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- F. J. Capra
Lawrence Berkeley Laboratory

University of Califormia
Berkeley, California 94720

July 13, 1976

ABSTRACT
An uhambigpoug way of cutting duality diagrams according to
the Cutkosky rules is established which permits a topological.classi-
fication of the terms appearing on the right-hand side of the qnitarity

equation.

The topoiogical expansfon recently proposed by Veneziano(l) has
been used successfully to clarify various aspects of hadron dynamics,

in particular those relevant to Regge theory(l'6).

However, it has not
been possible, so far, to define the .amplitudes appearing in the expan;
sion in. pure S-matrix language without reference to undérlying field
ﬁheoretical,‘or dual, models. One way of attempting such & formulation
would be to provide an expansion of both sides of the unitarity equation
in terms of the §oundaries and handles of the amplitudes involved, so
that these amplitudes can be defined through their discontinuities.

The purpose of the present paper is to show the’duality diagrams
representing the amplitudes have to be cut according to the Cutkosky

rules to generate the discontinuities. We shall establish an unambig-
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guous way of cutting diagrams according to their topological structure

" that will enable us to determine which terms have to be ‘included in the

unitarity sum at each level of the expansion. Our method does not take
the boundary structures of the diagrams into account which will have to
be analysed befofe the‘precise uﬁiéarity equations-can be written down.
Work along these lines is in'progress.

The dual n-point function is represented by a sum of diagrams

vhich are classified(173) in terms of their boundaries b (lines to

which the external legs are pﬁtached) and their handles h. The para-
meter h 1is defined as the minimur genus (or number of handles) among
all closed two-dimensional orientable surfaces in which the diagrah can
be'embedded(3’7)' The topological st}ugture ofA;_diagram is.uniquely
defingd by b and all differenf ways in which £he-diagram can be
embedded in a surface are topologically‘equivalent(a).

To write down the unitarity equations, ohe can fix h on fhe
lefﬁ-hdnd side and then use the Cutkosky rules to write down the right-
hand side(j).‘ This corresﬁonds to cutting the diagr#ms into two connec-

ted pieces in such a way that,one ﬁiecg contains the incoming state

and the other piece the outgoing state. Each cut ihrough a ‘particle

line has to divide this line into two parts belonging to the two diff-
erent pieces of the cut diagrém. In other Qords, it must be possible
to.draw the cut through the diagram as a single line, e.g. as shown in
Fig. la. Cuts, such as the one sh&yn in Pig. 1b, which separate the
diagram into two pieces and then mutilgte one of the pi?ceS'further,
are‘not allowed. »
Topologically, there is no clear distribution between cutting

off a cylinder and cutting off a plane from a larger surface(g). In



order to classify cuts unambiguously, we have to adopt certain conven-
tions about how to draw diagrams on surfaces. During the following
discussion, the reader should keep in mind that we are éutting diagrams;

the surfaces merely serve to classify these diagrams in a convenient

way.
To draw duality diagrams, we Qhali only draw pafticle lines
and not gquark lines, and we shAll indicate a twist by a cross on the
particle line. The diagram shown in Fig. 2b, for example, is drawn
in this way. It ié a sﬁorthand notation for the quark-line diagram

shown in Fig. 2a. Planar diagrams need only one side of the embedding

surface which we shall identify,with the front or back. Nonplanar
!diagrams need Both sides and ‘shall be drayn in such a Qay that all
twists are on the "edges" of the surfaces. In Fig. 3, for example, we
have drawn the diagram of Fig. 2 on 8 cylinder with horizontally
oriented axis. We see that one of the diagram's planar parts (drawn
;n'solid lines) occuﬁies the front of the cylinder, ihefeas the other
planar part (drawn in broken lines) occupies the back, the .two twists
lying on opposite points on the cylinder's "edges". Another kind of
planar diagraﬁ is one with twists on the same edge of the surface §uch
as the diagram shown in Fig. b. Diagraﬁs of this‘kind are considered
to be planar becaﬁse their twists can always be undone 5y changing the
positions of some external legs.

Having.established the conventions for drawing diagrams on
surfgces, we can now study the various ways in which thésq surfaéés can
be cut so as to producé properly cut diagrams. TFor the:cylinder; there
are two basic cuts, shown in Fig. 5. _In the first casé (I), the cutting .

plane is perpendicular to the cylinder axis; in the second case (II)

it contains the cylinder axis. Cut II wili, in genersl, cut the diagram
into more than two pieces and will therefore te foroiddex.

with just cne pair of twists, like the one shown in rig. 3, wiil oe cut

- into two pieces by cut II, but in that case the cut will b2 topologically

o«

equivalent to a cut of type I drawn through the two twists. Consequently,

only cuts qf type I will have to be considered in the foliowing. Further-~
more, we shall establish the rule that whenever a twisted line is cut,
it shall be cut at the twist which is, obviously, always possible and
will simplify the discussion. '

Ihe_two piecgs ;nto_uhiéh a cylindgr diagram is separated by
the cut can either be cylinder or planar diagrams, the difference being

that the latter ones occupy only one side (front or back) f the surface,

»whereas the former need both sides and have lines going around tke edges.

To distinguish these two cases, we shall denote planar parts by drawing
"demarcatién lines"” along the edges of -the surface which cannot be
crossed bf any particle line (see Fig. 6). With ‘this notaticn, the
various combinaticns of cylirnder (C) and planar (P) parts can bte dréwn
as shown in Fig. 7. v

' Finally, we aléo have to inciude in the planar parts diagrams
with twists on>one edge. To do so, it is sufficient to draw demarcation
liges along twc edges of the cylinder pieces, so . that particle lines.
can go around the third edgeﬁ The combination C + P, for exarple, will
then include the terms shown in Fig. 8. 1In the following, we shall
include a;l these terms, tqé;ther with the untwistéd planar parts, in
the single symbolic notation shown in Fig. 9. Witk this notation,‘we

can now list all cylinder cuts systemnﬁically, as shawn in Fig. 10.

To discuss diagrams with h 4 0, it will be: convenient to draw

oniy diagrams’ -
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them on cylinders with holes in them, which can always be done since a
cylinder with- h holes is topologically equivalent té a surface with

h  handles. FPigure 11 shows an example of a diagram with h = 2 drawn
on a cylinder with two holes. This will be our standard way of rep-
resenting the emheddiné surfaces; not as spheres with handles, but as
flattened cylinders with holes in them that allow particle lines to
pass from the front to the bgck of the surface.

In cutting the diagrams drawn on these surfaces, we have to

‘know how to classify cuts that go‘through a hole. Taking the torus

(h = 1) as an example, we see that a cut through the hole may or may

not cut particle lines going through that hole. If it does, the only.

way of cutting these lines properly is to draw the diagram in such a

way that the lines go through the hole exactly where it is touched by

the cut. All othex'ways_wili produce forbidden types of cuts. FSince any

hole can accommodate at most two twists, there are three possibilities
of cutting through it: (a) both twists are cut, (b) one twist is cut,

and (c) neither of the twists is touched by the cut. In Fig. 12 we

‘have drawn the diagram representing pomeron-pomeron exchange on a torus

~to illustrate these three possibilities.

The cuts shown in Fig. 12 can now be combined with our demar-~
cation lines to define the combinations of cy}inder and pianar parts
shown in Fig. 13. 1In the case where no demarcation lineé are present,
go that the result is C + C, the lines going through the hole may be
cut or not, as shown in»Fig. 1k, when demarcation lines are present,
turning one or both’cylindefs into a plane it shall be understood that
the relevant lines going through the hole have been cut.

With this understanding, we can now list all torus cuts system-
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atically, as shown in Fig. 15. Notice thgt only cylihder parts can be
turned irnto planar parts by drawing demarcaticn lipes.' Cuts like the
one shown in Fig. 16, for example, do not‘generate planes because of
the presence cof the hole. 1In this'casé, the left-hand side of the
diagram will be either a cylinder or a torus and fhe cut will be among
the ones listed in Fig. 3.

Because of the fact that #ll cylinder parts, and only cylinder

parts can be turned into planar parts, we can incorporate the notion

"of the "full cylinder"”, defined by Veneziano(6) as the sum of cylinder

and planar p#rts, into our notation. The ;wo parts T +C »and T+P, -
for_éxample, can be combiped into T + é, as shown in Fig. 17. With
this notation, ;he toru§ cﬁts reduce tb the thfee terps shown in Fig. 18.
It is now easy to generalize ihis analysis to cuts of diagraums
with an arbitraty number of handles. lTo.do so,vwe shall @enote a cut
dividing a surface with h hgndles.into two pieces with h_ and h+ '
handles, respectively, by ct 'ﬁ+,:with the understanding that all
pieces with h = 0 are full ;ylinders including planar parts. Denoting
by J the number of holes touched by suqh a gut, we have the relation
b_+h, =k -} J=0,1....h

and we can list the cuts systematically as shown in Table 1.

h
J=n 0,0
h h
J=b-1 1,0 0,1
, h h h
J=h-2 ' .0 1,1 0,2
: " n n “h
:J=0 ch,O ch—l,l""' ..... L LR E TP 'CO,h

Table 1, Systematic list of cuts cﬁ B
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. The total number of cuts will be
E . Fig
a = % (h +1) (b +2). . rig
Figure 19 shows a list of these cuts for diagrams with h = 3.
- - - Pig.
"I am indebted to G. F. Chew, J. W. Dash and H. P. Stapp f{ar_ ' Fig.
_very helpful discussions, and to J. D. Jackson for his hospitality
at the Lawrence Berkeley Laboratory. ) Fig.
Fig.
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FIGURE CAPTIONS
Examples of a proper cut {(a) and of a forbidden cut (b).
A duality diagram drawn in tegms of quark lines (a) and in
terms of particle lines (b).
Planar diagram with twists that'can be undone by rearrange-

ment of external legs.

The two basic cylinder cuts.

Cutting a cylinder diagram into a cylinder (C) plus planar

(P) part, with "demarcation lines" denoting the planar part.

Combinations of cylinder (C) and plarar (P) pﬁrts genérated
by cutting the cylinders; shown with examples of cut diagrams
C+7P tefms with twisted planar parts, shown with examples
of cut diagrams.

Unified notation for all C + P terms.

Systematic list of cylinder cuts.

A diagram with»vh = 2 drawn on & cylinder with tgo.holes.
Examples of cuts through the pomeron-pomeron diagram showing
the three possibilities of cutting through the hole of the
torus: (a) both twists are éut, (b) one twist is cut, (c)
neither‘of the twists is cut.

Combinations of cylinder {c) and planar (P) parts geneiated
by cutting through the hole of the térus and applying
demarcation lines. )
Examples of cutting a diagrém with b = L into two cylinder

parts with and without cutting lines goimg through the hole.
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. Systematic list of torus cuts, giving all possible combina-

tiqns; of torus (T), cylinder (C), and planar (P) parts.

A redundant torus cut.

Definition of the full cylinder in terms of cut surfaces.
Torus cuts in terms of torus (T) and full cylinder (C) parts.

Systematic list of cuts for diagrams with h = 3.
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Fig. 6
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Fig. 14
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