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Epigraph 

 

 

We may regard the present state of the universe as the effect of its past 

and the cause of its future. An intellect which at a certain moment 

would know all forces that set nature in motion, and all positions of 

all items of which nature is composed, if this intellect were also vast 

enough to submit these data to analysis, it would embrace in a single 

formula the movements of the greatest bodies of the universe and those 

of the tiniest atom; for such an intellect nothing would be uncertain 

and the future just like the past would be present before its eyes. 

 

— Pierre Simon Laplace, A Philosophical Essay on Probabilities 
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characteristic spatial and temporal scales of state-of-the-art laser experiments overlap 

increasingly with massive atomistic simulations. SPaSM and LAMMPS molecular 

dynamics codes were employed to simulate atomic systems containing up to one billion 

atoms. The extreme stress states generated by laser-driven shocks persist for incredibly 

short durations (picoseconds to nanoseconds). Over severely reduced time scales, extreme 

stresses activate novel phase transformations and defect mechanisms. An overarching 

theme of the present thesis is the role of limited time and superimposed stresses and strains 

via laser-generated shocks on the resulting deformation mechanisms occurring during the 

passage of the pulse. At the reduced time scales (picoseconds to nanoseconds), novel phase 

transformations and defect mechanisms are activated.  

This dissertation focuses on two representative materials: tantalum, a body-

centered cubic metal; and silicon, a diamond-cubic (covalently bonded) semiconductor. 

Significant structural changes were obtained experimentally and by molecular dynamics. 

In tantalum, the competition between dislocations and twinning is shown to be determined, 

inter alia, by the strain rate. Additionally, an unexpected phase transition to hexagonal at 

large compressive strains and to face-centered cubic at large tensile strains is revealed. The 

strain-rate dependence of spalling is modeled and successfully compared with 

experimental results; the effect of grain boundaries is established. An estimate of the 

ultimate tensile strength of tantalum, obtained by extrapolation of the strain-rate dependent 

spall strength to the Debye frequency of atoms as well as by an evaluation of the equation 

of state, is shown to be 33 GPa. In silicon, we identified supersonic dislocations bursts, 

which have durations of fractions of picoseconds; bulk and shear-induced amorphization; 

and intermediate phase changes to higher-coordinated structures. 
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1. Introduction 

The formation and motion of defects within a regular crystal lattice is fundamental 

to our understanding of intrinsic material strength and ultimate failure.  Failure can arrive 

through diverse means, ranging from gradual accumulation to a sudden avalanche of 

damage and phase change. Covalent and metallic (delocalized covalent) materials often 

deform through the nucleation and flow of dislocations, or crystal line defects. They move 

in response to shear stresses and their motion is governed by the local density of 

dislocations, available slip systems, and strain rate. The formation of mechanical twins may 

occur in order to relieve shear stresses at large strain rates or in the absence of mobile 

dislocations. Local instabilities can lead materials to deform via shear localization resulting 

in the formation of amorphous bands. Likewise, alternate shear instabilities may prompt 

phase transformations. Phase transitions may also be thermodynamically motivated due to 

high pressures, shear stresses, and temperatures involved. Phase transformation kinetics 

may exclude certain transitions from occurring based upon the experimental time scale. 

During extreme tensile loading a material may deform by the physical decohesion of atoms 

leading to void nucleation, growth, and coalescence – a process known as spallation. At 

the far extremes of pressure, temperature, and strain rate these processes are often 

interpolated from experimental pre- and post-mortem recovered specimens. Additionally, 

in situ diagnostics such as  x-ray diffractometry and laser interferometry help us to 

determine the deformation physics [1–4].  

Computer simulation enables in silico evaluations of extreme environments with 

spatial resolution on the scale of individual atoms and temporal resolution faster than the 
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vibrational period of atoms. The result is a virtual atomic laboratory, tracing every particle 

and every interaction in time on a computer. The precise simulation of material defects 

informs our interpretation of experimental results, provides a unique means to evaluate 

strength models, and holds the potential to directly visualize defect mechanisms governing 

the strength of materials. Simulations should not exist in isolation and conclusions must be 

tempered by experimental results. Furthermore, experiments and simulations alike should 

aim to expose and isolate fundamental physics such that it can be condensed into 

representative constitutive models. This iterative cycle, shown below in Figure 1-1, is 

central to effectively leveraging the strengths and weaknesses of simulations, experiments, 

and modeling.   

 

Figure 1-1. Iterative cycle between experiments, simulation, and constitutive modeling.  

1.1. Research Objectives 

The objective of the present investigation was to advance our understanding of the 

extreme response of model diamond-cubic (dc) and body-centered cubic (bcc) crystal 

structures. The overall investigation had two components: an experimental one using laser-

launched short-duration shock pulses, and a computational one, using non-equilibrium 
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molecular dynamics. Its goal was to address the questions below for elemental tantalum 

and silicon: 

 What is the balance and relationship between dislocation slip and twinning 

deformation processes under shock compression? 

o What roles do shock amplitude, grain size, and texture play? 

o What roles do shear instability and phase change play in silicon? 

 What role do phase transformations play? 

o Can kinetic effects be quantified? 

 What transpires to these defects upon unloading? 

o Are slip, twinning, or phase transitions preferentially retained? 

 What role, if any, do these defects and grain boundaries play in spall failure process 

when the sample goes into dynamic tension? 

o What do grain boundary structures in bcc tantalum look like? 

o Why are specific nucleation sites preferred?  

o What makes other boundaries/defects strong or weak? 

 How are dynamic experimental results correlated to local phenomena and measures 

obtained through molecular dynamics? 

o What is the relationship between spall strength and strain rate? 

 What are the mechanisms of void nucleation and growth in dynamic tensile failure?  

Many of these questions will be answered, others merely brushed upon – requiring 

substantial research effort in the future.  

1.2. Motivation 

A deeper understanding of high strain-rate phenomena is critical in many fields of 

physics and materials science ranging from astro/geophysics, to defense applications, to 

inertial confinement fusion [1,5]. Tantalum serves as an important element to study bcc 

deformation phenomena and silicon is ubiquitous throughout modern technology. 

Furthermore, both elements are important electrical components used within laser chamber 

optics and diagnostics.  Such tools are essential to scientific discovery and innovation in 

the regime of high energy density physics. Diffuse laser reflections are not uncommon and 

can damage laser diagnostics and shielding. Replacing diagnostics and shielding is costly 
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both in terms of reducing laser shot frequency and increasing operation costs that ultimately 

determine the economics of energy production.  

In the field of astrophysics, many high-strain-rate phenomena are informed by 

simulations and laser experiments. Simulations of hypervelocity impact of nano-projectiles 

up to 55 nm in diameter were able to show remarkable size effects and a transition between 

plasticity, melting, and evaporation as shown in Figure 1-2 [6].  

 

Figure 1-2. Impact of a 20 nm cluster into a single crystal block. Left, penetration damage and 

splashing can be seen. Right, only defective atoms are shown indicating liquid atoms in red and 

dislocation substructures in blues and yellows. From Anders et al. [6].  

The collision of planetary bodies has also been simulated, testing theoretical explanations 

for the formation of the moon [7].  Figure 1-3 shows a simulation providing support for the 

formation of the moon by accretion. An experiment of this scale is entirely infeasible and, 

thus, simulations provide a necessary and critical tool that allows for scientific inquiry into 

such phenomena.  
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Figure 1-3. The origin of the Earth and its Moon by accretion. From Canup [7].  

Several hydrodynamic instabilities are shown in Figure 1-4. It is remarkable that 

Rayleigh-Taylor hydrodynamic instabilities observed in the pusher-fuel interface 

(Sakagami and Nishihara [8]) and core collapse supernova (Hachisu et al. [9]) show 

striking similarity over vastly different length scales. This illustrates that appropriately 

scaled simulations have the potential to extrapolate far beyond their size and again shows 

that material strength plays a role across vast length scales.  

 

Figure 1-4. Rayleigh-Taylor hydrodynamic instabilities observed in pusher-fuel interface from 

Sakagami and Nishihara [8] and core collapse supernova from Hachisu et al. [9].  
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Figure 1-5. Ultrahigh strength of 50 nm nanocrystal under shock loading. From Bringa et al. [10]. 

Simulations also allow for studies for material systems, such as nanocrystals, that 

are experimentally difficult to manufacture. A simulation of such a nanocrystal is shown 

in Figure 1-5; it is able to illustrate ultra-high strength under shock loading.  

Fundamentally, a key piece to furthering our understanding of materials physics is the 

ability to precisely observe how materials accommodate plastic flow; flow may occur by 

dislocation nucleation and motion, twinning, phase transformation, or atomic decohesion 

and will be strongly correlated to stress, strain rate, temperature, and the intrinsic bonding 

strength of these materials.  

  



 

 

7 

 

2. Background 

In order to comprehend dynamic phenomena, it is essential to understand wave 

propagation. Figure 2-1 displays a relevant description of general events that occur in shock 

compression and tensile release. It is appropriate to begin with compression and here high 

strain-rate experimental methods such as laser-driven shock waves are detailed. 

 

Figure 2-1. Time-dependent material response across varying length scales. Compression shown in 

red and tension shown in blue. Adapted from Asay [11].  

Subsequently, an examination is conducted of release phenomena occurring by 

reflected tensile waves that follow compressive waves impacting a free surface or interface. 

Third, primary defects, dislocations and grain boundaries, associated with dynamic 

deformation in both compression and release are examined. Throughout each section of 
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this chapter, the role of defects as well as phase transitions under dynamic conditions are 

highlighted. Each section attempts to levy computational and physical experiments to 

reinforce mutual context and conclusions. Phenomena specific to tantalum and silicon are 

emphasized throughout. The sentiment that as “defects are always present in real metals, 

more effort should be put into studying effects of defects” is continually reiterated [12]. 

2.1. Compression 

It is appropriate to begin a discussion of dynamic phenomena with shock 

compression as, at the very least, it serves as a precursor to several modes of damage 

mentioned from here on out. When the dominant effect is shock-wave pressure, such as 

observed in one-dimensional stress or strain states (experiments such as split Hopkinson 

pressure bar or laser driven systems respectively) the deviatoric stresses will induce 

different microstructural responses than those induced by hydrostatic pressure alone [13–

16]. The one-dimensional strain state is illustrated in Figure 2-2. Above a certain threshold, 

termed the Hugoniot elastic limit (Figure 2-1), plasticity/phase change relaxes the 

deviatoric stress and more hydrostatic stress state is produced.  

The Rankine[17]-Hugoniot[18] equations (recently reviewed with historical insight 

by Salas [19]) satisfy conservation of mass, momentum, and energy and define 

relationships between velocity, density, pressure and energy: 

0 1( )s s pU U U    (1) 

1 0 1 0( )p s p s pP P U U U U U      (2) 

21
1 0 1 02

( )p s pPU U U e e    (3) 
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How they relate to the shocked state can be seen later in Figure 3-4. It is experimentally 

observed that for many materials there is a linear relationship between shock (Us) and 

particle velocity (Up): 

0s pU c sU   (4) 

Not all materials exhibit this linear response and additional terms may be necessary to 

accurately describe the shock behavior [20]. 

Constitutive models typically utilize an equation of state (EOS) based on Equations 

1 to 4 and various models for plasticity; a recent review of such models was conducted by 

Remington et al. [21] and some parameters for tantalum are given in Appendix D. Both the 

dynamic loading and the temperature increase significantly affect the mechanical and 

failure response of the material. The energy is transmitted so quickly that deformation 

develops at extreme strain rates as stress waves travel through the continuum body. 

 

Figure 2-2. Shock wave traveling from left to right. The crystal is undeformed ahead of the shock 

front. The shock front is a one-dimensional strain state that transitions into a hydrostatic (often 

termed three-dimensional) stress state under varying forms of plastic relaxation.  
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2.1.1. Laser Compression 

Of the current methods to generate large strain rates and high pressures, laser 

compression is predominant. However, there are a variety of methods used to probe and 

study materials at elevated pressures and strain rates and a brief review is justified. The 

most widely known technique to produce strain rates in the dynamic regime (dε/dt > 5x103 

s-1) are flyer-plate experiments [13]. The basis of the flyer-plate method is the acceleration 

of a projectile (typically with large lateral dimensions in comparison to its thickness) 

towards a sample target. The acceleration can be accomplished by gas/powder guns, 

electromagnetic capacitor discharge, or direct energy deposition (commonly using 

explosives). Typical durations of shock pulses are 1-3 μs for explosively-driven flyer plates 

and 0.1-1 μs for gas guns with impact velocities that can range from 200 m/s to 10 km/s 

for multi-stage gas guns.  Upon collision of the flyer plate with the target, two shock waves 

are created, one in each, flyer and target, traveling in opposite directions. The governing 

principle driving the shocks is Newton’s third law: when a body exerts a force on another 

body, the secondary body exerts a reaction force on the first body that is equal in magnitude 

and opposite in direction. Intimately tied to Newton’s third law is the conservation of 

momentum – it will be subsequently clear how this applies to shocks created by laser 

ablation. Owing to the fact that the two masses (the flyer and the target) are in contact, the 

time over which the forces are applied will be equivalent. Newton’s second law can be 

formulated and manipulated as follows: 

F mx m x dt  , (5) 

Fdt mx  (6) 
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The form of Equation 6 indicates that the impulse is equivalent to the change in 

momentum. It should be clear that altering the mass (by either changing the material and/or 

the flyer thickness) and/or changing the flyer velocity will impart shocks of different 

magnitude into the target system. 

High-power pulsed-lasers have been increasingly used to generate shock waves in 

materials [1,5,22]. Following the first operational laser in 1960, several research initiatives 

have paved the way for current laser shock studies. Askaryon and Morez [23], White [24], 

Andelholm [25], Inal and Murr [26], and others made seminal contributions to the field, 

demonstrating how lasers can be used to generate pressure pulses. The duration of the 

shock pulse generated by lasers is significantly lower than for flyer-plate experiments. The 

timescales range from femptoseconds (fs) to 10s of nanoseconds (ns). Lasers can be used 

to generate shocks in several manners. 

Figure 2-3 shows laser-matter interaction as a function of laser pulse length for 

metals and semiconductors.  

 

Figure 2-3. Interaction of ultrashort laser pulses with materials. From Rethfeld et al. [27].  
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A large component of effective laser-matter coupling is the wavelength of light being used 

in addition to the absorptivity/reflectivity of the incipient surface. Plastic ablators such as 

polystyrene are typically used to easily generate rapidly expanding “CH” plasmas. In other 

cases such as laser shielding, unintentional targets, or applications at high temperatures 

where many plastics melt, metals or insulators (including foams) might be used.  

The simplest method of producing a shock wave with a laser is direct bombardment; 

when a laser impinges upon the surface material, it interacts with the electrons, exciting 

them to elevated energy levels if the energy of the laser is sufficiently large. As this process 

continues the temperature rapidly rises. Given a suitable laser intensity (energy passing 

through a given area per time) it is possible to create rapidly expanding matter/plasma that 

emanates from the laser spot. A result of the matter/plasma traveling away from the surface 

of the target is the acceleration of the target itself – a result of an applied reaction force. 

This is governed by the rocket effect: 

0

1

ln
m

x v
m

 , (7) 

The ensuing shock will be determined by the amount of lost mass, m, and the velocity, v, 

at which the plasma exhausts. It is typical that the mass is small and the velocity is quite 

large. A representation of this process is given as Figure 2-4. 
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Figure 2-4. Position-Time (x-t) diagram shaded by evolving temperature for a 1 ps laser pulse at 

with an absorbed fluence of ~ 400 mJ/cm2 into a bulk Ni target. The laser arrives from the left and 

impacts the surface at the 0 nm position at time 0 ps. Blank areas indicate densities below 10% of 

the initial solid density and the resultant shock wave of 10 GPa is marked by a dotted white line 

inside the solid sample. Figure adapted from [28].  

This conceptual description is a simplification of the laser-plasma-matter interaction and 

the reader is directed to alternative sources for more in-depth information [29,30]. Often a 

low Z (atomic number) material is used simultaneously as an ablator and a heat shield. The 

resultant plasma is more uniform and the final result is a planar shock wave with an 

effective shock pressure pulse that is typically pseudo-Gaussian in shape.  It is also possible 

to drive a shock into a system by using lasers to generate x-rays that subsequently launch 

a wave into the sample [29,31], or to use a laser to accelerate a flyer plate [32,33].  

 An effective empirical relationship between laser parameters and shock pressure is 

Lindl’s equation [29]: 

2
3

12
A

m

I
P C



 
   

  , 

(8) 

where P is resultant peak shock pressure (GPa), I12 is the laser intensity in (given in 

TW/cm2), and λ is the wavelength in micrometers. This equation can be derived by 

assuming that a given fraction of laser intensity is absorbed and that the resulting pressure 
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is approximately equal to the density times the square of the velocity. A typical adsorption 

coefficient, CA, is 40 and the scaling law holds well for low Z ablation materials. Holding 

the wavelength constant, a more empirical value of the scaling exponent is 0.71, taken from 

diamond ablators at OMEGA (Laser Facility at the University of Rochester’s Laboratory 

for Laser Energetics), which uses 532 nm lasers [34].  The laser intensity can be simply 

determined by dimensional analysis to be: I=E/(At). E is the laser energy, t is the pulse 

duration, and A is the spot size of the laser. The laser intensity can be imagined as an energy 

flux per unit time. Taking an example laser pulse that might be generated at OMEGA - a 

532 nm laser pulse of 50 J with a pulse duration of 3 ns applied with a square phase plate 

of 1 mm2 - the resulting initial peak pressure will be 100 GPa.  

2.2. Isentropic Release  

An understanding of release phenomena is vital to many technologically-critical 

applications including the design of debris shields used within the National Ignition 

Facility (NIF) and numerous programs relating to nuclear materials operated by the 

Department of Energy (DOE), National Nuclear Stockpile Stewardship (NNSA), and 

Stockpile Stewardship Academic Programs (SSAP). The study of spall fracture is 

inherently multidisciplinary, involving continuum mechanics, thermodynamics, fracture 

mechanics, and metallurgy. Again, built into the fundamentals of spallation is an 

understanding of how mechanical/stress waves propagate within solid matter.  

Spall occurs when a material is put into a state of dynamic tension of a critical 

magnitude for a critical duration. This is often the result of intersecting decompression 

waves that originate when the original compression pulse is reflected from a (stress-free) 
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surface or interface. Spall strength is here defined as the maximum tensile strength reached 

during the dynamic spall process. Historically the term has also been applied to the stress 

at which voids nucleate. For modest strain rates these two values are often interchangeable.  

 

Figure 2-5. Experimental setup schematic. Target discs of varying thickness are covered by an 

ablator/heat shield and subject to laser ablation in order to drive a planar shock wave through the 

system. (a-d) Recovery experiments used a carbon aerogel foam to catch debris, decelerate and 

catch the tantalum for characterization. Depending on the laser energy, three states are expected (b) 

initial stages of incipient spall to identify void nucleation; (c) intermediate incipient spall where a 

clear spall bubble can be evaluated for void nucleation and growth; (d) complete spall failure 

resulting in ejecta. 

As the shock wave progresses from the surface of the sample into the bulk, the 

pressure will decay rapidly due to varying dispersion effects. This effect is magnified for 

short duration pulses where the shock wave is “unsupported”. Dispersion also occurs 

laterally and plays a large role in determining the lateral spall volume. Figure 2-5 shows a 

schematic of an experimental setup to drive and capture a spalled target. The spall bubble 

(Figure 2c) is a direct consequence of the imposed shape of the laser spot, laser intensity, 

and dispersion that takes place as the shock wave travels. Figure 2-5b and Figure 2-5c are 

examples of incipient spall failure, or spall that is incomplete. Figure 2d gives an example 

of complete spall failure where pieces of the rear surface are ejected. If the sample is 

sufficiently thin the initial laser crater will merge with the spalled volume. Figure 2-6 
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shows a simulated position-time (x-t) diagram of a pulsed laser and the subsequent wave 

interactions. In this scenario the reflected wave is strong enough to pull the material apart 

resulting in a large jump in porosity and thus, damage.  

 

Figure 2-6. Position-Time (x-t) diagram shaded by evolving density. The imparted wave steepens 

into a shock wave at the shock breakout point. From there, an elastic-plastic shock wave propagates 

into target until each wave (traveling at different speeds) reflects from the rear surface. The pulse 

duration controls the point at which the release tail “travels” into the system to interact with the 

plastic reflection. This point is the focus of the maximum tensile stress.  

 

An alternate experimental setup is perhaps more common, utilizing an 

interferometer system to record the rear surface velocity (Figure 2-7).  
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Figure 2-7. Experimental setup schematic. (a) Blue wavelength laser impinging on the front surface 

of a target package consisting of an ablator and target material. A second laser is directed at the 

rear surface and is reflected back through an optical setup. Using etalons (typically optical quartz) 

the phase of the laser is shifted and a Doppler type effect can be observed. This is captured by a 

streak camera and the result is shown in (b). (c) Fourier analysis can transform this data into a free 

surface velocity as a function of time.   

A common technique is termed VISAR (Velocity Interferometer System for Any 

Reflector) and uses a laser and a system of optics with various etalons to shift the arrival 

time of the laser reflecting off the rear surface [35]. The result is a Doppler effect that 

produces fringes in a streak camera (Figure 4b). Fourier analysis can be completed to 

reproduce the rear surface velocity as a function of time. The profile of this curve provides 

important information about the failure process, but this information needs to be extracted 

using knowledge of how waves propagate within the material.   

This process and representative variables are illustrated schematically and by a 

simulation in Figure 2-8.  
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Figure 2-8. Schematic (From [36]) and simulation of spall process and related variables.  

The first observation of spall in literature traces back to Hopkinson [37] with deeper 

investigations beginning in the early 60’s by Kolsky [38], Smith [39], and Rinehart and 

Pearson [40].  From these early studies the primary observation is that spallation is an 

evolutionary damage process where spall fracture, referring to complete spall often 

resulting in fragmentation, develops from a collection of nucleating and growing 

microfractures. Breed et al. [41] first proposed spall criteria including stress rate in addition 

the previously proposed critical tensile stress characteristic. Tuler and Butcher [42] 

supplemented the existing spall theory by introducing a cumulative damage criterion where 

spall develops according to an integral of the stress history in a material. Tobolsky and 

Eyring [43] and Zhurkov et al. [44] each described spall damage according to a rate-

controlled process obeying Arrhenius [45] rate equations for bond breaking/healing. Taken 

together, early studies show that spall is a process of dynamic damage where voids/cracks 

are nucleated at local microstructure/atomic protuberances and evolve with stress, strain, 

and temperature-dependent rates. As damage can ultimately lead to spall fracture it is no 

surprise that energy principles associated with the Griffith criterion for crack stability were 
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applied by Grady and Kipp to account for fragmentation under extreme stresses and strain 

rates [46–48].  

Many generations of studies have followed using explosives, gas guns, flyer plates, 

and lasers [46,49–58] to induce tensile failure at strain rates ranging from 104 to 5x109 s-1. 

Tensile failure in this regime is commonly known as “spall” - a process of physical damage 

evolution that is initiated by a rarefaction wave, or set of waves, whose amplitude exceeds 

the local tensile strength of the material [52]. There is a strong experimental and theoretical 

foundation that shows an increase in spall strength with increasing strain rate [46,50,56,58]. 

There is also significant evidence that polycrystallinity decreases the spall strength as 

compared to single crystals [53,59,60]. Christy et al. [61] performed experiments on 

polycrystalline copper and observed clear differences that were rationalized later by 

Meyers [62] and Meyers and Zurek [63].  

The tensile strength of metals is determined by the nucleation, growth, and 

coalescence of voids and/or cracks. At low strain rates, the applied traction generates an 

internal stress state that is relaxed by the introduction of these defects. As the strain rate is 

increased, stress-wave propagation becomes gradually more important and the stress state 

becomes increasingly non-uniform. Concomitantly, the competition between void 

nucleation, void growth, and wave propagation effects increases the complexity of the 

process. 

The high strain-rate regime is attained in uniaxial strain, a characteristic feature of 

shock wave propagation, and in a geometry for which the lateral dimensions of the 

specimen are larger than the pulse length. Upon exceeding the local tensile strength of a 

material, ductile voids or brittle cracks nucleate and subsequently grow to relax the stress 
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by dislocation emission, twinning, or displace phase transformations [64]. In addition to 

the microstructure, the duration and speed of the release dictates void concentration, sizes, 

and distributions thereof. Voids often grow via dynamic dislocation generation [50] and 

coalesce into interconnected void volumes that may cause the material to undergo complete 

failure. If full separation of the material is incomplete, the response is deemed incipient 

spall. The process of void nucleation, growth, and coalescence is of critical interest in many 

fields due to the prevalence of spall damage in engineering applications such as ballistic 

penetration as well as dynamic fragmentation during hypervelocity impact events that 

occur in near orbit and outer space.  

A classic method to measure spall strength relates the free surface velocity to the 

stress inside the material as communicated by stress waves. The free surface velocity 

measurement supplies us with important information: foremost, pressure is null at the 

boundary and the particle velocity is double (superposition of two waves of equivalent 

particle velocity) [13,50] providing adequate boundary conditions to obtain a unique 

solution for several waves interacting at the rear surface. The clear disadvantage is that this 

measurement is inherently indirect. Spall occurs within the sample and it is only though 

“communication” that the rear surface represents the bulk response. Furthermore, the rear 

surface velocity is essentially a continuum level measurement that relates multiple failure 

events into a “single” spall signal as shown in Figure 2-9.  
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Figure 2-9. Simulated VISAR trace and corresponding visualization of the material at 

representative points. Color is qualitatively given according to stress state, blue for compression, 

red for tension.  

A typical approximation made in spall calculations is the general solution of wave 

equations assuming two waves (f1 and f2) traveling in opposite directions and interacting 

at Lagrangian position h and time t: 

  1 2

0 0

,
h h

P h t f t f t
c c

   
      

   
. (9) 

This result follows from a reformulation of conservation of momentum (Equation 

2) in a Lagrangian coordinate system: 
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 

 
 (10) 

Solving for the Lagrangian coordinate gives: 

00

x

h dx



   (11) 

If we take a solution at the rear surface boundary condition (h=0, P=0, ufs=2up) and assume 

that the relationship between the time and place at which spall occurs is:  
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we obtain a first order solution of the spall stress and strain rate:   
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where r0
 is the initial density of the material, c0 is the sound velocity, umax is the peak 

velocity of the free rear surface (shock breakout), and umin is the first minimum free surface 

velocity following umax and is referred to as spall pull-back [65,66]. Several corrections 

have been developed that account for the elastic-plastic response of the material with 

significant effort led by Kanel and Fortov [51,67]. The most popular and applicable of 

these corrections adjusts for the difference in the plastic (Cb) and elastic (Cl) sound speeds 

plus a term that accounts for the stress gradient of the refracted wave which is determined 

by the pulse shape: 
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Critical points on the ufs-t diagram are identified in Figure 2-9. Points 1-5 

correspond to characteristic times leading up to, during, and after spall failure. Point 1 

indicates the stationary free surface while the compressive wave traverses the sample. Point 

2 indicates the rapid shock rise shortly after the arrival of the shock wave, and right below 
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this point is the typical kink indicative of the Hugoniot elastic limit. Point 3 corresponds to 

the maximum rear surface velocity, umax, and marks the start of relaxation [68] – the 

rarefaction wave begins returning into the sample at the beginning of the preceding plateau 

and for short pulse durations the width of the plateau approaches zero. Point 4 is the 

material undergoing tensile failure at the spall plane. Point 5 is the arrival of the plastic 

release wave at the rear surface and marks the minimum rear surface velocity, umin [69]. 

Point 4 is approximately half way between points 3 and 5; for a perfect acoustic system 

where the sound speed does not depend on density, the point is exactly half. With these 

methods it is possible to infer the tensile strength and the corresponding tensile strain rate. 

In addition to free-surface velocimetry [55,70] indirect measures such Laue 

diffraction [71,72] can be used to infer the internal stress states of the material during 

dynamic failure. Although highly useful, these experimental measurement techniques rely 

on accurate Hugoniot and EOS data [35,57,70,73] as well as several bulk acoustic 

assumptions and simplifications that break down for realistic microstructures, high strain 

rates, or large amounts of plasticity and/or damage evolution [74]. Several studies utilize 

post-mortem microscopy to identify damage, but it is often difficult to trace damage back 

to a specific source [59] and the spall strength and damage field are not unique to one 

another [75]. Other techniques are being developed, such as the use of high speed imaging 

[76], that may address some of the issues enumerated here. Critically, spall models strongly 

rely on empirical data [74,77,78] for which many important quantities are often lacking.  

2.2.1. Ultimate Tensile/Cohesive Strength 

The ultimate strength of materials represents the stress at which the interatomic 

forces can no longer sustain the cohesion of the structure. In quasi-static uniaxial 
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stress/tension the value is never reached or even approached as a variety of mechanisms 

conspire to lower the maximum sustained tensile stress. However, as the strain rate is 

increased, this value rises and in the shock-wave regime the stress state (uniaxial strain) 

and the kinetics of void/crack nucleation, growth, and coalescence are such that the 

ultimate stress can be reached. The theoretical strength in tension is an important parameter 

because spall strengths below a critical strain rate should be a fraction of this value. The 

ultimate tensile strength of the material is limited by the bonds/interaction between atoms. 

From a physics perspective, the interaction between atoms is universally described by the 

equation of state. From an interatomic potential perspective, this is defined through the 

internal energy as a function of the volume an atom occupies. The Morse potential provides 

a means to evaluate the strength via the following reasoning. A generalized volume-

dependent Morse potential has the following form: 

   2
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a a

cU U
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   
   

 
 

  
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 (17) 

U is the internal energy, Uc is the equilibrium cohesive energy, V is the specific 

volume (V=1/ρ), V0 is the specific volume at zero pressure, and a is a parameter constrained 

by the bulk modulus. The attractive (tension) and repulsive (compression) nature of the U-

V curve can is shown in Figure 2-10.  Figure 2-10 displays how U-V relates to the resultant 

P-V curve. 
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Figure 2-10. Example Morse [79] interatomic potential compared to a universal EOS for metals by 

Rose [80,81]. The U-V response is given by the dashed red line for Rose and the dotted black line 

for Morse. The P-V relation is given by the solid red line for Rose and dot dashed black line for 

Morse. A positive pressure denotes a tensile pressure. A vertical gray line intersects the U-v curve 

at the minimum internal energy (corresponding to the equilibrium cohesive energy) which defines 

the volume at which the pressure of the system is zero. Notice that the maximum of the P-v curve 

occurs at an inflection point in the U-V curve. Subtle differences in the interatomic potential tail 

play a significant role in the determination of the maximum tensile state.   

The pressure is defined as: 

dU
P

dV
  

(18) 

 

The bulk modulus of the potential is obtained from its formal definition: 
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Thus, the parameter a is defined as: 

0 02 /ca V U B  (22) 

The cold pressure is related to the internal energy directly by: 

   2

e 2e

o oV V V V

a a

c

dU d
P U

dV dV

      
   
   

  
     

    

 (23) 

( ) ( )
2

1
o oV V V V

a a

cP U e e
a

      
   
   

  
  

  

 (24) 

The theoretical cohesive stress/strength, as developed by Grady [46], is derived from the 

minimum (or maximum if the negative pressure is given) of the P-V curve such that 
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0 ln(2)V V a   (27) 

Equation 26 represents the volume condition that satisfies the minimum of the pressure-

volume relationship and can be plugged into Equation 23 or 24 yielding: 
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It should be noted that changing the initial form of the Morse potential, such as by 

switching the “2” factor in Equation 17, will lead to estimates that differ in the coefficient 

in the denominator of Equation 28. This is emphasized by Grady [46] by demonstrating 

that an analogous relationship equating the elastic energy storage to a volumetric cohesive 

energy gives a similar result, differing by a constant. Thus, a general form of the predicted 

strength can be written as:  

0

0
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B U
P s

V
  (29) 

Where 1/s represents a constant that is usually between 1.5 and 3. It is worth noting is that 

this definition of ultimate strength is inherently hydrostatic. It should be expected that 

stress anisotropy will be significant, especially under laser compression and release. 

The theoretical tensile strength can also be evaluated by utilizing a known equation 

of state. A prime example of an applicable EOS is the universal EOS for metals developed 

by Rose et al. [80] for metals and expanded upon for solids in general [81]. The predictions 

by Rose provide an improved description of atomic anisotropy. Figure 2-11a gives a plot 

of the predictions from Grady-Morse and from Rose as a function of bulk modulus. Figure 

12b plots the predictions of the two interatomic potentials with respect to one another. A 

linear trend can be identified with a slope of 1.4.  
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Figure 2-11. (a) Ultimate tensile strength plotted according to the element’s bulk modulus using 

the predictions of Grady [46] and Rose [80,81]. (b) Linear fit of the relationship between the 

predictions giving a slope of 1.4.  

Taking this correction into account, the 1/s value in Equation 29 is ~2.  A map of the 

periodic table of elements and their predicted ultimate tensile strengths are given in Figure 

2-12, colored by the magnitude thereof. 

 

Figure 2-12. Periodic table showing trends in ultimate tensile strength. Predictions calculated using 

Rose et al. [80] EOS model.  
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 Lastly, the experimental spall plane may be non-uniform due to the shape of the 

laser pulse. This can be seen in Figure 2-13 where a spall bubble has formed. This has 

interesting ramifications when comparing results to simulations that often assume periodic 

conditions lateral to the shock.  

 

Figure 2-13. Segmented 3D volume derived from μ-CT imaging of the polycrystalline tantalum 

system subjected to spall conditions where the transparent purple is the tantalum and the solid blue 

material is the contained void. The surface of the spall bubble is shown in (b). (c,d) Cross sections 

identified in (a) showing (c) a view through the lateral edge of the spall bubble and (d) the center 

of the spall bubble. In (c,d) there is clear evidence of failure at grain boundaries by the presence of 

intact grains at the top and bottom of the bubble. Three “depth” progression views (e-g) correspond 

to the red lines of (c,d), laying parallel to the spall plane. Starting (e) near the edge of the spall 

bubble just within the tantalum, and going (f) 30 µm toward the bubble from part ‘e’, and (g) 50 

µm toward the bubble from part ‘e’. Submitted work: Remington et al. [82]. 
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2.3. Crystalline Structure and Defects Therein 

A crystal or a crystalline solid takes its name from Greek origins fusing the terms 

for ice, rock, and cold, but, alas, our modern definition is a solid with three-dimensional 

periodicity of atoms, molecules, and/or ions. The majority of inorganic solids that we 

encounter on a daily basis are not single crystals, but polycrystals consisting of multiple 

crystal grains that vary in size, shape, and orientation. Between each grain and its neighbors 

exists an interface called a grain boundary. This boundary is an example of a planar defect. 

The density of grain boundaries is proportional to the average surface area of each grain 

divided by twice the total volume of the grain as each boundary is common to two adjacent 

grains. Although characterized as a plane, a grain boundary typically has a thickness that 

relates to the specific crystal structure, atomic size, and various measures of misorientation 

to adjacent crystals. Due to these boundaries, the mechanical properties of polycrystalline 

metals are drastically different from monocrystalline metals; likewise, nanocrystalline 

metals behave distinctly from their large-grained counterparts.  

2.3.1. Dislocations 

Dislocations were first theorized (simultaneously) in 1934 by Orowan [83], Taylor 

[84] and Polanyi [85]. Voltera [86] (distortion) provided the necessary analytical 

framework that was readily used by Taylor [84] to account for shear strengths far below 

their predicted values of 
2
G
 . Dislocations are essentially lattice interruptions that allow for 

atomic motion over smaller barriers than climbing lattice site to lattice site. Much work 

followed this discovery and important contributions by Burgers [87,88], Cotrell [89], 

Nabarro [90], and Eshelby [91] proposed other imperfections and defect interactions that 



31 

 

    

 

have paved the way for understanding the mechanical properties of crystalline solids. A 

look at dislocation slip, densities, and mobility during shock is succinctly given by Meyers 

et al. [92]. Many books exist on the topic of dislocations including the work of Hull and 

Bacon [93] and Bulatov and Cai [94] focused on the simulation of dislocations. 

The possibility of experimentally observing dislocations in compression of single 

crystalline tantalum occurs at pressures near 25 GPa. Homogeneous dislocation nucleation 

for <100> crystals for two prominent potentials are: Ravelo EAM, Pzz = 56 GPa [95]; 

MGPT: Pzz = 65.9 GPa. Without appropriate sources for heterogeneous nucleation, neither 

of the leading potentials predict dislocations at 25 GPa. Instead, twins as well as 

dislocations are often observed at higher pressures.  

2.3.2. Grain Boundaries 

Crystalline solids commonly consist of many grains separated by planar interfacial 

defects, grain boundaries. Nanostructured materials provide us with a means to study the 

intrinsic nature of solid interfaces with the potential to extend structure-property 

relationships down to the atomic regime. Grain-boundary atoms divide adjacent crystals of 

differing orientation. It is clear from both simulation and characterization that crystallinity 

extends right up to the interface and that an interface may grow or shrink during plastic 

deformation. 

Within the last two decades it has been shown that transitions to smaller grain sizes, 

and thus greater grain boundary density, introduce unique mechanical deformation 

mechanisms. Enlargement of interfacial volume fraction and the associated reduction of 

bulk volume fraction are responsible for causing several atomic-scale interactions, such as 

dislocation accumulation, to fail to manifest below a critical grain size. The volume fraction 
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of interfaces increases to the first order as 3δ/d, where δ represents the interface thickness 

shared by two grains and d represents the average grain diameter. A similar relationship 

also exists for the volume fraction of triple junctions. Using space filling tetrakaidecaheda, 

Tschopp et al. [96] produced volume fractions shown in Figure 2-14, agreeing well with 

previous illustrations [97].  

 

Figure 2-14. The increase in the volume fraction of grain boundaries and triple junctions as a 

function of grain size in the nanocrystalline (<100 nm) and ultrafine grain (100 nm–1 lm) regimes. 

These plots are based on space-filling tetrakaidecahedra grains with a grain boundary thickness of 

1 nm (thick line), where the dotted lines show the evolution for grain boundary thicknesses of 0.9 

nm to 0.5 nm in increments of 0.1 nm. From Tschopp et al. [96]. 

Typical interface thicknesses on the order of 2-3 atomic distances dictate that the 

volume fraction of grain boundary atoms is as large as 50% for 4 nm grains, 25% for 12 

nm grains, 10% for 24 nm grains, and 1% for 200 nm grains. Without dominating grain 

interior deformation, the strength of nanocrystalline metals is affected by the growing 

volume fraction of grain boundaries, providing a greater number of available shear/sliding 

points [98] and increasing the effective porosity of the sample [99]. 
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Early work by Ashby [100] approaches the problem of polycrystalline aggregates 

by differentiating between grain boundary interiors and boundaries, representing 

polycrystals as heterogeneous materials. It is also known that grain boundaries come in a 

wide variety [101–107] and that many interfaces are stronger than others [59,108–112]. 

The interaction of grain boundaries with dislocations, the traditional carrier of plasticity, is 

of critical importance to the strength of metals [113–116].  

Grain boundaries play a critical role in the determination of mechanical, chemical, 

and thermal properties of polycrystalline materials. Specifically, the internal GB structure 

and energy can strongly  determine grain boundary stability and influence the deformation 

response by affecting dislocation nucleation, dislocation motion, grain boundary sliding, 

diffusion, and radiation damage processes [59,108,117–121]. The distribution and 

character of grain boundaries is especially important in controlling the strength of metals 

[122], especially tantalum [123–125]. The nature of grain boundaries is complex because 

their energy is dependent on their character, which depends on five degrees of freedom. To 

these, one could add translation, which also changes the nature of the boundaries and has 

been shown to be particularly important for bcc metals [126]. A number of analytical 

approaches have been developed to treat GB structures: coincidence site lattice (CSL), 

displacement shift complete (DSC), and other topological treatments, e.g. [107]. To 

investigate the dependence of deformation mechanisms on GB structural details, we first 

must understand the structural and energetic landscape of GBs as in recent surveys of face-

centered cubic (fcc) [127] and some body-centered cubic (bcc) [128] materials. 

The boundary between two crystals, now referred to as a single system called a 

bicrystal, can be represented by 5 independent degrees of freedom (based on 6 rotations 
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with 2 dependent rotations). These five degrees of freedom can be described as rotations 

of either the crystalline grain to a reference grain (3 degrees of freedom) or the boundary 

plane dividing the two crystals (two degrees of freedom). It has been shown that there is at 

least one set of rotations that describes a given interface, but there is no requirement for 

uniqueness, particularly if a given rotation relates to the inherent crystal symmetry (𝑚3̅̅ ̅̅ 𝑚 

for cubic systems, of which body centered cubic and diamond cubic will be the two systems 

of primary evaluation). Additional dependent translations parallel and perpendicular to the 

grain boundary normal allow for equilibration of the grain boundary and are important in 

effective grain boundary energy minimization. It is worth mentioning that, during 

equilibration, global minimum energy positions exist alongside local troughs in the energy 

surface; an example of locally stable structures can be seen in Figure 2-15.  

 

Figure 2-15. Low energy configurations of Σ3 boundary. (Left) Expected twin boundary. (Right) 

Unexpected Σ3 boundary without mirror symmetry. 

2.3.2.1. Nanocrystals 

The dependence of the strength of metals on the grain size has fascinated 

researchers since the first half of the twentieth century when Hall [129] and Petch [130] 
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obtained the inverse dependence of strength on grain size. This subject has been treated in 

thousands of publications and has recently been superbly reviewed by Armstrong and Li 

[99,131]. The classic d-1/2 relationship is an approximation which breaks down for small 

grains. Measurements on iron [132,133] and an analytical model by Meyers and Ashworth 

[134] proposed a gradual decrease in the Hall-Petch slope at very small grain sizes. 

Gleiter’s classic work on nanocrystalline metals [135,136] tipped the scale towards the 

exploration of ultrafine and nanocrystalline grain sizes, and this decrease in this Hall-Petch 

slope was unveiled for a number of materials. 

The breakthrough work by Chokshi et al. [137], reporting a negative Hall-Petch 

slope in the nanocrystalline region was followed by intense activity [e.g. Meyers et al. 

[97,122]]. There is still considerable debate as to the soundness of the experimental results 

by Chokshi et al. [137] and the pervading effect of varying the residual porosity 

[133,138,139], but the work stimulated global interest.  

The number of computational works now grows daily and the amount of work is 

monumental. A decade ago, two review papers on nanocrystalline metals emphasized the 

unknowns, complexity, and appeal of nanocrystalline metals. The review by Wolf et al. 

[140] tackled the fundamental question of the extent to which atomic simulations capture 

reality and, similarly, the review by Meyers et al. [97] evaluated the ability of numerous 

models to accurately predict deformation behavior at the nanoscale. The complementary 

conclusions of each indicate that molecular dynamics (MD) simulations’ capacity to 

directly visualize defects with atomic resolution provide utility unmatched by experimental 

characterization, but that they must be tempered with experimental results. As computation 

power climbs and cost plummets, it is to be expected that fundamental insights into the 
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structure and properties of crystalline defects, as well as physical mechanisms ranging from 

atomic diffusion to interface migration to grain rotation will be made through atomic-scale 

simulation and modeling. Simulations deriving from atomic and ab initio models extend 

their reach by providing invaluable input criteria for multi-scale models, continuum 

models, and materials design [141–147] especially in an iterative feedback loop [148].  

The “negative” deviation in yield strength behavior results from the scale-

determined interruption of dislocation pile-up associated with the traditional explanation 

for the Hall-Petch effect; as grain size is reduced, the number of dislocations associated 

with a given grain boundary is reduced and the summative contribution to the stress field 

is diminished. Yet, although the stress field associated with a single grain is diminished, 

the influence of stress fields emanating across neighboring grains provide sufficient 

motivation for relaxation of grain boundaries and triple junctions by grain-boundary sliding 

[149].  

Fundamentally, a key piece to further our understanding of nanostructured 

phenomenon is the ability to precisely observe how emission, transmission, absorption, 

rearrangement, accommodation, and storage of dislocation defects at grain boundaries of 

different dense crystal systems (here bcc, and dc). Also of critical interest is how varying 

degrees of misorientation as well as the grain size itself changes dislocation interactions.   
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3. Molecular Dynamics  

Molecular dynamics (MD) simulations provide the complete information of each 

atom for each time step evolution. Thus, these simulations allow for the direct observation 

of the atomic mechanisms necessary to fully describe mechanical phenomena, albeit often 

at great computation cost. Simulations are particularly useful for the visualization of 

experiments where normally only the initial and final characterization can be observed. 

MD is also uniquely suited for conducting “computer experiments” because there are often 

no intrinsic assumptions made about the material and processes beyond characterizing 

accurate interatomic interactions. In the following sections, the details of current 

computational capability and simulation schemes are enumerated. This section gives 

information   

3.1. Computational capability: present and predictions 

A recent review by Farkas [150] emphasizes that, in spite of a large gap in 

achievable time scales, atomistic modeling continues to serve as a unique tool for direct 

visualization of defects that influence microstructural evolution. This has been more so the 

case as both computational power and our ability to characterize complex simulations 

continue to advance at an impressive rate. Spanning 2005-2015, the power of our personal 

computers has reached what was capable by supercomputers 15 years earlier. An example 

of recent efforts aimed towards bridging the gap between simulation and experimentation 

is [151] where simulations are extended to sample lengths reaching several micrometers 

long in the shock direction, yet limited to tens of nanometers cross-sections repeated 
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through periodic boundary conditions. Atomic modeling techniques such as molecular 

dynamics provide the ability to develop “atomic resolution movies” of dynamic material 

behavior through subsequent integration of Newton’s equations of motion [152]. The 

ability of high performance computing has been demonstrated with trillion-atom molecular 

dynamics simulations using a pairwise Lennard-Jones form in 2008 [153] and billion atom 

simulations of many-body potentials in 2012 [154]. Approximately 109 atoms form, in 

tridimensional space, a simulation box with lateral dimensions of 103 atoms, approximately 

200 nm. MD time steps must be small enough to capture the frequency of thermal 

vibrations in order to accurately evolve each time step; thus, each step must be less than 

the Debye period (10-13 s, derived from the maximum vibrational frequency called the 

Debye frequency, ~1013 1/s). For this reason a typical time step is one femptosecond (fs) 

or 10-15 s and typical simulations are limited to picosecond and nanosecond timescales. 

Access to supercomputers with the ability to run hundreds of processors in parallel presents 

the opportunity to run many permutations of simulated experiments in realistic time frames. 

The number of atoms and accessible time scale are plotted in Figure 3-1.  

Taking a few standardized variables, such as a femtosecond time step and 

nanosecond total simulation time, grain sizes as large as ~50 nm can be simulated, limited 

largely by the number of grains in each dimension required to ensure a good measure of 

polycrystallinity. The current and projected capability of personal and high performance 

computers are shown in Figure 3-2 using projections derived from the Top500 list for high 

performance computing (HPC) and NVidia graphics cards for desktop computers. The 

equations relating the computable grain size to year (relative to 1992) are: 
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0.2( 14 1993( )) 1.32 y

HPCd e   (30) 

0.132( ( 1993)) 0.55 y

deskd e   (31) 

This places the micron (or microsecond) regime between 2025 and 2050 respectively.  

 

Figure 3-1. Time scale and number of atoms are the primary computational cost components. 

Plotted against one another they represent the currently achievable simulation space extending 

towards petaflop and exaflop computational resources. Simulations in the bottom left are 

computationally cheap while towards the top right requires multi-scale models that pass on 

information from molecular dynamics simulations.  

To put the processing requirements of molecular dynamics in perspective, an 

introductory aim of my thesis proposal was the determination of computationally feasible 

grain sizes as a function of the calendar year in a rigorous manner. A good starting point 

for this calculation was an evaluation of the total floating point operations (FLOP) needed 

to complete the simulation divided by the achievable floating point operations per second 
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(FLOPPS). This provides the total number of seconds necessary to run the simulation to 

completion. For ease of interpretation, seconds are adjusted to years by 3.15569∙107 

seconds/year.  In order classify a simulation as achievable during a specific calendar year, 

the total computation time is set equal to 1 year. We neglect the possibility of running a 

simulation over a multi-year timespan as we are mainly interested in a representation of 

what is feasible for a specialized researcher who obtains a one-time, limited-duration 

allocation.  Thus we begin with: 

 7

7

1
         3.15569 1  0
3.15569 1  0

FLOP
y FLOP FLOPPS

FLOPPS
    


  (32) 

To obtain an estimate of FLOP we take the number of FLOP per pair per integration 

for a Lennard-Jones (LJ) potential multiplied by the number of atoms, N, by the number of 

interacting neighbors Nc, for a given number of iterations to advance the system in time. A 

typical number of FLOP per pair taking a double precision integration is 16 for LJ [155]. 

Later we may take a larger multiple of this number to account for different potential 

schemes and refer to this as a potential multiplyer (PM). The number of iterations, I, is 

equivalent to the desired simulation time, ts, divided by the timestep ∆𝑡. Together we have 

the following baseline definition for FLOP: 

 
 

  16 s
c

t
FLOP N N

t
   


  (33) 

To evaluate the number of atoms in a given simulation we introduce a relationship 

between the grain size and an idealized lattice of grains inside a cubic sample. Thus sample 

size, S, is equivalent to x grains in each dimension: 𝑆 =  (x𝐷)3. For non-cubic systems, 

𝑆 =  𝑢𝑣𝑤𝐷3 and x is a general quantity factor by, 𝑥 = (𝑢𝑣𝑤)1/3. We then relate sample 
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size to total number of atoms by an atomic density: 𝑁 = S ∙ 𝜌𝑎, where 𝜌𝑎 =
𝜌 ∙ 𝑁𝐴 

𝐴𝑊
 and 𝜌 is 

the mass density, 𝑁𝐴 is Avogadro’s number, and 𝐴𝑊 is the atomic weight. The number of 

atoms within a given cutoff radius, 𝑟𝑐, can be estimated by taking a spherical cutoff volume, 

𝑉𝑐 = 
4

3
π 𝑟𝑐

3,  and is used to approximate the number of interacting neighbors, 𝑁𝑐 =

 (𝑉𝑐/𝑉0) ∙ 𝑛𝑎0
, where 𝑉0 = 𝑎0

3 and 𝑛𝑎0
 is the number of atoms per unit cell. Not 

simplifying for Newton’s third law, the number of pairs is equal to the number total atoms 

times the number of interacting neighbors, 𝑝𝑎𝑖𝑟𝑠 = 𝑁 ∙  𝑁𝑐. Not accounting for 

communication time between processors nor resorting neighbor lists we can write a simple 

relationship between the total number of required integrations in terms of pairs (number of 

integrations at a given timestep) and the total number of timesteps given by  𝑡𝑇 =
 𝑡𝑠

∆𝑡
, where 

 𝑡𝑠 is the total simulation time and ∆𝑡 is each timestep.  

Taking the TOP500 as the standard for processing power following the LINPACK 

benchmark and a history detailing the top supercomputer twice annually since 1993, the 

following effective Moore’s Law fit is taken in GigaFLOPPS as a function of calendar 

year: 

  4.932138 0.9233 1993
2

n
GFLOPPS

 
   (34) 

Note that this places the exascale (1018) computing threshold at 2020! A last modification 

to the number of FLOPPS available are modifiers that account for factors such as allocation 

percentage (AP) and parallel scaling performance (PSP). Below are steps taken to solve for 

maximum grain size as a function of year.  

 
7     3.15569 10FLOP FLOPPS     (35) 
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  (41) 

Table 3-1 shows the parameters used to estimate the grain size as a function of time 

for a typical simulation metal, Au. Light blue rows represent material specific parameters, 

while light yellow rows represent model/simulation specific parameters.  

Table 3-1. Parameters for Grain Size “Moore’s Law” Computation. 

𝑎0 4.090 Å 
𝐴𝑊 107.8682 AU 

𝜌𝑚 10.501 g/mol 

𝑥 5 

𝑟𝑐 7.2 Å 
∆𝑡 1 fs 

 𝑡𝑠 1 ns 

𝐴𝑃  10−2 

𝑃𝑆𝑃 0.8 

𝑃𝑀 2.3 

 

A fit of Moore’s law for desktop computers was also determined by assuming GPU 

computing using nVidia’s gforce line of video cards:  
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  0.3952 1993
1.7154

n
GFLOPPS


   (42) 

The relationship for HPC and desktop computers are plotted in Figure 3-2.  

 

Figure 3-2. Future projection of computational power of the Moore’s Law type to achievable grain 

sizes for atomistic simulation by an empirical potential. Green circles are representative of runs 

completed at US national labs [155,156], the yellow circle by one of the first systematic studies of 

5-50 nm grains [157], and the red circle is a systematic study of grain sizes smaller than 27.3 nm 

[158]. 

 It can be seen that in 2022 the grain size of 1 μm will be reachable, bringing MD 

very close to realistic grain sizes of polycrystals, and enabling the identification of defect 

evolution in them.  

3.2. Simulation Process 

All realizations of molecular dynamics simulations follow a set of procedures that 

take place in the following stages: (1) construction/initialization of the simulation domain; 

(2) setting ensembles, fixes, and equilibration schemes; (3) the run itself consisting of 

subsequent integration of Newton’s laws of motion; and (4) post-processing of data output 

during the run.  
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3.2.1. Initialization 

The process of building a simulation domain imparts size, boundaries, and overall 

microstructure – this is often referred to as simulated fabrication. Atoms and/or molecules 

are, at least, given initial conditions and their interactions are defined by an interatomic 

potential which will be discussed later in further detail. Periodic boundary conditions may 

be applied such that a material infinitely repeats itself in a specified direction. This is useful 

as it allows for semi-bulk material simulations instead of being limited to nanostructured 

configurations. Other boundary conditions include fixed boundaries that act as spectral 

reflectors or shrink-wrap boundaries that adjust to the motion of atoms that would cross 

the boundary by expanding (or contracting if compression occurs). From here, knowledge 

of the crystal structure allows for the propagation of a unit cell periodically in space. A 

single crystalline structure can be simply fabricated in this way by changing the initial 

orientation and thus the uniaxial loading direction can be changed.  

Polycrystalline materials require more complex treatment, building many 

geometric grains and assigning orientations. Later sections will cover the techniques used 

to adjust crystal orientation and build polycrystalline samples. As discussed in Section 3.1, 

the overall domain size is limited by the processing power that determines the number of 

atoms and effectively the number of integrated time steps when running for a set amount 

of time. A typical number of atoms for a molecular dynamics simulation lies between 104 

and 108 and in general represents domain cells of order 10 to 200 nm and possibly up to 1 

μm in the loading direction if the cross-section is modest. A typical number of time steps 

is between 104 and 109 corresponding to simulations that model many ps and few ns events 

(Figure 3-1). It is important to take the spatially and temporally achievable scales when 
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looking towards what molecular dynamics simulations can tell us about physical 

phenomena.  

3.2.2. Equilibration and Ensembles 

Beyond the size and scope of the simulation, it is important that the simulated 

fabrication be representative of reality. This is typically accomplished by equilibration 

procedures that minimizes the potential energy of a system (including representative 

structures/defects) before the simulation proceeds. Equilibration is crucial especially when 

the initial fabrication involves the presence of inhomogeneities such as intrinsic defects. 

The relaxation of a polycrystalline sample is an example where equilibrium conditions are 

vital to simulating realistic processes. The initial fabrication of polycrystalline samples 

often produces non-equilibrium planar grain boundaries that kink and adjust themselves 

during annealing. 

Often this stage of the simulation includes defining ensembles that serve as 

additional boundary conditions. A typical microcanonical ensemble (NVE) defines the N, 

the number of atoms, V, the volume, and E, the energy of the system, to remain constant. 

Within a given ensemble additional relaxations or restrictions can occur that drive the 

system; for instance a uniaxial tension test could define a rescaling in the loading direction 

with each time step thereby adjusting the V constraint to vary linearly with time if a 

constant engineering strain is imposed. It should be noted that the shrink-wrap variable 

also allows for the volume to change within an NVE ensemble as this boundary condition 

is very common in shock simulations. This sort of simulation is termed non-equilibrium 

molecular dynamics (NEMD). 
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3.2.3. Run Integration 

The run takes place under sequential numerical integration of Newton’s equations 

according to previously defined boundary conditions. These conditions can be adjusted in 

real time according to the type of materials science simulation occurring. Typical 

conditions include homogenous tension/compression, shock loading, nano-indentation, 

diffusion driven by specified gradients, etc. A typical approach will integrate the system 

through a discrete time step, dt, by a method of finite differences. The codes detailed in 

Section 3.3 utilize a velocity Verlet algorithm written in terms of changing momentum: 

 1 1
2 2

( ) ( ) ( )t t t t t t     p p F   (43) 

 1 1
2

( ) ( ) ( )
m

t t t t t t     r r p   (44) 

Here the momentum p, and positions, r, are written as functions of half steps forward and 

backward. A practical implementation follows: 

 1 1
2 2

( ) ( ) ( )t t t t t   p p F   (45) 

 1 1
2

( ) ( ) ( )
m

t t t t t t     r r p   (46) 

 1 1
2 2

( ) ( ) ( )t t t t t t t       p p F   (47) 

As written above, the forces are computed between the second and third step according to 

the positions found in the first step. The force added to the momentum in the final step is 

equivalent to the force utilized in the increment of the momentum in the first time step in 

the following time step. Performing these three calculations in parallel gives the first 

equation of the classical leapfrog algorithm. The velocity-Verlet algorithm provides both 

the position and momentum of each atom at every time step [159,160].  
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3.3. Simulation Codes 

There are a number of molecular dynamics codes, each with their own advantages; 

below are two primary codes utilized for the work completed for my dissertation. Both 

molecular dynamics simulation codes utilize spatial decomposition techniques in parallel 

environments. Non-trivially, the implementation of broadly applicable community codes 

for materials modeling and simulation has been a boon to the success of atomistic 

computational modeling as highlighted by a recent opinion article on community codes by 

Plimpton and Gale [161] based on the well-received LAMMPS code developed in 1995 by 

Plimpton [162]. 

3.3.1. LAMMPS 

Large-scale Atomic/Molecular Parallel Simulator (LAMMPS) is a molecular 

dynamics code developed by Steve Plimpton in the early 90’s at Sandia National 

Laboratories [162] and continues to be an effective open-source platform for enabling 

molecular dynamics simulations [161].  Spatial decomposition plus shrink-wrap boundary 

conditions allow for efficient use of parallel computation where no computational power 

is dedicated to free volume.  

3.3.2. SPASM 

The Scalable Parallel Short-range Molecular Dynamics (SPaSM) code was first 

developed in 1992 at Los Alamos National Laboratory (LANL) with the specific purpose 

of performing short-range molecular dynamics simulations in massively parallel high-

performance computing environments at an effective cost [163–168].  The SPaSM code 

was built to alleviate “data-glut” resulting from the inherent decoupling of simulation and 

analysis resulting in costly data communication between separate tools and machines. A 
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common result of this decoupling is the frustrating outcome of running a large simulation 

to discover after the fact that the simulation itself was flawed. Another flaw of decoupling 

is incomplete data sets and the requirement of duplicated calculations.  

Recent advances of the SPaSM code have allowed supercomputers to simulate 

upwards of a trillion atoms using Lennard-Jones (LJ) interatomic potentials.  SPaSM 

typically implements three types of boundaries to simulate shock behavior: lateral periodic 

boundaries, a spectral momentum mirror, and an event horizon. The spectral momentum 

mirror is used to introduce a shock wave; a particle traveling across this boundary has its 

momentum vector elastically reflected. This is accomplished entirely through manipulating 

the incoming and outgoing velocity vector. Taking z as the traditional shock direction, the 

z-velocity sign is flipped, i.e. 𝑣𝑧’ =  −𝑣𝑧
 , while the transverse velocity components are 

taken equivalently 𝑣𝑥’ =  𝑣𝑥  and 𝑣𝑦’ =  𝑣𝑦. The result is no loss in momentum. A sample 

initially traveling in the negative z direction will impact and a shock wave will be produced 

traveling in the positive z direction.  

3.4. Simulation Set-up 

There are multiple reasons why a sample must be thermalized before a simulation 

begins. The lattice parameter used to create the periodic lattice is dependent on temperature 

through the volume dependent thermal expansion coefficient. If the run initializes before 

an equilibrium lattice spacing is obtained the result can manifest itself as a small wave 

itself. For instance, most crystals are initialized at zero K temperature and would then 

prefer to expand to an equilibrium volume if the simulation is to be run at room 

temperature.  
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3.4.1. Single Crystalline Structures 

Single crystalline structures are generated by replicating the unit cell in each of the 

three dimensions of space. In a typical shock simulation the lateral directions will be 

enforced by periodic boundaries and the longitudinal direction will be free, fixed, or shrink-

wrapped (scaling with the dimension without affecting velocities, and thus forces, in any 

way). An example of how crystals are oriented can be seen in Section 3.4.2.1 and Appendix 

A. Simply stated, the desired shock direction defines a set of orthogonal vectors. Each 

vector is normalized such that propagating the lattice produces a length of one “unit cell” 

in any given direction. 

3.4.2. Polycrystalline Structures 

Various simulated fabrication methods for producing grain boundary networks will 

manifest similar results to varying experimental manufacturing techniques: different 

mechanical properties. Wolf et al. [140] provides a description of various in silico 

polycrystalline fabrication techniques such as the vertex growth method and Voronoi 

tessellation. The diversity, or lack there-of, of grain boundary configurations can alter the 

resulting mechanical properties [169] and the development of realistic grain boundary 

networks for implementation in molecular dynamics simulations has been a long-standing 

goal in the field. Xu et al. [170] and Li [171] investigated the appropriateness of a Voronoi 

tessellation [172] to represent physical materials such as polycrystalline aggregates. Theirs 

is the principal work that investigates the statistical representation of grain size and 

structure distributions that does not draw as much attention as deformation mechanisms. 

Voronoi tessellation works by dividing a volume into a polygons such that each polygon 

represents a volume closest in distance to a grain center. An example of Voronoi 
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tessellation is shown for two and three dimensions in Figure 3-3. By definition all polygons 

are convex, satisfying a relationship that is also true for physical polycrystals.  

 

Figure 3-3. Left, 2D Voronoi tessellation of increasing complexity and number of “centers”.  Right, 

SPaSM 300x300x300 unit cell construction of bcc tantalum with 36 randomly oriented grains with 

orientations represented as RGB combinations and rendered by MD_Render code. Grain size for 

cubic (K = 1.5), tetrakaidecahedral (K = 1.76), and spherical (K = 2.25) geometric grain shapes 

give planar intercept determined grain sizes from 39.31 nm to 58.97 nm for this construction 

whereas linear intercept determined grain sizes range from 34.71 nm to 52.07 nm [173]. ASTM 

grain size is determined to be 51 nm. 

Using methods developed for microscopy, informed choices of grain size are based on the 

number and location of grain centers. Texture can be simulated by constraining the random 

matrices that determine each crystal’s orientation and by using weighted Voronoi methods 

that create polygons of different shape distributions. It is worth noting that a typical grain 

size distribution is log-normal for randomly generated grain structures.  

3.4.2.1. Bicrystal Construction 

Building a specific bicrystal requires careful alignment of the two neighboring 

crystals. Special grain boundaries such as coincident site lattice (CSL) are described by the 

inverse density of shared lattice points across the boundary. For example, a Σ3 boundary 

would share 33% or 1/3 of its lattice points with its neighboring grain. The Σ3 grain 

boundary is a coherent twin boundary in BCC metals and the energy of the boundary plays 



52 

 

    

 

a significant role in the plastic deformation of BCC metals by determining the propensity 

for twinning deformation.  

Given a tilt axis and its angle, along with the plane of intersection, we can back out 

the mutual orientations of both grains, now referred to as grain 1 and grain 2, though there 

is no requirement for which is which due to symmetry. For instance, from the following 

information, Σ5(310)[001]–36.87° misorientation angle, we can take the plane (with plane 

normal in the y-direction) crossed with the tilt axis to get out grain 1 x-axis: (310)x[001] =

[13̅0]. For grain 1 we now have an orthogonal basis 

x[13̅0], 𝑦[310], 𝑧[001] 𝑜𝑟 [
1 3̅ 0
3 1 0
0 0 1

]. For grain 2 we will take an equivalent tilt axis z, 

reverse the sign of the y component of the x axis, and reverse signs of the x and z 

components of the y-axis producing our second orthogonal basis set, [
1 3 0
3̅ 1 0
0 0 1

].  

The LAMMPS script used to build and relax the bicrystal structures can be found 

in Appendix A and is constructed based on a script written by Tschopp [174,175].  

3.4.3. Non-Equilibrium Molecular Dynamics   

Multiple non-equilibrium molecular dynamics (NEMD) simulation methods are 

employed to evaluate the strain-rate space of 107 s-1 – 1013 s-1. Three main NEMD 

methodologies are employed, illustrated graphically in Figure 3-4. They are discussed in 

Section 3.4.3.1 to 3.4.3.3.  
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Figure 3-4. Methods used to create high strain-rate compression and release: (a) flyer-target 

geometry; (b), piston directed compression and release that varies a function of time; and (c) quasi-

isentropic compression followed by quasi-isentropic tension. Methods (a) and (b) create shock 

waves in the system whereas (c) mimics the strain-rate history of a Lagrangian volume in the region 

of potential spall.  

3.4.3.1. Flyer Plate and Target 

The collision between a flyer plate and a target (Figure 3-4(a)) provides supported 

square wave stress profiles, where tensile failure is well defined at a spall plane based on 

geometric relationships and acoustic approximations for wave speeds [176]. Both the flyer 

and the target are assigned velocities in the shock direction such that the spall plane remains 

close to constant position with nearly zero center of mass velocity [176]. The flyer plate 

itself is often not analyzed and results in wasted computational resources. Lower strain 

rates can only be achieved by extending the lengths of the flyer plate and target, allowing 

the two resulting rarefaction fans more time to spread before they collide and pull the target 

into tension. The computational cost thus grows quadradically with (inverse) strain rate, as 

a 10x slower strain rate requires 10x more atoms for a 10x longer simulated time, a 100x 

more expensive computation.  
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3.4.3.2. Controlled loading via a smoothly accelerated and decelerated 

piston 

More general loading conditions, such as those arising from high explosive (HE), 

lasers, or magnetic drives, can be modeled by an arbitrary time-dependent piston velocity 

(Figure 3-4(b)). The controlled acceleration and deceleration profiles can reproduce the 

stress profile reminiscent of those achieved during laser shock or high explosive (HE) 

experiments, with uniaxial strain followed by a dispersive tail [177,178].  The strength, 

duration, and shape of the imposed piston velocity (which translates directly to the particle 

velocity, Up) will dictate the prescribed shock volume and strain rate [20]. For the present 

simulations, the piston is linearly ramped to Up=750 m/s over 5 picoseconds (ps). A 

resultant shock wave is formed, which can be seen visually in Figure 3-4.  

The transition from the ramped compression wave to a shock wave occurs in 15 ps 

under the prescribed conditions. The figure below demonstrates that the transition which 

occurs well before the wave reaches 75 nm, which would be half of the total length (150 

nm). The z component of the velocity tensor is shown, which corresponds to the particle 

velocity. The shock wave can also be see visually in the middle frame of Figure 3-5 of the 

man manuscript, the front is localized in space and the color is uniform behind and in front 

of the shock wave. 

The piston velocity is maintained at this magnitude to 20 ps and then undergoes a 

linear deceleration to stationary over 20 ps – this implementation creates an unsupported 

shock wave.  In order to control the strain rate it is necessary to extend the system size and 

simulation time to decrease the strain rate towards those achieved in experiments. 
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Figure 3-5. Isotemporal lines given every ps from 0 to 15 ps. The piston is accelerated over 5 ps 

and then held steady for 20 ps. The result is a compressive wave that transitions completely to a 

shock wave by the 15 ps mark.  

This requires a precise description of non-linear dissipation mechanisms that 

contribute to the decay of the shock as it travels and large dimensions in the shock direction 

to achieve steady state and slower strain rates, with the same quadratic computational cost 

as the flyer plate and target approach, but with approximately two thirds of the total atoms. 

While both the flyer-target and controlled piston non-equilibrium molecular dynamics 

(NEMD) simulations are more expensive, they provide the correct density of defects which 

develop within nanoseconds in relevant laser shock experiments.  

3.4.3.3. Quasi-isentropic compression and expansion 

The quasi-isentropic (QI) technique shown in Figure 3-4(c) allows for compression 

and expansion of the material at a constant and well-defined strain rate across the entire 

sample while maintaining a near-constant temperature [179]; the temperature solely 

evolves due to plastic work. The QI method is implemented in LAMMPS using a 

microcanonical (NVE) ensemble modified to employ a well-defined affine scale each time 
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step. The magnitude of the scale allows for precise control of the strain rate during the 

simulation. With this method, failure can occur at any point in the simulated volume, where 

the strength is weakest. This method also allows for a reduction in simulated volume that 

extends the possible strain rates that can be achieved for a comparable computational cost.  

For the present QI simulations, we employ a fully periodic cubic system with side 

lengths of 66 nm consisting of 16 million atoms. The primary limitation of the system size 

is the communication between growing voids [20,180]. The system undergoes compression 

to 0.17 strain at a strain rate of 109 s-1 remapping the atomic positions in the loading 

direction every time step (1 fs) after which the stress state is held constant for 100 ps. The 

“hold” allows for defect relaxations - analogous to relaxations that occur behind the shock 

front. The strain rate of 109 s-1 was chosen to lie between the Swegle-Grady [181] strain-

rate approximation (with the response of tantalum measured by [182]) for the NEMD 

piston shock,
36 4 8 127.34 10 ( ) 2.5 10zz s      , and an acoustic approximation using a 

longitudinal sound speed of 5400 m/s, 
10 1/ ( ) 2.8 10p LU t C s     . It is important to note 

that adjusting the compressive strain rate will result in different defect structures, which in 

turn will influence the tensile response. A promising avenue for a future study would be to 

detail this dependence. The strain of 0.17 strain was chosen to match the peak shock 

pressure in the NEMD simulations. The peak longitudinal stress for [001] crystals is 55.5 

GPa and the nanocrystalline system sees 54.5 GPa. The initial QI compression is followed 

by QI tension (at varying strain rates) until failure – this sequence is meant to be 

comparable to shock compression or a fast ramp to a specified shock pressure followed by 

different release tails.  Because the required simulation volume is independent of strain rate 
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(with the only requirement being that it is large enough to contain a representative defect 

and void microstructure), the computational cost is only linear in tensile strain rate, 

allowing much lower strain rates to be accessed.  

3.5. Pre, Peri, and Post-Processing  

Pre-processing refers to preparatory simulations and manipulation such as sample 

construction. Peri-processing refers to processing that is completed concurrently with the 

simulation while post-processing refers to processing that takes place after the simulation 

is complete. During the run a specified set of “dump” commands dictates what outputs are 

written and how often. The basic set of outputs includes the run log which includes global 

parameters and can include energies, length scales, temperatures, pressures, velocities, etc. 

Additionally, a dump file at a given time step includes particle id, positions, and velocities 

- all three of which are required for initializing a restart from a given dump file. Additional 

atomic calculations of interest defined for each particle such as volumetric stress tensor 

components, kinetic energy, and potential energy, which are common among many others.  

Molecular dynamics simulation schemes are widely used to study crystalline 

materials at the atomic scale. As continuously enumerated, defects play a unique role in 

materials phenomena and therefore, their proper identification is a fundamental molecular 

dynamics tool for developing an in-depth understanding of material behavior. The recovery 

of crystal defects from the complete simulation domain often involves time consuming 

post-processing steps that may surpass the time employed during the simulation itself. Post-

processing is often unavoidable for proper interpretation of simulation results and the 
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importance of appropriate selection can be shown by the different methods of evaluating 

the same time step as seen in Figure 3-6.  

 

Figure 3-6. Visualization of a dislocation traversing a nanocrystalline grain by six different analysis 

coloring schemes. From Swygenhoven [183]. 

Improved computational analysis methods provide greater insight into atomic level 

processes and inform coupling of atomistic to mesoscale simulations [12,184]. Several 

post-processing tools such as OVITO utilize processing pipelines allowing for creative data 

visualization (Figure 3-7).  

 

Figure 3-7. Schematic of a post-processing pipline implemented in OVITO. Image from [185].  

The following sections present a succinct overview of the defect identification 

methods based on structural analyses that are currently used in the present MD studies; 
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their appearance is based loosely on its computational cost, building from least to most 

expensive. Calculations of strain, strain-rate, and stress will also be introduced here.  

3.5.1. Strain-Rate 

Taking the instantaneous true strain rate at Eulerian coordinate z during loading can 

be directly found from the density and its time derivative. The equation is:  

1 ρ
      . 
ρ

z
t







 

(48) 

Furthermore, the strain rate can also be evaluated at a single time step by staking 

the spatial derivatives of each the velocity 𝑢 and density ρ of the Eulerian mass 

conservation equation:  

𝜀̇ =  (
𝜕𝑢

𝜕𝑧
+

𝑢

ρ

𝜕ρ

𝜕𝑧
)|

𝑡

. (49) 

For most metals and liquids the spatial derivative of density is insignificant and 

thus the second term is often ignored. It should be noted that the at larger and larger strain 

rates this term may contribute approximately 5 or 10% to the total strain rate.  

3.5.2. Stress State 

The basic stress state is taken as the virial stress, a measure of the mechanical stress 

determined on an atomic scale volume. This is a direct manifestation of the interatomic 

potential where the force between interacting atoms is determined by the spatial derivative 

of the potential energy, i.e. F = dU/dx. From here, the simple application of stress as a force 

applied over an area, σ = F/A or σ = F/(dy*dz), yields σ = dU/dV. Viewed as such, the 

definition of volume becomes the sticking point when defining stress state. Typical 

continuum mechanics breaks down when attempting to isolate the stress acting on a single 
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atomic volume. The absolute smallest applicable volume is often the unit cell or atomic 

Wigner-Sietz polygon where the relationship between number of atoms and volume at a 

given pressure and temperature is known. We take a virial stress definition [186]: 

1 1 2 2

1

1 1

2

N

na

mv v r F r F      


 
      

 . (50) 

Ωa is the atomic volume; m is the mass; v is the velocity; α and β mark the Cartesian 

components; N is the number of paired neighbors looped over by the variable n; F1 and F2 

are the forces on a pair of atoms; and r1 and r2 are the positions of the atoms in the pairwise 

interaction. The kinetic energy term accounts for binned center-of-mass translational 

motion. For stress calculations we bin along the shock direction taking a virial stress 

definition [186] and reintroduce the kinetic energy term through a temperature calculation 

that accounts for binned center of mass motion.  

In all of the present simulations, we measure the stress in the shock direction, zz , 

the strain (ε), temperature (T), hydrostatic pressure (P), and deviatoric shear stress (τ).  The 

hydrostatic pressure is calculated as 

.
 (51) 

Lateral stresses (σxx and σyy), roughly equivalent to one another, are used in the calculation 

of deviatoric shear stress [187]: 

. (52) 

3.5.3. Temperature 

Temperature is calculated as:  

( ) / 3xx yy zzP     

 
1 1

2 2
zz xx yy   

 
   

 
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The mass of tantalum m = 180.95 u, kb is Boltzmann’s constant, NA is Avogadro’s number, 

and the components of the velocity vector are vx, vy, and vz. During spall failure we 

limitedly employ a two-dimensional definition of temperature (T∝(vx2+ vy2)/2k) in order 

to negate the need to subtract the center of mass translational velocity from the longitudinal 

velocity component, vz. This is critical when evaluating the temperature evolving around a 

three dimensional defect, such as a void, where an average center-of-mass translational 

velocity for a group of atoms may not be representative of the translational velocity at a 

particular point in space.    

3.5.4. Centro-Symmetry Parameter 

The centro-symmetry deviation parameter, commonly named the centrosymmetry 

parameter (CSP), is a robust method that relies on a characteristic that is common to simple 

cubic (sc), fcc and bcc structures: every atom is a center of inversion symmetry, which 

means that taking an atom as a center, its neighboring atoms are (centro)symmetric relative 

to it. This property can be used to distinguish these atoms from other structures when the 

local bond symmetry is not verified or it deviates from an established value. 

This metric for structural identification was developed by Kelchner et al  in 

equation form and practical applications can be found in several references [94,188]. 

𝐶𝑆𝑃 =  ∑|𝑅⃗ 𝑖 + 𝑅⃗ 𝑖+𝑁/2|
2

𝑁/2

𝑖=1

 (54) 

Here the N nearest neighbors, specified as an input parameter, of each atom are 

identified such that 𝑅⃗ 𝑖 and 𝑅⃗ 𝑖+𝑁/2 are the vectors from the central atom to a given pair of 
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opposing neighbor atoms. Opposite pairs of atoms for FCC, BCC, and HCP are indicated 

in Figure 3-8 by atoms of the same color. For an atom sitting on an expected lattice point 

the CSP determined by this sum will be 0. Thermal vibrations will not cause much 

fluctuation from 0, but defects that break symmetry will produce a larger (positive) CSP 

value. 

 

Figure 3-8. Centro-Symmetry Parameter (CSP) distinguish between plastically deformed regions 

of dislocations and stacking faults (asymmetry) from purely elastically deformed regions (which 

would have symmetry). From [189]. 

 

Figure 3-9. 12 nearest neighbor atoms surrounding a FCC center atom, where the 3 dashed atoms 

belong in plane A (red), the 7 atoms belong in plane B (green) and the last 3 dotted atoms belong 

in plane C (blue). 

Figure 3-9 shows a schematic representation of ABC packing where a central atom 

in fcc is surrounded by 12 close neighbors, diametrically opposed in pairs. Note that bcc 

structures have 8 neighbors (though the second shell is often considered, totaling 14) and 

sc have 4. As seen in its definition, the CSP parameter is just a scalar quantity and therefore, 

its applicability to oriented defective structures is limited. The parameter is not suitable for 
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treatment of hcp, diamond cubic (dc) and some other structures that do not have the 

symmetrical characteristic described before. The identification of defects with this method 

is significantly affected by elevated temperatures, as shown by Stukowski [190]. 

3.5.5. Common Neighbor Analysis (CNA) 

Albeit at a higher computational cost compared to CSP, structure analysis 

algorithms that employ high-dimensional signatures to characterize atom arrangements are 

usually more effective to discern between structures, especially in systems where phase 

changes may be present. The Common Neighbor Analysis (CNA) is one of this methods. 

Proposed by Honeycutt and Andersen [191] and later further developed by Faken and 

Jonsson [192] and Tsuzuki, Brancio, and Rino [189], the CNA computes a characteristic 

signature from the topology of bonds that connect an atom to its surrounding neighbors. 

The neighborhood of an atom is defined by a cutoff distance so that all the atoms 

within that distance are said to be neighbors. Each neighbor is taken into account in the 

calculation of three characteristic numbers that are computed, yielding a triplet that when 

compared with a set of reference signatures allow the establishment a structural type to the 

atom whose triplet is evaluated. 

Unlike CSP, CNA can be used on non-centro-symmetric structures such as HCP 

crystals. The latter are centrosymmetric only if the c/a ratio is ideal, 1.633 (the metal that 

comes closest to ideal hcp is magnesium). To see how one of the triplets are computed, a 

representative Common Neighborhood Parameter (CNP) can be defined as: 

𝑄𝑖 = 
1

𝑛𝑖
 ∑ |∑(𝑅𝑖𝑘 + 𝑅𝑗𝑘)

𝑛𝑖𝑗

𝑘=1

|

2𝑛𝑖

𝑗=1

 (55) 
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The index j evaluates the 𝑛𝑖 nearest neighbors of atom i, and the index k evaluates 𝑛𝑖𝑗 

common nearest neighbors of atom i and atom j. This is visually represented in Figure 3-10 

where k atoms are common neighbors to atom i and atom j. 

 

Figure 3-10. CNA Analysis is derived based on the number of common neighbors (k) shared by an 

atom pair (i-j) [189]. 

The Adaptive Common Neighbor Analysis (a-CNA), recently proposed by 

Stukowski [190] takes CNA as a basis, and is particularly suitable for multi-phase systems, 

adapting the cutoff distance of the standard CNA to each individual atom depending on a 

reference structure for comparison purposes. The reader is referred to the cited article for 

a thorough explanation and example of the methodology. This method was also extended 

to the silicon system where second common neighbors are necessary as the diamond cubic 

system does not share common neighbors. It is important to note that the identification of 

structures depends on a robust and accurate library of CNP values for known structures.  

3.5.6. Coordination; Pair Correlation Function 

Coordination is defined through a static measure of the number of neighbors in a 

given spherical shell surrounding a given atom. The probability of an atom lying at a given 

radius away is defined as the pair correlation function, or radial distribution function, or 

g(r) and is represented in Figure 3-11 for bcc tantalum. The g(r) function for short, provides 

a means of characterizing the local and long range order of both crystalline and disordered 
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materials [193,194]. For a crystalline solid there are strong peaks that can be related to a 

structure factor through a Fourier transform of the g(r) function. This provides analogous 

results to diffraction patterns where characteristic lattice spacing constructively and 

destructively interferes. A coordination number can be evaluated through the first shell 

atoms represented by the atoms that contribute from 0 to the first trough.   

For simulations with free surfaces or voids, the coordination will decrease near free 

volumes. This can be used to roughly gauge void surfaces. Coordination is an important 

distinguishing feature for silicon as well. 

 

Figure 3-11. Pair correlation function of bcc Tantalum. 

It assists in distinguishing phase changes and between disordered regions where 

there can exist liquid and amorphous structures of varying density and thus varying 

coordination. The pair-correlation function can also help diagnose important characteristics 

of disordered regions such as preferred coordination and atomic arrangements.  

3.5.7. Dislocation Extraction Algorithm; Crystal Analysis Tool 

Detection of defects from crystalline structures is valuable, but the current state-of-

the-art is the differentiation of one defect from another. Two new tools by have been 

developed by Stukowski [185,190,195] termed dislocation extraction algorithm (DXA) 
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and Crystal Analysis Tool (CAT). The ‘sharpness’ of dislocations is seen in Figure 3-12 in 

contrast with CNA filtering. This enables a better determination of dislocation densities, 

since no dislocations are missed by superposition as shown by Ruestes et al. [196]. The 

voids from which these dislocations emanate are visible in DXA but cannot be easily 

distinguished by CNA. 

 

Figure 3-12. Comparison of (a) a conventional atomistic visualization using CNA filtering in 

tantalum and (b) a geometric line visualization of the dislocations provided by DXA. From [196].  

3.5.8. Orientation Imaging Map (OIM) 

Typical materials exhibit some degree of texture (non-random grain orientation 

distribution) imparted by processing or past deformation. Twinning is one such 

deformation mechanism that can impart texture by preferentially adjusting the orientation 

in soft grains. The first implementation of an orientation imaging map to atomistic 

simulations was accomplished by Rudd [197] and can be seen in Figure 3-13.  
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Figure 3-13. Orientation imaging map using Euler angles as proposed by Rudd [198].  

Ravelo et al. [95] also demonstrated an OIM mapping function in the application 

of the SPaSM code. The foundation of the method lies in a centro-symmetry-like 

formulation where nearest neighbors are located for each atom and an extended sample 

algorithm is provided in Appendix C.  

Wang et al. [199] also developed a methodology akin to electron backscattered 

diffraction in order to evaluate crystallographic orientation of neighboring grains. It is clear 

that grain orientation plays a major role in the mechanical response of individual grains 

and their collective behavior. Several other researchers have developed similar techniques.  

3.6. Interatomic Potentials 

The importance of an accurate and transferable interatomic potential cannot be 

stressed enough. It is for this reason that a significant portion of my work is dedicated to 

evaluating potential accuracy, applicability, and transferability. The accuracy of an 

interatomic potential, often shorthanded as potential, describes its ability to simulate 

correct behavior or properties in a well-defined, thus applicable, environment. A 

transferable potential describes its ability to predict real phenomena and properties without 

being explicitly fit to them. As the majority of potentials are likely fit to data beside the 



68 

 

    

 

regime typical to shock physics, it is critical to evaluate the transferability of the potential 

to high strains, pressures, and temperatures. 

A significant advancement in the field of computing metals was the development 

of the embedded atom model (EAM) by Daw & Baskes [200]. Further reading on the direct 

contributions of the embedded-atom method to material science and engineering can be 

found in a recent review article [201] and a historical comparison of its projected influence 

back in 1996 [202]. Our approach to understanding and simulating materials at the atomic 

scale has historically been semi-empirical. Parameters are drawn from experimental results 

and from quantum mechanics modeling (referred to as ab initio methods or with varying 

functionals representing spatially-dependent electron density termed density functional 

theory (DFT)). Interatomic potentials are then fit to parameters that commonly include 

elastic constants, cohesive energy, defect energies, and other measures of interest. Semi-

empirical potentials principally allow for simulations that would be otherwise prohibitively 

costly in terms of computation time.   

Interatomic potential development, specifically many-body potentials as applied to 

metals, stems from our basic understanding of how electrons operate in solids [203]. One 

ramification of spherically projected potential forms such as EAM is the difficulty of fitting 

to non-fcc metals [201]. For example, bcc is difficult to accurately fit to due to large 

contributions of d-shell electrons, and hcp is challenging due to a high degree of 

mechanical and structural anisotropy.  

Computational complexity continues to grow, evaluating a greater quantity of 

interactions and offering the possibility of increased realism. A valuable way to look at 

complexity was visualized by Plimpton and Thompson [204] and reproduced here in Figure 
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3-14. This illustration is similar to the familiar Moore’s law as expressed previously in the 

grain size “growth” of simulations. 

 

Figure 3-14. Increasing single CPU cost of running many-body potentials in seconds per atom per 

time step as a function of year. The black line is indicative of computational cost doubling similar 

to Moore’s law. From Plimpton et al. [204]. 

Implementation of increasingly accurate and costly interatomic potentials 

represents a desire to increase the reality, complexity, and accuracy of simulated systems. 

This goal is in conflict with the desire to extend molecular dynamics to increasing length 

and time scales. For a digital compendium of applicable potentials readers are directed to 

the Interatomic Potentials Repository Project [205] and the work of Sheng [206].  

3.6.1. Tantalum 

Among candidate models for MD simulations of bcc metals, Fe and Ta are the most 

prevalent. Fe is generally chosen in order to further develop our understanding of one of 

the most ubiquitous elements used in materials science as well as to explore pressure and 



70 

 

    

 

temperature-dependent solid-solid phase transitions. Tantalum is selected for the stability 

of its bcc phase with regards to both melting and phase change [207]. Specifically, Ta has 

a simple phase diagram that is not expected to exhibit solid-solid phase changes with 

pressure or temperature and has a high melting temperature that is useful in extreme 

molecular dynamics simulations. Ta is an excellent choice to gain a deeper understanding 

of the bcc crystal phase which, in general, displays increased temperature and strain-rate 

dependence in comparison with fcc metals.  

3.6.1.1. Embedded Atom Method 

The foundation of this method is to include delocalized interactions in addition to 

nearest neighbor contributions. The EAM potential takes the following form: 

,

1
( ( )) ( )

2
Tot i i i ij

i i j

E F R R   
 

(56) 

The first term evaluates the contribution of electron density, ρi, at each site, Ri, 

through a functional, F. The second term considers a short-range pair potential, , for each 

atom pair, Rij,  where the “½” avoids double counting. The embedding term essentially 

takes into account the entire environment of the atom. The relevant properties of two EAM 

potentials developed by Ravelo et al. [95] specifically suited for shock studies are shown 

below. The two potentials are denoted Ta1 and Ta2. The elastic moduli under tension and 

compression are shown in Figure 3-15. Cohesive energy as function of pressure is shown 

in Figure 3-16. 
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Figure 3-15. Left, pressure dependent Cij of Ta1 and Ta2. Right, Volume change as a function of 

hydrostatic pressure. EAM potentials as developed by Ravelo et al. [95].  

  

Figure 3-16. Cohesive energy as a function of hydrostatic pressure.  

3.6.1.2. Model Generalized Pseudopotential Theory 

Model Generalized Pseudopotential Theory (MGPT) lies between density 

functional theory and semi-empirical potentials, such as EAM or LJ, in terms of both 

accuracy and computational cost. The potential form was derived by Moriarty [208–211] 

and has been shown to be particularly useful for transition metal elements such as tantalum 

and uranium [212]. 
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Hij is a bond matrix, 𝐸𝑣𝑜𝑙 is a volume dependent constant, and 𝜑 is a pair-wise-

energy function. As indicated by the indices i through m, the potential is evaluated for each 

close pair of atoms, akin to an EAM potential, and an additional energy term is calculated 

for each n-tuple, i.e. each pair triplet, and quadruplet, through the traces of products of 

bond matrices. This functional form is implemented into the LAMMPS code as of 2016 

with strong scaling [213]. The strength of this functional form lies in its ability to evaluate 

non-spherical behavior through 3- and 4-body terms that are better able to capture the 

energies of non-spherical d and f shell electrons as compared to the spherical projection of 

the EAM embedding function. 

3.6.1.3. Spectral Neighbor Analysis Potential 

The spectral neighbor analysis potential (SNAP) developed by Thompson et al. [28] 

uses bispectrum components to represent the local neighborhood of each atom. It is similar 

in framework to that of Gaussian Approximation Potentials (GAP) developed by Bartok et 

al. [214,215]. SNAP, unlike GAP, assumes a linear relationship between atom energy and 

bispectrum components.  

1 0

1

( ,... ) i i

K
i i i i

SNAP K k k

k

U B B B
  



 
 

(58) 

The energy, U, of atom i is expressed as a weighted sum of K bispectral compoents, Bk
i, 

using linear interpolation coefficients, βk
αi, which depend on the snap “element”, αi. 
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3.6.2. Silicon 

The mechanical properties of silicon continue to be extensively studied under 

numerous conditions, including deformation at extreme stresses and ultra-fast strain rates. 

Regarding atomistic simulations, silicon is one of the most studied elemental materials 

alongside iron, due its technological relevance. Therefore, there are a large number of 

empirical potentials fit to address different scenarios, including thermal properties and 

melting [216,217], dislocation properties [218,219], phase transformations [220], defects 

and disordered phases [221–223], etc. A comparison of some potentials can be found 

[216,224]. However, none of these potentials have been developed specifically for the 

conditions achieved during shock loading and care must be taken to evaluate their 

transferability. Oleynik et al. [225] carried out large-scale shock simulations and showed 

that shocks could heal defects in bulk single crystal silicon. In another study [226] they 

showed that the Stillinger-Weber (SW) potential provided stress-strain curves for the 

diamond-cubic structure that compared well with ab-initio results when the strain is below 

15-20% corresponding to shear stresses below 7.5 GPa and a subsequent investigation 

[227] reproduced two-wave shocks consisting of a plastic wave preceded by an elastic 

precursor using the environmentally dependent interatomic potential (EDIP). Work by 

Mogni et al. [228] used a Tersoff-family potential and shocked Si along its <001> axis; 

analysis identified a phase transition from dc to a new phase (Imma) and they note 

consistency with shear stress relief provided by direct shock-induced phase transition 

without intermediate plastic deformation.  Recent simulations of plasticity in Si 

nanospheres by Hale et al. [229] employ the SW potential and show a {110} slip response 

in addition to the expected {111} shuffle/glide-set planes.  MOD, a more recent Tersoff-
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family bond order potential by Kumagai [217], was developed to reproduce both elastic 

constants and melting point. MOD has been shown to describe reasonably well crystalline 

as well as disordered phases such as liquid and solid amorphous structure, the kinetics of 

the crystalline to liquid transition [230], and the decrease of melting temperature with 

pressure between -1 and 3 GPa [231].  

Of foremost importance is the phase diagram of silicon at the high pressures and 

temperatures as anticipated under shock compression. This need is emphasized by the 

variety of phase changes and number of possible potentials to select from. The SW 

potential was recently surveyed and the stability of a simple cubic allotrope, sc16, was 

shown at pressures (at 300 K) between 9.54 and 13.67 GPa where coexistence with β-tin 

is predicted [232]. Si-III, or bc8 was shown to be energetically unfavorable compared to 

sc16 for all temperatures and pressures. The negative Clausius-Clapeyron melting 

temperature with increasing pressure is again demonstrated and a triple point (quadruple 

point including hexagonal diamond (hd) structure of thermodynamically equivalence to dc) 

between dc, liquid, and sc16 at 1302 K and 7.28 GPa. The hexagonal diamond phase should 

not be overlooked as bc8 Si transforms to hexagonal diamond (also termed as the 

lonsdaleite structure) upon annealing [233]. In reality, hd is likely a manifestation of 

annealing twins or evidence of severe plastic deformation in the form of stacking faults 

and twinning as shown by experimental evidence from recovered meteorite impact or 

deformation within Earth’s mantle at elevated temperatures (600-1000 K) [234][235]. The 

transformation is described as relating to deformation twinning and often as a martensitic 

transformation at twin-twin intersections. One way to think of hexagonal diamond is the 

separation of a twinning super lattice with separation of just two bilayers [236]. The 
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transition of diamond cubic to hexagonal diamond is analogous to intrinsic stacking faults 

in face-centered cubic metals manifesting as hexagonal close packed structures.  

Other phase transitions in silicon under high pressure and temperature indentation 

have also been reported [237] and a recent review of diamond machining of silicon offers 

considerable insight into potential phase transformation and directional anisotropy of 

deformation in silicon [238]. Earlier, Boyer et al. demonstrated the metastability of a body 

centered tetragonal five (bct5) structure using the SW potential by the application of 

specific shear strains and emphasized likelihood of observing this phase lies in avoiding 

fracture, possibly through shock experiments [239]. Noted is the possibility of 

simultaneous application of hydrostatic pressure and deviatoric stresses to achieve the bct5 

structure. In general, shear stress is known to increase polymorphic transitions and reaction 

speeds [14–16], and has been shown to decrease the dc to β-tin transition from 11.4 to 3.9 

GPa and transition pressure can be evaluated as a function of orthogonal shear components 

[240–242].  Recent in situ Raman imaging of deformation under indentation report an 

observation of a new phase tentatively identified as bct5 [40][41], strengthening previous 

simulation results identifying a bct5 deformation pathway using a Tersoff potential [245–

248].  

In order to accurately perform computational experiments of shock-loaded silicon 

it was necessary to evaluate the ability of multiple potentials to represent properties critical 

to shock phenomenon in silicon. These properties and their importance are as follows: 

 Hugoniot relationships – namely relationships between particle velocity, volume, 

pressure, and shock velocity required to evaluate physical properties during shock 

compression. 

 General stacking fault energies – critical to preferential defect formation and defect 

stability. 
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 Pressure-dependent elastic constants – including bulk moduli and shear/pressure 

ratios derived therefrom. 

 Pressure-dependent melting temperature – necessary for materials such as silicon 

with a negative Clapeyron slope. 

 Shock-induced temperature rise – important for ductile to brittle transition of 

covalently bonded materials in addition to influencing the thermal barrier to 

dislocation motion/nucleation. 

3.6.2.1. Stillinger-Weber 

The Stillinger-Weber (SW) potential form is one of the most widely used forms for 

covalent materials, especially silicon, as it was developed for, and ice. The energy is 

computed by a linear combination of two and three body terms as follows: 

   2 3  , , ij ij ik ijk

i j i i j i k j

E r r r  
  

    (59) 

 2  

ij ijp q

ij ij ij

ij ij ij ij

ij ij ij ij ij

r A B exp
r r r a

  




      
                   

 (60) 

3.6.2.2. Tersoff 

The Tersoff bond order potential computes 2-body and 3-body terms in addition to 

environment and angular functions. The reader is directed to the papers of Tersoff 

[220,249,250] and Erhart and Albe [251] for the potential form, fitting functions, and 

modifications.  

𝐸 =
1

2
∑∑𝑉𝑖𝑗

𝑗≠𝑖𝑖

 (61) 

𝑉𝑖𝑗 = 𝑓𝐶(𝑟𝑖𝑗)[𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)] (62) 

𝑓𝐶(𝑟) = {

1               ∶ 𝑟 < 𝑅 − 𝐷
1

2
−

1

2
sin (

𝜋

2

𝑟 − 𝑅

𝐷
) :  𝑅 − 𝐷 < 𝑟 < 𝑅 + 𝐷

0               ∶ 𝑟 > 𝑅 + 𝐷

 (63) 
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𝑓𝑅(𝑟) = 𝐴𝑒𝑥𝑝(−𝜆1𝑟) (64) 

𝑓𝐴(𝑟) = −𝐵𝑒𝑥𝑝(−𝜆2𝑟)   (65) 

𝑏𝑖𝑗 = (1 + 𝛽𝑛𝜁𝑖𝑗
𝑛)

−
1
2𝑛 (66) 

𝜁𝑖𝑗 = ∑ 𝑓𝐶(𝑟𝑖𝑘)𝑔(𝜃𝑖𝑗𝑘)𝑒𝑥𝑝[𝜆3
𝑚(𝑟𝑖𝑗 − 𝑟𝑖𝑘)

𝑚]

𝑘≠𝑖𝑗

 (67) 

𝑔(𝜃) = 𝛾𝑖𝑗𝑘(1 +
𝑐2

𝑑2
−

𝑐2

[𝑑2 + (cos 𝜃 − 𝑐𝑜𝑠𝜃0)2]
) (68) 

 

Table 3-2. Parameters that are applied in equations of EA, EA2, and MOD potentials. 

 EA EA2 MOD 

A [eV] 2145.7128 1899.386 3281.5905 

B [eV] 219.521624 361.557 121.00047 

𝜆1 [1/Å] 2.83318929 2.615479 3.2300135 

𝜆2 [1/Å] 1.53810493 1.66591 1.345797 

𝜆3 [1/Å] 0 0 - 

𝜂 - - 1 

𝜂 × 𝛿 - - 0.53298909 

𝛼 - - 2.3890327 

β 1 1 1 

𝛽̅ - - 1 

𝛾 0.114354 0.09253 - 

c1 - - 0.20173476 

c2 - - 730418.72 

c3 - - 1000000.0 

c4 - - 1 

c5 - - 26 

c 2.00494 1.13681 - 

d 0.81472 0.63397 - 

h - - -.365 

m 1 1 - 

n 1 1 .93810551 

R [Å] 2.82 2.9 3 

D [Å] 0.14 0.15 0.3 

cos (𝜃0) -0.259 -0.335 - 
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The modified Tersoff potential employs modifications to Equation 67 and 68 as 

follows. Full details can be found in Kumagai et al. [217]. 

𝜁𝑖𝑗 = ∑ 𝑓𝐶(𝑟𝑖𝑘)𝑔(𝜃𝑖𝑗𝑘)𝑒𝑥𝑝[𝛼(𝑟𝑖𝑗 − 𝑟𝑖𝑘)
𝛽]

𝑘≠𝑖𝑗

 (69) 

𝑔(𝜃) = 𝑐1 + 𝑔𝑜(𝜃)𝑔𝑎(𝜃) (70) 

𝑔𝑜(𝜃) =
𝑐2(ℎ − 𝑐𝑜𝑠𝜃)2

𝑐3 + (ℎ − 𝑐𝑜𝑠𝜃)2
 (71) 

𝑔𝑎(𝜃) = 1 + 𝑐4exp [−𝑐5(ℎ − 𝑐𝑜𝑠𝜃)2] (72) 

 

Figure 3-17. Left, pressure dependence of the elastic modulus of silicon.  Right, pressure 

dependence of the ratio of maximum shear over pressure. 

Figure 3-18 shows the GSFE and the melting temperature as a function of pressure 

calculated by three methods. Molecular dynamics simulations using the MOD potential 

were conducted by taking a single phase system, initially diamond cubic in structure, 

consisting of 27,000 atoms (15x15x15 diamond unit cells, with 8 atoms each) thermalized 

to a given temperature. The sample was then uniaxially compressed, while maintaining a 

constant temperature by a NVT ensemble.  
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Figure 3-18. General stacking fault energies for the MOD potential plotted by displacement in terms 

of 1/2[110] Burgers vector. Melting curve for silicon under dynamic compression illustrating 

kinetic effects. 

Melting is identified when a liquid cluster with more than 10 atoms is identified. 

Liquid phase was determined based on coordination, with a radial cut-off of 0.295 nm, 

corresponding to the maximum expected bond length. Liquid silicon atoms have 

coordination 6 (experimental value of 6.4), compared to 4-cooredinated solid-phase atoms. 

We note that there is a bias in the results since uniaxial compression might lead to a non-

spherical coordination shell, but this produces marginal error due to the large separation 

between first and second neighbor shells of diamond-cubic structure. Complications may 

arise if the beta-tin or other structural change is present due to the second neighbor shell 

decreasing to near 0.32 nm for several high pressure allotropes. 

3.6.2.3. Environmentally Dependent Interatomic Potential 

The environmentally-dependent interatomic potential (EDIP) computes 2- and 3-

body interactions. Note that SW is limited to 2-body interactions. The 3-body interaction 

is indicative of a consideration for the atomic “environment” of the atom, hence the name 

“environmentally-dependent”. The potential was developed by Bazant et al. [221] and 

Justo et al. [222].  
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𝐸 = ∑𝜙2(𝑅𝑖𝑗 , 𝑍𝑖) +

𝑗≠𝑖

∑ ∑ 𝜙3(𝑅𝑖𝑗 , 𝑅𝑖𝑘, 𝑍𝑖)

𝑘≠𝑖,𝑘>𝑗𝑗≠𝑖

 (73) 

𝜙2(𝑟, 𝑍) = 𝐴[(
𝐵

𝑟
)
𝜌

− 𝑒−𝛽𝑍2
]exp (

𝜎

𝑟 − 𝑎
) (74) 

𝜙3(𝑅𝑖𝑗 , 𝑅𝑖𝑘, 𝑍𝑖𝑗𝑘) = exp(
𝛾

𝑅𝑖𝑗 − 𝑎
) exp (

𝛾

𝑅𝑖𝑘 − 𝑎
) ℎ(𝑐𝑜𝑠𝜃𝑖𝑗𝑘 , 𝑍𝑖) (75) 

𝑍𝑖 =
1

2
∑ 𝑓(𝑅𝑖𝑚)

𝑚≠𝑖

     𝑓(𝑟) = {

1               ∶ 𝑟 < 𝑐

exp (
𝛼

1 − 𝑥−3
) :  𝑐 < 𝑟 < 𝑎

0               ∶ 𝑟 > 𝑎

 (76) 

ℎ(𝐿, 𝑍) = 𝜆[(1 − 𝑒−𝑄(𝑍)(𝑙+𝜏(𝑍))
2

) + 𝜂𝑄(𝑍)(𝑙 + 𝜏(𝑍))
2
] (77) 

𝑄(𝑍) = 𝑄0𝑒
−𝜇𝑍         𝜏(𝑍) = 𝑢1 + 𝑢2(𝑢3𝑒

−𝑢4𝑍 − 𝑒−2𝑢4𝑍) (78) 

The reader is directed to the original papers for a full definition of the variables.  

3.6.2.4. Evaluation of Potentials 

There is a large spread in experimental results [250,252–257], and MD simulations 

agree reasonably with many these experiments in the range of interest. In order to evaluate 

which silicon potentials were suited to shock conditions, a preliminary evaluation of the 

elastic constants of dc Si as a function of pressure was conducted; under the effect of shock 

compression, physical properties vary along with the increment of pressure. Results are 

compared with ab-initio calculations completed by Karki et al. [258]. A reactive force field 

(reaxFF [259]) is also included for comparison. As seen in Figure 3-19, as compression 

increases, C11 increases for all potentials except the curves simulated with SW and ReaxFF 

[259]. MOD provides the best fit to the ab-initio results, followed by EA2. Notably, both 

SW and EA significantly underestimate C44.  



81 

 

    

 

 

Figure 3-19. Cij of eight interatomic potentials as compared to DFT results by Karki et al. [258]. 

Melting was previously evaluated for many potentials by Mazhukin et al. [260] and compared with 

experimental points, a linear Clausis-Clapeyron relationship and a thermodynamic liquidus curve 

from Deb et al. [261]. Pressure dependent melting temperature from potentials as evaluated by 

Mazhukin et al. [260] and theoretically by Deb et al. [261]. 

Results for the melting temperature as a function of pressure are drawn from 

Mazhukin et al. [262] and limited experimental data. These data are compared with a linear 

Clausius-Clapeyron equation and an analytical calculation by Deb et al. [261]. Several 

additional points are calculated here using a 2-phase method (see Appendix E). MOD, SW, 

EDIP, and MEAM most accurately capture the trend of the melting curve. Overestimates 

of the decrease in Tm with increasing P may lead to an underestimation of Tm with 

increasing pressure which may influence its tendency to favor disordered states at elevated 

temperature and pressure. EA and EA2 substantially overestimate the melting curve, 

suggesting that amorphization as well as melting may be suppressed.  

Additionally, several locus states on the shock Hugoniot were mapped using the 

multi-scale shock technique (MSST) [263]. The relationship between the shock and 
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particle velocities are fundamental to the nature of the shock wave. Figure 3-20a presents 

the plot of the shock velocity, Us, versus the particle velocity, Up, for EA, EA2, EDIP, 

MEAM, MOD, and SW potentials in comparison to available literature data. Figure 2b 

shows the relationship between shock pressure and volume. The inset of Figure 3-20b 

shows data in the elastic regime and early plastic regime. The high strain-rates used in the 

MD simulation extend the expected elastic limit to higher values than the experiments. 

MOD and EA2 agree well with the elastic shock response as expected from the Cij response 

reported in Figure 3-19.  

 

Figure 3-20. (a) Hugoniot of several potentials compared to experimental measurements 

[177,256,257,264–267].  (b) Pressure-volume diagram for the same potentials and experiments. 

Inset shows data in the sensitive area near the elastic-plastic transition as measured by laser shock. 

Chapter 3, in part, is a reprint of material that has been published: E.N. Hahn, M.A. 

Meyers, Grain-size dependent mechanical behavior of nanocrystalline metals. 646 (2015) 
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4. Results and Discussion 

4.1. Tantalum 

Tantalum was used as a model bcc metal; the goals are to characterize the 

deformation structures in both shock compression and release for mono and nanocrystalline 

specimens and to compare calculated results with experiments using high amplitude pulsed 

lasers; this effort complements the experimental work by Lu et al. [178,268,269] and 

Remington [270]. In order to understand the role of grain boundaries on defect generation 

and damage in extreme deformation, the energies of grain boundaries are calculated as a 

function of grain misorientation in Section 4.1.1.  Section 4.1.2 focuses on failure by 

spalling in mono and nanocrystals and establishes the effect of strain rate, comparing it 

with experimental results. Extrapolation to the inverse of the Debye frequency leads to an 

ultimate tensile strength, for the first time. This is done in Sections 4.1.2.1-6. The 

possibility of a phase transformation revealed by Lu et al. [178], is confirmed through MD 

calculations in Section 4.1.3. 

4.1.1. Bicrystals 

There has been a significant amount of work on bcc iron bicrystals, but more limited 

work on molybdenum and tantalum. For Iron, Σ5 boundaries have been evaluated, [271–

274], Σ3 [101,275], and other boundaries in response to deformation [102,276,277]. 

Molybdenum is limited to study of the Σ5 boundary [278,279]. Recent work by Wang et 

al. [280] investigated the properties of tantalum nanopillar bicrystals with twist boundaries. 

Twist boundaries do not require mirror symmetry across the boundary and, thus, periodic 
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boundary conditions are not possible in transverse directions either. This requires either 

vast sample sizes to negate surface effects, or the study of nanopillar structures.  

There have been numerous studies using both simulations and experiments to 

understand the GB structure and energies of fcc materials [127,281,282]. These studies 

have included both symmetric and asymmetric tilt boundaries on (111), (100), (110) and 

(113) planes [127,174].  In contrast, only a handful of studies exist on bcc transition metals 

including the work of Wolf on Fe/Mo [126,283], Yeşilleten and Arias on Mo [284], 

Ratanaphan et al. on Fe/Mo [128], and Shibuta et al. on Fe [275].  However, there are only 

a few experimental and/or simulation reference points for atomistic GB structures in 

tantalum; the principal reference is the structure of the Σ5 (310)/[001] symmetric tilt 

boundary investigated experimentally and theoretically by Campbell et al. [285,286].  

Hence, there is clearly a deficiency in available data for GBs in Ta within the current 

literature. 

Owing to the lack of grain-boundary energies available for bcc tantalum, 

preliminary work of this thesis was to design and implement a code to scan energies as a 

function of tilt boundary and misorientation. These results are visualized in Figure 4-1 and 

detailed descriptions of their basis, orientations, coincident site lattice value, and exact 

energies can be found in Appendix C. Figure 4-1 shows the calculated GBEs as a function 

of misorientation angle alongside previous results for other bcc elements. GB structures 

presented in subsequent figures are indicated by dashed lines. Based on calculations of 

surface energies for bcc transition metals, the energy of tantalum interfaces are bracketed 

between iron and molybdenum [287]. We note that it is to be expected that GBEs calculated 



86 

 

    

 

in this work will be slightly lower than those calculated by tight binding or ab-initio 

methods [282,288].  

Minima in energy are observed at specific misorientations for each of the tilt axes 

similar to fcc materials.  However, in our case, the most prominent minimum in energy is 

associated with the Σ3<110> boundary shown in bold in Figure 4-1b. The Σ3 boundary is 

a coherent twin boundary in bcc metals and can play a critical role in plasticity by 

determining the propensity to nucleate deformation twins. Pressure and shear can alter 

barriers to deformation such as stacking fault energies and the Peierls-Nabarro stress; 

relative energy barriers determine whether full or partial dislocations are produced to 

relieve strain and ultimately influence the kinetics of deformation.  
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Figure 4-1. Excess grain boundary energy as a function of misorientation for the four tilt axes 

<100>, <110>, <111>, and <112>. GBEs for Ta are shown as black asterisks and a complete 

description of all boundaries calculated in the present work can be found in the supplemental 

material. Also provided is relevant data for bcc Fe (blue) and bcc Mo (red) from empirical potentials 

by Wolf [126,283], Morita and Nakashima [289], and Tschopp et al. [120] showing similar trends. 

Figure 4-2 shows an extrapolation of the Fe and Mo grain boundary energies from 

Wolf [126,283] to Ta using the ratio of energies given above. It is clear that this method is 

insufficient to rigorously evaluate the grain boundary energies of tantalum, especially for 

the <011>, <111> and <112> orientations. One might imagine improving the predictive 

nature of our estimate by accounting for the differences in <100>, <110>, <111>, and 

<112> surface energies provided by Zhang et al. [287]. However, Table  indicates that the 
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energy ratios are all larger than 1.18 for Fe and 0.93 for Mo; by observing that the <011>, 

<111> and <112> grain boundary energy predictions are overestimates, the corrected ratios 

would not improve the extrapolation, only worsen it. This stresses the need to evaluate the 

energies of tantalum grain boundaries themselves, as accomplished in the current work.  

 

Figure 4-2. Grain boundary energy as a function of misorientation for four tilt axes. GBEs for Ta 

are shown as black asterisks. Also provided is predicted/extrapolated values from Wolf [126,283] 

using the energy values in Zhang et al. [287]. The gray region represents the predicted range of 

values for grain boundary energies for Tantalum. 

Figure 4-2 also shows that the errors in extrapolated energy are commonly in the 

range of 15-20% and that the energy of the Σ5 boundary (the only grain boundary in Ta for 

which an energy value in literature exists) is a particularly poor benchmark due to the 

complexity and broken symmetry of this structure. This further emphasizes that the nature 
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of broken symmetry leads to structures with energies that simply cannot be determined 

from prior literature alone. 

Table 4-1. Surface Energy (mJ/m2) for bcc Ta, Fe, and Mo. Data from Zhang et al. [287]. 

 γ-Ta  γ-Fe γ-Ta/γ-Fe γ-Mo γ-Ta/γ-Mo 

γ100 3090.8 2565.1 1.2 3260.7 0.95 

γ110 2790.2 2369.6 1.18 2920 0.96 

γ111 3263.7 2684.9 1.22 3429.2 0.95 

γ112 3437 2582.7 1.33 3255.4 1.06 

 

Two GB structures for the Σ3 twin boundary are obtained using EAM: a structure 

with a well-defined mirror plane (Σ3, Figure 4-3a) and a structure with no mirror plane 

(Σ3’, Figure 4-3b). The Σ3’ boundary is quasi-symmetric, i.e. grain normals are equal and 

opposite in sign, but crystallographic mirror symmetry across the GB plane is broken [290]. 

The Σ3’ structure can be obtained by shearing the coherent Σ3 boundary in the boundary 

plane.  As a result, the boundary takes a zig-zag configuration (light blue atoms) which 

decreases its energy.  In fact, the Σ3’ has the lowest observed energy of 278 mJ/m2 in 

comparison to 293 mJ/m2 for the Σ3 boundary. In order to verify the unique low energy 

structure of the Σ3’ we also used the SNAP potential. Figure 4-3c shows the SNAP 

predicted Σ3’ which also has a structure and energy similar to the one predicted by EAM, 

indicating that the Σ3’ structure is not a potential-dependent artificial GB structure. 

Simultaneously published, the structure was shown to be important to competing twinning 

mechanisms in bcc metals Shi and Singh [291].  
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Figure 4-3. Configurations of Σ3⟨011⟩ boundary colored by eV/atom shown for two projections. In 

each projection the GB normal is horizontal. (Left) EAM symmetric twin boundary.  (Middle) 

EAM quasi-symmetric boundary with broken mirror symmetry in both (110) and (111) projections. 

(Right) SNAP quasi-symmetric boundary. 

Higher energy Σ3 boundaries (1027 mJ/m2) are also identified when the GB plane 

is changed to (111) from (11 2 ) (tilt: <011>). Ab-initio calculations of the low energy Σ3 

boundary in tungsten [292] and iron [101] only evidence fully symmetric structures, but 

such symmetry was reinforced by small system size in combination with a priori atom 

displacements and minimizations.  Broken and/or conserved mirror symmetry ultimately 

serves as a primary indication of atomic accuracy in bcc transition metal potentials owing 

to the strong influence of non-spherically symmetric d-orbitals. 

 Similarly, the Σ5 boundary (Figure 4-4) structure breaks mirror symmetry; this 

contrasts early work of Ochs et al. [293], which shows, using simulations, that the Ta Σ5 

GB has full mirror symmetry.  However, the Σ5 is composed of “B” structural units 
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analogous to those identified in Fe [120]. The presently calculated GBE of 1318 mJ/m2 is 

markedly less than the previously predicted 1544 mJ/m2 [293]. More recent calculations 

using model generalized pseudopotential theory (MGPT) do predict a break in mirror 

symmetry for this boundary [285]. Ab-initio work by Ochs et al. [293] does, however, 

identify other bcc transition metal elements (Mo, W, and Nb) that break mirror symmetry. 

For Nb and Mo, there exist experimental high-resolution transmission electron microscopy 

(HRTEM) evidence for both structures with conserved and broken symmetry [278,294]. 

The relative shift across the boundary identified here for Ta is 0.81 Å (as measured by the 

vertical displacement between opposing red atoms in Fig. 3b) as compared to ~0.78 Å for 

Mo.  

 

Figure 4-4. Σ5 boundary visualization with color according to atomic potential energy in eV/atom. 

(Top) Boundary structural unit B identified in the typical fashion [295]. (Bottom) Projection 

illustrating broken mirror symmetry shift. 
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Relative to the respective lattice parameter (3.304 Å for Ta and 3.147 Å for Mo) 

the displacements are within ~1% of one another. If instead the shift is measured as the 

distance between atomic planes projected across the boundary, the shift is 0.55 Å, showing 

superb agreement to the experimentally observed shift of ~0.55 Å in Ta [285] (the MGPT 

value is not explicitly stated [285]).   

 

Figure 4-5. Assorted high coincident site density boundary structures for each of the four tilt axis 

with equivalent coloring scheme as Fig. 3. From left to right the boundaries are: Σ13(051)⟨001⟩, 
Σ11(332)⟨011⟩, Σ27(552)⟨011⟩, Σ7(231)⟨111⟩, Σ7’(231)⟨111⟩, Σ13(341)⟨111⟩, Σ11(131)⟨112⟩. 

Other boundaries corresponding to various energy minima in Figure 4-1 were also 

explored.  Figure 4-5 shows selected boundaries for each of the tilt axes. The structure of 

the Σ13⟨001⟩ boundary is similar to the HRTEM observations of boundaries in Mo by 

Morita and Nakashima [289]. The Σ11⟨011⟩ structure shown in Figure 4-5 also agrees well 

with the density functional theory (DFT) calculations of  Σ11 boundary in iron [101]. A 

large majority of the ⟨112⟩ tilt axis boundaries exhibit large (periodic) boundary unit cells 

such as that shown for the Σ11⟨112⟩. There exist multiple other predicted boundary 

structures that break mirror symmetry such as the Σ27, Σ7’ and Σ13⟨111⟩. The Σ7 boundary 

also exhibits both a symmetric and quasi-symmetric structure of nearly equivalent energies 

further suggesting that the phenomenon of symmetry breaking is prevalent for many 

boundaries in bcc transition metals. 
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4.1.2. Tensile “Spall” Failure 

At high strain rates, spallation or tensile damage caused by the nucleation, growth, 

and coalescence of voids is of critical interest due to the prevalence of spall damage in 

engineering applications. The difficulty in obtaining comprehensive material information 

during high-strain rate experimentation compounds the need for time-resolved data at the 

spall plane. There is a long history of shock-induced spallation spanning tensile strain rates 

from 103-108 s-1 using conventional explosive and gas-driven loading to the more modern 

laser-driven loading [23,32,35,205–210]. The majority of experimental approaches are 

limited to indirect methods of observation such as free surface velocimetry [211–213], 

postmortem metallographic analysis [50,300,301], or other imaging techniques [76]. 

Furthermore, for state-of-the-art laser-driven experiments the upper bound of repeatedly 

and reliably achievable strain rates is ~109 s-1 [54,302]. Nevertheless, current spall models 

strongly rely on empirical data or often semi-empirical continuum and multi-scale models 

of void nucleation and growth theories for which many parameters are critically under-

informed.  

The deformation of ductile metals relies on the materials’ capacity to develop 

certain types of plasticity, such as the nucleation and motion of dislocations.  For 

polycrystalline materials, grain boundaries often serve as heterogeneous nucleation sites 

and the structural deviations and frequency of boundaries plays a critical role in plasticity. 

Voids can nucleate at a lot of locations. We know grain boundaries are important and we 

need to quantify and explain why voids form at varying topological locations. During 

ductile tensile failure, the preferential sites for void nucleation, prior to their growth and 

coalescence, are thought to be related to the defective interface structure which may be 
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characterized by coincident site density, free volume, excess energy, boundary specific 

structural units, and misorientation, among other measures 

[59,104,108,109,111,174,175,303,304]. The propensity of the interface or defect structure 

to deform or contort by means other than cohesive failure is often associated with a greater 

spall strength - an important measure of material strength under tension. 

To date, most molecular dynamics investigations of tensile failure in bcc 

polycrystalline tantalum have evidenced nucleation that is limited to grain boundary sites, 

simulations have also evidenced intergranular cracking [158,280,305,306]. Studies of 

polycrystals often neglect discussing why certain boundaries fail while others survive. 

Furthermore, results from previous literature may be strongly related to deficiencies 

stemming from the Voronoi polycrystal construction method producing non-equilibrium 

grains that persist through simple relaxation methods such as annealing. Relatedly, the 

typical small grain sizes or cross sections used in molecular dynamics simulations may 

present the following limitations: leave little intragranular room for the development of 

twin-twin intersections; may develop plasticity via grain boundary sliding or grain-grain 

coupled motion that limit the density of twins; provide mechanisms by which de-twinning 

occurs reducing twin density, may sample too few grains due to computational limitations; 

or may have a larger density of grain boundaries close to the spall plane available for 

nucleation.  

MD simulations of spallation and void-related plasticity under non-shock 

conditions have primarily been focused on face-centered cubic metals [112,176,307–310], 

but, more recently, body-centered cubic metals have seen more study [158,196,310–313].  
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4.1.2.1. Specific Spall Methods 

 Previous studies of tantalum were limited in cross sectional area [314] or of 

different focus and much space remains for directed MD simulations of shock-induced 

spall. In order to directly compare and contrast simulations with experiments it was 

necessary to devise a means to collect the free surface velocity. Figure 4-6 shows the result 

of a script written to track the rear surface position and then calculate a time derivative.  

 

Figure 4-6. Illustration of free surface position and its temporal derivative to give free surface 

velocity.  

The subsequent figures illustrate how sample dimensions were determined by 

taking into account computational costs, appropriate boundary conditions, and isolation of 

variables relating to the spall process. The length variation shown below in Figure 4-7 is 

used to determine the pressure decay as the shock pulse traverses a sample. In terms of free 

surface velocity this is determined to be:
21.08510

0

Z

p pU U e  . Here z is the distance traveled 

by the wave in nanometers.  
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Figure 4-7. Simulated VISAR showing (a) shock pulse attenuation with increasing sample length 

and (b) effect of cross section on pullback signal.  

Signals that do not display a pull-back signal represent samples that do not undergo spall. 

The effect of cross section can be seen in Figure 4-7 and for dramatic effect the lowest and 

highest values are shown in Figure 4-8. 

 

Figure 4-8. Cross section determined spall pullback response. The difference in signal is 

representative of defects and voids interacting with themselves across periodic boundaries. Inset 

corresponds to the small run where voids interact with themselves across periodic boundaries.  

For subsequent runs the length was at least 150 nm (~454 lattice parameters) and 

cross sections of at least 1000 nm2 (100 x 100 lattice parameters). By controlling the piston 

with a specified function (Section 3.4.3) the simulated VISAR curve and the downslope 

indicative of tensile strain-rate slope was able to be controlled as shown in Figure 4-9.  
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Figure 4-9. Controlled deramp/deceleration of piston velocity controls the release rate as measured 

by the free surface velocity as a function of time.  

Figure 4-10 demonstrates that the limitation of this technique is computational time. 

For longer decelerations, as required for lower strain-rates (approaching those of current 

experiments), the sample length must increase to allow for a majority of the wave form to 

be completed. 

 

Figure 4-10. Strain rate as function of deceleration time and required sample length. Green indicates 

simulations that are easily achievable given current computational resources while red represents 

those that are currently impossible. The yellow and possibly orange lines may be achievable with 

dedicated allocations.  
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Figure 4-11. Spall damage as a function of sample length, each with an equivalent particle velocity 

drive.  

Furthermore, a longer sample length also requires a longer simulation time to allow 

the wave to reach the rear surface and reflection into tension. Longer samples also 

introduce a need to account for the decay of the shock wave as it transverses the length of 

the sample as previously stated. For a particle velocity of 0.75 km/s, samples up to 225 nm 

in length show spall failure, but the decayed wave in a 300 nm sample is not sufficient to 

open a spall void as shown in Figure 4-11.   

4.1.2.2. Spall Strength as a Function of Strain Rate 

 Using the above mentioned techniques and the methods presented in Section 3.4.3, 

Figure 4-12 shows spall strength as a function of strain rate, including experimental and 

simulation results from literature. The plot confirms the pertinence of using molecular 

dynamics to explore the extreme strain-rate regime. Points are colored according to their 

grain size; black points represent [001] single crystals, blue/purple represent polycrystals, 

and red points represent nanocrystals.  
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Figure 4-12. Compilation of reported spall strength as a function of strain rate. Different colors 

refer to different grain sizes: single crystal (black), polycrystal (blue), nanocrystal (red), ultra-fined 

grained (purple) and unknown (brown). Data are from multiple sources, including both 

experimental and simulation work [315,296,300,316,54,297,53,317–319,75,320,321,55,34]; 

experiments are closed symbols and simulations are portrayed as open symbols (with strain rates 

greater than the phonon frequency marked with crosses). A full set of references is provided in the 

supplemental material. The ultimate tensile strength is indicated by a horizontal dashed line at ~ 33 

GPa. 

There is a clear difference in slope between the power law curves fit to mono, poly, 

and nanocrystalline data (Figure 4-13) and key aspects of failure within single crystalline 

and nanocrystalline samples are subsequently detailed. The behavior of materials under 
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extreme conditions is often modeled using hydrodynamic codes such as HYADES. A 

popular formulation of the spall strength as a function of strain rate is the strain-rate 

dependent Cochran-Banner [322] model. The parameters given by Steinberg [323] are: 

σ0=4.4 GPa and m=0.011.  

 Temperature plays an important role in the failure process and the effect is also 

described. The theoretical cohesive stress max, reached at strain rates exceeding the Debye 

frequency is similar for varying grain sizes, but does show a residual effect of the 

orientation/grain size.   

 

Figure 4-13. Power-law fits for single (black, left), polycrystal (blue, center), and nanocrystal (red, 

right) tantalum spall strength vs strain rate data. Solid data markers are experiments and open 

markers are simulations. Points with crosses through them were not included in fits. With 

increasing grain size the pre-factor increases and the exponent decreases.  
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Table 4-2. Simulations of single crystalline tantalum. Measurements at the peak tensile stress in the 

shock direction (σzz) and the corresponding hydrostatic pressure (P), deviatoric shear stress(τ), 

temperature (T), and strain (ε). 

 

 

 

 

Table 4-3. Simulations of nanocrystalline tantalum, d = 21 nm. Measurements at the peak tensile 

stress in the shock direction (σzz) and the corresponding hydrostatic pressure (P), deviatoric shear 

stress(τ), temperature (T), and strain (ε).  

 

 

Method (s-1) σzz (GPa) P (GPa) τ (GPa) T (K)  

QI 107 
12.1 11.7 0.29 604 0.079 

QI 108 12.8 12.2 0.51 647 0.087 

QI 109 14.0 13.0 0.72 650 0.103 

QI 3x109 15.0 13.8 0.87 642 0.117 

QI 1010 15.9 14.8 0.84 644 0.139 

Piston 1.65x1010 19.1 18.4 0.53 649 0.176 

Flyer 1.75x1010 18.4 17.7 0.57 910 0.174 

QI 2x1010 16.9 15.8 0.76 667 0.160 

QI 3x1010 17.5 16.6 0.70 701 0.179 

QI 6x1010 19.3 18.2 0.77 788 0.224 

QI 1011 20.8 19.5 1.03 898 0.270 

QI 2x1011 22.9 20.7 1.67 1111 0.340 

QI 3x1011 24.3 21.4 2.21 1174 0.380 

QI 1012 28.2 22.8 4.04 1307 0.485 

QI 1013 31.1 22.9 6.17 619 0.565 

Method (s-1) σzz (GPa) P (GPa) τ (GPa) T (K)  

QI 108 8.5 6.3 1.63 500 0.057 

QI 109 10.2 7.8 1.80 523 0.070 

Piston  7.8x109 17.6 15.3 1.73 800 0.137 

QI 1010 14.4 12.0 1.81 620 0.123 

QI 1011 19.8 11.6 6.17 711 0.144 

QI 1012 31.1 16.6 10.92 484 0.224 

QI 1013 33.7 18.1 11.73 361 0.262 

 

 
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Key results at tensile strain rates spanning 107-1013 s-1 are located in Table 4-2 and 

Table 4-3. In addition to the simulation method and tensile strain rate (which is directly 

imposed for QI, and indirectly for the flyer plate and piston methods), the peak tensile 

stress in the shock direction (σzz) and the corresponding hydrostatic pressure (P), deviatoric 

shear stress(τ), strain (ε), temperature (T) are given.  

 

Figure 4-14. Measured spall strength vs strain rate (from Tables 4-2 and 4-3). Also plotted is the 

Debye/phonon frequency on the right hand side of the plot as a dashed blue line; it is expected that 

the frequency decreases with expansion just as it increases under compression. Phonon frequency 

as a  function of negative pressure was extrapolated from Liu et al.[324]. Snapshots of quasi-

isentropic simulations of [001] single crystals at different strain rates - shown at maximum tensile 

stress. Dislocations are shown as dark lines, twin boundaries as transparent turquoise surfaces, and 

voids as transparent red surfaces. Regions of dislocation, twin, and de-cohesion dominated spall 

processes are separated by vertical dashed lines. The strains at which each frame is displayed are 

provided in Table 4-2 and 4-3. NEMD simulations (Piston and Flyer-Target methods) lie off the 

main lines primarily due to differences in stress state, having lower contributions of shear stresses 

that aid in nucleating defects. 
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The peak tensile stress (i.e., the spall strength) as a function of strain rate is 

graphically shown in Figure 4-14 for single crystals. Insets within the figure demonstrate 

which deformation mechanism is dominant at a given strain rate. Power law trends depicted 

as linear fits in the log-log plot illustrate that the kinetics of spall is deformation mechanism 

dependent. At strain rates greater than 5x1010 s-1 the mechanism governing tensile strength 

again changes.  

At elevated strain rates the material has significantly less time to respond to the 

applied stress and failure occurs primarily by de-cohesion of atoms (Figure 4-14 inset). 

This primarily occurs in areas of reduced density, such as at twins that have excess volume 

(and energy) within the boundary layer [61]. A complete analysis of extreme strain rates is 

left for future study – the possibility of phase change at tensile strains in excess of 0.25 

remains an open question [325] and exceeds the bounds the potential was fit to. The 

following tensile strain-rate regimes are delineated by their dominant deformation 

mechanism: dislocations,  < 109 s-1; twinning, 109 s-1 < < 5x1010 s-1; de-cohesion,  > 

5x1010 s-1. The curved vertical line on the right hand side of the figure depicts the Debye 

frequency as a function of tension, which serves as a good estimate for where the material 

should exhibit its ultimate tensile strength [326]. The upper limit of tensile strength is 

indicated by a horizontal dashed line and a discussion of its value will follow at the end of 

this section.   

4.1.2.3. Spalling of Single Crystalline Tantalum 

Single crystal simulations show that dynamic spall proceeds via the nucleation of 

several distributed voids at defects that are generated during compression as well as in 

tension. A time series of the flyer-target and piston simulations are shown in Figure 4-15. 
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The snapshots correspond to the time of maximum tensile stress (tmax) and 6, 4, and 2 ps 

before tmax as well as 2 and 4 ps afterwards. The local longitudinal stress state is represented 

by the atom’s color, blue corresponding to compressive stress and orange to tensile stress. 

Defects are marked in dark green and void surfaces in dark red. For the flyer plate system, 

tmax = 56 ps, and for the piston-driven system, tmax= 61 ps.  

 

Figure 4-15. Snapshots of the spallation process for flyer plate and piston methods shocked along 

[001] single crystal Ta. Snapshots are given at the time of maximum tensile stress (t
max

); and 2, 4, 

and 6 ps before and 2 and 4 ps after this time. For the flyer plate system t
max

= 56 ps, and for the 

piston-driven system t
max

= 61 ps. Stress, temperature, and volume profiles are provided in the 

supplemental material.  
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The difference in timing is in large part due to variances in pulse width/shape and 

the paths through which the waves travel. The spall plane for the flyer-driven system does 

not lie precisely at the geometrically prescribed location, but instead deviates 

proportionally to the change of the shock speed in the relative amounts of uncompressed, 

compressed, and expanded media the wave travels through, in addition to non-linear 

dispersion effects that cause the initial wave to broaden.  

For both loading conditions, we observe that voids in single crystalline tantalum 

nucleate at twin-twin intersections. Cross-sections must be large enough to allow for 

sufficient twin-twin intersections to produce realistic spall damage (refer back to Figure 

4-8).  

 

Figure 4-16. Site of first void nucleation during a Up = 0.75 km/s shock of 5-10-20 shock wave 

form (5 ps ramp, 10 ps hold, and 20 ps deramp). Twins are identified by green twin boundary atoms 

in the host 001 matrix. 

Figure 4-16 shows the location of an initial void nucleating at a twin-twin 

intersection. Compatibility dictates that local stress concentrations build at such 
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intersections and deviation from the bulk stress state is indicated on a per atom basis in the 

bottom row of Figure 4-16. Black atoms are defined by the void surface at t=48 ps and 

serve as tracker atoms in the 46, 47, and 49 ps timeframes.   

Two three-dimensional views are given in Figure 4-17 where it is shown that voids 

nucleate specifically at special junctions of the twin-twin intersection. This implies that 

twin size/thickness will have a strong role in determining where voids nucleate in single 

crystals.  

 

Figure 4-17. Three-dimensional views of void nucleation sites. Left, voids nucleate at the “tip” and 

“kinks” of twin-twin intersections. Void surfaces at t=48 ps.  

QI simulations at comparable strain rates show similar behavior with voids 

nucleating primarily at twin intersections where local stress concentrations arise (Figure 

4-18). Additionally, we identify interconnected symmetric and sheared Σ3 twin boundaries 

[327] (inset in Fig. 6) which indicates that deformation twinning in tantalum favors 

dissociated 1/12<111> partials traveling along adjacent {211} planes as opposed to 

1/6<111> dislocation glide [291]. The fact that all three simulation types (at comparable 
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strain rates) show similar defect and void mechanisms gives credence to comparisons 

between the methods.  

 

Figure 4-18. (a) Snapshot of twin structures at 26, 29, and 32 ps during QI expansion of a Ta [001] 

single crystal at a strain rate of 1010 s-1. Defective atoms are colored off white and void surfaces 

are colored light blue. All other atoms are colored according to their local longitudinal stress. The 

inset in the 26 ps frame shows the atomic configuration of a selected tensile deformation twin with 

both a symmetric and non-symmetric Σ3 twin boundary, previously shown to be important in the 

twinning process of bcc metals [291,327]. The first figure also highlights the [001] parent lattice 

and the intersection of 3 twins which results in a local stress buildup due to compatibility between 

the twinned and parent orientations.  

Figure 4-19 returns our focus to the piston NEMD simulation illustrating the 

evolution of twins and voids, as well as their relationship to the local longitudinal stress 

and temperature. Snapshots every 2 ps between 56 and 64 ps are shown highlighting the 
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early stages of void nucleation, growth, and rapid coalescence due to the proximity of the 

voids at high strain rates and high twin density. Three visualization schemes are shown. 

The top row gives atoms identified by their potential energy, which serves to 

highlight twins and void surfaces. The middle row colors atoms according to the local stress 

in the shock direction. This allows for the identification of local stress concentrations due 

to compatibility requirements within the twinned microstructure and also shows the rapid 

release and relaxation of tensile stress during the growth of voids.  

 

Figure 4-19. Evolution of voids from the early stages of nucleation, growth, and rapid coalescence. 

This piston-driven simulation contains a broad tensile pulse that passes through the system traveling 

to the left as the bulk motion continues to carry the system to the right. Shown in three different 

visualization schemes is a 50 nm x 50 nm transverse cross section 1.5 nm in thickness centered at 

110 nm along the shock direction. The shock direction is left to right. The top row colors atoms by 

their local potential energy and allows for precise visualization of atoms belonging to void surfaces 

(yellow color). The early stages of the void can be seen in the 56 ps timeframe and a surface 

meshing algorithm [184] is able to detect a void volume at 58 ps using a 0.5 nm probe sphere radius. 

The middle row depicts atoms according to their local longitudinal stress value; tensile stress is 

represented by a positive value (red) and compressive stresses by negative values (blue). The stress 

value is the average value of the individual atom and neighboring atoms within a 0.66 nm radius, 

or a 1.2 nm3 volume. The bottom row presents atoms according to a temperature evaluated for a 

local neighborhood, again evaluated spherically in a 1.2 nm3 volume. The maximum stress occurs 

at 61 ps, 5 ps after the first void nucleated.  
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The maximum tensile stress of 19.1 GPa occurs at 61 ps, 5 ps after the first void nucleates 

at 15.9 GPa. A growing void’s ability to relieve stress is proportional to its size. 

This relationship is a ramification of the reduced stress required to nucleate 

dislocations for larger voids [310] in addition to the greater number of dislocation 

nucleation sites (which is proportional to the surface area of the void) and increased volume 

that nucleated dislocations can expand into [328]. It is not until sufficient void growth that 

the stress relaxation rate equals and surpasses the stress rate. Lower strain rates, and thus 

lower stress rates, require less cumulative damage to relax the structure. The bottom row 

presents the local temperature, which increases drastically during void growth due to the 

irreversible visco-plastic work. The effect of increased temperature will be discussed in 

greater detail later in the manuscript.  

The propensity for deformation to occur via twinning or full dislocations depends 

on the strain rate (as well as grain size and orientation [95,313,329]). At lower strain rates, 

where dislocations are more favorable than twins, voids nucleate at individual dislocations 

or at nodes between them. This is visualized in Figure 4-20 for QI tension at a strain rate 

of 107 s-1. The system was tracked for porosity and dislocation density during the principal 

void nucleation event and subsequent void growth. A series of snapshots in time are 

presented in Figure 4-20 alongside the evolution of void volume and dislocation density.  

Our simulation corroborates the findings by Strachan et al. [314] that implicate a 

critical void volume prior to failure. In our simulation this occurs by the dynamic growth 

of a single critical void. Furthermore, previous calculations for void growth [310] are based 

upon dislocations “carrying away” volume from the growing void [64]. 
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Figure 4-20. Evolution of porosity and dislocation density during the critical void nucleation and 

growth event for a strain rate of 107 s-1. Insets show snapshots in time. The critical void nucleation 

site is along a dislocation running perpendicular to the loading direction.  Analysis is halted at 25.5 

ns due to significant interaction of the growing void field across periodic boundaries. Porosity and 

dislocation line lengths are evaluated using DXA.  

The volume transported by a dislocation can be considered, as a first 

approximation, as the length of the dislocation times a core area. In tension, the dislocation 

core is larger than at equilibrium (which is approximately the square of the Burgers vector, 

b2), measuring 10.7 Å2 at 25.3 ns (measured presently using a representative volume mesh 

[184] of defective atoms belonging to a dislocation core divided by the dislocation length).  

Figure 4-20 presents a calculation of dislocation density times the system volume (to give 

dislocation line length) multiplied by the average core area at each step. The analytical 

calculation begins at the critical void nucleation time, 25.3 ns. This time also corresponds 

to the minimum dislocation density as a consequence of dislocation annihilation in part due 

to the Bauschinger effect. 
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Figure 4-21 shows a magnified snapshot of the previous simulation at 24.5 ns; shear 

loops (attached to the void) and prismatic loops (detached) are identified. First, shear loops 

are emitted from the void surface. The edge component of the shear loops evolves, leaving 

behind the lateral sides, which have screw character. These can cross-slip into different 

{110} planes which intersect along the same [111]. Thus a “lasso-action” takes place, 

which creates, on closing itself, a prismatic loop. This “lasso” action mechanism was first 

observed in void growth in tantalum [310] and later confirmed in deformation under 

indentation at relatively high strain rates [270].   

 

Figure 4-21. (a) Snapshot of dislocation structures at 25.4 ns during QI expansion at a strain rate of 

107 s-1; larger version of inset within Fig. 8. (b) Orthogonal projection highlighting shear loops 

(SL) and prismatic loops (PL) and traveling along the <111> direction.  This nucleation event has 

been described previously by Remington et al. [270]. 

The quasi-isentropic simulations are set up such that the imposed uniaxial strain 

rate is constant. However, the resulting rates at which the stress components evolve are not 

constant. The rate of change of hydrostatic pressure with time can be estimated according 

to the pressure-volume. By taking the first derivative of the U-V curve we obtain a P-V 

relationship. Where the P-V curve is linear, the stress rate can be directly related to the 

strain rate, i.e., in the elastic regime. With increasing tensile strain, the rate at which 
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(negative) pressure increases per strain increment decreases – this is a ramification of the 

convexity.  After void nucleation, the rate of pressure change will decrease due to stress 

relaxation of the growing voids, as well as the nucleation of additional voids. The size and 

number of voids will control the rate of plastic relaxation, which is tied to the dislocation 

density around the growing voids.  The plastic relaxation rate will thus be a function of the 

dislocation generation and dislocation motion. After time, the relaxation rate and the rate 

of tensile loading will be equivalent; at this point the material has reached its maximum 

supported tensile stress, i.e., the spall strength. The material then returns to zero stress as 

voids continue to grow and coalesce. If the stress returns to zero before the coalescence of 

voids leads to a complete spall surface, the spall is incipient. This is especially the case for 

short pulse durations.  Often the rate of pressure change goes to zero and reverses sign as 

the material around the voids is recompressed.  

One difference between decaying and supported waves is worth further discussion 

here. For a supported wave the resulting voided volume must be larger to completely relax 

the stress of a larger volume of stressed material. This is simply because the tensile loading 

rate will be applied for a greater period of time - relaxation must also continue for a longer 

duration. A similar logic can be applied to higher strength shocks. Such shocks contain 

greater kinetic energy (and thus momentum) that must be accounted for. For events where 

the unloading rate is the same, but the shock strength is different, the material will continue 

undergoing a tensile driving force that is countered by the relaxation rate. The tensile pulse 

does not stop when the material begins to undergo spall; instead, a myriad of waves are 

emitted from growing void surfaces that counteract the loading pulse. The sum of these 

waves may negate the tension, but the tensile wave still "exists" even though it is masked 
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by the other waves. From this standpoint, a larger extent of damage can be expected for 

higher shock strengths or shocks of longer duration, but the spall strength of the material 

will be equivalent. This has been discussed previously in terms of square vs. triangular 

waves by Tonks et al. [330] and Koller et al.[331]. Square waves continue to provide a 

driving momentum to spall “scab”, or separated layer, for a greater duration than 

unsupported triangular waves. However, the temperature rise at the shock front (and the 

temperature increase due to visco-plastic deformation) has the ability to alter the spall 

strength as a result of thermal softening. It is to be expected that stronger shocks or longer 

shock pulses will cause a greater degree of plasticity and thus a larger decrease in spall 

strength if the compression wave is reflected and returns to the compressive defect field. 

One can imagine that for lower strain rates the plastic relaxation rate will be much larger 

than the respective tensile loading rate, and that the strain between nucleation and the 

maximum stress will be substantially reduced. 

4.1.2.4. Spall of Nano and Crystalline Tantalum 

The spall strength of nanocrystalline tantalum (d = 21 nm) as a function of strain 

rate is also given in Figure 4-14. Results for these simulations are provided in Table 4-3. 

Unlike single crystals, the nanocrystals demonstrate a single power law relationship over 

the strain rates of 108-1013 s-1, suggesting a single dominant mechanism.  

Figure 4-22 shows snapshots of quasi-isentropic expansion at strain rates of 108 - 

1010 s-1. In contrast to simulations of tensile failure by Tang et al. [158] and Belak [180], 

and in agreement with Rudd [332], we observe that grain-boundary nucleation of voids 

occurs in concert with limited dislocation and twin nucleation.  
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Figure 4-22. Snapshots of quasi-isentropic simulations of nanocrystalline tantalum (d=21 nm) at 

different strain rates, each shown at the time of maximum tension. Strain rates are (a) 108 s-1, (b) 

109 s-1, and (c) 1010 s-1. The strains at which each frame is displayed are provided in Table 5. In the 

first column, atoms are colored according to the local longitudinal stress averaged over 500 Å 

volumes, positive stresses are tensile and negative stresses are compressive. The second column 

depicts atoms filtered by common neighbor analysis (CNA) using a 3.9 Å cutoff and colored by 

“defect coordination,” effectively allowing visualization of grain boundaries, dislocations, and 

twins. The third column shows atoms filtered by a potential energy cutoff of -7.2 eV which enables 

the visualization of void surfaces. The third column also utilizes a defect coordination coloring 

scheme where increasing void volume corresponds to blue, turquoise, yellow, orange and green. 

This method also allows a qualitative analysis of non-spherical voids; a completely spherical void 

would exhibit the same color along the entirety of its surface.  

The first column of Figure 4-22 displays a sliced image that is colored according to 

longitudinal stresses averaged over 0.5 nm3 spherical volumes. The second column depicts 

atoms filtered by adaptive common neighbor analysis [190] showing only defective atoms, 

this method determines an optimal cutoff radius automatically for each individual atom. 
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The atoms are colored by a “defect coordination” allowing for the visualization of grain 

boundaries, full dislocations, and twin surfaces. The third column uses a potential energy 

filter (with a cutoff of -7.2 eV) that only shows atoms on the surface of voids with higher 

average energy than the surrounding crystal, grain boundaries, or crystalline defects. A 

selective coordination coloring scheme is employed where increasing void volume 

corresponds to voids of blue, turquoise, yellow, orange and green coloring. Spherical voids 

would be constant in color; the degree of color change along the void surface is a qualitative 

measure of void eccentricity. 

Figure 4-23 gives a side-by-side comparison between single and nanocrystalline 

samples, for piston loading to shock pressures of 56.5 GPa and 52 GPa in single crystal 

and nanocrystal respectively. The corresponding strain rate under release is 1.65x1010 s-1 

in the single crystal and 7.8x109 s-1 in the nanocrystal. The top frames give the complete 

atomic pictures, while the bottom frames show surface meshes of the evolving voids.  

Within the single crystal, voids appear to nucleate randomly through the spall volume. In 

the nanocrystalline sample, voids nucleate along the grain boundaries. A qualitative 

analysis suggests that specific grain boundary misorientations do not play a large role, but 

that boundary orientation relative to the loading direction is important - boundaries that are 

perpendicular to the loading direction fail preferentially. A dedicated future study is needed 

to address the dependence of boundary structure on spall strength. As voids nucleate and 

grow along the grain boundaries the frequency of coalescence is increased due to their 

proximity to one another. At strain rates lower than 1011 s-1, the spall strength of 

nanocrystalline Ta is below single crystalline Ta. This occurs in part due to the decreased 

flow stress of the grain boundaries; stress concentrations at grain boundaries that arise due 
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to compatibility; and the growing fraction of grain-boundary atoms as grain size is 

decreased into the nanocrystalline regime. At higher strain rates, the orientation of the 

crystal (or group of crystals in the case of a nanocrystal) will matter to a much greater 

extent as the orientation will significantly influence de-cohesion.  

 

Figure 4-23. Comparison between single and nanocrystalline spall simulations using the piston 

methodology. Voids nucleate along the grain boundaries in the nanocrystal, typically at grain 

boundaries that are perpendicular to the loading direction. The particle velocity is 750 m/s 

corresponding to shock pressures of 56.5 GPa for the [001] shock and 52 GPa for the 

nanocrystalline shock. The release strain rate is 1.65x1010 s-1 for the [001] shock and 7.8 x109 s-

1 for the nanocrystalline shock. The lower strain rate is due to increased dispersion of the 

unsupported shock wave in the nanocrystalline sample.  

Grain orientation  

Taking a step back from the complex nature of nanocrystalline spall, bicrystals were 

simulated by flyer plate impact. Figure 4-25 shows x-t diagrams of a single crystal and 

bicrystal colored by number of atoms. Figure 4-26 shows the void structure for the 

simulation at 40 ps.  
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Figure 4-24. Spall process occurring in a 20 nm nanocrystal. Spall voids open at grain boundaries.  

 

Figure 4-25. x-t diagram colored by atom count per voxel. Left, single crystal. Right, Σ5 bicrystal. 

Orange represents equilibrium, yellow compression, purple tension, and black complete spall.  
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Figure 4-26 Overlay of void structure for single (teal) and Σ5 bicrystal (brown). Notice the extended 

spall volume for the single crystal.  

The clear difference is the extended spall volume for the single crystal. Figure 4-27 

show x-t diagrams of a single crystal and bicrystal colored by longitudinal stress. It is clear 

that the maximum tensile stress (black) does not correlate exactly with the void volume. 

This is indicative of the time-dependence of the spall and competition between relaxation 

and high tensile strain-rate.  

 

Figure 4-27 x-t diagram colored by longitudinal stress. Left, single crystal. Right, Σ5 bicrystal. 

Contours represent decreasing density as seen in the previous figure.  
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The single crystal has a strength of 21.25 GPa while the bicrystal has a strength of 

19.5 GPa. It is also significant that a grain boundary is confined precisely to the spall plane  

and offers a large quantity of void nucleation sites, expediting relaxation by void 

nucleation, growth, coalescence and thus lowering the ultimate strength of the material.  

4.1.2.5. The Role of Temperature during and after Spall Failure 

Temperature plays an important role in the softening of tantalum prior to, and 

during spall. As mentioned in the Section 3.4.3 and by Ravelo et al. [179], QI simulations 

maintain constant temperature excluding the work and heat generated by plasticity. Thus, 

for a fixed strain rate, it is possible to vary the “initial” temperature and maintain a level of 

control over the eventual temperature at which spall occurs. For these select “temperature-

varied” simulations, a procedure consistent with the QI simulations presented above is 

performed with one modification. We similarly begin QI compression at room temperature 

using a compressive strain rate of 109 s-1 until 0.17 compressive strain. At this point the 

temperature of the simulation is scaled to a target temperature and the system is 

equilibrated for 100 ps using a NPT ensemble (with the anisotropic pressure maintained at 

its final compressive state) – this differs from the previous simulations which use an NVE 

ensemble to allow for defect relaxation over 100 ps. Volume expansion and dislocation 

annealing is expected to occur during this period; the goal is to create specimens of roughly 

equivalent defect structures of varying temperature in order to isolate the effect of 

temperature on spall strength. If the simulation began at the specified temperature it would 

be expected that the resulting compressive state would differ. The method outlined above 

is designed to vary the temperature while maintaining roughly equivalent pre-compressed 

physical states. 
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We select a tensile strain rate of 109 s-1 to evaluate due to its correspondence to 

laser driven spall experiments [55]. Figure 4-28 presents the measured spall strength as a 

function of increasing temperature. The temperature is evaluated at the maximum spall 

strength and thus includes some of the heat generated through the visco-plastic work that 

is associated with the spall. Spall strength decreases with increasing temperature for both 

solid and liquid Ta. 

 

Figure 4-28. Spall strength as a function of temperature at a strain rate of 109 s-1. The melting 

temperature as a function of pressure was determined from 2 phase simulations (full details can be 

found in the supplemental material). Ashitkov et al. [55] provides an experimental measurement 

(solid red circle) for the spall strength (cavitation strength) of liquid tantalum as melted under laser 

irradiation at an estimated strain rate of 1.5x109 s-1 and a temperature of ~5000 K. 

We first focus on the spall strength of liquid Ta for simplicity. The cavitation 

strength of liquids has particular relevance to laser-driven systems where large 
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temperatures are generated through laser-matter interactions. They are also relevant to 

strong shock conditions where melting may occur under compression or during release. 

We identify a dependence of spall strength on ~1/T, agreeing with previous simulations of 

spall in liquid Cu [333] and other metals [334]. The exact relationship for cavitation 

strength identified is 

 (79) 

where Aliq=36628 GPa*K. Ashitkov et al. [55] provide an experimental measurement of 

the spall strength (cavitation strength) of liquid tantalum as melted under laser irradiation, 

at an estimated strain rate of 1.5x109 s-1 and a temperature of ~5000 K. As seen in Figure 

4-28 (solid red circle), this single data point for molten Ta agrees well with the present 

simulations.  

There exists a discontinuous transition between the solid and liquid response; this 

indicates that plasticity continues to play an important role in failure up until the point of 

melting. In the solid regime, the decrease of the spall strength with temperature can be 

described with a power law relationship: 

 (80) 

Here, the intrinsic spall strength,
 

, at a reference strain rate of 109 s-1 and 0 K is 

equal to 14.33 GPa. The constant in front of the inverse temperature dependence,  = 

9.8x10-6 GPa/K. A similar relationship form was observed for copper [333]. The origin of 

the equation is akin to the Simon equation which describes the temperature at which a 

material melts at a given pressure. In general it describes the softening of a material by a 

power law by making several thermodynamic assumptions [335]. Five ps after nucleation, 
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the local temperature around voids is significantly higher, indicative of a large degree of 

plastic work as shown in Figure 4-29.  

 

Figure 4-29. Spall temperature evolution of piston-driven simulation from 60 to 100 ps. After initial 

void nucleation and growth, coalescence is largely affected by regions of high temperature, some 

of which approach and exceed the melting temperature of tantalum. Tm is defined as the equilibrium 

melting temperature of 3033 K. 

 

This is not unexpected as it has been shown previously that voids grow by 

dislocation emission and that the rate voids must grow at extreme strain rates will require 
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a large dislocation density [196,310,312] (also refer to Figure 4-20). In the spalled region 

the average temperature is often greater than 1500 K, or roughly half of the ambient melting 

temperature.   

Figure 4-29 shows snapshots in time of a spalled system over a 40 ps timespan, 

demonstrating the localization and increase of temperature during void growth and the 

persistence of high temperature during coalescence and failure that results in long, ductile, 

and molten ligaments connecting the material together. Such ductile material linkages have 

been seen in other studies [336,337]. The high melting point of tantalum aids in its 

sustained ability to resist failure. 

4.1.2.6. Theoretical Predictions of Tensile Strength 

The theoretical maximum cohesive stress can be investigated through an analysis 

of the material’s equation of state [80], specifically the cold-pressure curve [46].  At their 

core, interatomic potentials provide the energy of an atom, U, with respect to its neighbors’ 

positions, rij. The hydrostatic cold pressure is related to the volume an atom occupies, Vi, 

by P=dU/dV. A minimum value of pressure, corresponding to a maximum “negative” 

pressure, can be obtained by finding the critical zero value of the derivative of pressure 

with respect to volume: 0=dP/dV. This process will yield a critical volume that can be input 

into the expression for pressure to yield a measure of the theoretical cohesive stress. Grady 

[46] used a simplified volumetric Morse potential in order to obtain an analytical solution: 
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Using values from Rose et al. [80] (B0=194.2 GPa, Ucoh=8.089 eV, and v0=0.202 

nm3), equation 81 predicts an ultimate tensile strength for tantalum of 39.4 GPa, The 
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procedure above can be completed for interatomic potentials (“molecular dynamics’ 

equations of state) and density functional theory calculations in order to provide more 

accurate predictions of the theoretical strength. This is shown in Figure 4-30, which 

compares the Ta1 EAM potential utilized here with the closely related Ta2 potential [95], 

an EOS derived by Rose et al. [80], a fit of a Morse potential in radial form (

0 02 ( ) ( )

0[ 2 ]
r r r r

U D e e
    

  ), and density functional theory (DFT) calculations by Ravelo 

et al. [95].  

 

Figure 4-30. Simulated cold curves for tantalum. Two tantalum EAM potentials (Ta1 and Ta2 from 

Ravelo et al. [95]) are compared against an equation of state (EOS) from Rose et al.[80], a Morse 

potential, and density functional theory (DFT) calculations of Ravelo et al.[95].  Morse parameters 

[338,339] and parameters derived presently (D0 = 0.76093, α=1.14113, x0=3.34342 producing 

a0=3.304 Å, Ecoh=8.1 eV, B = 194.6 GPa, C11=209.9 GPa, C12= C44=209.9 GPa, and C11/ 

C12=1.105). 

A comparison of other potentials is given in Figure 4-31. The prediction for the 

radial Morse potential is 30.5 GPa, Ta1 is 31.6 GPa and for DFT is 33.4 GPa, which 

compare remarkably well with 31-34 GPa strengths measured using NEMD simulations 

(Tables 4-2 and 4-3, Figure 4-12 and Figure 4-14). The fact that the radial Morse potential 
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has improved agreement as compared to the estimate stemming from the volumetric Morse 

form is due to differences in the coefficient “8”. Based on the present study, a coefficient 

of 13.4 inside the radical of Equation 81 provides a better estimate of the ultimate tensile 

strength of tantalum.  

 

Figure 4-31. Simulated cold curves for varying tantalum potentials: EAM (Ta1 and Ta2), Ravelo 

et al. [340]; Extended Finnis-Sinclair (EFS), Dai et al.[341]; Angular-dependent interatomic 

potential (ADP), Pan et al.[342]; Morse parameters[338,339] and parameters derived presently (D0 

= 0.76093, α=1.14113, x0=3.34342 producing a0=3.304 Å, Ecoh=8.1 eV, B = 194.6 GPa, C11=209.9 

GPa, C12= C44=209.9 GPa, and C11/ C12=1.105).  

 

4.1.3. Phase Transformation 

Tantalum is normally studied due to the natural suppression of phase 

transformation. Its bcc phase is stable over a long range of pressures and temperatures. Yet 

phase stability is typically evaluated for purely hydrostatic environments and laser-shock 

conditions are characterized as uniaxial strain states containing large deviatoric 
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components.  Some reports place a phase transition for polycrystals or alloys between 35 

and 40 GPa [73,343]. Molecular dynamics simulations of shocked <110> tantalum single 

crystals reveal a bcc-hexagonal phase transformation above a threshold pressure of 75 GPa 

and corresponding shear stress of 13 GPa. Simulations used a recently developed EAM 

potential for Ta [95]. Interestingly, the potential was developed to extend transferability to 

high pressure with no solid-solid phase transitions, explicitly showing that the bcc-hcp 

enthalpy barrier is negative up to 460 GPa [340] for an applied hydrostatic pressure. Other 

work using this potential has not revealed such a phase change even along preferential 

directions [196,313,344]. This is consistent with DFT simulations, which show no free-

energy crossings as hydrostatic pressure is increased [345,346].  

A significant volume fraction of hexagonal clusters immediately following the 

shock front can be seen in Figure 4-32. The clusters commonly nucleate near twin 

boundaries and appear to have high prevalence at twin-twin intersections. They vary in size 

from 10 atoms to 500 atoms, reaching a few nanometers in diameter. An example of a large 

cluster can be seen in Figure 4-32 showing approximate atomic radius packing and 

hexagonal bonding respectively. The identification of the hexagonal structure was enabled 

by adaptive common neighbor analysis [190], a methodology suited to distinguish 

components of multi-phase systems through an iteratively defined cutoff parameter. Figure 

4-32 illustrates an orientation imaging map of the shock. The original crystal orientation, 

<110>, is colored green and twins are colored red, near <100> orientations. The shock 

front contains a higher number of twins and a greater volume of the hexagonal phase as 

compared to the material further behind the shock front. It can be speculated that 
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detwinning and shock induced dislocations might have a significant role in the stability and 

remaining volume fraction of the hexagonal phase.  

 

Figure 4-32. Molecular dynamics simulation of shocked <110> tantalum crystal at a particle 

velocity of 1.1 km/s (shock pressure ~120 GPa). (a) Hexagonal phase as filtered by adaptive 

common neighbor analysis [32] and colored by neighbor count. Close-up images of hexagonal 

clusters consisting of nearly 500 atoms showing (b) packing and (c) bonding (d) Orientation 

imaging map where green corresponds to <110> direction and red to the <100> direction. (e) 

Longitudinal, hydrostatic and von Mises stress profiles.  

We also explore the possibility of phase transitions during tensile release. For Ta1, 

fcc and hcp become more stable under tensions above 21 GPa, 16% expansion. For Ta2, 

bcc becomes unstable under tension in favor of A15 structure for tensile pressures above 

18 GPa corresponding to tensile strains (volumetric) of 12%.  

The following tables show predicted phase changes under tension.   
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Table 4-4. Phase changes under tension for Ta1 potential. 

Phase Change Pressure Strain 

bcc -> A15 -25 0.22 

bcc -> fcc  -21 0.16 

bcc -> hcp -21 0.16 

 

Table 4-5. Phase changes under tension for Ta2 potential. 

Phase Change Pressure Strain 

bcc -> A15 -17.8 0.12 

bcc -> fcc  -25 0.2 

bcc -> hcp -25 0.2 

 

These values are taken by evaluating the relative enthalpies of each phase as compared to 

the bcc structure. The energy and enthalpy curves for Ta1 are shown below in Figure 4-33 

and Figure 4-34. 

 

Figure 4-33. Internal energy (U) vs normalized volume curve for Ta1.  
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Figure 4-34. Enthalpy as a function of tensile pressure for Ta1. 

During isentropic release of tantalum following shock compression, it is possible 

to observe quasi-stability of the fcc phase, which contains hcp stacking faults. Figure 4-35 

gives a snapshot in time at 14.5% tensile strain. Voids are seen to form at twin boundaries, 

and may also form at fcc/twin and fcc/bcc interfaces. Upon relaxation of the stress by void 

growth, the fcc phase disappears. Limited experimental evidence exists for A15 and fcc 

tantalum phases, which were observed in thin films and large local strains generated by 

quasi-static tension [325].  
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Figure 4-35. Limited stability of fcc phase during isentropic expansion following shock 

compression. Renders of the defective atoms (white) and fcc/hcp atoms (green/red) are shown 

compared to bcc atoms (blue). Selected diffraction pattersn are generated along the [010] direction 

for the respective features.  

4.2. Silicon 

Silicon is one of the most studied elemental materials; there are a large variety of 

semi-empirical potentials and parameterizations fit for many different environments and 

desired properties.  Supporting and/or contrasting simulations have fueled debate for shock 

responses ranging from phase changes, amorphization, twinning, and full dislocation 

activity [34,225,227,228,246,347–350]. However, none of the interatomic potentials 

developed and explored in the literature were fit with elevated pressure, nor substantial 

shear stresses, in mind. Individual atomic potentials succeed in reproducing thermal 

properties and melting temperatures [216,217,351], dislocation properties [218,219], phase 

transformations [220,249,250,352,353], defects and disordered phases [221–223], and 

brittle behavior [353–355], but no single potential currently has the capability or 

bcc

~ 0.145

fcc

twin
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transferability to reproduce all the properties of interest over a wide variety of 

environments - a challenge ubiquitous in computational materials science [356]. A 

comparison of a few potentials can be found in previous reports [216,224]. It must be 

emphasized that none of these potentials have been developed specifically for high stress 

conditions, and tremendous care must be taken to accurately simulate the uniaxial strain 

state achieved during shock loading of silicon.   

Plasticity and atomic structural transformations induced by high pressure shock 

compression in monocrystalline silicon has remained a prevalent research focus for a 

considerable period of time [34,252,256,257,357–364]. There are a number of shock 

experiments performed in silicon, including impact driven [257,362,365–367] and laser 

shock studies [252,357,359,360,363,368,369] as well as molecular dynamics shock 

simulations [225,227,228,347,348,370–372]. The quasi-brittle and quasi-ductile response 

of silicon under shock conditions continues to be especially challenging to model; 

capturing the brittle cracking that has been observed at the impact and rear surfaces 

[76,252,358] as well as the more ductile response of the confined material within remains 

an outstanding goal. Furthermore, as Smith et al. [252] discusses, with increased 

temperature or strain rate it is possible to form structures with different coordination 

systems, undergo amorphization or melting, as well as induce ductile dislocations.  

Here we introduce several prominent molecular dynamics (MD) studies and their 

results. Oleynik et al. carried out large-scale shock simulations and showed that shocks 

could heal defects in bulk single crystal silicon [225]. In another study they showed that 

the Stillinger-Weber potential provided stress-strain curves for the diamond-cubic structure 

that compared well with ab-initio results when the strain is below 15-20%, translating to 
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shear stresses below 7.5 GPa [226] and a subsequent investigation reproduced two-wave 

shocks consisting of a plastic wave preceded by an elastic precursor when using an 

environmentally dependent interatomic potential [227]. Work by Mogni et al. [228] used a 

Tersoff-type potential (developed by Erhart and Albe [251]) compressed along the 〈001〉 

axis and identified an Imma phase transition, noting consistency with shear stress relief 

provided by direct shock-induced phase transition without intermediate plastic 

deformation.  MOD, a more recent Tersoff-family bond order potential developed by 

Kumagai et al. [217], was developed to reproduce both elastic constants and melting point. 

The MOD potential has been shown to describe reasonably well crystalline as well as 

disordered phases such as liquid and solid amorphous structure, the kinetics of the 

crystalline to liquid transition [230], decrease of melting temperature with pressure 

between -1 and 3 GPa [231], and has been successfully applied to the shock regime to 

predict amorphization under shock compression [373].  

Of foremost attention is the far from equilibrium phase space of silicon with respect 

to high pressures and temperatures as anticipated under shock compression. The need to 

characterize this space is emphasized by the variety of phase changes (Table 4-6) and 

variety of potentials (reference Supplemental Material) to draw from. The Stillinger-Weber 

potential was recently surveyed and the stability of a simple cubic allotrope, sc16, was 

shown to co-exist with the β-Sn structure between pressures of 9.54 and 13.67 GPa [232]. 

Si-III, or bc8, was shown to be energetically unfavorable compared to sc16 for all 

temperatures and pressures.  
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Table 4-6. Ambient and High Pressure (P < 25 GPa) Polymorphs of Silicon. Data from multiple 

sources [239,369,374,375]. 

Author (Year) Structure/Name Space Group Unit Cell 

Tobbens et al. (2000) 

Diamond cubic 

(dc) 

 

(Si-I) 

Fd-3m 

a=b=c=5.43053 

 

Boyer et al. (1991)  

Kaxiras et al. (1994)  

Kim et al. (2008)  

Gerbig et al. (2012)  

Zhang et al. (2016) 

Body-centered 

tetragonal 5 

(bct5) 

I4/mmm 

a=6.686 b=6.686 c=11.264 

 

Mogni et al. (2014)  Imma Imma 

a=4.373 b=4.502 c=2.550 

  
 

Smith et al. (2013)  

Cheng et al. (2001)  

Gaal-Nagy et al. (2006)  

Hennig et al. (2010)  

Durandurdu et al. (2010)  

Gerbig et al. (2012)  

β-Sn 

 

(Si-II) 

I41/amdS 

a=4.686 b=4.686 c=2.585 

 

Turneaure et al. (2016) 

Simple 

hexagonal  

(sh) 

 

(Si-IV) 

P6/mmm 

a=2.527 b=2.527 c=2.373 

 

Crain et al. (1994) 

Nemeth et al. (2014) 

Gogotsi et al. (2003)  

Hexagonal 

diamond 

(hd) 

P63mmc 

a=5.392 b=5.392 c=5.392 

 

 

The negative Clausius-Clapeyron melting temperature with increasing pressure is 

again demonstrated and a triple point (quadruple point including hexagonal diamond 
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structure of thermodynamically equivalence to dc) between dc, liquid, and sc16 at 1302 K 

and 7.28 GPa.  

Three prominent experimental works identify additional phases. In-situ quasi-static 

investigations that indicate that amorphization results from an intermediate hexagonal 

diamond (hd) phase. State of the art experiments by Turneaure et al. [363] completed at 

the Dynamic Compression Sector (located at the Advanced Photon Source) were able to 

identify a transition of dc silicon to a simple hexagonal (sh) structure at 19 GPa. Shock 

recovery efforts have identified bulk amorphization and directional amorphization in 

concert with dislocation activity, but no phase changes were reported in the recovered 

samples [34,357,358].   

The plethora of available phase changes, deformation modes, and the interplay 

between one another strongly compels a comparative study of the predominant silicon 

potentials under shock conditions in order to evaluate our current capability to model 

silicon in extreme environments.  

4.2.1. Hugoniot Elastic-Plastic Limit 

Smith et al. [177] shocked silicon samples of different thicknesses in order to 

measure the elastic limit for silicon as a function of strain rate for strain rates reaching 4 ∙

108 𝑠−1. For [001]-orientated single crystalline silicon about 1 micron in thickness, the 

Hugoniot Elastic Limit (HEL) was measured to be 19±3 GPa at 108 s-1. The Gilman model 

including dislocation production was employed to explain the plastic relaxation rates and 

they fit their data using HEL = 0.32 ∙  𝜀̇0.21±0.02 . Thus, for 𝜀̇ = 5 ∙ 108 𝑠−1, as achieved 

during typical atomistic shock simulations, the HEL is projected to lie between the wide 

range of 22.3 and 54 GPa. This may explain results by Kalantar and co-workers [22,360], 
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where no plastic relaxation was observed by dynamic diffraction taken of Si shocked to 

pressures somewhat lower than current estimates for the elastic limit. 

The initiation of plasticity is due to emission of partial dislocations bounding 

stacking faults, on {111} and {110} planes (Figure 4-36). {111} defect geometry was 

believed to observed in the (001) 2D VISAR of shock loaded Si by Smith et al.[252] as 

evidenced by 4-fold symmetry. This symmetry can also be observed in other {001} family 

planes and can be visualized as diamonds in the 4 ps snapshot of Figure 2.   However, the 

{110} and {111} slip systems share a common [001] projection and cannot be 

distinguished based on 2D [001] projections alone.  Partials of both slip systems can later 

react and lead to full dislocations.  

 

Figure 4-36. Snapshots from a shock simulation showing {111} and {110} stacking faults. (a) depth 

perspective showing interaction between the mutual stacking fault planes. (b) thin section 

illustrating the resultant angles of the {111} and {110} stacking fault planes with the <110> 

direction. (c) simulated diffraction patters of the faulted areas.   

Something similar to this has been observed in the deformation of Si nanospheres 

compressed by a flat indenter, where partial dislocations were emitted from the curved 

surface of 10 nm and 5.16 nm radii spheres at normal stresses of 23.5 GPa and 21.3 GPa; 

further compression ultimately lead to the formation of a full dislocation [376]. We observe 
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that plasticity leads to relaxation perpendicular to the shock direction of the strain in ~10 

ps with longer simulations potentially leading to further relaxation. At large elastic strains 

we observe a preferential nucleation of {110} stacking faults opposed to {111} SFs. 

Subsequent SFs tend towards {111} slip as the strain relaxes. SFs were identified as 

intrinsic stacking faults consisting of a two atomic layers. The typical diamond stacking 

sequence is AA’BB’CC’ where each letter denotes a set of positions on the {111} plane and 

prime indicates a plane separated by a covalent bond length in tetragonal arrangement. The 

diamond cubic structure is referred to in this form by two interpenetrated fcc unit cells with 

atoms at (0,0,0) and (
𝑎0

4
,
𝑎0

4
,
𝑎0

4
). The primary Burgers vector for silicon is 𝑏 =  

𝑎0

2
〈1,1,0〉 

and during intermediate slip atoms on the untraditional {110} slip plane may move by 
𝑏

2
=

 
𝑎0

4
〈1,1,0〉 [229]. Recent simulations of plasticity in Si nanospheres employ the SW 

potential and show a {110} slip response in addition to the expected {111} shuffle/glide-

set planes [229].   

Density functional theory has been performed by others to evaluate the stacking 

fault energy and indicate a tendency to slip along {110} planes at uniaxial compressive 

strains between 0 and 20% strain [377] and a first order approximation places the transition 

around 12%. Achieving such elastic strains without prior nucleation of dislocations on 

{111} planes is possible in nanoscale structures lacking intrinsic dislocation structures 

and/or during shock loading conditions. A characteristic simulation of SW under shock at 

2000 m/s exhibited 9.5% volumetric strain and 17% shear strain.  Both Stillinger-Weber 

and MOD potentials have been shown to predict the quasi-stability of the {110} stacking 

faults under compression, but little experimental post shock evidence is expected to remain 
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due to some extent of unavoidable rarefaction wave [229].  Figure 4-37 shows the 

simultaneous activation of both slip systems during the shock loading of <001> silicon at 

12 GPa.  

 

 

Figure 4-37 Observation of {111} and {110} stacking faults in Uniaxial impact loading of <001> 

single crystalline silicon. Color indicated by coordination number. Snapshots taken at 0.85 km/s, 

12 GPa.  

Figure 4-38 shows the relationship between pressure and shear stress as they 

depend on particle velocity for a linearly ramped system.  

 

Figure 4-38. Shock pressure and resolved shear stress vs particle velocity. Crosses represent data 

points from a system undergoing shock compression. The dashed blue line is a curve fit to the 
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derived relationship between shear and pressure corresponding to the predicted shear stress based 

on the pressure. 

Pressure is fit to the typical 𝑃 = aU𝑝
2 +  bU𝑝  form where a = 4.2151 kg/km3 and 

b = 10.595 kg/km2s, shown by a dotted red line in Figure 4-38. Shear is fit to: 

𝜏 =  2.3622 U𝑝
3  +  0.8352 U𝑝

2  +  4.9351 U𝑝. (82) 

The relationship between shear and pressure (τ/p) is derived as follows for purely elastic 

deformation: 

𝜎𝑖𝑗  =  𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 = 𝐶𝑖𝑗33𝜀33 (83) 

Here i,j = 1,2,3 where 3 is taken as loading in the z direction. The hydrostatic pressure, P, 

can be obtained considering uniaxial strain 𝜀3, simplified from 𝜀33, and cubic symmetry 

accordingly:  

𝑃 =
1

3
 (𝜎11 + 𝜎22 + 𝜎33) =  

(𝐶11 + 2𝐶12)

3
 (84) 

Along the same lines, the maximum shear, τmax, stress from the deviatoric components can 

be expressed as: 

𝜏𝑚𝑎𝑥 = 
1

2
 (𝜎33 −  𝜎11) =  

(𝐶11 − 𝐶12)

2
 (85) 

Therefore, τmax is related to P by,  

𝜏𝑚𝑎𝑥

𝑃
=  

3(𝐶11 + 2𝐶12)

2(𝐶11 − 𝐶12)
 (86) 

The elastic constants for silicon at zero pressure are 11C = 165.7 GPa and 12C = 63.9 

GPa  [378] producing a ratio of shear to hydrostatic pressure of 0.52, but it is well known 

that these constants are pressure dependant and potential dependent as well. For MOD this 

ratio decreases with increasing pressure to a value of 0.26 at a pressure of 20 GPa. The 
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pressure dependance of C11, C12, and C44 are shown in Figure 3-17 and Figure 3-19. From 

these relationships we define: 

𝜏𝑚𝑎𝑥

𝑃
 (𝑃) =  −0.00000 𝑃3 +  0.0006 𝑃2 −  0.0211 𝑃 +  0.5085 (87) 

With this relationship and the Hugoniot relationship between particle velocity and 

pressure we can also produce a plot of predicted maximum shear stress which is shown as 

a blue dotted line in Figure 4-38. The actual shear stress is also shown in Figure 4-38.  The 

difference between predicted and actual illustrate the elastic/plastic threshold where 

dislocations begin reducing the shear stress by plastic relaxation. By this logic, a deviation 

in expected shear stress can be thought of as relaxation and will serve as an indication 

plastic deformation. Taking a threshold of 5% deviation of shear stress as a first 

approximation of elastic/plastic transition, the transition pressure is 7.5 ± 1.5 GPa and the 

shear stress is 2.5 ± 0.25 GPa.   

The discrepancy between yield strength shown here and shock simulations carried 

out by Mogni et al. [228] using the Erhart and Albe (EA) Tersoff parameterization [251] 

is rationalized via thermal activated dislocation nucleation relative to the melt temperature. 

The yield strength is generally a function of microstructure, strain-rate, and temperature. 

Holding microstructure and strain-rate constant, the role of temperature, especially in a 

material with a negative Clausius-Clapeyron slope, should not be ignored. From 0 K to 

Tm/3, thermally activated nucleation and motion plays a significant role in yield strength 

hardening. Above 0.5Tm (~800 K [354,379]) the yield strength begins to drop quickly and, 

for silicon, the ductile to brittle transition is typically associated with this temperature as 

dislocation nucleation and motion is favored over brittle cleavage. The EA 
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parameterization for pure silicon, denoted EA2, exhibits Tm = 2150±25 K (note that SW 

and MOD have Tm = 1688±26 [380] and 1681 [217] respectively). This places the yield 

point between 700-1075 K for EA2 and 550-850 K for MOD at ambient pressure. During 

shock, pressure will have a dual effect on temperature through adiabatic heating at the 

shock front and suppression of the melting temperature due to the negative Clausius-

Clapeyron dependence.  

Coupled with a thermodynamic evaluation of melting temperature based on Deb et 

al. [261] and taking a first-order approximation of EA2 as 𝑇𝑚(𝑃) =  1.28 ∙ 𝑇𝑚0 +

 0.72 𝑑𝑇 𝑑𝑃⁄  similar to an approximation of superheating effects [373] we can show the 

effect of temperature on yield stress through the ductile-to-brittle transition temperature 

taken as 𝐷𝐵𝑇(𝑃) =  0.5 ∙ 𝑇𝑚(𝑃). The predicted DBT under shock loading for MOD and 

EA2 are ~10 and ~14 GPa respectively and give a good lower estimate of the elastic-plastic 

transition at high strain rates.   

4.2.2. Dislocation Density and Mobility 

A snapshot of homogenous nucleation at the shock front can be seen in Figure 4-39, 

a close up near the shock front given in Figure 4-40. In order to identify partial dislocations 

in the system, the primary identification scheme utilized a coordination based evaluation. 

A potential energy criterion was also evaluated to confirm the identification of partials. 

There are a few challenges in applying a coordination based scheme and we will discuss 

them here. Foremost, the coordination is evaluated spherically and for uniaxial deformation 

this may give rise to spurious neighbors in the shock direction for a static coordination 

radius. Thus our selection of a cutoff radius is between 2.8 and 3.0 Å. Second, this value 

must be less than the expected neighbor distances in many polymorphs of silicon (3.2 Å) 
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as well as the equilibrium distance of the second neighbor shell (~3.8 Å), but notably 

corresponds closely to the distance formed by amorphous or bct5 structures (~2.9 Å) and 

relates roughly to the distance between “new neighbors” during a partial displacement 

shuffle.  

 
Figure 4-39  (a) Homogenous nucleation of stacking faults on {111} slip planes occurring at σz = 

32.5 GPa and τ = 6.4 GPa as a shock wave travels from left to right. Atomic color is indicative of 

the absolute value of the local shear stress. (b) Significant relaxation (blue color) is seen in the 4 ps 

time step. (c) Recovered microstructure from a 50 J laser-driven shock experiment: ~11 GPa peak 

shock pressure[34,357]. (d,e) Magnifications showing the tip of the dislocation structure and large 

mass of stacking faults respectively. The growth of subsequent stacking fault layers can be seen in 

both molecular dynamics and laser experiments; this process occurs in order to expedite the 

relaxation of high shear stresses.  
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Figure 4-40. Identification of partial dislocation near shock front by potential energy criterion. The 

partial dislocation tip is identified by the furthest blue atom corresponding to a shift in the lattice 

across the stacking fault.  

Homogenous thresholds for SW are consistent with experimental results and 

projected range detailed by Smith et al. [177].  Just as in Cu, systems of partial dislocations 

are nucleated in adjacent planes in order to more quickly relieve shear stress [381]. In 1958, 

Smith[382] proposed a shock front interface composed of supersonic dislocations. 

However, it did not predict a dislocation density increase due to shock which was resolved 

by sequential homogenous nucleation of dislocations at the shock front. This was 

calculated analytically by Meyers et al.[92,383,384]  for Cu.  

Here we adapt the analytical description developed by Meyers and leave in a strain-

rate dependent HEL in addition to an increased separation of nucleation separation due to 

supersonic dislocation motion. 

Dislocation density can be defined as the inverse separation of dislocations in two 

dimensions, lateral to the shock front, d, and aligned with the shock front, hs. Accounting 
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for two dislocations per stacking fault, the following principal relationship for dislocation 

density can be written as: 

1

2

s
d

dh




 
  
 

. (88) 

Taking a standard expression for lateral separation of dislocations (d) in order to account 

for a given strain, ε, the following expressions can be written in terms of original and 

shocked lattice parameter (a0 and as respectively): 

0a
d


 , (89) 

0

0

sa a

a



 . (90) 

The separation of dislocations can then be expressed in terms of lattice parameter,  

2

0

0 s

a
d

a a



. (91) 

The inverse of lateral separation can be manipulated into the following form: 

1

0 0 0

1 1 sa
d

a a a

  

. 
(92) 

Taking a typical relationship between Burgers vector, b, and lattice parameter,  

0 2a b , (93) 

in addition to a relationship between instantaneous volume, V, and equilibrium volume, V0, 

as related to the shock and equilibrium lattice parameter, 

3

3

0 0

sa V

a V

 
 

 
. (94) 

We can now write an expression for d-1 in terms of only one variable, V: 
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1
3

1

0

1
1

2

V
d

Vb



  
   
   

, (95) 

Following formalism previously developed [92], the contribution of the stress field from 

each dislocation only produces stress in the σ12 component of the stress tensor. The sum of 

these contributions for a spacing of 1/n2 dislocations extending infinitely along a planar 

shock front is equal to π4/90 and thus the expression for stress in terms of subsequent 

emission distances, h, can be written as:  

3

12 2 2 2

2 2

2 (1 ) 45 2(1 )

Gb Gb h
h

n d d




  
 

 
, (96) 

 The critical shear stress, σ12
c, required to nucleate a dislocation can be defined 

through the HEL: 

 

 
11 1212

112

c

HEL

C C

C






 , (97) 

 

 
11 12

12

112

HELc
C C

C





 , (98) 

Setting σ12
 = σ12

c, the separation of subsequent partial dislocation nucleation sites is: 

 

 
11 12 2

3
11

45(1 )

22
HEL

C C
h d

CGb







 . (99) 

The effective separation, hs, is then increased when accounting for mobile dislocations at 

the shock front which aid in relaxation: 

1 d
s

s

kv
h h

U

 
  

 
. (100) 
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Here, k is an orientation factor equal to 1 for <001> shocks in fcc or diamond cubic 

materials. The shock speed, Us, is well defined as: 

1/2

L
s

E
U



 
  
 

. (101) 

While the minimum supersonic dislocation velocity relative to the shock front, vd, is 

defined as: 

1
2

2
2

2

T

d s

E
v C



 
   

 
. (102) 

The effective shock separation can now be written as: 

1 11 1
2 22 2

0 44

0 11

1 2
1 1

1
s

Cv V
h h k h k

v V C





                     
          

. (103) 

Substituting eq. (103) into eq. (88) gives: 

 

 

1
1 1

23 2
11 44

3

11 12 0 11

22 2 1
1

45(1 )
d

HEL

C CGb V
k

d C C V C
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

 



    
      
      

, (104) 

Substituting eq. (95) into eq. (104) now gives a final expression for dislocation density due 

to homogenous dislocation nucleation at the shock front: 

 

 

1 3
1 11

2 33 2
11 44

2

11 12 0 11 0

2
1 1

45 (1 )
d
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C CG V V
k

b C C V C V




 



       
         
            

. (105) 

Between 2.2 and 3 ps, defects are only a single stacking fault thick and are circular to a 

first order approximation. OVITO’s surface mesh modifier [184] was used to relate surface 

area and volume of defective atoms to an average partial separation of 14.6 Å at 3 ps and 

separation reaches a steady state at 31.2 Å due to interaction with neighboring dislocations. 
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Taking the dislocation line length as πld for n total stacking faults over the shocked volume 

we obtain an estimate of dislocation density plotted against the prediction in Figure 4-41. 

At nucleation the dislocation density is 4.4x1011 cm-2 and reaches a steady value of 

1.5x1012 cm-2 at 3.8 ps.  

 

Figure 4-41. Analytical dislocation density prediction where each curve represents a unique strain 

rate. The dislocation density is highly dependent on the HEL and curves are truncated below this 

limit corresponding to an elastic response; the material would have a dislocation density unchanged 

from its intrinsic value. The symbols track the dislocation density evolution observed during the 

simulation. At 3.0 ps, the MD dislocation density approaches the one analytically predicted for 1010 

s-1, demonstrating the agreement between the two approaches (analytical and MD). 

At the high strain-rate elastic-plastic limit for silicon the shear stress is ~ 6 GPa and 

is near or greater than the theoretical measure of shear strength, G/10. The motion of 

dislocations in this regime is thus likely to be transitory in nature as shear stress waxes and 

wanes with plastic relaxation at the shock front. Consequently, evaluating dislocation 
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motion under shock conditions adds a degree of realism beyond measuring dislocation 

velocities under simple shear as has been documented previously in simulations [385–387]. 

Regardless of observation in simulated conditions, supersonic dislocations have yet to be 

directly observed in three-dimensional material experiments.  

Figure 4-42 exemplifies that we are not merely looking at a pair of equal and 

opposite partial dislocation dipoles, but a defect with correlated motion in multiple 

directions relative to the shock direction. Red dotted arrows are drawn in the direction of 

maximum dislocation velocity and correspond to the following measurements of 

dislocation motion.  

 

Figure 4-42. Dual projection view showing {111} slip plane several activated burgers slip 

directions giving rise to a stacking fault of representative shape. Arrows indicate the fastest moving 

partials, the distance between which the length and corresponding velocity are measured for. 

Figure 4-43 shows a time sequence from 2.2 to 2.9 ps where the stacking fault is 

shown to grow both towards (right) and away from (left) the shock front. The particle 

velocity dictates a moving center of mass by UpΔt that serves as the reference point for 

each half of the stacking fault.  The forward partial dislocation’s velocity bursts upon 

nucleation at 2.2 ps for ~0.1 ps at 12000 m/s and subsequently slows down to 8200 m/s, 
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matching the rear moving partial dislocation velocity. For comparison, the leading elastic 

soliton travels at 8800 m/s before the shock reaches steady state and the elastic-plastic wave 

travels at 8650 m/s.  

 

Figure 4-43. Time sequence from 2.2 to 2.9 ps showing partial dislocation velocity burst at 2.2 ps 

and velocity burst of secondary partial between 2.7 and 2.9 ps. Solid lines indicate motion at √2𝐶𝑡, 

dashed lines represent motion attributed for non-zero center of mass velocity and thus a non-

stationary reference point, and dotted lines represent supersonic velocity bursts. 
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Figure 4-43 corresponds to a shock pressure of 32 GPa, hydrostatic pressure of 23.5 GPa, 

and shear stress of 6 GPa. Transverse and longitudinal wave speeds depend on pressure 

dependent stiffness [388] and were used to determine 𝐶𝑡 = √(𝐶11−𝐶12 + 𝐶14) 3𝜌⁄  and 𝐶𝑙 =

 √(𝐶11+2𝐶12 + 2𝐶14) 3𝜌⁄ . For P = 23.5 GPa, 𝐶𝑙 = 11800 𝑚/𝑠, √2𝐶𝑡 = 7600 𝑚/𝑠, and 𝐶𝑡 =

5400 𝑚/𝑠; these values indicate that, for a brief period of time, a partial dislocation was able 

to travel at or above the supersonic threshold in an attempt to catch up the shock front and 

relieve shear stress. A secondary set of partial dislocations is nucleated underneath the first 

stacking fault at 2.7 ps in order to further relieve stress and quickly accelerates to reach an 

astonishing transient velocity of 15000 m/s for at least 0.2 ps before interaction with 

surrounding partial dislocations interferes. While convenient to observe homogenous 

nucleation within the silicon sample during simulation it is considered unlikely during an 

experiment unless surface effects leading to heterogeneous nucleation can be eliminated. 

4.2.3. Shear Induced Amorphization/Melting 

The interaction of the mutually perpetuating slip systems leads to unique 

intersections that manifest as nanotwinning and phase transitions preceding directional 

amorphization.  Another method to evaluate the energetic driving force for amorphization 

of silicon is through the elastic strain energy provided by a field of dislocations.  

Taking the line energy of an edge dislocation as, 

𝐸 =  
𝜇𝑏2

4𝜋(1−𝜈)
ln (

𝑅

𝑅𝑐
) + 𝐸𝑐. (106) 

We arrive at the relationship, 

𝐸 = 3.84 ∙  𝜌𝑑  ∙ 10−13 (𝑘𝐽 𝑚𝑜𝑙)⁄ . (107) 



150 

 

    

 

This precise formulation was previously worked out by Huang et al. [389] for an 

energetic/deformation induced driving force for partial amorphization of ball-milled 

silicon. It was pointed out that, for ball milled silicon, the resultant dislocation density was 

low, on the order of 1011 cm-2, but localized such that 2.5% amorphous phase by volume 

was produced. Silicon is typically available as well oriented, low impurity, and low 

intrinsic dislocation density as low as 105 cm-2. The strain energy introduced by a field of 

dislocations needs to be equivalent to 11.9 kJ mol-1, the crystallization energy of  fully 

amorphous silicon by ion implantation [390,391], in order to produce amorphization from 

plastic energy. Defects such as stacking faults, twins, and surface tension must also 

contribute to the elevation of energy within a silicon crystal.  

 The evolution of defects in time and their role in amorphization was informed by 

molecular dynamics simulations. Figure 4-44 exemplifies three modes of amorphization: 

bulk surface amorphization, amorphization along bands of stacking faults, and 

amorphization at stacking fault intersections. At t = 8 ps we see the formation of a 

disordered band within the stacking fault band at the bottom of the frame. At t = 10 ps the 

first intersection of stacking faults takes place and at t = 13 ps an amorphous nucleus is 

formed at this intersection while others intersect with a greater number of stacking faults.   
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Figure 4-44. Molecular dynamics time evolution showing formation of amorphous nucleus 

following inter snapshot at 15 ps of a [001] silicon crystal shocked to 14.5 GPa 

A tridimensional view of the MD simulated microstructure of shocked silicon is 

presented in Figure 4-45 with marks indicating multiple stacking-fault variants. Such 

interaction of these stacking faults is expected to occur under experimental laser shock 

compression, leading to large defect densities and defect localization effects such as loss 

of atomic order and plastic heating.  
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Figure 4-45. Tridimensional view of the stacking faults (SF) as the precursors of the amorphization: 

multiple stacking faults and their intersections can be observed ahead of the disordered region. A 

disordered region was left behind. 

The plastic front consisting of partial dislocation loops traveling along {111} and 

{110} planes leads to a relaxation of shear stresses and plastic heat manifested by a 

temperature rise. After defect nucleation, the shear stress begins to relax and then drops to 

zero within the amorphous region. Full relaxation of shear stress does not confirm or deny 

this as a solid state process. A melt would be unable to sustain shear stress, but full 3D 

relaxation during amorphization is just as plausible. Silicon is known to have at least two 

amorphous phases, one high density and one low density, in addition to the disordered 

liquid phase. 

Figure 4-46 shows an orthogonal (near {110}) view of a stacking fault and its 

transition into an amorphous band colored by two different schemes.  
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Figure 4-46. Piston/particle velocity of 1.5 km/s. Near-[110] projection view. (a) Coordination 

indicating the relatively higher average coordination ~5 (light blue) of the stacking fault layer and 

the even higher average coordination of the molten layer ~4 to 10 (green-yellow to dark red). (b) 

Depth perpendicular to primary slip direction, a uniaxially compressed {111} plane,  showing 

sequential stacking fault steps that bound the amorphous layer may be similar to those for twin 

propagation. 

Both images show only “defective” atoms filtered by coordination number not 

equal to four. It should be noted that this will also remove 4 coordinated atoms in the 

amorphous and liquid phases as well as 4-coordinated defects, such as reconstructed 

dislocation cores, but to date this is the best available method for evaluating complex 

structures in diamond cubic silicon. Figure 4-47 compares the simulation to experimental 

results.  
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Figure 4-47. MD simulation (a) shows several {111} stacking fault as the precursor of the 

amorphization; and TEM observation (b) also shows stacking faults bounding the amorphous 

materials. 

Notably, experimental images are of shock recovered silicon. Thus far, only the state of 

the sample during loading (on the ps scale) has been shown, and further loading and/or 

unloading might modify the microstructure. A simulated recovery experiment was carried 

out with the following simulation components: a deceleration of the piston to Vz = 0 during 

5 ps following 15 ps of compression. Within the NVE microcanonical ensemble, the run 

was continued with a stationary piston for 20 ps and contained a viscous damp at the rear 

surface of the sample to minimize reflections. Subsequently, a Langevin thermostat at 300 

K was applied to the entire sample for 20 ps while maintaining “shrink-wrap” boundary 

conditions in the shock direction allowing for the relaxation of Pzz to near 0 GPa. 

Figure 4-48 shows that the most noticeable microstructural difference after 

simulated recovery is the retraction of stacking faults not immediately bounding 

amorphous bands. The molecular dynamics simulation does not contain any intrinsic 

defects - such as dislocations, impurities, or vacancies - that would increase the stability of 

such stacking faults by pinning. 
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Figure 4-48. Simulated recovery of shock loaded Si at 1.1 km/s. Left, during compressive loading. 

Right, after recovery as detailed above. Color according to local coordination.  Unloading reduces 

unstable stacking faults and decreases the average coordination from 6.7 to 5.1 within the 

amorphous region. 

During loading, coordination in the hot amorphous region has an average value of 6.7, 

which compares extremely well with the nominal 6.4 coordination of a liquid [250]. The 

recovered sample has cold amorphous regions with a coordination of 5.1, which compares 

favorably to the nominal 4-coordination of amorphous silicon [250], given that our 

simulated recovery spans a relatively short time scale and thus a high quenching rate. 

Furthermore, the long time scale of the experiment might lead to structural changes 

which are thermally activated and which cannot be sampled by our MD simulations. 

However, given the tremendous agreement in spatial scales where amorphous bands are 

only about 5 nm thick, with stacking faults which are only 1 nm thick - and patterns 

between MD and the experiments, it seems possible that the structural crystal to amorphous 

transition occurs within the same time frame observed in the simulations, and the material 

is “locked” there, despite the possible occurrence of late thermally-activated events. 
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Figure 4-49.  Slice along the [111] direction of a MD simulation of [100] shocked silicon using the 

MOD potential. Bulk amorphization/melting near the shocked surface, directional 

amorphization/melting, partial dislocation activity, and formation of bct5 bands can be identified. 

Atoms are colored according to local coordination evaluated with a cutoff of 0.3 nm.  
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5. Conclusions 

Connecting back to the questions that drove the present research, several key 

advances have been made.  

 What role does shear instability and phase change play in silicon? 

The modified Tersoff potential (Figure 4-49) has been shown to apply particularly 

well to shocked silicon including the following results and their experimental counterparts: 

 Heterogeneous nucleation of dislocations at 10 GPa for Up=0.82 km/s; Gust and 

Royce [257]. 

 Mutual slip along {110} and {111} planes in agreement with nanostructures 

under high compressive strain; Chrobak et al. [376].  

 Defect mediated metastable phase transitions from dc to bct5 related to those 

observed under nanoloading; Gerbig et al. [243,244]. 

 Impact melting akin to nanodroplet shock; Gamero et al.[367,392]. 

 Shear and defect driven directional amorphization; Zhao et al.[373], He et al. 

[393]. 

This set of simulations emphasize the need for new experiments at ultra-high strain 

rates in order to explore the lattice response at the sub-ns time scale. Particularly important 

is our ability to examine plastic deformation as it occurs with sub-picosecond and atomic 

resolution in order to observe the intricacies of defect formation and motion. Experiments 

that are able to pre-heat the target should be able to nucleate dislocations at lower shock 

pressures by reducing the amount of adiabatic heating required to overcome thermally 

activated nucleation barriers associated with the ductile-brittle transition. This will also aid 
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in successful recovery of normally brittle silicon samples. Picosecond lasers may operate 

for just long enough to nucleate dislocations and observe their subsequent velocity bursts 

through back calculation of dislocation penetration via pre- and post-mortem 

characterization. 

 What role, if any, do defects and grain boundaries play in spall failure process 

when the sample goes into dynamic tension? 

o What do grain boundary structures in bcc tantalum look like? 

We determine a large number of grain boundary energies for tantalum, as a function 

of misorientation for rotation around <100>, <110>, <111>, and <112> axes, in order to 

inform future studies such as those investigating abnormal grain growth [124], 

heterogeneous deformation of poly and nanocrystals [123,268], and deformation twinning 

[125]. Specifically, deformation twinning involves the nucleation of Σ3 coherent twin 

boundaries through the movement of twinning dislocations. It is shown here that there is a 

decrease in energy associated with the formation of quasi-symmetric boundaries. In many 

cases, twin boundaries are not fully coherent and are likely combinations of symmetric, 

asymmetric, and quasi-symmetric components. This metastability of quasi-symmetric Σ3’ 

boundaries in bcc tantalum, identified using both EAM and SNAP interatomic potentials, 

may play a governing role in determining the mechanism for plastic deformation via the 

twinning vs. slip transition.  Experimental evidence has shown quasi-symmetric boundaries 

in Nb, Mo, and Ta Σ5 GBs and here we show symmetry breaking Σ3, Σ5, and Σ7 GBs 

(among others) in Ta. These quasi-symmetric structures appear to be unique to bcc 

transition metals and are not explicitly reported for fcc GB structures.  

 How are dynamic experimental results correlated to local phenomena and 

measures obtained through molecular dynamics? 

o What is the relationship between spall strength and strain rate? 
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The ultimate strength of materials is an important property and represents the stress 

at which the interatomic forces can no longer sustain the cohesion of the structure. In quasi-

static tension the value is never reached or even approached as a variety of mechanisms 

conspire to lower the maximum sustained tensile stress. However, as the strain rate is 

increased, this value rises and in the shock wave regime the stress state (uniaxial strain) 

and the kinetics of void/crack nucleation, growth, and coalescence are such that the 

ultimate stress is reached. The roles of temperature, microstructure, and strain rate were 

evaluated for tensile failure bcc tantalum.  

The sustained stress at failure is dependent upon the kinetics of the dominant defect 

mechanism. We identify a transition between dislocation and twin dominated spall of [001] 

single crystals at 109 s-1 and show that small nanocrystals (d=21 nm) do not exhibit a 

change in mechanism for strain rates greater than 108 s-1. Above the threshold for de-

cohesion, ~ 5x1010 s-1, strength again follows a power law dependence up until the 

vibrational frequency, after which the stress saturates at an ultimate value. In each spall 

process, the temperature induced via plasticity (and the shock Hugoniot for NEMD 

simulations) decreases the resulting spall strength. Artificial adjustment of the temperature 

prior to spall shows that softening persists up until melting where the spall strength of 

liquid decreases further in proportion to ~1/T.  

The classically-accepted cleavage strength of tantalum is 39.4 GPa based upon a 

cohesive energy criterion [36,394]. Several potential forms were assessed in order to more 

accurately estimate the tensile strength. The maximum predicted strength of the Ravelo et 

al. [95] potential utilized here (Ta1) is 31.6 GPa (Ta2 predicts a theoretical strength of 35 

GPa).  These both show good agreement with DFT and general EOS forms, and with the 
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measured ultimate tensile strengths in the current MD simulations of single and 

nanocrystalline tantalum, ~31 and ~34 GPa, respectively.  

 What are the mechanisms of void initiation and growth? 

Calculations reveal that voids form at regions where defects are generated on shock 

compression. These are twin-twin intersections in monocrystals; additionally, grain 

boundary-defects are regions of initiation in nanocrystals. The growth of voids takes place 

by the emission of shear loops from the voids. These subsequently transition to prismatic 

loops by the cross-slip of the screw components of dislocations.  
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Appendix A – LAMMPS Input Files 

In the present work we have simulated the energy of 79 grain boundaries in bcc 

tantalum, as described by the coincident site lattice (CSL) model, and examined grain 

boundary structures to facilitate discussion and comparison. The supplemental material 

details complete tilt axis abc , grain boundary normal  hkl , Σ index, misorientation, 

and conversion of these values into appropriate simulation basis for four tilt axes: 001 ,

011 , 111 , and 112 . We use the MD code LAMMPS [162] to generate and relax the 

various bicrystal structures based on the scheme of Tschopp et al. [174,175,395]. Briefly, 

one crystal is sequentially shifted with respect to another along its γ-surface, atoms that 

exceed an overlap criteria are selectively removed, and the boundary is relaxed in the GB 

normal direction. The grain boundary energy (GBE) is calculated by evaluating the excess 

energy of the system per grain boundary unit area, taking into account that each simulation 

contains two parallel grain boundaries.  The embedded atom model (EAM) potential 

developed by Ravelo et al. [95] is principally employed, but the importance of the Σ3 

coherent twin boundary to deformation behavior warranted a “quantum accurate” 

investigation using a spectral neighbor an alysis potential (SNAP) developed by Thompson 

et al. [396]. Depending on the boundary orientations, between hundreds and thousands of 

possible atomic structures containing up to fifty thousand atoms were sampled to produce 

each minimum energy configuration, thus neither density functional theory (DFT) nor 

extended use of SNAP is practical for the present study.  
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A-1, Bicrystal Grain Boundaries 

# Filename: in.GB_Ta_STGB 

# LAMMPS Input File for Bicrystal Grain Boundaries  

 

# ---------- Setup Variables ---------------------  

variable etol equal 1.0e-25  

variable ftol equal 1.0e-25  

variable maxiter equal 5000  

variable maxeval equal 10000  

variable latparam equal 3.304 

variable minimumenergy equal -8.100 

variable overlapboth equal 1  

variable gbname index Ta_Sigma5 

variable counter equal 0  

variable inc equal "v_latparam / 12"  

 

# -------- How Big ----------------------- 

# -- measured in unit cells -------------- 

variable xuh equal 4 

variable yuh equal 4 

variable zuh equal 4 

 

variable xul equal -4 

variable yul equal -4 

variable zul equal -4 

 

# -------- Grain1 ------------------------ 

 

# These variable can be hardwired as written or read into lammps via the command line 

# at run time 

variable 1x1 equal 0  

variable 1x2 equal 1 

variable 1x3 equal -3 

 

variable 1y1 equal 0 

variable 1y2 equal 3 

variable 1y3 equal 1 

 

variable 1z1 equal 1 

variable 1z2 equal 0 

variable 1z3 equal 0 

 

# -------- Grain2 ------------------------ 
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variable 2x1 equal ${1x1} 

variable 2x2 equal -1*${1x2} 

variable 2x3 equal ${1x3} 

 

variable 2y1 equal -1*${1y1} 

variable 2y2 equal ${1y2} 

variable 2y3 equal -1*${1y3} 

 

variable 2z1 equal ${1z1} 

variable 2z2 equal -${1z2} 

variable 2z3 equal ${1z3} 

 

# Insert x,y,z sizes in LU and calculate in Angstroms  

variable xsize1 equal "sqrt(v_1x1^2 + v_1x2^2 + v_1x3^2)"  

variable ysize1 equal "sqrt(v_1y1^2 + v_1y2^2 + v_1y3^2)" 

variable zsize1 equal "sqrt(v_1z1^2 + v_1z2^2 + v_1z3^2)"  

variable xsize2 equal "sqrt(v_2x1^2 + v_2x2^2 + v_2x3^2)"  

variable ysize2 equal "sqrt(v_2y1^2 + v_2y2^2 + v_2y3^2)" 

variable zsize2 equal "sqrt(v_2z1^2 + v_2z2^2 + v_2z3^2)"   

if "${xsize1} <= ${xsize2}" then "variable xsize equal ${xsize1}" else "variable xsize 

equal ${xsize2}"  

if "${zsize1} <= ${zsize2}" then "variable zsize equal ${zsize1}" else "variable zsize equal 

${zsize2}"  

variable xlen equal "v_xsize * v_latparam" 

variable zlen equal "v_zsize * v_latparam" 

  

# Determine number of increments for displacement grid in the in-plane GB directions  

variable xinc equal "floor(v_xlen / v_inc)" 

variable zinc equal "floor(v_zlen / v_inc)" 

 

# Implement overlap criterion  

variable overlapinc equal 86  

  

# ---------- Define loops for simulation ---------------------   

label loopa  

variable a loop ${xinc}  

variable tx equal "(v_a-1) / v_xinc * v_xsize"  

label loopb  

variable b loop ${zinc}  

variable tz equal "(v_b-1) / v_zinc * v_zsize"  

label loopd  

variable d loop ${overlapboth}  

label loopc  

variable c loop ${overlapinc}  

variable overlapdist equal "(0.275 + 0.005 * (v_c-1))*v_latparam"  
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# ---------- Calculate counter and create data directory ---------------------  

variable ctemp equal ${counter}+1  

variable counter equal ${ctemp}  

variable ctemp delete  

print "Counter: ${counter}"  

shell mkdir ${gbname}  

 

# ---------- Initialize Simulation ---------------------  

clear  

units metal  

dimension 3  

boundary p p p  

atom_style atomic  

 

# ---------- Create Atomistic Structure ---------------------  

#lattice bcc ${latparam} spacing ${xsize1} ${ysize1} ${zsize1} 

lattice bcc ${latparam} orient x  ${1x1} ${1x2} ${1x3} orient y  ${1y1} ${1y2} ${1y3} 

orient z  ${1z1} ${1z2} ${1z3} spacing ${xsize1} ${ysize1} ${zsize1} 

region whole block ${xul} ${xuh} ${yul} ${yuh} ${zul} ${zuh} units lattice 

create_box 2 whole  

region upper block INF INF 0.0 ${yuh} INF INF units lattice 

create_atoms 1 region upper  

lattice bcc ${latparam} orient x  ${2x1} ${2x2} ${2x3} orient y  ${2y1} ${2y2} ${2y3} 

orient z  ${2z1} ${2z2} ${2z3} spacing ${xsize2} ${ysize2} ${zsize2} 

region lower block INF INF ${yul} 0.0 INF INF units lattice  

create_atoms 2 region lower  

group upper type 1  

group lower type 2   

 

# ---------- Define Interatomic Potential ---------------------  

pair_style eam/alloy  

pair_coeff * * Ta-v13.setfl Ta Ta 

neighbor 2.0 bin  

neigh_modify delay 10 check yes  

  

# ---------- Displace atoms and delete overlapping atoms ---------------------  

displace_atoms upper move ${tx} 0 ${tz} units lattice  

if "$d == 1" then "delete_atoms overlap ${overlapdist} lower upper"  

if "$d == 2" then "delete_atoms overlap ${overlapdist} upper lower"  

if "$c == 1" then "variable atomprev equal 1"  

variable natoms equal "count(all)"  

print "Previous: ${atomprev}, Present: ${natoms}"  

if "${atomprev} == ${natoms}" then "jump in.GB_Ta_STGB loopend"  
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# ---------- Define Settings ---------------------  

compute csym all centro/atom bcc 

compute eng all pe/atom  

compute eatoms all reduce sum c_eng  

# compute 4 all stress/atom pair 

 

# ---------- Run Minimization ---------------------  

reset_timestep 0  

thermo 10  

thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms 

min_style cg  

minimize ${etol} ${ftol} ${maxiter} ${maxeval}  

 

# ---------- Run Minimization 2---------------------  

# Now allow the box to expand/contract perpendicular to the grain boundary 

reset_timestep 0  

thermo 10  

thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms  

fix 1 all box/relax y 0.0 vmax 0.001 

min_style cg  

minimize ${etol} ${ftol} ${maxiter} ${maxeval}  

  

# ---------- Calculate GB Energy ---------------------  

variable esum equal "v_minimumenergy * count(all)"  

variable xseng equal "c_eatoms - (v_minimumenergy * count(all))"  

variable gbarea equal "lx * lz * 2"  

variable gbe equal "(c_eatoms - (v_minimumenergy * count(all)))/v_gbarea"  

variable gbemJm2 equal ${gbe}*16021.7733    

variable gbernd equal round(${gbemJm2})  

print "After third minimization:"  

print "GB energy is ${gbemJm2} mJ/m^2"  

  

# Store number of atoms for overlap criterion, i.e., do not rerun equivalent configurations  

variable atomprev equal "v_natoms"  

 

#predump 

if "${counter} < 2" then "dump 1 all custom 1000 dump.${gbname}.pre id type x y z 

c_csym c_eng" 

 

# ---------- Dump data into Data file -------------  

reset_timestep 0  

timestep 0.001  

velocity all create 10 95812384  

fix 2 all nvt temp 5 5 100 

#fix 2 all npt temp 5 5 100 iso 0 0 100 drag 0.2 
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dump 2 all custom 1000 dump.${gbname}_${gbernd} id type x y z c_csym c_eng 

run 0  

#shell cd ..  

  

# ---------- End of loop structure -------------  

label loopend  

next c  

jump in.GB_Ta_STGB loopc  

variable c delete  

next d  

jump in.GB_Ta_STGB loopd  

variable d delete  

next b  

jump in.GB_Ta_STGB loopb  

variable b delete  

next a  

jump in.GB_Ta_STGB loopa  

print "All done" 
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A-2, Piston-Driven Shock 

# A few variables to make the piston velocity loop hardwired... 

# The length (in timesteps) of the ramp 

Variable ramp_timeup  equal 5000 # 

variable         ramp_timedown   equal 50000 # 

# The no. of steps in the ramp (more steps=closer to linear ramp) 

variable ramp_steps equal 1000  

# This is the final shock strength in A per ps 

variable shock equal 7.5 

variable  oblq equal 0.0 

variable ratio equal ${oblq}/${shock} 

 

#Initialization 

 

units  metal 

boundary p p s 

atom_style atomic 

neighbor 1.0 bin 

neigh_modify every 1 delay 2 check yes 

 

 

#100 Lattice 

lattice        bcc 3.304 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

 

region        box block -50 50 -50 50 0 1515 units lattice 

create_box 1 box 

create_atoms 1 box  

 

pair_style eam/alloy 

pair_coeff * *  ./Ta1-Ravelo.setfl Ta 

 

minimize 1.0e-4 1.0e-6 100 1000 

velocity all create 600.0 482748 dist gaussian 

fix init all temp/rescale 1 300 300 1 1 

fix             1 all nve 

run 10000 

reset_timestep 0 

 

compute 1 all ke/atom 

compute 2 all centro/atom 14 

compute 3 all pe/atom 

compute 4 all stress/atom pair 

compute 5 all cna/atom 3.9  
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thermo_style custom step temp ke pe etotal press pxx pyy pzz pxy pxz pyz ly lx lz vol zhi 

thermo_modify lost warn norm yes 

thermo   100 

 

reset_timestep 0 

 

# Apply shock fixes 

region  piston block INF INF INF INF 0 2 units lattice  

group  piston region piston 

fix  2 piston setforce 0.0 0.0 0.0  

 

#Set thermo and dump for run 

 

thermo   100 

  

dump OUT1 all custom 1000 dump.Ta_piston_all.* id x y z vx vy vz c_1 c_2 c_3 c_5 

c_4[1] c_4[2] c_4[3] c_4[4] c_4[5] c_4[6] 

 

dump OUT2 all custom 10000 dump.Ta_piston_defects.* id x y z vx vy vz c_5 c_4[3] 

## modify to get only non-bcc atoms (cna!=3) 

dump_modify OUT2 thresh c_5 != 3  

 

#  THIS LOOP DOES THE RAMP UP 

variable i loop ${ramp_steps} 

label loop 

variable piston_vel equal ${shock}/(${ramp_steps}/$i) 

print        "Vel=${piston_vel}" 

variable         Up equal ${piston_vel} 

variable  Vp equal ${piston_vel}*${ratio} 

velocity         piston set 0.0 ${Vp} ${Up} sum no units box 

variable runfor equal (${ramp_timeup}/${ramp_steps}) 

print  "DIAG2 - Piston velocity is ${Up}:${Vp}, run for ${runfor}" 

run  ${runfor}  

next i 

 

# THIS LINE MUST CHANGE IF YOU CHANGE THE FILENAME..... 

jump in.spall-sc100_UpVp loop 

 

run 50000 

 

#  THIS LOOP DOES THE RAMP DOWN 

variable j loop ${ramp_steps} 

label loop2 

variable        piston_vel equal ${shock}-${shock}/(${ramp_steps}/$j) 

print           "Vel=${piston_vel}" 
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variable        Up equal ${piston_vel} 

variable        Vp equal ${piston_vel}*${ratio} 

velocity        piston set 0.0 ${Vp} ${Up} sum no units box 

variable        runfor equal (${ramp_timedown}/${ramp_steps}) 

print           "DIAG2 - Piston velocity is ${piston_vel}, run for ${runfor}" 

run             ${runfor} 

next j 

 

# THIS LINE MUST CHANGE IF YOU CHANGE THE FILENAME..... 

jump in.spall-sc100_UpVp loop2 

 

undump OUT1 

dump OUT3 all custom 500 dump.Ta_piston.* id x y z vx vy vz c_1 c_2 c_3 c_5 c_4[1] 

c_4[2] c_4[3] c_4[4] c_4[5] c_4[6] 

 

run 100000 
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A-3, Flyer-Target Shock 

units  metal 

boundary p p s 

atom_style atomic 

neighbor 1.0 bin 

neigh_modify every 1 delay 2 check yes 

 

#VARIABLES 

#Target  and projectile size, etc,  

variable        T equal 454.0 

variable        CS equal 75.0 

variable        F equal "v_T*0.5" 

variable        Up equal 7.5 

variable        Tu equal "v_Up*-2/3" 

variable        Fu equal "v_Up*4/3" 

variable        LO equal 4/3 

variable        RO equal 2/3 

variable        Tbox equal "v_T+v_RO" 

variable        Fbox equal "v_F+v_LO" 

 

# The Flyer plate and target are assigned initial velocities of 4/3 Up and −2/3 Up  

 

# CREATE GEOMETRY 

lattice     bcc 3.304 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

region  box block -${CS} ${CS} -${CS} ${CS} -${Fbox} ${Tbox} units lattice 

create_box 1 box 

 

region          flyer block -${CS} ${CS} -${CS} ${CS} -${Fbox} -${LO} 

create_atoms    1 region flyer 

group flyer region flyer 

 

region          target block -${CS} ${CS} -${CS} ${CS} ${RO} ${Tbox} 

create_atoms    1 region target 

group target region target 

 

pair_style eam/alloy 

pair_coeff * *  ./Ta1-Ravelo.setfl Ta 

 

velocity all create 300.0 482748 dist gaussian 

minimize 1.0e-4 1.0e-6 100 1000 

 

thermo_style custom step temp ke pe etotal press pxx pyy pzz pxy pxz pyz ly lx lz vol 

thermo_modify   lost warn norm yes 

thermo          5 
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fix e all nvt temp 300.0 300.0 1.0  

fix t all temp/rescale 1 300.0 300.0 1.0 1.0  

# equilibration for 2000 steps 

run 2000 

unfix e 

unfix t 

reset_timestep 0 

 

compute 1 all ke/atom 

compute 2 all centro/atom 14 

compute 3 all pe/atom 

compute 4 all stress/atom pair 

compute 5 all cna/atom 3.9  

 

thermo 100 

fix  1 all nve 

velocity flyer set NULL NULL ${Fu} sum yes units box 

velocity target set NULL NULL ${Tu} sum yes units box 

 

dump OUT1 all custom 1000 dump.flyer.spall.all100_454a_150a_300K_U750.* id x y z 

vx vy vz c_1 c_2 c_3 c_5 c_4[1] c_4[2] c_4[3] c_4[4] c_4[5] c_4[6] 

dump OUT2 all custom 1000 dump.flyer.spall.notBCC_454a_150a_300K_U750.* id x y 

z vx vy vz c_3 c_4[1] c_4[2] c_4[3] 

## modify to get only non-bcc atoms (cna!=3) 

dump_modify OUT2 thresh c_5 != 3  

 

run 100000 
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A-4, Quasi Isentropic Loading 

# ------------------------ INITIALIZATION ---------------------------- 

units   metal 

dimension 3 

boundary p p p 

atom_style atomic 

variable latparam equal 3.304 

 

# ----------------------- ATOM DEFINITION ---------------------------- 

 

#lattice        bcc 3.304 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

#region        box block -150 150 -150 150 -150 150 units lattice 

#create_box      1 box 

 

read_data data.example 

 

pair_style      eam/alloy 

pair_coeff      * *  ./Ta1-Ravelo.setfl Ta 

 

# ------------------------- SETTINGS --------------------------------- 

compute 1 all ke/atom 

compute 3 all pe/atom 

compute 4 all stress/atom 

compute 5 all cna/atom 3.9 

 

###################################### 

thermo_style custom step temp ke pe etotal press pxx pyy pzz pxy pxz pyz ly lx lz vol 

thermo_modify   lost warn norm yes 

thermo          100 

 

reset_timestep 0 

 

# Store final cell length for strain calculations 

variable tmp equal "lz" 

variable L0 equal ${tmp} 

print "Initial Length, L0: ${L0}" 

 

###################################### 

# DEFORMATION 

fix  1 all nve 

 

# Output strain and stress info to file 
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# for units metal, pressure is in [bars] = 100 [kPa] = 1/10000 [GPa] 

# p2, p3, p4 are in GPa 

variable strain equal "(lz - v_L0)/v_L0" 

variable p1 equal "v_strain" 

variable p2 equal "-pxx/10000" 

variable p3 equal "-pyy/10000" 

variable p4 equal "-pzz/10000" 

variable p5 equal "temp" 

variable p6 equal "step" 

variable p7 equal "lz" 

 

 

fix def1 all print 100 "${p1} ${p2} ${p3} ${p4} ${p5} ${p6} ${p7}" file Ta_ QI.def.txt 

screen no 

 

# Dump for Ovito post processing  

 

dump OUT1 all custom 1000 dump. QI.* id x y z vx vy vz c_1 c_3 c_5 c_4[1] c_4[2] 

c_4[3] c_4[4] c_4[5] c_4[6] 

 

dump OUT2 all custom 500 dump.QI_defects.* id x y z vx vy vz c_3 c_5 c_4[3] 

## modify to get only non-bcc atoms (cna!=3) 

dump_modify OUT2 thresh c_5 != 3 

 

variable sratet equal 1.0e9 

variable sratet1 equal "v_sratet / 1.0e12" 

 

fix             2 all deform 1 z erate ${sratet1} units box remap x 

run 500000 

 

###################################### 

# SIMULATION DONE 

print "All done!" 
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Appendix B – Orientation Algorithm  

A. Find nearest 8 neighbors for each bcc atom.  

B. Create 8 pairs of atoms to create the <111> family of directions.  

C. Assign 𝑛̂111  such that 𝑛̂𝑖𝑥 + 𝑛̂𝑖𝑦 +  𝑛̂𝑖𝑧 is maximized 

D. Take 𝑒̂111 = 𝑛̂111/|𝑛̂111| 

E. Assign 𝑛̂1̅11  such that − 𝑛̂𝑖𝑥 + 𝑛̂𝑖𝑦 +  𝑛̂𝑖𝑧 is maximized 

F. Take 𝑒̂1̅11 = 𝑛̂1̅11/|𝑛̂1̅11| 

G. Take 𝑒̂02̅2  = 𝑒̂111 × 𝑒̂1̅11/|𝑒̂111 × 𝑒̂1̅11| 

H. Take 𝑒̂4̅22 = 𝑒̂02̅2 × 𝑒̂111/|𝑒̂02̅2 × 𝑒̂111| 

I. Take 𝑒̂100 =
1

√3
𝑒̂111 −

2

√6
𝑒̂4̅22  

J. Take 𝑒̂010 =
1

√3
𝑒̂111 −

1

√2
 𝑒̂02̅2 +

1

√6
𝑒̂4̅22  

K. Take 𝑒̂001 =
1

√3
𝑒̂111 +

1

√2
 𝑒̂02̅2 +

1

√6
𝑒̂4̅22  

L. Providing we use a right handed notation and pre-multiply a rotation matrix to transform a reference identity 

matrix "𝐼"̅ to our determined orientation 𝑂 the resulting rotation matrix 𝑅 will be equivalent to 𝑂.   

M. Taking the orientation to be a function of Euler angles consisting of: z(𝜑),y(𝜃),z(𝜓)  

N. Take 𝜃 =  𝑐𝑜𝑠−1(𝑅33) 

O. If 𝜃 =  0, the solution is not unique as the function represents two undistinguishable rotations about the z 

axis. 

a. Take 𝜑 =  𝑐𝑜𝑠−1(𝑅11) 

b. Take 𝜓 =  0 

P. If 𝜃 ≠  0, 

a. Take 𝜑 =  𝑠𝑖𝑛−1(𝑅31/𝑠𝑖𝑛𝜃) 

b. Take 𝜓 =  𝑠𝑖𝑛−1(𝑅13/𝑠𝑖𝑛𝜃) 

Q. Quaternions can be determined as follows: 

a. 𝑞0 = cos (
𝜃

2
) cos (

𝜑+𝜓

2
) 

b. 𝑞1 = sin (
𝜃

2
) cos (

𝜑−𝜓

2
) 

c. 𝑞2 = sin (
𝜃

2
) sin (

𝜑−𝜓

2
) 

d. 𝑞3 = cos (
𝜃

2
) sin (

𝜑+𝜓

2
) 

R. The spatial components of the quaternion vector (𝑞1, 𝑞2, 𝑞3) can be intensity mapped to RGB color values in 

the normal way.   

S. Rudd offers an alternate color mapping function of the form: [(
1

√3
) sin𝜓 +

1

2
] 𝑛̂111.   
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Appendix C – Bicrystal Data  

(hkl)[y] Tilt[z] Ortho.[x] Σ θ(°) GBE(mJ/m2) 

0 1 0 1 0 0 0 0 -1 1 0 0 

0 12 1 1 0 0 0 1 -12 145 9.53 1012 

0 7 1 1 0 0 0 1 -7 25 16.26 1053 

0 6 1 1 0 0 0 1 -6 37 18.92 1142 

0 5 1 1 0 0 0 1 -5 13 22.62 1191 

0 4 1 1 0 0 0 1 -4 17 28.07 1314 

0 10 3 1 0 0 0 3 -10 109 33.4 1376 

0 3 1 1 0 0 0 1 -3 5 36.87 1318 

0 8 3 1 0 0 0 3 -8 73 41.11 1438 

0 7 3 1 0 0 0 3 -7 29 46.4 1452 

0 11 5 1 0 0 0 5 -11 73 48.89 1448 

0 2 1 1 0 0 0 1 -2 5 53.13 1348 

0 11 6 1 0 0 0 6 -11 157 57.22 1399 

0 7 4 1 0 0 0 4 -7 65 59.49 1376 

0 5 3 1 0 0 0 3 -5 17 61.93 1306 

0 8 5 1 0 0 0 5 -8 89 64.01 1299 

0 3 2 1 0 0 0 2 -3 13 67.38 1220 

0 4 3 1 0 0 0 3 -4 25 73.74 1068 

0 5 4 1 0 0 0 4 -5 41 77.32 1006 

0 9 8 1 0 0 0 8 -9 145 83.27 666 

0 10 9 1 0 0 0 9 -10 181 83.97 624 

0 1 1 1 0 0 0 1 -1 1 90 0 

 

(hkl)[y] Tilt[z] Ortho.[x] Σ θ(°) GBE(mJ/m2) 

1 1 0 -1 1 0 0 0 2 1 0 0 

7 7 1 -1 1 0 -1 -1 14 99 11.54 968 

4 4 1 -1 1 0 -1 -1 8 33 20.05 1262 

3 3 1 -1 1 0 -1 -1 6 19 26.53 1335 

5 5 2 -1 1 0 -2 -2 10 27 31.59 1384 

9 9 4 -1 1 0 -4 -4 18 89 34.89 1408 

2 2 1 -1 1 0 -1 -1 4 9 38.94 1326 

7 7 4 -1 1 0 -4 -4 14 57 44 1326 

3 3 2 -1 1 0 -2 -2 6 11 50.48 1118 

4 4 3 -1 1 0 -3 -3 8 41 55.88 1211 

5 5 4 -1 1 0 -4 -4 10 33 58.99 1250 

1 1 -1 -1 1 0 1 1 2 3 70.53 1298 
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5 5 6 -1 1 0 -6 -6 10 43 80.63 1250 

7 7 10 -1 1 0 -10 -10 14 99 90.58 1141 

3 3 5 -1 1 0 -5 -5 6 43 99.37 964 

4 4 7 -1 1 0 -7 -7 8 81 102.12 844 

1 1 -2 -1 1 0 2 2 2 3 109.47 278 

4 4 9 -1 1 0 -9 -9 8 113 115.7 825 

2 2 5 -1 1 0 -5 -5 4 22 121.01 1045 

3 3 8 -1 1 0 -8 -8 6 41 124.12 1136 

1 1 3 -1 1 0 -3 -3 2 11 129.52 1255 

1 1 4 -1 1 0 -4 -4 2 9 141.06 1320 

1 1 5 -1 1 0 -5 -5 2 27 148.41 1385 

1 1 8 -1 1 0 -8 -8 2 33 159.95 1215 

1 1 14 -1 1 0 -14 -14 2 99 168.46 987 

1 1 16 -1 1 0 -16 -16 2 129 169.9 926 

0 0 1 -1 1 0 -1 -1 0 1 180 0 

 

(hkl)[y] Tilt[z] Ortho.[x] Σ θ(°) GBE(mJ/m2) 

1 1 0 -1 1 -1 -1 1 2 1 0 0 

10 11 1 -1 1 -1 -12 9 21 37 9.43 832 

7 8 1 -1 1 -1 -9 6 15 19 13.17 990 

5 6 1 -1 1 -1 -7 4 11 31 17.9 1153 

4 5 1 -1 1 -1 -6 3 9 7 21.79 1194 

3 4 1 -1 1 -1 -5 2 7 13 27.8 1264 

5 7 2 -1 1 -1 -9 3 12 13 32.2 1285 

2 3 1 -1 1 -1 -4 1 5 7 38.21 1194 

5 8 3 -1 1 -1 -11 2 13 49 43.57 1165 

3 5 2 -1 1 -1 -7 1 8 19 46.83 1078 

4 7 3 -1 1 -1 -10 1 11 37 50.57 953 

1 2 1 -1 1 -1 -3 0 3 3 60 298 

 

(hkl)[y] Tilt[z] Ortho.[x] Σ θ(°) GBE(mJ/m2) 

1 1 0 1 -1 2  2 -2 -2 1 0 0 

11 13 1 1 -1 2 27 -21 -24 97 11.66 919 

8 10 1 1 -1 2 21 -15 -18 55 15.5 1020 

5 7 1 1 -1 2 15 -9 -12 25 23.07 1247 

4 6 1 1 -1 2 13 -7 -10 53 27.53 1325 

3 5 1 1 -1 2  11 -5 -8 35 34.05 1368 

5 9 2 1 -1 2 20 -8 -14 55 38.57 1299 

2 4 1 1 -1 2  9 -3 -6 7 44.42 1332 

3 7 2 1 -1 2 16 -4 -10 31 52.2 1273 
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5 13 4 1 -1 2 30 -6 -18 35 57.12 1266 

1 3 1 1 -1 2  7 -1 -4 11 62.96 1274 

3 11 4 1 -1 2 26 -2 -14 73 69.97 1330 

1 5 2 1 -1 2 12 0 -6 15 78.46 1372 

1 7 3 1 -1 2 17 1 -8 59 85.14 1443 

1 9 4 1 -1 2 22 2 -10 49 88.83 1461 

1 11 5 1 -1 2 27 3 -12 49 91.17 1486 

1 17 8 1 -1 2 42 6 -18 59 94.86 1486 

0 2 1 1 -1 2 5 1 -2 5 101.54 1346 
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Appendix D – HYADES  

HYADES is a radiation hydrodynamics code for laser-plasma and hot dense matter 

studies developed by J.T. Larsen [211,212].  

 

 
Figure A-1. Hyades simulation 100J pulse with 3 mm spot size interacting with 20 μm CH and 50 

μm Ta. 

HYADES incorporates laser-matter interaction and determines the physical response 

through an input EOS table and strength/melt models. The simulations run for tantalum use 

the following models and parameters:  

 Shear: Steinberg [6.9e+11,1.45e-12,1.3e+3] 

 Yield: Steinberg-Guinan [7.7e+9,22,0,0.283,1.1e+10] 

 Spall: Cochran-Banner [4.4e9*10,0.011] 

 Melt: Lindemann [3.74e-4,1.3,1.67] 

A sweep of experimental parameters and specimen dimensions was completed in order to 

select combinations that produced the largest strain-rates. 
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Figure A-2. Figure showing relationship between sample thickness and strain rate. For the smallest 

sample a scan of CH thickness and laser energy was also explored.  
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Appendix E – Two Phase Method  

The two phase method was implemented in LAMMPS [162]. We follow the general 

methodology used by Dozhdikov et al. [231]. The initial bcc crystalline Ta sample is 75a0 

long and 10a0 in each of the lateral directions; all boundaries are periodic in nature and the 

computational cell contains 30000 atoms. The center two thirds are defined to remain solid 

and the outer third is marked to become liquid. The subsequent steps are followed.  

1. For a chosen (P,T) point to evaluate, the system is seeded with a random 

velocity equivalent to half of T.  

2. A Nose-Hoover thermostat-barostat (NPT) is applied, taking the system from 

(0,0.5T) to (P,0.75T) over 6x104 femptosecond (fs) using 1 fs timesteps. 

3. NPT is applied, maintaining the pressure at P and taking the temperature from 

0.75 T to T over 6x104 fs. 

4. NPT is applied, maintaining the pressure at P and T for 6x104 fs. 

5. An anisotropic Nose-Hoover thermostat-barostat (NPxxT) is applied to the 

liquid region allowing for constant y/z cell dimensions while a micro-cononical 

ensemble (NVE) is applied to the solid region. The NPxxT takes the material 

from T to 1.5T over 6x104 fs. 

6. NVE is applied to the solid regime while the liquid undergoes a NPxxT returning 

the system from 1.5T to T over 6x104 fs. 

7. The entire system is allowed to evolve under NVE conditions for between 2x105 

and 107 fs depending on the level of accuracy needed. The time step is often 

increased at this stage to decrease the computational costs, but always allows 

for at least 10 steps per vibrational frequency, which is both pressure and 

temperature dependent.  

In order to identify structural differences between solid and melted regions, 

Voronoi analysis was carried out using Ovito (http:/ovito.org) [185]. Using Schlaefli 

notation, we tracked, n, the number of faces with 6 edges, which corresponds to the sixth 

index. Taking 150 bins along the long axis, the mean n was calculated for each bin and the 

first (spatial) derivative was taken. For systems in equilibrium, there will be a large spike 

in the derivative at the initial position of the solid-liquid interface. For systems below the 

melting temperature, the derivative peak will move into the initial liquid regime as the 

material solidifies – for systems above the melting temperature, the material will melt at 

the front and the solid will be consumed moving the derivative inwards. It is critical that 

enough simulation time be applied to observe the motion of the interface. Reduced error 

bars require much larger simulation times to observe measurable changes in the amounts 

of solid and liquid material near the melting point. The accuracy bars in the main text 



216 

 

    

 

correspond to simulations where the material is entirely solid or entirely liquid after a 

sufficiently long time has elapsed. The melting temperature at a given pressure is 

determined to be the simulation for which the interface showed the smallest (or no 

measureable) motion. Figure 5 shows two snapshots for a system evolving under a NVE 

ensemble at 2900 K at negative 2 GPa (2 GPa in tension). Growth of the solid phase 

represents that the selected P,T conditions lie within the solid (bcc) portion of the phase 

diagram.  

 

Figure A-3. Two phase simulation evaluated at 2900 K at -2 GPa showing solidification over 0.2 

ns during NVE integration. The two phase system is colored by the 6th Voronoi index where blue 

atoms have 10 faces with 6 edges, red atoms have 0 faces with 6 edges, and white atoms have an 

intermediate 5 faces with 6 edges.  
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Appendix F – Quasi-Isentropic Loading  

An isentropic process is a thermodynamic process where there is no transfer of heat 

or matter. Additionally the process is fully reversible. The simulations here utilize a 

microcanonical (NVE) ensemble integrated using a velocity-Verlet algorithm as 

implemented in LAMMPS [162].  

The analytical Verlet algorithm is inherently time reversible; by changing the arrow 

of time a system of atoms will retrace their forward trajectories [160]. In application of this 

algorithm, the positions and forces are taken as floating point numbers which inherently 

incorporates rounding procedures, the practical result is a very small random noise that 

deteriorates the symmetry of the algorithm.  

The NVE ensemble maintains the system in isolation from the environment such 

that the total energy (E) and mass (here N for atoms) remains exactly known as the time 

goes on. If there is no other driver of the system, the volume (V) also remains exactly 

known. We introduce an external strain rate to the system by homogenously scaling the 

system points by a specified strain rate. The resulting molecular dynamics (MD) equations 

of motions (beginning with the momentum) can be written as follows: 

,

, ,

i n

i n i i n

n

p
r r

m
  , (1) 

where i=x,y,z; and n is the particle number for the position r, momentum p, mass m, and 

strain-rate, dε/dt.  Subsequently the time derivative of momentum can be defined by the 

force F and the system length L by the strain rate.  

, , ,i n i n i i np F p  , (2) 

i i iL L , (3) 

The resulting work done can be described as: 

0E Q W PV W Q       , (6) 

Thus, it can be seen that the method implemented method introduces no external heat nor 

mass and that the evolution of the system can be time reversible. It is important to note that 

we use the term quasi-isentropic for two reasons. First, the method of integration introduces 

small variations by using efficient numerical integration methods that subtly remove the 

time reversibility by introducing small rounding errors. Secondly, the system will undergo 

plastic deformation which introduces visco-plastic work. The system’s temperature will 

evolve in proportion to the amount of plasticity that takes place.  

 

 

 




