virgil programs to machineCode, that is, AVR assembly code. The key input to 

each execution is an eventSequence, which is a list of triples, where each triple consists of an 

event name (an identifier), an event value (an int), and a wait time (an int that measures 

http://compilers.cs.ucla.edu/virgil
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milliseconds). Each of the constraint is a Virgil arithmetic or logical expression. For our 

benchmarks, we found no need to use other forms of constraints; arithmetic or logical constraints 

are sufficient for our testing approaches to almost match the static analysis. We leave to future 

work to investigate whether other benchmarks require use of other forms of constraints to almost 

match the static analysis. 

A prefixTree is a prefix-tree of sequences of event names. 

Tools. The tool concolic is a concolic execution engine that executes a Virgil program while 

firing events from an event sequence, with the specified wait time between consecutive events. 

The result of a run of concolic is a constraint and the branch coverage that was recorded. We 

implemented concolic on top of an existing Virgil interpreter. The concolic execution engine 

works with concolic values, that is, a pair of a concrete value and a constraint. 

The tool compiler is an open-source Virgil compiler [54] that generates AVR assembly code. 

The tool avrora is an open-source simulator for AVR assembly code [55] that executes an 

AVR assembly code program while firing events from an event sequence, with the specified wait 

time between consecutive events. The result of a run of \avrora is the maximum stack size that 

was recorded. A run of avrora is deterministic, hence reproducible. Specifically, avrora measures 

time in terms of machine cycles and we use the wait times to determine the exact machine cycle 

at which to fire an event. Additionally, \avrora implements all aspects of the hardware, including 

the “breaking of a tie” that happens when two events have fired and both handlers are enabled. 

So, any two runs of avrora on a benchmark and an event sequence always proceed in exactly the 

same way. 

The tool SA-Tree-Gen applies a static analysis to a Virgil program [54]. The static analysis 

determines conservatively, for each program point, which event handlers are enabled. The result 

of a run of SA-Tree-Gen is a prefixTree called the SA-Tree that represents the static information 

as a collection of sequences of event names. According to the static analysis, each sequence of 

event names can be the basis for an event sequence for which each event will be handled. The 

SA-Tree avoids names of events that have no chance of being handled because the corresponding 

event handler is disabled. We can compare the generated SA-Tree with a full prefix-tree that 

represents all possible sequences of event names (up to a given length). For each of our 

benchmarks, the SA-Tree is a much pruned version of the full tree. Testing approach 6 explores 

the full prefix-tree. 

The tool random takes a nameSequence and a wait time as input and produces an event 

sequence based on the input nameSequence, with event values generated according to an 

exponential distribution, and with each wait time equal to the input wait time. The tool generator 
takes a nameSequence, a wait time, and a constraint, and generates an event sequence. The 

generator uses the open-source constraint solver Choco [56] [57]to solve the constraint. Notice 

that we generate event sequences based on source-level information and use them to test code at 

the assembly level. 

Approach. Figure 3 gives pseudo-code for VICE, while Figure 4 illustrates how VICE 

works. The input to VICE is a Virgil program and a wait time. VICE proceeds in phases that 

each consists of multiple rounds. Each phase focuses on one nameSequence in the SA-Tree for 

the Virgil program. In each phase, VICE iterates until two consecutive rounds found no 

improvement to the maximum stack size or the branch coverage. In each round VICE updates the 

variable noChange to count how many recent rounds had no change. The condition 

𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 < 2 tells when to terminate a phase. The variable maxStack contains the maximum 
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stack size found so far, the variable branchCoverage contains the branch coverage found so far, 

and the variable seq holds the current event sequence, which is based on the chosen 

nameSequence and the input wait time, and which initially has event values chosen randomly. 

 

 

 
Figure 0.3 VICE Algorithm. 

 

We compile each Virgil benchmark program to AVR assembly code. In each round, the 

algorithm executes both avrora on the assembly code and concolic on the Virgil program to get a 

new maximum stack size, a new constraint, and a new measure of the branch coverage. 

The generator uses a constraint solver to find new event values for an event sequence that 

otherwise has the same event names and wait times as all other event sequences in the current 

phase. 

A worse alternative. VICE measures maximum stack size at the assembly level in every 

round of concolic execution. We have experimented with an alternative approach that measures 

maximum stack size at the source level, and only after a completed run measures the maximum 

stack size at the assembly level for the most challenging event sequence. The alternative 

approach is faster because it uses the assembly-level simulator just once. However, the results 

are considerably worse because the source-level stack-size estimates are imprecise. 

3.5. Experimental Results 
We compare a static analysis and the seven testing approaches listed in Section 3.3. We 

wrote all the implementations in Java and ran them on Sun Java2 SDK 1.5 on a 2.8 GHz iMac. 

Most of the runs used less than 60 MB. 

Input:      𝑉𝑖𝑟𝑔𝑖𝑙𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑝, int 𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒 

Output:   𝑖𝑛𝑡 /∗  the maximum stack size ∗/ 
𝐿𝑜𝑐𝑎𝑙:     prefixTree 𝑡𝑟𝑒𝑒 =  SA − Tree − Gen(𝑝) 

                  machineCode 𝑐𝑜𝑑𝑒 =  compiler(𝑝) 

                  int 𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘 =  0 

𝑀𝑒𝑡ℎ𝑜𝑑: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 nameSequence 𝑛𝑠 ∈  𝑡𝑟𝑒𝑒 𝐝𝐨 { 
                          int 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 =  0 

                          float 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  0 

                          eventSequence 𝑠𝑒𝑞 =  random(𝑛𝑠, 𝑤𝑎𝑖𝑡𝑇 𝑖𝑚𝑒) 

                          𝐰𝐡𝐢𝐥𝐞 (𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 <  2) { 
                                int 𝑚𝑠 =  avrora(𝑐𝑜𝑑𝑒, 𝑠𝑒𝑞) 

                                (constraint  float) (𝑐, 𝑏𝑐)  =  concolic(𝑝, 𝑠𝑒𝑞) 

                                𝑠𝑒𝑞 =  generator(𝑛𝑠, 𝑤𝑎𝑖𝑡𝑇 𝑖𝑚𝑒, 𝑐) 

                                𝐢𝐟 ((𝑚𝑠 >  𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘) _ (𝑏𝑐 >  𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)) 

                                𝐭𝐡𝐞𝐧 {𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘 =  𝑚𝑠;  𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  𝑏𝑐;  𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 =  0 } 

                 𝐞𝐥𝐬𝐞 { 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 =  𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 +  1 } 

                          } 

                   } 

                 𝐫𝐞𝐭𝐮𝐫𝐧 𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘 
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We implemented the genetic algorithm on top of the Java Genetic Algorithm Library (JGAL) 

from http://jgal.sourceforge.net. 

For testing approaches 1, 2, 5, 6, our samples of the wait times are 153 ms, 327 ms, and 594 

ms.  

 

 

 
Figure 0.4 Illustration of how VICE works. 

For each testing approach we find the maximum stack size of a program in the same way: we 

first compile the program and then use Avrora to run the assembly code and return the maximum 

stack size. 

3.5.1. Benchmarks 

The following table shows some statistics about our seven benchmarks, including the number 

of lines of Virgil code and also the number of lines of code after translation to C, which is a step 

on the way in the translation to AVR assembly code. The table also shows the number of event 

handlers. 

 

 
Benchmark  LOC LOC  no. of 

 (Virgil)  (C) handlers  

TestCon1  329  461  4  

TestCon2  347  528  3  

StackTest1 293  513  2  

StackTest2 251  483  2  

TestUSART  1,226  1,737  5  

TestSPI  859  1,109  3  

TestADC  605  1,055  4  

 

We use four microbenchmarks and three benchmarks that test device drivers for Berkeley 

Motes. We designed the microbenchmarks testCon1 and testCon2 to test VICE's power to 

explore different execution paths. These programs have many complex numerical expressions 

and nested conditional statements and loops. TestCon1 has four event handlers, all without 

parameters, more than 300 LOC and its nesting depth of control structures is 11. TestCon2 has 3 
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event handlers each of which has 8 formal parameters, almost 350 LOC, and 37 complex 

numerical expressions. 

The microbenchmark StackTest1 is a more complete version of the example program in 

Figure 3.1 and includes nested function calls, unreachable code, and atomic structures. 

StackTest2 consists of nested functions of depth 23. 

The TestUSART benchmark tests the operation of the USART driver; the TestSPI 

benchmark tests the operation of the SPI driver; and the TestADC benchmark tests the operation 

of the ADC driver. 

Previous work [3] has shown that even for programs with a bounded stack, the maximum 

stack size can grow exponentially in the number of event handlers. The number of handlers in 

our benchmarks, namely 2--5, is typical of event-driven AVR applications that we have found. 

In summary, our benchmarks are nontrivial and turn out to be a major challenge for the 

previous-best testing approaches. 

3.5.2. Measurements 

Figure 3.5 shows the maximum stack sizes found by the seven testing approaches (numbered 

1--7) and by a static analysis of maximum stack size (labeled SA) that comes with the Avrora 

distribution. Note that the static analysis guarantees an upper bound on the stack size for every 

benchmark. This implies that even if each device that generates events should malfunction and 

generate an event every millisecond, we can rest assured that the stack is bounded by the value 

given by the static analysis. 

Figure 3.6 shows the timings of the testing runs and the timings of running the static analysis. 

All time measurements are in minutes and are averages of 10 runs after some warm-up runs to 

fill the caches. 

Figure 3.7 shows the branch coverage that each testing approach achieved. 

3.5.3. Assessments 

In Figure 3.5 the last line gives a geometric mean for each testing approach. The mean is 

taken over the fractions of the maximum stack size found by the testing approach and the 

maximum stack size found by static analysis. For example, for testing approach 1, we take the 

geometric mean of these fractions:  

  Similarly, in Figure 3.6 the last line gives a geometric mean for each testing approach; the 

denominator is the execution time of testing approach 7 (which is DTall). In Figure 3.7 the last 

line gives a geometric mean for each testing approach. 

Figure 3.8 shows a plot of the mean percentages in Figures 3.5 and 3.6; note that the x-axis 

uses a log-scale. 

 
Benchmark  1  2  3  4  5  6  7  SA  

TestCon1  318  441  417  455  505  506  511  516  

TestCon2  366  612  798  703  846  866  882  894  

StackTest1 421  353  318  619  703  749  958  979  

StackTest2 353  324  390  420  564  564  564  566  

TestUSART  459  481  472  525  664  664  664  665  

TestSPI  490  350  481  490  518  522  529  533  

TestADC  247  306  283  302  306  306  308  310  

% of SA  62  67  71  81  94  95  99  100  
Figure 0.5 Maximum stack sizes in bytes. The last line gives a geometric mean. 
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Benchmark  1  2  3  4  5  6  7  SA  

TestCon1  7.21  8.83  281  38  1.53  16  439  0.10  

TestCon2  10.11  3.11  173  29  2.48  45  381  0.12  

StackTest1 12.92  2.55  179  23  0.56  26  307  0.05  

StackTest2 2.85  2.29  165  72  4.13  56  266  0.05  

TestUSART  7.44  3.05  204  43  1.18  16  452  0.32  

TestSPI  3.99  3.11  197  26  0.79  9  393  0.15  

TestADC  3.01  1.37  289  33  0.45  6  444  0.13  

% of (7)  1.6  0.4  55  9  0.3  5  100  0.11  
 

Benchmark  1  2  3  4  5  6  7  

TestCon1  23  56  61  72  92  93  94  

TestCon2  21  60  78  78  89  89  90  

StackTest1 26  40  73  80  64  71  73  

StackTest2 20  43  69  81  99  99  99  

TestUSART  23  58  66  85  96  96  96  

TestSPI  32  56  71  75  67  73  75  

TestADC  22  62  69  78  98  98  98  

% of (7)  24  53  69  78  85  88  89  
Figure 0.6 Branch coverage in percent. The last line gives a geometric mean. 

Testing approaches 1-3. Testing approach 1 uses a total of 3,000 random event sequences 

and the result is a stack-size-fraction mean of 62%. Testing approach 2 uses a genetic algorithm 

to improve the choice of event names, and that improves the stack-size-fraction mean to 67%. 

Testing approach 3 goes further by trying all combinations of event names and all integer wait 

times within a wide interval; the stack-size-fraction mean goes up to 71%. Note that testing 

approach 2 is almost two orders of magnitude faster than testing approach 3. Note also that in 

some cases testing approach 3 gives worse results than testing approach 2 because of poorer 

samples of the event values. Notice finally that the genetic algorithm in most cases is faster than 

random testing. The reason is that the procedure for generating random event sequences is quite 

slow, while one of the main ways the genetic algorithm produces new event sequences is to swap 

subsequences from existing event sequences. 

Testing approaches 4-7. Testing approach 4 samples the event names and tries all integer 

wait times within a wide interval; the result is a stack-size-fraction mean of 81%. Thus, testing 

approach 4 dominates testing approaches 1--3 so we conclude that the use of directed testing to 

determine event values is essential to get good results. Testing approach 5 is the VICE approach, 

which, in sharp contrast to testing approach 4, samples the wait times but uses our SA-Tree 

technique to generate event names. VICE is 30x faster than testing approach 4 and yet it 

produces a better stack-size-fraction mean, namely 94%. Note also that VICE is within 3x of the 

running time of the static analysis. Testing approach 6 tries all combinations of event names and 

samples the wait times. The result is marginally better than VICE, namely 95%, but more than an 

order of magnitude slower. Finally, testing approach 7 is the DTall approach which tries all 

combinations of event names and all integer wait times within a wide interval. DTall achieves a 

result of 99%, though at the expense of the longest execution time of all the approaches. We 

conclude that testing can almost match the static analysis, which shows that the static analysis is 

about as good as it can be. We also conclude that VICE gives an excellent trade-off between 
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precision and execution times; it is faster than all the other testing approaches and it is 

outperformed only by two much slower approaches. 

Number of event sequences. VICE achieves its results with significantly fewer event 

sequences than random testing and the genetic algorithm. For four benchmarks, the difference is 

2X, while for three benchmarks, the difference is 10X. 

Branch coverage. Figure 3.7 shows that VICE and DTall produce excellent branch coverage 

numbers. Notice that the previous best testing-approach (approach 2) achieved a much lower 

branch coverage (53 percent) than VICE (85 percent) and DTall (89 percent). The wide spread of 

coverage numbers support that the benchmarks are nontrivial: we can find event sequences that 

lead most branches to go either way and yet only the best testing approaches achieve that. 

 
Figure 0.7 Comparison of seven testing approaches. 
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CHAPTER 4 

Race Directed Scheduling of Concurrent Programs 

 

Detection of data races in Java programs remains a difficult problem. The best static 

techniques produce many false positives, and also the best dynamic techniques leave 

room for improvement. We present a new technique called race directed scheduling that 

for a given race candidate searches for an input and a schedule that lead to the race. The 

technique is implemented in a tool namely Racageddon. The search iterates a 

combination of concolic execution and schedule improvement, and turns out to find 

useful inputs and schedules efficiently. We use an existing technique to produce a 

manageable number of race candidates. Our experiments on 23 Java programs found 72 

real races that were missed by the best existing dynamic techniques. Among those 72 

races, 31 races were found with schedules that have between 1 million and 108 million 

events, which suggest that they are rare and hard-to-find races. 

4.1. Two Techniques from Previous Works 
Racageddon uses two techniques from previous work [12] [58]. In both cases, Racageddon 

uses those techniques as “black boxes”, that is, as unmodified components for which we rely 

only on their input-output behavior. We implemented both techniques ourselves after a careful 

study of the seminal papers [12] [58]. 

Generation of race candidates. We use a hybrid race detector by O'Callahan and Choi [12] 

that we call Hybrid. Hybrid combines lockset-based detection and happens-before-based 

detection into a single efficient technique that can produce both false positives and false 

negatives. We view the output of Hybrid as race candidates that deserve further attention. 

Hybrid provides a rather small number of race candidates, namely a total of 405 for our 

benchmarks of more than 4.5 million lines of code. Those 405 race candidates are an excellent 

starting point for our search for real races. 

Schedule improvement. We use an approach to schedule improvement by Said, Wang, 

Yang, and Sakallah [58]. Their method maps a schedule to a permutation of the schedule. The 

idea is that a user supplies both a schedule that represents a trace of a program execution and also 

a race candidate, and then in return gets a schedule that has a better chance to lead to the race. 

The method has “memory”: it takes advantage of the schedules that have been submitted in all 

previous calls. Together, all those schedules provide a wealth of information about happens-

before relationships in a specific program. The method uses an SMT-solver and is highly 

efficient, even for the schedules of lengths beyond length 108 that we encountered in our 

experiments. 

 

4.2. Race Directed Scheduling 
We now present our approach to data race detection. We will use pseudo-code to describe 

both our approach and the data types that we use. 
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4.2.1. Data Types 

We begin with a description of six data types that we use in Racageddon.  

 

Program = a Java 6 program 

Input = input to a Java 6 program 

Event = threadID × statementLable  
EventPair = Event × Event 
Race = EventPair × Input × Schedule 

 

Racageddon works for Java 6 programs, which have the type Program. The input to such 

programs is a vector of values; we use Input to denote the type of input vectors. 

When a program execution executes a particular statement in a particular thread, we refer to 

that as an event that has type Event. In the context of race detection, the key data type is 

EventPair that we use to describe two events that may form a race. 

The standard notion of schedule is here the data type Schedule, which is a sequence of 

events. 

A Race is the type of information that we need to replay an execution that leads to a race. A 

Race has three components, namely the EventPair that is the race, the Input that we should 

supply at the beginning of the execution, and the Schedule that the execution should follow to 

reach the race. 

 

4.2.2. Two Tools 

Let us describe the interfaces to the two off-the-shelf tools from Section 2 in terms of the 

data types listed above. 

 

hybrid Program → (EventPair set) 

improve (Schedule × EventPair) →(Schedule⨁ {none}) 
 

Here hybrid stands for O'Callahan and Choi's technique, while improve stands for Said, 

Wang, Yang, and Sakallah's technique. Notice that hybrid maps a Java program to a set of event 

pairs, that is, a set of race candidates. Notice also that improve maps a schedule to a better 

schedule or else to none if no better schedule was found. Notice finally that we leave implicit 

that improve has “memory” and takes advantage of the schedules that have been submitted in all 

previous calls. 

4.2.3. Concolic Execution 

Let us describe the interfaces to the two off-the-shelf tools from Section 3.2 in terms of the 

data types listed above. Racageddon uses concolic execution as one of its components. We will 

summarize the idea of concolic execution and we will introduce a slight generalization of the 

approach that we use in Racageddon. 

Concolic execution [39] [59] [40] [37] [38] [60], executes code with concrete and symbolic 

values simultaneously and uses the result to generate inputs for another execution. The term 

“concolic” combines the words “concrete” and “symbolic”. Each execution collects constraints 

from the symbolic values and the conditions in the control-flow. Those constraints represent the 

executed control-flow path and they have the concrete input to the run as solution. 
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Suppose we want to execute a particular event, that is, a particular statement in a particular 

thread. We can execute a sequence of concolic runs that successively get closer and closer to 

execute the desired event. The idea is to do a minor modification of the constraints collected 

from conditions of branches. Imagine that a prefix of the concolic run made progress towards the 

desired event but at a particular branch B went off in nonpromising direction. We take the 

constraints from the prefix plus the negation of B. The solution to those constraints is an input 

that will steer the next concolic execution a little closer to the desired event by going off in the 

promising direction at branch B. 

Experience shows that concolic execution achieves better branch coverage with fewer test 

cases than testing with random inputs. In the first round of concolic execution, the input is 

chosen randomly. 

We can generalize the standard approach to pursue execution of an entire schedule, that is, an 

event sequence. For example, suppose we want execution of the schedule (𝑒1, 𝑒2, 𝑒3). Some 

rounds of concolic execution may lead to execution of 𝑒1. We can refer to those rounds together 

as a super-round. Now we can use the constraints that lead to execution of 𝑒1and continue with a 

second super-round that leads to execution of first 𝑒1and later 𝑒2. Finally, we can do a third 

super-round and achieve execution of the entire schedule. 

The above method generalizes easily to schedules of any length. If we manage to execute an 

entire given schedule, we continue to explore additional schedules that have the given schedule 

as prefix. 

We describe our interface to concolic execution in the following way.  

Concolic =  (Program × Schedule) → ((Race set) × Schedule) 
 

The input to concolic is a program and a schedule, and concolic will execute one super-round 

per element in the schedule. A run of concolic has two outputs. The first output is a set of all 

races that were found by any of the individual concolic executions. The second output is a 

schedule that represents the trace of final concolic execution, irrespectively of whether the given 

schedule was executed. We emphasize that each call to concolic may do many concolic 

executions, hence have many opportunities to collect races.  

4.2.4. Helper Functions 

We use three helper functions: 

Informally, present checks that the two elements of an event pair occur consecutively in a 

schedule. Additionally, swap makes a change to each element ((𝑒′, 𝑒′′), 𝑣, 𝑠)  of a race set, 

namely to swap 𝑒′ and 𝑒′′ both in the first component of the triple and also where they first occur 

consecutively in 𝑠. Finally, ⨄ does something akin to a union of two race sets, namely to do the 

union based only on the event pair of each race. We will maintain the invariant that for a given 

𝑐 ∈ EventPair, a race set contains at most one race of the form (𝑐, 𝑣, 𝑠) . The idea of 𝑋⨄ 𝑌 is that 

if 𝑋 contains a race of the form (𝑐, 𝑣′, 𝑠′) , and 𝑌 contains a race of the form (𝑐, 𝑣′′, 𝑠′′), then 

𝑋⨄ 𝑌 will, somewhat arbitrarily, contain the first race (𝑐, 𝑣′, 𝑠′)  (and leave out (𝑐, 𝑣′′, 𝑠′′)). 
Formally, 

present((𝑒′, 𝑒′′), (𝑒1, … , 𝑒𝑛)) =  𝑓(𝑥) = {
𝑡𝑟𝑢𝑒, 𝑖𝑓 ∃ 𝑖: 𝑒′ =  𝑒𝑖 ∧ 𝑒′′ =  𝑒𝑖+1

𝑓𝑎𝑙𝑠𝑒,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

swap(𝑋) = {((𝑒′′, 𝑒′), 𝑣, (𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, 𝑒𝑖, 𝑒𝑖+2, … , 𝑒𝑛))|((𝑒′, 𝑒′′), 𝑣, (𝑒1, … , 𝑒𝑛)) ∈  𝑋 ∧ 

𝑖 ∈ 1. . (𝑛 − 1)𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:  
𝑒′ = 𝑒𝑖 ⋀𝑒′′ = 𝑒𝑖+1} 
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For every 𝑋 ∈ (Race set) we assume that if (𝑐′, 𝑣′, 𝑠′) ∈ 𝑋 and (𝑐′′, 𝑣′′, 𝑠′′) ∈ 𝑋 and 𝑐’ = 𝑐’’, 
then 𝑣’ = 𝑣’’and 𝑠’ = 𝑠’’. The following definition of ⨄ maintains this property. 

𝑋⨄𝑌 = 𝑋 ∪ {((𝑒′. 𝑒′′), 𝑣, 𝑠) ∈ 𝑌| ∀(𝑒𝑥, 𝑣𝑥, 𝑠𝑥) ∈ 𝑋: 𝑒𝑥 ≠ (𝑒′, 𝑒′′)} 

 

4.2.5. Racageddon Overview 

Racageddon iterates a combination of concolic execution and schedule improvement. We 

begin with a run of hybrid to produce candidate races and then we do two phases of search for 

races. In the Phase 1 we do a separate search for each of the candidate races. In the Phase 2 we 

do a search based on the races found in Phase 2. For our benchmarks, our experiments with 

Racageddon found 291 real races in Phase 1 and 53 additional real races in Phase 2.  

In Phase 1 we interleave calls to concolic and improve. The idea is to turn the search for a 

race into a search for a schedule that leads to the race. Each call to concolic will produce a more 

promising schedule, after which a call to improve will further improve that schedule. In more 

detail, each call to concolic will both try to execute the given schedule and continue execution 

beyond that schedule, typically until termination of the program. Part of the continued execution 

may make progress towards the desired race. The call to improve will permute some events in 

the schedule to make the next concolic run have a better chance to succeed. 

In Phase 2 we consider each race found in Phase 1 and do a swap of the two racing events in 

the schedule that lead to the race. The “swapped” schedule leads to a race of the same two 

events, which in itself provides nothing new. The interesting aspect of the “swapped” schedule is 

that a concolic execution will continue after the race and may proceed in a different way than the 

execution in Phase 1. Our experience is that those continued executions may find races that 

Phase 1 missed. Once Phase 2 finds a new race, we also do a swap of the schedule that led to that 

new race. 

 

4.2.6. Racageddon Pseudo-code 

Figure 1 shows pseudo-code for Racageddon. We will now go over the pseudo-code in 

detail. We hope our pseudo-code and explanation will enable a better understanding of the 

approach and enable practitioners to implement Racageddon easily. 

The input to the Racageddon procedure is a program while the output is a set of races. The 

first four lines of Racageddon declares these four variables: (1) a set of race candidates, called 

candidates, that we initialize by a call to hybrid, (2) a set of races, called races, that initially is 

the empty set and that we eventually return as the result of the procedure, (3) a set of races, 

called 𝑟, that we use to hold intermediate results, and (4) a schedule, called trace, that holds each 

trace produced by concolic. 

Phase 1 consists of a for-each-loop that tries each of the event pairs in the set of candidates. 

For each event pair we use a while-loop to do iterations that each does one call to improve and 

one call to concolic. We use the integer variable 𝑖  to count the number of iterations and we 

bound 𝑖 by 1000 to ensure that the search terminates, even if unsuccessful. In practice, the 

highest number of calls to improve and concolic we did for any of our benchmarks was 197. So, 

none of our experiments exercised the condition 𝑖 ≤ 1000. We initialize trace to empty 

schedule, denoted by 𝜖, such that the initial call to improve can work correctly; that call will 

return 𝜖. 

The while-loop uses a Boolean-variable done to keep track of whether the search for a 

particular candidate can be terminated before 𝑖 reaches 1000. We have two reasons for 
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terminating the search early, which we done by setting done to true. If the candidate pair 𝑐 is 

present in the trace executed by concolic, as found by the call present(𝑒, 𝑡𝑟𝑎𝑐𝑒), then we can 

declare success and terminate the search. If the call to improve(𝑒, 𝑡𝑟𝑎𝑐𝑒) returns none, then the 

search has stalled, and we abandon the search. While abandoning a search may seem sad, our 

experiments do it in some cases. One of the reasons may be that the race candidate actually isn't 

a real race! 

Notice how each iteration of the while-loop begins with trace, improves it to a schedule 𝑠 

(unless improve returns none), which then after execution of concolic turns into a new value for 

trace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Race set) Racageddon (Program p) { 
    EventPair set) 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = hybrid(𝑝) 
    (Race set) 𝑟𝑎𝑐𝑒𝑠 =  ∅ 
    (Race set) 𝑟 
    Schedule 𝑡𝑟𝑎𝑐𝑒 

 
    /∗  𝑃ℎ𝑎𝑠𝑒 1: 𝑡𝑟𝑦 𝑡ℎ𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∗/ 
    for each EventPair 𝑐 2 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do { 
         boolean 𝑑𝑜𝑛𝑒 = false 
         int 𝑖 =  0 
         𝑡𝑟𝑎𝑐𝑒𝑠 =  𝜖 
         while (!  𝑑𝑜𝑛𝑒) ∧ (𝑖 ≤  1000){ 

case improve(𝑐, 𝑡𝑟𝑎𝑐𝑒) of 
     Schedule 𝑠 ∶ { 

(𝑟, 𝑡𝑟𝑎𝑐𝑒)  = concolic(𝑝, 𝑠) 
𝑟𝑎𝑐𝑒𝑠 =  𝑟𝑎𝑐𝑒𝑠 ⊎ 𝑟 
𝑑𝑜𝑛𝑒 = present(𝑐, 𝑡𝑟𝑎𝑐𝑒) 

} 
none∶ {𝑑𝑜𝑛𝑒 = true} 

} 
𝑖 =  𝑖 +  1 
} 

} 
 

/∗  𝑃ℎ𝑎𝑠𝑒 2: 𝑡𝑟𝑦 𝑠𝑤𝑎𝑝𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑐𝑒𝑠 ∗/ 
(Race set) 𝑤𝑜𝑟𝑘𝑠𝑒𝑡 = swap(𝑟𝑎𝑐𝑒𝑠) 
for each Race (𝑐, 𝑣, 𝑠)  ∈  𝑤𝑜𝑟𝑘𝑠𝑒𝑡 do { 

(𝑟, 𝑡𝑟𝑎𝑐𝑒)  = concolic(𝑝, 𝑠) 
𝑟𝑎𝑐𝑒𝑠 =  𝑟𝑎𝑐𝑒𝑠 ⊎  𝑟 

𝑤𝑜𝑟𝑘𝑠𝑒𝑡 =  𝑤𝑜𝑟𝑘𝑠𝑒𝑡 ⊎ swap(𝑟) 
} 

return 𝑟𝑎𝑐𝑒𝑠 
} 

Figure 0.1 Racageddon Algorithm. 
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Phase 2 is a workset algorithm that uses the variable workset that holds a set of races. Initially 

workset is the set of races found in Phase 1, but swapped, in the sense that we now want to 

search for the “swapped” race. The main part of Phase 2 is a for-each-loop that iterates over the 

elements of workset. We use an advanced for-each-loop that works correctly even if elements are 

added to workset during a run of the for-each-loop. Here, “works correctly” means that the for-

each-loop does one iteration per element of workset, even if an element is added to workset 

multiple times or added after the execution of the for-each-loop begins. 

For each element of workset, Phase 2 makes one call to concolic and collects any races that 

may be found. For each new race found in Phase 2, we add the race to workset such that we 

eventually can say that we tried the “swapped” version of every race that we found. 

 

4.2.7. Example 

We now present an example in which we walk through a run of \Racageddon\on this program 

with three shared variables and two threads: 

 

𝑥, 𝑦, 𝑧 𝑎𝑟𝑒 𝑠ℎ𝑎𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑧 ℎ𝑎𝑠 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑢𝑠𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 
 

Thread 1: Thread 2: 

𝑙1: 𝑥 =  6  𝑙4: 𝑥 = 2 

      𝑙2: 𝑖𝑓(𝑧 > 4)                            𝑙5: 𝑖𝑓(𝑧^2 + 5 < 𝑥^2) 

     𝑙3:      𝑦 = 5       𝑙6:     𝑦 = 3 
 

We use these abbreviations for events: 𝑒1 = (1, 𝑙1), 𝑒2 = (1, 𝑙2), 𝑒3 = (1, 𝑙3), 𝑒4 =
(2, 𝑙4), 𝑒5 = (2, 𝑙5), 𝑒6 = (2, 𝑙6),  

The call to hybrid produces two race candidates: 

 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = {(𝑒1, 𝑒4), (𝑒1, 𝑒5)} 

 

Now we begin Phase 1 of Racageddon. Suppose the for-each loop first considers the 

candidate(𝑒1, 𝑒4). 

Now we run the first iteration of the while-loop. Initially trace is the empty schedule so 

improve returns the empty schedule. Now we run concolic on the empty schedule. Suppose that 

the initial random input, which becomes the values of the shared variable z, is 0. 

Nondeterminism can lead to several traces; suppose we get 

 

𝑡𝑟𝑎𝑐𝑒 =  𝑒1, 𝑒2, 𝑒4, 𝑒5 
 

Notice here that we don't get to 𝑒3because the condition in 𝑒2fails due to 0 < 4, and we don't 

get to 𝑒6 because the condition in 𝑒5 fails due to 𝑧2 + 5 = 5  and 𝑥2 = 4 and 5 > 4. 

Now we run the second iteration of the while-loop. First we run improve on (𝑒1, 𝑒4) and 

trace: 

 

𝑡𝑟𝑎𝑐𝑒 =  𝑒1, 𝑒4, 𝑒2, 𝑒5 
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Now we run concolic on trace, and like above, let us suppose the initial random input leads to 

𝑧 =  0. The execution of concolic finds the race for which we are searching, so we can add that 

race to races:  

𝑟𝑎𝑐𝑒𝑠 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5))} 

Like above, we don't get to execute 𝑒3 or 𝑒6; the conditions in 𝑒2 and 𝑒5 fails for the same 

reasons as above. 

Next the for-each-loop in Phase 1 considers the candidate (𝑒1, 𝑒5). 
Now we run the first iteration of the while-loop. Let us assume that this iteration proceeds 

like the first iteration for (𝑒1, 𝑒4) so we get: 

𝑡𝑟𝑎𝑐𝑒 =  𝑒1, 𝑒4, 𝑒2, 𝑒5 

Now we run the second iteration of the while-loop. First we run improve on , (𝑒1, 𝑒5) and 

trace, which produces this permutation of trace: 

 

𝑡𝑟𝑎𝑐𝑒 =  𝑒4, 𝑒5, 𝑒1, 𝑒2 
 

Notice that even though 𝑒5 and 𝑒1 occur consecutively, we won't terminate the search 

because we are looking for (𝑒1, 𝑒5). Now we run concolic on trace, and which leads to an 

execution with this trace: 

𝑡𝑟𝑎𝑐𝑒 =  𝑒4, 𝑒5, 𝑒1, 𝑒2, 𝑒3 
 

for which z had the initial value 10. (We skip the constraints and merely note that they have 

solution 10, among other solutions.) Note that trace contains 𝑒3 because the condition in 𝑒2 

succeeds due to 10>4. 

Now we run the third iteration of the while-loop. First we run improve on , (𝑒1, 𝑒5)  and 

trace, which produces this permutation of trace: 

 

𝑡𝑟𝑎𝑐𝑒 =  𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3 
 

Next, the execution of concolic finds the race for which we are searching, so we can add that 

race to races: 

𝑟𝑎𝑐𝑒𝑠 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5)), 
((𝑒1, 𝑒5), 10, (𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3))} 

 

We don't get to execute 𝑒6 because the condition in 𝑒5fails due to 𝑧2 + 5 = 105 and 𝑥2 = 36 

and 105>36. 

Now the for-each-loop has processed both elements of the set candidates, so we are done 

with Phase 1 and can move on to Phase 2. Notice that we successfully found both candidate races 

to be real races. 

In Phase 2 we consider swapped versions of the two races found in Phase 1: 

 

𝑤𝑜𝑟𝑘𝑠𝑒𝑡 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5)), 
((𝑒1, 𝑒5), 10, (𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3))} 

 

Let us here focus on the run with the schedule (𝑒4, 𝑒1, 𝑒2, 𝑒5). The call to concolic eventually 

executes (𝑒4, 𝑒1, 𝑒2, 𝑒5, 𝑒3) and collect these constraints: 
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𝑥 = 6 ∧ 𝑧 > 4 ∧ 𝑥2 + 5 < 𝑥2 
 

that have solution 𝑧 = 5. The next concolic execution therefore executes (𝑒4, 𝑒1, 𝑒2, 𝑒5, 𝑒3, 𝑒6), 

which contains the race (𝑒3, 𝑒6). We add that race to races: 

 

𝑟𝑎𝑐𝑒𝑠 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5)), 

((𝑒1, 𝑒5), 10, (𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3)) 

(𝑒3, 𝑒6), 5, (𝑒4, 𝑒1, 𝑒2, 𝑒5, 𝑒3, 𝑒6)} 
 

In summary, hybrid produced two candidates races, Phase 1 found both candidates to be real 

races, and Phase 2 found one additional race. 

4.3. Experimental Results 
We ran all our experiments on a Linux CentOs machine with two 2.4 GHz Xeon quad core 

processors and 32 GB RAM. 

 

 

Name LOC  # threads  Brief description  

Sor 1270  5  A successive order-relaxation benchmark  

TSP 713  10  Traveling Salesman Problem solver  

Hedc 30K  10  A web-crawler application kernel  

Elevator 2840  5  A real-time discrete event simulator  

ArrayList 5866  26  ArrayList from java.util  

TreeSet 7532  21  TreeSet from java.util  

HashSet 7086  21  HashSet from java.util  

Vector 709  10  Vector from java.util  

RayTracer 1942  5  Measures the performance of a 3D raytracer  

MolDyn 1351  5  N-Body code modeling dynamic  

MonteCarlo 3619  4  A financial simulator, using Monte Carlo techniques to price 

products  

Derby 1.6M  64  Apache RDBMS  

Colt 110K  11  Open Source Libraries for High Performance Scientific and 

Technical Computing  

ChordTest 62  11  Mini-benchmark; comes with the Chord race detector  

Avrora 140K  6  AVR microcontroller simulator  

Tomcat 535K  16  Tomcat Apache web application server  

Batic 354K  5  Produces a number of Scalable Vector Graphics (SVG) 

images based on Apache Batic  

Eclipse 1.2M  16  Non-GUI Eclipse IDE  

FOP 21K  8  XSL-FO to PDF converter  

H2 20K  16  Executes a JDBCbench-like in-memory benchmark  

PMD 81K  4  Java Static Analyzer  

Sunflow 108K  16  Tool for rendering image with raytracer  

Xalan 355K  9  XML to HTML transformer  

TOTAL 4587K   
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Figure 0.2 Benchmarks. 

4.3.1. Benchmarks 

Figure 4.2 lists our 23 benchmarks which we have collected from seven sources: 

 From ETH Zurich: Sor, TSP, Hedc, Elevator.  

 From java.util, Oracle's JDK 1.1: ArrayList, TreeSet, HashSet, Vector.  

 From Java Grande: RayTracer, MolDyn, MonteCarlo.  

 From the Apache Software Foundation: Derby.  

 From European Organization for Nuclear Research (CERN): Colt.  

 From the Chord distribution: ChordTest.  

 From DaCapo [106]: Avrora, Tomcat, Batic, Eclipse, FOP, H2, PMD, Sunflow, 

Xalan. 

The sizes of the benchmarks vary widely: we have 2 huge (1M+ LOC), 10 large (20K-1M 

LOC), 8 medium (1K-8K LOC), and 3 small (less than 1K LOC) benchmarks. 

Figure 4.2 also lists the high watermark of how many threads each benchmark runs. 

4.3.2. Race Detectors 

We compare Racageddon with one static race detector, namely Chord [24], one hybrid race 

detector, namely the one that we call Hybrid [12], and four dynamic race detectors, namely 

FastTrack [61], Goldilocks [62], CalFuzzer [60], and Pacer [63]. Additionally we compare with a 

combined dynamic technique that we call FGCP. 

Chord is a static technique, and by design it may report false positives; its main objective is 

to report all real races (or as many as possible). 

We discussed Hybrid in Section 2. 

FastTrack, Goldilocks, CalFuzzer, Pacer, and Racageddon are all dynamic techniques that 

report only real races. 

FastTrack and Goldilocks are based on the observation that a race happens if two accesses to 

a memory location (of which at least one access is a write) are not ordered by the happens-before 

relation. FastTrack uses a clever representation of the happens-before relation to achieve 

constant-time overhead for almost all monitored operations. Goldilocks uses a lockset-based 

algorithm to improve the precision of the computation of the happens-before relation. 

CalFuzzer performs random testing by choosing thread schedules at random and stopping a 

thread when it is about to execute a statement in a candidate race pair. Like Racageddon, 

CalFuzzer uses Hybrid to generate race candidates. 

Pacer is a sampling-based data race detector that detects any race at a rate equal to the 

sampling rate. In our experiments, the sampling race was 100% and for each benchmark we used 

100 trials. 

We use FGCP to stand for the union of FastTrack, Goldilocks, CalFuzzer, and Pacer in 

following sense. We can implement FGCP as a tool that for a given benchmark starts runs of 

FastTrack, Goldilocks, CalFuzzer, and Pacer in four separate threads, and if any one of them 

reports a race, then FGCP reports a race. 

4.3.3. How we handle Reflection 

Many of the benchmarks use reflection, yet each of the race detectors listed above either 

doesn't support reflection or supports reflection poorly. We overcome this problem with the help 

of the tool chain TamiFlex [64]. 

The core of the problem is that all the race detectors do either a static analysis or some form 

of ahead-of-time instrumentation. Reflection tends to make static analysis unsound and to load 
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uninstrumented classes. TamiFlex solves these problems in a manner that is sound with respect 

to a set of recorded program runs. If a later program runs deviates from the recorded runs, 

TamiFlex issues a warning. 

We have combined each of the race detectors with TamiFlex and we have run all our 

experiments without warnings. As a result, the race detectors all handle reflection correctly and 

in the same way. 

The webpage https://code.google.com/p/tamiflex/wiki/DaCapoAndSoot gives a good 

example of how to combine TamiFlex with a different tool. 

 

 Number of races found 

Name  Total=phase1+ phase 2 

Sor  3  2  1      

TSP  2  2  0      

Hedc  11  9  2      

Elevator  8  5  3      

ArrayList  7  7  0      

TreeSet  3  3  0      

HashSet  8  7  1      

Vector  4  4  0      

RayTracer  4  3  1      

MolDyn  6  4  2      

MonteCarlo  3  2  1      

Derby  18  15  3      

Colt  10  7  3      

ChordTest  2  2  0      

Avrora  13  12  1      

Tomcat  21  19  2      

Batic  29  23  6      

Eclipse  51  46  5      

FOP  18  16  2      

H2  39  30  9      

PMD  13  12  1      

Sunflow  30  22  8      

Xalan  41  39  2      

TOTAL  344  291  53      
Figure 0.3 Races found by Racageddon. 

4.3.4. Measurements 

Figure 3 shows the numbers of races found in 23 benchmarks by Racageddon, including 

whether the races were found in Phase 1 or in Phase 2. 

Figure 4 shows, for each benchmark, the number of schedules tried by Racageddon and the 

longest schedule that found a race. 

Figure 5 shows the numbers of races found in 23 benchmarks by 7 techniques. 

Figure 6 shows the time each of the runs took in minutes and seconds, and it shows the 

geometrical mean for each technique. 

Some of the executions of Goldilocks crashed, which we indicate in Figure 5 and Figure 6 

with “-”. If we compare Figure 5 and Figure 6 we see that for ArrayList and Batic, we list that 

https://code.google.com/p/tamiflex/wiki/DaCapoAndSoot
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Goldilocks reported races while we list no execution times. The reason is that for ArrayList and 

Batic, our runs of Goldilocks crashed, yet the execution log contained some races that we report 

in Figure 5. 

Figure 7 shows, for each benchmark, the lengths of the 72 schedules that lead to races found 

only by Racageddon. 

Figure 8shows, for each benchmark, how many of the races found by Hybrid are actually real 

races, as found by the combination of FGCP and Racageddon. 

Name Schedule longest schedule  
that found a race 

Sor  14  6,803  

TSP  8  6,047  

Hedc  28  249,268  

Elevator  28  9,005  

ArrayList  47  132,990  

TreeSet  17  110,087  

HashSet  38  139,553  

Vector  40  6,308  

RayTracer  9  71,084  

MolDyn  188  4,680  

MonteCarlo  24  12,061  

Derby  105  108,302,900  

Colt  63  948,033  

ChordTest  2  505  

Avrora  23  702,961  

Tomcat  197  1,284,917  

Batic  39  1,407,554  

Eclipse  53  102,879,384  

FOP  41  153,074  

H2  35  297,655  

PMD  48  310,049  

Sunflow  37  1,624,320  

Xalan  56  2,907,450  
Figure 0.4 Schedules tries by Racageddon. 

4.3.5. Evaluation 

We now present our findings based both on the measurements listed above and on additional 

analysis of the races that were found. 

Racageddon. We can see in Figure 3 that Racageddon found a total of 344 real races, 

including 291 races found in Phase 1 and 53 races found in Phase 2. The split between Phase 1 

and Phase 2 demonstrates a subtlety of race directed scheduling: even when we have a schedule 

that finds a race, a swap of the race pair can lead to other races. 

Number of schedules. We can see in Figure 4 that the number of schedules tried by 

Racageddon is rather modest and appears to be no worse than the product of a small constant and 

the number of race candidates. Note that in Racageddon, some runs of concolic finds multiple 

races. We can also see in Figure 4 that the longest schedules that found races can have lengths 

that are more than 100,000,000. This shows that the improve method scales to long schedules. 
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Racageddon versus other Dynamic Techniques. We can see in Figure 5 that Racageddon 

finds the most races (344) of all the dynamic techniques. Among those 344 races, 72 races were 

found only by Racageddon and are entirely novel to this paper, while 272 were also found by 

FGCP. Dually, 32 races were found only by FGCP. In summary, we have that the combination of 

FGCP and Racageddon found 376 races in the 23 benchmarks. 
Found only by FGCP:  32  

Found by both:  272  

Found only by :  72  
Total:  376  

 

FastTrack versus Pacer. Pacer is based on FastTrack and as expected, every race found by 

FastTrack is also found by Pacer. Pacer finds many more races (286) than FastTrack (79) so our 

experiments confirm that Pacer is a highly successful extension of FastTrack. 

FGCP details. The combined dynamic technique FGCP found 304 races. Pacer was the 

biggest contributor to that collection of 304 races. Among those 304 races, Pacer found 286, 

some of which were also found by Goldilocks and CalFuzzer. The remaining 304-286=18 races 

were found Goldilocks (10 races) and CalFuzzer (8 races). In more detail, Goldilocks found 

additional races in Avrora (1), Batic (3), FOP (2), SunFlow (2), and Xalan (2) (and CalFuzzer 

found none of those 10 races). CalFuzzer found additional races in TreeSet (1), HashSet (1), 

Derby (1), Eclipse (4), and H2 (1) (and GoldiLocks found none of those 8 races). We conclude 

that Goldilocks, CalFuzzer, and Pacer are all worthwhile techniques that each finds races that the 

other techniques don't find. As a combined dynamic technique FGCP is highly powerful. 
 Static  Hybrid  Dynamic 

benchmarks  Chord  Hybrid  FastTrack  Goldilocks  CalFuzzer  Pacer  FGCP  Racageddon 

 total new FGCP 

Sor  3  8  0  0  0  3  3  3     3  0    

TSP  17  3  1  1  0  1  1  2  1  1    

Hedc  143  5  3  1  1  11  11  11  4  7    

Elevator  54  13  1  -  0  4  4  8  4  4    

ArrayList  8  14  0  1  5  6  6  7  1  6    

TreeSet  11  13  0  -  6  8  9  3  0  3    

HashSet  0  11  0  -  8  7  8  8  0  8    

Vector  17  9  0  -  5  5  5  4  0  4    

RayTracer  159  2  1  1  1  3  3  4  1  3    

MolDyn  92  43  0  1  2  5  5  6  1  5    

MonteCarlo  101  5  0  0  1  2  2  3  1  2    

Derby  1110  21  1  -  2  14  15  18  4  14    

Colt  549  13  0  0  3  7  7  10  3  7    

ChordTest  2  2  1  1  2  2  2  2  0  2    

Avrora  1887  9  3  3  6  11  12  13  1  12    

Tomcat  110061  52  12  11  11  20  20  21  3  18    

Batic  970  12  9  10  9  32  35  29  7  22    

Eclipse  9401  77  14  -  13  39  43  51  8  43    

FOP  34  21  5  5  8  13  15  18  3  15    

H2  869  19  5  -  9  25  26  39  13  26    

PMD  292  14  9  8  4  13  13  13  0  13    

Sunflow  353  16  8  11  9  19  21  30  11  19    

Xalan  1003  23  6  9  10  36  38  41  3  38    

TOTAL  127136  405  79  63  115  286  304  344  72  272    

Figure 0.5 The numbers of races found in 23 benchmarks by 7 techniques. 
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Chord. Chord is possibly the best current static race detector, yet our experiments strongly 

suggest that Chord finds a large number of false positives. We conclude that accurate static race 

detection continues to be an open problem. 

Timings. The geometrical means of the execution times for each technique show that 

FastTrack and Hybrid are the fastest, while Pacer is the slowest. Racageddon is more than twice 

as fast as Pacer yet Racageddon finds significantly more races. Note that the timings for 

CalFuzzer and Racageddon include the time to execute Hybrid. 
 Static  Hybrid  Dynamic 

benchmarks  Chord  Hybrid  FastTrack  Goldilocks  CalFuzzer  Pacer  FGCP  Racageddon 

Sor  2:18 0:49 0:08 0:44 2:29 9:44 4:49 2:18 

TSP  2:22 0:55 0:03 0:10 1:50 11:23 4:37 2:22 

Hedc  4:07 1:00 0:08 0:25 2:01 5:00 3:08 4:07 

Elevator  1:10 0:39 0:03 - 1:11 3:58 2:40 1:10 

ArrayList  2:40 0:50 0:05 - 1:18 5:18 4:11 2:40 

TreeSet  3:11 0:18 0:06 - 0:44 7:02 3:25 3:11 

HashSet  2:58 0:21 0:06 - 0:59 4:57 2:43 2:58 

Vector  0:43 0:15 0:01 - 0:38 5:05 2:52 0:43 

RayTracer  1:24 0:09 0:03 0:38 0:26 4:18 2:22 1:24 

MolDyn  0:38 1:42 0:02 1:08 2:49 15:36 6:45 0:38 

MonteCarlo  2:31 2:02 0:04 1:16 4:01 16:31 6:58 2:31 

Derby  35:09 1:26 0:13 - 1:50 11:34 5:02 35:09 

Colt  4:37 0:04 0:10 0:23 0:09 4:48 2:23 4:37 

ChordTest  0:05 0:01 0:01 0:02 0:05 0:54 0:10 0:05 

Avrora  19:37 2:40 0:39 4:57 3:19 23:03 11:17 19:37 

Tomcat  12:01 3:57 0:41 4:11 6:01 45:12 19:00 12:01 

Batic  27:29 3:01 0:18 - 3:55 30:01 14:54 27:29 

Eclipse  41:11 3:50 0:35 - 4:14 48:46 19:15 41:11 

FOP  6:50 0:17 0:12 0:36 0:25 13:21 4:49 6:50 

H2  8:38 0:31 0:09 - 0:49 18:50 7:31 8:38 

PMD  15:48 0:16 0:14 1:03 0:38 17:41 7:22 15:48 

Sunflow  16:00 0:41 0:23 2:01 1:06 18:17 6:03 16:00 

Xalan  33:11 2:39 0:20 3:00 3:47 30:37 13:19 33:11 

geom. mean 4:36 0:40 0:08 - 1:16 10:41 4:51 4:36 

Figure 0.6 Timings in minutes and seconds. 

Rare and frequent races. In a seminal paper, Marino, Musuvathi, and Narayanasamy [66] 

made a distinction between rare and frequent races: 

“We classified as rare those racing instruction pairs that occurred fewer than 3 times 

for each million non-stack memory instructions executed. The rest are considered 

frequent.” 

A related idea stems from Burckhardt, Kothari, Musuvathi, and Nagarakatte [65] who 

characterized the depth of a bug as the minimum number of scheduling constraints required to 

find that bug. In the spirit of these ideas, let us consider whether Racageddon finds any rare 

races. Figure 4 lists the longest schedule that Racageddon used to find a race for each 

benchmark. Six of those schedules have more than a million events, including one schedule with 

more than 100 million events. For 18 of those longest schedules, the result was that Racageddon 

found a race that FGCP didn't find. The exceptions are TSP, Elevator, Vector, MolDyn, and 

ChordTest, and we notice that those five benchmarks have some of the shortest “longest 

schedules" among the benchmarks. 

Figure 7 lists the lengths of the 72 schedules that lead to races found only by Racageddon.  
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Name  Lengths  

Sor  6462, 6661, 6803  

TSP  5623  

Hedc  57327, 224341, 236804, 249268  

Elevator  6573, 7924, 8673, 8914  

ArrayList  132990  

TreeSet  -  

HashSet  -  

Vector  -  

RayTracer  71084  

MolDyn  4305  

MonteCarlo  12061  

Derby  58483566, 98555637, 105053813, 108302900  

Colt  824877, 919592, 948033  

ChordTest  -  

Avrora  702961  

Tomcat  1066481, 1169274, 1284917  

Batic  182982, 323737, 760003, 1379402, 1393478, 1400516, 1407554  

Eclipse  1697703, 3068331, 3429715, 16605080, 16785570, 77145639, 98049000, 102879384  

FOP  134705, 150499, 153074  

H2  32742, 116085, 217288, 232170, 241100, 264912, 273842, 276819, 279795, 285748, 
294678, 296133, 297655  

PMD  -  

Sunflow  374598, 730944, 1283212, 1348185, 1478131, 1494379, 1543108, 1575594, 1608075, 
1620019, 1624320  

Xalan  2674854, 2849301, 2907450  
Figure 0.7 The lengths of the 72 schedules that lead to races found only by Racageddon. 

We can groups those lengths as follows: 
lengths #  

103 − 104 9  

104 − 105 4  

105 − 106 28  
106 − 107 22  

107 − 108 6  

108 − 109 3  

 

The table shows that many of those schedules are long, hence rare. Specifically, 31 races 

were found with schedules that have between 1 million and 108 million events, which suggests 

that they are rare and hard-to-find races. 

Hybrid. Both CalFuzzer and Racageddon use Hybrid to produce race candidates. CalFuzzer 

focuses solely on the race candidates, while Racageddon discovers additional race candidates. 

Overall, Hybrid is successful is producing a worthwhile starting point for those two dynamic 

techniques. We can see in Figure 8 that for our benchmarks, Hybrid reports 405 race candidates 
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of which 238 (59%) are real races. Future work may be able to show that some of the remaining 

405-238=167 race candidates are real races. 

 

 Number of races 

Name  reported  real  

Sor  8  3  

TSP  3  1  

Hedc  5  5  

Elevator  13  7  

ArrayList  14  6  

TreeSet  13  8  

HashSet  11  7  

Vector  9  4  

RayTracer  2  2  

MolDyn  43  5  

MonteCarlo  5  3  

Derby  21  17  

Colt  13  9  

ChordTest  2  2  

Avrora  9  9  

Tomcat  52  20  

Batic  12  11  

Eclipse  77  46  

FOP  21  15  

H2  19  17  

PMD  14  12  

Sunflow  16  6  

Xalan  23  23  

TOTAL  405  238  
Figure 0.8 Hybrid; real is as found by FGCP and Racageddon. 

4.4. Related Work 
In Section 2 we discussed two techniques for race detection, namely one by O'Callahan and 

Choi [12] and one by Said, Wang, Yang, and Sakallah [58] that we use in Racageddon. In 

Section 4 we discussed five additional techniques, namely Chord [24], FastTrack [61], 

Goldilocks [62], CalFuzzer [60], and Pacer [63] that we have compared experimentally with 

Racageddon. The goal of this section is to highlight some other notable techniques and tools in 

the area of race detection and related areas. 

Dynamic race detectors. FastTrack, Goldilocks, CalFuzzer, and Pacer were some of the best 

dynamic race detectors for Java until now. A predecessor of Pacer, namely LiteRace [66] was the 

seminal paper that showed how to do race detection in a way that samples and analyzes selected 

portions of a programâs execution. Prior to LiteRace, a paper by Jump, Blackburn, and 

McKinley [67] presented a sampling technique that they applied in the context of memory 

management. 

Some well-known dynamic race detectors work for other languages than Java, including the 

seminal Eraser [68], and a tool by Sack et al. [69]. 



38 
 

Arnold and M. Vechev and E. Yahav [70] presented the QVM run-time environment that 

continuously monitors an execution and potentially detects defects, including races. 

Hybrid race detectors. The technique by O'Callahan and Choi [12] that we call Hybrid 

continues to be one of the best and most scalable hybrid techniques for race detection. Other 

hybrid techniques include one by von Praun and Gross [71], RaceTrack [72], and MultiRace 

[73]. We leave to future work to do a large-scale study of those three hybrid techniques like we 

did for Hybrid. In particular, future work should evaluate how well those techniques perform 

when we want to use their output as race candidates for other tools such as CalFuzzer and 

Racageddon. 

Static race detectors. Chord remains one of the best among the scalable static race detectors 

to date, hence it was our choice for experimental comparison in this paper. Among the other 

static race detectors, some use static analysis, including Warlock [74], RacerX [15], LockSmith 

[75], and Relay [76], some use model checking, including an approach by Henzinger, Jhala, and 

Majumdar [77], and some use type systems, including an approach based on ownership by 

Boyapati, Lee, and Rinard [11], and approaches that capture common synchronization patterns 

by Freund [78] and later by Abadi, Flanagan, and Freund [10]. A related approach based on type 

systems by Sasturkar, Agarwal, Wang, and Stoller [79] enables specification and check of 

atomicity. Finally, Effinger-Dean, Boehm, Chakrabarti, and Joisha [80] presented a 

characterization of extended interference-free regions of C programs in which variables cannot 

be modified by other threads. All the static approaches may produce false positives and thus have 

a goal that is dual to our objective to find real races. 

Other techniques. We implemented a precursor to Racageddon as an extension of Java 

PathFinder [29]. Our Java PathFinder extension is effective at exploring all execution paths yet 

doesn't scale up to our current benchmarks. 
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CHAPTER 5 

Deadlock Directed Testing of Concurrent Programs, 

or How to Detect Rare Deadlocks 

We present a new technique to find real deadlocks in concurrent Java programs. For 4.5 

million lines of Java, our technique found almost twice as many real deadlocks as four 

previous techniques combined. Our technique is particularly good at finding rare 

deadlocks: it found 33 deadlocks that happened after more than one million computation 

steps, including 28 new deadlocks. We first use a known technique to find 1275 deadlock 

candidates and then we determine that 146 of them are real deadlocks. Our technique 

combines previous work on concolic execution with a new constraint-based approach to 

drive an execution towards a deadlock candidate. 

5.1. Our Deadlock Detection Technique 
We now present our approach to find deadlocks. 

5.1.1. Overview 

In a nutshell, we first produce a set of deadlocks candidates and then we do a separate search 

for each of the deadlock candidates. The key idea is to turn each search for a deadlock into a 

search for a schedule that leads to the deadlock. We structure those searches in a particular 

manner that Eslamimehr and Palsberg used in their work on data race detection 

[EslamimehrPalsberg13b] and that we illustrate in Figure 5.1. Each circle in Figure 5.1 is a 

schedule. The search is an alternating sequence of execute and permute steps: 

(execute. permute)i. execute 

where i is a nonnegative integer. The execute function attempts to execute a given schedule and 

determine whether it leads to a deadlock, and the permute function permutes a given schedule. 

The search begin with an initial schedule found simply by executing the program. The search 

fails if execute cannot execute a given schedule, if permute cannot find a better permutation, or 

if the search times out. 

Each call to execute may produce a more promising schedule, after which a call to permute 

will further improve that schedule. In more detail, each call to execute will both try to execute 

the given schedule and continue execution beyond that schedule, typically until termination of 

the program. Part of the continued execution may make progress towards the desired deadlock. 

The call to permute will permute the events in the schedule to make the next call to execute 

have a better chance to succeed. 

The alternation of permute and execute steps is considerably more powerful than either one 

alone. For our benchmarks, our technique finds 146 deadlocks, while \execute alone finds only 

63 deadlocks, and permute alone finds only 22 deadlocks. 

Eslamimehr and Palsberg's work on data race detection [31] showed how to implement 

execute via a series of concolic executions, as we will summarize below. In Section 5.3 we show 

how to define a permute function that successfully helps to find rare deadlocks. 
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Figure 05.0.1 An illustration of the basic ConLock. 

5.1.2. Data Types 

We use the following eight data types in ConLock. 

ConLock works for Java 6 programs, which have the type Program. The input to such 

programs is a vector of values; we use Input to denote the type of input vectors. Each object in 

Java contains a lock; for simplicity we refer to each object as a lock and use Lock to denote the 

type of locks. 

When a program execution executes a particular statement in a particular thread, we refer to 

that as an event that has type Event. The standard notion of schedule is here the data type 

Schedule, which is a sequence of events. 

In the context of deadlock detection, two key data types are Link and Cycle. We use Link to 

describe that a thread in a particular statement has acquired a lock and now wants to acquire 

another lock. We use Cycle, which is a set of links, to describe a deadlock. 

A Deadlock is the type of information that we need to replay an execution that leads to a 

deadlock. A Deadlock has three components, namely the Cycle that is the deadlock, the Input that 

we should supply at the beginning of the execution, and the Schedule that the execution should 

follow to reach the deadlock. 
 Program = a Java 6 program  
 Input = input to a Java 6 program  
 Lock = a Java 6 object  
 Event = threadId × statementLable 
 Schedule = Event sequence 
 Link = threadId × (statementLable) × (statementLable) 
Cycle  = Link set 
 Deadlock = Cycle × Input × Schedule 

5.1.3. Deadlock Candidates 

Our technique relies on access to a set of deadlock candidates. We use Havelund's technique 

GoodLock [91] to produce 1275 deadlock candidates for our benchmarks of more than 4.5 

million lines of code. Those 1275 deadlock candidates are an excellent starting point for our 

search. GoodLock combines model checking and dynamic analysis into an efficient deadlock 
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detector that can produce both false positives and false negatives. Here is the interface to 

GoodLock: 

GoodLock: Program → Schedule 
We use GoodLock as a “black box”, that is, as an unmodified component for which we rely 

only on its input-output behavior. Notice that GoodLock maps a Java program to a set of 

eventSets, that is, a set of deadlock candidates. We use an extension of Goodlock that can handle 

deadlocks of any number of threads [91]. Havelund reported that deadlocks that involve three or 

more threads are extremely rare in practice, and indeed for our benchmarks GoodLock found 

only deadlock candidates that involve two threads. 

5.1.4. The InitialRun Function 

Here is the interface to the initialRun function: 

initialRun: Program → Schedule 

A call to initialRun simply executes the program with a random input and records the 

schedule. 

5.1.5. The Execute Function 

Here is the interface to the execute function: 

execute: (Program × Schedule × Cycle) → 

((Input × Schedule × boolan)⨁{none}) 

The arguments to execute are a program, a schedule, and a deadlock candidate. A call to 

\execute will attempt to execute the given schedule, determine whether it leads to a deadlock, 

and try to execute a longer schedule that contains the events embodied in the deadlock candidate. 

Consider the call: 

(𝑎, 𝑡𝑟𝑎𝑐𝑒, 𝑓𝑜𝑢𝑛𝑑) = execute(𝑝, 𝑠, 𝑐) 

Here, found is a boolean that is true if the given schedule s leads to a deadlock and that is 

false otherwise. If found is true, then a is the input to the program that was used to execute the 

schedule. Additionally, trace is the schedule that was actually executed.Here is a summary of 

how we implement execute. For a single event, a well-known idea is to execute a series of 

(Deadlock set)DeadlockTool(Program 𝑝){ 
     (Cycle set) 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 =  GoodLock(𝑝) 
     (Deadlock set) 𝑑𝑙𝑜𝑐𝑘𝑠 = ϕ ; 
 
      𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 Cycle 𝑐 ∈  candidates 𝐝𝐨 { 
           boolean 𝑓𝑜𝑢𝑛𝑑 =  false 
           boolean 𝑠𝑡𝑎𝑙𝑙𝑒𝑑 =  false 
           int i =  0 
           Schedule 𝑠 =  initialRun(𝑝) 
           𝐰𝐡𝐢𝐥𝐞 (¬found) ∧  (¬ stalled)  ∧  (i ≤  1000) { 
                 𝐜𝐚𝐬𝐞 execute(𝑝, 𝑠; , 𝑐) 𝐨𝐟 
                       (Input × Schedule × boolean)(𝑎, 𝑡𝑟𝑎𝑐𝑒, true): { 
                             𝑑𝑙𝑜𝑐𝑘s =  𝑑𝑙𝑜𝑐𝑘𝑠 ∪ {(𝑐, 𝑎, 𝑡𝑟𝑎𝑐𝑒)} 
                             𝑓𝑜𝑢𝑛𝑑 =  true 
                       } 
                       (Input × Schedule × boolean)(𝑎, 𝑡𝑟𝑎𝑐𝑒, false) ∶ { 
                             𝐜𝐚𝐬𝐞 permute(𝑡𝑟𝑎𝑐𝑒, 𝑐) 𝐨𝐟 
                                  Schedule s′: {s =  s′} 
                                  none ∶ {𝑠𝑡𝑎𝑙𝑙𝑒𝑑 =  true} 
                      } 
                     none ∶ {𝑠𝑡𝑎𝑙𝑙𝑒𝑑 =  true} 
               } 
              i =  i +  1 
        } 
    } 
    𝐫𝐞𝐭𝐮𝐫𝐧 dlocks 
} 

Figure 05.0.2 ConLock Algorithm. 
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concolic executions [32] that eventually finds an input that lead to execution of the desired event 

(if possible). Eslamimehr and Palsberg [31] generalized this idea to work for a sequence of 

events. The idea is to execute a series of concolic executions that eventually finds an input that 

leads to execution of all of the events in the sequence in order. The series of concolic executions 

for the (𝑛 = 1)𝑡ℎevent in the sequence builds on what was achieved for the first n events. Once 

we have matched the entire input schedule, we continue exploration until we have executed a 

schedule that contains as many of the events embodied in the deadlock candidate as possible. If 

we cannot match the input schedule at all, then execute returns none 

5.1.6. The Permute Function 

We will describe the design of the permute function in the following section. Here, we 

merely list its interface: 

permute: (Schedule × Cycle) → (Schedule × boolan)⨁{none}) 

Notice that permute maps a schedule and a deadlock candidate to a better schedule or else to 

none if no better schedule was found. 

5.1.7. ConLock Pseudo-code 

Figure 5.2 shows pseudo-code for ConLock, which we will go over in detail. We hope our 

pseudo-code and explanation will enable practitioners to implement our technique easily. 

The input to the ConLock procedure is a program while the output is a set of real deadlocks. 

The first two lines of ConLock declares these two variables: (1) a set of deadlock candidates, 

called candidates, that we initialize by a call to GoodLock, and (2) a set of deadlocks, called 

dlocks, that initially is the empty set and that we eventually return as the result of the procedure. 

The main body of the pseudo-code consists of a for-each-loop that tries each of the event sets 

in the set of candidates. The body of the for-each loop declares these four variables: (1) a 

boolean found that tells whether we have found a schedule that leads to the desired deadlock, (2) 

a boolean stalled that tells whether permute was able to improve a given schedule and whether 

execute was able to match the trace and execute a longer trace with the events embodied in the 

deadlock candidate, (3) an integer i that counts the number of pairs of calls to \permute and 

\execute, and (4) a schedule, called s, that holds a trace produced by an initial run. For each 

deadlock candidate we use a while-loop to do an alternation of calls to execute and permute, as 

illustrated in Figure 5.2. Intuitively, the while-loop terminates if either we find the deadlock, we 

give up, or we time out. The time-out condition i ≤  1000 was never exercised in our 

experiments; the highest number of iterations of the while-loop for our benchmarks was 726. 

In the body of the while-loop, we first call execute to match the given schedule, after which 

either we declare success, or proceed with a call to permute, or abandon the search. Similarly, 

after the call to permute, we either continue with the next iteration of the while-loop or we 

abandon the search. Notice how each iteration of the while-loop begins with s, extends it to trace 

and then improves it to a new value of s. 

If we find a deadlock, then we record the input and the trace that lead to the deadlock. If we 

abandon the search, we can take comfort in that some searches have no chance to succeed 

because the deadlock candidate is not a real deadlock! 

5.1.8. Example 

We now present an example in which we walk through a run of ConLock on the following 

program with four shared variables and two threads. 

The example is a refined version of the example in Section 1: we have added two 

assignments and two if-statements. The point of the example is that the program enters a 
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deadlock only when it executes the bodies of both if-statements. For a deadlock to happen, y 

must be 5 and the program must execute a particular schedule that lets x be 6 at the time the 

program evaluates the condition at 𝑙7. So, while a deadlock is possible, most executions are 

deadlock free. We will explain how our technique finds the deadlock. 

 

We use these abbreviations for events: 𝑒1 = (1, 𝑙1), 𝑒2 = (1, 𝑙2), 𝑒3 = (1, 𝑙3), 𝑒4 =
(1, 𝑙4), 𝑒5 = (2, 𝑙5), 𝑒6 = (2, 𝑙6), 𝑒7 = (2, 𝑙7), 𝑒8 = (2, 𝑙8). 

The call to GoodLock produces a single deadlock candidate, namely the following cycle, 

which in the for-each loop will be called c: 

 

𝑐 = {(𝑇ℎ𝑟𝑒𝑎𝑑 1, (𝑙2, 𝐴), (𝑙4, 𝐵)), ((𝑇ℎ𝑟𝑒𝑎𝑑 2, (𝑙6, 𝐵), (𝑙8, 𝐴))} 
Now we do an initial run of the program. Suppose that the initial random input, which 

becomes the value of the shared variable y, is 0. We get 

 

𝑠 =  𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7 

Now we run the first iteration of the while-loop. First we run execute which matches the 

schedule and finds out that with input 𝑦 = 5, it can add the event 𝑒4. So we have: 

𝑡𝑟𝑎𝑐𝑒 =  𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒4 

The call to permute on trace gives: 

𝑠 =  𝑒5, 𝑒6, 𝑒7, 𝑒4, 𝑒1, 𝑒2, 𝑒3, 𝑒4 

Now we run the second iteration of the while-loop. The call to execute matches the schedule 

with input y=5 so we have: 

𝑡𝑟𝑎𝑐𝑒 =  𝑒5, 𝑒6, 𝑒7, , 𝑒1, 𝑒2, 𝑒3, 𝑒4 

The call to permute on trace gives: 

𝑠 =  𝑒5, 𝑒6, 𝑒1, 𝑒2, 𝑒7, 𝑒3, 𝑒4 

Now we run the third iteration of while-loop. The call to execute matches the schedule with 

input y=5, adds the event 𝑒8 , and enters a deadlock. The schedule is: 

𝑡𝑟𝑎𝑐𝑒 = 𝑒5, 𝑒6, 𝑒1, 𝑒2, 𝑒7, 𝑒3, 𝑒4, 𝑒8 

Our key innovation is the permute function, which we explain next. 

5.2. The Design of Permute Function 

Our permute function combines ideas from static analysis and dynamic analysis. 

 

A, B are shared variables that contain objects 

x , y are shared variables that contain integers 

y has an initial value received from user input 

  
Thread 1: Thread 2:  
𝑙1:     𝑥 = 6 𝑙5:     𝑥 = 6 
𝑙2:     𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐴){ 𝑙6:     𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){ 
𝑙3:        𝑖𝑓(𝑦 > 4) 𝑙7::    𝑖𝑓(𝑦2 + 5 < 𝑥2) 
𝑙4:         𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){ 𝑙8:           𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){ 
            }             } 
    }         } 



44 
 

5.2.1. Background: Dynamic Data Race Detection 

Many researchers have studied how to extract information from execution traces. A pinnacle 

of this area is the paper by Serbanuta, Chen, and Rosu [109] that presented a sound and maximal 

model of execution traces: it subsumes all other sound models that rely solely on information 

from an execution trace. They also showed how to use the model to do dynamic race detection. 

Their race detector works in two steps: first run the program to get a trace, then find an 

executable permutation of the trace that leads to a race. Their model helps guarantee that the 

chosen permutation is executable. 

As shown later by Said, Wang, Yang, and Sakallah [58], one can phrase the problem to find 

an executable permutation of a trace as a constraint-solving problem, and one can use an SMT-

solver to produce that permutation. In essence, Said et al. presented a permute function that 

works well for race detection. Eslamimehr and Palsberg [31], combined Said et al.'s permute 

function with concolic execution and thereby obtained an efficient and useful dynamic race 

detector. What we need now is a permute function that works well for deadlock detection. 

5.2.2. Static Characterization of Potential Deadlocks  

Deshmukh, Emerson, and Sankaranarayanan [95] presented a static analysis of library code 

that identifies potential deadlocks. Their analysis delivers a library interface that describes how 

to call library functions with deadlock-safe alias relationships among library objects. In outline, 

their approach has two steps. 

First, from the text of a library, their static analysis builds a lock-order graph and a 

representation of alias information. The lock-order graph describes the order in which the code 

acquires locks. For example, for the statement 

𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐴){𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){… }} 
the lock-order graph contains an edge from a node “synchronized(A)” to a node 

“synchronized(B)”.  

Second, from the lock-order graph and the alias information, they derive constraints and 

show that the constraints are solvable if and only if the lock-order graph is acyclic. In other 

words, the constraints are solvable if and only the library code cannot deadlock. 

They use an SMT-solver to solve the constraints. We can embed their characterization of 

deadlocks into a permute function. 

5.2.3. A Memory-les Permute Function for Deadlock 

We want a permute function that works well for deadlock detection. We now describe a 

baseline version of such a function that we call the memory-less permute function. Our memory-

less permute function leads to a deadlock detector that finds 121 deadlocks in our benchmarks, 

which is already better than the previous dynamic techniques with which we compare. In the 

following subsection, we present an enhanced permute function that leads us to find an 

additional 25 deadlocks. 

Our memory-less permute function combines Deshmukh et al.'s static analysis of deadlocks 

[95] with aspects of Said et al.'s permute function [58] and a constraint that encodes a deadlock 

pattern for a deadlock candidate. Let us now explain the key observation that makes the 

combination work. 

Said et al. generates a constraint that at the top level has two conjuncts: 1) a constraint that 

guarantees that the permutation of a trace will be sequentially consistent, and 2) a constraint that 

represents a data race. We replace (2) with a representation of deadlock candidate; let us now 

take a closer look at (1). The constraint about sequential consistency has three conjuncts that 
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represent that the permuted trace must: 1.1) preserve the happens-before relation for each thread, 

1.2) satisfy write-read consistency, and 1.3) satisfy synchronization consistency. Write-read 

consistency means that a read event must read the value written by the most recent write event to 

that location, and synchronization consistency means that the permuted trace is consistent with 

the semantics of the synchronization events. The bulk of Said et al's paper [58] describes how to 

define (1.1), (1.2), and (1.3). We won't list the constraints here and instead we refer the reader to 

Said et al's paper [58] for details. 

Our observation is that we can use (1.1) and (1.2), and then replace (1.3) with the Deshmukh 

et al.'s lock-order constraints. Intuitively, we replace dynamic information about synchronization 

and lock order from a single trace with static lock-order information about the entire program. 

The whole-program view of lock order makes our permute function efficient and powerful. 

Finally, let us explain how we represent a deadlock candidate. First we need to introduce the 

notation used in the constraints that we have otherwise omitted. Suppose we have a trace 𝑡 =<
𝑒1, … , 𝑒𝑛 >. The constraints use n position variables 𝑜1, … , 𝑜𝑛. The idea is that the value of 𝑜1 is 

the position of 𝑒1 in the permuted trace. A solution to the constraints is an injective function 

𝑆 = {𝑜1, … , 𝑜𝑛} → {1, … , 𝑛} 
Now let us explain how we represent the following deadlock candidate from Section 5.2.7: 

𝑐 = {(𝑇ℎ𝑟𝑒𝑎𝑑 1, (𝑙2, 𝐴), (𝑙4, 𝐵)), ((𝑇ℎ𝑟𝑒𝑎𝑑 2, (𝑙6, 𝐵), (𝑙8, 𝐴))} 

Let us define 𝑒2 = (𝑇ℎ𝑟𝑒𝑎𝑑 1, 𝑙2), 𝑒4 = (𝑇ℎ𝑟𝑒𝑎𝑑 1, 𝑙4), 𝑒6 = (𝑇ℎ𝑟𝑒𝑎𝑑 2, 𝑙6), 𝑒8 =
(𝑇ℎ𝑟𝑒𝑎𝑑 2, 𝑙8) . We present c with the constraints 

(𝑜2 < 𝑜4 ) ∧ (𝑜6 < 𝑜8) 
Where < is the happens-before relation. This representation generalizes in straightforward 

manner to other deadlock candidates. 

The grand total is a constraint that consists of the constraints (1.1) and (1.2) from Said et al., 

all Deshmukh et al.'s constraints, and a representation of a deadlock candidate. This constraint, if 

solvable, represents a permuted trace. If the input trace contains all the events embodied in the 

deadlock candidate, and permuted trace is executable, then the execution leads to the deadlock. 

We use an SMT-solver to solve the constraint, and, as explained earlier, right after the call to 

permute, we run execute on the permuted trace to find out whether it is executable.  

5.2.4. An Enhanced Permute Function for Deadlock 

The full version of our permute function has “memory” and takes advantage of the schedules 

that have been submitted in all previous calls. The idea is to use the schedules that have been 

submitted earlier to relax the happens-before relation. We do the relaxation by taking the union 

of the happens-before relations from all those schedules. The result is a constraint system that is 

more likely to be satisfiable and that leads us to find 25 more deadlocks in our benchmarks. 

One final enhancement of our \permute function is based on partial order reduction. The 

issue is that permute by chance may produce a permuted trace that is semantically equivalent 

with the input trace and therefore must fail to lead to the deadlock candidate. We use Flanagan 

and Godefroid's approach [37] to partial order reduction to avoid such a situation. 

Our implementation uses Flanagan and Godefroid's approach as a checker that determines 

whether an input trace and the permuted trace are equivalent. In case the input trace and the 

permuted trace are equivalent, we repeatedly ask permute for a different output until we get one 

we want. 
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5.2.5. Example 

Let us return to the example from Section 2.7. Here we will focus entirely on the call to 

permute in the first iteration of the while-loop. That call is permute(trace, c) where 

𝑡𝑟𝑎𝑐𝑒 =  𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒4 

and c is the deadlock candidate listed above. Here are the constraints used by the permute 

function. First we list the constraints from Said et al. that we labeled (1.1), namely the constraints 

that preserve the happens-before relation for each thread: 

𝑒1 < 𝑒2 ∧ 𝑒2 < 𝑒3 ∧ 𝑒3 < 𝑒4 ∧ 𝑒5 < 𝑒6 ∧ 𝑒6 < 𝑒7 
Next we list the constraints from Said et al. that we labeled (1.2), namely the constraints that 

ensure write-read consistency: 

𝑒5 < 𝑒7 
Next we list Deshmukh et al.'s constraints for lock order: 

𝑒2 < 𝑒4 ∧ 𝑒6 < 𝑒8 
Let us assume that the program has no aliasing; then we have no alias constraints. Finally, we 

have a constraint that encodes the deadlock candidate: 

𝑒2 < 𝑒8 ∧ 𝑒6 < 𝑒4 
One possible solution is: 

𝑠 = 𝑒5, 𝑒6, 𝑒7, , 𝑒1, 𝑒2, 𝑒3, 𝑒4 

Which ignores the constraints that involve 𝑒8because 𝑒8doesn't occur in trace. So, we can 

return s as the result of the call to permute in the first iteration of the while-loop. 

5.3. Experimental Results 
We implemented GoodLock as an extension of Java PathFinder [29]. We use the Lime 

concolic execution engine; Lime is open source, http://www.tcs.hut.fi/Software/lime. In our 

implementation, events are at the Java bytecode level; we use Soot [102] to instrument 

bytecodes. We ran all our experiments on a Linux CentOs machine with two 2.4 GHz Xeon quad 

core processors and 32 GB RAM. 

5.3.1. Benchmarks 

Figure 5.3 lists our 22 benchmarks which we have collected from six sources: 

 From ETH Zurich [90]: Sor, TSP, Hedc, Elevator.  

 From java.util, Oracle's JDK 1.4.2: ArrayList, TreeSet, HashSet, Vector.  

  From Java Grande, [JDK1.4.2]: RayTracer, MolDyn, MonteCarlo.  

  From the Apache Software Foundation [Derby]: Derby.  

 From European Organization for Nuclear Research (CERN) [Colt]: Colt.  

 From DaCapo [106]: Avrora, Tomcat, Batic, Eclipse, FOP, H2, PMD, Sunflow, 

Xalan. 

The sizes of the benchmarks vary widely: we have 2 huge (1M+ LOC), 10 large (20K--1M 

LOC), 8 medium (1K--8K LOC), and 2 small (less than 1K LOC) benchmarks. 

Figure 5.3 also lists the high watermark of how many threads each benchmark runs, and the 

input size in bytes for each benchmark. 

5.3.2. Deadlock Detectors 

We compare ConLock with one static deadlock detector, namely Chord [23], one hybrid 

deadlock detector that we call GoodLock [29], and four dynamic deadlock detectors, namely 

DeadlockFuzzer [17], IBM Contest [25], Jcarder [27], and Java HotSpot [28]. Additionally we 

compare with a combined dynamic technique that we call DIJJ. 

http://www.tcs.hut.fi/Software/lime
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Chord is a static technique, and by design it may report false positives; its main objective is 

to report all real deadlocks (or as many as possible). 

Goodlock monitors the execution of a multi-threaded program, computes a lock dependency 

relation, and uses the transitive closure of this relation to suggest potential deadlocks. 

DeadlockFuzzer, IBM Contest, Jcarder, Java HotSpot, and ConLock are all dynamic 

techniques that report only real deadlocks. 

Deadlockfuzzer begins with a set of deadlock candidates produced by a variant of Goodlock. 

For each deadlock candidate, DeadlockFuzzer executes the program with a random scheduler 

that is biased towards executing the events in the deadlock candidate. The idea to use a random 

scheduler for Java can be traced back to Stoller [79]. 

IBM Contest uses heuristics to perturbate the schedule and thereby hopefully reach a 

deadlock. One of the techniques is to insert time-outs. 

Jcarder instruments Java byte code dynamically and looks for cycles in the graph of acquired 

locks. The instrumented code records information about the locks at run time. A later, separate 

phase of Jcarder post-processes the recorded information to search for deadlocks. 

The Java HotSpot Virtual Machine from Oracle can track the use of locks and detect cyclic 

lock dependences. The utility detects Java-platform-level deadlocks, including locking done 

from the Java Native Interface (JNI), the Java Virtual Machine Profiler Interface (JVMPI), and 

Java Virtual Machine Debug Interface (JVMDI). 

We use DIJJ to stand for the union of DeadlockFuzzer, IBM ConTest, Jcarder, and Java 

HotSpot in following sense. We can implement DIJJ as a tool that for a given benchmark starts 

runs of DeadlockFuzzer, IBM ConTest, Jcarder, and Java HotSpot in four separate threads, and if 

any one of them reports a deadlock, then DIJJ reports a deadlock. 
 

Name LOC  # threads  input size  

(bytes) 

Brief description  

Sor 1270  5  404  A successive order-relaxation benchmark  

TSP 713  10  58  Traveling Salesman Problem solver  

Hedc 30K  10  220  A web-crawler application kernel  

Elevator 2840  5  60  A real-time discrete event simulator  

ArrayList 5866  26  116  ArrayList from java.util  
TreeSet 7532  21  64  TreeSet from java.util  
HashSet 7086  21  288  HashSet from java.util  
Vector 709  10  128  Vector from java.util  
RayTracer 1942  5  412  Measures the performance of a 3D raytracer  

MolDyn 1351  5  240  N-Body code modeling dynamic  

MonteCarlo 3619  4  26  A financial simulator, using Monte Carlo techniques to price 

products  

Derby 1.6M  64  564  Apache RDBMS  

Colt 110K  11  804  Open Source Libraries for High Performance Scientific and 

Technical Computing  

ChordTest 62  11  74  Mini-benchmark; comes with the Chord race detector  

Avrora 140K  6  88  AVR microcontroller simulator  

Tomcat 535K  16  366  Tomcat Apache web application server  

Batic 354K  5  206  Produces a number of Scalable Vector Graphics (SVG) images 

based on Apache Batic  

Eclipse 1.2M  16  34  Non-GUI Eclipse IDE  

FOP 21K  8  658  XSL-FO to PDF converter  

H2 20K  16  116  Executes a JDBCbench-like in-memory benchmark  

PMD 81K  4  24  Java Static Analyzer  

Sunflow 108K  16  616  Tool for rendering image with raytracer  

Xalan 355K  9  404  XML to HTML transformer  
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TOTAL 4587K  58   

Figure 05.0.3 Benchmarks. 

5.3.3. How we handle Reflection 

Many of the benchmarks use reflection, and IBM Contest and Java HotSpot handle reflection 

well. We enable the other deadlock detectors to handle reflection with the help of the tool chain 

TamiFlex [64]. The core of the problem is that reflection is at odds with static analysis and 

bytecode instrumentation: reflection may make static analysis unsound and may load 

uninstrumented classes. TamiFlex solves these problems in a manner that is sound with respect 

to a set of recorded program runs. If a later program run deviates from the recorded runs, 

TamiFlex issues a warning. 

We have combined each of Chord, Goodlock, DeadlockFuzzer, and Jcarder with TamiFlex 

and we have run all our experiments without warnings. As a result, all the deadlock detectors all 

handle reflection correctly. 

5.3.4. Measurements 

Figure 5.4 shows, for each benchmark, the number of calls to execute across all deadlock 

candidates, and the number of concolic runs across all calls to \execute. Intuitively, the first 

number is the number of iterations of the while-loop across all deadlock candidates; each 

iteration calls execute once. Each of those calls to execute tends to do a large number of 

concolic runs, and the second number is the grand total count of all those concolic runs. 

Name # calls to execute # concolic runs 

Sor  11  591  

TSP  16  387  

Hedc  29  10,550  

Elevator  18  119  

ArrayList  19  613  

TreeSet  20  205  

HashSet  17  422  

Vector  21  175  

RayTracer  10  86  

MolDyn  9  57  

MonteCarlo  30  101  

Derby  14  2,349,385  

Colt  16  73,129  

Avrora  39  6,007,128  

Tomcat  661  5,923,744  

Batic  41  428,881  

Eclipse  726  3,901,827  

FOP  15  64,050  

H2  24  17,580  

PMD  12  99,105  

Sunflow  19  41,051  

Xalan  414  87,933  
Figure 05.0.4 Dynamic counts of ConLock’s search process. 

Figure 5.5 shows the numbers of deadlocks found in 22 benchmarks by 7 techniques. 
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Figure 5.6 shows the time each of the runs took in minutes and seconds, and it shows the 

geometrical mean for each technique. 

Figure 5.7 shows, for each benchmark, the lengths of the 146 schedules that lead to 

deadlocks found by ConLock. The 86 schedules highlighted with boldface font lead to deadlocks 

found only by ConLock. 

5.3.5. Evaluation 

We now present our findings based both on the measurements listed above and on additional 

analysis of the deadlocks that were found. 

Number and length of schedules. We can see in 5.4 that the number of calls to execute is 

rather modest: for every benchmark, it is at most twice the number of deadlock candidates. We 

can also see in Figure 5.4 that each call to execute does many concolic runs to match a given 

schedule. We can see in Figure 5.7 that those schedules can be long; the longest schedules that 

found deadlocks have more 

than 10,000,000 events. This also shows that the \permute method scales to long schedules. 

ConLock versus other Dynamic Techniques. We can see in Figure 5.5that ConLock finds 

the most deadlocks (146) of all the dynamic techniques. Among those 146 deadlocks, 86 

deadlocks were found only by ConLock and are entirely novel to this study, while 60 were also 

found by DIJJ. Dually, 15 deadlocks were found only by DIJJ. In summary, we have that the 

combination of DIJJ and ConLock found 161 deadlocks in the 22 benchmarks. 
 Static  Hybrid  Dynamic 

benchmarks  Chord  GoodLock  DeadlockFuzzer IBM 
ConTest 

Jcarder  Java 
HotSpot  

DIJJ ConLock 

 total new FGCP 

Sor  1  7  0  0  0  0  0  1 1  0    
TSP  1  9  0  0  0  0  0  1  1  0    
Hedc  24  23  1  0  0  0  1  20  19  1    
Elevator  4  13  0  0  0  1  1  5  4  1    
ArrayList  9  11  7  6  2  1  7  9  6  3    
TreeSet  8  11  7  5  1  3  8  5  0  5    
HashSet  11  10  3  1  0  2  5  5  0  5    
Vector  3  14  0  1  0  0  1  4  4  0    
RayTracer  1  8  0  1  0  0  1  2  1  1    
MolDyn  3  6  1  1  1  1  1  1  0  1    
MonteCarlo  2  23  0  1  1  1  1  2  1  1    
Derby  5  10  2  0  0  0  2  4  3  1    
Colt  6  11  0  0  0  0  0  3  3  0    
Avrora  78  29  4  2  1  2  4  7  3  4    
Tomcat  119  411  9  10  3  4  11  18  10  8    
Batic  73  33  5  4  1  3  7  10  3  7    
Eclipse  89  389  9  8  4  6  13  23  12  11    
FOP  15  11  1  1  0  0  2  4  2  2    
H2  25  17  0  1  0  0  1  3  2  1    
PMD  20  8  2  2  0  1  3  4  2  2    
Sunflow  31  11  1  2  0  2  2  6  4  2    
Xalan  42  210  3  4  0  2  4  9  5  4    
TOTAL  570  1275  55  50  14  29  75  146  86  60    

Figure 05.0.5 The numbers of deadlocks found in 22 benchmarks by 7 techniques. 
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Found only by DIJJ:  15  

Found by both:  60  

Found only by ConLock: 86  

Total:  161  

 

Let us consider the 15 deadlocks that DIJJ found but ConLock missed. Those deadlocks were 

in ArrayList (4), TreeSet (3), Vector (1), Derby (1), Tomcat (3), Eclipse (2), PMD (1). 

DeadlockFuzzer found eleven of those, and IBM ConTest found the remaining four (and also 

four of the eleven found by DeadlockFuzzer). 

For example, DeadlockFuzzer found the following deadlock in Tomcat, while ConLock 

missed it. The deadlock happens when Tomcat uses OracleDataSourceFactory. The nature of the 

deadlock is much like the example in Section 1. If we use the notation of that example, then A is 

an object of class java.util.Properties, while B is an object of class java.util.logging.Logger. Two 

threads execute synchronized-operations on those objects in the pattern of the example in Section 

5.1, hence they may deadlock. 

 
 Static Hybrid Dynamic 

benchmarks  Chord GoodLock DeadlockFuzzer IBM 
ConTest 

Jcarder Java 
HotSpot 

ConLock 

Sor  4:23 0:04 0:05 0:07 0:12 0:15 0:39 
TSP  8:09 0:02 0:02 0:06 0:17 0:18 0:50 
Hedc  20:11 0:04 0:06 0:08 0:19 0:23 0:44 
Elevator  5:19 0:06 0:07 0:11 0:09 0:13 0:51 
ArrayList  3:10 0:03 0:04 0:05 0:11 0:19 0:28 
TreeSet  2:55 0:02 0:02 0:05 0:11 0:22 0:26 
HashSet  2:47 0:04 0:05 0:06 0:10 0:14 0:35 
Vector  5:31 0:03 0:03 0:07 0:12 0:17 0:19 
RayTracer  4:22 0:02 0:03 0:04 0:19 0:09 0:30 
MolDyn  5:34 0:05 0:08 0:12 0:24 0:23 0:49 
MonteCarlo  4:48 0:05 0:05 0:13 0:15 0:17 1:02 
Derby  46:17 0:12 0:18 0:19 0:48 0:55 1:25 
Colt  15:58 0:08 0:13 0:14 0:13 0:20 0:31 
Avrora  51:36 0:22 0:24 0:22 0:51 1:02 1:16 
Tomcat  58:24 0:20 0:23 0:27 0:49 0:54 4:15 
Batic  43:03 0:14 0:19 0:20 0:30 0:41 1:07 
Eclipse  59:20 0:29 0:30 0:29 0:38 0:49 3:21 
FOP  38:00 0:13 0:19 0:33 0:21 0:33 1:43 
H2  27:19 0:10 0:14 0:29 0:29 0:40 0:57 
PMD  45:05 0:07 0:10 0:08 0:19 0:23 0:53 
Sunflow  39:12 0:16 0:18 0:21 0:32 0:52 1:46 
Xalan  40:53 0:14 0:19 0:22 0:27 0:55 3:02 
geom. mean 17:39 0:06 0:09 0:12 0:20 0:26 0:59 

Figure 05.0.6 Timings in minutes and seconds. 

We conclude that ConLock finds the most deadlocks, and that DeadlockFuzzer and IBM 

ConTest remain worthwhile techniques that each finds deadlocks that the other dynamic 

techniques don't find. 
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DIJJ details. The combined dynamic technique DIJJ found 75 deadlocks. Now we analyze 

the individual contributions of the four techniques. Our first observation is, intuitively: 

 

Jcarder ⊆ (DeadlockFuzzer⋃IBM ConTest) 
In words, if Jcarder finds a deadlock, then DeadlockFuzzer or IBM ConTest (or both) also 

finds that deadlock. Our second observation is that if Java HotSpot finds a deadlock, then either 

DeadlockFuzzer or IBM ConTest (or both) also finds that deadlock or the deadlock is one 

particular deadlock in Elevator. We note that ConLock also finds that particular deadlock in 

Elevator. 

Chord. Chord is possibly the best current static deadlock detector, yet our experiments 

strongly suggest that Chord produces a large number of false positives. Additionally, Chord 

missed five real deadlocks, namely one deadlock in each of Elevator, Vector, Raytracer, Batic, 

and Xalan. We conclude that accurate static deadlock detection continues to be an open problem. 

Timings. The geometrical means of the execution times for each dynamic technique show 

that DeadlockFuzzer is the fastest while ConLock is the slowest. The timings for 

DeadlockFuzzer and ConLock include the time to execute GoodLock. 

 
Name  length 

Sor  5705  

TSP  6688  

Hedc  1009, 11488, 55133, 73956, 104440, 116573, 172832, 
178127, 189601, 197893, 207813, 228867, 244167, 249130,  
 251800, 269624, 269911, 273123, 275003, 277145 

Elevator  3099, 10029, 10753, 12369, 13680  

ArrayList  15873, 19012, 19632, 47100, 58881, 80431, 80512, 110532, 
111407  

TreeSet  303, 22889, 52011, 59217, 77138  

HashSet  921, 11630, 23705, 53186, 93122  

Vector  2007, 4401, 4788, 6020  

RayTracer  3981, 8212  

MolDyn  5194  

MonteCarlo  4392, 11972  

Derby  56430, 786620, 23725394, 34440100  

Colt  456313, 720898, 1362838  

Avrora  1802, 23520, 65219, 65820, 242749, 550892, 600236  

Tomcat  308, 3494, 82442, 83710, 197126, 482100, 871390, 891376, 
2973632, 3976200, 6061234, 6535192, 7105988,  
 7359792, 7367253, 8001527, 8091572, 8119634 

Batic  1997, 5481, 10781, 72918, 114666, 203675, 259178, 
908327, 1034685, 1220565 

Eclipse  736, 1267, 7723, 31884, 72535, 209734, 475110, 920255, 
946701, 989271, 995021, 1537020, 1792033,  
 3000287, 6197522, 9801562, 11732081, 11885360, 
13870290, 13992176, 15753208, 16001526, 18275300 

FOP  23991, 56028, 119886, 130898  

H2  19763, 109587, 296001  

PMD 678, 2923, 219561, 287023  

Sunflow 15873, 67325, 550192, 888237, 991720, 1089212  

Xalan 8805, 52249, 116023, 294027, 1080194, 1973260, 2774053, 
3207368, 3304152  

Figure 05.7 The lengths of the 146 schedules that lead to deadlocks found by ConLock. Bold font indicates new. 
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Rare deadlocks. Burckhardt, Kothari, Musuvathi, and Nagarakatte [65] characterized the 

depth of a bug as the minimum number of scheduling constraints required to find that bug. In the 

spirit of that idea, we will say that a deadlock is rare if it occurs after more than a million steps 

of computation. Let us consider whether ConLock finds any rare deadlocks. Figure 5.7 lists the 

lengths of the 146 schedules that lead to deadlocks found by ConLock. We can groups those 

lengths as follows: 
lengths #  

102 − 103 5 
103 − 104 20  

104 − 105 39  

105 − 106 49  
106 − 107 24  

107 − 108 9  

 

The table shows that many of those schedules are long, hence the deadlocks are rare. 

Specifically, 33 deadlocks were found with schedules that have between 1 million and 34 million 

events, which suggests that they are rare and hard-to-find deadlocks. 

We note that for each of seven benchmarks (Derby, Colt, Tomcat, Batic, Eclipse, Sunflow, 

Xalan), at least one real deadlock happens with a schedule that has more than a million events. 

In Figure 5.7 the numbers in bold font are for schedules that lead to deadlocks found only by 

ConLock. Among the rare 33 deadlocks, 28 were found only by ConLock. 

We conclude that ConLock does a much better job than previous work to find rare deadlocks. 

 

5.4. Limitations 
Our approach has four main limitations. 

First, our current implementation of ConLock supports only synchronized methods and 

statements, and has no support for other synchronization primitives such as wait, notify, and 

notify all. We leave support for such primitives to future work. 

Second, our approach relies on GoodLock to produce deadlock candidates. In case 

GoodLock misses a deadlock, so will ConLock. 

Third, our approach relies on a constraint solver both in permute and execute. The form of 

constraints that we use in permute has a decidable satisfiability problem, while the form of 

constraints that we use in execute are derived from expressions in the program text and may be 

undecidable. So for constraint solving in execute, we are at the mercy of expressions in the 

program text and the power of our chosen constraint solver. 

Fourth, our approach has no support for native code. 

 

5.5. Related Work 
In Section 4, we discussed six techniques for deadlock detection, namely Chord [24], 

GoodLock [29], DeadlockFuzzer [17], IBM Contest [25], Jcarder [27], and Java HotSpot [28] 

and we did a large-scale experimental comparison of all six and ConLock. The goal of this 

section is to highlight some other notable techniques and tools in the area of deadlock detection 

for unannotated programs. 

Run-time Monitoring Systems. Arnold and M. Vechev and E. Yahav [70] presented the 

QVM run-time environment that continuously monitors an execution and potentially detects 

defects, including deadlocks. Huang, Zhang, and Dolby [93] presented an efficient approach to 



53 
 

log execution paths and then do off-line computation in order to reproduce concurrency bugs 

such as deadlocks. Another idea is to let the operating system detect deadlocks [108]. All three 

approaches monitor executions but do nothing to drive an execution towards a deadlock. 

Model checking. Demartini et al. [85] presented a translation from Java source code to 

Promela that enables deadlock detection via the SPIN model checker [92]. The translator 

predates Java 6 and would require significant extension to handle our benchmarks. 

Chaki et al. [103] and Godefroid [89] presented model checkers for C that can find 

deadlocks. We leave to future work to try those approaches for Java. 

Static deadlock detectors. Static deadlock detectors [10] have a goal that is dual to our 

objective to find real deadlocks: they attempt to find all deadlocks and possibly some false 

positives. Chord remains one of the best among the scalable static deadlock detectors for Java to 

date, hence it was our choice for experimental comparison in this study. 
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Conclusion 

 

To find the maximum stack size in the context of event-driven programs, our results show 

that the state-of-the-art static analysis produces excellent estimates of maximum stack size. Our 

testing approach DTall can almost match the results of the static analysis. Additionally, our 

approach VICE comes close and is two orders of magnitude faster than DTall. The keys to 

produce challenging event sequences are to use directed testing to get event values and to use our 

SA-Tree technique to get event names. The SA-Tree technique is an example of how static 

analysis can help testing be more efficient. 

Our technique is useful for other languages than Virgil. The availability of a source-level 

interpreter greatly facilitates the collection of constraints. 

VICE is a new approach to practical stress testing of event-driven software, even in situations 

when no nontrivial sound static analysis exists. VICE quickly generates a small number of 

challenging event sequences that drive the execution into “dark corners” of the software. Such 

event sequences may reveal faults or help confirm that the software works correctly even for 

corner cases. We leave to future work to investigate the bug-finding capabilities of DTall and 

VICE. 

In the context of concurrent Racageddon and ConLock implement a new technique that we 

call directed scheduling. We have shown how to detect data races and deadlocks by a 

combination of concolic execution and a novel approach to schedule permutation. Our 

experiments show that directed scheduling is efficient and useful. 

For a large benchmark suite, our tool Racageddon found 72 real races that were missed by 

earlier techniques. Among those 72 races, more than a third namely 31 races were found with 

schedules that have between 1 million and 108 million events, which suggests that they are rare 

and hard-to-find races. Our experiments also show that a combination of Goldilocks, Calfuzzer, 

Pacer, and Racageddon finds a total of real 376 races in our benchmarks. As far as we know, this 

is the most comprehensive list of real races for those benchmarks that is reported in the literature. 

Our experiments validate Hybrid [12] as an excellent choice for producing race candidates. 

Across our benchmark suite, we found that Hybrid produces at most 41% false positives. .For a 

large benchmark suite, our tool ConLock found 86 deadlocks that were missed by earlier 

techniques. Among those 86 deadlocks, about a third namely 28 deadlocks were found with 

schedules that have more than 1 million events, which suggests that they are rare and hard-to-

find deadlocks. Our technique can find rare deadlocks because the combination of concolic 

execution and schedule permutation helps drive an execution towards a deadlock candidate. Our 

experiments show that a combination of DeadlockFuzzer, IBM ConTest, and ConLock finds a 

total of real 161 deadlocks in our benchmarks. 

Our design of Racageddon and ConLock and our experiments have shown that a combination 

of techniques is currently the best path to successful race detection. As far as we know, this is the 

most comprehensive list of real deadlocks for those benchmarks that is reported in the literature 
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