
UC Berkeley
UC Berkeley Previously Published Works

Title
Edge topology construction of Voronoi diagrams of spheres in non-general position

Permalink
https://escholarship.org/uc/item/79545886

Authors
Li, Xiang
Krishnamurthy, Adarsh
Hanniel, Iddo
et al.

Publication Date
2019-08-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/79545886
https://escholarship.org/uc/item/79545886#author
https://escholarship.org
http://www.cdlib.org/

Edge topology construction of Voronoi diagrams of spheres in non-general

position

Xiang Lia, Adarsh Krishnamurthyb, Iddo Hannielc, Sara McMainsa,∗

aUniversity of California, Berkeley
bIowa State University

cTechnion, Israel Institute of Technology

Abstract

Although 3D Voronoi diagrams and medial axis transforms have numerous applications in biology,
robotics, and manufacturing, most researchers use Voronoi diagrams of points instead of the true 3D input
geometry, due to issues of robustness and scalability. In this paper, we present a robust sample-based
GPU algorithm for calculating the full topology of Voronoi diagrams of non-general position spheres.
Prior work demonstrated that the presence, geometry, and combinatorial basis of spheres that contribute
to Voronoi vertices can be efficiently computed by shooting rays from each input sphere, mapping ray
intersections with the nearest bisector surface to parametric bounding cubes, and analyzing the results.
In this paper, we propose an algorithm on this parametric bounding cube to compute Voronoi edges
in addition to the vertices. We successfully extract the full topology of the Voronoi diagram, includ-
ing special cases such as isolated Voronoi edges that do not contain Voronoi vertices, more than three
Voronoi edges emanating from a Voronoi vertex, and Voronoi edges that are shared by more than three
Voronoi cells. Our GPU implementation efficiently and robustly handles all input, whether in general or
non-general position, and finds all Voronoi vertices and edges, modulo the sampling density, including
isolated disconnected edges.

Keywords: Voronoi diagram, Spheres, GPU.

1. Introduction and prior work

A Voronoi diagram is a structure that divides
space into regions such that points within each re-
gion are closer to a specific input object than to
any other input objects. The Voronoi diagram and
its variation, the medial axis transformation, are
a fundamental topic in computational geometry,
with a variety of applications in science and engi-
neering.
A special category of Voronoi diagram is the

three-dimensional Voronoi diagram for spheres,
which is also called the additively weighted Voronoi
diagram, or Apollonius diagram. Because the
shape of many real-world objects can be natu-

∗Corresponding author
Email address: mcmains@berkeley.edu (Sara

McMains)

rally represented by spheres, Voronoi diagram for
spheres are widely used in many disciplines such
as molecular biology, material science, and physi-
cal simulations [1, 2].

Many important properties of Voronoi diagram
for 3D spheres have been studied [3, 4, 5]. The
most successful approach to construct the Voronoi
diagram for 3D spheres is the edge tracing algo-
rithm proposed by [6]. Based on this algorithm,
Kim’s group analytically constructs the Euclidean
Voronoi diagram of 3D spheres [6], defines its dual
structure as a Quasi-triangulation [7, 8] and ap-
plies the two structures to biomolecular structures
[9, 10]. A similar algorithm by [11] is proposed by
developing a geometric structure called the Voronoi
S-network.

Kim et al.’s edge tracing approach first cal-
culates a Voronoi vertex, finds its corresponding

Preprint submitted to eScholarship January 7, 2022

Voronoi edges, and traces the Voronoi edges to
discover other vertices, until all the vertices and
edges are found. This algorithm is efficient and rel-
atively robust with an assumption of input spheres
in general position; it can not handle disconnected
Voronoi edges or high-order Voronoi vertices or
edges. These can occur when 1) at least five in-
put spheres sharing a Voronoi vertex; 2) the center
of at least four spheres lie on the same plane; or 3)
at least five spheres are tangent to the same plane.

[12] introduced a variation on this edge tracing
approach. The idea is to arrange all the Voronoi
components into a hierarchy [7], and discover dis-
connected components by exploring the informa-
tion in the hierarchy. This method extends the ap-
plicability of the edge tracing algorithm to find dis-
connected Voronoi components, but still limited to
Voronoi diagrams with no Voronoi vertices shared
by more than four cells and no Voronoi edge shared
by more than three cells.

Recently, in [13] we proposed an algorithm to
calculate the geometry information of Voronoi ver-
tices and Voronoi face sample points. The algo-
rithm is a sample-based approach that calculates
sample points on Voronoi faces by taking the lower
envelope of the intersections of rays from each base
sphere through its corresponding bisectors. It was
able to find Voronoi vertices of both general and
non-general position (degenerate-case) inputs by
searching for patterns of neighboring sample points
that indicate the presence of Voronoi vertices and
using numerical iteration to calculate the vertex
locations. Unlike just sampling the input geom-
etry, this approach to sampling supports finding
actual vertex locations and edge topology. These
can be used in molecular analysis to calculate the
quasi-triangulation [7], and then calculate prop-
erties such as densities and volumes of the pro-
teins [9]. As another example application, we need
Voronoi vertex and edge information to serve as
nodes and paths to run a path-finding algorithm
such as A* to find an efficient collision-free path.

Constructing Voronoi diagrams by computing
lower envelopes is a widespread idea in both R2 and
R3 for different classes of input objects [14, 15, 16].
Also, the mathematical representation of bisectors
has been studied for different shapes. Hanniel et al.
discussed the bisectors and even trisectors among

a set of CSG primitives [17]. In Hu et al. we com-
bined the ideas of ray tracing, lower envelope, bi-
sector representation, and numerical iteration, and
exploited the parallelism of this approach with an
algorithm designed for strengths of the GPU. How-
ever, that algorithm only calculates the geometry
information of Voronoi vertices; the Voronoi edge
topology information is not calculated.
In this paper, we present a follow-on algorithm

to calculate Voronoi edges under both general
or non-general input positions (including discon-
nected Voronoi edges and degenerate cases). Com-
bining our output with the prior geometry output,
we build the full Voronoi diagram for 3D spheres
with inputs under any condition. Our main contri-
butions include:

• GPU framework designed to exploit data par-
allelism for efficient calculations.

• A robust algorithm to construct the Voronoi
edge topology information for both general
and non-general position input, including:

(a) Self-connected Voronoi edges, as in
Fig. 1(a);

(b) Infinite Voronoi edges with both ends ex-
tending to infinity, as in Fig. 1(b);

(c) High order Voronoi vertices or Voronoi
edges with non-general position input, as
in the example in Fig. 1(c) where the cen-
ters of the six equal-sized spheres lie on
a hexagon in the same plane.

2. Terminology and definitions

Following [17], the Voronoi diagram for a set of
spheres in 3-dimensional space is defined as:
Definition 1: Given a set of spheres

S0, S1, . . . , Sn in R3, the Voronoi cell (VC) of sphere
Si, denoted the “base sphere,” is the set of all
points closer to Si than to Sj, ∀j ̸= i. The Voronoi
diagram (VD) is then the union of the Voronoi cells
of all (n+1) spheres.
The distance between a point P = (x, y, z) and

a sphere S with center (Cx, Cy, Cz) and radius R is
defined by the equation:

dist(P, S) =
√

(x− Cx)2 + (y − Cy)2 + (z − Cz)2−R.

(1)

2

(a) (b) (c)

Input
Spheres:

Face Sample
Points:

Voronoi
Edges:

⨀

⨂

⨀

⨂

Figure 1: Example results showing correctly identified 8
Voronoi edge topology for challenging special cases (all fig-
ures are 2D rendering of 3D scenes): (a) A self-connected
ring-shaped Voronoi edge is identified (the centers of these
three input spheres lie on the same line); (b) Four infinite
Voronoi edges (both ends extending to infinity) are identi-
fied for this case where the centers of the five input spheres
lie on the same plane; (c) An infinite Voronoi edge (with
both ends extending to infinity) is identified for this case
where the centers of six input spheres lie on the same plane.
The Voronoi edge passes through the center of the ring of
six spheres and is perpendicular to their plane. Symbol
“
⊙

” represents Voronoi edge shooting outwards to infin-
ity (coming towards the reader); symbol “

⊗
” represents

Voronoi edge shooting inwards to infinity (away from the
reader).

Definition 2: The union of all points that are
equidistant from spheres Si and Sj is called the
bisector Bi,j of the two spheres. Si, Sj are called
the generating spheres of the bisector Bi,j.

Any point P = (x, y, z) located on the bi-
sector surface between two spheres S1 (center
(Cx1 , Cy1 , Cz1) and radius R1) and S2 (center
(Cx2 , Cy2 , Cz2) and radius R2) satisfies the follow-
ing equation:

√
(x− Cx1)

2 + (y − Cy1)
2 + (z − Cz1)

2 −R1

=
√

(x− Cx2)
2 + (y − Cy2)

2 + (z − Cz2)
2 −R2.

(2)

The bisector is a plane for two generating spheres
with the same radii; for two generating spheres
with different radii the bisector is a hyperbolic sur-
face [13, 18]. A Voronoi face is the subset of a bi-

sector that is closer to its generating spheres than
to any other spheres.
Within a Voronoi cell, Voronoi edges are the in-

tersection between two of its Voronoi faces. In gen-
eral, Voronoi vertices are the intersection among
three Voronoi faces; such a vertex is determined
by the four spheres to which it is equidistant (the
base sphere and three other spheres corresponding
to each of the Voronoi faces).
A base sphere is a generating sphere of

a Voronoi face/edge/vertex if such a Voronoi
face/edge/vertex appears in the Voronoi cell corre-
sponding to the base sphere. Typically, a Voronoi
face/edge/vertex has 2/3/4 generating spheres, re-
spectively. If there are more generating spheres
than this general case, they are said to be not in
“general position.”

3. Prior algorithm to calculate Voronoi ver-
tices

We briefly summarize our prior algorithm [13] as
follows:

1. Determine the implicit quadratic surface equa-
tions, derived from Eqn. 2, for the bisectors
between the base sphere and all the other in-
put spheres (input spheres can intersect but
not completely contain another sphere).

2. From each base sphere, the algorithm creates
an axis-aligned bounding cube, and uniformly
subdivides each of the six faces to a parame-
terized domain expressed in variables u and v
(Fig. 2). From the center of the base sphere,
the algorithm shoots sampling rays through
each (u, v) sample point on the bounding-box
surface into space.

3. Compute the intersection of each base sphere
ray with all the corresponding bisectors, and
take the lower envelope of all the intersections
(i.e. only keep the nearest intersection for
each ray) to obtain the sample points on the
Voronoi faces of the Voronoi cell for this base
sphere.

4. The algorithm color-codes each sample point
of the Voronoi cell for the base sphere on
the u-v parametric domain based on its cor-
responding bisector found in step 3. It uses a

3

Figure 2: Mapping sphere to six u-v parametric surfaces
on the bounding cube; uniform parametric sampling of top
surface shown [13].

marching approach to locate the neighborhood
of Voronoi vertices by checking each group of
four neighboring sample points on the bound-
ing cube, called a “grid-cell.” Each 3-color
and 4-color grid-cell indicates the appearance
of three or more Voronoi faces in this neigh-
borhood. Recall that Voronoi vertices are the
intersection among three Voronoi faces in gen-
eral, so 3-color and 4-color grid-cells indicate
the existence of Voronoi vertices.

Fig. 3 shows the correspondence between sam-
ple points in geometric space and the u-v para-
metric domain.

5. For each 3-color grid-cell, take the average of
the location in 3D space of the face sample
points as the starting point for iteration, then
use the Newton-Raphson method to find the
actual vertex location (within a user-defined
tolerance) that satisfies the three correspond-
ing implicit bisector equations.

If the sampling density is insufficient, special
cases of singular Jacobian and 4-color grid-
cells would occur, indicating that Voronoi ver-
tices cannot be calculated in those grid-cells.
The algorithm uniformly subdivides such grid-
cells into four new sub-grid-cells, repeating
steps 1-5 for the newly generated u-v points.
New sub-cells shoot additional sample rays to
the 3D space neighborhood corresponding to
the original grid-cell, increasing the local sam-
pling density to provide more information to
calculate the Voronoi vertices.

6. The algorithm combines the results of the
Voronoi cell calculated for each base sphere
to form the full Voronoi diagram. Because
each Voronoi vertex has multiple generating
spheres (four for general position or more for
non-general position), it should be found from
all of the Voronoi cells corresponding to the
generating spheres. When the sampling den-
sity is insufficient, some Voronoi vertices may
not be found from all the Voronoi cells. For
such “incompletely matched” vertices, from
each corresponding base sphere whose Voronoi
cell did not find it, the algorithm shoots a new
ray from the center of the base sphere to the
exact location of this point (the exact location
calculated from the other Voronoi cells that
found it). The intersection of this ray with the
bounding-box surface is the corresponding u-
v location of the vertex. Around this vertex’s
u-v location, the algorithm constructs a much
smaller grid-cell (Fig. 4), repeating steps 1-5
for the four newly generated u-v points of the
smaller grid-cell. After this targeted sampling
around the vertex, the tiny grid-cell will typ-
ically have the 3-color patterns corresponding
to its generating spheres.

Please refer to [13] for complete details of the
algorithm.

4. Updates in the construction of geometry
information

In this section, we revisit some implementation
details for the prior algorithm summarized above.
We turn the process of creating tiny grid-cells
of incompletely matched vertices into an iterative
searching process (section 4.1), improving the ro-
bustness of the prior algorithm and establishing
the relationship between the tiny grid-cell and its
containing grid-cell. On the u-v domain, we track
the neighboring information between grid-cells by
adding pointers in the data structure, and update
the information (pointers) during subdivision and
the iterative searching process (section 4.2).

4.1. Iterative search for incompletely matched ver-
tices

In step 6 of the prior algorithm, tiny grid-cells
are created to check if the vertex actually exists in

4

(a) (b) (c)

Figure 3: (a) Sample points on Voronoi faces for white base sphere with four spheres of the same size evenly spaced around
it, all five with co-planar centers; (b) corresponding color map of u-v domains on bounding cube with gray representing
sample rays that go to infinity; (c) sample point grid on one face of the bounding cube with 3-color grid-cells indicated by
boxes [13].

Original

Grid Cell

New

Grid Cell

Vertex on u-v

Parametric surface

Figure 4: Construction of the new tiny grid-cell [13].

the Voronoi cells that did not find it [13]. If the
tiny grid-cell is a 3-color or 4-color grid-cell, and its
colors are consistent with those in the other cells
that initiated the targeted search (Fig. 5(a)), the
vertex exists. (Note that for a non-general posi-
tion Voronoi vertex that has more than four corre-
sponding colors (contributing spheres), if the three
or four colors from the tiny grid-cell are a subset
of those corresponding colors, it is also considered
consistent with other contributing spheres.) If the
colors are not consistent, the algorithm will recur-
sively create even smaller grid-cells using the same
reduction ratio, until a consistent 3-color or 4-color
grid-cell is found or reaching a maximum depth of
recursion.

The prior algorithm only calculated the Voronoi
vertices’ geometry, not their connectivity via
Voronoi edges. To calculate the latter, we need to
connect each of the four sample points on the tiny
grid-cell to each of the corresponding four sample
points on its original containing grid-cell. For ex-
ample, as shown in Fig. 5(b), the blue sample point
on the bottom-right corner of the tiny grid-cell is
connected to the blue sample point on the bottom

Four new grid cells
A vertex found in

new 3-color grid cells

(a) (b) (c)

Figure 5: One iteration in the iterative search process for
incompletely matched vertices.

right corner of the original grid-cell.
By this process, we will create four new grid-cells

(in addition to the tiny grid-cell). If any of these
new grid-cells is 3-color or 4-color, it corresponds
to a new vertex that has not been found in this
Voronoi cell before (Fig. 5(c)). We calculate the
position of this new vertex using numerical itera-
tion and check that it appears in the Voronoi cells
all of its other generating spheres (corresponding
to the 3 colors of the grid-cell). If it is missing for
any of the generating spheres, we repeat this pro-
cess for this new incompletely matched vertex (in
the u-v domain of any generating sphere that does
not yet contain it in its Voronoi cell).
We repeat this process for each new incompletely

matched vertex, until no more such vertices are
found.

4.2. Create neighboring information of grid-cells

Just as in the u-v domain we call each group of
four neighboring face sample points a “grid-cell,”
similarly we call each pair of neighboring face sam-
ple points a “grid-side.” Each grid-cell has four
grid-sides initially (if neighboring cells are subdi-

5

vided, its sides will also be split whenever a new
sample point is introduced in the middle of a side).
A grid-side connecting a pair of sample points of
the same color is called a homogeneous grid-side;
a grid-side connecting a pair of sample points of
different colors is called a heterogeneous grid-side.
Each grid-side has two neighboring grid-cells that
both contain this grid-side. If it is on the edge
of the bounding cube, it is shared by two grid-
cells on different u-v parametric surfaces (Fig. 6);
these grid-cells are still neighbors because of shar-
ing the same grid-side. Having this kind of neigh-
borhood relationship allows traversing between dif-
ferent parametric surfaces on the same bounding
cube. In the subdivision process, we may divide an

Grid cells
contain Voronoi
vertices

Examples of
heterogeneous
grid sides on
the edge of u-v
surfaces

Figure 6: Color map on a bounding cube (sampling density
5*5).

original grid-cell into four sub-grid-cells (e.g. sub-
grid-cells (6, 7, 8, and 9) in Fig. 7). We use sub-
grid-cell 6 as an example; it shares small grid-sides
e1 and e2 with original grid-cell 1 and 5 respec-
tively. In such situations, we still describe them as
neighboring grid-cells: grid-cells 1 and 6 are neigh-
bors by edge e1, and grid-cells 5 and 6 are neighbors
by edge e2. Grid-cell 1 has five neighboring grid-
cells (2, 3, 4, 6, and 7); Sub-grid-cell 6 has four
neighboring grid-cells (1, 5, 7, and 9). As shown in
Fig. 8, in the case of iterative targeted sampling,
we create a tiny grid-cell (6) around the u-v domain
location of the vertex. By connecting the four cor-
ner points of the tiny grid-cell to the corresponding
four corner points of the original grid-cell, grid-cells
(7, 8, 9, and 10) are created. Their neighboring in-
formation is still determined by shared edges.

⑥
① ②

③

④⑤

⑦ ⑥
① ②

③

④⑤

⑦

⑧
⑩

⑧

⑨ e1

e2

(a) (b)

e3
⑨

Figure 7: Neighboring information after subdivision.

⑥
① ②

③

④⑤

⑦ ⑥
① ②

③

④⑤

⑦

⑧
⑩

⑧

⑨ e1

e2

(a) (b)

e3
⑨

Figure 8: Neighboring information after targeted search.

5. Construction of edge topology informa-
tion

In the previous sections, we described how to
obtain the exact locations of the Voronoi vertices
and their corresponding u-v grid-cells from each of
the contributing base spheres. To determine the
connectivity among the Voronoi vertices, we de-
tect Voronoi edges by exploring the connectivity of
grid-cells on the colored bounding cubes (u-v para-
metric surfaces).

Within a Voronoi cell, each Voronoi edge is the
intersection between two of its Voronoi faces, so
neighboring pairs of u-v sample points of differ-
ent colors (heterogeneous sides of grid-cells) indi-
cate the existence of Voronoi edges in its corre-
sponding neighborhood in 3D space. Each hetero-
geneous grid-side indicates the presence of a par-
ticular Voronoi edge generated by the base sphere
and two spheres corresponding to the two differ-
ently colored sample points. The pair of colors
is called the “edge identifier” of its corresponding
Voronoi edge in this Voronoi cell. For a particular

6

Voronoi edge, we look for heterogeneous grid-sides
with the same edge identifiers. If a grid-cell has two
heterogeneous grid-sides with the same color pair
(edge identifier), it indicates this particular edge
enters this grid-cell from the neighboring grid-cell
sharing one such side, and exits to the neighbor-
ing grid-cell sharing the other such side. We call
such grid-cells “through-grid-cells” of a particular
Voronoi edge because the edge goes through those
grid-cells.
As illustrated in Fig. 9, our algorithm premise is

straightforward: tracing the paths of each Voronoi
edge by following series of its “through-grid-cells.”
(Note that henceforth we are using the term “edge
tracing” in this sample-space context; it has no
relation to the “edge tracing algorithm” of Kim et
al.) In a grid-cell containing a Voronoi vertex, each
heterogeneous grid-side represents one particular
Voronoi edge that exits into the neighboring grid-
cell that shares this grid-side. Starting from each
grid-cell that contains a Voronoi vertex, we trace
the paths of each of its incident Voronoi edges along
a sequence of through-grid-cells connected by grid-
sides with the edge identifier associated with that
Voronoi edge, until reaching another grid-cell also
searching with the same edge identifier.

Figure 9: Voronoi edge topology on bounding cube (sam-
pling density 5*5).

Our algorithm has four stages: preprocessing
2-color grid-cells with particular color patterns
(Section 5.1), tracing “through grid-cells” on the
bounding cube (Section 5.2), searching for isolated
Voronoi edges (Section 5.3), and sorting of the
Voronoi edges (Section 5.4).
We now describe the steps in detail.

5.1. Subdivision preprocessing of 2-color grid-cells

There are three possible configurations (and
their inverses) of 2-color grid-cells as shown in
Fig. 10.

(a) (b) (c)

or or

Figure 10: Four topological configurations and the corre-
sponding 2-color grid-cells. For example (c), the color of the
middle sample after subdivision will typically disambiguate
the two cases, unless the subdivision gives rise to another
case (c), in which case we continue subdividing those sub-
grid-cells.

In configurations (a) and (b), there are two het-
erogeneous grid-sides. When tracing the Voronoi
edges, if the edge being traced enters this grid-cell
from one of the heterogeneous grid-sides, it will
exit on the other heterogeneous side to the next
neighboring grid-cell.
When the sampling density is insufficient, we

might have configuration (c). Just as for March-
ing Cubes [19], there is insufficient information to
determine the topology inside this grid-cell. We
use the same uniform subdivision as in Section 3
step 5 to subdivide this grid-cell into four sub-cells,
and get five new colored u-v sample points. If the
four sub-grid-cells are all configuration (a) or (b),
we can determine the Voronoi edge trajectory in-
side them. If any of the sub-grid-cell is still in
configuration (c), we continue subdividing until no
grid-cells have such a configuration, or a maximum
depth of recursion is met.

5.2. Tracing Voronoi edges via “through-grid-
cells”

After preprocessing all the 2-color grid-cells to
configuration (a) and (b), all the grid-cells are
ready for our edge tracing process. For each base
sphere, the search for Voronoi edges is based on

7

(a) Iteration 0 (b) Iteration 3 (c) Iteration 6 (finished)

Figure 11: Topology construction process on a u-v surface (sampling density 12*12); stars indicate the presence of a Voronoi
vertex in the grid-cell. Traces from different vertices are shown with different line styles.

the colors of the u-v sample points on its cor-
responding bounding cube. Our search starts at
each grid-cell containing a Voronoi vertex. Such
grid-cells are at least 3-color grid-cells, which con-
tain multiple heterogeneous grid-sides with differ-
ent edge identifiers (color pairs). Each such color
pair indicates a unique Voronoi edge emanating
from the Voronoi vertex and exiting to the neigh-
boring grid-cell that shares the grid-side with that
edge-identifier (Fig. 11(a)). We trace this edge to
this next (neighboring) grid-cell. We check if this
new grid-cell is a through-grid-cell for the partic-
ular edge we are tracing. If so, we identify the
other (exiting) grid-side with the same edge iden-
tifier as the grid-side through which we entered the
grid-cell, and proceed to the corresponding neigh-
boring grid-cell. We keep tracing the Voronoi edge
to its next grid-cell, and repeat the process above
(Fig. 11(b)). In each iteration, we check if the new
grid-cell is also a “through-grid-cell” of this edge.
If so, we proceed to the neighboring grid-cell shar-
ing the exiting grid-side (with the matching edge
identifier), and mark this grid-cell as “traced” for
this particular edge identifier color pair. In ad-
dition to calculating edge geometry sample points
in each iteration, we take the average of the 3D
space coordinates corresponding to the two sam-
ple points of the exiting grid-side, and using that
average location as our start point, run Newton-
Raphson iteration (similar to Section 3 step 5) to
find a point on the Voronoi edge in actual 3D space.

We trace all unique edges from all Voronoi ver-
tices in parallel. Each trace terminates when either
of the following conditions is met:

1. The next “through-grid-cell” of the edge is
already marked with the same edge identi-
fier, which means it has met up with the
search from the other end of the same edge
(Fig. 11(c)). In this situation, we record the
connectivity between the starting Voronoi ver-
tices corresponding to each path, and com-
bine the 3D sample points we calculated along
the two paths, reversing the order of points
from one trace. Thus we obtain not only
the Voronoi edge topology, but also ordered
sample point locations on the edge geometry.
These points can be used for visualization or
analysis.

2. The next grid-cell is not a “through-grid-cell”
of the edge, and has one or more sample points
at infinity. The existence of sample points at
infinity and the absence of an exiting grid-
side with the corresponding edge identifier in-
dicates that the Voronoi edge we are tracing
goes to infinity. (Fig. 3 shows an example
with sample points at infinity.) In this situ-
ation, we terminate the search, and record the
topology information and 3D point locations
on the edge geometry of this infinite Voronoi
edge. This situation is further discussed in
Section 5.2.2.

It is also very rarely the case that the next grid-
cell is not a “through-grid-cell” of the edge but
doesn’t go to infinity, in which case it needs to
be subdivided to continue tracing the edge, as dis-
cussed in Section 5.2.3.

8

Finally, we gather all the information from each
base sphere. Each Voronoi edge occurs in the
Voronoi cell of at least three base spheres (three for
general position, more for non-general position).
The 3D point locations on the edge geometry will
be different for each base sphere’s representation
of the same Voronoi edge. Because the choice of
3D points do not affect the accuracy of topology
construction, we randomly keep one group of 3D
point locations for each Voronoi edge.
Some special conditions may bring more com-

plexity into our tracing process. Although the
algorithm we described above is able to handle
them, some implementation details should be em-
phasized. We discuss such conditions below.

5.2.1. Non-uniform grid-cells

Because of the generation of sub-grid-cells from
the subdividing operation (e.g. Section 3 step 5)
and/or from shooting new rays towards matched
vertices from base spheres that did not initially find
them (Section 4.1), sometimes we do not have uni-
form grid-cells on the parametric bounding cube.
Fig. 12(a) shows an example of non-uniform grid-
cells on a parametric face that had an original sam-
pling density of 2 by 2 cells and had subsequent
sub-grid-cells added by both of these operations.

(b)(a)

Figure 12: Edge topology construction process of a non-
general u-v parametric face (a) with an original sampling
density 3 by 3. A star indicates the presence of a Voronoi
vertex in the grid-cell. (b) The resulting edge trace topology
from the Voronoi vertices is shown with bold lines.

In the edge tracing process, just like with uni-
form grid-cells, we check if the exiting grid-side
(with corresponding edge identifier) exists among
all the grid-sides in this non-uniform grid-cells.
If it does, we continue tracing to the next cor-
responding grid-cell, otherwise we subdivide this
grid-cell and continue the trace through the new
generated sub-grid-cells (details in Section 5.2.3).

The updating process in Section 4.2 still applies to
obtain the neighboring/grid-side information and
construct the edge topology on non-uniform grid-
cells (Fig. 12(b)).
It is necessary to be aware, as described in

Section 4.2, that on these non-uniform bounding
cubes, some grid-cells would have more than 4
neighboring grid-cells. When the initial sampling
density is too low, more non-uniform grid-cells will
be generated. Grid-cells may even have tens of
neighbors. Such poor uniformity would damage
the efficiency of our parallel algorithm, so choosing
an appropriate initial sampling density is impor-
tant in the implementation. We will discuss this
more in Section 6.

5.2.2. Infinite sample points

Voronoi edges do not always terminate at
Voronoi vertices. Some Voronoi edges extend to
infinity, on one or both ends. We call such Voronoi
edges infinite edges.
During our edge tracing process, if the current

grid-cell does not have an exiting grid-side with
corresponding edge identifier, and has at least one
corner sample point at infinity, this Voronoi edge
extends to infinity in 3D space. In this situation,
we will record that this edge extends to infinity and
stop the search.
If a grid-cell contains a sample point at infin-

ity, but still has matched entering and exiting grid-
sides, we should continue tracing the Voronoi edge
through the grid-cell neighboring at the exiting
grid-side (Fig. 13).

(a) (b)

Figure 13: (a) The tracing path in a grid-cell containing
an infinite sample point at infinity and a new grid-side to
update. (b) The actual color pattern inside the grid-cell
(grey represents infinity).

5.2.3. Additional subdivision for topological disam-
biguation

During the edge tracing process, the trace
might enter a grid-cell that doesn’t have a clearly
matched exiting grid-side, yet has no sample points

9

at infinity. This situation happens when the sam-
pling density is insufficient. There are two cases:
the grid-cell has (1) no other grid-sides with the
corresponding edge identifier; or (2) multiple grid-
sides with the corresponding edge identifier.

An example of the first case is shown in
Fig. 14(a), where the target Voronoi edge is close
to another edge but not intersecting with it. In
this example, if we are tracing the upper Voronoi
edge from the right to the left, the edge enters grid-
cell 1 from its right grid-side e. Since there are no
other grid-sides with the red-blue edge identifier,
grid-cell 1 is not a “through-grid-cell”; we need a
greater local sampling density in grid-cell 1 to con-
tinue tracking this Voronoi edge.

The Voronoi edge we
are tracing

Grid-cell 1Grid-cell 2Grid-cell 3Grid-cell 4

Grid-cell 1Grid-cell 2Grid-cell 3Grid-cell 4

(a)

(b)

②

③

④

①

e

𝒆𝟏

𝒆𝟐

Grid-cell 1Grid-cell 2Grid-cell 3Grid-cell 4

(c)

②

③

④

①

Grid-cell 1Grid-cell 2Grid-cell 3Grid-cell 4

(d)

Figure 14: The subdivision operation on grid-cells that are
neither “through-grid-cells” nor contain sample points at
infinity.

In this situation, we subdivide the current grid-
cell, then continue tracing on the appropriate new
sub-grid-cells by checking the color identifier over
the two new sub-grid-sides generated from the pre-
vious entering grid-side. In Fig. 14(b), we subdi-
vide grid-cell 1, then continue tracing on sub-grid-
cell (1) at a new entering grid-side e1. The same
situation occurs when the trace enters grid-cell 2
and grid-cell 3; we repeat the subdivision process,
iteratively subdividing the two grid-cells when the
trace enters each of them, and get the edge path
as shown in Fig. 14(c). If necessary, we repeat

the subdivision process until all the grid-cells along
this trace are “through-grid-cells,” or a maximum
depth of subdivision is reached.

At the maximum recursion depth, if we still can-
not distinguish their respective paths, we treat
the edges as coincident in this neighborhood. In
Fig. 14(d), assume all the grid-cells are already at
max recursion depth. When tracing to grid-cell
1, no other grid-sides match either of the blue-
red or blue-yellow edge identifiers corresponding to
the two entering traces. Under the local sampling
density at the maximum recursion depth, the two
edges are still too close to each other, with no sam-
ple point of the color (blue) detected on the exiting
grid-side (the left grid-side of grid-cell 1). In this
case, we treat the two edges as coincident in the
neighborhood of grid-cell 1, and trace the exiting
yellow-red-(blue) “super edge.” We keep tracing
this super-edge by the yellow-red edge identifier,
until the edge identifiers of both the two individ-
ual edges (blue-red and blue-yellow) re-occur (in
grid-cell 4). We then continue each of the individ-
ual traces of those two edges.

An example of the second case that requires dis-
ambiguation, where the grid-cell has multiple pos-
sible exiting grid-sides with the same edge iden-
tifier, is shown in Fig. 15. We subdivide such
grid-cells with the same process as the first case,
unless it is a 2-color grid-cell in configuration (c)
(Fig. 10(c)), and already met the maximum depth
of recursion (Section 5.1). To disambiguate the
true layout in that case, we will compare the edge
topology result from two possible layouts to the
results from the other Voronoi cells that share the
edge (Section 5.4).

5.2.4. Case of u-v deviation

Under insufficient sampling density, there might
be two or more Voronoi edges entering a grid-cell
through different grid-sides and exiting through
the same grid-side, without intersecting with each
other inside this grid-cell. In such situations, the
grid-cell might be 3-color but has no Voronoi ver-
tices located in its corresponding 3D space neigh-
borhood. An example is shown in Fig. 16(a), where
two Voronoi edges enter grid-cell 2 through dif-
ferent grid-sides (the top and the right grid-sides)
and both exit through the same grid-side (the left
grid-side). It is a 3-color grid-cell, but the corre-

10

(a)

(b)

𝒆𝟏

𝒆𝟐

𝒆𝟑

𝒆𝟒

Figure 15: An example of a grid-cell that has more than
two grid-sides with the same red-blue identifier: (a) When
the edge tracing enters the middle grid-cell by any of the
grid-side e1, e2, e3, or e4, it will have three other grid-sides
with the same (red-blue) edge identifier; (b) the result of the
edge tracing process after the middle grid-cell is subdivided.

sponding vertex geometry is not within its u-v sub-
domain. If we were to shoot a ray directly to this
Voronoi vertex, it would be in the u-v sub-domain
of grid-cell 1. However, because of missing the red
color, grid-cell 1 only has two colors, indicating no
existence of Voronoi vertices in the corresponding
3D space.

(a)

(b)

Actual vertex location
on the u-v domain

Vertex u-v location
found by the algorithm

①

②

②

①

Figure 16: (a) The actual vertex and edge location in the
u-v domain. (b) The calculated vertex and edge location in
the u-v domain by our algorithm.

We call this situation a “u-v deviation,” because
instead of being located in the u-v sub-domain of
a ray to the actual Voronoi vertex geometry (grid-
cell 1), the vertex location “deviates” to a nearby
3-color grid-cell with the correct color codes corre-

sponding to this Voronoi vertex.
Although we may have such “u-v deviations,”

the 3D space geometry and topology information
for such Voronoi vertices are still obtained cor-
rectly. Our 3D space geometry calculation is based
on the bisector equations among the generating
spheres (Section 3 step 5). With the same base
sphere and 3-color pattern, starting from a dif-
ferent grid-cell around the true u-v location only
means an offset of the iteration start point; the
numerical iteration still finds the correct 3D ge-
ometry of the vertex. For the topology, as shown
in Fig. 16(b), the Voronoi edges correctly connect
to the corresponding 3-color grid-cell, even though
the grid-cell containing the actual u-v location of
the ray to the vertex is the neighboring grid-cell
(1).
In degenerate cases, if a Voronoi vertex is shared

by more than three Voronoi edges, multiple corre-
sponding 3-color grid-cells for the vertex locations
will typically exist. In Fig. 17(a), a Voronoi vertex
is shared by six Voronoi edges. In the u-v domain,
there exists four 3-color grid-cells containing ver-
tices (Fig. 17(b)). In the Voronoi vertex sorting
process (Section 3 step 6), we will determine that
these four vertex locations correspond to the same
Voronoi vertex because all the calculated vertices
have the same 3D space coordinates.

(a)
①

②

③

(b)

Figure 17: A high-order Voronoi vertex shared by six
Voronoi edges: (a) The actual vertex and edge location on
the u-v domain. (b) The calculated vertex and edge location
on the u-v domain by our algorithm.

In our edge tracing process, connecting to any of
these four 3-color grid-cells is treated as connect-
ing to this particular Voronoi vertex. The zero-
length “Voronoi edges” between Voronoi vertices
in 3-color grid-cells corresponding to the same ac-
tual Voronoi vertex, allow them to be merged when
calculating edge topology. As seen in Fig. 17, “u-v
deviation” is what allows us to handle such high-

11

Grid cells which
detect infinity
topology information

(a) (c)(b)

Figure 18: An example of inputs generating infinite isolated Voronoi edges (grey represents infinity).

order Voronoi vertices. Under non-general position
input, a Voronoi vertex may deviate to multiple
corresponding grid-cells on the parametric bound-
ing box, extending the ability of our algorithm to
detect the vertex’s connectivity with more than
four Voronoi edges (even though a non-subdivided
grid-cell can at most detect four Voronoi edges
through its four grid-sides).

5.3. Detecting isolated Voronoi edges

After the edge tracing process described in Sec-
tion 5.2, we will have constructed the topology of
all the Voronoi edges that connect Voronoi vertices.
However, not all Voronoi edges are connected

with Voronoi vertices. Two types of isolated
Voronoi edges are disconnected from any of the
Voronoi vertices, and we cannot find them from
our general edge tracing process. They are:

1. Infinite Voronoi edges with both ends extend-
ing to infinity. An example of this situation is
shown in Fig. 18, in which five spheres have
their center on the same plane. If we look at
the white sphere’s parametric bounding cube
(Fig. 18(c)), there are four Voronoi edges with
both of their ends corresponding to grid-cells
with infinite sample points.

2. Self-connected Voronoi edges. As shown in
Fig. 1(a), this ring-like Voronoi edge does not
have any actual endpoints.

In (Section 5.2), starting from each of the
Voronoi vertices, we marked all the “through-grid-
cells” with corresponding edge identifiers along
each tracing path. After the tracing process, we
check if each “through-grid-cell” has been marked
for each distinct edge identifier of all its grid-sides.
If a “through-grid-cell” is unmarked for any of its
edge identifiers, this “through-grid-cell” is related

to an isolated Voronoi edge corresponding to the
unmarked edge identifier.
We collect all such unmarked through-grid-cells.

First we sort them into different groups by their un-
marked edge identifiers. If an unmarked “through-
grid-cell” has multiple edge identifiers, each edge
identifier represents a particular isolated edge; it
will be put in all the corresponding groups. For
each group, we randomly choose one of its grid-
cells as our starting grid-cell, and start tracing
the paths of the edge through the two grid-sides
corresponding to the two edge identifier colors of
this through-grid-cell. In each trace, we repeat the
same iteration process as for edge tracing (Section
4.1). For the search for each isolated edge, if the
two traces both stop at grid-cells indicating infin-
ity (Section 5.2.2), the Voronoi edge is an infinite
Voronoi edge with both ends extending to infinity.
If the two traces meet each other, the Voronoi edge
is a self-connected edge.

5.4. Sorting of the Voronoi edges

After calculating all the Voronoi edges (includ-
ing Voronoi edges connected with vertices or iso-
lated Voronoi edges) from each Voronoi cell (base
sphere), we combine the edge information of each
individual Voronoi cell to form the whole Voronoi
diagram by sorting and merging the Voronoi edges
detected for each base sphere’s Voronoi cell.
A Voronoi edge has at least three contribut-

ing spheres (three for general position and four
or more for non-general position), so it will have
at least three “edge uses” in the Voronoi cells for
those spheres. Each Voronoi edge use has its own
2-color edge identifier, and one color code corre-
sponding to the base sphere of its Voronoi cell.
We call this unique Voronoi cell related color code
the “cell identifier” of this Voronoi edge use. The

12

color triplet, indicates the three contributing input
spheres of the corresponding Voronoi edge.
We sort all the Voronoi edge uses by these

corresponding color triplets and the Voronoi ver-
tices they connect (typically two, but special cases
of self-connected Voronoi edges with zero or one
Voronoi vertices may exist). For each sorting
group with the same color triplet and correspond-
ing Voronoi vertices, if there are three Voronoi edge
uses in the group and each of them has a different
cell identifier, the particular Voronoi edge corre-
sponding to this group exists between the corre-
sponding Voronoi vertices (or infinities), and can
be found in all of its corresponding Voronoi cells.
A rare case occurs when two Voronoi edges exist
between the same corresponding pair of Voronoi
vertices, and both of them were found in the same
corresponding Voronoi cells (Fig. 19). In this case,
six Voronoi edge uses are in one sorting group, and
correspond to two distinct Voronoi edges.

𝑒1

𝑒2

𝑣1 𝑣2

Figure 19: An example of two Voronoi edges (e1 and e2)
sharing the same three contributing spheres (the green,
cyan, and red spheres) and two Voronoi vertices (v1 and
v2) they connect.

By this sorting process, we are able to find all
the general-position Voronoi edges, self-connected
Voronoi edges, and infinite Voronoi edges in the
Voronoi diagram. However, “high-order” Voronoi
edges shared by more than three cells will remain
unmatched, requiring a second round of sorting.
For any of the Voronoi edge uses not satisfying

the conditions in the first sort, we pick one Voronoi
edge use and its color triplet as the first member in
its group. Starting from this triplet, we iteratively
search the remaining unmatched Voronoi edge uses
for those where two of the three colors in the triplet
match any member triplet colors in the group and
have the same corresponding Voronoi vertices to
all the members, adding the corresponding Voronoi

edge use as a new member in this group if so. After
the search for the first group, we repeat this pro-
cess for any remaining un-grouped Voronoi edge
uses, until all of them are grouped. In each group,
if the number of different colors equals to the num-
ber of Voronoi edge uses, and each of them has
a different cell identifier, the particular high-order
Voronoi edge corresponding to this group exists be-
tween the corresponding Voronoi vertices (or infini-
ties), and can be found in all of its corresponding
Voronoi cells.
After this second round of sorting, the only

unmatched Voronoi edge uses should correspond
to ambiguous grid-cells at maximum subdivision
depth (Section 5.2.3). Such grid-cells had two pos-
sibilities, only one of them is a true Voronoi edge.
For such a pair of Voronoi edge uses correspond-
ing to the same ambiguous grid-cell, if only one of
them matches with unmatched Voronoi edge uses
from other Voronoi cells and can be grouped with
them in a consistent Voronoi edge, we are done
and stop considering the other possibility. If nei-
ther can be grouped consistently, additional subdi-
vision is needed to disambiguate the corresponding
grid-cell.
After these two rounds of sorting, all the Voronoi

edge uses should be grouped into corresponding
Voronoi edges in the Voronoi diagram; otherwise
we restart the algorithm, increasing the initial sam-
pling density and the maximum recursion depth.
Similarly, during the edge-tracing process, if the
maximum depth of recursion is met in any step
(Section 4.1, 5.1, or 5.2.3), we restart the algo-
rithm with a higher initial sampling density and
maximum recursion depth.

6. GPU framework

Most steps of our algorithm are implemented on
the GPU (Fig. 20) using CUDA programming to
exploit data parallelism. For example, in the edge
detecting step, for all paths we trace (starting from
all the vertices on all u-v bounding cubes), we use
the same operation that iteratively finds neighbor-
ing grid-cells sharing the same heterogeneous grid-
side. In CUDA, each unit of data is processed on
one GPU thread. The method/function being exe-
cuted by all the GPU threads in parallel is called a
kernel. Table 1 summarizes the kernel and thread
information of each step performed on the GPU.

13

Table 1: Thread and kernel information for all steps performed on the GPU. Colors correspond to the timing breakdown
of geometry/topology in Fig. 21.

Step Per Thread Kernel

Calculate Bisectors
Each input
sphere

Calculates all the bisectors between each sphere and all
other input spheres (Section 3 Step 1)

Sample Rays
Each ray Samples the rays from all input spheres (Section 3 Step

2)

Take Lower Envelopes
Each ray Calculates the intersections between each ray and all bi-

sectors, keeping the intersection point with minimum ray
distance (Section 3 Step 3)

Calculate Vertices
Each grid-cell Finds the grid-cells containing Voronoi vertices and cal-

culate the vertices by numerical iteration (Section 3 Step
4 and 5)

Preprocess 2-color
Grid-cells

Each grid-cell Checks if the grid-cell is 2-color and in configuration (c),
and subdivides such grid-cells to configuration (a) and
(b) (Section 5.1 Fig. 10)

Detect Edges
Each trace Starting from each grid-cell containing a Voronoi vertex,

for each edge identifier in such grid-cells, the kernel traces
the corresponding Voronoi edge via “through-grid-cells”
(Section 5.2)

Detect Isolated Edges
Each trace Starting from a random member of each group of un-

marked “through-grid-cells” with the same edge identi-
fier, the kernel traces the corresponding isolated Voronoi
edge (Sections 5.2 & 5.3)

14

Face Sample
Geometry

Sample Rays

Calculate Bisectors

Take Lower
Envelope

Calculate Vertices Sort Vertices

Iteratively Search
Unmatched Vertices

Preprocess 2-
color Grid-cells

Detect Voronoi
Edges

Detect Isolated
Edges

Input Spheres

Vertex
Geometry

Edge Topology & Edge
Sample Geometry

On the
GPU

On the
CPU

Input

On the
GPU

Output

On the
CPU

Figure 20: The GPU Framework.

7. Results

Our algorithm to compute the whole Voronoi di-
agram (geometry and topology) was run on a PC
with an Intel® Core™ Processor i7-9700K CPU
with 16GB RAM and an NVIDIA GeForce GTX
1080 Ti graphics card. To test our ability to handle
large real-world inputs, we implemented our algo-
rithm on protein structures from the protein data
bank [20], where protein molecule structures are
represented as combinations of atom spheres with
different radii.
In the implementation of our algorithm, the se-

lection of appropriate sampling density (the num-
ber of u-v samples on each face of bounding cubes)
is important for obtaining good parallelism. If the
sampling density is too low, we will not obtain
enough information to find Voronoi vertices, and
then in the calculating vertices step, we will need
to subdivide many grid-cells and reconstruct their
neighboring information. Subdivisions will damage
the uniformity of the grid-cells, reducing data par-
allelism, and decreasing the efficiency of our algo-
rithm. On the other hand, if the sampling density
is too high, we obtain too many sample points that
are unnecessary for finding Voronoi vertices and
edges (such as sample points on 1-color grid-cells).
To illustrate this trade off, we ran our algorithm on
protein “1crn-PDB” with 327 input spheres and
different sampling densities. Table 2 shows how
the total number of grid-cells increases along with
the increase of sampling density, but the number of
subdivision operations decreases. Total number of
grid-cells includes original grid-cells and sub-grid-
cells generated by subdivision and targeted search.

Fig. 21 shows how the running time varies with
sampling density for the same input. Among all
the proteins tested, sampling density in the range
40*40 to 50*50 provides the lowest total running
time. When the sampling density is lower than
40*40, the steps up to and including calculating
vertices (steps of geometry calculation on GPU)
take an extremely long time because of the lack of
parallelism in the subdivision operation. When the
sampling density is higher than 50*50, the paral-
lelism of our algorithm is excellent but the increas-
ing number of unnecessary sample points hurts the
running time.

Table 2: Number of subdivisions and deepest level of sub-
division with different sampling densities, for protein 1crn-
PDB with 327 input atoms. Total number of grid-cells
includes original grid-cells and sub-grid-cells generated by
subdivision and targeted search.

Sam-
pling

Density

of
Subdivi-

sion
Opera-
tions

Total #
of Grid-
cells

Deepest
Level of
Subdivi-

sion

1*1 4,237 15,046 8th

10*10 405 197,945 5th

20*20 195 785,660 4th

40*40 81 3,139,584 3rd

80*80 23 12,556,922 2nd

160*160 3 50,227,212 1st

320*320 0 200,908,800 N/A

15

On other protein models we tested containing
217 to 4195 spheres, the running times also indi-
cated that sampling densities from 40*40 to 50*50
were the most efficient (lowest overall running
time).
The total computation time of our algorithm

under different input sizes is shown in Fig. 22.
When the sampling density is lower (e.g. 10*10
here), the computational efficiency is inherently
dependent on the geometric distribution of the in-
put spheres, which determines the data parallelism
(number of subdivision operations) of our algo-
rithm. When the sampling density obviates most
subdivision (usually more than 40*40), the com-
putation time increases roughly linearly with the
number of input atoms (spheres).
To test our ability to handle non-general position

inputs, we designed example inputs in three non-
general situations: self-connected Voronoi edges,
infinite Voronoi edges with both ends extending to
infinity, and high order Voronoi vertices or edges.
Our algorithm successfully handled all the non-
general situations; one result from each of situation
is shown in Fig. 1.

0

1

2

3

4

5

6

7

10*10 20*20 30*30 40*40 50*50 60*60 70*70 80*80 90*90 100*100

R
u

n
n

in
g

ti
m

e
in

 s
ec

o
n

d
s

Sampling rate in u*v

Running time in different sampling rates
(protein 1crn, 327 atoms)

Geometry calculation on GPU Topology calculation on GPU

CPU calculations Total running time

Figure 21: Running time vs. sampling rate, protein 1crn-
PDB with 327 atoms.

For the verification of our experimental results,
we implemented a naive brute-force algorithm for
detecting all Voronoi vertices, to serve as ground
truth. The algorithm is based on the fact that a
Voronoi vertex always corresponds to a sphere that
is tangent to all of its (four or more) contributing
spheres, and does not intersect or contain any other
input sphere.
Therefore, for each combination of four spheres

from the input, we calculate their tangent sphere

217 642 2161 4195

Input size (spheres/atoms)

0

10

20

30

40

50

60

70

80

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Sampling density 10*10

Sampling density 40*40

Sampling density 70*70

Sampling density 100*100

Figure 22: Computation time at different sampling densi-
ties on protein models: (1) “1al1-PQR” with 217 atoms;
(2)“1crn-PDB” with 327 atoms; (3)“1crn-PQR” with 642
atoms; (4)“1bh8-PQR” with 2161 atoms; and (5)“1JD0-
PDB” with 4195 atoms.

using the algorithm described by Gavrilova and
Rokne [21], and check if the resulting tangent
sphere intersects (tangent not included) or contains
any of the other input spheres. If not, the center
of this tangent sphere is a Voronoi vertex. We ex-
haustively make this check for all the four-sphere
combinations and gather the information of all the
calculated Voronoi vertices.
In our experiments, all of the results produced

by our algorithm matched the results from this
brute-force algorithm. Furthermore, in all cases,
including large-size inputs from the protein data
bank (the five shown in Fig. 22 and ten other ran-
domly selected proteins) and the non-general posi-
tion cases, the Voronoi edge calculation is consis-
tent among all the Voronoi cells (meaning there are
no unmatched Voronoi edge uses after two rounds
of sorting). Futhermore, the same output Voronoi
diagram vertices and edge topology is produced for
all sample densities that we tested, even with the
coarsest possible initial 1x1 sampling (just the 8
corners of each bounding cube). In the tests, we
set the maximum subdivision depth to 10, and this
bound was never met (Table 2); in other words,
less than 10 levels of subdivision was fine enough
to trace all the Voronoi edges.

8. Conclusion

We have presented an algorithm to construct
edge topology for Voronoi diagrams of spheres in
R3. It successfully handles input spheres in both
general and non-general position, including self-
connected Voronoi edges, infinite Voronoi edges,

16

and high-order position inputs. We design a GPU
framework to exploit data parallelism, and find the
approximate range of sampling densities to maxi-
mize the efficiency of our algorithm. Under suffi-
cient sampling densities, the total calculation time
of the Voronoi diagram for large inputs is roughly
in a linear relationship with the number of the in-
put spheres.

Acknowledgements

We gratefully acknowledge support from Na-
tional Science Foundation grant 1331352, Zhongyin
Hu for the development of the codebase described
in our prior paper, and suggestions from the anony-
mous reviewers.

References

[1] F. M. Richards, The interpretation of protein struc-
tures: total volume, group volume distributions and
packing density, J of Molecular Biology 82 (1) (1974)
1–14.

[2] V. Voloshin, S. Beaufils, N. Medvedev, Void space anal-
ysis of the structure of liquids, J of Molecular Liquids
96 (2002) 101–112.

[3] M. Gavrilova, Proximity and applications in general
metrics, Ph.D. thesis, University of Calgary (1998).

[4] H.-M. Will, Computation of additively weighted
Voronoi cells for applications in molecular biology,
Ph.D. thesis, ETH Zurich (1999).

[5] J.-D. Boissonnat, M. I. Karavelas, On the combinato-
rial complexity of Euclidean Voronoi cells and convex
hulls of d-dimensional spheres, in: SODA‘03, SIAM,
2003, pp. 305–312.

[6] D.-S. Kim, Y. Cho, D. Kim, Euclidean Voronoi dia-
gram of 3D balls and its computation via tracing edges,
Computer-Aided Design 37 (13) (2005) 1412–1424.

[7] D.-S. Kim, D. Kim, Y. Cho, K. Sugihara, Quasi-
triangulation and interworld data structure in three di-
mensions, Computer-Aided Design 38 (7) (2006) 808–
819.

[8] D.-S. Kim, Y. Cho, K. Sugihara, Quasi-worlds and
quasi-operators on quasi-triangulations, Computer-
Aided Design 42 (10) (2010) 874–888.

[9] D.-S. Kim, J. Ryu, H. Shin, Y. Cho, Beta-
decomposition for the volume and area of the union
of three-dimensional balls and their offsets, J of Com-
putational Chemistry 33 (13) (2012) 1252–1273.

[10] D.-S. Kim, C.-M. Kim, C.-I. Won, J.-K. Kim, J. Ryu,
Y. Cho, C. Lee, J. Bhak, BetaDock: shape-priority
docking method based on beta-complex, J of Biomolec-
ular Structure and Dynamics 29 (1) (2011) 219–242.

[11] N. N. Medvedev, V. Voloshin, V. Luchnikov, M. L.
Gavrilova, An algorithm for three-dimensional Voronoi
S-network, J of Computational Chemistry 27 (14)
(2006) 1676–1692.

[12] M. Manak, I. Kolingerova, Extension of the edge trac-
ing algorithm to disconnected Voronoi skeletons, In-
formation Processing Letters 116 (2) (2016) 85–92.

[13] Z. Hu, X. Li, A. Krishnamurthy, I. Hanniel, S. Mc-
Mains, Voronoi cells of non-general position spheres
using the GPU, Computer-Aided Design and Applica-
tions 14 (5) (2017) 572–581.

[14] I. Hanniel, R. Muthuganapathy, G. Elber, M.-S. Kim,
Precise Voronoi cell extraction of free-form rational
planar closed curves, in: Proc of the 2005 ACM symp
on solid and physical modeling, ACM, 2005, pp. 51–59.

[15] J.-K. Seong, E. Cohen, G. Elber, Voronoi diagram
computations for planar NURBS curves, in: Proc of
the 2008 ACM symp on Solid and physical modeling,
ACM, 2008, pp. 67–77.

[16] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, T. Cul-
ver, Fast computation of generalized Voronoi diagrams
using graphics hardware, in: Proc of the 26th annual
conference on computer graphics and interactive tech-
niques, 1999, pp. 277–286.

[17] I. Hanniel, G. Elber, Computing the Voronoi cells of
planes, spheres and cylinders in R3, CAGD 26 (6)
(2009) 695–710.

[18] G. Elber, M.-S. Kim, Computing rational bisectors,
IEEE Computer Graphics and Applications 19 (6)
(1999) 76–81.

[19] W. E. Lorensen, H. E. Cline, Marching cubes: A high
resolution 3D surface construction algorithm, in: ACM
SIGGRAPH, Vol. 21, ACM, 1987, pp. 163–169.

[20] The RCSB Protein Data Bank, http://www.rcsb.

org/pdb/home/home.do (Accessed: 2015-12-14).
[21] M. L. Gavrilova, J. Rokne, Updating the topology of

the dynamic Voronoi diagram for spheres in Euclidean
d-dimensional space, CAGD 20 (4) (2003) 231–242.

17

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

	Introduction and prior work
	Terminology and definitions
	Prior algorithm to calculate Voronoi vertices
	Updates in the construction of geometry information
	Iterative search for incompletely matched vertices
	Create neighboring information of grid-cells

	Construction of edge topology information
	Subdivision preprocessing of 2-color grid-cells
	Tracing Voronoi edges via ``through-grid-cells''
	Non-uniform grid-cells
	Infinite sample points
	Additional subdivision for topological disambiguation
	Case of u-v deviation

	Detecting isolated Voronoi edges
	Sorting of the Voronoi edges

	GPU framework
	Results
	Conclusion

