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'roPOLOGICAL EXPANSION AliD Cl.J'l'KCeKI RIJUS 

* F. J. Capra 

Lawrence Berkeley Laboratory 
university of California 

Berkeley, California 94720 

ABSTRACT 

LBL-5338 

An unambiguous 111ay of cutting duality diagrams according to 

the Cutkosky rules is established which permits a topological classi-

fication of the terms appearing on the right-hand side of the unitarity 

equation. 

The topoiogic&l expansion recently proposed by Veneziano(l) has 

been used successfully to clarify various aspects of hadron dynamics, 

. (1 6) 
in particular those relevant to Regge theory - . However., it has not 

been possible, so far,to define the amplitudes appearing in the expan­

sion in.pure S-matrix lariguage Without reference to underlying field 

theoretical, or dual, models. One way of attempting such a formulation 

would be to provide an e~sion of both sides of the unitarity equation 

in terms of the ~oundaries and handles of the amplitudes involved, so 

that these amplitudes can be defined through their discontinuities. 

The purpose of the present paper is to show the duality diagrams 

representing the amplitudes have to be cut according to the Cutkosky 

rules to generate the discontinuities. We shall establish an unambig-

* Participating guest; Lawrence Berkeley Laboratory. 
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guous way of cutting diagrams according to their topological structure 

that will enable us to determine 1itich terms have to be ·included in the 

unitarity sum at each level of the expansion. Our method does not take 

the boundary. structures of the dillf!,-rams into account which vill have to 

be analysed before the precise unitarity equations· can be written down. 

Work along these lines is in progress. 

The dual n-point function is represented by a SUII of diagrams 

which are classified(l,3) in terms of their boundaries b (lines to 

which the external legs are _attached) and their handles h. The para­

meter h is defined as the minimUII: genus (or number ofhandles) a:nong 

all closed two-dilllensional orientable surfaces in which the diagram can 

be embedded(3,7). The topological structure of a di~ain is uniquely 

defined by h and all different ways in which the diagram can be 

(8' 
embedded in a surface are topologically equivalent '· 

To write down the unitarity equations, one can fix h on the 

lett-hand side and then use the Cutkosky rules to write down the right.­

hand side{3). This corresponds to cutting the diagrams into two connec-

ted pieces in such a way that. one piece contains the incoming state 

and the other piece the outgoing state. Each cut through a'particle 

line has to divide this line into two parts belonging to the two diff-

erent pieces of the cut diagram. In other words, it must be possible 

to draw the cut through the diagram as a single line, e.g. as shown in 

Fig. la. Cuts, such as the one sho~ in Fig. lb, which separate the 

diagram into two pieces and then mutilate one of the pieces further, 

are not allowed. 

Topologically, there is no clear distribution between cutting 

off a cylinder and cutti~ off a plane from a larger surface ( 9). In 
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order to classify cuts unambiguously, we have to adopt certain conven-

tions about how to draw diagrams on surfaces. During the following 

discussion, the reader should keep in mind that we are cutting diagrams; 

the surfaces merely serve to classify these diagrams in a convenient 

way. 

To draw duality diagrams, we shall only draw particle lines 

and not quark lines, and we shall indicate a twist by a cross on the 

particle , line. The diagram shown in Fig. 2b 1 for example, is drawn 

in this way. It is a shorthand notation for the quark-line diagram 

shown in Fig. 2a. Planar diagrams need only one side of the embedding 

surface which we shall identifY.with the front or back. Nonplanar 

diagrams need both sides and shall be drawn in such a way that all 

twists are on the "edges" of the surfaces. In Fig . .3, for example, we 

have drawn the diagram of Fig. 2 on a cylinder with horizontally 

oriented axis. We see that one of the diagram's planar parts (drawn 

in solid lines) occupies the front of the cylinder, whereas the other 

planar part (drawn in broken lines) occupies the back, the .two twists 

lying on opposite points on the cylinder's "edges". Another kind of 

planar diagram is one with twists on the same edge of.the surface ~uch 

as the diagram shown in Fig. 4. Diagrams of this kind are considered 

to be planar because their twists can always be undone by changing the 

positions of some external legs. 

Having established the conventions for drawing diagrams on 

surfaces, we can now study the various ways in which these surfaces can 

be cut so as to produce properly cut·diagrams. For the cylinder, there 

are two basic cuts, shown in Fig. 5· In the first case (I), the cutting 

plane is perpendicular to the cylinder axis; in the second case (II) 

' -'+-

it contains the ~yllnder axis. Cut II will, in ge::1ers.l, c·.;.t t!:e di~-ru 

into more than two pieces and will therefore ·::e fcr'oidd.er.. Or.l7 diagra:n.s· 

;.-j_ th just one pair of 'Cwiists, like the one shown in Fig . .3, ·~'ill be cut 

int::> two pieces ~.f c;.~t li, but in that case the ct<t ·~-:.u be topol::>gically 

equivalent to a cut of type I drawn through t!le t'oiO twists. C::>nsequently, 

only cuts of type I will have to be considered in the following. Further-

more, we shall establish the rule that whenever a twiisted line is cut, 

it shall be· cut at the twist wbich is, obviously, always possible and 

will simplify the discussion. 

The two pieces into which a cylinder diagram is separated by 

the cut can either be cylinder or planar diagr~, the difference being 

that the latter ones occupy only one side (front or back) ~f the surface, 

whereas the former need both sides and have lines going around t~e edges. 

To distinguish these two cases, we shall denote planar parts by drawing 

"demarcation lines" along the edges of ·the surface which canr,ot be 

crossed by any particle line (see Fig. 6). With ·this notation, the 

various combinations of cylinder (C) and planar (P) parts can be drawn 

as shown in Fig. 7-

Finally, we also have to include in the planar parts diagrams 

with twiis.ts on one e~e. To do so, it is sufficient to draw demarcation 

lines along twc edges of the cylinder pieces, so that particle lines 

can go around the third edge. The combination C + P, for eXli.'J!?le, will 

then include the terms shown in Fig. 8. In the following, 10e shall 

include all these terms, together wii th the untwiisted planar parts, in 

the single symbolic notation shown in Fig. 9. Wi~this notat:on, we 

can now list all cylinder cuts systematically, as shown in Fig. 10. 

To discuss diagrams with h ~ o, it will b&. con·•enient to draw 

• 
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them on cylinders vith holes in them, which can always, be done since a 

cylinder with h holes is topologically equivalent to a surface with 

h handles. Figure ll shows an example of a· diagram vi th h = 2 drawn 

on a cylinder vi th two holes. ~is will be our standard way of rep­

resenting the embedding surfaces; not as spheres vi th handles, but ·as 

flattened cylinders with holes in them that allow particle lines to 

pass from the front to the back of the surface. 

In cutti~ the diagrams drawn on thes.e surfaces, we have to 

'know how to classifY cuts that go through a hole. Taking the torus 

(h = 1) as an example, we see that a cut through the hole may or may 

not cut particle lines going through that hole. If it does, the only 

way of cutting these lines properly is to draw the diagram in such a 

way that the lines go through the hole exactly where it is touched by 

the cut. All. other ways will produce :forbidden types of cuts. Since any 

hole can accommodate at most two twists, there are three possibilities 

ot cutting through it: (a) both twists are cut, (b) one twist is cut, 

and (c) neither of the twists is touched by the cut. In Fig. 12 we 

have drawn the diagram representing pomeron-pomeron exchange on a torus 

to illustrate these three possibilities. 

The cuts shown in Fig. 12 can n~w be combined with our demar-

cation lines to define the combinations of cy~inder and planar parts 

shown in Fig. 13. In the case_where no demarcation lines are present, 

so that the result is C + C, the lines going through the hole ~ be 

cut or not, as shown in Fig. 14. When demarcation lines are present, 

turning one or both cylinders into a plane it shall be understood that 

the relevant lines going through the hole have been cut. 

With this understanding, we can now list all torus cuts system-

-6-

atica.lly, as shown in Fig. 15. Notice that only cylinder parts can b~ 

tu.'"ned into planar parts by dra;;ing demarcation lines. Cuts like the 

one shown in Fig. 16, for example, do not generate planes because of 

the presence of the hole. In this case, the left-hand side of the 

diagram will be either a cylinder or a torus and the cut will be among 

the ones listed in Fig. 15. 

Because of the fact that all cylinder parts, and only cylinder 

parts can be turned into planar parts, we can incorporate the notion 

of the "full cylinder", defined by Veneziano (6} as the sum of cylinder 

and planar parts, into our notation. ~e two parts T + C and T + P, 

tor example, can be combined into T + C, as shown in Fig. 17. With 

this notation, the torus cuts reduce to the three terms shown in Fig. 18. 

It is now easy to generalize this analysis to cuts of diagrams 

vi th an arbi traty number of handles. To. do so, we shall denote a cut 

dividing a surface vi th h handles into two pieces vi th h 

h handles, respectively, by ~ h , with the understanding that 
_, + 

pieces with h = 0 are full cylinders including planar parts. 

and h 
+ 

all 

Denoting_· 

by j the number of holes touched by such a cut, we have the relation 

j=O,l. •.• h 

and we can list the cuts sy~tematically as shown in Table 1. 

j=h 

j::b-1 

j::b-2 

h 
~.o 

h 
co,o 

h h 
cl,O cO,l 

h h h 
c2,0 cl,l <=o,2 

. ············ ..................... _ ... . 
h . h 
~-1,1·····························•co,h 

Table 1, Systematic list of cuts h 
~ h • 

-, + 
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Figure 19 shows a list of these cuts for diagrams with h = 3· 

I am indebted to G. F. Chew, J. w .. Dash and H. P. Stapp for 

very helpful discussions, and to J. D. Jackson for his hospitality 

at the Lawrence Berkeley Laboratory. 

REFERENCES AND FOOTNOTES 

1. G. Veneziano, Nucl. Phys. ~. 365 (1974); Phys. Letters ~' 220 

(1974). 

2. G. F. Chew and C. Rosenzweig, Phys. Letters~. 93 (1975); Phys. 

Rev. Dl2, 3907 (1975); LBL-46o3 preprint (1975). 

3. M. Ciafaloni, G. Marchesini and G. Veneziano, Nucl. Phys. B98, 472, 

493 (1975). 

4. C. Schmid and c. Sorensen, NucL Phys. B96, 209 (1975). 

5· J. w. Dash, Phys. Letters 61B, 199 (1976). 

6. G. Veneziano, Kyoto University preprint (1976). 

1· F. J. Capra, LBL-4295 preprint (1975). 

8. See, for example, W. s. Massey, Algebraic Topology, Harcout, ·Brace 

and World, New York (1967). 

9. We wish to make it clear that we really mean a sphere whenever we 

say "cylinder''. However, we shall adhere to the term "cylinder", 

as it is the one commonly used in the literature. 

Fig. 1. 

Fig. 2. 

Fig. 3· 

Fig. 4. 

Fig. 5· 

Fig. 6. 

Fig. 7· 

Fig. 8. 

Fig. g. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

FIGURE CAPl'IONS 

Examples of a proper cut (a) and of a forbidden cut (b). 

A duality diagrBI:: dnn;n in tems of quark lines (a) and in 

terms of particle lines {b). 

Diagi&:;n of Fig. 2 drawn on a cylinder. 

Planar diagram with twists that can be undone by rearrange-

ment of external legs. 

·The two basic cylinder cuts. 

Cutting a cylinder diagram into a cylinder (C) plus planar 

(P) part, with "demarcation lines'' denoting the planar part. 

Combinations of cylinder (C) and plar.ar (P) parts generated 

by cutting the cylinders; shown with examples of cut diagrams 

C + P terms with twisted planar parts, shown with examples 

of cut diagrams. 

Unified notation for all C + P terms. 

Systematic list of cylinder cuts. 

A diagram with . _h = 2 drawn on a cylinder with two holes. 

Examples of cuts through the pomeron-pomeron diagram sho~ing 

the three possibilities of cutting through the hole of the 

torus: (a) both twists are cut, (b) one twist is cut, (c) 

neither of the twists is cut. 

Fig. 13. Combinations of cylinder (c) and planar (P) parts generated 

by cutting through the hole of the torus and applying 

demarcation lines. 

Fig .• 14. E.xa.Diples of cutting a diagram with h. .. L into two cylinder 

parts vi th and w1 thout cutting lines ~ through the hole. 
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Fig. 15. Systematic list of torus cuts, giving all. possible combina-

, tiqns of torus (T), cylinder (C), and planar (P) parts. 

Fig. 16. A redundant torus cut . 

.. 
Fig. 17. Definition of the full cylinder in terwa of cut surfacea. 

Fig. 18. Torus cuts in tel"IIS of toruS (T) and full qliaer (C) parts. 

Fig. 19. Systeaatic list of cuts for diagraas vita h = 3· 
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