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Abstract. Deep learning researchers are increasingly using Jupyter
notebooks to implement interactive, reproducible workflows with embed-
ded visualization, steering and documentation. Such solutions are typ-
ically deployed on small-scale (e.g. single server) computing systems.
However, as the sizes and complexities of datasets and associated neural
network models increase, high-performance distributed systems become
important for training and evaluating models in a feasible amount of
time. In this paper we describe our vision for Jupyter notebook solutions
to deploy deep learning workloads onto high-performance computing
systems. We demonstrate the effectiveness of notebooks for distributed
training and hyper-parameter optimization of deep neural networks with
efficient, scalable backends.
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1 Introduction

Deep learning (DL) [14], the sub-field of machine learning which uses multi-layer
neural networks (NNs) to solve complex tasks with data, has gained a great deal
of popularity in recent years in part due to the availability of large datasets
and increasingly powerful computing resources. Meanwhile, Jupyter [13] note-
books enable code, graphical results, and rich documentation to be combined
into an interactive computational narrative, and have become the de facto stan-
dard for data science collaboration, development and pedagogy. Notebook-based
DL workflows are widely used but typically deployed on small-scale computing
systems (e.g. single server), but as the sizes and complexities of datasets and asso-
ciated neural network models increase, distributed computing systems become
© Springer Nature Switzerland AG 2018
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essential for generating the best results in a reasonable time. In particular, mod-
els that are slow to train can benefit from distributed data-parallel training, and
model-selection tasks can be accelerated with distributed hyper-parameter opti-
mization (HPO). The development of scalable notebook-based DL workflows for
high performance computing (HPC) systems will therefore be highly valuable to
the DL and science communities and will enable new kinds of human-in-the-loop
interactivity and monitoring in DL-based research.

In this paper we demonstrate several distributed notebook-based deep learn-
ing workflows on HPC systems, interfacing to the Cori supercomputer at
NERSC. In Sect.2, we describe our architecture to effectively use these HPC
resources via Jupyter, taking into account the hardware and policy restrictions
that are common with other large HPC machines. We then present our notebook-
based approaches, including scaling results for distributed training in Sect. 3 and
for distributed HPO in Sect. 4.

We take advantage of and build on features available in the Jupyter and
Python ecosystem including JupyterHub, IPyWidgets, IPython “magic” com-
mands, Dask, and [PyParallel which provide us with tools to interact with the
backend tasks directly through a visual interface. This allows us to close the
interactivity loop so that operating real-time, entirely within the notebook, we
can allocate nodes on the Cori supercomputer; configure, monitor, tune and
steer deep learning training runs; and perform further analysis on the outputs of
models. As well as human interaction we couple this infrastructure with a pow-
erful automated hyper-parameter framework incorporating genetic algorithms
and population-based training as described in Sect. 4.3. Example notebooks and
recipes for running these at NERSC are provided at the links in Sect. 6.

We demonstrate these methods with a science use-case and dataset from
High Energy Physics which applies convolutional neural networks (CNNs) to
classify images formed from Large Hadron Collider events, and is described in
detail in [8]. We find that we can improve on state-of-the-art results by using
distributed HPC resources to improve model parameters.

2 System Architecture

In order to achieve the aims of this project, we extended the Jupyter infras-
tructure at NERSC [1] to be able to execute distributed training on the Cori
supercomputer [2]: a Cray XC40 with 2388 Intel Haswell and 9688 Intel Xeon
Phi Knight’s Landing compute nodes. The overall architecture is shown in Fig. 1.
The components of this are described in more detail below.

The JupyterHub installation at NERSC [1] provides a multi-user gateway
through which individual users can authenticate and spawn a private notebook
server on the Cori login nodes to launch notebooks. Each notebook is associated
with a Jupyter kernel, a wrapper around the Python process that executes user
code. Currently these kernels run on the login node itself, a configuration that
is widely used at NERSC, sufficient for small workloads and allows access to the
Cori file-systems and for submitting scripts to the Cori batch-queues.
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However, here we further use the HPC batch queue system to allocate dedi-
cated compute nodes for executing long-running and resource-demanding tasks
such as DL training from the notebook. To this end, we use two distributed exe-
cution frameworks, IPyParallel [3] and Dask Distributed [11,16], which facilitate
the use of remote compute resources from the notebook. In both frameworks, a
central Controller handles scheduling and communication with a number of exe-
cution Engines that are instantiated by the user. In our execution model (Fig. 1),
the Controller and Engines run from the compute nodes after a batch allocation
has been provided. To minimize boilerplate, we have created an IPython “magic”
command! (an IPython-specific command beginning with %) which allocates
HPC resources and deploys the IPyParallel cluster with a one-line command
from the notebook.

As a further extension, the ability to individually stop and start tasks is
supported through Kale [4], an extension to the Jupyter ecosystem for interactive
HPC. Kale wraps each task with a worker process that provides full control of
the task as well as resource usage monitoring for the task and participating
compute node.

s N
( ] ] ) Cori Compute Nodes
Cori Login Node
Notebook
"l Server Process )
¥ MPI
ipyparallel 'R
kernel/ or Dask c
i arallel client ) Controller Enging/
. J

Fig. 1. Diagram of the distributed workload system. A user launches a notebook pro-
cess via JupyterHub. They obtain an allocation of compute nodes on the batch system
and launch the cluster processes (e.g. IPyParallel controller and worker engines) via
a SLURM script or our %ipcluster magic within the Jupyter notebook. They then
connect to the cluster via the notebook; launch the NN training tasks to the batch sys-
tem and continue to monitor and interacts with those tasks. The notebook to cluster
coordination occurs in communication with the controller node, however large-scale dis-
tributed training can avoid this bottleneck via the native MPI interface of, for example
horovod (Sect. 3).

In order to create an interactive feedback loop to visualize results that the
user can interact with, we make use of built-in Jupyter widgets (iPyWidgets [5])
along with third party Jupyter widgets qgrid [6] (Quantopian) and bgplot [7]
(Bloomberg). Model results presented by the widgets are communicated asyn-
chronously through the parallel controller (Dask or iPyParallel) in the Jupyter

! https://github.com /sparticlesteve/cori-intml-examples/blob/master /ipcluster_magi
Cs.py.
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Kernel. We poll the kernel for these results through a background thread, updat-
ing the table in real-time as they come in, and rendering plots for the currently
selected model.

3 Distributed Training

Slow training of NNs due to large datasets and complex models can inhibit
DL research productivity. Distributed training techniques can speed up model
learning by exploiting parallelism at the data and model levels. For example, in
synchronous data-parallel training, batches of data are distributed across worker
nodes along with copies of the model. Each worker processes its local batch
of data and computes gradients. The gradients are then accumulated across
workers to compute a global optimization step and all the models are updated
synchronously. Tools like Uber’s Horovod [17] and the Cray PE ML Plugin [15]
provide the synchronization mechanism via MPI communication for efficiently
scaling to large numbers of workers.

To implement distributed training in notebooks, we use the IPyParallel clus-
ter with MPI-enabled worker engines. Once the cluster client is connected in the
notebook, a user can mark individual cells for parallel execution using the %%px
IPython magic command. Results from the model can be retrieved in the main
notebook process for further analysis.

We used the Cori system to demonstrate the scalability of this approach
with notebooks. We implemented a Horovod and Keras [9] distributed training
implementation of the LHC CNN use-case and scaled up to 180 worker nodes
both using the Jupyter notebook with IPyParallel infrastructure as well as a pure
“batch” submission from python scripts. The training throughput, plotted in
Fig. 2, shows that the notebook infrastructure introduces no noticeable overhead
relative to distributed training with batch scripts.

Distributed training scaling

140000 {1 —@— Batch A
Notebook
120000 -

100000 -

80000 -

Samples /s

60000 -

40000 - /

20000 -

04

T T T T T T T T
0 25 50 75 100 125 150 175
Number of nodes

Fig. 2. Scaling of distributed training with and without the notebook infrastructure.
No overhead from IPyParallel is observed up to 180 nodes on Cori.
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4 Distributed Hyper-parameter Optimization

Hyper-parameter optimization (HPO) helps solve the problem of model selection
for non-trained parameters such as hidden layer size, dropout probability and
learning rate. HPO algorithms generally involve training models at various points
in this parameter space and evaluating a metric such as model accuracy on a
validation dataset. Depending on the choice of algorithm, many such tasks may
be run in parallel on a distributed system.

We have developed several examples for distributed HPO with Jupyter note-
books. The first (Sect.4.1) uses random search with independent tasks training
in parallel on IPyParallel engines with load balancing. The second (Sect.4.2)
extends this with live, interactive widgets. The third (Sect.4.3) is an advanced
HPO example using population-based training via Dask scheduling.

4.1 Random Search HPO Notebook

We implemented a random search of hundreds of configurations of convolution
and fully-connected layers, learning rate and dropout for the LHC CNN use case
using Keras [9] in a Jupyter notebook and ran this using a 100 node allocation
on the Cori system which was able to complete all experiments in under an hour.

80

60

40

20

10 15 20 25 30 35 40 45 0.5 0.6 0.7 0.8 0.9 1.0
Training time [min] Validation accuracy

Fig. 3. Distributed hyper-parameter optimization distributions of training time [left]
and best validation accuracy [right] for a collection of training tasks.

Figure 3 shows the distribution of run-times, which illustrates the value of
using automatic load-balancing, and the range of model accuracies, which illus-
trates the need for optimizing hyper-parameters to obtain the best results. Fur-
ther analysis can be conducted within the notebook to probe incoming results:
for example Fig.4 shows the loss and a ROC curve for the best performing
model illustrating how performing this optimization can enable obtain similar
performance results as previous analyses with a substantially smaller dataset.
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Fig. 4. Loss (left) and weighted ROC curve (right) of the best model found in hyper-
parameter optimization. The achieved results are competitive with those presented in
[8] while using less than 20% of the original dataset.

4.2 HPO with Interactive Widgets

We use Jupyter’s interactive widget ecosystem as described in Sect. 2 to provide
a graphical interface for controlling and monitoring training runs in human-
in-the-loop hyper-parameter optimization, as shown in Fig. 5. Individual points
in the hyper-parameter space can be specified in the notebook and Keras is
used to construct and train the DL model with remote execution provided by
IPyParallel. The qgrid widget provides a dynamic table interface for displaying
the latest results and bqplot widgets provide live plotting of the full results.
These tools are clickable and interactive, allowing us to switch between results
or send messages back to the python kernel for further processing. This allows
for dynamic task control and job steering. Based on the live results of individual
training runs, the user can decide which areas of the parameter spaces are worth
exploring further, and which areas are not likely to produce viable models, all
before training is complete. Poorly performing runs can be prematurely canceled
and replaced with runs from more hopeful regions of the hyper-parameter space.

4.3 Advanced HPO

As a more advanced example, we consider a variant of population-based training
(PBT), which combines gradient-based approaches such as stochastic gradient
descent (SGD) with a genetic algorithm (GA) to optimize both parameters (i.e.,
weights and biases) and hyper-parameters simultaneously [12]. By running a
genetic algorithm synchronized with NN training such that each generation in
the GA corresponds to some fixed number of SGD epochs, the GA applied to
the HPs can be extended to optimize the model parameters.

At the end of each generation, each member of a population of neural net-
works is evaluated on a validation set to produce a fitness score based on the
NN'’s accuracy. These fitness scores are then used to determine the probability of
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Model 20: {'conv_sizes': [32, 16, 8], 'fc_sizes': [32], 'dropout": 0.42876870094576613, 'optimizer": 'Adam’, 'Ir": 0.0001}
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15 Ended Traini... 15 (8, 64,32) [256] 0.01919 Adam 0.001 0.0067703... 0.058146... 0.99775 0.98596875
19 Ended Traini... 15 (64, 16, 64] [256] 0.61802 Adam 0.001 0.0497609... 0.039992... 0.982625 0.98496875
21 Ended Traini... 15 4,4,8) [64) 0.13547 Adam 0.0001 0.0735504... 0.051296... 0.9740625 0.982
20 Ended Traini... 15 [32, 16, 8] 32) 0.42877 Adam 0.0001 0.0971096... 0.062174... 0.96575 0.98021875
18 Ended Traini... 15 [8,8,16] [128) 0.29008 Adam 0.01 0.0700781... 0.073561... 0.975390... 0.969625
16 Ended Traini... 15 8,88 [256] 0.30157 Nadam 0.01 0.1863622... 0.162577... 0.927140... 0.93790625
25 Ended Traini... 15 (32, 8, 32) [64] 0.57433 Nadam 0.01 0.2148241... 0.181064... 0.91615625 0.93253125
13 Ended Traini... 15 [8,64,128]  [256] 0.42386 Nadam 0.01 0.2105947... 0.191747... 0.9185 0.92828125
24 Ended Traini... 15 (16, 8, 128] [128] 0.59087 Nadam 0.01 0.2333927... 0.201570... 0.9076875 0.92446875

Fig. 5. Screenshot of interactive Jupyter widget for HPO. Each row in the table showa
a parameter set which has been submitted to the batch system. Loss and accuracy
values in the table update live as the training progresses. Clicking on a row plots live
metrics for the associated run.

Parent B
| BHPO ‘ ‘ BHP1 | ‘ ‘ | BHPI | ‘ o ‘ | BHPN ‘
Child C
y
I CHPO ‘ ‘ CHP1 ‘ ‘ ‘ ‘ CHPI ‘ ‘ ‘ ’ CHPN ‘
Parent A
’AHPO‘ ‘AHPl‘ ‘ ‘ ’AHPI‘ ‘ ‘ ’AHPN‘

Fig. 6. Crossover combines hyperparameters from parents to create those of a child.
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reproduction, where the most fit NNs are more likely to reproduce. Over multiple
generations, the population of NNs evolves toward a good set of hyperparameters
and parameters. The PBT variant in this work utilizes reproduction with pairs
of NNs, where two sets of hyperparameters are mixed via crossover, depicted in
Fig. 6, to create a child. The use of a GA with sexual reproduction and crossover
provides for faster adaptation than simpler asexual reproduction [10].

(Hyper)Parameter Optimization 0.10
Population Based Training (PBT) of RPV —— Average
— Best

T T T T
Learning Rate (Left) =
1.6e-03 Dropout (Right)
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Fig. 7. Hyperparameter schedule discovered via HPO with PBT on the LHC CNN
(left) as well as the average and best figure of merit in the population (right).

Figure 7 shows a hyperparameter schedule found through the application of
HPO with PBT to the LHC CNN neural network (left) along with the average
figure of merit and the FoM of the most-fit population member in each generation
during the HPO process (right). This training schedule shows improvement can
be attained through the application of a slightly decreasing learning rate as
well as decreasing dropout. As can be seen in the figure of merit plot on the
right (lower is better), the population of NNs quickly plateaus after only a few
epochs, entering a phase which likely benefits from the different training regime
introduced at that point by the discovered training schedule.

While automated approaches like PBT take a lot of the repetitive work out of
HPO, they can achieve even better results when guided by humans. Specifically,
the HPO process can be fine-tuned for specific NN and dataset combinations
by adjusting details of the HPO search process such as the mutation rate and
crossover rate of a GA. The image on the right of Fig. 7 is taken from a live plot
produced in a Jupyter notebook which updates in real time during the HPO
search. If the human in the loop sees that the automated HPO search is not
performing well, details such as the mutation rate or search starting point can
be quickly changed. Interactive and automated HPO can be combined to achieve
better results than would be possible using either approach alone.

5 Conclusions

We have demonstrated that Jupyter notebooks can be a powerful interface for
deploying distributed deep learning workflows on HPC systems. By framing mod-
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ern DL frameworks on large computational resources in an interactive context,
we achieve a human-in-the-loop system which enables rapid development of NN
models through expert guidance of automated training.

We demonstrate several examples of this, all driven entirely from Jupyter
notebooks, including distributed training of a single model across multiple com-
pute nodes; distributed HPO of individual models where tasks are load-balanced
across nodes; the use of widgets and plots within the notebook for steering and
visualizing the runs; and more advanced hyper-parameter optimization methods.
All these can be run within large interactive allocations on the Cori supercom-
puter, with that allocation also setup and configured from within the notebook.

Future work will seek to achieve deeper integration with Kale to achieve
more detailed task and node monitoring; as well as providing more insightful
visualizations; and building out the suite of tools and example notebooks for use
at NERSC and for the community to build upon.

This work paves the way to understanding how human domain-expertise;
automated optimization tools; and deep neural networks can be optimally com-
bined to maximize the insight we can derive in a world of ever-growing datasets
while also minimizing the time and technical knowledge necessary to achieve this
on large-scale computational resources.

6 Code and Recipes

Example notebooks used in this study and recipes for running at NERSC are
available at https://github.com/sparticlesteve/cori-intml-examples.
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