
UCLA
UCLA Electronic Theses and Dissertations

Title
Directed Testing of Event-Driven and Parallel Programs

Permalink
https://escholarship.org/uc/item/7bb4k79b

Author
Eslamimehr, Mohammad Mahdi

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7bb4k79b
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Directed Testing of Event-Driven and Parallel Programs

A dissertation submitted in partial satisfaction of

the requirements for the degree

Doctor of Philosophy in Computer Science

by

Mohammad Mahdi Eslamimehr

2014

© Copyright by

Mohammad Mahdi Eslamimehr

2014

ii

The dissertation of Mohammad Mahdi Eslamimehr is approved.

Todd Millstein

Glenn Reinman

William Kaiser

Jens Palsberg, Committee Chair

 University of California, Los Angeles

 2014

iii

To my precious and brilliant wife Sara . . .

Without her help and support it simply never would have been.

iv

TABLE OF CONTENTS
Introduction ... 1

1.1. Analysis of Maximum Stack Size .. 1

1.2. Data Race Detection ... 3

1.3. Deadlock Detection .. 4

1.4. Contributions .. 5

1.5. Outline .. 6

State-of-Art Testing of Sequential Programs... 7

2.1. Background ... 7

2.2. Directed Testing Era ... 8

2.3. Directed Testing’s Limitations and Promises .. 9

Directed Testing of Event-Based Software ... 10

3.1. Event Sequence in Event-Driven Software .. 10

3.2. Seven Testing Approaches ... 11

3.3. VICE Example .. 13

3.4. VICE Description ... 16

3.5. Experimental Results .. 18

3.5.1. Benchmarks .. 19

3.5.2. Measurements .. 20

3.5.3. Assessments ... 20

Race Directed Scheduling of Concurrent Programs .. 23

4.1. Two Techniques from Previous Works .. 23

4.2. Race Directed Scheduling ... 23

4.2.1. Data Types .. 24

4.2.2. Two Tools .. 24

4.2.3. Concolic Execution .. 24

4.2.4. Helper Functions ... 25

4.2.5. Racageddon Overview ... 26

4.2.6. Racageddon Pseudo-code .. 26

4.2.7. Example .. 28

4.3. Experimental Results .. 30

4.3.1. Benchmarks .. 31

v

4.3.2. Race Detectors .. 31

4.3.3. How we handle Reflection ... 31

4.3.4. Measurements .. 32

4.3.5. Evaluation ... 33

4.4. Related Work .. 37

Deadlock Directed Testing of Concurrent Programs, ... 39

5.1. Our Deadlock Detection Technique ... 39

5.1.1. Overview ... 39

5.1.2. Data Types .. 40

5.1.3. Deadlock Candidates .. 40

5.1.4. The InitialRun Function .. 41

5.1.5. The Execute Function ... 41

5.1.6. The Permute Function .. 42

5.1.7. ConLock Pseudo-code... 42

5.1.8. Example .. 42

5.2. The Design of Permute Function.. 43

5.2.1. Background: Dynamic Data Race Detection .. 44

5.2.2. Static Characterization of Potential Deadlocks ... 44

5.2.3. A Memory-les Permute Function for Deadlock ... 44

5.2.4. An Enhanced Permute Function for Deadlock .. 45

5.2.5. Example .. 46

5.3. Experimental Results .. 46

5.3.1. Benchmarks .. 46

5.3.2. Deadlock Detectors .. 46

5.3.3. How we handle Reflection ... 48

5.3.4. Measurements .. 48

5.3.5. Evaluation ... 49

5.4. Limitations .. 52

5.5. Related Work .. 52

Conclusion ... 54

References .. 59

vi

LIST OF FIGURES
FIGURE 3.1 VIRGIL EXAMPLE PROGRAM. .. 15
FIGURE 3.2 VICE DATA TYPES AND TOOLS. .. 16
FIGURE 3.3 VICE ALGORITHM. ... 18
FIGURE 3.4 ILLUSTRATION OF HOW VICE WORKS. .. 19
FIGURE 3.5 MAXIMUM STACK SIZES IN BYTES. THE LAST LINE GIVES A GEOMETRIC MEAN. ... 20
FIGURE 3.7 BRANCH COVERAGE IN PERCENT. THE LAST LINE GIVES A GEOMETRIC MEAN. .. 21
FIGURE 3.8 COMPARISON OF SEVEN TESTING APPROACHES. .. 22
FIGURE 4.1 RACAGEDDON ALGORITHM. ... 27
FIGURE 4.2 BENCHMARKS. ... 30
FIGURE 4.3 RACES FOUND BY RACAGEDDON. ... 32
FIGURE 4.4 SCHEDULES TRIES BY RACAGEDDON.. 33
FIGURE 4.5 THE NUMBERS OF RACES FOUND IN 23 BENCHMARKS BY 7 TECHNIQUES. ... 34
FIGURE 4.6 TIMINGS IN MINUTES AND SECONDS. .. 35
FIGURE 4.7 THE LENGTHS OF THE 72 SCHEDULES THAT LEAD TO RACES FOUND ONLY BY RACAGEDDON. ... 36
FIGURE 4.8 HYBRID; REAL IS AS FOUND BY FGCP AND RACAGEDDON. .. 37
FIGURE 5.1 AN ILLUSTRATION OF THE BASIC CONLOCK. ... 40
FIGURE 5.2 CONLOCK ALGORITHM. ... 42
FIGURE 5.3 BENCHMARKS. ... 48
FIGURE 5.4 DYNAMIC COUNTS OF CONLOCK’S SEARCH PROCESS. ... 49
FIGURE 5.5 THE NUMBERS OF DEADLOCKS FOUND IN 22 BENCHMARKS BY 7 TECHNIQUES. .. 50
FIGURE 5.6 TIMINGS IN MINUTES AND SECONDS. .. 51
FIGURE 5.7 THE LENGTHS OF THE 146 SCHEDULES THAT LEAD TO DEADLOCKS FOUND BY CONLOCK. BOLD FONT INDICATES NEW. 52

file:///C:/Users/Mahdi/Desktop/disdaft.docx%23_Toc376463699
file:///C:/Users/Mahdi/Desktop/disdaft.docx%23_Toc376463706
file:///C:/Users/Mahdi/Desktop/disdaft.docx%23_Toc376463715

vii

ACKNOWLEDGMENT

Thank you, Jens Palsberg, for being such an extraordinary adviser. I joined your lab in

2008 without much experience in research, academic writing, and deep knowledge of

compilers. I became part of your lab and spent 5 years learning from you every single day.

I am now graduating feeling like a researcher and better person, and for all these I am

humbly indebted to you.

I would like to express my gratitude to my committee members, Professor Todd Millstein,

Professor Glenn Reinman, and Professor William Kaiser, for their insightful guidance in

my oral qualifying exam.

Foremost, I would like to thank my parents and my brother who always had faith in me,

and their supports helped me focus on my studies.

I would also like to thank my friends Ali Sajjadi, Riyaz Haque, John Bender, and Hamid

Mirebrahim who have helped and encouraged me to move forward.

Lastly, I would like to thank my wife, Sara for her support and encouragement throughout

my studies.

viii

VITA

2006 B.Sc. Computer Engineering, Sharif University, Tehran, Iran.

2007 Software Intern, Conformiq Qtronic, Helsinki, Finland.

2007-2008 Software Engineer at Ericsson AB. Stockholm, Sweden.

2008 M.Sc. Computer Science, Linkoping University, Linkoping,
Sweden.

2008-Present Research Assistant, Complier Construction Lab, UCLA, USA.

2010 Software Engineer, Samsung Electronics US RD Center, San
Jose, USA.

2011 National Science Foundation (NSF)/ Stanford Research Institute
(SRI) School of Formal Techniques, Palo Alto, US.

2011 Senior Software Engineer, Utopia Compression RD Department, Los
Angeles, USA.

2012 Software Intern, Joseph Fourier University, Grenoble, France.

2012 Software Intern, CNRS (French National Center for Scientific
Research), Grenoble, France.

ix

PUBLICATION

Mahdi Eslamimehr, Jens Palsberg, Race Directed Scheduling of Concurrent Programs,
PPOPP 2014.

Mahdi Eslamimehr, Jens Palsberg, Testing versus static analysis of maximum stack size,
COMPSAC 2013.

x

ABSTRACT OF THE DISSERTATION

Directed Testing of Event-Driven and Parallel

Programs

by

Mohammad Mahdi Eslamimehr

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Jens Palsberg, Chair

Detecting computational states of a program, where safety requirements have been violated, is the

main task of a software tester. We focus on three critical safety requirements. First, finding

maximum stack usage in event-based systems, in order to avoid stack overflow. Second and third,

absence of data race and deadlock in parallel programs, respectively. We will present how

particular states of computation, where the above mentioned requirement are violated, is reached.

Directed testing has shown considerable success in both academy and industry. However, applying

directed testing’s core form on programming paradigms, with a more complicated control flow is

not nearly as successful as on sequential programs. The goal of this dissertation is to address how

we can enhance directed testing to perform well with event-driven and parallel programs.

For event-driven software we present a new approach, termed event-based directed testing. Our

approach combines aspects of random testing and directed testing to generate challenging event

sequences, for testing event-driven software.

Our experiments show, we achieve significantly improved branch coverage and larger maximum

stack sizes.

xi

For parallel programs, we also present a new dynamic technique to detect data races and deadlocks.

Our technique combines previous work on concolic execution with a new constraint-based

approach to drive an execution towards a concurrency bug candidate. Our technique has found

almost twice as many real concurrency bugs as the four previous techniques combined.

1

CHAPTER 1

Introduction

As software systems become more complicated, checking their correctness becomes a

tedious task. Software safety is a requirement which is a concern for all industries, but

few address it correctly. We focus on three important safety requirements. First, focus on

finding maximum stack usage in event-based systems to avoid stack overflow, and

second, absence of data race, and third, absence of deadlock in parallel programs. The

goal of this dissertation is to show how to reach to particular states during computation

where a safety requirement is violated. Thus, we will show we can enhance directed

testing to work well with event-driven and parallel programs.

1.1. Analysis of Maximum Stack Size
Testing event-driven programming has found pervasive acceptance, from high-performance

servers to embedded systems, as an efficient method for interacting with a complex world.

However, loose coupling of event handlers obscures control flow and makes dependencies hard

to detect, leading to subtle bugs. Event-driven software on resource-constrained devices has the

additional challenge that if swamped with events; the software may run out of memory. Thus,

estimates of the maximum stack size can be of paramount importance [1].

For example, a poor estimate led to software failure and closure of a German railway station

in 1995. Specifically, the designers had estimated that 3,500 bytes of stack space would be

sufficient but actually 4,000 bytes were needed. As a result, the railroad station's computer

experienced stack overflow and failed [2].

Intuitively, the maximum stack size during a run is the high water mark or the peak value of

the stack pointer. We focus on a much-studied question about stack space for event-driven

software:

Q: what is the maximum stack size across all inputs?

A programmer can use the answer to ensure that sufficient stack memory is available for a

particular application. Additionally, the programmer can use the smallest or cheapest memory

unit that has sufficient capacity and thereby help control size and cost. This is welcome for many

event-driven applications that run in embedded systems for which physical size and hardware

cost are major concerns.

Like most other interesting questions about programs, the above question is undecidable.

Ideally, we would answer the above question by running the program on all inputs, possibly

indefinitely in case of nontermination. Each run has a maximum stack size and we can then take

the maximum across all runs to get the answer to the question. The result is the true maximum

stack size.

The above question can be answered approximately by testing (running the program) and by

static analysis (analyzing the program text). A testing approach underestimates the true answer

2

by finding the maximum stack size for some runs on some inputs. A static analysis overestimates

the ideal answer by working with conservative abstractions of program constructs and values. In

slogan form, we have the following relationships for maximum stack size:

𝑡𝑒𝑠𝑡𝑒𝑑 ≤ 𝑡𝑟𝑢𝑒 ≤ 𝑠𝑡𝑎𝑡𝑖𝑐

How close are tested and static? In some situations no nontrivial sound static analysis exists,

and we have only the trivial sound static analysis that says that the stack is unbounded. A typical

such scenario is an embedded system for which some of the event-driven software is written in

assembly code. The assembly code usually contains instructions that add or subtract from the

stack pointer, to enable the stack to shrink or grow. Can current nontrivial sound static analyses

handle such instructions? The answer is Yes if the instructions add or subtract constants=; while

the answer is No if the instructions add or subtract the contents of a register. If no nontrivial

sound static analysis exists, then a programmer must use the best testing approach, and perhaps

take a chance with an unsound static analysis. Such techniques are inherently unsafe and a

standard engineering solution is to over-provision: if the testing approach estimates the

maximum stack size to be n, then go with memory of size 2n, for example, though even 2n may

be insufficient.

If a sound static analysis exists, then we can use it to safely allocate the estimated amount of

memory and be sure that no stack overflow will occur. Ideally we can find an optimal static

analysis that always produces the true maximum stack size. However, static analysis must

terminate, including for nonterminating programs, so usually static analysis is forced to be

conservative and nonoptimal. For maximum stack size of event-driven software, the state-of-the-

art static analysis was presented in [3], [4] (See also [5], [6], [4]) and has been implemented in

multiple tools. In this paper we address the following question.

Q: how good is the state-of-the-art static analysis of maximum stack size?

We use testing to answer the above question. We have done an experiment with the state-of-

the-art testing approach [7] (see also [6]) on benchmarks that are event-driven assembly code

programs. In those benchmarks, all arithmetic on the stack pointer either adds or subtracts

constants, according to our manual inspection, so the static analysis is sound, we believe. We

found a big gap between the estimates: the testing approach achieves a maximum stack size that

on average is only 67 percent of that achieved by static analysis. Our benchmark suite consists of

software for sensor nodes and proved to be a major challenge for the testing approach. For a

different benchmark suite, Regehr [7] found that testing and static analysis are much closer.

Our experiment raises a classical question that arises for a variety of problems that can be

addressed with both testing and static analysis. Is the gap mostly due to weak testing or overly

conservative static analysis? The answer is that better testing is possible and that the static

analysis is near optimal for our benchmarks. We make those points by presenting two new

testing approaches that almost match the static analysis. The first approach is called DTall and

achieves a maximum stack size that on average is within 99 percent of that achieved by static

analysis. The second approach is called VICE and achieves a maximum stack size that on

average is within 94 percent of that achieved by static analysis. VICE is two orders of magnitude

faster than DTall. Our results show that the state-of-the-art static analysis produces excellent

estimates of maximum stack size.

3

1.2. Data Race Detection
Concurrent programming with shared memory offers both the benefit of efficient execution

and the pitfall of data races. Efficiency can be achieved when we let multiple processors run in

parallel and exchange data via the shared memory. A data race arises when two processes

simultaneously access a shared memory location and at least one of the two accesses is a write

operation. Data races often result in hard-to-detects bugs and usually the programmers of

concurrent software should try to avoid data races.

One reason for why data races are problematic can be found in a seminal paper by Adve,

Hill, Miller, and Netzer [8]. Their observation is that on suitable hardware, every execution of a

data-race-free program is sequentially consistent. Sequential consistency was introduced by

Lamport in 1979 and means that “the result of any execution is the same as if the operations of

all the processors were executed in some sequential order, and the operations of each individual

processor appear in this sequence in the order specified by its program” [9]. Sequential

consistency provides a useful memory model that simplifies the task of producing correct

concurrent programs. If programmers can avoid data races, they can use sequential consistency

as their memory model.

Researchers have developed many techniques to help programmers detect data races. Some

of those techniques require program annotations that typically must be supplied by a

programmer; examples include [10], [11]. Other techniques work with unannotated programs

and thus they are easier to use. In this paper we focus on techniques that work with unannotated

Java programs. We use 23 open-source benchmarks that have a total of more than 4.5 million

lines of code, which we use “straight of the box” without annotations.

We can divide race-detection techniques into three categories: static, dynamic, and hybrid. A

static technique examines the text of a program without running it; a dynamic technique runs a

program, possibly multiple times, and gathers information during those executions; and a hybrid

technique does both.

The advantage of a static technique is that if it is sound, then it will report every possible

race, though it may also report false positives. We will show via experiments that the best

existing static technique reports a large number of false positives that would be daunting to

examine by hand. For our benchmarks, the Chord tool reports total 127136 data races. So,

current static techniques are of little use to working programmers.

The advantage of a dynamic technique is that it reports only real races. For example, for our

benchmarks, the FastTrack, Goldilocks, CalFuzzer, and Pacer tools together report total 304 data

races. So, current dynamic techniques give programmers valuable help, yet our experiments

show that they leave many races to be discovered.

The advantage of a hybrid technique is that it may be able to combine the best of both

worlds, static and dynamic. The best existing hybrid technique appears to a technique by

O'Callahan and Choi [12] that we call Hybrid, which for our benchmarks report a total 405 data

races. This technique may produce both false positives and false negatives, yet the tool provides

programmers with output of a fairly manageable size.

In this study we focus on dynamic techniques. We will present a dynamic technique that

reports significantly more real races than the previous techniques.

The main shortcoming of the existing dynamic techniques is that when they search for an

execution that lead to a real race, they often come up empty handed. We present a novel

approach to execution search that gives much better results. The central concept in our approach

is the standard notion of schedule, which is a sequence of events that must be executed in order.

4

The Challenge. Search for an execution that leads to a real race.

Our Results. We present race directed scheduling that for given a race candidate searches for an

input and a schedule that lead to the race. The search iterates a combination of concolic

execution and schedule improvement.

We have implemented race directed scheduling in a tool that does race detection for Java

programs. As requested by the program chair, we use a pseudonym for our tool's name; we will

refer to our tool as Racageddon in this dissertation.

We use an existing hybrid technique to produce a manageable number of race candidates.

For our benchmarks, our tool found 72 real races that were missed by the best existing

dynamic techniques. Among the 304 real races found by the existing dynamic techniques, our

technique found 272 of them. Our tool is fully automatic and its user needs no expertise on data

races. Once our tool reports a race, it can replay the execution that leads to the race.

In summary, the two main contributions of this paper are:

 An effective and easy-to-use tool for dynamic race detection and

 A large-scale experimental comparison of seven race detectors.
1.3. Deadlock Detection
Java has a concurrent programming model with threads, shared memory, and locks. The

shared memory enables threads to exchange data efficiently, and the locks can help control

memory access and prevent concurrency bugs such as data races.

In Java, the statement:

Synchronized(e) {s}

first evaluates the expression 𝑒 to an object, then acquires the lock of that object, then

executes the statement 𝑠, and finally releases the lock.

Locks enable deadlocks, which can happen when two or more threads wait on each other

forever [13]. For example, suppose one thread executes:

Synchronized(A) { Synchronized(B) {} … }

while another thread concurrently executes:

Synchronized(B) { Synchronized(A) {} … }

One possible schedule of the program lets the first thread acquire the lock of A and lets the

other thread acquire the lock of B. Now the program is deadlocked: the first thread waits for the

lock of B, while the second thread waits for the lock of A.

Usually a deadlock is a bug and programmers should avoid deadlocks. However,

programmers may make mistakes so we have a bug-finding problem: provide tool support to find

as many deadlocks as possible in a given program.

Researchers have developed many techniques to help find deadlocks. Some of those

techniques require program annotations that typically must be supplied by a programmer;

examples include [14] [15] [16] [17] [18] [19] [20] [21] [22]. Other techniques work with

unannotated programs and thus they are easier to use. In this section we focus on techniques that

5

work with unannotated Java programs. We use 22 open-source benchmarks that have a total of

more than 4.5 million lines of code, which we use “straight of the box” without annotations.

We can divide deadlock-detection techniques into three categories: static, dynamic, and

hybrid. A static technique examines the text of a program without running it. The best static tool

is Chord [23] [24] which for our benchmarks reports 570 deadlocks, which include both false

positives and false negatives. A dynamic technique gathers information about a program during

one or more runs. Until now, four of best dynamic tools are DeadlockFuzzer [17], IBM ConTest

[25] [26], Jcarder [27] and Java HotSpot [28], which together for our benchmarks report 75 real

deadlocks. Finally, hybrid techniques may be able to combine the best of both worlds, static and

dynamic. One of the best hybrid tools is GoodLock [29] which is highly efficient and for our

benchmarks report a total 1275 deadlocks, which may include both false positives and false

negatives.

In this section we focus on dynamic techniques. The advantage of a dynamic technique is

that it reports only real deadlocks. The main shortcoming of the previous dynamic techniques is

that they mostly find deadlocks that occur after few steps of computation. Our experiments show

that those techniques leave undetected many deadlocks that occur after one million steps of

computations. We believe that this shortcoming stems from their approach to search for

executable schedules. A schedule is a sequence of events that must be executed in order. A real

deadlock is a combination of deadlock pattern, such as the one in the example above, and an

executable schedule that leads to the deadlock. If that executable schedule is more than a million

step of computation, then we refer to the deadlock as a rare deadlock. We will show how to do a

better search for executable schedules and how to find rare deadlocks.

The challenge. Help programmers find rare deadlocks.

Our result. We present a technique that for a deadlock candidate searches for an input and a

schedule that lead to the deadlock.

We use GoodLock [29] to quickly produce a manageable number of deadlock candidates.

Our technique combines previous work on concolic execution with a new constraint-based

approach to drive an execution towards a deadlock candidate. We have implemented our

technique in a tool called ConLock that finds real deadlocks in Java programs. For our

benchmarks, our tool found almost twice as many real deadlocks as four previous techniques

combined. Our technique is particularly good at finding rare deadlocks: it found 33 deadlocks

that happened after more than one million computation steps, including 28 new deadlocks. Our

tool is fully automatic and its user needs no expertise on deadlocks. Once our tool reports a

deadlock, it can replay the execution that leads to the deadlock.

In summary, the two main contributions of this study are:

 An effective and easy-to-use tool for dynamic deadlock detection and

 A large-scale experimental comparison of seven deadlock detectors.

1.4. Contributions
The event-Based directed testing algorithm has been implemented in VICE, a tool that

automatically and accurately finds maximum stack usage of Virgil programs. The research

contribution in VICE is “Testing Versus Static Analysis of Maximum Stack Size” [30].

The race directed scheduling technique has been implemented in Racageddon, a tool that

automatically find data races in Java programs. Research contribution in Racageddon is “Race

directed Scheduling of Concurrent Programs” [31].

6

1.5. Outline
In chapter 2 we discuss the core form of directed testing and its tools along with their

strengths and limitations. We end the chapter with directed testing’s shortcomings and strengths.

In chapter three we introduce event-based directed testing, and its application on finding

maximum stack size. In chapter four we introduce race directed scheduling, a technique to find

data races automatically. In chapter five we show how we could enhance directed testing to find

rare deadlocks in Java programs.

7

CHAPTER 2

State-of-Art Testing of Sequential Programs

Software Testing has been experiencing its best practice for years. However, except few

large corporations such as Microsoft (since 79% of developers also write test suites [32])

adoption of testing in industry is still poor. Automatic Testing and in particular automatic

test input generation has received increased attention in both academy and industry. The

main reason is most software suffers from low pressure, low quality, or outdated test

suits, due to high cost of software testing [33]. In these situations automatic testing of

software can provide extreme value.

2.1. Background
Despite progresses in Static Analysis, Symbolic Execution, and Model Checking, Software

Testing, is still the predominant technique to ensure software reliability. However, testing still

accounts for 50-80% of overall cost of software development [34].

Many algorithms have been introduced to improve software testing, yet in practice; it is

challenging, expensive, and rarely performed properly. In fact, to test a program test engineers

develop a test harness to simulate the behavior of the program’s environment. More development

is also needed to verify the functional correctness of a program. For example, adding assertion

codes to check the program’s output. Hand-written tests are error-prone, expensive, and not

exhaustive. Consequently, many errors that should have been reported during early stages of

testing remain hidden until software deployment.

Recent achievements in amplifying the power of computers, has recalled for automated

testing. Random Testing is a proven technique for finding programs’ bugs. It can automatically

generate many random test cases, and execute them to explore different paths of the program to

find errors. Studies show random testing is more effective in contrast with manual testing [32]. It

is an appealing technique, since it is fast, scalable, inexpensive, and has no space overhead.

Nonetheless, random testing cannot confirm the correctness of a program, and suffers from poor

code coverage. Therefore, it can test only a limited portion of all program’s testable paths, for

example, the probability of reaching to the 𝑡ℎ𝑒𝑛 branch in the “𝑖𝑓(𝑥 == 5) 𝑡ℎ𝑒𝑛 …” is
1

232 if 𝑥

is a 4 bytes integer program input.

Exhaustive Enumeration can also generate huge amount of test cases automatically, but many

of them are meaningless, and cannot even take the program beyond the initialization phase.

Further studies introduced Constraint/Specification Based Exhaustive Enumeration. It can

generate all valid inputs that may satisfy a program’s constraints. Even though it generates data

inputs selectively, yet many equivalent and redundant inputs test the same behavior of the

program. For instance, assume a small program with four inputs all of which appear in at least

one conditional. The program needs to exhaustively execute (𝟐𝟑𝟐)𝟒 = 𝟐𝟏𝟐𝟖 combinations to

cover all valid input. This is extremely time-consuming even for a program with a limited

number of inputs. In fact, McMinn [35] showed testing any reasonably-sized program with

exhaustive enumeration is infeasible.

Significant problems in random testing and exhaustive enumeration motivated studies for

Symbolic Execution. Instead of generating concrete data inputs, like integer, symbolic execution

8

produces symbols that represent values. The program runs normally except variables may have a

value in a symbolic form. A Constraint Solver or a Theorem Prover is used later to solve

constraints which are collected through the execution, and later generates test cases. Symbolic

execution provides better code coverage and avoids redundant test cases. However, current

constraint solvers are not powerful enough to solve complex constraints, not even normal

arithmetic formulas like(𝒚 > 𝒙𝟑 % 𝟐𝟏) . 𝟓 ≠ 𝟒𝟎. Given that, in large or complex program,

collecting constraints become intractable, and solving them would be computationally expensive

and time consuming.

2.2. Directed Testing Era
Directed Testing (A.K.A Concolic Testing: the term was suggested by Koushik Sen as a

combination of CONCrete and symbOLIC execution) has received a great attention recently. It

addresses the mentioned challenges associated with random testing and symbolic execution, and

opened new windows for providing efficient and automated test generation tools.

Directed testing enhances symbolic execution by running a program symbolically and

concretely at the same time. A key feature in directed testing is whenever it cannot solve a

constraint, symbolic values in the constraint are replaced by random concrete values. This will

prevent discontinuation of symbolic execution, when the constraint solver encounters an

undecidable constraint.

To the best of our knowledge combining concrete and symbolic execution (with user

feedback) was initially suggested by Larson and Austin [36]. In their method, software testers

provide concrete values instead of a random input generator or a constraint solver. Moreover,

only solvable constraints would be collected and later will be handed over to the solver. This

lowers the path coverage, but decreases the computational cost.

Later, Godfroid et al. pioneered the first directed testing tool called DART (Directed

Automated Random Testing) [37]. In fact DART combined three algorithms: (1) Automated

extraction of the program interface from source code , (2) Automated generation of a test driver

to produce random test inputs, and (3) Directed generation of test inputs. DART’s experimental

results suggest is has low space overhead, and improves code coverage. However, it can only

handle constraints with integer types, so to find a new path, DART negates the last encountered

constraint. DART, also cannot collect and solve constraints generated by a program e.g. dynamic

data structure and pointer operations.

CUTE and jCUTE [38], and CREST [39] are further concolic tools introduced by Koushik

Sen. Unlike DART, CUTE cannot automatically extract the program’s interface, while it is

equipped with a more efficient constraint solver that could handle complex data structure with

pointers and dynamic data types. CUTE does not generate test inputs selectively; inputs are

generated randomly and purified through rounds of executions. This lowers the coverage in

practice.

Further studies to improve the code coverage in concolic tools led to Hybrid Concolic

Testing [40], and CESE (Concolic Execution with Selective Enumeration). Hybrid Concolic

Testing combines random and concolic testing to expand the depth and width of the program

state space exploration. It first tests the program randomly to improve the code coverage. Once

random testing no longer has success in exploring new paths, concolic testing takes control of

execution from the current state of the program. Consequently, Hybrid Concolic Testing uses

random testing to reach deep states of the program with less execution, and uses concolic

execution to explore new paths.

9

CESE is an automatic test input generator that interleaves selective enumeration with

directed symbolic test generation. The algorithm initially converts the program input grammar to

symbolic grammar. It furthermore, uses enumerative techniques to exhaustively enumerate all

valid inputs which is accepted by the symbolic grammar. Finally, CESE uses a symbolic test

generator to produce these enumerated symbolic inputs and runs them. Consequently, each

CESE’s execution round is faster than symbolic execution.

Recently, LIME concolic tool [41] is developed in Helsinki University. The main

improvements in LIME over existing concolic tool like jCUTE are the following:

1. The use of bitvector SMT solver Boolector [42] makes the symbolic execution more

precise as integers are not considered unbounded.

2. The twin class hierarchy instrumentation approach of LIME allows core classes to be

instrumented.

3. LIME architecture supports distributed testing.

2.3. Directed Testing’s Limitations and Promises
Applying directed testing on classic sequential programs has showed great success in both

research and practice (For additional information see C. Pasareanu survey [43]). The idea has

become popular enough to motivate its applications in various areas: database [44], web

application servers [45] and clients [46], mobile sensor network [47], network card device driver

[48]. However, in most of these works researchers exploited the directed testing core form and

utilize it in a new algorithm to find bugs in the corresponding applications. The reason is using

classical directed testing on more complicated program paradigms is not as successful as using it

on sequential programs. Our experiments, confirms the usage directed testing’s core form in

event-driven and parallel programs, not to be as successful as it was promised.

In event-driven software, our evaluations showed traditional directed testing is only as good

as genetic algorithm [7] in terms of code coverage, and it could explore 60% of benchmark’s

code in average. Directed testing also showed poor performance in computing program’s

functional requirements such finding maximum stack usage. We note that the directed testing

approach achieves a maximum stack size that is only 67 percent of that achieved by static

analysis.

K.Sen et al. [38] reported the same unfortunate experience in using traditional directed

testing on parallel programs. Beside, our experiments also approve that traditional directed

testing could only detect limited number of concurrency bugs like data races and deadlocks.

Our preliminary experiments show a gap to explore for enhancing directed testing. On the

other hand other studies suggested that directed testing can be exploited to different

programming paradigms. In the next three chapters we explain in detail how we can improve

core form of directed testing to efficiently and accurately handle problems we defined in the

previous chapter.

10

CHAPTER 3

Directed Testing of Event-Based Software

For event-driven software on resource-constrained devices, estimates of the maximum

stack size can be of paramount importance. For example, a poor estimate led to software

failure and closure of a German railway station in 1995. Static analysis may produce a

safe estimate but how good is it? In this paper we use testing to evaluate the state-of-the-

art static analysis of maximum stack size for event-driven assembly code. First we note

that the state-of-the-art testing approach achieves a maximum stack size that is only 67

percent of that achieved by static analysis. Then we present better testing approaches and

use them to demonstrate that the static analysis is near optimal for our benchmarks. Our

first testing approach achieves a maximum stack size that on average is within 99 percent

of that achieved by static analysis, while the second approach achieves 94 percent and is

two orders of magnitude faster. Our results show that the state-of-the-art static analysis

produces excellent estimates of maximum stack size.

3.1. Event Sequence in Event-Driven Software
The classical notion of a program first consumes an input, then computes, and finally

produces an output. In contrast, an event-based program receives its input via events during the

program execution. The task of the event-based program is to process those events.

For example, our benchmarks run on sensor nodes (Berkeley Motes) and receive events that

are generated by devices that are connected to the CPU. Among those devices are a timer, an

analog-to-digital converter (ADC), a universal synchronous asynchronous receiver/transmitter

(USART) Atmel-usart10], and a serial peripheral interface bus (SPI) [49]. The sensor node can

use the timer to wake itself up periodically, use the ADC to convert sensor data to digital form,

use the USART for serial communication with terminals, and use the SPI to communicate on a

synchronous serial data link with external devices in master or slave mode.

Event-based programs such as sensor-network software are usually designed to run

indefinitely (or until the battery dies). Thus, events can keep coming. Notice though that a finite

test run consumes only a finite number of events.

Each event consists of a name and a value. The name specifies the source of the event and

also the event handler that will process the event. The value is input to the program.

From the program's viewpoint, consecutive events have a wait time between them. This wait

time can be completely arbitrary and depend on uncoordinated devices beyond the programs

control. However, for a particular run we can record both the events and the wait times. Or, for

the purpose of planning a test run, we can first generate an event sequence and then use that to

test the program.

In this chapter, we represent an event sequence as a sequence of triples:

(𝑒𝑣𝑒𝑛𝑡 𝑛𝑎𝑚𝑒, 𝑒𝑣𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒, 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒)
The idea is to wait the number of milliseconds specified by wait time and then fire an event

called event name and paired with event value.

For example, here is our representation of an event sequence with four events:

11

[(main, 673,100), (m_intr, −8634756,200), (main, −991,400), (m_intr, 34,800)]
The first event (main, 673,100) will occur after 100 milliseconds, the second event

(m_intr, −8634756,200) will occur after 300 milliseconds, the third event (main, −991,400)

will occur after 700 milliseconds, and the fourth event (m_intr, 34,800) will occur after 1,500

milliseconds.

Let us return to the evaluation of the state-of-the-art static analysis of maximum stack size.

Our goal is to find an event sequence that achieves a large maximum stack size. For creating a

suite of candidate event sequences, a designer must decide on the number of event sequences, the

number of events in each event sequence, the event names, the event values, and the wait times.

3.2. Seven Testing Approaches
We now present seven testing approaches that all automatically test event-driven software

without a human in the loop. Testing approaches 1-4 are from previous work, while 5-7 are new.

How to determine the number of events in each event sequence. Our benchmarks work

with 2--5 event handlers. For simplicity we want every event sequence for every benchmark to

have the same number of events. We determined the number of events via the following

preliminary experiment that anyone can repeat for any benchmark suite. First we noted that the

number of events for our benchmark suite should be at least 5 such that we can hope to exercise

every handler during a single run. Second we observed that more events may exercise longer

program paths. The question is: when does an increase of the number of events begin to produce

diminishing returns? We use testing approach 1 (see below for details) to run experiments with

different numbers of events in each event sequence. We doubled the number of events, doubled

it again, and so on, until we saw no major improvement in maximum stack size. We found that

40 events in each event sequence appears to be a good number for our benchmarks so all our

experiments use event sequences with 40 events.

Now we must generate event sequences that each contains 40 event names, 40 event values,

and 40 wait times.

How to determine samples of wait times. Four of the testing approaches use samples of the

wait times. We chose to fix three different samples and use them across all those four testing

approaches. The number three is somewhat arbitrary; we wanted a number greater than one to

give diversity in the experiments yet small enough that our experiments could finish in a

reasonable time. We determined the three particular samples via the following preliminary

experiment that anyone can repeat for any benchmark suite. For each benchmark we ran each

event handler in isolation to determine the worst-case time to execute any handler alone (in any

of the benchmarks). That worst-case time is the longest time any single handler may be able to

block other handlers from running. Once we had that number, we divided the time interval from

0 to that number into three equally sized intervals. Finally, from each of those three intervals we

sampled a wait time using a uniform distribution.

We will use the numbering (1-7) of the approaches throughout the paper. Those seven

approaches span a wide variety of techniques that one might try. Ultimately, testing approach 7

is the best we are able to do given a reasonable amount of time. Testing approaches 4-6 can be

understood as restrictions of testing approach 7.

Testing approach 1 is a form of random testing that tries 3,000 event sequences based on

randomly chosen samples of event names and event values, and the three particular samples of

wait times that we found as discussed above. The number 3,000 is somewhat arbitrary; we

12

wanted a number that was large enough to produce good results yet small enough that our

experiments could finish in a reasonable time.

We compare seven testing approaches:

Approach # event names event values wait times

 1 Sample Sample Sample

 2 GA GA Sample

 3 All Sample All

 4 Sample DT All

VICE: 5 SA-Tree DT Sample

 6 All DT Sample

DTall: 7 All DT All

The experiments justified the use of three wait times because, somewhat surprisingly, we

encountered some cases where a longer wait time leads to a larger stack size. This phenomenon

stems from situations such as the following. Suppose we have reached a state S of the

computation where a run of the handler for event B would reach a maximally large stack.

Suppose also that in state S, events A and B have fired and the handlers for A and B are enabled.

The hardware arbits deterministically which handler will run; and let us assume that the

hardware chooses A. So, B will run later; possibly in a state with a smaller stack than state S so

the run of B will fail to reach a maximally large stack. Can we get the hardware to choose B

instead of A? One potential answer is: increase the wait time such that A isn't enabled in state S.

Hence, a longer wait time has the potential to produce a larger stack size. Testing approach 1 is

our base line; the other six approaches do better.

Testing approach 2 is a genetic algorithm (GA) [7] that uses 20 generations of each 50

event sequences, for each of the three chosen samples of wait times. We chose 20 generations

and 50 event sequences because the total number of runs would be 20 × 50 × 3 = 3,000, which

matches the number of runs with testing approach 1. The first generation has a randomly chosen

sample of event names and event values. Each later generation hopes to improve on the previous

one by swapping and mutating the event names and event values. Specifically we map a

generation to a new generation in the following way. We first do 50 swaps of subsequences of

length 25 among the event sequences. We then mutate one event in each event sequence; each

mutation replaces the event name with a randomly chosen event name, and it replaces the event

value with a randomly chosen event value. The fitness function is the maximum stack size

observed during a run.

Testing approach 3 is similar to testing approach 1 in that it samples the event values, but

also goes much further in that it tries all combinations of i) all sequences (of length 40) of event

names, and ii) all integer wait times in a wide interval. The interval of wait times is handler

specific and defined as follows. The lower bound of the interval is 8 milliseconds; we found that

going lower often caused testing to run out memory. The upper bound of the interval is the

worst-case time to execute the handler for the previous event in isolation. Note that if the upper

bound is high, trying all integer wait times in the interval may lead to a lengthy testing effort. In

such a case, we recommend the use of a large number of samples drawn from a uniform

distribution across the interval.

Our preliminary experiment, mentioned in Section 1, tried testing approaches 1 and 2. When

we found that the results from those approaches are suboptimal, we tried the much slower testing

13

approach 3 which gave just a small improvement. We concluded that we need a better approach

to generate event values.

Testing approaches 4--7 all use directed testing (DT) to generate event values. Directed

testing [37] is based on concolic execution [50], which is a technique related to model checking

[51], theorem proving [52], symbolic execution [53], and run-time monitoring and testing [11].

The idea of directed testing is to execute the code with concrete and symbolic values

simultaneously, and to use the result to generate new inputs for another execution. The term

concolic combines the words “concrete” and “symbolic”. In each round, the symbolic part of an

execution collects constraints from each condition on the control-flow. Those constraints

represent the executed control-flow path and they have the concrete input to the run as one of the

possible solutions. We can now easily construct constraints for a different potential control-flow

path by taking a prefix of the collected constraints and negating the last constraint from the

prefix. Concolic execution will submit those new constraints to a constraint solver, and if they

are solvable, the concolic execution will use the solution as concrete input to a new round of

execution. In the first round, the input is chosen randomly. Experience shows that concolic

execution achieves better branch coverage with fewer test cases than testing with random inputs.

Testing approach 4 samples the event names, does DT to determine event values, and tries

all integer wait times in a wide interval. In essence, testing approach 4 is standard DT applied to

many combinations of event names and wait times. This gives a significant improvement over

testing approach 3, yet falls well short of the results from static analysis. We conclude that we

must do better to generate challenging event names.

Testing approach 5 is the one we call VICE (Virgil Integrated Concolic Engine). Compared

to testing approach 4, VICE handles event names more accurately and wait times less accurately.

Specifically, VICE uses a novel technique called SA-Tree to generate event names, uses DT to

determine event values and tries three samples of wait times. VICE is the fastest of the seven

approaches and gives a good trade-off between testing time and quality of the results.

Testing approach 6 does more than testing approach 5 by trying all sequences (of length 40)

of event names, in addition to use DT to determine event values and to try three samples of wait

times. However, the exhaustive coverage of the sequences of event names cannot improve on

VICE because SA-Tree generates all event sequences that matter. We have included testing

approach 6 in our experiments to demonstrate the large impact SA-Tree has on static analysis

time.

Testing approach 7 is the one we call DTall and is both the slowest and the closest to

optimal. DTall uses DT to determine event values and it tries all combinations of i) all sequences

(of length 40) of event names, and ii) all integer wait times in a wide interval. DTall comes close

to the results from static analysis and demonstrates that the best known static analysis is near

optimal for our benchmarks.

3.3. VICE Example
Overview. We now explain the initial portion of a run of VICE on the example program in

Figure3.1, which is a simplified version of one of our benchmarks. The program has four if-

statements and two event handlers: main and m_intr. Our description of the example run is high

level and ignores some details. VICE proceeds in phases that each consists of multiple rounds.

We will explain just one phase with five rounds. During a phase, the event names stay

unchanged in each round; the example uses the sequence of event names: (main, m_intr, main,
m_intr). So, all event sequences in the example will have length four.

14

Round one. In the first round, the event sequence is random so we might begin with this

event sequence:

[(main, 673), (m_intr, −8634756), (main, −991), (m_intr, 34)]

 (We don't list or discuss the wait times in this section.) The concolic execution will fire the

first event and now let us say that before main calls transmitValue in line 09, the execution fires

the second event and interrupts main. We now have two event handlers on the stack. Next m_intr
calls transmitValue in line 24 and we collect the constraint

𝑦 = 𝑎

that relates the actual parameter (line 24) to the formal parameter (line 12). We use 𝑦 to denote a

symbolic variable related to the program variable y, and similarly for 𝑎 and a. In the body of

transmitValue in line 16, let us assume that the condition atomic_swap(sending,true) returns

false. We collect constraints from the conditions of the if-statements provided that they are

arithmetic or logical equations. So we don't collect any constraints from the if-statement in line

16, while we do collect the constraint

𝑎 > 2000

from the if-statement in line 17 because (a>2000) failed: a has the value -8634756 so the

execution doesn't take the branch that requires a > 2000. Now the second event handler

terminates and we return to the first event handler. That event handler eventually calls

transmitValue in line 09 and we collect the constraint

𝑥 = 𝑎

In the body of transmitValue we collect the same constraints as before and again the execution

doesn't take the branch that requires a > 2000 because a has the value 673. Now the first event

handler terminates. Later the execution fires the third and fourth events, and we can see that no

new branches will be executed while handling those events.

During the first round of concolic execution, the maximum stack size occurred when we had

two event handlers on the stack and m_intr called transmitValue which, in turn, called

atomic_swap. The execution took the same branch each time in lines 16 and 17, while it never

reached line 27 or 29.

After completion of the first round, we solve the three collected constraints above, pick a

solution at random, and use it to help generate another event sequence. We use the four event-

handler names from before and pair each of them up with values from the picked solution to the

constraints. For example, we may get the event sequence:

[(main, 2833), (m_intr, 4756), (main, 77733), (m_intr, 6500)]

Round two. In the second round of concolic execution, let us assume that the firing of events

proceeds like in the first round. The execution will four times reach line 17 and find each time

that the condition a > 2000 is satisfied. So, the execution will exercise a new branch and

eventually call checks in line 18 and from the call collect the constraint

𝑎 = 𝑠 ∧ 𝑏 = 𝑡

In the body of checks we will in each of the four cases find that s is different from 5000 so

also in this round the execution doesn't reach line 29. Along the way, we collect the constraint

𝑠 = 5000
In line 27.

15

During the second round of concolic execution, the maximum stack size occurred when the

stack contained two event handlers and stack frames for transmitValue and checks. That

maximum stack size is similar to the maximum stack size encountered in the first round.

After completion of the second round, we find that the above constraints have a unique

solution (𝑦 = 𝑥 = 𝑎 = 𝑠 = 5000) that we use to help generate another event sequence. And

again, we use

the four event-handler names from before and pair each of them up with values from the

solution to the constraints. For example, we may get the event sequence

00 program TestProgram {

01 entrypoint main = TestMe.main;

02 entrypoint timer_comp = testMe.m_intr;

03 }

04

05 component TestMe {

06 field sending:bool = false;

07 method main(x:int):void {

08 computeValue();

09 transmitValue(x);

00 }

11 method computeValue():void { ... }

12 method transmitValue(a:int):void {

13 local buffer:int, b:int;

14 b = rand(100);

15 local bufferSize:int = (a+b) * 256;

16 if (atomic_swap(sending,true)) return;

17 if (a > 2000) {

18 buffer = checks(a,b);

19 sending = false;

20 return;

21 }

22 }

23 method m_intr(y:int):void {

24 transmitValue(y);

25 }

26 method checks(s:int, t:int):int {

27 if (s==5000) {

28 t=square(s);

29 if (s<-5) return square(-s);

30 else return 0;

31 }

32 return 1;

33 }

34 method square(root:int):int { ... }

35 method rand(seed:int):int { ... }

36 method atomic_swap(cur:bool,status:bool)

37 :bool { ... }

38 }

Figure 0.1 Virgil Example Program.

16

[(main, 5000), (m_intr, 5000), (main, 5000), (m_intr, 5000)]

Round three. In the third round of concolic execution, let us assume that the firing of events

proceeds like in the second round. The execution will four times reach line 27 and find each time

that the condition s==5000 is satisfied. So, the execution will exercise a new branch and

eventually call square from which we collect the constraint:

𝑠 = 𝑟𝑜𝑜𝑡

Then the execution will reach line 29 and find that the condition s<-5 isn't satisfied. By the

way, notice that the chance of reaching line 28 with event sequences generated randomly or by

genetic algorithms is vanishingly small. We will collect the constraint

𝑠 < −5
During the third round of concolic execution, the maximum stack size occurred when the

stack contained two event handlers and stack frames for the methods transmitValue, checks, and

square, which is the highest so far.

Rounds four and five. After completion of the third round, we find that the collected

constraints are unsolvable (because we have both 𝑠 == 5000 𝑎𝑛𝑑 𝑠 < −5). We then repeatedly

remove the last added constraint until we find that the remaining constraints are solvable, and

then we proceed as before. We note that the third round has already achieved as much as one can

do for the example program. VICE continues with a fourth and a fifth round until it notices that

in two consecutive rounds, no improvements were achieved for the maximum stack size. At that

point, the phase of the concolic execution terminates.

3.4. VICE Description
VICE uses six data types and six tools, see Figure 3.2.

Types: VirgilProgram = see http://compilers.cs.ucla.edu/virgil

 machineCode = AVR assembly code

 eventSequence = (identifier × int × int)list
 constraint = a Virgil arithmetic or logical expression

 nameSequence = (identifier)list
 prefixTree = a prefix-tree of elements of nameSequence

Tools: concolic : (VirgilProgram × eventSequence) → (constraint × float)
 compiler : VirgilProgram → machineCode
 avrora : VirgilProgram × eventSequence → int
 SA-Tree-Gen : VirgilProgram → prefixTree
 random : nameSequence × int → eventSequence
 generator : (nameSequence × int × constraint) → (eventSequence)

Figure 0.2 VICE Data types and tools.

Types. Each program that we test is a VirgilProgram, that is, a program in the Virgil

programming language [54], which is an object-oriented language for resource-constrained

devices. Virgil is a full-fledged language with classes, objects, loops, recursion, etc.

We compile Virgil programs to machineCode, that is, AVR assembly code. The key input to

each execution is an eventSequence, which is a list of triples, where each triple consists of an

event name (an identifier), an event value (an int), and a wait time (an int that measures

http://compilers.cs.ucla.edu/virgil

17

milliseconds). Each of the constraint is a Virgil arithmetic or logical expression. For our

benchmarks, we found no need to use other forms of constraints; arithmetic or logical constraints

are sufficient for our testing approaches to almost match the static analysis. We leave to future

work to investigate whether other benchmarks require use of other forms of constraints to almost

match the static analysis.

A prefixTree is a prefix-tree of sequences of event names.

Tools. The tool concolic is a concolic execution engine that executes a Virgil program while

firing events from an event sequence, with the specified wait time between consecutive events.

The result of a run of concolic is a constraint and the branch coverage that was recorded. We

implemented concolic on top of an existing Virgil interpreter. The concolic execution engine

works with concolic values, that is, a pair of a concrete value and a constraint.

The tool compiler is an open-source Virgil compiler [54] that generates AVR assembly code.

The tool avrora is an open-source simulator for AVR assembly code [55] that executes an

AVR assembly code program while firing events from an event sequence, with the specified wait

time between consecutive events. The result of a run of \avrora is the maximum stack size that

was recorded. A run of avrora is deterministic, hence reproducible. Specifically, avrora measures

time in terms of machine cycles and we use the wait times to determine the exact machine cycle

at which to fire an event. Additionally, \avrora implements all aspects of the hardware, including

the “breaking of a tie” that happens when two events have fired and both handlers are enabled.

So, any two runs of avrora on a benchmark and an event sequence always proceed in exactly the

same way.

The tool SA-Tree-Gen applies a static analysis to a Virgil program [54]. The static analysis

determines conservatively, for each program point, which event handlers are enabled. The result

of a run of SA-Tree-Gen is a prefixTree called the SA-Tree that represents the static information

as a collection of sequences of event names. According to the static analysis, each sequence of

event names can be the basis for an event sequence for which each event will be handled. The

SA-Tree avoids names of events that have no chance of being handled because the corresponding

event handler is disabled. We can compare the generated SA-Tree with a full prefix-tree that

represents all possible sequences of event names (up to a given length). For each of our

benchmarks, the SA-Tree is a much pruned version of the full tree. Testing approach 6 explores

the full prefix-tree.

The tool random takes a nameSequence and a wait time as input and produces an event

sequence based on the input nameSequence, with event values generated according to an

exponential distribution, and with each wait time equal to the input wait time. The tool generator
takes a nameSequence, a wait time, and a constraint, and generates an event sequence. The

generator uses the open-source constraint solver Choco [56] [57]to solve the constraint. Notice

that we generate event sequences based on source-level information and use them to test code at

the assembly level.

Approach. Figure 3 gives pseudo-code for VICE, while Figure 4 illustrates how VICE

works. The input to VICE is a Virgil program and a wait time. VICE proceeds in phases that

each consists of multiple rounds. Each phase focuses on one nameSequence in the SA-Tree for

the Virgil program. In each phase, VICE iterates until two consecutive rounds found no

improvement to the maximum stack size or the branch coverage. In each round VICE updates the

variable noChange to count how many recent rounds had no change. The condition

𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 < 2 tells when to terminate a phase. The variable maxStack contains the maximum

18

stack size found so far, the variable branchCoverage contains the branch coverage found so far,

and the variable seq holds the current event sequence, which is based on the chosen

nameSequence and the input wait time, and which initially has event values chosen randomly.

Figure 0.3 VICE Algorithm.

We compile each Virgil benchmark program to AVR assembly code. In each round, the

algorithm executes both avrora on the assembly code and concolic on the Virgil program to get a

new maximum stack size, a new constraint, and a new measure of the branch coverage.

The generator uses a constraint solver to find new event values for an event sequence that

otherwise has the same event names and wait times as all other event sequences in the current

phase.

A worse alternative. VICE measures maximum stack size at the assembly level in every

round of concolic execution. We have experimented with an alternative approach that measures

maximum stack size at the source level, and only after a completed run measures the maximum

stack size at the assembly level for the most challenging event sequence. The alternative

approach is faster because it uses the assembly-level simulator just once. However, the results

are considerably worse because the source-level stack-size estimates are imprecise.

3.5. Experimental Results
We compare a static analysis and the seven testing approaches listed in Section 3.3. We

wrote all the implementations in Java and ran them on Sun Java2 SDK 1.5 on a 2.8 GHz iMac.

Most of the runs used less than 60 MB.

Input: 𝑉𝑖𝑟𝑔𝑖𝑙𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑝, int 𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒

Output: 𝑖𝑛𝑡 /∗ the maximum stack size ∗/
𝐿𝑜𝑐𝑎𝑙: prefixTree 𝑡𝑟𝑒𝑒 = SA − Tree − Gen(𝑝)

 machineCode 𝑐𝑜𝑑𝑒 = compiler(𝑝)

 int 𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘 = 0

𝑀𝑒𝑡ℎ𝑜𝑑: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 nameSequence 𝑛𝑠 ∈ 𝑡𝑟𝑒𝑒 𝐝𝐨 {
 int 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 = 0

 float 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 0

 eventSequence 𝑠𝑒𝑞 = random(𝑛𝑠, 𝑤𝑎𝑖𝑡𝑇 𝑖𝑚𝑒)

 𝐰𝐡𝐢𝐥𝐞 (𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 < 2) {
 int 𝑚𝑠 = avrora(𝑐𝑜𝑑𝑒, 𝑠𝑒𝑞)

 (constraint float) (𝑐, 𝑏𝑐) = concolic(𝑝, 𝑠𝑒𝑞)

 𝑠𝑒𝑞 = generator(𝑛𝑠, 𝑤𝑎𝑖𝑡𝑇 𝑖𝑚𝑒, 𝑐)

 𝐢𝐟 ((𝑚𝑠 > 𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘) _ (𝑏𝑐 > 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒))

 𝐭𝐡𝐞𝐧 {𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘 = 𝑚𝑠; 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑏𝑐; 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 = 0 }

 𝐞𝐥𝐬𝐞 { 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 + 1 }

 }

 }

 𝐫𝐞𝐭𝐮𝐫𝐧 𝑚𝑎𝑥𝑆𝑡𝑎𝑐𝑘

19

We implemented the genetic algorithm on top of the Java Genetic Algorithm Library (JGAL)

from http://jgal.sourceforge.net.

For testing approaches 1, 2, 5, 6, our samples of the wait times are 153 ms, 327 ms, and 594

ms.

Figure 0.4 Illustration of how VICE works.

For each testing approach we find the maximum stack size of a program in the same way: we

first compile the program and then use Avrora to run the assembly code and return the maximum

stack size.

3.5.1. Benchmarks

The following table shows some statistics about our seven benchmarks, including the number

of lines of Virgil code and also the number of lines of code after translation to C, which is a step

on the way in the translation to AVR assembly code. The table also shows the number of event

handlers.

Benchmark LOC LOC no. of

 (Virgil) (C) handlers

TestCon1 329 461 4

TestCon2 347 528 3

StackTest1 293 513 2

StackTest2 251 483 2

TestUSART 1,226 1,737 5

TestSPI 859 1,109 3

TestADC 605 1,055 4

We use four microbenchmarks and three benchmarks that test device drivers for Berkeley

Motes. We designed the microbenchmarks testCon1 and testCon2 to test VICE's power to

explore different execution paths. These programs have many complex numerical expressions

and nested conditional statements and loops. TestCon1 has four event handlers, all without

parameters, more than 300 LOC and its nesting depth of control structures is 11. TestCon2 has 3

20

event handlers each of which has 8 formal parameters, almost 350 LOC, and 37 complex

numerical expressions.

The microbenchmark StackTest1 is a more complete version of the example program in

Figure 3.1 and includes nested function calls, unreachable code, and atomic structures.

StackTest2 consists of nested functions of depth 23.

The TestUSART benchmark tests the operation of the USART driver; the TestSPI

benchmark tests the operation of the SPI driver; and the TestADC benchmark tests the operation

of the ADC driver.

Previous work [3] has shown that even for programs with a bounded stack, the maximum

stack size can grow exponentially in the number of event handlers. The number of handlers in

our benchmarks, namely 2--5, is typical of event-driven AVR applications that we have found.

In summary, our benchmarks are nontrivial and turn out to be a major challenge for the

previous-best testing approaches.

3.5.2. Measurements

Figure 3.5 shows the maximum stack sizes found by the seven testing approaches (numbered

1--7) and by a static analysis of maximum stack size (labeled SA) that comes with the Avrora

distribution. Note that the static analysis guarantees an upper bound on the stack size for every

benchmark. This implies that even if each device that generates events should malfunction and

generate an event every millisecond, we can rest assured that the stack is bounded by the value

given by the static analysis.

Figure 3.6 shows the timings of the testing runs and the timings of running the static analysis.

All time measurements are in minutes and are averages of 10 runs after some warm-up runs to

fill the caches.

Figure 3.7 shows the branch coverage that each testing approach achieved.

3.5.3. Assessments

In Figure 3.5 the last line gives a geometric mean for each testing approach. The mean is

taken over the fractions of the maximum stack size found by the testing approach and the

maximum stack size found by static analysis. For example, for testing approach 1, we take the

geometric mean of these fractions:

 Similarly, in Figure 3.6 the last line gives a geometric mean for each testing approach; the

denominator is the execution time of testing approach 7 (which is DTall). In Figure 3.7 the last

line gives a geometric mean for each testing approach.

Figure 3.8 shows a plot of the mean percentages in Figures 3.5 and 3.6; note that the x-axis

uses a log-scale.

Benchmark 1 2 3 4 5 6 7 SA

TestCon1 318 441 417 455 505 506 511 516

TestCon2 366 612 798 703 846 866 882 894

StackTest1 421 353 318 619 703 749 958 979

StackTest2 353 324 390 420 564 564 564 566

TestUSART 459 481 472 525 664 664 664 665

TestSPI 490 350 481 490 518 522 529 533

TestADC 247 306 283 302 306 306 308 310

% of SA 62 67 71 81 94 95 99 100
Figure 0.5 Maximum stack sizes in bytes. The last line gives a geometric mean.

21

Benchmark 1 2 3 4 5 6 7 SA

TestCon1 7.21 8.83 281 38 1.53 16 439 0.10

TestCon2 10.11 3.11 173 29 2.48 45 381 0.12

StackTest1 12.92 2.55 179 23 0.56 26 307 0.05

StackTest2 2.85 2.29 165 72 4.13 56 266 0.05

TestUSART 7.44 3.05 204 43 1.18 16 452 0.32

TestSPI 3.99 3.11 197 26 0.79 9 393 0.15

TestADC 3.01 1.37 289 33 0.45 6 444 0.13

% of (7) 1.6 0.4 55 9 0.3 5 100 0.11

Benchmark 1 2 3 4 5 6 7

TestCon1 23 56 61 72 92 93 94

TestCon2 21 60 78 78 89 89 90

StackTest1 26 40 73 80 64 71 73

StackTest2 20 43 69 81 99 99 99

TestUSART 23 58 66 85 96 96 96

TestSPI 32 56 71 75 67 73 75

TestADC 22 62 69 78 98 98 98

% of (7) 24 53 69 78 85 88 89
Figure 0.6 Branch coverage in percent. The last line gives a geometric mean.

Testing approaches 1-3. Testing approach 1 uses a total of 3,000 random event sequences

and the result is a stack-size-fraction mean of 62%. Testing approach 2 uses a genetic algorithm

to improve the choice of event names, and that improves the stack-size-fraction mean to 67%.

Testing approach 3 goes further by trying all combinations of event names and all integer wait

times within a wide interval; the stack-size-fraction mean goes up to 71%. Note that testing

approach 2 is almost two orders of magnitude faster than testing approach 3. Note also that in

some cases testing approach 3 gives worse results than testing approach 2 because of poorer

samples of the event values. Notice finally that the genetic algorithm in most cases is faster than

random testing. The reason is that the procedure for generating random event sequences is quite

slow, while one of the main ways the genetic algorithm produces new event sequences is to swap

subsequences from existing event sequences.

Testing approaches 4-7. Testing approach 4 samples the event names and tries all integer

wait times within a wide interval; the result is a stack-size-fraction mean of 81%. Thus, testing

approach 4 dominates testing approaches 1--3 so we conclude that the use of directed testing to

determine event values is essential to get good results. Testing approach 5 is the VICE approach,

which, in sharp contrast to testing approach 4, samples the wait times but uses our SA-Tree

technique to generate event names. VICE is 30x faster than testing approach 4 and yet it

produces a better stack-size-fraction mean, namely 94%. Note also that VICE is within 3x of the

running time of the static analysis. Testing approach 6 tries all combinations of event names and

samples the wait times. The result is marginally better than VICE, namely 95%, but more than an

order of magnitude slower. Finally, testing approach 7 is the DTall approach which tries all

combinations of event names and all integer wait times within a wide interval. DTall achieves a

result of 99%, though at the expense of the longest execution time of all the approaches. We

conclude that testing can almost match the static analysis, which shows that the static analysis is

about as good as it can be. We also conclude that VICE gives an excellent trade-off between

22

precision and execution times; it is faster than all the other testing approaches and it is

outperformed only by two much slower approaches.

Number of event sequences. VICE achieves its results with significantly fewer event

sequences than random testing and the genetic algorithm. For four benchmarks, the difference is

2X, while for three benchmarks, the difference is 10X.

Branch coverage. Figure 3.7 shows that VICE and DTall produce excellent branch coverage

numbers. Notice that the previous best testing-approach (approach 2) achieved a much lower

branch coverage (53 percent) than VICE (85 percent) and DTall (89 percent). The wide spread of

coverage numbers support that the benchmarks are nontrivial: we can find event sequences that

lead most branches to go either way and yet only the best testing approaches achieve that.

Figure 0.7 Comparison of seven testing approaches.

23

CHAPTER 4

Race Directed Scheduling of Concurrent Programs

Detection of data races in Java programs remains a difficult problem. The best static

techniques produce many false positives, and also the best dynamic techniques leave

room for improvement. We present a new technique called race directed scheduling that

for a given race candidate searches for an input and a schedule that lead to the race. The

technique is implemented in a tool namely Racageddon. The search iterates a

combination of concolic execution and schedule improvement, and turns out to find

useful inputs and schedules efficiently. We use an existing technique to produce a

manageable number of race candidates. Our experiments on 23 Java programs found 72

real races that were missed by the best existing dynamic techniques. Among those 72

races, 31 races were found with schedules that have between 1 million and 108 million

events, which suggest that they are rare and hard-to-find races.

4.1. Two Techniques from Previous Works
Racageddon uses two techniques from previous work [12] [58]. In both cases, Racageddon

uses those techniques as “black boxes”, that is, as unmodified components for which we rely

only on their input-output behavior. We implemented both techniques ourselves after a careful

study of the seminal papers [12] [58].

Generation of race candidates. We use a hybrid race detector by O'Callahan and Choi [12]

that we call Hybrid. Hybrid combines lockset-based detection and happens-before-based

detection into a single efficient technique that can produce both false positives and false

negatives. We view the output of Hybrid as race candidates that deserve further attention.

Hybrid provides a rather small number of race candidates, namely a total of 405 for our

benchmarks of more than 4.5 million lines of code. Those 405 race candidates are an excellent

starting point for our search for real races.

Schedule improvement. We use an approach to schedule improvement by Said, Wang,

Yang, and Sakallah [58]. Their method maps a schedule to a permutation of the schedule. The

idea is that a user supplies both a schedule that represents a trace of a program execution and also

a race candidate, and then in return gets a schedule that has a better chance to lead to the race.

The method has “memory”: it takes advantage of the schedules that have been submitted in all

previous calls. Together, all those schedules provide a wealth of information about happens-

before relationships in a specific program. The method uses an SMT-solver and is highly

efficient, even for the schedules of lengths beyond length 108 that we encountered in our

experiments.

4.2. Race Directed Scheduling
We now present our approach to data race detection. We will use pseudo-code to describe

both our approach and the data types that we use.

24

4.2.1. Data Types

We begin with a description of six data types that we use in Racageddon.

Program = a Java 6 program

Input = input to a Java 6 program

Event = threadID × statementLable
EventPair = Event × Event
Race = EventPair × Input × Schedule

Racageddon works for Java 6 programs, which have the type Program. The input to such

programs is a vector of values; we use Input to denote the type of input vectors.

When a program execution executes a particular statement in a particular thread, we refer to

that as an event that has type Event. In the context of race detection, the key data type is

EventPair that we use to describe two events that may form a race.

The standard notion of schedule is here the data type Schedule, which is a sequence of

events.

A Race is the type of information that we need to replay an execution that leads to a race. A

Race has three components, namely the EventPair that is the race, the Input that we should

supply at the beginning of the execution, and the Schedule that the execution should follow to

reach the race.

4.2.2. Two Tools

Let us describe the interfaces to the two off-the-shelf tools from Section 2 in terms of the

data types listed above.

hybrid Program → (EventPair set)

improve (Schedule × EventPair) →(Schedule⨁ {none})

Here hybrid stands for O'Callahan and Choi's technique, while improve stands for Said,

Wang, Yang, and Sakallah's technique. Notice that hybrid maps a Java program to a set of event

pairs, that is, a set of race candidates. Notice also that improve maps a schedule to a better

schedule or else to none if no better schedule was found. Notice finally that we leave implicit

that improve has “memory” and takes advantage of the schedules that have been submitted in all

previous calls.

4.2.3. Concolic Execution

Let us describe the interfaces to the two off-the-shelf tools from Section 3.2 in terms of the

data types listed above. Racageddon uses concolic execution as one of its components. We will

summarize the idea of concolic execution and we will introduce a slight generalization of the

approach that we use in Racageddon.

Concolic execution [39] [59] [40] [37] [38] [60], executes code with concrete and symbolic

values simultaneously and uses the result to generate inputs for another execution. The term

“concolic” combines the words “concrete” and “symbolic”. Each execution collects constraints

from the symbolic values and the conditions in the control-flow. Those constraints represent the

executed control-flow path and they have the concrete input to the run as solution.

25

Suppose we want to execute a particular event, that is, a particular statement in a particular

thread. We can execute a sequence of concolic runs that successively get closer and closer to

execute the desired event. The idea is to do a minor modification of the constraints collected

from conditions of branches. Imagine that a prefix of the concolic run made progress towards the

desired event but at a particular branch B went off in nonpromising direction. We take the

constraints from the prefix plus the negation of B. The solution to those constraints is an input

that will steer the next concolic execution a little closer to the desired event by going off in the

promising direction at branch B.

Experience shows that concolic execution achieves better branch coverage with fewer test

cases than testing with random inputs. In the first round of concolic execution, the input is

chosen randomly.

We can generalize the standard approach to pursue execution of an entire schedule, that is, an

event sequence. For example, suppose we want execution of the schedule (𝑒1, 𝑒2, 𝑒3). Some

rounds of concolic execution may lead to execution of 𝑒1. We can refer to those rounds together

as a super-round. Now we can use the constraints that lead to execution of 𝑒1and continue with a

second super-round that leads to execution of first 𝑒1and later 𝑒2. Finally, we can do a third

super-round and achieve execution of the entire schedule.

The above method generalizes easily to schedules of any length. If we manage to execute an

entire given schedule, we continue to explore additional schedules that have the given schedule

as prefix.

We describe our interface to concolic execution in the following way.

Concolic = (Program × Schedule) → ((Race set) × Schedule)

The input to concolic is a program and a schedule, and concolic will execute one super-round

per element in the schedule. A run of concolic has two outputs. The first output is a set of all

races that were found by any of the individual concolic executions. The second output is a

schedule that represents the trace of final concolic execution, irrespectively of whether the given

schedule was executed. We emphasize that each call to concolic may do many concolic

executions, hence have many opportunities to collect races.

4.2.4. Helper Functions

We use three helper functions:

Informally, present checks that the two elements of an event pair occur consecutively in a

schedule. Additionally, swap makes a change to each element ((𝑒′, 𝑒′′), 𝑣, 𝑠) of a race set,

namely to swap 𝑒′ and 𝑒′′ both in the first component of the triple and also where they first occur

consecutively in 𝑠. Finally, ⨄ does something akin to a union of two race sets, namely to do the

union based only on the event pair of each race. We will maintain the invariant that for a given

𝑐 ∈ EventPair, a race set contains at most one race of the form (𝑐, 𝑣, 𝑠) . The idea of 𝑋⨄ 𝑌 is that

if 𝑋 contains a race of the form (𝑐, 𝑣′, 𝑠′) , and 𝑌 contains a race of the form (𝑐, 𝑣′′, 𝑠′′), then

𝑋⨄ 𝑌 will, somewhat arbitrarily, contain the first race (𝑐, 𝑣′, 𝑠′) (and leave out (𝑐, 𝑣′′, 𝑠′′)).
Formally,

present((𝑒′, 𝑒′′), (𝑒1, … , 𝑒𝑛)) = 𝑓(𝑥) = {
𝑡𝑟𝑢𝑒, 𝑖𝑓 ∃ 𝑖: 𝑒′ = 𝑒𝑖 ∧ 𝑒′′ = 𝑒𝑖+1

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

swap(𝑋) = {((𝑒′′, 𝑒′), 𝑣, (𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, 𝑒𝑖, 𝑒𝑖+2, … , 𝑒𝑛))|((𝑒′, 𝑒′′), 𝑣, (𝑒1, … , 𝑒𝑛)) ∈ 𝑋 ∧

𝑖 ∈ 1. . (𝑛 − 1)𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:
𝑒′ = 𝑒𝑖 ⋀𝑒′′ = 𝑒𝑖+1}

26

For every 𝑋 ∈ (Race set) we assume that if (𝑐′, 𝑣′, 𝑠′) ∈ 𝑋 and (𝑐′′, 𝑣′′, 𝑠′′) ∈ 𝑋 and 𝑐’ = 𝑐’’,
then 𝑣’ = 𝑣’’and 𝑠’ = 𝑠’’. The following definition of ⨄ maintains this property.

𝑋⨄𝑌 = 𝑋 ∪ {((𝑒′. 𝑒′′), 𝑣, 𝑠) ∈ 𝑌| ∀(𝑒𝑥, 𝑣𝑥, 𝑠𝑥) ∈ 𝑋: 𝑒𝑥 ≠ (𝑒′, 𝑒′′)}

4.2.5. Racageddon Overview

Racageddon iterates a combination of concolic execution and schedule improvement. We

begin with a run of hybrid to produce candidate races and then we do two phases of search for

races. In the Phase 1 we do a separate search for each of the candidate races. In the Phase 2 we

do a search based on the races found in Phase 2. For our benchmarks, our experiments with

Racageddon found 291 real races in Phase 1 and 53 additional real races in Phase 2.

In Phase 1 we interleave calls to concolic and improve. The idea is to turn the search for a

race into a search for a schedule that leads to the race. Each call to concolic will produce a more

promising schedule, after which a call to improve will further improve that schedule. In more

detail, each call to concolic will both try to execute the given schedule and continue execution

beyond that schedule, typically until termination of the program. Part of the continued execution

may make progress towards the desired race. The call to improve will permute some events in

the schedule to make the next concolic run have a better chance to succeed.

In Phase 2 we consider each race found in Phase 1 and do a swap of the two racing events in

the schedule that lead to the race. The “swapped” schedule leads to a race of the same two

events, which in itself provides nothing new. The interesting aspect of the “swapped” schedule is

that a concolic execution will continue after the race and may proceed in a different way than the

execution in Phase 1. Our experience is that those continued executions may find races that

Phase 1 missed. Once Phase 2 finds a new race, we also do a swap of the schedule that led to that

new race.

4.2.6. Racageddon Pseudo-code

Figure 1 shows pseudo-code for Racageddon. We will now go over the pseudo-code in

detail. We hope our pseudo-code and explanation will enable a better understanding of the

approach and enable practitioners to implement Racageddon easily.

The input to the Racageddon procedure is a program while the output is a set of races. The

first four lines of Racageddon declares these four variables: (1) a set of race candidates, called

candidates, that we initialize by a call to hybrid, (2) a set of races, called races, that initially is

the empty set and that we eventually return as the result of the procedure, (3) a set of races,

called 𝑟, that we use to hold intermediate results, and (4) a schedule, called trace, that holds each

trace produced by concolic.

Phase 1 consists of a for-each-loop that tries each of the event pairs in the set of candidates.

For each event pair we use a while-loop to do iterations that each does one call to improve and

one call to concolic. We use the integer variable 𝑖 to count the number of iterations and we

bound 𝑖 by 1000 to ensure that the search terminates, even if unsuccessful. In practice, the

highest number of calls to improve and concolic we did for any of our benchmarks was 197. So,

none of our experiments exercised the condition 𝑖 ≤ 1000. We initialize trace to empty

schedule, denoted by 𝜖, such that the initial call to improve can work correctly; that call will

return 𝜖.

The while-loop uses a Boolean-variable done to keep track of whether the search for a

particular candidate can be terminated before 𝑖 reaches 1000. We have two reasons for

27

terminating the search early, which we done by setting done to true. If the candidate pair 𝑐 is

present in the trace executed by concolic, as found by the call present(𝑒, 𝑡𝑟𝑎𝑐𝑒), then we can

declare success and terminate the search. If the call to improve(𝑒, 𝑡𝑟𝑎𝑐𝑒) returns none, then the

search has stalled, and we abandon the search. While abandoning a search may seem sad, our

experiments do it in some cases. One of the reasons may be that the race candidate actually isn't

a real race!

Notice how each iteration of the while-loop begins with trace, improves it to a schedule 𝑠

(unless improve returns none), which then after execution of concolic turns into a new value for

trace.

(Race set) Racageddon (Program p) {
 EventPair set) 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = hybrid(𝑝)
 (Race set) 𝑟𝑎𝑐𝑒𝑠 = ∅
 (Race set) 𝑟
 Schedule 𝑡𝑟𝑎𝑐𝑒

 /∗ 𝑃ℎ𝑎𝑠𝑒 1: 𝑡𝑟𝑦 𝑡ℎ𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∗/
 for each EventPair 𝑐 2 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do {
 boolean 𝑑𝑜𝑛𝑒 = false
 int 𝑖 = 0
 𝑡𝑟𝑎𝑐𝑒𝑠 = 𝜖
 while (! 𝑑𝑜𝑛𝑒) ∧ (𝑖 ≤ 1000){

case improve(𝑐, 𝑡𝑟𝑎𝑐𝑒) of
 Schedule 𝑠 ∶ {

(𝑟, 𝑡𝑟𝑎𝑐𝑒) = concolic(𝑝, 𝑠)
𝑟𝑎𝑐𝑒𝑠 = 𝑟𝑎𝑐𝑒𝑠 ⊎ 𝑟
𝑑𝑜𝑛𝑒 = present(𝑐, 𝑡𝑟𝑎𝑐𝑒)

}
none∶ {𝑑𝑜𝑛𝑒 = true}

}
𝑖 = 𝑖 + 1
}

}

/∗ 𝑃ℎ𝑎𝑠𝑒 2: 𝑡𝑟𝑦 𝑠𝑤𝑎𝑝𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑐𝑒𝑠 ∗/
(Race set) 𝑤𝑜𝑟𝑘𝑠𝑒𝑡 = swap(𝑟𝑎𝑐𝑒𝑠)
for each Race (𝑐, 𝑣, 𝑠) ∈ 𝑤𝑜𝑟𝑘𝑠𝑒𝑡 do {

(𝑟, 𝑡𝑟𝑎𝑐𝑒) = concolic(𝑝, 𝑠)
𝑟𝑎𝑐𝑒𝑠 = 𝑟𝑎𝑐𝑒𝑠 ⊎ 𝑟

𝑤𝑜𝑟𝑘𝑠𝑒𝑡 = 𝑤𝑜𝑟𝑘𝑠𝑒𝑡 ⊎ swap(𝑟)
}

return 𝑟𝑎𝑐𝑒𝑠
}

Figure 0.1 Racageddon Algorithm.

28

Phase 2 is a workset algorithm that uses the variable workset that holds a set of races. Initially

workset is the set of races found in Phase 1, but swapped, in the sense that we now want to

search for the “swapped” race. The main part of Phase 2 is a for-each-loop that iterates over the

elements of workset. We use an advanced for-each-loop that works correctly even if elements are

added to workset during a run of the for-each-loop. Here, “works correctly” means that the for-

each-loop does one iteration per element of workset, even if an element is added to workset

multiple times or added after the execution of the for-each-loop begins.

For each element of workset, Phase 2 makes one call to concolic and collects any races that

may be found. For each new race found in Phase 2, we add the race to workset such that we

eventually can say that we tried the “swapped” version of every race that we found.

4.2.7. Example

We now present an example in which we walk through a run of \Racageddon\on this program

with three shared variables and two threads:

𝑥, 𝑦, 𝑧 𝑎𝑟𝑒 𝑠ℎ𝑎𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑧 ℎ𝑎𝑠 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑢𝑠𝑒𝑟 𝑖𝑛𝑝𝑢𝑡

Thread 1: Thread 2:

𝑙1: 𝑥 = 6 𝑙4: 𝑥 = 2

 𝑙2: 𝑖𝑓(𝑧 > 4) 𝑙5: 𝑖𝑓(𝑧^2 + 5 < 𝑥^2)

 𝑙3: 𝑦 = 5 𝑙6: 𝑦 = 3

We use these abbreviations for events: 𝑒1 = (1, 𝑙1), 𝑒2 = (1, 𝑙2), 𝑒3 = (1, 𝑙3), 𝑒4 =
(2, 𝑙4), 𝑒5 = (2, 𝑙5), 𝑒6 = (2, 𝑙6),

The call to hybrid produces two race candidates:

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = {(𝑒1, 𝑒4), (𝑒1, 𝑒5)}

Now we begin Phase 1 of Racageddon. Suppose the for-each loop first considers the

candidate(𝑒1, 𝑒4).

Now we run the first iteration of the while-loop. Initially trace is the empty schedule so

improve returns the empty schedule. Now we run concolic on the empty schedule. Suppose that

the initial random input, which becomes the values of the shared variable z, is 0.

Nondeterminism can lead to several traces; suppose we get

𝑡𝑟𝑎𝑐𝑒 = 𝑒1, 𝑒2, 𝑒4, 𝑒5

Notice here that we don't get to 𝑒3because the condition in 𝑒2fails due to 0 < 4, and we don't

get to 𝑒6 because the condition in 𝑒5 fails due to 𝑧2 + 5 = 5 and 𝑥2 = 4 and 5 > 4.

Now we run the second iteration of the while-loop. First we run improve on (𝑒1, 𝑒4) and

trace:

𝑡𝑟𝑎𝑐𝑒 = 𝑒1, 𝑒4, 𝑒2, 𝑒5

29

Now we run concolic on trace, and like above, let us suppose the initial random input leads to

𝑧 = 0. The execution of concolic finds the race for which we are searching, so we can add that

race to races:

𝑟𝑎𝑐𝑒𝑠 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5))}

Like above, we don't get to execute 𝑒3 or 𝑒6; the conditions in 𝑒2 and 𝑒5 fails for the same

reasons as above.

Next the for-each-loop in Phase 1 considers the candidate (𝑒1, 𝑒5).
Now we run the first iteration of the while-loop. Let us assume that this iteration proceeds

like the first iteration for (𝑒1, 𝑒4) so we get:

𝑡𝑟𝑎𝑐𝑒 = 𝑒1, 𝑒4, 𝑒2, 𝑒5

Now we run the second iteration of the while-loop. First we run improve on , (𝑒1, 𝑒5) and

trace, which produces this permutation of trace:

𝑡𝑟𝑎𝑐𝑒 = 𝑒4, 𝑒5, 𝑒1, 𝑒2

Notice that even though 𝑒5 and 𝑒1 occur consecutively, we won't terminate the search

because we are looking for (𝑒1, 𝑒5). Now we run concolic on trace, and which leads to an

execution with this trace:

𝑡𝑟𝑎𝑐𝑒 = 𝑒4, 𝑒5, 𝑒1, 𝑒2, 𝑒3

for which z had the initial value 10. (We skip the constraints and merely note that they have

solution 10, among other solutions.) Note that trace contains 𝑒3 because the condition in 𝑒2

succeeds due to 10>4.

Now we run the third iteration of the while-loop. First we run improve on , (𝑒1, 𝑒5) and

trace, which produces this permutation of trace:

𝑡𝑟𝑎𝑐𝑒 = 𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3

Next, the execution of concolic finds the race for which we are searching, so we can add that

race to races:

𝑟𝑎𝑐𝑒𝑠 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5)),
((𝑒1, 𝑒5), 10, (𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3))}

We don't get to execute 𝑒6 because the condition in 𝑒5fails due to 𝑧2 + 5 = 105 and 𝑥2 = 36

and 105>36.

Now the for-each-loop has processed both elements of the set candidates, so we are done

with Phase 1 and can move on to Phase 2. Notice that we successfully found both candidate races

to be real races.

In Phase 2 we consider swapped versions of the two races found in Phase 1:

𝑤𝑜𝑟𝑘𝑠𝑒𝑡 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5)),
((𝑒1, 𝑒5), 10, (𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3))}

Let us here focus on the run with the schedule (𝑒4, 𝑒1, 𝑒2, 𝑒5). The call to concolic eventually

executes (𝑒4, 𝑒1, 𝑒2, 𝑒5, 𝑒3) and collect these constraints:

30

𝑥 = 6 ∧ 𝑧 > 4 ∧ 𝑥2 + 5 < 𝑥2

that have solution 𝑧 = 5. The next concolic execution therefore executes (𝑒4, 𝑒1, 𝑒2, 𝑒5, 𝑒3, 𝑒6),

which contains the race (𝑒3, 𝑒6). We add that race to races:

𝑟𝑎𝑐𝑒𝑠 = {((𝑒1, 𝑒4), 0, (𝑒1, 𝑒4, 𝑒2, 𝑒5)),

((𝑒1, 𝑒5), 10, (𝑒4, 𝑒1, 𝑒5, 𝑒2, 𝑒3))

(𝑒3, 𝑒6), 5, (𝑒4, 𝑒1, 𝑒2, 𝑒5, 𝑒3, 𝑒6)}

In summary, hybrid produced two candidates races, Phase 1 found both candidates to be real

races, and Phase 2 found one additional race.

4.3. Experimental Results
We ran all our experiments on a Linux CentOs machine with two 2.4 GHz Xeon quad core

processors and 32 GB RAM.

Name LOC # threads Brief description

Sor 1270 5 A successive order-relaxation benchmark

TSP 713 10 Traveling Salesman Problem solver

Hedc 30K 10 A web-crawler application kernel

Elevator 2840 5 A real-time discrete event simulator

ArrayList 5866 26 ArrayList from java.util

TreeSet 7532 21 TreeSet from java.util

HashSet 7086 21 HashSet from java.util

Vector 709 10 Vector from java.util

RayTracer 1942 5 Measures the performance of a 3D raytracer

MolDyn 1351 5 N-Body code modeling dynamic

MonteCarlo 3619 4 A financial simulator, using Monte Carlo techniques to price

products

Derby 1.6M 64 Apache RDBMS

Colt 110K 11 Open Source Libraries for High Performance Scientific and

Technical Computing

ChordTest 62 11 Mini-benchmark; comes with the Chord race detector

Avrora 140K 6 AVR microcontroller simulator

Tomcat 535K 16 Tomcat Apache web application server

Batic 354K 5 Produces a number of Scalable Vector Graphics (SVG)

images based on Apache Batic

Eclipse 1.2M 16 Non-GUI Eclipse IDE

FOP 21K 8 XSL-FO to PDF converter

H2 20K 16 Executes a JDBCbench-like in-memory benchmark

PMD 81K 4 Java Static Analyzer

Sunflow 108K 16 Tool for rendering image with raytracer

Xalan 355K 9 XML to HTML transformer

TOTAL 4587K

31

Figure 0.2 Benchmarks.

4.3.1. Benchmarks

Figure 4.2 lists our 23 benchmarks which we have collected from seven sources:

 From ETH Zurich: Sor, TSP, Hedc, Elevator.

 From java.util, Oracle's JDK 1.1: ArrayList, TreeSet, HashSet, Vector.

 From Java Grande: RayTracer, MolDyn, MonteCarlo.

 From the Apache Software Foundation: Derby.

 From European Organization for Nuclear Research (CERN): Colt.

 From the Chord distribution: ChordTest.

 From DaCapo [106]: Avrora, Tomcat, Batic, Eclipse, FOP, H2, PMD, Sunflow,

Xalan.

The sizes of the benchmarks vary widely: we have 2 huge (1M+ LOC), 10 large (20K-1M

LOC), 8 medium (1K-8K LOC), and 3 small (less than 1K LOC) benchmarks.

Figure 4.2 also lists the high watermark of how many threads each benchmark runs.

4.3.2. Race Detectors

We compare Racageddon with one static race detector, namely Chord [24], one hybrid race

detector, namely the one that we call Hybrid [12], and four dynamic race detectors, namely

FastTrack [61], Goldilocks [62], CalFuzzer [60], and Pacer [63]. Additionally we compare with a

combined dynamic technique that we call FGCP.

Chord is a static technique, and by design it may report false positives; its main objective is

to report all real races (or as many as possible).

We discussed Hybrid in Section 2.

FastTrack, Goldilocks, CalFuzzer, Pacer, and Racageddon are all dynamic techniques that

report only real races.

FastTrack and Goldilocks are based on the observation that a race happens if two accesses to

a memory location (of which at least one access is a write) are not ordered by the happens-before

relation. FastTrack uses a clever representation of the happens-before relation to achieve

constant-time overhead for almost all monitored operations. Goldilocks uses a lockset-based

algorithm to improve the precision of the computation of the happens-before relation.

CalFuzzer performs random testing by choosing thread schedules at random and stopping a

thread when it is about to execute a statement in a candidate race pair. Like Racageddon,

CalFuzzer uses Hybrid to generate race candidates.

Pacer is a sampling-based data race detector that detects any race at a rate equal to the

sampling rate. In our experiments, the sampling race was 100% and for each benchmark we used

100 trials.

We use FGCP to stand for the union of FastTrack, Goldilocks, CalFuzzer, and Pacer in

following sense. We can implement FGCP as a tool that for a given benchmark starts runs of

FastTrack, Goldilocks, CalFuzzer, and Pacer in four separate threads, and if any one of them

reports a race, then FGCP reports a race.

4.3.3. How we handle Reflection

Many of the benchmarks use reflection, yet each of the race detectors listed above either

doesn't support reflection or supports reflection poorly. We overcome this problem with the help

of the tool chain TamiFlex [64].

The core of the problem is that all the race detectors do either a static analysis or some form

of ahead-of-time instrumentation. Reflection tends to make static analysis unsound and to load

32

uninstrumented classes. TamiFlex solves these problems in a manner that is sound with respect

to a set of recorded program runs. If a later program runs deviates from the recorded runs,

TamiFlex issues a warning.

We have combined each of the race detectors with TamiFlex and we have run all our

experiments without warnings. As a result, the race detectors all handle reflection correctly and

in the same way.

The webpage https://code.google.com/p/tamiflex/wiki/DaCapoAndSoot gives a good

example of how to combine TamiFlex with a different tool.

 Number of races found

Name Total=phase1+ phase 2

Sor 3 2 1

TSP 2 2 0

Hedc 11 9 2

Elevator 8 5 3

ArrayList 7 7 0

TreeSet 3 3 0

HashSet 8 7 1

Vector 4 4 0

RayTracer 4 3 1

MolDyn 6 4 2

MonteCarlo 3 2 1

Derby 18 15 3

Colt 10 7 3

ChordTest 2 2 0

Avrora 13 12 1

Tomcat 21 19 2

Batic 29 23 6

Eclipse 51 46 5

FOP 18 16 2

H2 39 30 9

PMD 13 12 1

Sunflow 30 22 8

Xalan 41 39 2

TOTAL 344 291 53
Figure 0.3 Races found by Racageddon.

4.3.4. Measurements

Figure 3 shows the numbers of races found in 23 benchmarks by Racageddon, including

whether the races were found in Phase 1 or in Phase 2.

Figure 4 shows, for each benchmark, the number of schedules tried by Racageddon and the

longest schedule that found a race.

Figure 5 shows the numbers of races found in 23 benchmarks by 7 techniques.

Figure 6 shows the time each of the runs took in minutes and seconds, and it shows the

geometrical mean for each technique.

Some of the executions of Goldilocks crashed, which we indicate in Figure 5 and Figure 6

with “-”. If we compare Figure 5 and Figure 6 we see that for ArrayList and Batic, we list that

https://code.google.com/p/tamiflex/wiki/DaCapoAndSoot

33

Goldilocks reported races while we list no execution times. The reason is that for ArrayList and

Batic, our runs of Goldilocks crashed, yet the execution log contained some races that we report

in Figure 5.

Figure 7 shows, for each benchmark, the lengths of the 72 schedules that lead to races found

only by Racageddon.

Figure 8shows, for each benchmark, how many of the races found by Hybrid are actually real

races, as found by the combination of FGCP and Racageddon.

Name Schedule longest schedule
that found a race

Sor 14 6,803

TSP 8 6,047

Hedc 28 249,268

Elevator 28 9,005

ArrayList 47 132,990

TreeSet 17 110,087

HashSet 38 139,553

Vector 40 6,308

RayTracer 9 71,084

MolDyn 188 4,680

MonteCarlo 24 12,061

Derby 105 108,302,900

Colt 63 948,033

ChordTest 2 505

Avrora 23 702,961

Tomcat 197 1,284,917

Batic 39 1,407,554

Eclipse 53 102,879,384

FOP 41 153,074

H2 35 297,655

PMD 48 310,049

Sunflow 37 1,624,320

Xalan 56 2,907,450
Figure 0.4 Schedules tries by Racageddon.

4.3.5. Evaluation

We now present our findings based both on the measurements listed above and on additional

analysis of the races that were found.

Racageddon. We can see in Figure 3 that Racageddon found a total of 344 real races,

including 291 races found in Phase 1 and 53 races found in Phase 2. The split between Phase 1

and Phase 2 demonstrates a subtlety of race directed scheduling: even when we have a schedule

that finds a race, a swap of the race pair can lead to other races.

Number of schedules. We can see in Figure 4 that the number of schedules tried by

Racageddon is rather modest and appears to be no worse than the product of a small constant and

the number of race candidates. Note that in Racageddon, some runs of concolic finds multiple

races. We can also see in Figure 4 that the longest schedules that found races can have lengths

that are more than 100,000,000. This shows that the improve method scales to long schedules.

34

Racageddon versus other Dynamic Techniques. We can see in Figure 5 that Racageddon

finds the most races (344) of all the dynamic techniques. Among those 344 races, 72 races were

found only by Racageddon and are entirely novel to this paper, while 272 were also found by

FGCP. Dually, 32 races were found only by FGCP. In summary, we have that the combination of

FGCP and Racageddon found 376 races in the 23 benchmarks.
Found only by FGCP: 32

Found by both: 272

Found only by : 72
Total: 376

FastTrack versus Pacer. Pacer is based on FastTrack and as expected, every race found by

FastTrack is also found by Pacer. Pacer finds many more races (286) than FastTrack (79) so our

experiments confirm that Pacer is a highly successful extension of FastTrack.

FGCP details. The combined dynamic technique FGCP found 304 races. Pacer was the

biggest contributor to that collection of 304 races. Among those 304 races, Pacer found 286,

some of which were also found by Goldilocks and CalFuzzer. The remaining 304-286=18 races

were found Goldilocks (10 races) and CalFuzzer (8 races). In more detail, Goldilocks found

additional races in Avrora (1), Batic (3), FOP (2), SunFlow (2), and Xalan (2) (and CalFuzzer

found none of those 10 races). CalFuzzer found additional races in TreeSet (1), HashSet (1),

Derby (1), Eclipse (4), and H2 (1) (and GoldiLocks found none of those 8 races). We conclude

that Goldilocks, CalFuzzer, and Pacer are all worthwhile techniques that each finds races that the

other techniques don't find. As a combined dynamic technique FGCP is highly powerful.
 Static Hybrid Dynamic

benchmarks Chord Hybrid FastTrack Goldilocks CalFuzzer Pacer FGCP Racageddon

 total new FGCP

Sor 3 8 0 0 0 3 3 3 3 0

TSP 17 3 1 1 0 1 1 2 1 1

Hedc 143 5 3 1 1 11 11 11 4 7

Elevator 54 13 1 - 0 4 4 8 4 4

ArrayList 8 14 0 1 5 6 6 7 1 6

TreeSet 11 13 0 - 6 8 9 3 0 3

HashSet 0 11 0 - 8 7 8 8 0 8

Vector 17 9 0 - 5 5 5 4 0 4

RayTracer 159 2 1 1 1 3 3 4 1 3

MolDyn 92 43 0 1 2 5 5 6 1 5

MonteCarlo 101 5 0 0 1 2 2 3 1 2

Derby 1110 21 1 - 2 14 15 18 4 14

Colt 549 13 0 0 3 7 7 10 3 7

ChordTest 2 2 1 1 2 2 2 2 0 2

Avrora 1887 9 3 3 6 11 12 13 1 12

Tomcat 110061 52 12 11 11 20 20 21 3 18

Batic 970 12 9 10 9 32 35 29 7 22

Eclipse 9401 77 14 - 13 39 43 51 8 43

FOP 34 21 5 5 8 13 15 18 3 15

H2 869 19 5 - 9 25 26 39 13 26

PMD 292 14 9 8 4 13 13 13 0 13

Sunflow 353 16 8 11 9 19 21 30 11 19

Xalan 1003 23 6 9 10 36 38 41 3 38

TOTAL 127136 405 79 63 115 286 304 344 72 272

Figure 0.5 The numbers of races found in 23 benchmarks by 7 techniques.

35

Chord. Chord is possibly the best current static race detector, yet our experiments strongly

suggest that Chord finds a large number of false positives. We conclude that accurate static race

detection continues to be an open problem.

Timings. The geometrical means of the execution times for each technique show that

FastTrack and Hybrid are the fastest, while Pacer is the slowest. Racageddon is more than twice

as fast as Pacer yet Racageddon finds significantly more races. Note that the timings for

CalFuzzer and Racageddon include the time to execute Hybrid.
 Static Hybrid Dynamic

benchmarks Chord Hybrid FastTrack Goldilocks CalFuzzer Pacer FGCP Racageddon

Sor 2:18 0:49 0:08 0:44 2:29 9:44 4:49 2:18

TSP 2:22 0:55 0:03 0:10 1:50 11:23 4:37 2:22

Hedc 4:07 1:00 0:08 0:25 2:01 5:00 3:08 4:07

Elevator 1:10 0:39 0:03 - 1:11 3:58 2:40 1:10

ArrayList 2:40 0:50 0:05 - 1:18 5:18 4:11 2:40

TreeSet 3:11 0:18 0:06 - 0:44 7:02 3:25 3:11

HashSet 2:58 0:21 0:06 - 0:59 4:57 2:43 2:58

Vector 0:43 0:15 0:01 - 0:38 5:05 2:52 0:43

RayTracer 1:24 0:09 0:03 0:38 0:26 4:18 2:22 1:24

MolDyn 0:38 1:42 0:02 1:08 2:49 15:36 6:45 0:38

MonteCarlo 2:31 2:02 0:04 1:16 4:01 16:31 6:58 2:31

Derby 35:09 1:26 0:13 - 1:50 11:34 5:02 35:09

Colt 4:37 0:04 0:10 0:23 0:09 4:48 2:23 4:37

ChordTest 0:05 0:01 0:01 0:02 0:05 0:54 0:10 0:05

Avrora 19:37 2:40 0:39 4:57 3:19 23:03 11:17 19:37

Tomcat 12:01 3:57 0:41 4:11 6:01 45:12 19:00 12:01

Batic 27:29 3:01 0:18 - 3:55 30:01 14:54 27:29

Eclipse 41:11 3:50 0:35 - 4:14 48:46 19:15 41:11

FOP 6:50 0:17 0:12 0:36 0:25 13:21 4:49 6:50

H2 8:38 0:31 0:09 - 0:49 18:50 7:31 8:38

PMD 15:48 0:16 0:14 1:03 0:38 17:41 7:22 15:48

Sunflow 16:00 0:41 0:23 2:01 1:06 18:17 6:03 16:00

Xalan 33:11 2:39 0:20 3:00 3:47 30:37 13:19 33:11

geom. mean 4:36 0:40 0:08 - 1:16 10:41 4:51 4:36

Figure 0.6 Timings in minutes and seconds.

Rare and frequent races. In a seminal paper, Marino, Musuvathi, and Narayanasamy [66]

made a distinction between rare and frequent races:

“We classified as rare those racing instruction pairs that occurred fewer than 3 times

for each million non-stack memory instructions executed. The rest are considered

frequent.”

A related idea stems from Burckhardt, Kothari, Musuvathi, and Nagarakatte [65] who

characterized the depth of a bug as the minimum number of scheduling constraints required to

find that bug. In the spirit of these ideas, let us consider whether Racageddon finds any rare

races. Figure 4 lists the longest schedule that Racageddon used to find a race for each

benchmark. Six of those schedules have more than a million events, including one schedule with

more than 100 million events. For 18 of those longest schedules, the result was that Racageddon

found a race that FGCP didn't find. The exceptions are TSP, Elevator, Vector, MolDyn, and

ChordTest, and we notice that those five benchmarks have some of the shortest “longest

schedules" among the benchmarks.

Figure 7 lists the lengths of the 72 schedules that lead to races found only by Racageddon.

36

Name Lengths

Sor 6462, 6661, 6803

TSP 5623

Hedc 57327, 224341, 236804, 249268

Elevator 6573, 7924, 8673, 8914

ArrayList 132990

TreeSet -

HashSet -

Vector -

RayTracer 71084

MolDyn 4305

MonteCarlo 12061

Derby 58483566, 98555637, 105053813, 108302900

Colt 824877, 919592, 948033

ChordTest -

Avrora 702961

Tomcat 1066481, 1169274, 1284917

Batic 182982, 323737, 760003, 1379402, 1393478, 1400516, 1407554

Eclipse 1697703, 3068331, 3429715, 16605080, 16785570, 77145639, 98049000, 102879384

FOP 134705, 150499, 153074

H2 32742, 116085, 217288, 232170, 241100, 264912, 273842, 276819, 279795, 285748,
294678, 296133, 297655

PMD -

Sunflow 374598, 730944, 1283212, 1348185, 1478131, 1494379, 1543108, 1575594, 1608075,
1620019, 1624320

Xalan 2674854, 2849301, 2907450
Figure 0.7 The lengths of the 72 schedules that lead to races found only by Racageddon.

We can groups those lengths as follows:
lengths #

103 − 104 9

104 − 105 4

105 − 106 28
106 − 107 22

107 − 108 6

108 − 109 3

The table shows that many of those schedules are long, hence rare. Specifically, 31 races

were found with schedules that have between 1 million and 108 million events, which suggests

that they are rare and hard-to-find races.

Hybrid. Both CalFuzzer and Racageddon use Hybrid to produce race candidates. CalFuzzer

focuses solely on the race candidates, while Racageddon discovers additional race candidates.

Overall, Hybrid is successful is producing a worthwhile starting point for those two dynamic

techniques. We can see in Figure 8 that for our benchmarks, Hybrid reports 405 race candidates

37

of which 238 (59%) are real races. Future work may be able to show that some of the remaining

405-238=167 race candidates are real races.

 Number of races

Name reported real

Sor 8 3

TSP 3 1

Hedc 5 5

Elevator 13 7

ArrayList 14 6

TreeSet 13 8

HashSet 11 7

Vector 9 4

RayTracer 2 2

MolDyn 43 5

MonteCarlo 5 3

Derby 21 17

Colt 13 9

ChordTest 2 2

Avrora 9 9

Tomcat 52 20

Batic 12 11

Eclipse 77 46

FOP 21 15

H2 19 17

PMD 14 12

Sunflow 16 6

Xalan 23 23

TOTAL 405 238
Figure 0.8 Hybrid; real is as found by FGCP and Racageddon.

4.4. Related Work
In Section 2 we discussed two techniques for race detection, namely one by O'Callahan and

Choi [12] and one by Said, Wang, Yang, and Sakallah [58] that we use in Racageddon. In

Section 4 we discussed five additional techniques, namely Chord [24], FastTrack [61],

Goldilocks [62], CalFuzzer [60], and Pacer [63] that we have compared experimentally with

Racageddon. The goal of this section is to highlight some other notable techniques and tools in

the area of race detection and related areas.

Dynamic race detectors. FastTrack, Goldilocks, CalFuzzer, and Pacer were some of the best

dynamic race detectors for Java until now. A predecessor of Pacer, namely LiteRace [66] was the

seminal paper that showed how to do race detection in a way that samples and analyzes selected

portions of a programâs execution. Prior to LiteRace, a paper by Jump, Blackburn, and

McKinley [67] presented a sampling technique that they applied in the context of memory

management.

Some well-known dynamic race detectors work for other languages than Java, including the

seminal Eraser [68], and a tool by Sack et al. [69].

38

Arnold and M. Vechev and E. Yahav [70] presented the QVM run-time environment that

continuously monitors an execution and potentially detects defects, including races.

Hybrid race detectors. The technique by O'Callahan and Choi [12] that we call Hybrid

continues to be one of the best and most scalable hybrid techniques for race detection. Other

hybrid techniques include one by von Praun and Gross [71], RaceTrack [72], and MultiRace

[73]. We leave to future work to do a large-scale study of those three hybrid techniques like we

did for Hybrid. In particular, future work should evaluate how well those techniques perform

when we want to use their output as race candidates for other tools such as CalFuzzer and

Racageddon.

Static race detectors. Chord remains one of the best among the scalable static race detectors

to date, hence it was our choice for experimental comparison in this paper. Among the other

static race detectors, some use static analysis, including Warlock [74], RacerX [15], LockSmith

[75], and Relay [76], some use model checking, including an approach by Henzinger, Jhala, and

Majumdar [77], and some use type systems, including an approach based on ownership by

Boyapati, Lee, and Rinard [11], and approaches that capture common synchronization patterns

by Freund [78] and later by Abadi, Flanagan, and Freund [10]. A related approach based on type

systems by Sasturkar, Agarwal, Wang, and Stoller [79] enables specification and check of

atomicity. Finally, Effinger-Dean, Boehm, Chakrabarti, and Joisha [80] presented a

characterization of extended interference-free regions of C programs in which variables cannot

be modified by other threads. All the static approaches may produce false positives and thus have

a goal that is dual to our objective to find real races.

Other techniques. We implemented a precursor to Racageddon as an extension of Java

PathFinder [29]. Our Java PathFinder extension is effective at exploring all execution paths yet

doesn't scale up to our current benchmarks.

39

CHAPTER 5

Deadlock Directed Testing of Concurrent Programs,

or How to Detect Rare Deadlocks

We present a new technique to find real deadlocks in concurrent Java programs. For 4.5

million lines of Java, our technique found almost twice as many real deadlocks as four

previous techniques combined. Our technique is particularly good at finding rare

deadlocks: it found 33 deadlocks that happened after more than one million computation

steps, including 28 new deadlocks. We first use a known technique to find 1275 deadlock

candidates and then we determine that 146 of them are real deadlocks. Our technique

combines previous work on concolic execution with a new constraint-based approach to

drive an execution towards a deadlock candidate.

5.1. Our Deadlock Detection Technique
We now present our approach to find deadlocks.

5.1.1. Overview

In a nutshell, we first produce a set of deadlocks candidates and then we do a separate search

for each of the deadlock candidates. The key idea is to turn each search for a deadlock into a

search for a schedule that leads to the deadlock. We structure those searches in a particular

manner that Eslamimehr and Palsberg used in their work on data race detection

[EslamimehrPalsberg13b] and that we illustrate in Figure 5.1. Each circle in Figure 5.1 is a

schedule. The search is an alternating sequence of execute and permute steps:

(execute. permute)i. execute

where i is a nonnegative integer. The execute function attempts to execute a given schedule and

determine whether it leads to a deadlock, and the permute function permutes a given schedule.

The search begin with an initial schedule found simply by executing the program. The search

fails if execute cannot execute a given schedule, if permute cannot find a better permutation, or

if the search times out.

Each call to execute may produce a more promising schedule, after which a call to permute

will further improve that schedule. In more detail, each call to execute will both try to execute

the given schedule and continue execution beyond that schedule, typically until termination of

the program. Part of the continued execution may make progress towards the desired deadlock.

The call to permute will permute the events in the schedule to make the next call to execute

have a better chance to succeed.

The alternation of permute and execute steps is considerably more powerful than either one

alone. For our benchmarks, our technique finds 146 deadlocks, while \execute alone finds only

63 deadlocks, and permute alone finds only 22 deadlocks.

Eslamimehr and Palsberg's work on data race detection [31] showed how to implement

execute via a series of concolic executions, as we will summarize below. In Section 5.3 we show

how to define a permute function that successfully helps to find rare deadlocks.

40

Figure 05.0.1 An illustration of the basic ConLock.

5.1.2. Data Types

We use the following eight data types in ConLock.

ConLock works for Java 6 programs, which have the type Program. The input to such

programs is a vector of values; we use Input to denote the type of input vectors. Each object in

Java contains a lock; for simplicity we refer to each object as a lock and use Lock to denote the

type of locks.

When a program execution executes a particular statement in a particular thread, we refer to

that as an event that has type Event. The standard notion of schedule is here the data type

Schedule, which is a sequence of events.

In the context of deadlock detection, two key data types are Link and Cycle. We use Link to

describe that a thread in a particular statement has acquired a lock and now wants to acquire

another lock. We use Cycle, which is a set of links, to describe a deadlock.

A Deadlock is the type of information that we need to replay an execution that leads to a

deadlock. A Deadlock has three components, namely the Cycle that is the deadlock, the Input that

we should supply at the beginning of the execution, and the Schedule that the execution should

follow to reach the deadlock.
 Program = a Java 6 program
 Input = input to a Java 6 program
 Lock = a Java 6 object
 Event = threadId × statementLable
 Schedule = Event sequence
 Link = threadId × (statementLable) × (statementLable)
Cycle = Link set
 Deadlock = Cycle × Input × Schedule

5.1.3. Deadlock Candidates

Our technique relies on access to a set of deadlock candidates. We use Havelund's technique

GoodLock [91] to produce 1275 deadlock candidates for our benchmarks of more than 4.5

million lines of code. Those 1275 deadlock candidates are an excellent starting point for our

search. GoodLock combines model checking and dynamic analysis into an efficient deadlock

41

detector that can produce both false positives and false negatives. Here is the interface to

GoodLock:

GoodLock: Program → Schedule
We use GoodLock as a “black box”, that is, as an unmodified component for which we rely

only on its input-output behavior. Notice that GoodLock maps a Java program to a set of

eventSets, that is, a set of deadlock candidates. We use an extension of Goodlock that can handle

deadlocks of any number of threads [91]. Havelund reported that deadlocks that involve three or

more threads are extremely rare in practice, and indeed for our benchmarks GoodLock found

only deadlock candidates that involve two threads.

5.1.4. The InitialRun Function

Here is the interface to the initialRun function:

initialRun: Program → Schedule

A call to initialRun simply executes the program with a random input and records the

schedule.

5.1.5. The Execute Function

Here is the interface to the execute function:

execute: (Program × Schedule × Cycle) →

((Input × Schedule × boolan)⨁{none})

The arguments to execute are a program, a schedule, and a deadlock candidate. A call to

\execute will attempt to execute the given schedule, determine whether it leads to a deadlock,

and try to execute a longer schedule that contains the events embodied in the deadlock candidate.

Consider the call:

(𝑎, 𝑡𝑟𝑎𝑐𝑒, 𝑓𝑜𝑢𝑛𝑑) = execute(𝑝, 𝑠, 𝑐)

Here, found is a boolean that is true if the given schedule s leads to a deadlock and that is

false otherwise. If found is true, then a is the input to the program that was used to execute the

schedule. Additionally, trace is the schedule that was actually executed.Here is a summary of

how we implement execute. For a single event, a well-known idea is to execute a series of

(Deadlock set)DeadlockTool(Program 𝑝){
 (Cycle set) 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = GoodLock(𝑝)
 (Deadlock set) 𝑑𝑙𝑜𝑐𝑘𝑠 = ϕ ;

 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 Cycle 𝑐 ∈ candidates 𝐝𝐨 {
 boolean 𝑓𝑜𝑢𝑛𝑑 = false
 boolean 𝑠𝑡𝑎𝑙𝑙𝑒𝑑 = false
 int i = 0
 Schedule 𝑠 = initialRun(𝑝)
 𝐰𝐡𝐢𝐥𝐞 (¬found) ∧ (¬ stalled) ∧ (i ≤ 1000) {
 𝐜𝐚𝐬𝐞 execute(𝑝, 𝑠; , 𝑐) 𝐨𝐟
 (Input × Schedule × boolean)(𝑎, 𝑡𝑟𝑎𝑐𝑒, true): {
 𝑑𝑙𝑜𝑐𝑘s = 𝑑𝑙𝑜𝑐𝑘𝑠 ∪ {(𝑐, 𝑎, 𝑡𝑟𝑎𝑐𝑒)}
 𝑓𝑜𝑢𝑛𝑑 = true
 }
 (Input × Schedule × boolean)(𝑎, 𝑡𝑟𝑎𝑐𝑒, false) ∶ {
 𝐜𝐚𝐬𝐞 permute(𝑡𝑟𝑎𝑐𝑒, 𝑐) 𝐨𝐟
 Schedule s′: {s = s′}
 none ∶ {𝑠𝑡𝑎𝑙𝑙𝑒𝑑 = true}
 }
 none ∶ {𝑠𝑡𝑎𝑙𝑙𝑒𝑑 = true}
 }
 i = i + 1
 }
 }
 𝐫𝐞𝐭𝐮𝐫𝐧 dlocks
}

Figure 05.0.2 ConLock Algorithm.

42

concolic executions [32] that eventually finds an input that lead to execution of the desired event

(if possible). Eslamimehr and Palsberg [31] generalized this idea to work for a sequence of

events. The idea is to execute a series of concolic executions that eventually finds an input that

leads to execution of all of the events in the sequence in order. The series of concolic executions

for the (𝑛 = 1)𝑡ℎevent in the sequence builds on what was achieved for the first n events. Once

we have matched the entire input schedule, we continue exploration until we have executed a

schedule that contains as many of the events embodied in the deadlock candidate as possible. If

we cannot match the input schedule at all, then execute returns none

5.1.6. The Permute Function

We will describe the design of the permute function in the following section. Here, we

merely list its interface:

permute: (Schedule × Cycle) → (Schedule × boolan)⨁{none})

Notice that permute maps a schedule and a deadlock candidate to a better schedule or else to

none if no better schedule was found.

5.1.7. ConLock Pseudo-code

Figure 5.2 shows pseudo-code for ConLock, which we will go over in detail. We hope our

pseudo-code and explanation will enable practitioners to implement our technique easily.

The input to the ConLock procedure is a program while the output is a set of real deadlocks.

The first two lines of ConLock declares these two variables: (1) a set of deadlock candidates,

called candidates, that we initialize by a call to GoodLock, and (2) a set of deadlocks, called

dlocks, that initially is the empty set and that we eventually return as the result of the procedure.

The main body of the pseudo-code consists of a for-each-loop that tries each of the event sets

in the set of candidates. The body of the for-each loop declares these four variables: (1) a

boolean found that tells whether we have found a schedule that leads to the desired deadlock, (2)

a boolean stalled that tells whether permute was able to improve a given schedule and whether

execute was able to match the trace and execute a longer trace with the events embodied in the

deadlock candidate, (3) an integer i that counts the number of pairs of calls to \permute and

\execute, and (4) a schedule, called s, that holds a trace produced by an initial run. For each

deadlock candidate we use a while-loop to do an alternation of calls to execute and permute, as

illustrated in Figure 5.2. Intuitively, the while-loop terminates if either we find the deadlock, we

give up, or we time out. The time-out condition i ≤ 1000 was never exercised in our

experiments; the highest number of iterations of the while-loop for our benchmarks was 726.

In the body of the while-loop, we first call execute to match the given schedule, after which

either we declare success, or proceed with a call to permute, or abandon the search. Similarly,

after the call to permute, we either continue with the next iteration of the while-loop or we

abandon the search. Notice how each iteration of the while-loop begins with s, extends it to trace

and then improves it to a new value of s.

If we find a deadlock, then we record the input and the trace that lead to the deadlock. If we

abandon the search, we can take comfort in that some searches have no chance to succeed

because the deadlock candidate is not a real deadlock!

5.1.8. Example

We now present an example in which we walk through a run of ConLock on the following

program with four shared variables and two threads.

The example is a refined version of the example in Section 1: we have added two

assignments and two if-statements. The point of the example is that the program enters a

43

deadlock only when it executes the bodies of both if-statements. For a deadlock to happen, y

must be 5 and the program must execute a particular schedule that lets x be 6 at the time the

program evaluates the condition at 𝑙7. So, while a deadlock is possible, most executions are

deadlock free. We will explain how our technique finds the deadlock.

We use these abbreviations for events: 𝑒1 = (1, 𝑙1), 𝑒2 = (1, 𝑙2), 𝑒3 = (1, 𝑙3), 𝑒4 =
(1, 𝑙4), 𝑒5 = (2, 𝑙5), 𝑒6 = (2, 𝑙6), 𝑒7 = (2, 𝑙7), 𝑒8 = (2, 𝑙8).

The call to GoodLock produces a single deadlock candidate, namely the following cycle,

which in the for-each loop will be called c:

𝑐 = {(𝑇ℎ𝑟𝑒𝑎𝑑 1, (𝑙2, 𝐴), (𝑙4, 𝐵)), ((𝑇ℎ𝑟𝑒𝑎𝑑 2, (𝑙6, 𝐵), (𝑙8, 𝐴))}
Now we do an initial run of the program. Suppose that the initial random input, which

becomes the value of the shared variable y, is 0. We get

𝑠 = 𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7

Now we run the first iteration of the while-loop. First we run execute which matches the

schedule and finds out that with input 𝑦 = 5, it can add the event 𝑒4. So we have:

𝑡𝑟𝑎𝑐𝑒 = 𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒4

The call to permute on trace gives:

𝑠 = 𝑒5, 𝑒6, 𝑒7, 𝑒4, 𝑒1, 𝑒2, 𝑒3, 𝑒4

Now we run the second iteration of the while-loop. The call to execute matches the schedule

with input y=5 so we have:

𝑡𝑟𝑎𝑐𝑒 = 𝑒5, 𝑒6, 𝑒7, , 𝑒1, 𝑒2, 𝑒3, 𝑒4

The call to permute on trace gives:

𝑠 = 𝑒5, 𝑒6, 𝑒1, 𝑒2, 𝑒7, 𝑒3, 𝑒4

Now we run the third iteration of while-loop. The call to execute matches the schedule with

input y=5, adds the event 𝑒8 , and enters a deadlock. The schedule is:

𝑡𝑟𝑎𝑐𝑒 = 𝑒5, 𝑒6, 𝑒1, 𝑒2, 𝑒7, 𝑒3, 𝑒4, 𝑒8

Our key innovation is the permute function, which we explain next.

5.2. The Design of Permute Function

Our permute function combines ideas from static analysis and dynamic analysis.

A, B are shared variables that contain objects

x , y are shared variables that contain integers

y has an initial value received from user input

Thread 1: Thread 2:
𝑙1: 𝑥 = 6 𝑙5: 𝑥 = 6
𝑙2: 𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐴){ 𝑙6: 𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){
𝑙3: 𝑖𝑓(𝑦 > 4) 𝑙7:: 𝑖𝑓(𝑦2 + 5 < 𝑥2)
𝑙4: 𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){ 𝑙8: 𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){
 } }
 } }

44

5.2.1. Background: Dynamic Data Race Detection

Many researchers have studied how to extract information from execution traces. A pinnacle

of this area is the paper by Serbanuta, Chen, and Rosu [109] that presented a sound and maximal

model of execution traces: it subsumes all other sound models that rely solely on information

from an execution trace. They also showed how to use the model to do dynamic race detection.

Their race detector works in two steps: first run the program to get a trace, then find an

executable permutation of the trace that leads to a race. Their model helps guarantee that the

chosen permutation is executable.

As shown later by Said, Wang, Yang, and Sakallah [58], one can phrase the problem to find

an executable permutation of a trace as a constraint-solving problem, and one can use an SMT-

solver to produce that permutation. In essence, Said et al. presented a permute function that

works well for race detection. Eslamimehr and Palsberg [31], combined Said et al.'s permute

function with concolic execution and thereby obtained an efficient and useful dynamic race

detector. What we need now is a permute function that works well for deadlock detection.

5.2.2. Static Characterization of Potential Deadlocks

Deshmukh, Emerson, and Sankaranarayanan [95] presented a static analysis of library code

that identifies potential deadlocks. Their analysis delivers a library interface that describes how

to call library functions with deadlock-safe alias relationships among library objects. In outline,

their approach has two steps.

First, from the text of a library, their static analysis builds a lock-order graph and a

representation of alias information. The lock-order graph describes the order in which the code

acquires locks. For example, for the statement

𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐴){𝑠𝑦𝑛𝑐ℎ𝑛𝑜𝑟𝑖𝑧𝑒𝑑(𝐵){… }}
the lock-order graph contains an edge from a node “synchronized(A)” to a node

“synchronized(B)”.

Second, from the lock-order graph and the alias information, they derive constraints and

show that the constraints are solvable if and only if the lock-order graph is acyclic. In other

words, the constraints are solvable if and only the library code cannot deadlock.

They use an SMT-solver to solve the constraints. We can embed their characterization of

deadlocks into a permute function.

5.2.3. A Memory-les Permute Function for Deadlock

We want a permute function that works well for deadlock detection. We now describe a

baseline version of such a function that we call the memory-less permute function. Our memory-

less permute function leads to a deadlock detector that finds 121 deadlocks in our benchmarks,

which is already better than the previous dynamic techniques with which we compare. In the

following subsection, we present an enhanced permute function that leads us to find an

additional 25 deadlocks.

Our memory-less permute function combines Deshmukh et al.'s static analysis of deadlocks

[95] with aspects of Said et al.'s permute function [58] and a constraint that encodes a deadlock

pattern for a deadlock candidate. Let us now explain the key observation that makes the

combination work.

Said et al. generates a constraint that at the top level has two conjuncts: 1) a constraint that

guarantees that the permutation of a trace will be sequentially consistent, and 2) a constraint that

represents a data race. We replace (2) with a representation of deadlock candidate; let us now

take a closer look at (1). The constraint about sequential consistency has three conjuncts that

45

represent that the permuted trace must: 1.1) preserve the happens-before relation for each thread,

1.2) satisfy write-read consistency, and 1.3) satisfy synchronization consistency. Write-read

consistency means that a read event must read the value written by the most recent write event to

that location, and synchronization consistency means that the permuted trace is consistent with

the semantics of the synchronization events. The bulk of Said et al's paper [58] describes how to

define (1.1), (1.2), and (1.3). We won't list the constraints here and instead we refer the reader to

Said et al's paper [58] for details.

Our observation is that we can use (1.1) and (1.2), and then replace (1.3) with the Deshmukh

et al.'s lock-order constraints. Intuitively, we replace dynamic information about synchronization

and lock order from a single trace with static lock-order information about the entire program.

The whole-program view of lock order makes our permute function efficient and powerful.

Finally, let us explain how we represent a deadlock candidate. First we need to introduce the

notation used in the constraints that we have otherwise omitted. Suppose we have a trace 𝑡 =<
𝑒1, … , 𝑒𝑛 >. The constraints use n position variables 𝑜1, … , 𝑜𝑛. The idea is that the value of 𝑜1 is

the position of 𝑒1 in the permuted trace. A solution to the constraints is an injective function

𝑆 = {𝑜1, … , 𝑜𝑛} → {1, … , 𝑛}
Now let us explain how we represent the following deadlock candidate from Section 5.2.7:

𝑐 = {(𝑇ℎ𝑟𝑒𝑎𝑑 1, (𝑙2, 𝐴), (𝑙4, 𝐵)), ((𝑇ℎ𝑟𝑒𝑎𝑑 2, (𝑙6, 𝐵), (𝑙8, 𝐴))}

Let us define 𝑒2 = (𝑇ℎ𝑟𝑒𝑎𝑑 1, 𝑙2), 𝑒4 = (𝑇ℎ𝑟𝑒𝑎𝑑 1, 𝑙4), 𝑒6 = (𝑇ℎ𝑟𝑒𝑎𝑑 2, 𝑙6), 𝑒8 =
(𝑇ℎ𝑟𝑒𝑎𝑑 2, 𝑙8) . We present c with the constraints

(𝑜2 < 𝑜4) ∧ (𝑜6 < 𝑜8)
Where < is the happens-before relation. This representation generalizes in straightforward

manner to other deadlock candidates.

The grand total is a constraint that consists of the constraints (1.1) and (1.2) from Said et al.,

all Deshmukh et al.'s constraints, and a representation of a deadlock candidate. This constraint, if

solvable, represents a permuted trace. If the input trace contains all the events embodied in the

deadlock candidate, and permuted trace is executable, then the execution leads to the deadlock.

We use an SMT-solver to solve the constraint, and, as explained earlier, right after the call to

permute, we run execute on the permuted trace to find out whether it is executable.

5.2.4. An Enhanced Permute Function for Deadlock

The full version of our permute function has “memory” and takes advantage of the schedules

that have been submitted in all previous calls. The idea is to use the schedules that have been

submitted earlier to relax the happens-before relation. We do the relaxation by taking the union

of the happens-before relations from all those schedules. The result is a constraint system that is

more likely to be satisfiable and that leads us to find 25 more deadlocks in our benchmarks.

One final enhancement of our \permute function is based on partial order reduction. The

issue is that permute by chance may produce a permuted trace that is semantically equivalent

with the input trace and therefore must fail to lead to the deadlock candidate. We use Flanagan

and Godefroid's approach [37] to partial order reduction to avoid such a situation.

Our implementation uses Flanagan and Godefroid's approach as a checker that determines

whether an input trace and the permuted trace are equivalent. In case the input trace and the

permuted trace are equivalent, we repeatedly ask permute for a different output until we get one

we want.

46

5.2.5. Example

Let us return to the example from Section 2.7. Here we will focus entirely on the call to

permute in the first iteration of the while-loop. That call is permute(trace, c) where

𝑡𝑟𝑎𝑐𝑒 = 𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒4

and c is the deadlock candidate listed above. Here are the constraints used by the permute

function. First we list the constraints from Said et al. that we labeled (1.1), namely the constraints

that preserve the happens-before relation for each thread:

𝑒1 < 𝑒2 ∧ 𝑒2 < 𝑒3 ∧ 𝑒3 < 𝑒4 ∧ 𝑒5 < 𝑒6 ∧ 𝑒6 < 𝑒7
Next we list the constraints from Said et al. that we labeled (1.2), namely the constraints that

ensure write-read consistency:

𝑒5 < 𝑒7
Next we list Deshmukh et al.'s constraints for lock order:

𝑒2 < 𝑒4 ∧ 𝑒6 < 𝑒8
Let us assume that the program has no aliasing; then we have no alias constraints. Finally, we

have a constraint that encodes the deadlock candidate:

𝑒2 < 𝑒8 ∧ 𝑒6 < 𝑒4
One possible solution is:

𝑠 = 𝑒5, 𝑒6, 𝑒7, , 𝑒1, 𝑒2, 𝑒3, 𝑒4

Which ignores the constraints that involve 𝑒8because 𝑒8doesn't occur in trace. So, we can

return s as the result of the call to permute in the first iteration of the while-loop.

5.3. Experimental Results
We implemented GoodLock as an extension of Java PathFinder [29]. We use the Lime

concolic execution engine; Lime is open source, http://www.tcs.hut.fi/Software/lime. In our

implementation, events are at the Java bytecode level; we use Soot [102] to instrument

bytecodes. We ran all our experiments on a Linux CentOs machine with two 2.4 GHz Xeon quad

core processors and 32 GB RAM.

5.3.1. Benchmarks

Figure 5.3 lists our 22 benchmarks which we have collected from six sources:

 From ETH Zurich [90]: Sor, TSP, Hedc, Elevator.

 From java.util, Oracle's JDK 1.4.2: ArrayList, TreeSet, HashSet, Vector.

 From Java Grande, [JDK1.4.2]: RayTracer, MolDyn, MonteCarlo.

 From the Apache Software Foundation [Derby]: Derby.

 From European Organization for Nuclear Research (CERN) [Colt]: Colt.

 From DaCapo [106]: Avrora, Tomcat, Batic, Eclipse, FOP, H2, PMD, Sunflow,

Xalan.

The sizes of the benchmarks vary widely: we have 2 huge (1M+ LOC), 10 large (20K--1M

LOC), 8 medium (1K--8K LOC), and 2 small (less than 1K LOC) benchmarks.

Figure 5.3 also lists the high watermark of how many threads each benchmark runs, and the

input size in bytes for each benchmark.

5.3.2. Deadlock Detectors

We compare ConLock with one static deadlock detector, namely Chord [23], one hybrid

deadlock detector that we call GoodLock [29], and four dynamic deadlock detectors, namely

DeadlockFuzzer [17], IBM Contest [25], Jcarder [27], and Java HotSpot [28]. Additionally we

compare with a combined dynamic technique that we call DIJJ.

http://www.tcs.hut.fi/Software/lime

47

Chord is a static technique, and by design it may report false positives; its main objective is

to report all real deadlocks (or as many as possible).

Goodlock monitors the execution of a multi-threaded program, computes a lock dependency

relation, and uses the transitive closure of this relation to suggest potential deadlocks.

DeadlockFuzzer, IBM Contest, Jcarder, Java HotSpot, and ConLock are all dynamic

techniques that report only real deadlocks.

Deadlockfuzzer begins with a set of deadlock candidates produced by a variant of Goodlock.

For each deadlock candidate, DeadlockFuzzer executes the program with a random scheduler

that is biased towards executing the events in the deadlock candidate. The idea to use a random

scheduler for Java can be traced back to Stoller [79].

IBM Contest uses heuristics to perturbate the schedule and thereby hopefully reach a

deadlock. One of the techniques is to insert time-outs.

Jcarder instruments Java byte code dynamically and looks for cycles in the graph of acquired

locks. The instrumented code records information about the locks at run time. A later, separate

phase of Jcarder post-processes the recorded information to search for deadlocks.

The Java HotSpot Virtual Machine from Oracle can track the use of locks and detect cyclic

lock dependences. The utility detects Java-platform-level deadlocks, including locking done

from the Java Native Interface (JNI), the Java Virtual Machine Profiler Interface (JVMPI), and

Java Virtual Machine Debug Interface (JVMDI).

We use DIJJ to stand for the union of DeadlockFuzzer, IBM ConTest, Jcarder, and Java

HotSpot in following sense. We can implement DIJJ as a tool that for a given benchmark starts

runs of DeadlockFuzzer, IBM ConTest, Jcarder, and Java HotSpot in four separate threads, and if

any one of them reports a deadlock, then DIJJ reports a deadlock.

Name LOC # threads input size

(bytes)

Brief description

Sor 1270 5 404 A successive order-relaxation benchmark

TSP 713 10 58 Traveling Salesman Problem solver

Hedc 30K 10 220 A web-crawler application kernel

Elevator 2840 5 60 A real-time discrete event simulator

ArrayList 5866 26 116 ArrayList from java.util
TreeSet 7532 21 64 TreeSet from java.util
HashSet 7086 21 288 HashSet from java.util
Vector 709 10 128 Vector from java.util
RayTracer 1942 5 412 Measures the performance of a 3D raytracer

MolDyn 1351 5 240 N-Body code modeling dynamic

MonteCarlo 3619 4 26 A financial simulator, using Monte Carlo techniques to price

products

Derby 1.6M 64 564 Apache RDBMS

Colt 110K 11 804 Open Source Libraries for High Performance Scientific and

Technical Computing

ChordTest 62 11 74 Mini-benchmark; comes with the Chord race detector

Avrora 140K 6 88 AVR microcontroller simulator

Tomcat 535K 16 366 Tomcat Apache web application server

Batic 354K 5 206 Produces a number of Scalable Vector Graphics (SVG) images

based on Apache Batic

Eclipse 1.2M 16 34 Non-GUI Eclipse IDE

FOP 21K 8 658 XSL-FO to PDF converter

H2 20K 16 116 Executes a JDBCbench-like in-memory benchmark

PMD 81K 4 24 Java Static Analyzer

Sunflow 108K 16 616 Tool for rendering image with raytracer

Xalan 355K 9 404 XML to HTML transformer

48

TOTAL 4587K 58

Figure 05.0.3 Benchmarks.

5.3.3. How we handle Reflection

Many of the benchmarks use reflection, and IBM Contest and Java HotSpot handle reflection

well. We enable the other deadlock detectors to handle reflection with the help of the tool chain

TamiFlex [64]. The core of the problem is that reflection is at odds with static analysis and

bytecode instrumentation: reflection may make static analysis unsound and may load

uninstrumented classes. TamiFlex solves these problems in a manner that is sound with respect

to a set of recorded program runs. If a later program run deviates from the recorded runs,

TamiFlex issues a warning.

We have combined each of Chord, Goodlock, DeadlockFuzzer, and Jcarder with TamiFlex

and we have run all our experiments without warnings. As a result, all the deadlock detectors all

handle reflection correctly.

5.3.4. Measurements

Figure 5.4 shows, for each benchmark, the number of calls to execute across all deadlock

candidates, and the number of concolic runs across all calls to \execute. Intuitively, the first

number is the number of iterations of the while-loop across all deadlock candidates; each

iteration calls execute once. Each of those calls to execute tends to do a large number of

concolic runs, and the second number is the grand total count of all those concolic runs.

Name # calls to execute # concolic runs

Sor 11 591

TSP 16 387

Hedc 29 10,550

Elevator 18 119

ArrayList 19 613

TreeSet 20 205

HashSet 17 422

Vector 21 175

RayTracer 10 86

MolDyn 9 57

MonteCarlo 30 101

Derby 14 2,349,385

Colt 16 73,129

Avrora 39 6,007,128

Tomcat 661 5,923,744

Batic 41 428,881

Eclipse 726 3,901,827

FOP 15 64,050

H2 24 17,580

PMD 12 99,105

Sunflow 19 41,051

Xalan 414 87,933
Figure 05.0.4 Dynamic counts of ConLock’s search process.

Figure 5.5 shows the numbers of deadlocks found in 22 benchmarks by 7 techniques.

49

Figure 5.6 shows the time each of the runs took in minutes and seconds, and it shows the

geometrical mean for each technique.

Figure 5.7 shows, for each benchmark, the lengths of the 146 schedules that lead to

deadlocks found by ConLock. The 86 schedules highlighted with boldface font lead to deadlocks

found only by ConLock.

5.3.5. Evaluation

We now present our findings based both on the measurements listed above and on additional

analysis of the deadlocks that were found.

Number and length of schedules. We can see in 5.4 that the number of calls to execute is

rather modest: for every benchmark, it is at most twice the number of deadlock candidates. We

can also see in Figure 5.4 that each call to execute does many concolic runs to match a given

schedule. We can see in Figure 5.7 that those schedules can be long; the longest schedules that

found deadlocks have more

than 10,000,000 events. This also shows that the \permute method scales to long schedules.

ConLock versus other Dynamic Techniques. We can see in Figure 5.5that ConLock finds

the most deadlocks (146) of all the dynamic techniques. Among those 146 deadlocks, 86

deadlocks were found only by ConLock and are entirely novel to this study, while 60 were also

found by DIJJ. Dually, 15 deadlocks were found only by DIJJ. In summary, we have that the

combination of DIJJ and ConLock found 161 deadlocks in the 22 benchmarks.
 Static Hybrid Dynamic

benchmarks Chord GoodLock DeadlockFuzzer IBM
ConTest

Jcarder Java
HotSpot

DIJJ ConLock

 total new FGCP

Sor 1 7 0 0 0 0 0 1 1 0
TSP 1 9 0 0 0 0 0 1 1 0
Hedc 24 23 1 0 0 0 1 20 19 1
Elevator 4 13 0 0 0 1 1 5 4 1
ArrayList 9 11 7 6 2 1 7 9 6 3
TreeSet 8 11 7 5 1 3 8 5 0 5
HashSet 11 10 3 1 0 2 5 5 0 5
Vector 3 14 0 1 0 0 1 4 4 0
RayTracer 1 8 0 1 0 0 1 2 1 1
MolDyn 3 6 1 1 1 1 1 1 0 1
MonteCarlo 2 23 0 1 1 1 1 2 1 1
Derby 5 10 2 0 0 0 2 4 3 1
Colt 6 11 0 0 0 0 0 3 3 0
Avrora 78 29 4 2 1 2 4 7 3 4
Tomcat 119 411 9 10 3 4 11 18 10 8
Batic 73 33 5 4 1 3 7 10 3 7
Eclipse 89 389 9 8 4 6 13 23 12 11
FOP 15 11 1 1 0 0 2 4 2 2
H2 25 17 0 1 0 0 1 3 2 1
PMD 20 8 2 2 0 1 3 4 2 2
Sunflow 31 11 1 2 0 2 2 6 4 2
Xalan 42 210 3 4 0 2 4 9 5 4
TOTAL 570 1275 55 50 14 29 75 146 86 60

Figure 05.0.5 The numbers of deadlocks found in 22 benchmarks by 7 techniques.

50

Found only by DIJJ: 15

Found by both: 60

Found only by ConLock: 86

Total: 161

Let us consider the 15 deadlocks that DIJJ found but ConLock missed. Those deadlocks were

in ArrayList (4), TreeSet (3), Vector (1), Derby (1), Tomcat (3), Eclipse (2), PMD (1).

DeadlockFuzzer found eleven of those, and IBM ConTest found the remaining four (and also

four of the eleven found by DeadlockFuzzer).

For example, DeadlockFuzzer found the following deadlock in Tomcat, while ConLock

missed it. The deadlock happens when Tomcat uses OracleDataSourceFactory. The nature of the

deadlock is much like the example in Section 1. If we use the notation of that example, then A is

an object of class java.util.Properties, while B is an object of class java.util.logging.Logger. Two

threads execute synchronized-operations on those objects in the pattern of the example in Section

5.1, hence they may deadlock.

 Static Hybrid Dynamic

benchmarks Chord GoodLock DeadlockFuzzer IBM
ConTest

Jcarder Java
HotSpot

ConLock

Sor 4:23 0:04 0:05 0:07 0:12 0:15 0:39
TSP 8:09 0:02 0:02 0:06 0:17 0:18 0:50
Hedc 20:11 0:04 0:06 0:08 0:19 0:23 0:44
Elevator 5:19 0:06 0:07 0:11 0:09 0:13 0:51
ArrayList 3:10 0:03 0:04 0:05 0:11 0:19 0:28
TreeSet 2:55 0:02 0:02 0:05 0:11 0:22 0:26
HashSet 2:47 0:04 0:05 0:06 0:10 0:14 0:35
Vector 5:31 0:03 0:03 0:07 0:12 0:17 0:19
RayTracer 4:22 0:02 0:03 0:04 0:19 0:09 0:30
MolDyn 5:34 0:05 0:08 0:12 0:24 0:23 0:49
MonteCarlo 4:48 0:05 0:05 0:13 0:15 0:17 1:02
Derby 46:17 0:12 0:18 0:19 0:48 0:55 1:25
Colt 15:58 0:08 0:13 0:14 0:13 0:20 0:31
Avrora 51:36 0:22 0:24 0:22 0:51 1:02 1:16
Tomcat 58:24 0:20 0:23 0:27 0:49 0:54 4:15
Batic 43:03 0:14 0:19 0:20 0:30 0:41 1:07
Eclipse 59:20 0:29 0:30 0:29 0:38 0:49 3:21
FOP 38:00 0:13 0:19 0:33 0:21 0:33 1:43
H2 27:19 0:10 0:14 0:29 0:29 0:40 0:57
PMD 45:05 0:07 0:10 0:08 0:19 0:23 0:53
Sunflow 39:12 0:16 0:18 0:21 0:32 0:52 1:46
Xalan 40:53 0:14 0:19 0:22 0:27 0:55 3:02
geom. mean 17:39 0:06 0:09 0:12 0:20 0:26 0:59

Figure 05.0.6 Timings in minutes and seconds.

We conclude that ConLock finds the most deadlocks, and that DeadlockFuzzer and IBM

ConTest remain worthwhile techniques that each finds deadlocks that the other dynamic

techniques don't find.

51

DIJJ details. The combined dynamic technique DIJJ found 75 deadlocks. Now we analyze

the individual contributions of the four techniques. Our first observation is, intuitively:

Jcarder ⊆ (DeadlockFuzzer⋃IBM ConTest)
In words, if Jcarder finds a deadlock, then DeadlockFuzzer or IBM ConTest (or both) also

finds that deadlock. Our second observation is that if Java HotSpot finds a deadlock, then either

DeadlockFuzzer or IBM ConTest (or both) also finds that deadlock or the deadlock is one

particular deadlock in Elevator. We note that ConLock also finds that particular deadlock in

Elevator.

Chord. Chord is possibly the best current static deadlock detector, yet our experiments

strongly suggest that Chord produces a large number of false positives. Additionally, Chord

missed five real deadlocks, namely one deadlock in each of Elevator, Vector, Raytracer, Batic,

and Xalan. We conclude that accurate static deadlock detection continues to be an open problem.

Timings. The geometrical means of the execution times for each dynamic technique show

that DeadlockFuzzer is the fastest while ConLock is the slowest. The timings for

DeadlockFuzzer and ConLock include the time to execute GoodLock.

Name length

Sor 5705

TSP 6688

Hedc 1009, 11488, 55133, 73956, 104440, 116573, 172832,
178127, 189601, 197893, 207813, 228867, 244167, 249130,
 251800, 269624, 269911, 273123, 275003, 277145

Elevator 3099, 10029, 10753, 12369, 13680

ArrayList 15873, 19012, 19632, 47100, 58881, 80431, 80512, 110532,
111407

TreeSet 303, 22889, 52011, 59217, 77138

HashSet 921, 11630, 23705, 53186, 93122

Vector 2007, 4401, 4788, 6020

RayTracer 3981, 8212

MolDyn 5194

MonteCarlo 4392, 11972

Derby 56430, 786620, 23725394, 34440100

Colt 456313, 720898, 1362838

Avrora 1802, 23520, 65219, 65820, 242749, 550892, 600236

Tomcat 308, 3494, 82442, 83710, 197126, 482100, 871390, 891376,
2973632, 3976200, 6061234, 6535192, 7105988,
 7359792, 7367253, 8001527, 8091572, 8119634

Batic 1997, 5481, 10781, 72918, 114666, 203675, 259178,
908327, 1034685, 1220565

Eclipse 736, 1267, 7723, 31884, 72535, 209734, 475110, 920255,
946701, 989271, 995021, 1537020, 1792033,
 3000287, 6197522, 9801562, 11732081, 11885360,
13870290, 13992176, 15753208, 16001526, 18275300

FOP 23991, 56028, 119886, 130898

H2 19763, 109587, 296001

PMD 678, 2923, 219561, 287023

Sunflow 15873, 67325, 550192, 888237, 991720, 1089212

Xalan 8805, 52249, 116023, 294027, 1080194, 1973260, 2774053,
3207368, 3304152

Figure 05.7 The lengths of the 146 schedules that lead to deadlocks found by ConLock. Bold font indicates new.

52

Rare deadlocks. Burckhardt, Kothari, Musuvathi, and Nagarakatte [65] characterized the

depth of a bug as the minimum number of scheduling constraints required to find that bug. In the

spirit of that idea, we will say that a deadlock is rare if it occurs after more than a million steps

of computation. Let us consider whether ConLock finds any rare deadlocks. Figure 5.7 lists the

lengths of the 146 schedules that lead to deadlocks found by ConLock. We can groups those

lengths as follows:
lengths #

102 − 103 5
103 − 104 20

104 − 105 39

105 − 106 49
106 − 107 24

107 − 108 9

The table shows that many of those schedules are long, hence the deadlocks are rare.

Specifically, 33 deadlocks were found with schedules that have between 1 million and 34 million

events, which suggests that they are rare and hard-to-find deadlocks.

We note that for each of seven benchmarks (Derby, Colt, Tomcat, Batic, Eclipse, Sunflow,

Xalan), at least one real deadlock happens with a schedule that has more than a million events.

In Figure 5.7 the numbers in bold font are for schedules that lead to deadlocks found only by

ConLock. Among the rare 33 deadlocks, 28 were found only by ConLock.

We conclude that ConLock does a much better job than previous work to find rare deadlocks.

5.4. Limitations
Our approach has four main limitations.

First, our current implementation of ConLock supports only synchronized methods and

statements, and has no support for other synchronization primitives such as wait, notify, and

notify all. We leave support for such primitives to future work.

Second, our approach relies on GoodLock to produce deadlock candidates. In case

GoodLock misses a deadlock, so will ConLock.

Third, our approach relies on a constraint solver both in permute and execute. The form of

constraints that we use in permute has a decidable satisfiability problem, while the form of

constraints that we use in execute are derived from expressions in the program text and may be

undecidable. So for constraint solving in execute, we are at the mercy of expressions in the

program text and the power of our chosen constraint solver.

Fourth, our approach has no support for native code.

5.5. Related Work
In Section 4, we discussed six techniques for deadlock detection, namely Chord [24],

GoodLock [29], DeadlockFuzzer [17], IBM Contest [25], Jcarder [27], and Java HotSpot [28]

and we did a large-scale experimental comparison of all six and ConLock. The goal of this

section is to highlight some other notable techniques and tools in the area of deadlock detection

for unannotated programs.

Run-time Monitoring Systems. Arnold and M. Vechev and E. Yahav [70] presented the

QVM run-time environment that continuously monitors an execution and potentially detects

defects, including deadlocks. Huang, Zhang, and Dolby [93] presented an efficient approach to

53

log execution paths and then do off-line computation in order to reproduce concurrency bugs

such as deadlocks. Another idea is to let the operating system detect deadlocks [108]. All three

approaches monitor executions but do nothing to drive an execution towards a deadlock.

Model checking. Demartini et al. [85] presented a translation from Java source code to

Promela that enables deadlock detection via the SPIN model checker [92]. The translator

predates Java 6 and would require significant extension to handle our benchmarks.

Chaki et al. [103] and Godefroid [89] presented model checkers for C that can find

deadlocks. We leave to future work to try those approaches for Java.

Static deadlock detectors. Static deadlock detectors [10] have a goal that is dual to our

objective to find real deadlocks: they attempt to find all deadlocks and possibly some false

positives. Chord remains one of the best among the scalable static deadlock detectors for Java to

date, hence it was our choice for experimental comparison in this study.

54

Conclusion

To find the maximum stack size in the context of event-driven programs, our results show

that the state-of-the-art static analysis produces excellent estimates of maximum stack size. Our

testing approach DTall can almost match the results of the static analysis. Additionally, our

approach VICE comes close and is two orders of magnitude faster than DTall. The keys to

produce challenging event sequences are to use directed testing to get event values and to use our

SA-Tree technique to get event names. The SA-Tree technique is an example of how static

analysis can help testing be more efficient.

Our technique is useful for other languages than Virgil. The availability of a source-level

interpreter greatly facilitates the collection of constraints.

VICE is a new approach to practical stress testing of event-driven software, even in situations

when no nontrivial sound static analysis exists. VICE quickly generates a small number of

challenging event sequences that drive the execution into “dark corners” of the software. Such

event sequences may reveal faults or help confirm that the software works correctly even for

corner cases. We leave to future work to investigate the bug-finding capabilities of DTall and

VICE.

In the context of concurrent Racageddon and ConLock implement a new technique that we

call directed scheduling. We have shown how to detect data races and deadlocks by a

combination of concolic execution and a novel approach to schedule permutation. Our

experiments show that directed scheduling is efficient and useful.

For a large benchmark suite, our tool Racageddon found 72 real races that were missed by

earlier techniques. Among those 72 races, more than a third namely 31 races were found with

schedules that have between 1 million and 108 million events, which suggests that they are rare

and hard-to-find races. Our experiments also show that a combination of Goldilocks, Calfuzzer,

Pacer, and Racageddon finds a total of real 376 races in our benchmarks. As far as we know, this

is the most comprehensive list of real races for those benchmarks that is reported in the literature.

Our experiments validate Hybrid [12] as an excellent choice for producing race candidates.

Across our benchmark suite, we found that Hybrid produces at most 41% false positives. .For a

large benchmark suite, our tool ConLock found 86 deadlocks that were missed by earlier

techniques. Among those 86 deadlocks, about a third namely 28 deadlocks were found with

schedules that have more than 1 million events, which suggests that they are rare and hard-to-

find deadlocks. Our technique can find rare deadlocks because the combination of concolic

execution and schedule permutation helps drive an execution towards a deadlock candidate. Our

experiments show that a combination of DeadlockFuzzer, IBM ConTest, and ConLock finds a

total of real 161 deadlocks in our benchmarks.

Our design of Racageddon and ConLock and our experiments have shown that a combination

of techniques is currently the best path to successful race detection. As far as we know, this is the

most comprehensive list of real deadlocks for those benchmarks that is reported in the literature

55

References

[1] J. Gilson., "A New Approach to Engineering Tolerances.," The Machinery Publishing C. Ltd., 1951.

[2] K. Brunnstein, "About the “Altona railway software glitch"," The Risks Digest, 1995.

[3] D. M. R. M. T. Z. T. A. a. J. P. Krishnendu Chatterjee, "Stack size analysis of interrupt driven

software," in Special issue dedicated to Paris Kanellakis. Preliminary version in Proceedings of

SAS’03, International Static Analysis Symposium, Springer-Verlag (LNCS 2694), San Diego, June

2003.

[4] J. R. a. A. Reid, "HOIST: a system for automatically deriving static analyzers for embedded

systems," ACM SIGARCH Computer Architecture News, 2004.

[5] a. P. M. R. Alur, "Visibility pushdown languages," in Proceedings of the thirty-sixth Annual ACM

Symposium on Theory of Computing, 2004.

[6] N. D. a. J. P. Dennis Brylow, "Static checking of interrupt-driven software," Proceedings of ICSE,

23rd International Conference on Software Engineering, May 2001.

[7] J. Regehr, "Random testing of interrupt-driven software," in ACM International Conference On

Embedded Software, 2005.

[8] M. D. H. B. P. M. a. R. H. B. Sarita V. Adve, "Detecting data races on weak memory systems," in

ISCA, 1991.

[9] L. Lamport, "How to make a multiprocessor computer that correctly executes multiprocess

programs," IEEE Trans. Comput, 1979.

[10] C. F. a. S. N. F. M. Abadi, "Types for safe locking:Static race detection for Java," ACM Transactions

on Programming Languages and Systems, 2006.

[11] S. K. a. D. M. C. Boyapati, "Korat: Automated testing based on Java predicates," in Proc. Of

International Symposium on, 2002.

[12] R. O. a. J.-D. Choi, "Hybrid dynamic data race detection," in PPOPP, 2003.

[13] Oracle, "The Java tutorials; deadlock,"

http://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html.

[14] R. L. a. M. R. C. Boyapati, "Ownership types for safe programming:Preventing data races and

deadlocks," in OOPSLA, ACM Conference on Object-Oriented Programming, Systems, Languages,

and Applications, 2002.

[15] D. E. a. K.Ashcraft, "RacerX: Effective, static detection of race conditions and deadlocks," in SOSP,

Nineteenth ACM symposium on Operating Systems Principles, 2003.

56

[16] K. R. M. L. M. L. G. N. J. B. S. a. R. S. Cormac Flanagan, "Extended static checking for Java," in In

Proceedings of PLDI’02, ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2002.

[17] C. S. P. K. S. a. M. N. P. Joshi, "A randomized dynamic program analysis technique for detecting

real deadlocks," in Proceedings of PLDI’09, ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2009.

[18] C. H. J. D. M. V. F. T. a. J. V. Daniel Marino, "Detecting deadlock in programs with datacentric

synchronization," in ICSE’13, International Conference on Software Engineering, 2013.

[19] A. G. a. W. S. Elissa Newman, "Annotation-based diagrams for shared-data concurrency," in

Workshop on Concurrency Issues in UML, 2001.

[20] H. B. S. Z. M. a. C. D. Cesar Sanchez, "Efficient distributed deadlock avoidance with liveness

guarantees," in Proceedings of EMSOFT’06, International Conference on Embedded Software,

2006.

[21] Y. Z. a. Y. P. Lin Tan, "acomment: Mining annotations from comments and code to detect interrupt

related concurrency bugs," in In ICSE’11, International Conference on Software Engineering, 2011.

[22] T. K. M. K. S. L. S. M. Yin Wang, "Gadara: Dynamic deadlock avoidance for multithreaded

programs," in n Proceedings of OSDI’08, 8th USENIX Symposium on Operating Systems Design and

Implementation, 2008.

[23] C.-S. P. a. D. G. M. Naik, "Effective static deadlock detection," in In ICSE’09, Eighteenth

International Conference on Software Engineering, 2009.

[24] A. A. a. J. W. Mayur Naik, "Effective static race detection for java," in Proceedings of PLDI’06, ACM

SIGPLAN Conference on Programming Language Design and Implementation, 2006.

[25] E. F. E. G. Y. N. G. R. S. U. Orit Edelstein, "Framework for testing multi-threaded Java programs,"

Concurrency and Computation: Practice and Experience, 2003.

[26] Y. N.-B. a. S. U. E. Farchi, "cross-run lock discipline checker for java," in PADTAD, 2005.

[27] "ENEA. Jcarder. http://www.jcarder.org.".

[28] Orale, "Java hotspot vm options,"

http://www.oracle.com/echnetwork/java/javase/tech/vmoptions-jsp-140102.html.

[29] K. H. a. T. Pressburger, "Model checking Java programs using Java pathfinder," Software Tools for

Technology Transfer, 2000.

[30] J. P. Mahdi Eslamimehr, "Testing versus static analysis of maximum stack size," in COMPSAC, 2013.

[31] Mahdi Eslamimehr and Jens Palsberg, "Race directed scheduling of concurrent programs," in

Proceedings of PPOPP’14, ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel

57

Programming, 2014.

[32] R. D. a. T. G.Venolia, "Software Development at Microsoft Observedd," Microsoft Research TR,

2005.

[33] V. J. D. D. a. D. M. Brett Daniel, "ReAssert: Suggesting Repairs for Broken Unit Tests," in Conference

on Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM International , 2009.

[34] G. J. Myers., The Art of Software Testing, Wiley, 1979.

[35] P. McMinn, "Search‐based software test data generation: a survey," Software Testing, Verification

and Reliability, 2004.

[36] E. L. a. T. Austin, "High Coverage Detection of Input-Related Security Faults," in 12th Annual

USENIX Security Symposium (SEC-2003), 2003.

[37] N. K. Koushik Sen Patrice Godefroid, "Dart: directed automated random testing," in Proceedings of

PLDI’05, ACM SIGPLAN Conference on Programming Language Design and Implementation, 2005.

[38] G. A. a. K. Sen, "Cute and jcute: Concolic unit testing and explicit path model-checking tools," in

Proc. 18th International Conference on Computer Aided Verification,, 2006.

[39] K. J. Burnim, "Heuristics for scalable dynamic test generation," UC Berkeley tech report, 2008.

[40] R. M. a. R.-G. Xu, "Directed test generation using symbolic grammars," in Proceedings of the

twenty-second IEEE/ACM International Conference on Automated Software Engineering, 2007.

[41] T. L. O. S. K. K. H. a. I. N. Kari K•ahk•onen, "LCT: An Open Source Concolic Testing Tool for Java

Programs," in BYTECODE, 2011.

[42] a. A. B. R. Brummayer, in Proceedings of the 15th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS 2009), 2009.

[43] W. V. Corina S. Pasareanu, "A survey of new trends in symbolic execution for software testing and

analysis," STTT 11.

[44] S. B. J. S. W. Tanmoy Sarkar, "ConSMutate: SQL Mutants for Guiding Concolic Testing of Database

Applications," in 14th International Conference on Formal Engineering Methods, ICFEM , 2012.

[45] Y. K. Y. J. Moonzoo Kim, "Industrial Application of Concolic Testing on Embedded Software: Case

Studies," in IEEE Fifth International Conference on Software Testing, Verification and Validation,

2012.

[46] P. J. G. k. J. a. M. D. E. A. Kiezun, "Automatic creating of SQL injection and Cross-Site scripting

attacks," in International Conference on Software Engineering, 2009.

[47] O. L. M. h. A. C. W. S. K. a. K. W. R. Sasnauskas, "KleeNet: Discovering insidious interaction bugs in

wireless sensor networks before deployment," in ACM/IEEE International Conference on

58

Information Processing in Sensor Networks, 2010.

[48] V. K. a. G. C. V. Chipounov, "S2E: A platform for in-vivo multi-path analysis of software systems," in

ASPLOS, 2011.

[49] "Atmel. Spi deriver manufacturer datasheet. http://www.atmel.com/dyn/resources/prod

documents/doc2582.pdf," September 2010.

[50] K. Sen, "Concolic testing," in Proceedings of the twenty-second IEEE/ACM International Conference

on Automated Software Engineering, 2007.

[51] A. J. C. T. A. H. R. J. a. R. D. Beyer, "Generating test from counterexamples," in Proceedings of ICSE,

2004.

[52] a. N. N. RE Fikes, "Strips: A new approach to the application of theorem proving to problem

solving," Artificial Intelligence, p. 2(3–4):189–208, Winter 1971.

[53] C. S. P. a. W. V. S. Khurshid, "Generalized symbolicexecution for model checking and testing," in

Proc. of TACAS, 2003.

[54] B. L. Titzer, "Virgil: Objects on the head of a pin," in Proceedings of OOPSLA’06, ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages and Applications, 2006.

[55] D. K. L. a. J. P. Ben L. Titzer, "Avrora: Scalable sensor etwork simulation with precise timing," in

Proceedings of IPSN’05,Fourth International Conference on Information Processing in Sensor

Networks, April 2005.

[56] "CHOCO. http://www.emn.fr/z-info/choco-solver/choco-documentation.," September 20110.

[57] F. Laburthe, "Choco: implementing a CP kernel," in Proceedingsof CP00 Post Conference Workshop

on Techniques for Implementing Constraint programming Systems (TRICS), September 2000.

[58] C. W. Z. Y. a. K. A. S. Mahmoud Said, "Generating data race witnesses by an smt-based analysis,"

NASA Formal Methods, 2011.

[59] P. T. V. G. a. D. E. Cristian Cadar, "EXE:A system for automatically generating inputs of death using

symbolic execution," in Proceedings of 13th ACM Conference on Computer and Communications

Security, 2006.

[60] K. Sen, "Effective random testing of concurrent programs," in IEEE/ACM nternational Conference

on Automated Software Engineering, 2007.

[61] C. F. a. S. N.Freund, "Fasttrack: Efficient and precise dynamic race detection," in Proceedings of

PLDI’09, ACM SIGPLAN Conference on Programming Language Design and Implementation, 2009.

[62] S. Q. a. S. T. Tayfun Elmas, "Goldilocks: Efficiently computing the happens-before relation using

locksets," in FATES/RV, 2006.

59

[63] K. E. C. a. K. S. M. Michael D. Bond, "Pacer: Proportional detection of data races," in Proceedings of

PLDI’10, ACM SIGPLAN Conference on Programming Language Design and Implementation, 2010.

[64] A. S. J. S. H. O. a. M. M. Eric Bodden, "Taming reflection: Aiding static analysis in the presence of

reflection and custom class loaders," in ICSE, 33rd International Conference on Software

Engineering, 2011.

[65] P. K. M. M. a. S. N. Sebastian Burckhardt, "A randomized scheduler with probabilistic guarantees

of finding concurrency bugs," in ASPLOS, International Conference on Architectural Support for

Programming Languages and Operating Systems, 2010.

[66] M. M. a. S. N. Daniel Marino, "Literace: Effective sampling for lightweight data-race detection," in

Proceedings of PLDI’09, ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2009.

[67] S. M. B. a. K. S. M. M. Jump, "Dynamic object sampling for pretenuring," in ICMM, ACM

International Symposium on Memory Management, 2004.

[68] M. B. G. N. P. S. a. T. A. Stefan Savage, "Eraser: A dynamic data race detector for multithreaded

programs," Transactions on Computer Systems, 1997.

[69] B. E. B. Z. M. P. P. a. J. T. P. Sack, "Accurate and efficient filtering for the Intel thread checker race

detector," in SAID 1st workshop on Architectural and System Support for Improving Software

Dependability, 2006.

[70] M. V. a. E. Y. M. Arnold, "Qvm: An efficient runtime for detecting defects in deployed systems," in

OOPSLA, ACM Conference on Object-Oriented Programming, Systems, Languages, and

Applications, 2008.

[71] C. v. Praun, "Detecting Synchronization Defects in Multi-Threaded Object-Oriented Programs,"

2004.

[72] T. R. a. W. C. Y. Yu, "RaceTrack: Efficient detection of data race conditions via adaptive tracking," in

SOSP, ACM Symposium on Operating Systems Principles, 2005.

[73] E. P. a. A. Schuster, "MultiRace: Efficient on-the-fly data race detection in multithreaded C++

programs," Concurrency and Computation: Practice and Experience, 2007.

[74] N. Sterling, "WARLOCK – a static data race analysis tool," in USENIX Winter Technical Conference,

1993.

[75] J. S. F. a. M. H. Polyvios Pratikakis, "LockSmith: Context sensitive correlation analysis for race

detection," in PLDI, ACM Conference on Programming Language Design and Implementation,

2006.

[76] R. J. a. S. L. J. W. Voung, "RELAY: Static race detection on millions of lines of code," in In European

Software Engineering Conference and ACM SIGSOFT International Symposium on Foundations of

60

Software Engineering, 2007.

[77] R. J. a. R. M. Thomas A. Henzinger, "Race checking by context inference," in Proceedings of

PLDI’04, ACM SIGPLAN Conference on Programming Language Design and Implementation, 2004.

[78] S. N. Freund, "Type-based race detection for Java," in PLDI, ACM SIGPLAN 2000 Conference on

Programming language design and implementation, 2000.

[79] R. A. L. W. a. S. D. S. A. Sasturkar, "Automated type-based analysis of data races and atomicity," in

PPoPP, Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel, 2005.

[80] H.-J. B. D. C. a. P. J. Laura Effinger-Dean, "Extended sequential reasoning for data-race-free

programs," in In ACM SIGPLANWorkshop on Memory Systems Performance and Correctness, 2011.

[81] "Atmel. Adc deriver manufacturer datasheet. http://www.atmel.com/dyn/resources/prod

documents/doc8078.pdf," September, 2010.

[82] "Atmel. Usart serial deriver manufacturer datasheet.

http://www.atmel.com/dyn/resources/prod_documents/doc32006.pdf," September 2010.

[83] E. O. f. N. R. (CERN).Colt., "Colt," http://acs.lbl.gov/software/colt/.

[84] C. A. a. A. Biere, "Applying static analysis to large-scale, multithreaded java programs," in

Proceedings of ASWEC’01, 13th Australian Proceedings of ASWEC’01, 13th Australian Software

Engineering Conference, 2001.

[85] R. I. a. R. S. C. Demartini, "A deadlock detection tool for concurrent Java programs," Software –

Practice & Experience, 1999.

[86] W. T. a. M. Ernst, "Static deadlock detection for java libraries," in Proceedings of ECOOP’05,

European Conference on Object-Oriented Programming, 2005.

[87] A. S. Foundation, "Derby," http://db.apache.org/derby.

[88] C. F. a. P. Godefroid, "Dynamic partial-order reduction for model checking software," in

Proceedings of POPL’05,SIGPLAN–SIGACT Symposium on Principles of Programming Languages,

2005.

[89] P. Godefroid, "Model checking for programming languages using Versioft," In Proceedings of

POPL’97, 24th Annual SIGPLAN–SIGACT Symposium on Principles of Programming Languages,

1197.

[90] C. v. P. a. T. R. Gross, "Object race detection," in In OOPSLA, ACM Conference on Object-Oriented

Programming, Systems, Languagesand Applications, 2001.

[91] K. Havelund, "Using runtime analysis to guide model checking of Java programs," Proceedings of

SPIN’00, Model Checking Software,International SPIN Workshop, 2000.

61

[92] G. Holzmann., "The Spin model checker," 1997.

[93] C. Z. a. J. D. Jeff Huang, "CLAP: Recording local executions to reproduce concurrency failures," in

Proceedings of PLDI’13, ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2013.

[94] A. R. a. K. W. John Regehr, "Eliminating stack overoverflow by abstract interpretation," in

Proceedings of EMSOFT’03, Third International Conference on Embedded Software, 2003.

[95] E. A. E. a. S. S. Jyotirmoy Deshmukh, "Symbolic deadlock analysis in concurrent libraries and their

clients," in Proceedings of ASE’09, IEEE International Conference on Automated Software

Engineering, 2009.

[96] S. Masticola, "Static Detection of Deadlocks in Polynomial Time," PhD thesis, Rutgers University,

1993.

[97] Oracle., " JDK, 1.4.2,"

http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/publications.html.

[98] M. N. K. S. a. D. G. P. Joshi, "An effective dynamic analysis for detecting generalized deadlocks," in

ACM FSE’10, Symposium on the Foundations of Software Engineering, 2010.

[99] B. L. T. a. J. Palsberg, "Vertical object layout and compression," in Proceedings of CASES’07,

International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Austria,

September 2007.

[100] D. H. a. W. Pugh, "Finding concurrency bugs in Java," in In Proceedings of the PODC Workshop on

Concurrency and Synchronization in Java Programs, 2004.

[101] L. a. S. D. S. R. Agarwal, "Detecting potential deadlocks with static analysis and runtime

monitoring," in PADTAD, 2005.

[102] E. G. L. H. P. L. P. P. a. V. S. Raja Vall´e-Rai, "Optimizing Java bytecode using the soot framework: Is

it feasible?," in Proceedings of CC’00, International Conference on Compiler Construction. Springer-

Verlag, 2000.

[103] E. C. J. O. N. S. a. N. S. S. Chaki, "Concurrent software verification with states, events, and

deadlocks," Formal Aspects of Computing, 2005.

[104] J. B. a. K. Sen, "Heuristics for scalable dynamic test generation," in Proc. 23rd IEEE/ACM

International Conference on Automated Software Engineering, 2008.

[105] J. B. a. K. Sen., "Heuristics for scalable dynamic test generation," in Proc. 23rd IEEE/ACM

International Conference on Automated Software Engineering, 2008.

[106] R. G. C. H. A. M. K. K. S. M. R. B. A. D. D. F. D. F. S. Z. G. M. H. A. H. M. J. H. L. I. J. E. B. M. Stephen

M. Blackburn, "The DaCapo benchmarks: Java benchmarking development and analysis," in In

62

OOPSLA’06, 21st annual ACM SIGPLAN conference on Object-Oriented Programming Systems,

Languages and Applications, 2006.

[107] S. D. Stoller, "Testing concurrent Java programs using randomized scheduling," in In Proceedings of

RV’02, Workshop on Runtime Verification, 2002.

[108] C. S. E. A. R. L. a. D. J. S. T. Li, "A dynamic deadlock detection mechanism using speculative

execution," in Proceedings of the USENIX Technical Conference, 2005.

[109] F. C. a. G. R. Traian Florin Serbanuta, "Maximal causal models for multithreaded systems.,"

Technical report, University of Illinois at Urbana-Champaign. Available from ideals.illinois.edu..

	Front
	end

