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A Synapse Plasticity Model for Conceptual Drift Problems

Rudolph L Mappus IV (cmappus@cc.gatech.edu)
Ashwin Ram (ashwin@cc.gatech.edu)

College of Computing, Georgia Institute of Technology
Atlanta, GA 30332 USA

Abstract

Traditional supervised learning techniques do not ad-
dress online learning problems such as concept drift, due
to the fact that learning is offline when using these meth-
ods. Associative neural networks using Hebbian learning
rules show robust performance in classification tasks in-
volving concept drift. Biologically plausible neural net-
works represent a set of computational models designed
to be more strongly related to biological neuron models.
In this paper, we apply a biologically inspired plasticity
model of synapse dynamics to a concept drift classifi-
cation problem. The motivation for this method is to
provide more biologically plausible networks in cognitive
tasks.

Introduction
Concept drift is a real world problem associated with
concept learning and classification: over time or as an
agent gains more information about a concept and re-
lated concepts, the parameters of the features defining
the concept change. Traditional supervised learners do
not address the issue. Learning in problem domains with
static concepts also avoids the problem, but it is a prob-
lem in dynamic learning problems and agents.

Intuitively, neural networks seem to have properties
that would be helpful in concept drift problems. Partic-
ularly, associative neural networks seem appropriate to
the problem. Traditional artificial neural networks how-
ever were designed as computational models first based
on observed neuron behavior second.

Previous Work
Computational modeling of neuron processes has re-
ceived a wealth of research (O’Reilly and Munakata,
2000). Some well researched models have been ap-
plied to learning problems such as concept drift. Biehl
and Schwarze (Biehl and Schwarze, 1993) demonstrate a
Hebbian learning model for handling random as well as
correlated concept drift. Widmer and Kubat (Widmer
and Kubat, 1996) show how latent variables can influ-
ence concept drift in the form of context. In this paper,
we show results of timing dependent synapses, whose po-
tentiation is governed by firing rate patterns of pre- and
post-synaptic neurons. Schlimmer and Granger (Schlim-
mer and Granger, 1986) show how learning incrementally
from noisy data can still generate classification results.

Consider the real world problem of classifying the
working state of a power plant component (e.g. a tur-
bine generator), given a set of sensor array readings for

the component such as the RPM of component shafts
or bearing temperatures. The goal of the learner in this
domain is to classify the working state of the component
in real time, given a stream of samples from the sensor
array. Suppose that during the daytime hours, bear-
ing temperatures rise from ambient heat, to levels that
would, under other conditions, raise warning. In this
case, the previous values used to classify nominal oper-
ation do not reflect the new operating parameters. A
supervised learner that is not modified after training re-
quires retraining on the new instances. We are interested
in applying biologically plausible computational models
to this problem.

Concept Drift

For the purpose of this discussion, we define concep-
tual drift to be the change in distribution parameters
that define a classification. For example, suppose that
the probability density of the an instance belonging to a
classification was defined as Gaussian. The parameters
defining that distribution would change over time, indi-
cating a conceptual drift. This drift can be correlated,
so that concepts at time t are related to concepts at time
t + n. Clearly, even in a binary decision task, if drift oc-
curs, the decision boundary generated for the concepts
at t would not be the decision boundary generated at
t + n.

Concept drift can increase without repetition (i.e.
never returning to a previous distribution). Essentially,
a concept’s change is continual, and while the rate of
change can slow, the change always leads to a new pa-
rameterization of the concept probability distribution in
feature space. A good example of this might be bear-
ing temperature whose value distribution permanently
changes after seating.

Repeating and cyclic concept patterns There are
some special cases worth mentioning. Concept drift can
repeat. Suppose that a concept, after initial training,
is explained by a parameterization b1. In online learn-
ing, more instances arrive, inducing parameterization b2.
Still more instances arrive, driving the concept param-
eterization back to b1. The learner, having learned pa-
rameterization b1 would do best to take advantage of
the previously learned concept. Concept drift can also
be cyclic, where a concept repeats a set of parameteriza-
tions in an order, and this ordering repeats. In general,
these special cases point to the fact that a latent variable
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affects the concept learning. All of these cases seem to
require some memory, and the need for dynamic weight-
ing of features.

Cognitive Motivation
There is growing evidence that synaptic behavior plays a
fundamental role in many cognitive tasks. Hippocampal
neurons responsible for working spatial memory seem to
be highly plastic, relative to other cortical neurons. The
implication is that a high level of plasticity is needed to
handle dynamic spatial environments such as is needed
to support navigation. Performance decay of learned
processes that are not practiced seems to be attributable
to weakening (depressed) potentiation between connec-
tions salient to the neuron processes related to the task.
This point is noticed acutely again in spatial tasks, typ-
ically attributed to hippocampal areas of the brain. As-
pects of motion detection also seem to apply to synaptic
plasticity in the visual pathways. There has been some
behavioral evidence that certain forms of dyslexia may
be attributable to synapse plasticity in magnocellular
visual pathway (layers I and II of the lateral geniculate
nucleus) (Stein, 2001).

The human capacity to handle concept drift seems in-
nate to many cognitive processes. The problem of clas-
sification in concept drift situations seems to share some
of the dynamic demands required of plastic neural areas
in the brain. We believe the use of stronger biological
models in neural networks provides insight into cognitive
computational phenomena and cognitive function.

Synaptic Plasticity
Synaptic plasticity has been used to refer to the relative
tendency for a neuron (dendrite) to form new synapses
as well as the potentiation of a synapse to propagate
action potentials. In this paper we refer to plasticity as
the latter. In Hebbian models of learning, the timing of
action potential arrivals at the pre- and post- synaptic
neurons governs the potentiation or depression of the
synapse.

Computational model of plasticity
What properties of synapse plasticity are salient to a
computational model? First, conductance of action po-
tentials varies from region to region in the brain. At the
neuron level, electrical properties vary from dendrite to
dendrite, creating latencies in action potential propaga-
tion. However, the processes governing potentiation of
synapses should be constant for all synapses. In other
words, a constant factor is used to potentiate synapses
when necessary. The same is true for annealing synapse
potential due to a lack of arriving action potentials (i.e.
use it or lose it policy). Synapse potentials are bounded
in their values, where the minimum value represents no
action potential propagation, and maximum potential
means any arriving action potential is propagated.

Both pre- and post-synaptic neurons process action
potentials S where {spre, spost} ∈ S (figure 1). Action
potentials arrive at each synapse, creating a difference
between pairs of action potentials d = tspre

− tspost
. Po-

tentiation is updated according to a window of positive

Figure 1: Plastic synapse neuron model (pre- and post-
synaptic neurons).

difference (i.e. a pre-synaptic action potential precedes
a post-synaptic action potential). A synapse potential is
depressed if the difference is negative.

Consider an integrate and fire neuron model, where
the instantaneous sum of activation arriving from the
dendrite is what is considered in action potential propa-
gation. This decision function is modeled using a logis-
tic transfer function 1/1 + e−u. In this case, a neuron
soma represents the decision point for action potential
propagation. Propagation of signals can be expressed in
terms of the synapses and their relation to the soma. For
each synapse, the distance from the presynaptic soma to
the synapse represents the time for an action potential
to propagate from the presynaptic soma to the synapse.
Likewise, the latency from the synapse to the postsy-
naptic neuron soma represents the time for an action
potential to propagate from the synapse to the soma as
well as the variability in the conductance properties of
individual connections. Here, we make the assumption
that the conductance properties of the network are uni-
form. Suppose a fully connected network (i.e. a synapse
exists between each neuron, but not recursive), where
the latencies between synapses are chosen from a uni-
form random distribution. A synapse exists at each con-
nection, and has a potential value. The potentiation of
each synapse is initialized using a uniform random distri-
bution. Neurons are organized in a laminar fashion, as
in traditional networks, but latencies between neurons
varies, so action potential propagation is not laminar.
Inputs are delivered to the input layer of neurons at the
soma, and arrive simultaneously. We define the resulting
network by the set of synapse potential values, the con-
nection latencies (weights), the synapse update function,
using an integrate and fire neuron model.

Action potentials are propagated through the network
at each timestep. The sigmoid decision function is used
to propagate action potentials to the axon (i.e. inte-
grate and fire). Each synapse’s potentiation is updated,
based on the pre- and postsynapse neurons’ firing re-
sults. Qualitatively, neurons that fire in order (pre then
post), increase potentiation, and lower the threshold for
a signal to propagate at the synapse. Neurons that
fire out of order depress the synapse potential, increas-
ing the threshold signal required to propagate a signal.
Synapses with potential 0 are not able to propagate sig-
nals. Synapses with max potential are able to propagate
any arriving signal (signal with amplitude a > 0).
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Network output

The network is allowed to propagate action potentials
until all action potentials have propagated in the net-
work (reached output neurons or were filtered). At each
timestep, the values of the output nodes are noted, and
once complete, the resulting “spike train” is analyzed
for output. Biological networks of neurons output spike
trains to indicate output from the network. In the sim-
ulated case, the spike train is analyzed for significant
action potentials output within a window of time to de-
termine positive output.

We define a positive window of activity in terms of
the output population over all of the output windows.
If any window shows activity above the mean activity,
then we attribute a positive output by the network on
that instance. We define a threshold decision rule for de-
termining output activity of the network. If more than
a threshold value of spikes are detected in the time win-
dow, then the network output is considered positive. The
most sensitive decision rule would react to one action po-
tential of minimal amplitude.

A network composed of these neurons behaves simi-
larly to traditional networks: instances generate an ac-
tivation pattern at the input nodes. Signal propagation
through the network is governed by the potentiation of
synapses and a propagation decision function at each
neuron. The decision function is meant to model the
fact that threshold signal must reach the soma before the
neuron propagates an action potential (integrate and fire
model). Training the network consists of passing the net-
work positive instances of classification, so that common
synapses salient to the task will potentiate as a result of
the training input.

Processing action potentials in the network occurs as
a discrete simulation of a neuron model, such that ac-
tion potentials propagate through the network at each
timestep. The maximum time for an input action po-
tential to produce output is the maximum latency of a
signal from input to output. In this case we assume
action potentials propagate at a constant rate over the
network (i.e. this does not model the chemical properties
of action potential propagation).

Synapse potentiation A synapse potentiates (lowers
the potential to propagate a signal across the synapse)
based on firing pattern and rate of the pre- and post-
synaptic neurons. Qualitatively, if the pre- and post-
synaptic neurons fire sequentially, the affected synapse
potentiates. If they fire out of sequence, the synapse is
depressed. Synapse potential anneals from lack of ac-
tivity as well. The potentiation window (Hebbian win-
dow) is modeled in the plastic synapse network using a
quadratic equation.

Laminar networks Traditional neural networks are
laminar in structure and processing. Nodes are assigned
to layers: typically input, hidden and output and activa-
tion is computed per layer, for each node in a layer. The
propagation of action potentials for use in tuning synapse
potentiation is asynchronous with respect to the set of
action potentials propagating in the network. While net-

work components may be organized in a laminar fashion,
action potential propagation is not.

Biological plausibility

An important aspect of the model is that it is biolog-
ically plausible in the sense that potentiation is a key
feature of biological synapse dynamics. In a set of ex-
periments meant to demonstrate the ability of TD learn-
ing to model the potentiation behavior of spike timing
dependent plastic synapses, (Rao and Sejnowski, 2000)
employ a neuron model meant to capture many biologi-
cal behaviors. The experimental results support the use
of a TD(0) function to capture the Hebbian activation
window for a synapse. The attraction of using TD(0) is
that it is computationally tractable. Shon et al. (Shon
et al., 2004) employ a similar neuron model to model mo-
tion detection and prediction as observed in the visual
cortex. Both experiments point out that it seems plau-
sible the brain is adaptive for and reacting to statistical
properties of the natural world.

Another reason why this is a more biologically plausi-
ble network than a traditional network is it does not use
a backpropagation function at the neuron level as the
direct means to propagate error through the network.
Backpropagating signals do so at the synapse level, and
do not propagate beyond the synapse (i.e. action poten-
tials do not flow backwards through the network). Re-
current connections, rather, are extensive in many areas
of the brain, and seem to represent an important method
that neurons use to receive feedback. The plastic model
is more similar to this model of feedback updating than
traditional networks.

Experiments

The biological and cognitive motivations for the model
leads to a testable hypothesis: plasticity in terms of po-
tentiation and Hebbian learning seems to be behind (at
least short term) associative memory. If this is the case,
then in concept drift problems where the drift is not
random, but correlated to the original concept, then a
plastic network (a network whose synapses are sensitive
to activation patterns in the data) should perform better
in classification accuracy than traditional networks.

Usenet Corpus

A Usenet corpus was used to test the network on real
world data. The corpus consisted of samples of messages
from twenty newsgroups (see table 1) ordered chronolog-
ically. A bag of words generator was used to represent
each message (McCallum, 1996), and each document was
normalized using the L2 vector norm. A collection of
1000 words representing each message was used for the
experiments. The vocabulary for the training set was
ranked using infogain, and the top 1000 terms were se-
lected, common to both training and test sets. Messages
were classified by the news group it belonged to. The ex-
perimental networks were trained using a training set of
instances, predetermined in the corpus body, and occur-
ring chronologically before for test set. This arrangement
of messages creates a distinct “drift” in the discrete word
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comp.graphics misc.forsale rec.autos sci.crypt

Figure 2: Sample discrete category distributions for training (top) and testing (bottom) sets showing qualitative
differences in distributions (drift). Word set is ranked infogain vocabulary of training set (common in testing set).

distributions of training and test sets for each group. A
sample of group distributions for training and test sets
can been seen in figure 2.

Neural network model

In order to facilitate discussion, we compare the results
of the plastic synapse network to performance of a tradi-
tional artificial neural network (ANN) in the same task.
The network was configured to the same structure as the
plastic synapse network (n input nodes, n hidden nodes,
1 output node, learning rate α = 0.001) using the Joone
neural network toolkit (Marrone, 2005). The network
was fully connected, composed of sigmoid nodes in the
input and hidden layers. Output ω of the network was
positive where ω >= 0.5 and negative otherwise.

The network learning rate was tuned, using a range of
values from 0.001 to 0.1. Over this range, the number
of nodes in the hidden layer was tuned from its initial
value n up to n +200. The number of epochs was tuned
using discrete values (100,1000,10000) to 100. In each of
these cases for each of the Usenet groups, there was not
a significant difference in performance between param-
eterizations. Two training strategies were used: train
using the entire dataset, and train using only positive
group examples.

Plastic Neural Network

The plastic neural network was initialized using the same
neuron layer structure as the ANN, so that the number
of neurons in both cases was the same. The TD win-
dow was set to unit time (maximum sensitivity to firing
sequence); the synapse potential rate was initialized to
0.0001.

Action potentials were modeled by signal amplitude
(strength of signal using the normalized input vector),
and their arrival time at the soma or the synapse.
Computation of action potential propagation produces a
qualitative rule: presynaptic action potentials that pro-

duce propagated signals at a synapse cause synapse po-
tentiation that lower the threshold amplitude of future
arriving presynaptic action potentials. In these exper-
iments, the networks were initialized with a fully con-
nected hidden layer which fed to a set of output nodes.
The networks were trained using only positive instances,
in order to potentiate the appropriate synapses. During
testing, synapse potentials were not changed in response
to input.

Learning

The task in all of the experiments was a binary classifica-
tion task. Instances were labeled according to the group
being tested (members of the group in the training set
were assigned a positive label, nonmembers a negative
one). The task is one that is real in terms of concept
drift: over time, the features describing documents that
belong to a particular group change in parametrization.
The task for the classifier is decide whether a new doc-
ument belongs to the goal concept or not.

Results

Table 1 shows the training and test accuracy for the tra-
ditional and plastic synapse networks in each category
of the Usenet corpus. The task was binary classifica-
tion, where for each category, the category messages were
positive instances, and all other instances were negative.
Positive instance set sizes for training and test sets are
shown for each category.

Plastic synapse neural network

The plastic synapse neural network was trained using
only positive examples. The network used was feedfor-
ward, with recurrent connections (no reflective connec-
tions). A hidden layer was used that was fully connected
to both the input and output nodes. While training ac-
curacy was relatively high for all categories, test accu-
racy was insignificant, indicating overfitting and little
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Table 1: Usenet corpus results. Size are the positive instance train and test set sizes, respectively. PSN training
is the training accuracy of the plastic synapse network (* for all categories test accuracy was insignificant). ANN
Positive is test set accuracy of the traditional neural network, using a training set of all positive instances. ANN
Complete is the test set accuracy using the complete training set (positive and negative instances).

Newsgroup Train Test PSN Training* ANN Positive ANN complete
alt.atheism 480 319 0.9962 0.4280 0.9747
comp.graphics 584 389 0.9537 0.4335 0.9692
comp.os.ms-windows.misc 591 394 0.9685 0.4339 0.9688
comp.sys.ibm.pc.hardware 590 392 0.9721 0.4339 0.9689
comp.sys.mac.hardware 578 385 0.9487 0.4332 0.9695
comp.windows.x 593 395 0.9518 0.4340 0.9687
misc.forsale 585 390 0.9647 0.4336 0.9691
rec.autos 594 396 0.9684 0.4340 0.9686
rec.motorcycles 598 398 0.9767 0.4342 0.9684
rec.sport.baseball 597 397 0.9973 0.4342 0.9685
rec.sport.hockey 600 399 0.9839 0.4343 0.9683
sci.crypt 595 280 0.9820 0.4341 0.9686
sci.electronics 591 393 0.9931 0.4339 0.9688
sci.med 594 396 0.9645 0.4340 0.9686
sci.space 593 394 0.9834 0.4340 0.9687
soc.religion.christian 599 398 0.9978 0.4343 0.9684
talk.politics.guns 546 364 0.9409 0.4315 0.9712
talk.politics.mideast 564 376 0.9763 0.4324 0.9702
talk.politics.misc 465 310 0.9713 0.4272 0.9754
talk.religion.misc 377 251 0.9566 0.4226 0.9801

generalization power in the classifier. As the distribu-
tions in figure 2 demonstrate, there does not seem to
be significant overlap in terms between the training and
test sets in many of the categories (see table 2). Qual-
itatively, less overlap produces fewer action potentials
that are propagated in the network for positive instances,
leading to outputs that are not detectable above negative
instance input. Of course, allowing for online learning,
even in the case where there is little or no feature over-
lap, produces high accuracy.

Traditional neural network

The traditional neural network did not appear to learn
the binary classification task for any of the newsgroups
when trained with either all positive instances or the
complete dataset. High accuracy in the complete train-
ing set cases was due to the fact that the network per-
formed as a majority classifier (100% false negative rate).
To provide some insight into training the plastic synapse
network, a traditional network was also trained using
only positive instances. When trained with only posi-
tive examples, the network generated low classification
accuracy, with similar responses for all document cate-
gories SSD < 0.001.

Conclusions

We have introduced a model biologically plausible model
of synapse behavior and applied the model to a real world
learning problem. In situations where real world learn-

ing problems display properties that mimic neuron pro-
cesses, a neural network approach seems applicable.

The results indicate that potentiated synapses in neu-
ral networks seem to be able to classify a concept in a
drift condition, but with little generalization power. In
the constructive learning task, when training the learner
with positive examples, the learner can only indicate how
strongly a query instance matches (activates) the trained
concept. We believe this explains the generalization per-
formance of the network. One possible way to address
this problem is to use the trained networks together to
generate a classification. In the past, committee meth-
ods (e.g. bagging or boosting) have been used to in-
crease performance of weak classifiers. In terms of the
neural structure, an output neuron would be connected
to the output of each individually trained network, and
would serve as the voting mechanism (in the case of bag-
ging) governing the output of the network. The implica-
tions for concept generalization would be that the classi-
fier would be conservative in its estimates of new query
points: only instances with small distance from the clus-
ter would get a strong output from a particular network.

The traditional neural network solution is backprop-
agation of error through the network. Clearly, this
method is less biologically plausible than an integrative
approach. An important outcome of this work would
be a biologically plausible model that can be applied to
problem domains similar to the cognitive functions that
mechanisms like synaptic plasticity support. The initial
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Table 2: Category inner product angles between training
and test sets for each Usenet category.

Newsgroup Angle(degrees)
alt.atheism 84.18
comp.graphics 80.13
comp.os.ms-windows.misc 72.54
comp.sys.ibm.pc.hardware 85.71
comp.sys.mac.hardware 86.00
comp.windows.x 79.55
misc.forsale 83.06
rec.autos 84.93
rec.motorcycles 82.11
rec.sport.baseball 82.03
rec.sport.hockey 76.87
sci.crypt 84.10
sci.electronics 79.76
sci.med 74.01
sci.space 73.83
soc.religion.christian 65.21
talk.politics.guns 85.76
talk.politics.mideast 86.87
talk.politics.misc 81.89
talk.religion.misc 75.41

results shown here are encouraging for further experi-
mentation. We want to emphasize this is not a cognitive
model for concept drift, but rather through observing
some likenesses of neural properties to the problem do-
main, we are generating a mechanism to handle concept
drift. Using a model of synapse behavior in conjunction
with a nonlaminar method of action potential propaga-
tion, the timing of action potentials (not rate coded)
determines the potentiation of a synapse. Action po-
tentials begin at the input nodes of the network, and
propagate based on the latency of propagation in the
axons and dendrites of the modeled network.

Future Work

To make a stronger claim about the importance of plas-
ticity in dynamic learning problems, a well formed anal-
ysis is needed of the network behavior. A formal analy-
sis of the network should provide better insight into the
types of learning problems for which it is best suited. In-
corporating backpropagation to the network would im-
prove learning. While this seems clear, the solution is
not straightforward and less biologically plausible. In a
network where signals are time dependent, the instan-
taneous update based on error used in backpropagation
is not easily addressed. Finally, generating neural struc-
tures that produce ensemble method behavior can im-
prove classifier performance.
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