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ABSTRACT OF THE DISSERTATION

Topics in Clustering: Feature Selection and Semiparametric Modeling

by

Xiao Pu

Doctor of Philosophy in Mathematics with a Specialization in Statistics

University of California San Diego, 2017

Professor Ery Arias-Castro, Chair

The first part of this thesis is concerned with Sparse Clustering, which assumes

that a potentially large set of features are associated with clustering observations

but the true underlying clusters differ only with respect to some of the features.

We propose two approaches for this purpose, both of which allow us to group the

observations using only a carefully-chosen subset of the features. The first ap-

proach assumes that the data are generated from Gaussian mixture models in high

dimensions and the difference between mean vectors of the Gaussian components is

sparse. Enlightened by the connection between sparse principal component analy-

sis (SPCA) and sparse clustering, we adapted multiple estimation strategies from

SPCA to perform sparse clustering. We provide theoretical guarantee of the ag-

gregated estimator and develop an iterative algorithm to uncover the important

feature set in sparse clustering. The second one is a hill-climbing approach, which

alternates between selecting the s most important features (that correspond to the

s smallest within-cluster dissimilarities) and clustering observations based on the

selected feature subset. This approach has been shown to be competitive with

existing methods in literature on simulated and real-world datasets.

xii



In the second part of the thesis, we consider a semiparametric approach to

clustering and develop related theory. We first consider the problem of fitting a

mixture model under the assumption that the mixture components are symmet-

ric and log-concave. We study the nonparametric maximum likelihood estimation

(NPMLE) of a monotone and log-concave probability density (which we do as part

of our algorithm), and derive some results in terms of existence, uniqueness and

uniform consistency of the MLE. To fit the mixture model, we propose a semi-

parametric EM (SEM) algorithm, which can be adapted to other semiparametric

mixture models. We then consider mixture modeling in high dimensions using

radial (or elliptical) distributions. In the process of working on this problem, we

uncovered a difficulty in estimating the densities. We found that the i.i.d. d-

dimensional data points sampled from a rotationally invariant distribution F with

density f(x) = g(‖x‖), are highly concentrated on the sphere of a d-dimensional

ball as d → ∞. This extends the well-known behavior of the normal distribution

(its concentration around the sphere of radius square-root of the dimension) to

other radial densities. We establish a form of concentration of measure, and even

a convergence in distribution, under additional assumptions. We draw some possi-

ble consequences for statistical modeling in high-dimensions, including a possible

universality property of Gaussian Mixtures.

xiii



Chapter 1

Introduction

Clustering objects (observations, events) into similar clusters is an important

practical problem in a wide variety of fields, including statistics, physics, bioinfor-

matics, artificial intelligence, and data mining. The definition of what constitutes

a cluster is not precisely defined, therefore there are so many clustering algorithms

(Estivill-Castro, 2002). In general, they can be classified into two categories: hi-

erarchical methods and partition methods. Hierarchical clustering typically starts

from a proximity matrix that captures differences between the objects to be clus-

tered and produces a nested sequence of partitions, with a single, all-inclusive

cluster at the top and singleton clusters of individual objects at the bottom. In

contrast, partition algorithms usually produce non-overlapping clusters having no

hierarchical relationships between them. The partitioned clusters are typically rep-

resented by a central vector and objects are assigned to the nearest cluster center.

The popular K-means algorithm (MacQueen, 1967) and its variants are members

of this class. A statistically motivated partition method is model-based clustering,

which models the data as a sample from a mixture distribution (not necessarily

Gaussian), with each component corresponding to a cluster.

With the recent advent of technologies, good clustering algorithms are very

much desired for analyzing high-dimensional data where the number of variables

is considerably larger than the number of objects. For supervised learning, when

we are in the high-dimensional setting, we often assume that only a small subset of

the original features are relevant, and a carefully-chosen subset of the features will

1
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usually lead to better performance. Feature selection has been studied extensively

in the literature for regression and classification problems (Akaike, 1974; Candes

and Tao, 2007; Fan and Li, 2001; Mallows, 1973; Tibshirani, 1996; Zou and Hastie,

2005), but in the context of clustering it is still at a comparatively infant stage of

development. Nevertheless, it has started receiving increased attention recently,

and in Section 2.1 we review some of the main proposals in the literature. In

Chapter 3 and Chapter 4, we propose two different approaches for feature selection

in clustering.

The approach proposed in Chapter 3 is motivated from recent development

in the computation of the sparse principal component for the spiked covariance

matrix proposed by Johnstone and Lu (2009). The simplest variant of the spiked

covariance model assumes that X1, · · · , Xn
iid∼ N (0,Σ), with

Σ = λθθ′ + Ip, λ ≥ 0. (1.1)

Or equivalently,

Xi =
√
λuiθ + Zi and Σ = λθθ′ + Ip, 1 ≤ i ≤ n, (1.2)

where θ is a fixed vector of norm 1, ui
iid∼ N (0, 1), Zi

iid∼ N (0, Ip), and the u’s and

Z’s are independent. Under the spiked covariance model, Johnstone and Lu (2009)

proved that when p is comparable or dominates n, standard PCA is not consistent.

This finding motivates the `0 sparse PCA problem defined as follows,

L0(Σ̂) = arg max
‖θ‖2=1,‖θ‖0≤s

θ′Σ̂θ, (1.3)

where Σ̂ is the empirical covariance matrix. `0 sparse PCA seeks to find s-sparse

linear combinations of the variables that explain the most variance in the data (we

say that a vector is s-sparse if it has at most s nonzero entries). Notice that this

problem is combinatorially difficult and NP-hard. Cai et al. (2013) and Vu and

Lei (2012) study this problem and independently establish the optimal rates for

the estimation of θ, as well as the principal subspace. Several efficient algorithms

such as diagonal thresholding (Johnstone and Lu, 2009), covariance thresholding

(Krauthgamer et al., 2015) and semidefinite relaxation (d’Aspremont et al., 2007)
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have been proposed to solve this problem. In Chapter 3, we establish the con-

nection between sparse PCA and sparse clustering, and adapt multiple estimation

strategies from sparse PCA to perform sparse clustering. We provide theoreti-

cal guarantees of the aggregated estimator and develop an iterative algorithm to

uncover the important feature set in sparse clustering.

The approach presented in Chapter 4, sparse alternate sum (SAS) clustering, is

a hill-climbing one in nature. It alternates between selecting s important features

that correspond to the s smallest within-cluster dissimilarities and clustering ob-

servations based on the selected feature subset. This method is simple and can be

cooperated with any partition clustering algorithm that applies to dissimilarities

(for example, K-medoids, K-means or a spectral method). We performed a number

of numerical experiments, both on simulated data and on real (microarray) data

to compare this approach with other sparse clustering algorithms introduced in

Section 2.1. The experiments show that our SAS clustering is competitive with

these methods.

While K-means and hierarchical algorithms are largely heuristic and not based

on formal models, model-based clustering offers a principled alternative. It pro-

vides a framework for incorporating our knowledge about a domain and assigns

the observations to clusters via the mixture model

g(x) =
k∑
j=1

πjfj(x),
k∑
j=1

πj = 1, x ∈ Rd, (1.4)

where the pdf’s fj model the conditional density of the data in the jth cluster, see

e.g. (McLachlan and Peel, 2000). Typically one assumes a parametric formulation

fj(x) = f(θ,x) for the component distributions. Depending on what we know

about the underlying distribution of the data, it could be Gaussian or a member

of a different family. The model can be estimated via the EM algorithm. One key

advantage of using a mixture model for clustering is that it provides not only an

assignment of the data to the k components, but also a measure of uncertainty for

the assignment of each observation via the posterior probabilities of component

membership:

τm(Xi) :=
π̂lf̂m(Xi)∑k
j=1 π̂j f̂j(Xi)

, (1.5)
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where π̂j and f̂j(Xi) are the estimators of πj and fj(Xi), respectively. Two disad-

vantages of this approach, as has been pointed out by Chang and Walther (2007),

are that its success depends on the appropriateness of the assumed parametric

model, and that each model requires a different implementation of the EM algo-

rithm based on model-specific theoretical derivations. Therefore, it is desirable to

have an EM-type clustering algorithm with nonparametric or semiparametric dis-

tributions. In Section 2.2, we review some recent developments in the estimation

of nonparametric and semiparametric mixture models. In Chapter 5, we propose a

new algorithm to fit the location-shifted semiparametric mixture model proposed

by Bordes et al. (2006) and Hunter et al. (2007):

g(x) =
k∑
j=1

πjf(x− µj),
k∑
j=1

πj = 1, x ∈ R, (1.6)

where µj ∈ R and f is assumed symmetric (i.e., even, f(x) = f(−x) for all

x ∈ R). We assume that the symmetric mixture components are also log-concave.

To estimate the mixture model, in Section 5.1 we first study the NPMLE of a

monotone and log-concave probability density, and derive some results in terms

of existence, uniqueness and uniform consistency. In Section 5.2, we propose the

semiparametric EM algorithm, which has the desirable monotonicity property of a

true EM algorithm and can be adapted to other semiparametric mixture models.

We compare this method with that of Balabdaoui and Doss (2014) and other

mixture models on both simulated and real-world datasets. Our comparison shows

that our method is competitive when the data are sampled from symmetric log-

concave mixtures, and the loss is small compared with fitting a Gaussian Mixture

Model when the data are indeed from a normal mixture.

Nonparametric approaches to fitting multivariate mixture models can quickly

become difficult in high-dimensions because of the curse of dimensionality. Ad-

ditional assumptions are often needed. The most popular one might well be the

Naive Bayes approach, popular in classification (Lewis, 1998), which presumes that

the variables are independent, or equivalently, that the density is the product of its

marginals. Another possibility is to assume that the density is elliptical, a classical

assumption in multivariate analysis (Anderson, 2003), meaning that f is of the form
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f(x) = |A|g(‖Ax‖), where A is a positive definite matrix. In Chapter 6, we elab-

orate the difficulty we uncovered in estimating high-dimensional radial densities

for mixture models. We find that when estimating radial densities, the sufficient

statistics, the norms of the observations, are highly concentrated as the dimension

d becomes large. In particular, we show a form of concentration of measure, and

convergence in distribution as the dimension d increases.

This thesis interpolates material from three papers by the author and Chair

of the Committee, Ery Arias-Castro. Chapter 4 uses material from (Arias-Castro

and Pu, 2017). Meanwhile, Chapter 5 is based on (Pu and Arias-Castro, 2017).

Finally, Chapter 6 is based on (Arias-Castro and Pu, 2016). Some material from

each of these papers has also been incorporated into this introductory Chapter and

Chapter 2.



Chapter 2

Related works

2.1 Review: Feature Selection in Clustering

The literature on feature selection in clustering is much smaller than that in

regression or classification. Nonetheless, it is substantial and we review some of

the main proposals in this section. We start with several basic definitions used in

sparse clustering.

2.1.1 Notation in Sparse Clustering

Consider a typical setting for clustering n items based on pairwise dissimilari-

ties, with δ(i, j) denoting the dissimilarity between items i, j ∈ [n] := {1, . . . , n}.
For concreteness, we assume that δ(i, j) ≥ 0 and δ(i, i) = 0 for all i, j ∈ [n]. In

principle, if we want to delineate κ clusters, the goal is (for example) to minimize

the average within-cluster dissimilarity. In detail, a clustering into κ groups may be

expressed as an assignment function C : [n] 7→ [κ], meaning that C(i) indexes the

cluster that observation i ∈ [n] is assigned to. Let Cnκ denote the class of clusterings

of n items into κ groups. For C ∈ Cnκ , its average within-cluster dissimilarity is

defined as

∆[C] :=
∑
k∈[κ]

1

|C−1(k)|
∑ ∑
i,j∈C−1(k)

δ(i, j). (2.1)

This dissimilarity coincides with the within-cluster sum of squares commonly used

in k-means type of clustering algorithms, with δ(i, j) = ‖xi − xj‖2. The resulting

6
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optimization problem for clustering is the following:

Given (δ(i, j) : i, j ∈ [n]), minimize ∆[C] over C ∈ Cnκ . (2.2)

This problem is combinatorial and quickly becomes computationally too expensive,

even for small datasets. A number of proposals have been suggested (Hastie et al.,

2009), ranging from hierarchical clustering approaches to K-medoids.

Following in the footsteps of Friedman and Meulman (2004), we consider a

situation where we have at our disposal not 1 but p ≥ 2 measures of pairwise

dissimilarities on the same set of items, with δa(i, j) denoting the a-th dissimilar-

ity between items i, j ∈ [n]. Obviously, these measures of dissimilarity could be

combined into a single measure of dissimilarity, for example,

δ(i, j) =
∑
a

δa(i, j). (2.3)

Our working assumption, however, is that only a few of these measures of dissim-

ilarity are useful for clustering purposes, but we do not know which ones. This is

the setting of sparse clustering, where the number of useful measures is typically

small compared to the whole set of available measures.

We assume henceforth that all dissimilarity measures are equally important (for

example, when we do not have any knowledge a priori on the relative importance

of these measures) and that they all satisfy∑
i,j∈[n]

δa(i, j) = 1, ∀a ∈ [p], (2.4)

which, in practice, can be achieved via normalization, meaning,

δa(i, j)←
δa(i, j)∑
i,j δa(i, j)

. (2.5)

This assumption is important when combining measures in the standard setting

(2.3) and in the sparse setting (2.6) below.

Suppose for now that we know that at most s measures are useful among the

p measures that we are given. For S ⊂ [p], define the S-dissimilarity as

δS(i, j) =
∑
a∈S

δa(i, j), (2.6)
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and the corresponding average within-cluster S-dissimilarity for the cluster assign-

ment C as

∆S[C] :=
∑
k∈[κ]

1

|C−1(k)|
∑ ∑
i,j∈C−1(k)

δS(i, j). (2.7)

If the goal is to delineate κ clusters, then a natural objective is the following:

Given (δa(i, j) : a ∈ [p], i, j ∈ [n]),

minimize ∆S[C] over S ⊂ [p] of size s and over C ∈ Cnκ .
(2.8)

In words, the goal is to find the s measures (which play the role of features in

this context) that lead to the smallest optimal average within-cluster dissimilarity.

The problem stated in (2.8) is at least as hard as the problem stated in (2.2), and

in particular, is computationally intractable even for small item sets.

2.1.2 COSA, sparse K-means and regularized K-means

Friedman and Meulman (2004) propose clustering objects on subsets of at-

tributes (COSA), which (in its simplified form) amounts to the following opti-

mization problem

minimize
∑
k∈[κ]

α(|C−1(k)|)
∑

i,j∈C−1(k)

∑
a∈[p]

(waδa(i, j) + λwa logwa), (2.9)

over any clustering C and any weights w1, . . . , wp ≥ 0 subject to
∑
a∈[p]

wa = 1.

(2.10)

Here α is some function and λ ≥ 0 is a tuning parameter. When α(u) = 1/u, the

objective function can be expressed as∑
a∈[p]

(wa∆a[C] + λwa logwa). (2.11)

When λ = 0, the minimization of (2.11) over (2.10) results in any convex com-

bination of attributes with smallest average within-cluster dissimilarity. If this

smallest dissimilarity is attained by only one attribute, then all weights will con-

centrate on this attribute, with weights 1 for this attribute and 0 for the others.

In general, λ > 0, and the term it multiplies is the negative entropy of the weights
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(wa : a ∈ [p]) seen as a distribution on {1, . . . , p}. This penalty term encourages

the weights to spread out over the attributes. Minimizing over the weights first

leads to
minimize ∆cosa[C] := min

w

∑
a∈[p]

(wa∆a[C] + λwa logwa)

over any clustering C,

(2.12)

where the minimum is over the w’s satisfying (2.10). (Note that the λ needs to

be tuned.) The minimization is carried out using an alternating strategy where,

starting with an initialization of the weights w (say all equal, wa = 1/p for all

a ∈ [p]), the procedure alternates between optimizing with respect to the clustering

assignment C and optimizing with respect to the weights. (There is a closed-form

expression for that derived in that paper.) The procedure stops when achieving a

local minimum.

Witten and Tibshirani (2010) observe that an application of COSA rarely re-

sults in a sparse set of features, meaning that the weights are typically spread

out. They propose an alternative method, which they call Sparse K-means, which,

under (2.4), amounts to the following optimization problem

maximize
∑
a∈[p]

wa
(

1
n
−∆a[C]

)
,

over any clustering C and any weights w1, . . . , wp ≥ 0

with ‖w‖2 ≤ 1, ‖w‖1 ≤ s.

(2.13)

The `1 penalty on w results in sparsity for small values of the tuning parameter s,

which is tuned by the gap statistic of Tibshirani et al. (2001). The `2 penalty is

also important, as without it, the solution would put all the weight on only one the

attribute with smallest average within-cluster dissimilarity. A similar minimization

strategy is proposed, which also results in a local optimum.

As will be shown in later sections, Sparse K-means is indeed effective in practice.

However, its asymptotic consistency remains unknown. Sun et al. (2012) propose

Regularized K-means clustering for high-dimensional data and prove its asymptotic

consistency. This method aims at minimizing a regularized within-cluster sum of
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squares with an adaptive group lasso penalty term on the cluster centers:

minimize
1

n

∑
k∈[κ]

∑
i∈C−1(k)

‖xi − µk‖2 +
∑
a∈[p]

λa

√
µ2

1a + · · ·+ µ2
κa ,

over any clustering C and any sets of centers µ1, µ2, · · · , µκ.
(2.14)

2.1.3 Some methods for the Euclidean setting

Consider points in space (denoted x1, . . . , xn in Rp) that we want to cluster.

A typical dissimilarity is the Euclidean metric, denoted by δ(i, j) = ‖xi − xj‖2.

Decomposing this into coordinate components, with xi = (xia : a ∈ [p]), and letting

δa(i, j) = (xia − xja)2, we have

δ(i, j) =
∑
a∈[p]

δa(i, j). (2.15)

A normalization would lead us to consider a weighted version of these dissimilari-

ties. But assuming that the data have been normalized to have (Euclidean) norm

1 along each coordinate, (2.4) holds and we are within the framework described

above.

This Euclidean setting has drawn most of the attention. Some papers propose

to perform clustering after reducing the dimensionality of the data (Ghosh and

Chinnaiyan, 2002; Liu et al., 2003; Tamayo et al., 2007). However, the prepro-

cessing step of dimensionality reduction is typically independent of the end goal of

clustering, making such approaches non-competitive.

A model-based clustering approach is based on maximizing the likelihood. Un-

der the sparsity assumption made here, the likelihood is typically penalized. Most

papers assume a Gaussian mixture model. Let f(x;µ,Σ) denote the density of the

normal distribution with mean µ and covariance matrix Σ. The penalized negative

log-likelihood (when the goal is to obtain κ clusters) is of the form

−
∑
i∈[n]

log
[∑
k∈[κ]

πkfk(xi;µk,Σk)
]

+ pλ(Θ), (2.16)

where Θ gathers all the parameters, meaning, the mixture weights π1, . . . , πκ, the

group means µ1, . . . , µκ, and the group covariance matrices Σ1, . . . ,Σκ. For in-

stance, assuming that the data have been standardized so that each feature has
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sample mean 0 and variance 1, Pan and Shen (2007) use

pλ(Θ) = λ
∑
k∈[κ]

‖µk‖1. (2.17)

This may be seen as a convex relaxation of

pλ(Θ) = λ
∑
a∈[p]

∑
k∈[κ]

I{µka 6= 0} = λ
∑
k∈[κ]

‖µk‖0. (2.18)

Typically, this optimization will result in some coordinates set to zero and thus

deemed not useful for clustering purposes. In another variant, Wang and Zhu

(2008) use

pλ(Θ) = λ
∑
a∈[p]

max
k∈[κ]
|µka|. (2.19)

To shrink the difference between every pair of cluster centers for each variable a,

Guo et al. (2010) use the pairwise fusion penalty

pλ(Θ) = λ
∑
a∈[p]

∑
1≤k≤k′≤κ

|µka − µk′a|. (2.20)

Taking into account the covariance matrices, and assuming they are diagonal, Xie

et al. (2008) use

pλ(Θ) = λ1

∑
k∈[κ]

∑
a∈[p]

|µka|+ λ2

∑
k∈[κ]

∑
a∈[p]

|σ2
ka − 1|. (2.21)

The assumption that the covariance matrices are diagonal is common in high-

dimensional settings and was demonstrated to be reasonable in the context of

clustering (Fraley and Raftery, 2006). Note that none of these proposals make

the optimization problem (2.16) convex or otherwise tractable. The methods are

implemented via an EM-type approach.

Another line of research on sparse clustering is based on coordinate-wise testing

for mixing. This constitutes the feature selection step. The clustering step typically

amounts to applying a clustering algorithm to the resulting feature space. For

example, Jin and Wang (2014) use a Kolmogorov-Smirnov test against the normal

distribution, while Jin et al. (2015) use a (chi-squared) variance test. The latter

is also done in (Azizyan et al., 2013) and in (Verzelen and Arias-Castro, 2014).
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This last paper also studies the case where the covariance matrix is unknown and

proposes an approach via moments. In a nonparametric setting, Chan and Hall

(2010) use coordinate-wise mode testing.

2.2 Review: Non- and Semi-parametric Mixture

Models

The finite mixture model (1.4) typically assumes a parametric formulation

fj(x) = f(θ,x) for the component distributions, such as a normal model, see

e.g. (Fraley and Raftery, 2002). The unknown parameters in this model can be

estimated by the EM algorithm, see e.g. (Dempster et al., 1977) and (McLachlan

and Krishnan, 2007). One major drawback of this model is the strong parametric

assumption on the component density fj. Problems arise when the parametric

model is misspecified. Another drawback is that each model requires a specific

EM algorithm based on the parametric assumption. To relax the parametric as-

sumption, nonparametric and semiparametric approaches are becoming popular.

In this section, we will review various examples in the literature.

2.2.1 Nonparametric Mixture Models

In this work, the term “nonparametric” means that no assumptions are made

about the form of the fj’s in (1.4), even though the weights π = {π1, · · · , πk} are

scalar parameters. A standard tool in nonparametric density estimation are kernel

estimators f̂h based on i.i.d. data X1, · · · , Xn,

f̂h(x) :=
1

n

n∑
i=1

1

h
k

(
x−Xi

h

)
, x ∈ R, (2.22)

where h > 0 is the bandwidth and k : R → R the kernel function. The main

advantage of kernel density estimators is that they are easily computable, inde-

pendent from the assumptions made on f . However, the selection of a kernel and

an appropriate bandwidth in order to avoid over-smoothing or under-smoothing,

is the major problem in kernel density estimation. In spite of this issue, this stan-

dard tool has been successfully applied to non- and semi-parametric estimation in
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multivariate mixtures (Benaglia et al., 2009; Chang and Walther, 2007; Chauveau

and Hoang, 2016; Chauveau et al., 2015; Levine et al., 2011; Mallapragada et al.,

2010). More details will be provided in Section 2.2.3.

Another nonparametric approach to density estimation is to assume certain

shape restrictions for f , such as monotonicity, unimodality, convexity and log-

concavity. The MLE of a monotone density was first studied by Grenander (1956),

who found that its NPMLE is the left derivative of the concave majorant of the

empirical cumulative distribution function. For the unimodality restriction, when

the true model M is known a priori, unimodal density estimation boils down to

monotone estimation; when M is not known, the problem becomes difficult since

the likelihood can be maximized to∞ by placing an arbitrary large mode at some

fixed observation. Several methods were proposed to remedy this problem (Bickel

and Fan, 1996; Meyer and Woodroofe, 2004; Wegman, 1970; Woodroofe and Sun,

1993). Convex density estimation was pioneered by Anevski (1994) and its MLE

was first studied by Jongbloed (1995) and further refined by Groeneboom et al.

(2001). Log-concave densities and their applications were first studied by Bagnoli

and Bergstrom (1989) and their NPMLE were extensively studied in the literature

(Balabdaoui, 2004; Balabdaoui et al., 2009; Cule and Samworth, 2010; Cule et al.,

2010; Doss and Wellner, 2016a; Dümbgen and Rufibach, 2009; Rufibach, 2006).

Log-concave densities generalize many densities of common parametric distribu-

tions, such as Normal, Uniform, Logistic, χ2 or Laplace. Many other distributions,

for broad ranges of their parameter values are in fact log-concave, for example,

Gamma (r, λ) for r ≥ 1, Beta (a, b) for a ≥ 1 and b ≥ 1, generalized Pareto,

and Gumbel. Log-concave densities have lots of nice properties as described by

Balabdaoui et al. (2009). One of the most fruitful applications of this family of

distributions has been in the area of clustering. In the literature, EM-type clus-

tering algorithm with nonparametric component distributions was first carried out

by Chang and Walther (2007) and further extended to multivariate log-concave

mixtures by Cule et al. (2010). More recently, Hu et al. (2016) studied the exis-

tence and consistency of the log-concave maximum likelihood estimator (LCMLE)

of finite mixture models. Besides clustering, this LCMLE has also been applied to
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mixture of regression models (Hu et al., 2017).

2.2.2 Semiparametric Mixture Models

Sometimes, the essentially nonparametric density functions in (1.4) may be

partially specified by scalar parameters, a case often called semiparametric. Note

that the model (1.4) is not identifiable without additional constraints. To make

the model identifiable, Bordes et al. (2006) and Hunter et al. (2007) propose a

univariate location-shifted semiparametric mixture model:

g(x) =
k∑
j=1

πjf(x− µj),
k∑
j=1

πj = 1, x ∈ R, (2.23)

where µj ∈ R and f is assumed symmetric (i.e., even, f(x) = f(−x) for all x ∈ R).

These authors show that the parameters π = (π1, . . . , πk), µ = (µ1, . . . , µk) and

f are uniquely identifiable when k = 2 (up to label-shifting) as long as π1 6=
1/2. Furthermore, Hunter et al. (2007) showed that for k = 3, the parameters

are uniquely identifiable except when π and µ take values in a particular set of

Lebesgue measure zero, conjecturing that a similar result holds for any k.

Although both Bordes et al. (2006) and Hunter et al. (2007) propose methods

for estimating the parameters in (2.23), these methods are inefficient and not

easily generalizable beyond the case k = 2. Bordes et al. (2006) use the so-called

minimum contrast method to estimate π and µ, and use a kernel density estimation

(KDE) approach which involves a model selection procedure to choose the tuning

parameter. Hunter et al. (2007) employ a generalized Hodges-Lehmann estimator

to estimate µ and achieve a better rate of convergence. However, their estimator

for f is not guaranteed to be a density. Bordes et al. (2007) propose a stochastic

EM-like estimation algorithm which does not possess the monotone property of a

genuine EM algorithm.

Model (2.23) was also studied more recently by Butucea and Vandekerkhove

(2014) and Balabdaoui and Doss (2014). Butucea and Vandekerkhove propose
√
n-consistent M-estimators based on a Fourier approach. Balabdaoui and Doss

adopt the estimators for π and µ from Hunter et al. (2007) and then estimate

the density f via maximum likelihood assuming it is log-concave. Note however



15

that, combined, their estimators for {π,µ, f} are not obtained by maximizing the

likelihood.

2.2.3 Multivariate Non-/semi-parametric Mixtures

In the multivariate situation, the common restriction placed on the components

is that each joint density fj(·) is equal to the product of its marginal densities. In

other words, the coordinates of the Xi vector are independent, conditional on the

subpopulation or component (f1 through fk) from which Xi is drawn. Therefore,

model (1.4) becomes

g(x) =
k∑
j=1

πj

d∏
c=1

fjc(xic), (2.24)

where the function fjc denotes a univariate density function. Hall and Zhou (2003)

introduced this model and consider it in its full generality, while Hettmansperger

and Thomas (2000) consider the special case in which the density fjc(·) does not

depend on c— that is, in which the components of Xi are not only conditionally

independent but identically distributed as well:

g(x) =
k∑
j=1

πj

d∏
c=1

fj(xic). (2.25)

What distinguishes model (2.24) from model (2.25) is the assumption in the latter

that fj1(·) = · · · = fjd(·) for all j.

To encompass both the special case (2.25) and the more general case(2.24)

simultaneously, Benaglia et al. (2009) introduced an intermediate case:

g(x) =
k∑
j=1

πj

d∏
c=1

fjbc(xic), (2.26)

where they allow that the coordinates of Xi are conditionally independent and that

there exist blocks of coordinates that are also identically distributed (bc denotes

the block to which the cth coordinate belongs). These blocks may all be of size 1

so that case (2.24) is still covered, or there may exist only a single block of size

r, which is the case (2.25). To fit model (2.26), an empirical “EM-like” algorithm

has been introduced by Benaglia et al. (2009). It eliminates the stochasticity of
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the univariate algorithm from Bordes et al. (2007), but also relies on a weighted

KDE step for the updates of the fjbc ’s. Moreover, this algorithm lacks any sort of

theoretical justification and is not a genuine EM algorithm due to the nonpara-

metric KDE step. Levine et al. (2011) correct this shortcoming by introducing

a smoothed log-likelihood function and formulating an iterative algorithm with a

provable monotonicity property.

Model (2.26) has also been modified to fit multivariate semiparametric mix-

tures. Benaglia et al. (2009) modify the “EM-like” algorithm to fit location-scale

mixture models, and Chauveau et al. (2015) extend the smoothed versions from

Levine et al. (2011) to semiparametric mixture models.

Notice that the density functions (updated by the KDE procedure) in the

above-mentioned models (2.24) ∼ (2.26) are all univariate. Recently, Chauveau

and Hoang (2016) describe a new multivariate nonparametric mixture model that

extends modemix-model1l (2.24) in the sense that it allows for conditionally inde-

pendent multivariate and nonparametric component densities. Equivalently, they

assume that each joint density fj in model (1.4) is equal to product of B multi-

variate densities that will correspond to conditionally independence multivariate

blocks in the mixture model. They let the set of coordinates {1, · · · , d} be parti-

tioned into B disjoint subsets sl, i.e. {1, · · · , d} =
⋃B
l=1 sl, where 2 ≤ B < d is

the total number of such blocks. The resulting mixture model with conditionally

independent multivariate component densities is

g(x) =
k∑
j=1

πj

B∏
l=1

fjl(xisl). (2.27)

Notice that updating the multivariate component densities also relies on a KDE

procedure.

Since the computation time of the MLE of multivariate log-concave densities

becomes quickly intractable as the dimension increases, extending log-concave mix-

ture models to higher dimensions presents a real challenge. Chang and Walther

(2007) consider a multivariate extension by assuming that the univariate marginal

densities of each component are log-concave, and the dependence structure within

each component is modeled with a normal copula. But they only perform simu-
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lations in dimension two. With the multidimensional log-concave density studied

by Cule and Samworth (2010), Cule et al. (2010) simply assume that each com-

ponent fj’s in model (1.4) is log-concave and successfully apply the multivariate

log-concave EM algorithm to the cancer data of Street et al. (1993) with sample

size 569 and obtain only 121 misclassified instances compared to 144 with the

Gaussian EM algorithm.



Chapter 3

From Sparse Principal

Component Analysis (PCA) to

Sparse Clustering

In this chapter, we use the parallel between sparse PCA and sparse cluster-

ing suggested by Verzelen and Arias-Castro (2014), to adapt methods developed

for sparse PCA to perform sparse clustering. Under the sparse Gaussian mixture

models, we adapt the aggregation method1 of Cai et al. (2013) and derive the

aggregation estimator for sparse clustering2. By following the theoretical analysis

performed in (Cai et al., 2013), we provide theoretical guarantees of our aggre-

gated estimator in Theorem 3. We then adapt 3 other computationally-efficient

methods developed in the context of sparse PCA to perform sparse clustering. We

also propose an iterative algorithm (Iterative 2-means) to uncover the important

feature set in sparse clustering. A simulation study shows that Iterative 2-means

outperforms the other 3 methods in terms of both sparse recovery and the estima-

tion of the difference between mean vectors of the Gaussian components. We start

this chapter with literature review of sparse PCA.

1This method is presented in Section 3.1 and the estimator is defined by (3.10).
2This estimator is described in Algorithm 1 and defined by (3.16). The estimator identifies

the important feature set for clustering in high-dimensional space. This constitutes the feature
selection step and the clustering step typically amounts to applying a clustering algorithm to the
resulting feature space.

18
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3.1 Sparse PCA

PCA is a classical method for reducing dimension, say from a set of observations

of p possibly correlated variables into a set of values of r (r < p) uncorrelated

variables, and is frequently used to obtain a low-dimensional representation of

a dataset. It operates by projecting the data onto the r directions of maximal

variance, captured by eigenvectors of the p×p population covariance matrix Σ. In

practice, one does not have access to the population covariance, but instead rely

on the sample variance matrix

Σ̂ :=
1

n

n∑
i=1

XiX
′
i = Σ + ∆, (3.1)

where Xi, · · · ,Xn are i.i.d. with mean 0, and ∆ denotes a random noise ma-

trix. In the classical theory of PCA, the sample eigenvectors (i.e., based on Σ̂) are

consistent estimators of their population analogues, when p is fixed and n → ∞
(Anderson, 2004; Muirhead, 2009). However, when p is comparable to or signif-

icantly larger than n, the sample covariance matrix Σ̂ may be a poor estimator

to the population’s covariance matrix Σ (Bickel and Levina, 2008; Lam and Fan,

2009; Levina et al., 2008), and standard PCA based on Σ̂ can produce inconsistent

estimates of the population’s principal components (Johnstone, 2001).

Consider a r−principal component model, in which, when reviewed as p di-

mensional column vectors, observations can be written as

Xi =
r∑

m=1

√
λmuimθm + Zi, i = 1, · · · , n (3.2)

where θm’s ∈ Rp are the first r principal components to be estimated, uim
iid∼

N(0, 1) and Zi
iid∼ N(0, Ip). The corresponding population covariance matrix is the

famous “Spiked” Covariance Model first proposed by Johnstone (2001) and then

generalized by Paul (2007) :

Σ =
r∑

m=1

λmθmθ
′
m + Ip (3.3)

where λ1 > λ2 > · · · > λr > 0 and θ′ is the transpose of θ. The r largest eigenvalues

of Σ are λi + 1, i = 1, · · · , r, and the rest are all equal to 1. The spiked covariance
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model with only one spike is the following,

Xi =
√
λuiθ + Zi and Σ = λθθ′ + Ip, 1 ≤ i ≤ n, (3.4)

with 1+λ the largest eigenvalue, and θ the leading eigenvector. Under this model,

Johnstone and Lu (2009) first established the inconsistency of the classic PCA :

Theorem 1 (Johnstone and Lu (2009)). Consider model (3.4) in an asymptotic

setting where n→∞ and p = p(n) is such that p/n→ γ ∈ [0,∞) and λ > 0 fixed.

θ̂ is a normed eigenvector for the top eigenvalue of the sample covariance matrix.

Then almost surely,

(θ̂′θ)2 → (λ2 − γ)+

λ2 + γλ
.

In particular, the limit is 1 if and only if γ = 0, meaning p/n→ 0, and this is

the only regime where PCA is consistent. When λ ≤ √γ, then θ̂′θ → 0, meaning

that θ̂ ⊥ θ in the limit. To address the inconsistency drawback, a number of

authors have conducted theoretical studies and developed methodologies on sparse

PCA, under the assumption that the leading eigenvectors have a certain type of

sparsity. For example, with `0 sparsity constriant, the `0-sparse PCA for the top

principal direction is defined as

L0(Σ̂) = arg max
‖θ‖2=1,‖θ‖0≤s

θ′Σ̂θ, (3.5)

where Σ̂ is the empirical sample covariance matrix. Furthermore, Vu and Lei

(2012) use the `q-ball constraint (q ∈ [0, 1]), to reduce the effective number of

parameters in sparse PCA and facilitate interpretation.

Theoretical analysis of sparse PCA has first been attempted on estimating the

leading principal eigenvector θ1. Johnstone and Lu (2009) first show that the

classical PCA performed on a selected subset of variables with the largest sample

variances leads to a consistent estimator of θ1 if the ordered coefficients of θ1 have

rapid decay. Vu and Lei (2012) study the rates of convergence of estimation with

the `q-ball constraint on θ1, and Lounici (2013) further considers the minimax

rates with missing data. Subsequently, Vu and Lei (2013) and Cai et al. (2013)

independently establish the minimax error rate of estimating the principal subspace
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span(V), where V = [θ1, · · · , θr] is p × r with orthonormal columns. Here, we

review the assumptions, the theorem and the optimal estimation strategy given by

Cai et al. (2013).

Let Vj∗ denote the jth row of V. The row support of V is defined by

supp(V) = {j ∈ [p] : Vj∗ 6= 0}, (3.6)

whose cardinality is denoted by |supp(V)|. Let the collection of p×r matrices with

orthonormal columns be O(p, r) = {V ∈ Rp×r : V′V = Ir}. Define the following

parameter space for Σ,

Θ0(s, p, r, λ) = {Σ = VΛV′ + Ip : 0 < λ ≤ λr ≤ · · · ≤ λ1 ≤ κλ,

V ∈ O(p, r), |supp(V)| ≤ s}, (3.7)

where κ > 1 is a fixed constant and 1 ≤ r ≤ s ≤ p. For two sequences of positive

numbers an and bn, we write an & bn when an ≥ cbn for some absolute constant

c > 0 and an . bn when bn & an. Finally, we write an � bn when both an & bn

and an . bn hold. The optimal rates of convergence of the subspace span(V) is

then established:

Theorem 2 (Cai et al. (2013)). Suppose we observe data X1, · · · , Xn as in (3.2).

Let λ &
√

logn
n

, s − r & s ∧ log ep
s

and n & s log ep
s
∨ log λ. The minimax risk for

estimating the principal subspace span(V) satisfies

inf
V̂

sup
Σ∈Θ0(s,p,r,λ)

E||V̂V̂′ −VV′||2F �
λ+ 1

nλ2

(
r(s− r) + s log

ep

s

)
(3.8)

as long as the right-hand side does not exceed some absolute constant. Otherwise,

there exists no consistent estimator.

The exact optimal rate is achieved via the following aggregation strategy:

1. Randomly split the sample equally according to X =

[
X(1)

X(2)

]
, where X(i) =

U(i)DV′+ Z(i)(i = 1, 2) 3 are the data sub-matrices with p−variate observa-

tions generated by (3.2). Compute S(i) = 1
n
X′(i)X

′
(i).

3U(i) is the n/2×r random effects matrix with i.i.d. N(0, 1) entries, D = diag(λ
1/2
1 , · · · , λ1/2r )

with λ1 ≥ · · · ≥ λr > 0,V is p × r orthonormal and Z has i.i.d. N(0, σ2) entries which are
independent of U.
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2. Let B denote the class of all subsets of size s from [p].

3. For each index subset B in B, construct an estimator V̂B by taking the r

leading singular vectors of JBS(1)JB, where JB is the diagonal matrix given

by (JB)ii = 1{i∈B}.

4. Set

B∗ = arg max
B∈B

Tr(V̂′BS(2)V̂B) (3.9)

and define the aggregated estimator by

V̂∗ = V̂B∗ . (3.10)

Notice that even though this estimator is asymptotically optimal, it is compu-

tationally difficult to implement because it requires going over all subsets of [p] of

size s. To address this issue, a number of computationally efficient approaches have

been proposed in the past decade. Some of these methods are based on greedy

or non-convex optimization procedures (Jolliffe et al., 2003; ?), some are based

on `1-regularization (Witten et al., 2009; Zou et al., 2006), while others are real-

ized through semidefinite relaxations (d’Aspremont et al., 2007), or thresholding

on the sample covariance matrix (Johnstone and Lu, 2009; Krauthgamer et al.,

2015). The latter two approaches, due to their ability to recover `0-sparse PCs,

will be introduced and adapted to sparse clustering in Section 3.2.

3.2 Extending Sparse PCA to Sparse Clustering

In this section, we will extend the theoretical study and methodologies devel-

oped for sparse PCA to sparse clustering. We will first establish the connections

between these two topics. Then by following the analysis from Cai et al. (2013)

under the weak `q constraint, we carry out similar analysis of spiked covariance

matrix in sparse clustering and provide theoretical guarantees of their aggregation

strategy in sparse clustering. Moreover, we will adapt several computationally

efficient approaches in sparse PCA to the estimation of sparse clustering.
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3.2.1 Connection between Sparse PCA and Sparse Clus-

tering

Consider a high-dimensional clustering problem where we have n different p-

variate vectors (with p� n) from 2 classes:

Xi = µ0 + `i(µ1 − µ0) + Zi, (3.11)

where the class labels `1, · · · , `n
iid∼ Bernoulli (1

2
) and independent of Z1, · · · , Zn

iid∼
N(0, Ip). For clustering problems, the labels are unknown and the main interest is

to estimate them. For sparse clustering, we are specifically interested in settings

where the difference in means is sparse:

∆µ := µ1 − µ0 is s-sparse. (3.12)

We say that a vector is s-sparse if it has at most s nonzero entries, where s is a

fixed integer smaller or equal to p. Notice that the covariance matrix of data from

model (3.11),

Σ =
1

4
∆µ∆µ> + Ip, (3.13)

is closely related to the spike covariance model (3.4), in which Σ = λθθ′ + Ip for

1 ≤ i ≤ n. In high-dimensional clustering problems, we usually assume that the

true underlying clusters differ only with respect to some of the features. Thus,

high dimensional clustering problems are often intertwined with feature selection

problems. Under model (3.11), the feature selection problem reduces to identifying

the support of ∆µ, which coincides with the problem of estimating the leading

eigenvector in sparse PCA.

3.2.2 Theoretical Guarantee of the Aggregation Method in

Sparse Clustering

Notice that when ∆µ in (3.12) is fixed, shifting µ0 and µ1 will not change Σ in

(3.13).To simplify the analysis, we let µ0 = 0 in (3.11), and denote X the n × p
data matrix generated by

X = 2
√
λ`θ′ + Z, (3.14)
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where θ = ∆µ

2
√
λ
, ` is the i.i.d. Bernoulli(1

2
) random vector of class labels and Z is

random noise matrix with i.i.d. N(0, 1) entries and independent of `. Adapting

the aggregation methods by Cai et al. (2013), we derive the following algorithm

for sparse clustering:

Algorithm 1 Aggregation Estimation for Sparse Clustering

Require: Design matrix X ∈ Rn×p

Ensure: subset B∗ ⊆ [p] of cardinality k∗q and θ̂B∗ , where k∗q is the effective di-

mension defined in Definition 2.

1: Randomly split the sample equally according to X =

[
X(1)

X(2)

]
, where X(j) =

2
√
λ`(j)θ

′ + Z(j), j = 1, 2. Denote S(j) = 1
n
X′(j)X(j).

2: let B denote the class of all subsets of size k∗q from [p]. For each index subset

B ∈ B, construct an estimator θ̂B by taking the 1st normed eigenvector of

JBS(1)JB, where JB is the diagonal matrix given by

(JB)ii = 1{i∈B},

3: Set

B∗ = arg max
B∈B

θ̂′BS(2)θ̂B, (3.15)

and define the aggregated estimator by

θ̂∗ = θ̂B∗ . (3.16)

Remark 1. This estimator is adapted from the aggregation estimation of the prin-

cipal subspace of sparse PCA by Cai et al. (2013). While they showed that the

aggregation estimation is minimax optimal in weak `q space, we will only give the

upper bound of our estimator in Theorem 3. However, we conjecture that it is also

minimax optimal in sparse clustering under model (3.14).

Before establishing the theoretical guarantee of this aggregation method, we

first define weak-`q norm of θ and the effective dimension k∗q of θ.
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Definition 1. Order the absolute value of entries in θ in decreasing order as |θ(1)| ≥
|θ(2)| ≥ · · · ≥ |θ(p)|. We define the weak-`q norm of θ as ‖θ‖q,w , maxj∈[p] j|θ(j)|q.
When q = 0, it corresponds to the `0 norm.

Definition 2. The effective dimension k∗q of θ is defined as

k∗q(s, p, n, λ) = dxq(s, p, n, λ)e,

where dae denotes the smallest integer no less than a ∈ R, and

xq(s, p, n, λ) , max

{
0 ≤ x ≤ p : x ≤ s

(
nh(λ)

1 + log(ep/x)

)q/2}
,

with h(λ) = λ2

λ+1
.

Here we will state and prove the main theorem of this chapter. Since this

theorem is an adaption of Theorem 4 of (Cai et al., 2013), some of the arguments

in the theorem are the same and some of the technical steps in the proof are nearly

identical as theirs. Nevertheless, details of the theorem as well as the proof are

still given for the sake of completeness.

Theorem 3. Let q ∈ [0, 2). Let k∗q be defined in Definition 2. Let θ̂∗ be the

aggregated estimator defined in (3.16). Assume that

λ ≥ C0

√
log n

n
, nh(λ) ≥ C0k

∗
q

(
1 + log

ep

k∗q

)
and

n ≥ C0(k∗q log
ep

k∗q
∨ log λ) (3.17)

for some sufficiently large constant C0. Then there exists a constant C depending

only on q such that

sup
‖θ‖q,w≤s,‖θ‖2=1

E‖θ̂∗θ̂′∗ − θθ′‖2
F ≤ CΨ(k∗q , p, n, λ) ∧ 2, (3.18)

where

Ψ(k∗q , p, n, λ) = k∗q

(
1 + log ep

k∗q

nh(λ)

)
.

Before we delving into technical details of the proof, we first provide 3 Lemmas.
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Lemma 1. Let ` be a random vector of length n with i.i.d Bernoulli (1
2
) entries,

then for any δ ∈ (0, 1),

P(| 2
n
`′`− 1| > δ) ≤ 2e−

nδ2

6 .

Proof. Let µ = E(`′`) = νn. With Chernoff Bound:

P(`′` > (1 + δ)µ) ≤ e−
δ2µ
3 and P(`′` < (1− δ)µ) ≤ e−

δ2µ
2 ,

P(| 2
n
`′`− 1| > δ) ≤ e−

nδ2

6 + e−
nδ2

4 ≤ 2e−
nδ2

6 .

Lemma 2. Let ` be a random vector of length n with i.i.d Bernoulli (1/2) entries,

Z be an n× p matrix with i.i.d. N(0, 1) entries. Then for any b > 0,

P(‖`′Z‖2 ≥ n(1 +
√
p+ b)2) ≤ e−b

2/2. (3.19)

Proof. Conditioned on ‖`‖0 = m, the random variables Yj := `′Z∗j
iid∼ N(0,m) for

j = 1, · · · , p. Denote Γ := [ Y1√
m
, · · · , Yp√

m
], and ‖`′Z‖2 = m‖Γ‖2, then by Davidson-

Szarek bound (Johnson and Lindenstrauss (2001), Theorem II.7),

P(‖Γ‖ > 1 +
√
p+ b) ≤ e−

b2

2 .

Combining all possible values of m,

P(‖`′Z‖2 ≥ ‖`‖0(1 +
√
p+ b)2)

=
n∑

m=0

P(‖`′Z‖2 ≥ m(1 +
√
p+ b)2 | ‖`‖0 = m) ·P(‖`‖0 = m)

≤
n∑

m=0

(
n

m

)(1

2

)n
e−

b2

2 = e−
b2

2

Clearly, (3.19) holds because n ≥ ‖`‖0.

Lemma 3 (Proposition D.1, Supplement to (Ma, 2013)). Let Y be an n×k matrix

with i.i.d. N(0, 1) entires. For any t > 0,

P

{∥∥∥∥ 1

n
Y′Y − Ik

∥∥∥∥ ≤ 2

(√
k

n
+ t

)
+

(√
k

n
+ t

)2
}
≥ 1− 2e−nt

2/2.
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To prove Theorem 3, we will first provide an upper bound for the estimation of

θ using the sample covariance matrix under the classical setting (without sparsity),

which will be directly applied to bound the oracle risk in the proof of Theorem 3.

This upper bound is shown in Theorem 4.

Theorem 4. Let X = 2
√
λ`θ′+Z, where ` is a random vector of length n with i.i.d

Bernoulli (1/2) entries and Z is an n × p matrix with i.i.d. N(0, 1) entries. Let

n ≥ C0(1 + log λ) and λ ≥ C0

√
(log n/n) for some sufficiently large constant C0.

Let θ̂ be the first leading eigenvector of the sample covariance matrix S = 1
n
X′X.

Then

sup
‖θ‖0=p

E‖θ̂θ̂′ − θθ‖2
F .

p

nh(λ)
∧ 1,where h(λ) =

λ2

1 + λ
. (3.20)

Proof. The bound holds trivially when nh(λ) . p, so assume that

nh(λ) ≥ C1p, for some sufficiently large constant C1. (3.21)

Expanding S = 1
n
X′X, we obtain

S =
1

n

(
4λθ`′`θ′ + Z′Z + 2

√
λθ`′Z + 2

√
λZ′`θ′

)
Define an auxiliary matrix S0 = 4

n
λθ`′`θ′ + Ip and Σ = λθθ′ + Ip. We have

‖S− S0‖ = ‖ 1

n
Z′Z− Ip‖+

4
√
λ

n
‖`′Z‖. (3.22)

Let t =
√

3
n
log(nh(λ)). Define the event

E =

{
| 2
n
`′`− 1| ≤

√
2t

}
∩

{
‖ 1

n
Z′Z− Ip‖ ≤ 2

(√
p

n
+ t

)
+

(√
p

n
+ t

)2
}

∩
{
‖`′Z‖ ≤

√
n(1 +

√
p+
√
nt)
}
.

By Lemma 1, Lemma 2 and Lemma 3, there exists an absolute constant C2 such

that P (Ec) ≤ C2

nh(λ)
. Then

E(‖θ̂θ̂′ − θθ‖2
F1{Ec}) ≤ 2C2

p

nh(λ)
. (3.23)
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It remains to bound E(‖θ̂θ̂′ − θθ‖2
F1{E}). Under the assumption that n ≥ C0(1 +

log λ) for some large C0, conditioned on the event E,

‖S0 − 2Σ‖ = ‖λ(
4

n
`′`− 2)θθ′‖ ≤ 2λ| 2

n
`′`− 1| ≤ 2

√
2tλ ≤ ελ ≤ λ/4

for some sufficient small ε > 0. Weyl’s theorem (Horn and Johnson (2012), Theo-

rem 4.3.1) then implies

σ1(S0) ≥ σ1(2Σ)− ‖S0 − 2Σ‖ ≥ 2 + 2λ− λ/4 = 2 +
7

4
λ. (3.24)

Conditioned on the event E, assumption (3.21) and that nh(λ) ≥ C0 log n lead to

‖ 1
n
ZZ ′ − Ip‖ ≤ ελ and

√
1
n

+
√

p
n

+ t ≤ ε
√
λ for some sufficiently small ε > 0.

These bounds together with (3.22), lead to

‖S− S0‖ ≤ ελ ≤ λ/4,

which, in view of Weyl’s theorem (Horn and Johnson (2012), Theorem 4.3.1), leads

to

σ2(S) ≤ σ2(S0) + ‖S− S0‖ ≤ 1 + λ/4. (3.25)

Combining (3.24) and (3.25), we obtain

σ1(S0)− σ2(S) ≥ 1 +
3

2
λ. (3.26)

Let [θ, θ⊥] be an orthonormal matrix. With (3.26), we apply the Sin-Theta Theo-

rem for symmetric matrices (Davis and Kahan, 1970) on S and S0, and obtain

‖θ̂θ̂′ − θθ‖2
F1{E} ≤

2

(1 + 3
2
λ)2

min
(
‖(S− S0)θ‖2

F , ‖(S− S0)θ⊥‖2
F

)
1{E}

≤ 2

(1 + 3
2
λ)2
‖(S− S0)θ‖2

F1{E}. (3.27)

We now control ‖(S− S0)θ‖2
F . Since

(S− S0)θ = (
1

n
Z′Z− Ip)θ +

2

n

√
λθ`′Zθ +

2

n

√
λZ′`, (3.28)

and

Ip = [θ, θ⊥]

[
θ

θ⊥

]
= θθ′ + θ⊥(θ⊥)′, (3.29)



29

(S− S0)θ can be written as

(S− S0)θ = θθ′
(

1

n
Z′Z− Ip

)
θ +

1

n
θ⊥(θ⊥)′Z′Zθ +

2

n

√
λθ`′Zθ +

2

n

√
λZ′`. (3.30)

Note that ‖AB‖F ≤ ‖A‖‖B‖F . The triangle inequality thus leads to

‖(S− S0)θ‖2
F ≤

∥∥∥∥θ′( 1

n
Z′Z− Ip

)
θ

∥∥∥∥
F

+
1

n

∥∥(θ⊥)′Z′Zθ
∥∥
F

+
4

n

√
λ‖Z′`‖F . (3.31)

Using the fact that Z is a random matrix with i.i.d. N(0, 1) entries, and that

‖θ‖ = 1, we can compute

E
(∥∥∥∥θ′( 1

n
Z′Z− Ip

)
θ

∥∥∥∥2

F

)
=

2

n
. (3.32)

Moreover, note that for any two independent random matrices A ∈ Rn×`1 and

B ∈ Rn×`2 with i.i.d. N(0, 1) entires,

E ‖A′B‖2
F = `1`2 E(〈A∗1,B∗1〉) = `1`2n.

Since θ(θ⊥)′ = 0, Zθ and Zθ⊥ are independent, E
∥∥(θ⊥)′Z′Zθ

∥∥2

F
= (p−1)n. Hence,

E(‖(S− S0)θ‖2
F1{E}) ≤

C3

n
(1 + p+ 16λ(1 +

√
p+
√
nt)2) (3.33)

for some absolute constant C3. Combining (3.33), (3.27) and (3.23) leads to the

conclusion.

Following the proof of Theorem 4 in Cai et al. (2013), we prove the main

theorem in this chapter, Theorem 3.

Proof of Theorem 3. Before delving into the details, we give an outline of the proof

as follows:

1. We find a good sparse approximation of the true leading principal eigenvector

which lies in the weak-`q ball defined in Definition 1 .

2. We decompose the risk into a summation of three terms, namely the approx-

imation error, oracle risk and excess risk. The oracle risk is upper bounded

by Theorem 3 and approximation error will be bounded in Step 1.
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3. The excess risk is controlled by a carefully concentration-of-measure analysis

in Step 3, which forms the core of the proof.

Step 1: Sparse Approximation. Fix θ with ‖θ‖2 = 1 and ‖θ‖q,w ≤ s. We assume

that q > 0. Let B(k) = {B ⊂ [p] : |B| = k}. Let A ∈ B denote the collection of

indices of θ corresponding to the k largest absolute value. Put

Σ̃ = JAΣJA + JAc = λJAθθ
′JA + Ip,

where JA is the diagonal matrix given by (JA)ii = 1{i∈A}. Denote the SVD

of λJAθθ
′JA by λ̃θ̃θ̃′ with θ̃ = α−1JAθ, λ̃ = λα2, where α = ‖JAθ‖2. Ob-

serve that ‖θθ′ − θ̃θ̃′‖2
F = 2(1 − α2) and α2 = θ2

(1) + · · · + θ2
(k). Notice that

max{θq(1), 2θ
q
(2) · · · , jθ

q
(j), · · · } ≤ s, hence

α2 = 1−
∑
i>k

θ2
(i) ≥ 1−

∑
i>k

(
s

i

)2/q

≥ 1− s2/q

∫ ∞
k

x−2/qdx = 1− q

2− q
k

(
s

k

)2/q

.

Hence,

‖θθ′ − θ̃θ̃′‖2
F ≤

2q

2− q
k

(
s

k

) 2
q

≤ 2q

2− q
Ψ(k, p, n, λ). (3.34)

The last inequlity follows from the choice of k = k∗q defined in Definition 2. Note

that if q = 0, this step is superfluous since θ is already sparse, and we define θ̃ = θ.

Step 2: Risk Decomposition. Since ‖θ‖ = ‖θ̂∗‖ = 1, we have

〈Σ, θθ′ − θ̂∗θ̂′∗〉 = 〈λθθ′, θθ′ − θ̂∗θ̂′∗〉 = λ(1− Tr(θ′θ̂∗θ̂
′
∗θ)) =

λ

2
‖θ̂∗θ̂′∗ − θθ′‖2

F .

Therefore,

λ

2
‖θ̂∗θ̂′∗ − θθ′‖2

F

=〈Σ, θθ′ − θ̂∗θ̂′∗〉

=〈Σ, θθ′ − θ̃θ̃′〉+ 〈Σ, θ̃θ̃′ − θ̂Aθ̂′A〉+ 〈Σ, θ̂Aθ̂′A − θ̂∗θ̂′∗〉

≤ λ

2
‖θθ′ − θ̃θ̃′‖2

F︸ ︷︷ ︸
approximation error

+
λ

2
‖θ̃θ̃′ − θ̂Aθ̂′A‖2

F︸ ︷︷ ︸
oracle risk

+

〈
Σ−

S(2)

2
, θ̂Aθ̂

′
A − θ̂∗θ̂′∗

〉
︸ ︷︷ ︸

excess risk

, (3.35)

where in the last inequality, the first two items are respectively equal and the in-

equality is due to the fact that θ̂∗ is the maximizer in (3.15) and hence 〈S(2)

2
, θ̂Aθ̂

′
A−
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θ̂∗θ̂
′
∗〉 ≤ 0.

Step 3: Excess Risk. Write

S(2) =
1

n
X ′(2)X(2) =

1

n

(
4λθ`′(2)`(2)θ

′ + Z′(2)Z(2) + 2
√
λθ`′(2)Z(2) + 2

√
λZ′(2)`(2)θ

′),
then

Σ−
S(2)

2
= G+H, (3.36)

where

G , λ
(
1− 2

n
`′(2)`(2)

)
θθ′,

H , Ip −
1

2n
Z′(2)Z(2) −

√
λ

n
θ`′(2)Z(2) −

√
λ

n
Z′(2)`(2)θ

′.

We first deal with the inner product with G: write

〈G, θ̂Aθ̂′A − θ̂∗θ̂′∗〉 = 〈G, θ̂Aθ̂′A − θθ′〉 − 〈G, θ̂∗θ̂′∗ − θθ′〉.

Note that

〈G, θθ′ − θ̂Aθ̂′A〉 =

〈
λ

(
1− 2

n
`′(2)`(2)

)
, θ′(θθ′ − θ̂Aθ̂′A)θ

〉
=λ

(
1− 2

n
`′(2)`(2)

)
(1− θ′θ̂Aθ̂′Aθ)

=
λ

2

(
1− 2

n
`′(2)`(2)

)
‖θθ′ − θ̂Aθ̂′A‖2

F

≤λ
2

∣∣∣∣ 2n`′(2)`(2) − 1

∣∣∣∣ ‖θθ′ − θ̂Aθ̂′A‖2
F . (3.37)

Similarly, we have

〈G, θ̂∗θ̂′∗ − θθ′〉 ≤
λ

2

∣∣∣∣ 2n`′(2)`(2) − 1

∣∣∣∣ ‖θθ′ − θ̂∗θ̂′∗‖2
F . (3.38)

Next, we will control the inner product with H: recall that A = supp(θ̃) is fixed.

We define a collection of p×p symmetric matrices indexed by B = B(k) as follows:

KB , ‖θ̂Aθ̂′A − θ̂B θ̂′B‖−1
F (θ̂Aθ̂

′
A − θ̂B θ̂′B)

which has zero trace and unit Frobenius norm. Recall that θ̂∗ = θ̂B∗ , then

〈H, θ̂Aθ̂′A − θ̂∗θ̂′∗〉 =‖θ̂Aθ̂′A − θ̂∗θ̂′∗‖F 〈H,KB∗〉

≤‖θ̂Aθ̂′A − θ̂∗θ̂′∗‖2
F arg max

B∈B(k)

|〈H,KB〉|︸ ︷︷ ︸
,T

. (3.39)
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Assembing (3.36), (3.37), (3.38) and (3.39), we can upper bound the excess risk

by 〈
Σ−

S(2)

2
, θ̂Aθ̂

′
A − θ̂∗θ̂′∗

〉
≤λ

2

∣∣∣∣ 2n`′(2)`(2) − 1

∣∣∣∣ (‖θθ′ − θ̂Aθ̂′A‖2
F + ‖θθ′ − θ̂∗θ̂′∗‖2

F

)
+ T‖θ̂Aθ̂′A − θ̂∗θ̂′∗‖2

F . (3.40)

Combining the risk decomposition (3.35) and (3.40), we have

λ

2
‖θ̂∗θ̂′∗ − θθ′‖2

F

≤ λ

2
(‖θθ′ − θ̃θ̃′‖2

F + ‖θ̃θ̃′ − θ̂Aθ̂′A‖2
F ) + T‖θ̂Aθ̂′A − θ̂∗θ̂′∗‖2

F

+
λ

2

∣∣∣∣ 2n`′(2)`(2) − 1

∣∣∣∣ (‖θθ′ − θ̂Aθ̂′A‖2
F + ‖θθ′ − θ̂∗θ̂′∗‖2

F

)
. (3.41)

To simply notation, denote

δ = ‖θ̂∗θ̂′∗ − θθ′‖F , ∆ = ‖θθ′ − θ̃θ̃′‖F ,

R = ‖θ̃θ̃′ − θ̂Aθ̂′A‖F , M = | 2
n
`′(2)`(2) − 1|.

Since

‖θθ′ − θ̂Aθ̂′A‖2
F = ‖θθ′ − θ̃θ̃′ + θ̃θ̃′ − θ̂Aθ̂′A‖2

F ≤ (∆ +R)2 ≤ 2(∆2 +R2),

and ‖θ̂Aθ̂′A − θ̂∗θ̂′∗‖ ≤ δ + ∆ +R, we have

λ

2
δ2 ≤ λ

2
(∆2 +R2) + λM(∆2 +R2) +

λ

2
Mδ2 + T (δ + ∆ +R), (3.42)

which is equivalent to

(
λ

2
− λ

2
M)δ2 ≤ Tδ + (∆2 +R2)(

λ

2
+ λM) + T (R + ∆). (3.43)

Introduce the event E1 = {M ≤
√

2t} with t =
√

3 log(c′nh(λ))
n

, where c′ is sufficiently

small such that t ≤ 1
2
√

2
. By Lemma 1,

P(Ec
1) ≤ 2e−

n
6

(
√

2t)2 =
2

c′nh(λ)
. (3.44)

Conditioning on the event E1, M ≤ 1
2
, by Lemma 2 of Cai et al. (2013), we have

δ2 ≤ 16T 2

λ2
+

2
(
(∆2 +R2)3

4
λ+ T (R + ∆)

)
λ
4

. (3.45)
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Therefore,

Eδ2 ≤ 16ET 2

λ2
+ 6(∆2 + ER2) + 8

E[T (R + ∆)]

λ
+ 4P(Ec

1)

= E
[(4T

λ
+R + ∆

)2
]
− E

[
(R + ∆)2

]
+ 6(∆2 + ER2) + 4P(Ec

1)

≤ 3
(
E(

4T

λ
)2 + ER2 + ∆2

)
+ 5(∆2 + ER2) +

1

c′nh(λ)

≤ 48ET 2

λ2
+ 8(∆2 + ER2) +

1

c′nh(λ)
(3.46)

In view of the oracle upper bound (Theorem 4), we have

ER2 ≤ C1(1 ∧ 1

c′nh(λ)
). (3.47)

Also the approximation error is bounded by

∆2 ≤ 2q

2− q
Ψ(k, p, n, λ). (3.48)

If q = 0 then ∆ = 0. To control the right-hand side of (3.46), it boils down to

upper bound ET 2. In the sequel we shall prove that

ET 2 ≤ C2(1 + λ1)
k

n
log

ep

k
(3.49)

for some absolutely constant C2. Plugging (3.47), (3.48) and (3.49) into (3.46), we

arrive at

‖θ̂∗θ̂′∗ − θθ′‖2
F

≤ 48C2k

nh(λ)
log

ep

k
+

16q

2− q
Ψ(k, p, n, λ) +

8C1(k − 1)

nh(λ)
+

1

c′nh(λ)

≤
(

max{48C2, 8C1 +
1

c′
}+

16q

2− q
)
Ψ(k, p, n, λ). (3.50)

To finish the proof of the theorem, it remains to establish (3.49). To this end,

recall that KB is symmetric and Tr(KB) = 0. By the definition of T and H, we

have

T = max
B∈B(k)

|〈H,KB〉| ≤ T1 + 2T2, (3.51)

where

T1 ,
1

2n
max
B∈B(k)

|〈Z′(2)Z(2), KB〉| (3.52)



34

and

T2 ,
1

n
max
B∈B(k)

|〈
√
λZ′(2)`(2)θ

′, KB〉| =
1

n
max
B∈B(k)

|〈
√
λθ`′(2)Z(2), KB〉| (3.53)

As has been proved by Cai et al. (2013) (Proof of (96)),

ET 2
1 ≤

24k

n
log

ep

k
+

32k2

n2
log2 ep

k
+

62

n
. (3.54)

We shall prove that

ET 2
2 ≤ λ

(
C3

n
+
C4k

n
log

ep

k
+
C5k

2

n2
log2 ep

k

)
(3.55)

for some sufficiently large constant C3, C4, C5. Assembling (3.51) with (3.52) -

(3.55) and use the fact that (a+ b)2 ≤ 2(a2 + b2), we arrive at

ET 2 ≤ 2ET 2
1 + 8ET 2

2

≤ C(1 + λ)

(
k

n
log

ep

k
+
k2

n2
log2 ep

k

)
≤ C(1 + λ)

k

n
log

ep

k
,

where we used k
n

log ep
k
≤ 1 implied by the assumption (3.17).

It then remains to establish (3.55). Fix B ∈ B(k). Since `(2) ⊥⊥ Z(2), conditioned

on the realization of `(2), 〈
√
λθ`′(2)Z(2), KB〉 = 〈

√
λKBθ`

′
(2),Z(2)〉 is distributed as

N(0, λ‖KBθ`
′
(2)‖2

F ). Therefore

〈
√
λθ`′(2)Z(2), KB〉

(d)
==
√
λ‖KBθ`

′
(2)‖FW (3.56)

for some W ∼ N(0, 1) independent of `(2). Using the fact that ‖AB‖F ≤ ‖A‖F‖B‖,
we have

‖KBθ`
′
(2)‖F ≤ ‖KB‖F‖θ‖‖`(2)‖ = ‖`(2)‖.

Consequently, 1
n
〈
√
λθ`′(2)Z(2), KB〉 is stochastically dominated by 1

n

√
λ‖`(2)‖|W |.

By Chernoff bound in Lemma 1,

P

(
‖`(2)‖ >

√
n/2 + t

√
3n/2

)
≤ e−t

2

(3.57)

for 0 < t <
√

n
6
. It is easy to show that

P(|W | ≥
√

2t) ≤ e−t
2

. (3.58)
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Fact 1. if P(A > a) ≤ c1 and P(B > b) ≤ c2 with A > 0, B > 0 and A ⊥⊥ B, then

P(AB > ab) < c1 + c2,

Applying the above fact, we have

P

(
‖`(2)‖|W | >

√
n/2 + t

√
3n/2 ·

√
2t

)
< 2e−t

2

. (3.59)

Let f(t) =
√
n/2 + t

√
3n/2 ·

√
2t and N =

(
p
k

)
. Fix B, let ‖`(2)‖|W | = |AB|, then

Emax
B∈B

A2
B = Emax

i∈[N ]
A2
i = 2

∫ ∞
0

P
(

max
i∈[N ]
|Ai| ≥ f

)
fdf

= 2

∫ ∞
0

[
1−P

(
max
i∈[N ]
|Ai| ≤ f

)]
ff ′dt

= 2

∫ ∞
0

[
1−PN

(
|A1| ≤ f

)]
ff ′dt

≤ 2

∫ ∞
0

[
1− (1− 2e−t

2

)N
]
ff ′dt

≤ 2

∫ ∞
0

(
2Ne−t

2 ∧ 1
)
ff ′dt

Since f 2 = nt2 +
√

6nt3, 2ff ′ = 2nt+ 3
√

6nt2. Therefore,

Emax
i∈[N ]

A2
i ≤

∫ ∞
0

(
2Ne−t

2 ∧ 1
)
(2nt+ 3

√
6nt2)dt

=

∫ √log 2N

0

(2nt+ 3
√

6nt2)dt+

∫ ∞
√

log 2N

2Ne−t
2

(2nt+ 3
√

6nt2)dt

≤ n log 2N +
√

6n(log 2N)3/2 +

∫ ∞
√

log 2N

2Ne−t
2

(2nt+ 3
√

6nt3)dt

= n log 2N +
√

6n(log 2N)3/2 +
3
√

6n

2
+

3
√

6n

2
log 2N + n.

Using the fact that logN = log
(
p
k

)
≤ k log ep

k
and the assumption (3.17),

ET 2
2 ≤

λ

n2
Emax
i∈[N ]

A2
i

≤ λ

(
log 2N

n
+

6n

n2
(log 2N)3/2 +

3
√

6n

2n2
+

3
√

6n

2n2
log 2N +

1

n

)
≤ λ

(
C3

n
+
C4k

n
log

ep

k
+
C5k

2

n2
log2 ep

k

)
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3.2.3 Computationally Efficient Methods

Notice that even though the aggregation estimator has theoretical guarantees, it

is computationally difficult to implement because it requires going over all subsets

of [p] of size k∗q . In this section, we adapt 3 estimators in sparse PCA, which are

computationally efficient and can be adapted to sparse clustering.

Algorithm 2 SDP-Estimator (d’Aspremont et al., 2007)

Require: Design matrix X ∈ Rn×p, sparsity level s

Ensure: vector θ̂ ∈ Rp

1: Let Σ̂ = 1
n
(X− X̄)>(X− X̄)

2: Compute a solution Θ ∈ Rp×p of the semidefinite programming:

arg max
Θ

{
〈Σ̂,Θ〉 : Θ ∈ Sp+, tr(Θ) = 1,

∑
i,j

|Xij| ≤ s

}
,

where Sp+ = {Θ ∈ Rp×p : Θ = ΘT ,Θ � 0} is the cone of the symmetric positive

semidefinite matrices.

3: Let µ̂ be the top (unit-length) eigenvector of Θ. Let S ⊂ [p] be the set of

coordinates corresponding to the s largest absolute values in µ̂ and the resulting

SDP estimator is the unit p-dimensional vector θ̂ with

θ̂j =

{
µ̂j
‖µ̂S‖

if j ∈ S;

0 otherwise
.
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Algorithm 3 Diagonal-Thresholding (Johnstone and Lu, 2009)

Require: Design matrix X ∈ Rn×p, sparsity level s

Ensure: vector θ̂ ∈ Rp

1: Let Σ̂ = 1
n
(X− X̄)>(X− X̄)

2: Let S ⊆ [p] contain the s coordinates of largest absolute value in diag(Σ̂), Let

Σ̂S be the sub-matrix of Σ̂ indexed by column and row support S.

3: Compute the top eigenvector µ̂ of Σ̂S, and the resulting DT estimator is the

unit p-dimensional vector θ̂ with element

θ̂j =

{
the corresponding element in µ̂ if j ∈ S
0 otherwise

.

Algorithm 4 Covariance-Thresholding (Krauthgamer et al., 2015)

Require: Design matrix X ∈ Rn×p, sparsity level s

Ensure: vector θ̂ ∈ Rp

1: Let Σ̂ = 1
n
(X− X̄)>(X− X̄)

2: Compute T ∈ Rp×p by thresholding the entries of Σ̂, namely,

Tij =

{
Σ̂ij if |Σ̂ij| > t

0 otherwise
.

3: Let µ̂ ∈ Rp be the leading eigenvector of T

4: Let S ⊂ [p] be the set of coordinates corresponding to the s largest absolute

values in θ̂ and the resulting CT estimator is the unit p-dimensional vector θ̂

θ̂j =

{
µ̂j
‖µ̂S‖

if j ∈ S;

0 otherwise
.

While these 3 algorithms focus on the estimation of `0-sparse PCA, they serve

as good estimators of ∆µ in (3.13). Naturally, one could solve the problem of sparse

clustering by applying standard clustering algorithms (for example, standard K-

Means and Gaussian Mixture Model) on the sub-data matrix with selected columns
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indexed by the support of ∆µ. The performance of these three methods will be

compared with that of our algorithms to be introduced in Section 3.3.

3.3 An iterative approach for sparse clustering

In this section, we will first introduce Iterative 2-means, which is designed to

simultaneously do feature selection and sparse clustering for data generated from

Model (3.11). We will also adapt Algorithms 2-4 to recover the support of ∆µ for

Model (3.13), and their performance will be compared with Iterative 2-means.

Algorithm 5 Iterative 2-means

Require: Design matrix X ∈ Rn×p, sparsity level s, number of iterations t

Ensure: subset S ⊆ [p] of cardinality s

1: Let m = p−s
t

, set S = [p]

2: for i in {1, ..., t} do

3: Apply Lloyd’s 2-means algorithm on XS, obtain p-dimensional center vectors

µ0 and µ1;

4: Update S to be the set of coordinates corresponding to the [p− im] largest

absolute values in µ1 − µ0

5: end for

We provide some intuition as to why we expect this algorithm to work. Recall

that the objective of sparse clustering, as declared in (2.8), is to minimize the

average within-cluster S-dissimilarity over S ⊆ [p] and C ∈ Cnκ . That is to say,

the goal is to simultaneously recover the important feature subset S and perform

clustering on the sub-data matrix. The twin task is difficult, however, the sub-

problems seem easier: if we know S in advance, this problem reduces to classical

clustering which can be solved by, for example, K-means and GMM; and if we

know the clustering results C1, · · · , Ck, this problem reduces to feature selection.

Our Iterative 2-means is designed to tackle the latter problem, through an iterative

approach.

Iterative 2-means adaptively recovers the important feature set step by step:

in each step, we perform K means on current sub-data matrix and obtain two



39

p-dimensional center vectors µ1 and µ2; then a number of least important features

are screened out by selecting the coordinates with the smallest separation between

µ1 and µ2, and a sub-data matrix is returned for the next iteration. Notice that this

algorithm has a parameter t, which is designed to be specified by users depending

on the size of their dataset and available computing power. We suggest that for

small p, one could simply let t = p; for large values of p, one could choose bp/2c,
or bp/3c, · · · , as t.

To demonstrate the utility and advantage of Iterative 2-means, we compare it

with Algorithms 2-4 under the following set-up with a focus on sparse recovery. We

generated n i.i.d. samples Xi from Model (3.11) with µ0 the p-dimensional zero vec-

tor and µ1 the p-dimensional vector of the form µ1 =
√
λ
(

1√
s
, 1√

s
, . . . , 1√

s
, 0, 0, . . . , 0

)
.

We assume the sparsity level s was a-priori known, and say that an execution of

an algorithm is successful if it returns the support of µ exactly, i.e., if the output is

the set {1, . . . , s}. The success rate of an algorithm in M independent trials is the

number of successful trials divided by M . In each experiment we fixed n = p = 500,

and λ = 4 (signal strength here). We compare the performance of our Iterative 2-

means to Algorithm 2-4 (SDP, DT, CT). For tuning parameters, we choose m = 10

in Iterative 2-means and t = 5/
√
n in CT as suggested by Krauthgamer, Nadler,

and Vilenchik (2015). As can be seen from Figure 3.1, Iterative 2-means clearly

outperforms SDP, DT and CT. In Figure 3.2, we also plot the dot-products (in

absolute value) between µ1−µ0
‖µ1−µ0‖ from Iterative 2-Means , and ∆µ/

√
λ (normalized

true ∆µ) under the same set-up as in Figure 3.1. As expected, the dot-product

gets smaller as the sparsity s increases. For comparison, the figure also plots the

dot products for CT, and clearly Iterative 2-means outperforms CT.

3.4 Discussion

In this Chapter, we first reviewed the literature on sparse PCA and establish

the connection between sparse PCA to sparse clustering. Then we applied the

aggregation estimator from Cai et al. (2013) to sparse clustering and provided its

theoretical guarantee for the estimation of ∆µ in (3.13) under the model (3.11).
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Figure 3.1: Success rate (with 95% confidence intervals) as a function of the spar-
sity for Algorithms 1-4 averaged over M = 100 runs, with n = p = 500.

We also adapted 3 computationally-efficient estimators developed in the context of

sparse PCA to sparse clustering and proposed a new algorithm Iterative 2-Means.

We compared these methods in sparse clustering with 2 clusters, and it shows

that Iterative 2-Means outperforms the other 3 methods in terms of both sparse

recovery and the estimation of ∆µ.

Notice that the study in this chapter only considered sparse clustering with 2

clusters and the within-cluster covariance is assumed to be Identity. What if we

have k clusters with arbitrary different within-cluster covariance matrices? One

could consider a Gaussian mixture model given by

Xi
iid
=

k∑
j=1

αjZj ∈ Rp, 1 ≤ i ≤ n, (3.60)

where Zj
iid∼ N(µj,Σj) for 1 ≤ j ≤ p, α1, · · · , αk are dependent Bernoulli random

variables (
∑k

j=1 αi = 1) with parameters p1, · · · , pk, respectively. If we denote

∆ = [∆1,∆2, · · · ,∆k−1] = [µ1 − µk, µ2 − µk, · · · , µk−1 − µk] ∈ Rp×(k−1)

and let α = [α1, α2, · · · , αk−1]T and C = cov(α), then

Cov(X1) = ∆C∆′ +
k∑
j=1

pjΣj.
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Figure 3.2: Comparison of Iterative 2-Means and CT (Algorithm 4) for n = p =
500, λ = 4, averaged over 100 runs. The dots are the average of the absolute dot
products between µ̂, the output of Iterative 2-Means and CT, and the true µ.

Since C is not diagonal, even if we assume that Σj = Ip for all j, estimating ∆

via estimating the principal subspace spanned by the k − 1 leading eigenvectors

of Cov(X1) could still be problematic. Thus, when k ≥ 3, the problem is not as

directly related to sparse PCA as it was shown to be when k = 2. In Chapter 4, we

will propose a simple approach to sparse clustering, which can deal with arbitrary

number of clusters.



Chapter 4

Sparse Alternate Sum Clustering

In this chapter, we consider the problem of sparse clustering, where it is as-

sumed that only a subset of the features are useful for clustering purposes. In

the framework of the COSA method of Friedman and Meulman (2004), subse-

quently improved in the form of the Sparse K-means method of Witten and Tib-

shirani (2010), a natural and simpler hill-climbing approach is introduced. The

new method is shown to be competitive with these two methods and others.

4.1 The Algorithm

Hill-climbing methods are iterative in nature, making ‘local’, that is, ‘small’

changes at each iteration. They have been studied in the context of graph par-

titioning, e.g., by Kernighan and Lin (1970) and Carson and Impagliazzo (2001),

among others. In the context of sparse clustering, we find the K-medoids variant

of Aggarwal et al. (1999), which includes a hill-climbing step. Many of the meth-

ods cited in Section 2.1 use alternate optimization in some form (e.g., EM), which

can be interpreted as hill-climbing. Our method to be presented in this chapter,

is instead directly formulated as a hill-climbing approach, making it simpler and,

arguably, more principled than COSA or Sparse K-means.

42
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4.1.1 Our approach: SAS Clustering

Let Ĉ be an algorithm for clustering based on dissimilarities. Formally, Ĉ :

D × N 7→ C, where D is a class of dissimilarity matrices and C :=
⋃
n

⋃
κ Cnκ , and

for (δ, κ) ∈ D × N with δ of dimension n, Ĉ(δ, κ) ∈ Cnκ . Note that Ĉ could be a

hill-climbing method for graph partitioning, or K-medoids (or K-means if we are

provided with points in a vector space rather than dissimilarities), or a spectral

method, namely, any clustering algorithm that applies to dissimilarities. (In this

chapter, we will use K-means for numerical data and K-medoids for categorical

data using hamming distances as dissimilarities.) For S ⊂ [p], define

δS = (δa(i, j) : a ∈ S; i, j ∈ [n]) and δ = δ[p]. (4.1)

Our procedure is described in Algorithm 6.

Algorithm 6 Sparse Alternate Similarity (SAS) Clustering

Input: dissimilarities (δa(i, j) : a ∈ [p], i, j ∈ [n]), number of clusters κ, number

of features s

Output: feature set S, group assignment function C

Initialize: For each a ∈ [p], compute Ca ← Ĉ(δa, κ) and then ∆a[Ca]. Let

S ⊂ [p] index the smallest s among these.

Alternate between the following steps until ‘convergence’:

1: Keeping S fixed, compute C ← Ĉ(δS, κ).

2: Keeping C fixed, compute S ← arg min|S|=s ∆S[C].

The use of algorithm Ĉ in Step 1 is an attempt to minimize C 7→ ∆S[C] over

C ∈ Cnκ . The minimization in Step 2 is over S ⊂ [p] of size s and it is trivial.

Indeed, the minimizing S is simply made of the s indices a ∈ [p] corresponding to

the smallest ∆a[C]. For the choice of parameters κ and s, any standard method for

tuning parameters of a clustering algorithm applies, for example, by optimization of

the gap statistic of Tibshirani et al. (2001). We note that the initialization phase,

by itself, is a pure coordinate-wise approach that has analogs in the Euclidean

setting as mentioned Section 2.1.3. The hill-climbing process is the iteration phase.
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Remark 2. We tried another initialization in Algorithm 6 consisting of drawing a

feature set S at random. We found that the algorithm behaved similarly. (Results

not reported here.)

Compared with COSA and Sparse K-means, and other methods based on penal-

ties, we note that the choice of features in our SAS algorithm is much simpler, using

a hill-climbing approach instead.

4.1.2 Number of iterations needed

A first question of interest is whether the iterations improve the purely coordinate-

wise method, defined as the method that results from stopping after one pass

through Steps 1-2 in Algorithm 6 (no iteration). Although this is bound to vary

with each situation, we examine an instance where the data come from the mix-

ture of three Gaussians with sparse means. In detail, the setting comprises 3

clusters with 30 observations each and respective distributions N (µ, I), N (0, I)

and N (−µ, I), with µ = (µ, . . . , µ, 0, . . . , 0) having 50 µ’s and 450 zeros. We as-

sume that κ = 3 and s = 50 are both given, and we run the SAS algorithm and

record the Rand indexes (Rand, 1971) and symmetric differences |S∗4Ŝ| as the end

of each iteration of Steps 1-2. The setting is repeated 400 times. The means and

confidence intervals under different regimes (µ = 0.6, µ = 0.7, µ = 0.8, µ = 0.9)

are shown in Figure 4.1. At least in this setting, the algorithm converges in a few

iterations and, importantly, these few iterations bring significant improvements,

particularly over the purely coordinate-wise algorithm.

4.1.3 Selection of the sparsity parameter

We consider the problem of selecting κ, the number of clusters, as outside of

the scope of this work, as it is intrinsic to the problem of clustering and has been

discussed extensively in the literature — see (Kou, 2014; Tibshirani et al., 2001)

and references therein. Thus we assume that κ is given. Besides κ, our algorithm

has one tuning parameter, the sparsity parameter s, which is the number of useful

features for clustering, meaning, the cardinality of set S in (2.8).
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Figure 4.1: Means (and 95% confidence intervals of the means) of Rand indexes
and symmetric differences.

Inspired by the gap statistic of Tibshirani et al. (2001), which was designed for

selecting the number of clusters κ in standard K-means clustering, we propose a

permutation approach for selecting s. Let ∆obs
s denote the average within-cluster

dissimilarity of the clustering computed by the algorithm on the original data with

input number of features s. Let ∆perm
s denote the same quantity but obtained from

a random permutation of the data — a new sample is generated by independently

permuting the observations within each feature. The gap statistic (for s) is then

defined as

gap(s) = log ∆obs
s − E(log ∆perm

s ). (4.2)

In practice, the expectation is estimated by Monte Carlo, generating B random

permuted datasets. A large gap statistic indicates a large discrepancy between the

observed amount of clustering and that expected of a null model (here a permu-

tation of the data) with no salient clusters.

The optimization of the gap statistics over s ∈ [p] is a discrete optimization
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problem. An exhaustive search for s would involve computing p gap statistics,

each requiring B runs of the SAS algorithm. This is feasible when p and B are not

too large.1 See Algorithm 7, which allows for coarsening the grid.

Algorithm 7 SAS Clustering with Grid Search

Input: Dissimilarities (δa(i, j) : a ∈ [p], i, j ∈ [n]), number of clusters κ, step

size h, number of Monte Carlo permutations B

Output: Number of useful features ŝ, feature set S, group assignment C

for s = 1 to p with step size h do

Run Algorithm 6 to get the feature set Ss and group assignment Cs

Run Algorithm 6 on B permuted datasets to get the gap statistic Gs

end for

return Let ŝ = arg maxsGs and return Sŝ and Cŝ

To illustrate the effectiveness of choosing s using the gap statistic, we computed

the gap statistic for all s ∈ [p] in the same setting as that of Section 4.1.2 with

µ = 1. The result of the experiment is reported in Figure 4.2. Note that, in this

relatively high SNR setting, the gap statistic achieves its maximum at the correct

number of features.
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Figure 4.2: A plot of the gap statistic for each s ∈ [p] for a Gaussian mixture with
3 components (30 observations in each cluster) in dimension p = 500.

In this experiment, at least, the gap statistic seems unimodal (as a function of

1In our experiments, we choose B = 25 as in the code that comes with (Witten and Tibshirani,
2010).
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s). If it were the case, we could use a golden section search, which would be much

faster than an exhaustive grid search.

4.2 Numerical experiments

We performed a number of numerical experiments, both on simulated data and

on real (microarray) data to compare our method with other proposals. Through-

out this section, we standardize the data coordinate-wisely, we assume that the

number of clusters is given, and we use the gap statistic of Tibshirani et al. (2001)

to choose the tuning parameter s in our algorithm.

4.2.1 A comparison of SAS Clustering with Sparse K-means

and IF-PCA-HCT

We compare our Algorithm 6 with IF-PCA-HCT (Jin and Wang, 2014) and

Sparse K-means (Witten and Tibshirani, 2010) in the setting of Section 4.1.2. We

note that IF-PCA-HCT was specifically designed for that model and that Sparse

K-means was shown to numerically outperform a number of other approaches,

including standard K-means, COSA (Friedman and Meulman, 2004), model-based

clustering (Raftery and Dean, 2006), the penalized log-likelihood approach of (Pan

and Shen, 2007) and the classical PCA approach. We use the gap statistic to tune

the parameters of SAS Clustering and Sparse K-means. (SAS gs uses a grid search

while SAS gss uses a golden section search.) IF-PCA-HCT is tuning-free — it

employs the higher criticism to automatically choose the number of features.

In Table 4.1a, we report the performance for these three methods in terms of

Rand index (Rand, 1971) for various combinations of µ and p. Each situation was

replicated 50 times. As can be seen from the table, SAS Clustering outperforms

IF-PCA-HCT, and performs at least as well as Sparse K-means and sometimes

much better (for example when p = 500 and µ = 0.7). We examine a dataset

from this situation in depth, and plot the weights resulted from Sparse K-means

on this dataset, see Figure 4.3. As seen in this figure, and also as mentioned in

(Witten and Tibshirani, 2010), Sparse K-means generally results in more features
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with non-zero weights than the truth. These extraneous features, even with small

weights, may negatively impact the clustering result. In this specific example, the

Rand index from Sparse K-means is 0.763 while our approach gives a Rand index

of 0.956. Let S∗ ⊂ [p] denote the true feature set and Ŝ the feature set that our

method return. In this example, |S∗4Ŝ| = 12.

While both SAS Clustering and Sparse K-means use the gap statistic to tune

the parameters, IF-PCA-HCT tunes itself analytically without resorting to permu-

tation or resampling, and (not surprisingly) has the smallest computational time

among these three methods. However, as can be seen from Table 4.1a, the cluster-

ing results given by IF-PCA-HCT are far worse than those resulted from the other

two methods. In Table 4.1b, we report the performance of SAS Clustering and

Sparse K-means in terms of the running time, under the same setting as that in

Table 4.1a but with tuning parameters for both of the methods given (so that the

comparisons are fair). As can be seen in Table 4.1b, SAS Clustering shows a clear

advantage over Sparse K-means in terms of the running time, and as p increases,

the advantage becomes more obvious. (Note that both SAS and Sparse K-means

are implemented in R code and, in particular, the code is not optimized.)
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Figure 4.3: A typical example of the weights that Sparse K-means returns.

4.2.2 A more difficult situation (same covariance)

In Section 4.2.1, the three groups had identity covariance matrix. In this sec-

tion, we continue comparing our approach with Sparse K-means and IF-PCA-HCT
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Table 4.1a: Comparison results for the simulations in Section 4.2.1. The reported
values are the mean (and sample standard deviation) of the Rand indexes over 50
simulations.

µ methods p = 100 p = 200 p = 500 p = 1000

0.6

SAS gs 0.907 (0.048) 0.875 (0.066) 0.827 (0.076) 0.674 (0.096)

SAS gss 0.900 (0.054) 0.860 (0.066) 0.781 (0.008) 0.701(0.050)

Sparse K 0.886 (0.068) 0.807 (0.064) 0.744 (0.046) 0.704 (0.043)

IF-PCA 0.664(0.042) 0.645(0.051) 0.605 (0.045) 0.593(0.038)

0.7

SAS gs 0.953 (0.030) 0.965 (0.028) 0.960 (0.032) 0.855 (0.102)

SAS gss 0.953 (0.031) 0.961 (0.031) 0.921 (0.088) 0.789 (0.104)

Sparse K 0.942 (0.045) 0.915 (0.071) 0.802 (0.087) 0.790 (0.087)

IF-PCA 0.681(0.036) 0.653(0.044) 0.629(0.057) 0.614(0.055)

0.8

SAS gs 0.986 (0.020) 0.985 (0.022) 0.987 (0.016) 0.966 (0.052)

SAS gss 0.984 (0.020) 0.983 (0.019) 0.987 (0.0178) 0.892 (0.122)

Sparse K 0.985 (0.020) 0.975 (0.029) 0.961 (0.07) 0.948 (0.074)

IF-PCA 0.691(0.043) 0.675(0.056) 0.639(0.068) 0.623(0.059)

0.9

SAS gs 0.997 (0.008) 0.997 (0.008) 0.997 (0.007) 0.995 (0.010)

SAS gss 0.996 (0.010) 0.996 (0.009) 0.997 (0.009) 0.969 (0.076)

Sparse K 0.996 (0.010) 0.992 (0.013) 0.992(0.016) 0.993 (0.013)

IF-PCA 0.700(0.031) 0.682(0.051) 0.654(0.057) 0.627(0.065)

1.0

SAS gs 0.999 (0.005) 1.000 (0.003) 1.000 (0.003) 0.999 (0.004)

SAS gss 0.998 (0.007) 1.000 (0.003) 1.000 (0.004) 0.998 (0.006)

Sparse K 0.998 (0.007) 0.999 (0.005) 0.996 (0.010) 0.996 (0.009)

IF-PCA 0.717(0.034) 0.710(0.039) 0.659(0.063) 0.639(0.060)

under a more difficult situation, where each of the 3 clusters have 30 points sam-

pled from different p-variate normal distributions (p = 100, 200, 500, 1000), with

different mean vectors

µ1 = [1.02, 1.04, ..., 2, 0, ..., 0︸ ︷︷ ︸
p−50 zeros

],

µ2 = [1.02 + δµ, 1.04 + δµ, ..., 2 + δµ, 0, ..., 0︸ ︷︷ ︸
p−50 zeros

],

µ3 = [1.02 + 2δµ, 1.04 + 2δµ, ..., 2 + 2δµ, 0, ..., 0︸ ︷︷ ︸
p−50 zeros

],

and same diagonal covariance matrix Σ across groups, a random matrix with

eigenvalues in [1, 5]. We used 50 repeats and varied δµ from 0.6 to 1.0. The results
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Table 4.1b: Comparison of running time of SAS Clustering (with the number of
features s given) and Sparse K-means (with known tuning parameter s in (2.13))
in the setting of Section 4.2.1. Reported is the averaged running time (in seconds)
over 100 repeats, with sample standard deviation in parentheses.

δµ methods p = 100 p = 200 p = 500 p = 1000

0.6
SAS 0.086 (0.031) 0.130 (0.044) 0.217 (0.088) 0.271 (0.118)

Sparse K 0.113 (0.034) 0.220 (0.053) 0.445 (0.101) 0.850 (0.156)

0.7
SAS 0.077 (0.021) 0.104 (0.027) 0.207 (0.085) 0.316 (0.147)

Sparse K 0.107 (0.028) 0.235 (0.057) 0.471 (0.123) 0.945 (0.194)

0.8
SAS 0.056 (0.019) 0.088 (0.022) 0.182 (0.062) 0.313 (0.118)

Sparse K 0.091 (0.029) 0.213 (0.051) 0.574 (0.134) 0.984 (0.262)

0.9
SAS 0.055 (0.017) 0.080 (0.024) 0.136 (0.048) 0.289 (0.131)

Sparse K 0.094 (0.023) 0.196 (0.052) 0.482 (0.101) 0.982 (0.261)

1.0
SAS 0.051(0.012) 0.089 (0.021) 0.146 (0.045) 0.272 (0.095)

Sparse K 0.095(0.019) 0.186 (0.044) 0.554 (0.107) 1.225 (0.270)

are reported in Table 4.2a. We see there that, in this setting, our method is clearly

superior to Sparse K-means and IF-PCA-HCT. We also report the symmetric

difference |S∗4Ŝ| between the estimated feature set Ŝ and the true feature set S∗,

as can be seen in Table 4.2b. Our algorithm is clearly more accurate in terms of

feature selection.

4.2.3 A more difficult situation (different covariances)

In both Section 4.2.1 and Section 4.2.2, the three groups have the same co-

variance matrix. In this section, we continue comparing our approach with Sparse

K-means and IF-PCA-HCT under an even more difficult situation, where the mean

vectors are the same as in Section 4.2.2 with δµ = 1.0, but now the covariances are

different: Σ1, Σ2 and Σ3 are random matrices with eigenvalues in [1, 2], [2, 3] and

[3, 4], respectively. We used 50 repeats in this simulation. The results, reported

in Table 4.3, are consistent with the results of Section 4.2.2: our method clearly

outperforms Sparse K-means and IF-PCA-HCT, both in terms of clustering and

feature selection.

Notice that the 3 clusters are well separated in the first 50 features as can be
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Table 4.2a: Comparison of SAS Clustering with Sparse K-means and IF-PCA in
the setting of Section 4.2.2 in terms of Rand index. Reported is the averaged Rand
index over 50 repeats, with the standard deviation in parentheses.

δµ methods p = 100 p = 200 p = 500 p = 1000

0.6

SAS gs 0.718 (0.037) 0.702 (0.037) 0.611 (0.044) 0.574 (0.027)

SAS gss 0.714 (0.028) 0.692 (0.038) 0.635 (0.044) 0.595(0.026)

Sparse K 0.590 (0.030) 0.594 (0.034) 0.595 (0.034) 0.571 (0.023)

IF-PCA 0.619(0.037) 0.590(0.037) 0.572 (0.024) 0.564(0.020)

0.8

SAS gs 0.852 (0.047) 0.844 (0.052) 0.797 (0.066) 0.670 (0.082)

SAS gss 0.848 (0.050) 0.819 (0.070) 0.752 (0.060) 0.686 (0.043)

Sparse K 0.662 (0.057) 0.646 (0.063) 0.657 (0.062) 0.639 (0.054)

IF-PCA 0.646(0.040) 0.634(0.047) 0.603(0.046) 0.575(0.040)

1.0

SAS gs 0.940 (0.035) 0.947 (0.033) 0.941 (0.037) 0.919 (0.065)

SAS gss 0.935 (0.037) 0.941 (0.038) 0.922 (0.059) 0.799 (0.099)

Sparse K 0.798 (0.085) 0.814 (0.078) 0.742 (0.080) 0.708 (0.070)

IF-PCA 0.677(0.041) 0.644(0.056) 0.618(0.052) 0.604(0.047)

seen from the construction of the data, but when 450 noise features are present

in the datasets, the task of clustering becomes difficult. See Figure 4.4(b) as an

example where we project a representative dataset onto the first two principal

components of the whole data matrix. However, if we are able to successfully

select out the first 50 features and apply classical clustering algorithms, then we

are able to achieve better results. See Figure 4.4(a), where we project the same

dataset onto the first two principal components of the data submatrix consisting

of the first 50 columns (features). To illustrate the comparisons, we also plot in

Figure 4.4 the clustering results by these three methods.

4.2.4 Clustering non-euclidean data

In the previous simulations, all the datasets were Euclidean. In this section, we

apply our algorithm on categorical data (with Hamming distance) and compare

its performance with Sparse K-medoids2. In this example, we generate 3 clusters

with 30 data points each from three different distributions on the Hamming space

2We modified the function of Sparse K-means in the R package ‘sparcl’, essentially replacing
K-means with K-medoids, so that it can be used to cluster categorical data.
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Table 4.2b: Comparison of SAS Clustering with Sparse K-means and IF-PCA in
the setting of Section 4.2.2 in terms of feature selection. Reported is the averaged
symmetric difference over 50 repeats, with the standard deviation in parentheses.

δµ methods p = 100 p = 200 p = 500 p = 1000

0.6

SAS gs 26.3(4.7) 37.7 (7.9) 86.2 (20.5) 121.0(28.3)

SAS gss 27.9(5.3) 44.1 (12.1) 100.5 (43.3) 143.1(57.0)

Sparse K 43.8 (7.3) 86.8(35.3) 163.9(105.9) 170.6 (124.6)

IF-PCA 49.4(3.8) 72.3(15.8) 129.7 (61.4) 185.8(126.3)

0.8

SAS gs 17.4(3.9) 19.0(3.9) 31.7 (17.2) 94.2 (48.3)

SAS gss 17.7 (4.6) 21.9 (6.5) 57.9 (43.7) 132.9 (85.0)

Sparse K 28.5(13.2) 63.4(28.5) 163.6 (102.9) 218.6 (129.9)

IF-PCA 50.8(5.2) 75.4(16.5) 126.9(61.2) 209.3(130.5)

1.0

SAS gs 10.5 (3.7) 10.2 (3.4) 12.4 (3.7) 22.7(19.6)

SAS gss 11.7(3.9) 12.5 (4.1) 17.1 (12.8) 100.2 (84.8)

Sparse K 13.6 (10.8) 49.7 (38.2) 204.88 (104.5) 265 (165.1)

IF-PCA 49.3(4.0) 67.9(14.1) 124.8(53.3) 226.3(146.7)

Table 4.3: Comparison of SAS Clustering with Sparse K-means and IF-PCA in the
setting of Section 4.2.3. Reported are the Rand index and symmetric difference,
averaged over 50 repeats. The standard deviations are in parentheses.

Method SAS gs SAS gss Sparse K-means IF-PCA

Rand index 0.920 (0.054) 0.858 (0.098) 0.710 (0.022) 0.668 (0.041)

|S∗4Ŝ| 8.7 (3.8) 13.0 (7.9) 297.2 (75.6) 118.6 (56.8)

of dimension p. Each distribution is the tensor product of Bernoulli distributions

with success probabilities qa ∈ [0, 1] for a ∈ [p]. For the first distribution, qa = q

for 1 ≤ a ≤ 5 and qa = 0.1 otherwise. For the second distribution, qa = q

for 6 ≤ a ≤ 10 and qa = 0.1 otherwise. For the third distribution, qa = q for

11 ≤ a ≤ 15 and qa = 0.1 otherwise. See Table 4.4, where we compare these

two methods in terms of Rand index for various combination of q and p. Each

situation was replicated 50 times. As can be seen from the table, SAS Clustering

significantly outperforms Sparse K-medoids in most situations. We examined why,

and it turns out that Sparse K-medoids works well if the tuning parameter s in

equation (2.13) is given, but it happens that the gap statistic often fails to give a

good estimate of s in this categorical setting. We are not sure why.
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Figure 4.4: Projection of a dataset from Section 4.2.3 onto the first two princi-
pal components of the data submatrix, where only the first 50 columns are kept.
∗Different from the other 5 subfigures, here the data points are projected onto the first two

principal components of the whole data matrix.

4.2.5 Comparisons as the number of clusters κ increases

In Sections 4.2.1 – 4.2.4, we have fixed the number of clusters to be 3 and

considered the effects of cluster separation (µ, q), sparsity (p) and cluster shape

(Identity covariance, same and different covariance matrices across groups) in the

comparisons. In this section, we continue to compare our approach with Sparse

K-means and IF-PCA-HCT as the number of clusters κ increases from 2 to 10.

The set-up here is different from the above sections. We sample κ sub-centers

from a 50-variate normal distribution N (0, 0.4 × I50)3 and concatenate each of

the sub-centers with 450 zeros to have κ random centers, µ1, · · · ,µκ, of length

3The constant 0.4 was chosen to make the task of clustering neither too easy nor too difficult.
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Table 4.4: Comparison results for Section 4.2.4. The reported values are the mean
(and standard error) of the Rand indexes over 50 simulations.

q methods p = 30 p = 60 p = 100 p = 200

0.6
SAS gs 0.878 (0.060) 0.872 (0.042) 0.864 (0.057) 0.863 (0.053)

Sparse K-medoids 0.694 (0.045) 0.663 (0.054) 0.654 (0.049) 0.639 (0.044)

0.7
SAS gs 0.954 (0.023) 0.960 (0.026) 0.942 (0.026) 0.948 (0.033)

Sparse K-medoids 0.807 (0.126) 0.763 (0.077) 0.716 (0.060) 0.686 (0.062)

0.8
SAS gs 0.989 (0.011) 0.984 (0.019) 0.983 (0.019) 0.978 (0.021)

Sparse K-medoids 0.946 (0.090) 0.889 (0.099) 0.846 (0.100) 0.787 (0.093)

0.9
SAS gs 0.998 (0.005) 0.999 (0.003) 0.997 (0.007) 0.997 (0.006)

Sparse K-medoids 0.997 (0.006) 0.994 (0.036) 0.983 (0.044) 0.966 (0.065)

500, which carry at least 450 noise features. Once the centers are generated, we

construct κ clusters with 30 (20 in the second set-up) observations each, sampled

from respective distributions N (µi, I500) with i = 1, 2, · · · , κ. Each setting is

repeated 50 times. The means and confidence intervals with different κ’s are shown

in Figure 4.5(a) and Figure 4.5(b). Once again, the results were consistent with

earlier results in that SAS Clustering outperforms IF-PCA-HTC and performs

at least as well as Sparse K-means with different κ’s. We also notice that the

clustering results given by all these three methods become better as κ increases.

This can be explained by the increased effective sample sizes (30× κ or 20× κ) as

κ increases.

4.2.6 Applications to gene microarray data

We compare our approach with others on real data from genetics. Specifically,

we consider the same microarray datasets (listed in Table 4.5) used by Jin and

Wang (2014) to evaluate their IF-PCA method. Each of these 10 data sets consists

of measurements of expression levels of p genes in n patients from κ different classes

(e.g., normal, diseased). We notice from Table 4.5 that p is much greater than n,

illustrating a high-dimensional setting. We also mention that, although the true

labels are given by the groups the individuals belong to, they are only used as the

ground truth when we report the classification errors of the different methods in
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Figure 4.5: Comparison of SAS Clustering with Sparse K-means and IF-PCA in
the setting of Section 4.2.5. Reported are the means (and confidence intervals) of
Rand indexes (y-axis) as the number of clusters, κ (x-axis), increases. For each
sub-figure, we separately put the same plot on the right with the results of SAS
Clustering and Sparse K-means only, which clearly outperform IF-PCA.

Table 4.6. For detailed descriptions and the access to these 10 datasets, we refer

the reader to (Jin and Wang, 2014).

In Table 4.6, we report the classification errors of 10 different methods on

these datasets. Among these 10 methods, the results from K-means, K-means++

(Arthur and Vassilvitskii, 2007), hierarchical clustering, SpectralGem (Lee et al.,

2010) and IF-PCA-HCT (Jin and Wang, 2014) are taken from (Jin and Wang,

2014). We briefly mention that K-means++ is Lloyd’s algorithm for K-means but

with a more careful initialization than purely random; hierarchical clustering is

applied to the normalized data matrix X directly without feature selection; and

SpectralGem is PCA-type method. In addition to these 5 methods, we also in-

clude 3 other methods: AHP-GMM (Wang and Zhu, 2008), which is an adaptively

hierarchically penalized Gaussian-mixture-model based clustering method, Regu-
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larized K-means (Sun et al., 2012), and Sparse K-means (Witten and Tibshirani,

2010).

We can offer several comments. First, our method is overall comparable to

Sparse K-means and IF-PCA, which in general outperform the other methods. It

is interesting to note that SAS gss outperforms SAS gs on a couple of datasets.

However, we caution the reader against drawing hard conclusions based on these

numbers, as some of the datasets are quite small. For example, the Brain dataset

has κ = 5 groups and a total sample size of n = 42, and is very high-dimensional

with p = 5,597. Second, for Breast Cancer, Prostate Cancer, SRBCT and Su-

Cancer, all methods perform poorly with the best error rate exceeding 31%. How-

ever, we note that even when the task is classification where class labels in the

training sets are given, these data sets are still hard for some well-known classi-

fication algorithms (Dettling, 2004; Yousefi et al., 2010). Third, we notice that

in (Sun et al., 2012), clustering results of the Leukemia and Lymphoma datasets

have also been compared. The error rate on Lymphoma given by Regularized K-

means in (Sun et al., 2012) is the same as reported here, however, the error rate

on Leukemia is smaller than the result reported here. This is due to the fact that

they applied preprocessing techniques to screen out some inappropriate features

and also imputed the missing values using 5 nearest neighbors on this data set.

Interestingly, Wang and Zhu (2008) also reported a better error rate on SRBCT

data using their AHP-GMM method. However, they split the data into training set

and testing set, fit the penalized Gaussian mixture model and report the training

error and testing error respectively.

4.3 Discussion

In this chapter, we presented a simple method for feature selection in the con-

text of sparse clustering. The method is arguably more natural and simpler to

implement than COSA or Sparse K-means. At the same time, it performs compa-

rably or better than these methods, both on simulated and on real data.

At the moment, our method does not come with any guarantees, other than
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Table 4.5: 10 gene microarray datasets.

# Data Name κ p n (with sample size from each cluster)

1 Brain 5 5597 42 (10+10+10+4+8)

2 Breast 2 22215 276 (183+93)

3 Colon 2 2000 62 (22+40)

4 Lung 2 12533 181 (150+31)

5 Lung(2) 2 12600 203 (139+64)

6 Leukemia 2 3571 72 (47+25)

7 Lymphoma 3 4026 62 (42+9+11)

8 Prostate 2 6033 102 (50+52)

9 SRBCT 4 2308 63 (23+8+12+20)

10 SuCancer 2 7909 174 (83+91)

that of achieving a local minimum if the iteration is stopped when no improvement

is possible. Just like other iterative methods based on alternating optimization,

such as Lloyd’s algorithm for K-means, proving a convergence to a good local

optimum (perhaps even a global optimum) seems beyond reach at the moment.

COSA and Sparse K-means present similar challenges and have not been analyzed

theoretically. IF-PCA has some theoretical guarantees developed in the context

of a Gaussian mixture model (Jin and Wang, 2014) — see also Jin et al. (2015).

More theory for sparse clustering is developed in (Azizyan et al., 2013; Chan and

Hall, 2010; Verzelen and Arias-Castro, 2014).
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Chapter 5

Semiparametric Estimation of

Symmetric Mixture Models

In this chapter, we consider fitting the mixture model (2.23) in a more general

setting, where the mixture components may have different shape:

g(x) =
k∑
j=1

πjfj(x− µj),
k∑
j=1

πj = 1, x ∈ R. (5.1)

We assume that each fj is symmetric and log-concave. We propose a direct max-

imum likelihood approach and design a genuine EM algorithm with the usual

monotonicity property.

Chang and Walther (2007) have studied a similar mixture model under the

assumption that each fj is log-concave but not necessarily symmetric — obviously,

the presence of the location parameter µj becomes redundant in that case and the

model they consider is really the following model with the assumption of log-

concavity,

g(x) =
k∑
j=1

πjfj(x),
k∑
j=1

πj = 1, x ∈ R. (5.2)

The assumption of symmetry is, however, popular, and with that assumption, for

each j,

f+
j := 2fj1[0,∞) (5.3)

is a monotone log-concave density on [0,∞).

59
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Monotone densities have been used for a variety of applications and their max-

imum likelihood estimation was first studied by Grenander (1956). Log-concave

densities have also been successfully used in nonparametric modeling and their

maximum likelihood estimation has been extensively studied in the literature (Bal-

abdaoui, 2004; Balabdaoui et al., 2009; Doss and Wellner, 2016a; Dümbgen and

Rufibach, 2009; Rufibach, 2006). However the study of monotone and log-concave

densities is what is required to understand the properties of our present model

(5.1). In Section 5.1 we prove some basic properties for this class of densities such

as uniform consistency of the MLE by simply following the existing literature, and

in particular the work of Rufibach (2006).

In Section 5.2 we propose a genuine EM algorithm for fitting the mixture model

(5.1). The algorithm includes a step where the monotone and log-concave MLE

for f+
j is computed. To do so we apply the method1 of Doss and Wellner (2016b)

designed for computing the log-concave MLE with a fixed mode — the mode is

of course set to 0 in our case. We note that Balabdaoui and Doss (2014) use the

same routine in the numerical implementation of their method.

In Section 5.3 we apply our model to clustering problems and compare our

approach with that of (Chang and Walther, 2007) (without symmetry) and that of

(Balabdaoui and Doss, 2014) (without a monotone EM and limited to clustering

with k = 2 components), as well as a Gaussian mixture model (GMM), on both

synthetic and real-world datasets, in terms of misclassification errors, Rand Indexes

(Rand, 1971), posterior errors, and achieved likelihood. Section 5.4 gathers the

contributions as well as the limitations of the study, and summarizes the chapter.

5.1 NPMLE of a monotone and log-concave den-

sity

This section is concerned with the estimation of a monotone log-concave density

f via maximum likelihood from a given ordered sample x1 < x2 < · · · < xn. We

1The method is based on an active set implementation and has been implemented in the R
package logcondens.mode.
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let F denote the distribution function corresponding to the density f and define

ψ(x) = log f(x). (5.4)

Requiring that f be monotone and log-concave is equivalent to requiring that ψ is

monotone (non-increasing) and concave.

Based on the sample, the negative log-likelihood at f is given by

−
n∑
i=1

log f(xi) = −n
n∑
i=1

ψ(xi). (5.5)

In order to relax the constraint of f being a probability density we follow the

trick used by Rufibach (2006) and add a Lagrange term to (5.5), leading to the

functional

Λn(ψ) = −
n∑
i=1

ψ(xi) + n

∫
expψ(x)dx. (5.6)

The NPMLE of f is f̂n = exp ψ̂n, where ψ̂n is the minimizer of Λ over class of

functions on [0,∞) that are non-increasing and concave, that is

ψ̂n := arg min
ψ∈MC

Λn(ψ), (5.7)

where2

MC :=
{
ψ : [0,∞)→ [−∞,∞) | ψ is non-increasing, concave, proper, and closed

}
.

(5.8)

The theory below results from a straightforward adaptation of the thesis work

of (Rufibach, 2006) on the maximum likelihood of a log-concave density, without

the additional constraint of monotonicity, published in the form of a research article

in (Dümbgen and Rufibach, 2009). We do not provide proofs but rather refer the

reader to that work.

The following results from an adaptation of Theorem 2.1 in (Dümbgen and

Rufibach, 2009).

2Following the definition in Rockafellar (2015), a concave function f is said to be proper if
f(x) > −∞ for at least one x and f(x) < +∞ for every x. A closed function is a function that
maps closed sets to closed sets.
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Theorem 5 (Existence, uniqueness, and shape). The NPMLE ψ̂n exists and is

unique. It is linear between sample points and continuous on [0, xn], with ψ̂n(x) =

ψ̂n(x1) for x ∈ [0, x1] and ψ̂n(x) = −∞ for x > xn.

The following results from an adaptation of Theorem 2.2 in (Dümbgen and

Rufibach, 2009).

Theorem 6 (Characterization). Let ψ be a non-increasing and concave function

such that {x : ψ(x) > −∞} = [0, xn]. Then, ψ = ψ̂n if and only if

1

n

n∑
i=1

∆(xi) ≤
∫

∆(x) expψ(x)dx (5.9)

for any ∆ : [0,∞)→ R such that ψ + λ∆ is non-increasing and concave for some

λ > 0.

For I ⊂ R an interval, β ∈ [1, 2], and L > 0, let Hβ,L(I) be the Hölder class

of real-valued functions g on I satisfying |g(y) − g(x)| < L|y − x| if β = 1 and

|g′(y) − g′(x)| ≤ L|y − x|β−1 if β ∈ (1, 2], for all x, y ∈ I. The following results

from an adaptation of Theorem 4.1 in (Dümbgen and Rufibach, 2009).

Theorem 7 (Uniform consistency). Assume that f ∈ Hβ,L(I) for some exponent

β ∈ [1, 2], some constant L > 0, and a compact interval I ⊂ {f > 0}. Then,

max
t∈I

∣∣f̂n(t)− f(t)
∣∣ = OP(log n/n)β/(2β+1). (5.10)

As pointed out by Dümbgen and Rufibach (2009), this is the minimax rate

for densities in that smoothness class, as shown by Khas’minskii (1979), so that,

when the density is log-concave and Hölder-β (with β ∈ [1, 2]) in some interval,

the log-concave MLE adapts to the proper smoothness in that interval. We believe

the same holds under the additional constraint of monotonicity.

5.2 A Semiparametric EM Algorithm

We now consider fitting the semiparametric mixture model (5.1). Recalling

(5.3), this amounts to estimating φ := (µ;π;f+) where µ = (µ1, . . . , µk) ∈ Rk,
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π = (π1, . . . , πk) is an element of the simplex in Rk, and f+ = (f+
1 , . . . , f

+
k ) with

each f+
j being a monotone log-concave density on [0,∞). Under φ, the density of

the mixture model is given by

gφ(x) =
1

2

k∑
j=1

πjf
+
j (|x− µj|). (5.11)

The log-likelihood associated of the sample x = (x1, . . . , xn) under parameter φ is

thus given by

L(φ) =
n∑
i=1

log gφ(xi). (5.12)

It is well-known that directly maximizing L(φ) is difficult. We design an EM-type

algorithm. Let zi = j when xi was sampled from the jth component, and define

wij = Pφ(zi = j|xi) =
πjf

+
j (|xi − µj|)∑k

l=1 πlf
+
l (|xi − µl|)

. (5.13)

With these particular weights, clearly,

L(φ) =
n∑
i=1

k∑
j=1

wij log(πjf
+
j (|xi − µj|))− C(w), (5.14)

where C(w) :=
∑n

i=1

∑k
j=1wij logwij + n log 2. For a set of parameters φ =

(µ;π;f+) and weights w∗ = (wij∗), define

Q(φ,w∗) =
n∑
i=1

k∑
j=1

wij∗ log(πjf
+
j (|xi − µj|)). (5.15)

In an iterative implementation, assuming that φ(t) denotes the set of parameters

at iteration t and w(t) the weights computed according to (5.13), a typical EM

approach requires the maximization of Q(φ,w(t)) with respect to φ. We propose

alternative optimization procedure to do so.

The semiparametric EM (SEM) algorithm that we deploy is described below.

• E-step: Given φ(t), we calculate

wij(t) = P(zi = j|xi, φ(t)) =
πj(t)f

+
j(t)(|xi − µl(t)|)∑k

l=1 πl(t)f
+
l(t)(|x− µl(t)|)

, (5.16)

for i = 1, . . . , n and j = 1, . . . , k.
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• M-step:

1. Update π

πj(t+1) =
1

n

n∑
i=1

wij(t), j = 1, . . . , k; (5.17)

2. Update µ

µj(t+1) := arg max
µ

n∑
i=1

wij(t) log f+
j(t)(|xi − µ|), j = 1, . . . , k; (5.18)

3. Update f+

f+
j(t+1) := arg max

f+

n∑
i=1

wij(t) log f+(|xi−µj(t+1)|), j = 1, . . . , k. (5.19)

Since log f+
j(t) is concave, the objective function in (5.18) is a concave function

of µ, therefore Golden Section Search can be applied to solve this optimization

problem. In (5.19), the optimization is over f+ being a monotone and log-concave

density on [0,∞). The solution corresponds to the weighted NPMLE based on

data (|x1 − µj(t+1)|, . . . , |xn − µj(t+1)|) and weights (w1j(t), . . . , wnj(t)).

Remark 3. Our implementation is based on applying the function activeSetLog-

Con.mode in the R package logcondens.mode with mode chosen to be 0.

• Initialization: We initialize w(0) and f+
(0) at the values given by a fit of a

GMM, and start with M-step first.

Our SEM algorithm has the desirable monotonicity property of a true EM

algorithm (Dempster et al., 1977; Wu, 1983).

Proposition 1 (Monotonicity property). With the same notation, L(φ(t)) ≤ L(φ(t+1))

for all t ≥ 0.

Proof. In the algorithm, armed with φ(t), we compute the weights w(t) in the E-

step and in the M-step we obtain φ(t+1) by maximizing Q(φ,w(t)) over φ. (We do

the latter sequentially, first over π, then over µ, and finally over f+.) In particular,

Q(φ(t+1),w(t)) ≥ Q(φ(t),w(t)). (5.20)
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The key, then, is Jensen’s inequality, which implies that for a set of parameters

φ = (µ;π;f+) and non-negative weights w∗ = (wij∗) such that
∑

j wij∗ = 1 for

all i,

L(φ) =
n∑
i=1

log

(
1

2

k∑
j=1

πjf
+
j (|xi − µj|)

)
(5.21)

=
n∑
i=1

log

( k∑
j=1

wij∗
πjf

+
j (|xi − µj|)
wij∗

)
− n log 2

≥
n∑
i=1

k∑
j=1

wij∗ log

(
πjf

+
j (|xi − µj|)
wij∗

)
− n log 2

= Q(φ,w∗)− C(w∗), (5.22)

with equality if the weights w∗ are the weights associated with φ as specified in

(5.13). In particular,

L(φ(t+1)) ≥ Q(φ(t+1),w(t))− C(w(t)), (5.23)

while

L(φ(t)) = Q(φ(t),w(t))− C(w(t)). (5.24)

We thus have

L(φ(t+1)) ≥ Q(φ(t+1),w(t))− C(w(t))

≥ Q(φ(t),w(t))− C(w(t)) = L(φ(t)).

5.3 Numerical experiments

We now consider the problem of one-dimensional clustering. We assume that

the data can be clustered into k groups, fit the k-component mixture (5.1) as de-

scribed in Section 5.2 obtaining φ̂, and assign a label to an observation xi according

to Bayes optimal rule

arg max
j

P(zi = j|xi, φ̂) = arg max
j

π̂j f̂
+
j (|xi − µ̂j|)∑k

j=1 π̂lf̂
+
l (|xi − µ̂l|)

. (5.25)
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We apply our SEM algorithm both on simulated and real data. In Section 5.3.1,

we choose to simulate data from the Gaussian and Laplace mixture models used in

(Balabdaoui and Doss, 2014), and in Section 5.3.2, we apply the SEM algorithm

to the well-known Old Faithful geyser data also investigated in (Balabdaoui and

Doss, 2014), and to the rainfall data studied in (Bordes et al., 2006).

5.3.1 Synthetic datasets

As a first example, we use a two-component Gaussian mixture to empirically

check the convergence of our SEM algorithm. We first sample n = 100 (Figure 5.1)

and then sample n = 300 (Figure 5.2) observations from the Gaussian mixture

0.15 N (−1, 1) + 0.85 N (2, 1) and apply the SEM algorithm to these two datasets

respectively. This seems to be the most difficult situation considered in (Bordes

et al., 2006). Panels (a), (b), (c), and (d) of Figure 5.1 show that SEM stabilizes

after about 8 iterations for the three Euclidean parameters and the observed data

likelihood. As expected, the achieved maximum data likelihood is monotonically

increasing as a function of the number of iterations. Panels (e) and (f) show the

final NPMLE for f1, f2, g and compare that with the truth. The NPMLE for the

symmetric log-concave densities are piecewise exponential, which is consistent with

what is described in Theorem 5. Figure 5.2 is provided to show on the improvement

resulting from a larger sample size. With initialization manually set the same with

that in Figure 5.1, the effect is visible on the recovering of f+
1 , f+

2 and g.

We then conduct a Monte Carlo study to compare the performance of our al-

gorithm (SEM) in clustering with the methods proposed in (Chang and Walther,

2007) and (Balabdaoui and Doss, 2014). Chang and Walther fit the simple mixture

model (5.2) and only assume that the components are log-concave densities. Bal-

abdaoui and Doss fit the semiparametric model (2.23) and employ the parameter

estimators from (Hunter et al., 2007), and then assumes that both components

have the same density after centering and fits that density using the symmet-

ric log-concave density estimator. We denote these two methods by LCM and

SLC respectively. We compare SEM, LCM and SLC to GMM, which serves as

benchmark when the underlying model is indeed in that class. We compare these
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Figure 5.1: SEM for the Gaussian mixture with n = 100, π1 = 0.15, µ1 = −1 and
µ2 = 2.

methods on two Gaussian mixture models, two Laplace mixture models and one

Gaussian-Laplace mixture model described below:

• Model 1: 0.2N (0, 1) + 0.8N (1, 1);

• Model 2: 0.2N (0, 1) + 0.8N (2, 2);

• Model 3: 0.2L(0, 1) + 0.8L(1, 1);

• Model 4: 0.2L(0, 1) + 0.4L(1.5, 1) + 0.4L(−1.5, 1);

• Model 5: 0.2N (0, 1)+0.2N (1.5, 1)+0.2N (−1.5, 1)+0.2L(3, 1)+0.2L(−3, 1).

The sample size is n = 500 for the first 4 models and n = 1000 for Model 5.

Each setting is repeated 1000 times. We examine the quality of the resulting

clustering in terms of the achieved data log-likelihood, the misclassification errors

when k = 2 or Rand Indexes when k ≥ 3, and the average absolute posterior

probability error used by (Chang and Walther, 2007) — all averaged over the 1000
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Figure 5.2: SEM for the Gaussian mixture, n = 300, π1 = 0.15, µ1 = −1 and
µ2 = 2.

repeats. The latter metric investigates how well a mixture clustering algorithm

estimates the uncertainty for the membership assignment of each observation on

population level. This metric is defined as

posterior error :=
1

n

n∑
i=1

|ŵi1 − wi1|, (5.26)

where ŵi1 and wi1 are computed by (5.13) with estimators and true parameters

respectively. Notice that this metric only applies to clustering with k = 2 compo-

nents. When k ≥ 3, we define the posterior error by the Frobenius distance

posterior error := min
Pπ
{‖ŵPπ − w‖F}, (5.27)

where Pπ is any k×k permutation matrix, and matrices ŵ and w are computed by

(5.13) with estimators and true parameters respectively. We report the comparison

results in Table 5.1. As can be seen from this table, GMM, LCM, and our SEM

algorithm clearly outperform SLC in terms of log-likelihood and posterior error.



69

Table 5.1: Comparison of the four different clustering methods in terms of achieved log-
likelihood, number of misclassification errors (when k = 2) or Rand index (when k > 2),
and posterior errors. The reported numbers are the average of the metrics over R = 1000
replications under each of the three symmetric and log-concave mixture models. Each
time the sample size is n = 500 for Model 1 ∼ 4 and n = 1000 for Model 5. The numbers
in parentheses are the corresponding standard errors.

Metric GMM LCM SLC SEM

Model 1

log-like -743.2 (0.50) –739.4 (0.51) -1104.9 (2.06) -738.6 (0.50)

mis-class 122.7 (1.31) 102.6 (1.49) 174.2 (1.22) 123.7 (1.30)

post-error 0.199 (0.003) 0.206 (0.002) 0.317 (0.001) 0.202 (0.003)

Model 2

log-like -1049.7 (0.48) -1046.3 (0.49) -1383.0 (2.43) -1044.7 (0.48)

mis-class 148.1 (1.55) 125.4 (1.91) 118.4 (0.70) 150.0 (1.54)

post-error 0.211 (0.004) 0.255 (0.003) 0.216 (0.004) 0.283 (0.001)

Model 3

log-like -876.0 (0.67) -869.3 (0.69) -1293.6 (3.94) -870.6 (0.66)

mis-class 162.8 (1.12) 111.4 (1.23) 153.2 (1.09) 159.1 (1.18)

post-error 0.236 (0.002) 0.244 (0.002) 0.324 (0.001) 0.234 (0.002)

Model 4

log-like -1031.1 (16.8) -1030.0 (16.6) - -1025.7 (16.8)

Rand index 0.602 (0.097) 0.655 (0.118) - 0.607 (0.093)

post-error 10.6 (2.65) 13.3 (1.53) - 10.6 (2.61)

Model 5

log-like -2281.2 (19.9) -2281.8 (19.8) - -2275.7 (19.5)

Rand index 0.622 (0.138) 0.391(0.235) - 0.623 (0.137)

post-error 18.4 (3.15) 20.1 (3.32) - 18.6 (3.23)

LCM outperforms other methods in terms of misclassification error or Rand index

when k ≤ 3, but does not perform well when k = 5. When the mixture densities

are normal, SEM performs as well as GMM, arguably the gold standard in such

a situation; when the densities are Laplace, SEM slightly improves the clustering

initialized by GMM. Moreover, SEM achieves a significantly higher log-likelihood

compared with the other methods when the mixture densities are normal. We also

notice that SLC sometimes gives better results in terms of misclassification error,

even though the posterior-error is worse.
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5.3.2 Real datasets

In this section, we apply our new estimation approach to two different real-

world datasets. Both of these datasets are included in the standard R distribution.

The first dataset consists of times, in minutes, between eruptions of the Old

Faithful geyser in Yellowstone National Park. Figure 5.3 plots the iterations of our

SEM algorithm, which is seen to converge rather quickly, in less than 14 iterations.

Table 5.2 shows that our estimates are close to those obtained by GMM, Hunter

et al. (2007), and Bordes et al. (2007), while the estimates from Balabdaoui and

Doss (2014) are a bit farther away.
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Figure 5.3: SEM applied to the Old Faithful waiting data.

The second dataset is the average amount of precipitation (rainfall) in inches for

each of 70 cities in the United States and Puerto Rico (McNeil, 1977). Figure 5.4

plots the iterations of our SEM algorithm, which is again seen to converge quickly.
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Table 5.2: Parameter estimates for the Old Faithful geyser waiting data, using GMM,
the semiparametric estimation from Hunter et al. (2007)(SP), the stochastic EM algo-
rithm by Bordes et al. (2007) (SP-EM), the symmetric log-concave mixture model by
Balabdaoui and Doss (2014) (SLC) and our SEM algorithm.

parameters GMM SP SP-EM SLC SEM

π1 0.361 0.352 0.359 0.33 0.355

µ1 54.61 54.0 54.59 55.5 54.61

µ2 80.09 80.0 80.05 80.5 80.5

5.4 Discussion

In this chapter, we revisited the problem of fitting a mixture model under

the assumption that the mixture components are symmetric and log-concave. We

studied the nonparametric MLE of a monotone and log-concave probability den-

sity and provided some basic properties for this class of densities such as uniform

consistency. We then developed a semiprametric EM algorithm which possess the

monotone property of a genuine EM algorithm and can be adapted to other semi-

parametric mixture models. Numerical studies on both synthetic datasets and

real-world datasets, show that our algorithm improves on the method of Balab-

daoui and Doss (2014).

Our study in this chapter only considered univariate semiparametric mixtures.

Since the computation time of the MLE of multivariate log-concave densities be-

comes quickly intractable as the dimension increases, extending log-concave mix-

ture models to higher dimensions presents a real challenge. Chang and Walther

(2007) propose using a normal copula and perform simulations in dimension two.

Multivariate nonparametric mixture models with KDE are developed in (Benaglia

et al., 2009; Chauveau and Hoang, 2016; Chauveau et al., 2015; Levine et al., 2011).
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Figure 5.4: SEM applied to the annual precipitation data.
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Chapter 6

Concentration of Measure for

Radial Distribution

When fitting multivariate mixture models, it is quite tempting to extend the

Gaussian mixture models to models of the form
K∑
k=1

πk|Ak|gk(‖Akx‖), (6.1)

where we assume the mixture has K components, with the kth component having

weight πk and density |Ak|gk(‖Akx‖). For example, Bickel et al. (1998) and more

recently Bhattacharyya and Bickel (2015) consider models of this kind. Instead

of smoothness assumptions, we are more interested here in shape assumptions,

for example that gk is decreasing and/or log-concave on R+. Chang and Walther

(2007) consider such mixture models but under the Naive Bayes assumption instead

of assuming the densities are elliptical. An EM approach to fitting such a model

involves being able to estimate gk based on a sample from gk(‖x‖). And this is

what we found challenging in our investigation.

Focusing on this task, suppose we have an i.i.d. sample from f , where f

rotationally invariant (aka radial), meaning that f(x) = g(‖x‖) for some function g,

and consider the problem of estimating g. In fact, we can work with the magnitudes

(the norms of the observations), which are sufficient. We explain the difficulty

of estimating g by the fact that the magnitudes are highly concentrated as the

dimension becomes large.

73
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The simplest case of this concentration of measure phenomenon arises when we

assume that g is proportional to ψ, where ψ is fixed, as is the case in the Gaussian

setting. Specifically, we assume we are in dimension d + 1 and we work with ψ

satisfying the following assumptions (and some additional assumptions specified

later on)

ψ : R+ → R+ is such that 1/cd :=

∫ ∞
0

udψ(u)du <∞ for all d ≥ 1. (6.2)

We let Xd denote a random variable with density cdψ(‖x‖) on Rd+1 and let Ud

denote its magnitude, Ud = ‖Xd‖, which has density cdu
dψ(u) on R+.

In this context we show a form of concentration of measure, and convergence

in distribution, as the dimension d increases. Concentration is a well-known phe-

nomenon in high-dimensions, in particular for product distributions (Naive Bayes),

with far-reaching consequences (Boucheron et al., 2013; Ledoux, 2005). For radial

distributions, it is not as well-known, except for when the density is Gaussian or

uniform on a ball. (The latter is often used to explain some forms of curse of

dimensionality.)

In Section 6.1 we study the case where ψ has compact support, which is the

simplest situation. In Section 6.2 we consider the case where ψ is not compactly

supported. In Section 6.3 we discuss our results and some possible implications

for statistical modeling.

6.1 The case of compact support

In this whole section we assume that ψ has compact support. Define the

supremum of the support as follows

u∗ = sup
{
u :

∫ u

u−ε
ψ(u)du > 0 for all ε > 0

}
. (6.3)

Note that u∗ <∞ by assumption and that the support of ψ is included in [0, u∗].

If ψ is continuous (which the reader can assume without much loss of generality),

then the following is an equivalent definition u∗ = sup{u : ψ(u) > 0}. The

emblematic example is that of the uniform distribution on the unit ball, in which
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case ψ(u) = I{u ≤ 1} and u∗ = 1. This distribution is well-known to concentrate

near the boundary of its support (the unit sphere). Our results below extend this

to other distributions with compact support.

6.1.1 Convergence in probability

We start by establishing a convergence in probability.

Theorem 8. In the setting considered here, Ud → u∗ in probability as d→∞.

Proof. Assume u∗ = 1 without loss of generality. Then

P(Ud < 1− ε) = cd

∫ 1−ε

0

udψ(u)du ≤ cd(1− ε)d
∫ 1

0

ψ(u)du, (6.4)

while

P(Ud ≥ 1−ε) ≥ P(Ud ≥ 1−ε/2) = cd

∫ 1

1−ε/2
udψ(u)du ≥ cd(1−ε/2)d

∫ 1

1−ε/2
ψ(u)du.

(6.5)

Note that the last integral is strictly positive for all ε > 0 by definition of u∗ in

(6.3) (recall that we assumed that u∗ = 1). Hence

P(Ud < 1− ε)
P(Ud ≥ 1− ε)

≤
(1− ε)d

∫ 1

0
ψ(u)du

(1− ε/2)d
∫ 1

1−ε/2 ψ(u)du
→ 0, d→∞, (6.6)

when ε ∈ (0, 1) is fixed. Since P(Ud < 1− ε) + P(Ud ≥ 1− ε) = 1, we proved that

P(Ud < 1− ε)→ 0 for all ε > 0. This, coupled with the fact that P(Ud ≤ 1) = 1,

proves that Ud → 1 in probability as d→∞.

6.1.2 Convergence in distribution

Beyond a convergence in probability, we can establish a convergence in distri-

bution. The limiting distribution happens to depend on the behavior of ψ in the

neighborhood of u∗. We only cover the case where ψ behaves as a power function

near u∗.

Theorem 9. In the setting considered here, assume in addition that ψ is bounded

and that ψ(u) ∼ a(u∗−u)b as u↗ u∗ for some a > 0 and b > −1. Then d(u∗−Ud)
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converges weakly to the Gamma distribution with shape parameter b + 1 and rate

1/u∗.

Proof. Assume without loss of generality that u∗ = 1. We first control the behavior

of cd as d → ∞. Fix ε ∈ (0, 1). On the one hand, by the assumptions on ψ and

Dominated Convergence, we have∫ 1

1−ε
udψ(u)du ∼

∫ 1

1−ε
uda(1− u)bdu ∼ aB(d+ 1, b+ 1), d→∞, (6.7)

where B is the Beta function. On the other hand, by Theorem 8,

cd

∫ 1

1−ε
udψ(u)du ∼ 1, d→∞. (6.8)

Together, this proves that

1/cd ∼ aB(d+ 1, b+ 1) ∼ aΓ(b+ 1)d−(b+1), d→∞, (6.9)

where Γ is the Gamma function.

We now consider the case where ε = εd → 0 as d→∞. More precisely, we fix

t > 0 and set εd = t/d. By Dominated Convergence again, applied twice, and a

change of variables, as d→∞, we have

P(Ud > 1− t/d) = cd

∫ 1

1−t/d
udψ(u)du (6.10)

∼ cd

∫ 1

1−t/d
uda(1− u)bdu (6.11)

= cdad
−(b+1)

∫ t

0

(1− v/d)dvbdv (6.12)

∼ 1

Γ(b+ 1)

∫ t

0

e−vvbdv. (6.13)

Recognizing the distribution function of the Gamma distribution with shape pa-

rameter b+ 1 and rate 1, the proof is complete.

6.2 The case of non-compact support

We now assume that ψ has non-compact support, which is equivalent to u∗ =∞
in (6.3). We note that here the emblematic example is that of the standard normal
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distribution, which is known to concentrate near the sphere of radius
√
d, meaning

Ud/
√
d→ 1. In fact, U2

d has the chi-squared distribution with d degrees of freedom,

and in particular,
√

2(Ud −
√
d) is asymptotically standard normal in the limit

d→∞. Our results below extend this phenomena to other radial distributions.

While we were able to handle the case of compact support, which we treated

in Section 6.1, with very natural assumptions, the case of non-compact support

appears more challenging and our working assumptions are more complicated.

This is despite the fact that we favored simplicity over generality. Nevertheless,

our working assumptions include interesting (and natural) examples.

6.2.1 Convergence in probability

We start by establishing a convergence in probability.

We start by making the following assumptions. We assume there is u‡ such that,

for u ≥ u‡, Λ(u) := − logψ(u) is differentiable and L(u) := uΛ′(u) is increasing.

In addition, we assume that M(u) := L(u)/ log(u)→∞ as u→∞ and

lim sup
u→∞

M((1− ε)u)

M(u)
≤ 1, lim inf

u→∞

M((1 + ε)u)

M(u)
≥ 1, ∀ε ∈ (0, 1). (6.14)

Theorem 10. In the setting considered here, Ud/ud → 1 in probability as d→∞,

where ud := L−1(d).

Example 1. Consider the case where Λ(u) = c log(u + a)α(u + b)β, where a > 0,

b ≥ 0, c > 0, α ∈ R and β > 0. Surely, this defines a bonafide shape function ψ in

the sense of (6.2). It can be shown that ψ defined as such satisfies the conditions

of Theorem 10, with

ud ∼ c−1/ββ(α−1)/β(log d)−α/βd1/β, d→∞. (6.15)

Proof. The function u 7→ udψ(u) is increasing on [0, ud) and decreasing on (ud,∞).

Indeed, log(udψ(u)) = d log u− Λ(u) has derivative 1
u
(d− L(u)), which is positive

for u < ud, zero at u = ud, and negative at u > ud, by our assumptions and the

definition of ud. Note that, necessarily, ud →∞ as d→∞.

We have

P(Ud ≤ v) = cd

∫ v

0

udψ(u)du. (6.16)
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Fix ε ∈ (0, 1).

Left tail. Using the fact that udψ(u) ≤ ud0ψ(u0) for any u ≤ u0 ≤ ud, we have

1

cd
P(Ud ≤ (1− ε)ud) =

∫ (1−ε)ud

0

udψ(u)du (6.17)

≤ ((1− ε)ud)d+1ψ((1− ε)ud), (6.18)

and we also have

1

cd
P(Ud ≥ (1− ε)ud) =

∫ ∞
(1−ε)ud

udψ(u)du (6.19)

≥
∫ ud

(1−ε/2)ud

udψ(u)du (6.20)

≥ (ε/2)ud((1− ε/2)ud)
dψ((1− ε/2)ud). (6.21)

Taking the ratio, we obtain

P(Ud ≤ (1− ε)ud)
P(Ud ≥ (1− ε)ud)

≤ ((1− ε)ud)d+1ψ((1− ε)ud)
(ε/2)ud((1− ε/2)ud)dψ((1− ε/2)ud)

(6.22)

≤ 1− ε
ε/2

(
1− ε

1− ε/2

)d
ψ((1− ε)ud)
ψ((1− ε/2)ud)

. (6.23)

Applying the logarithm, and ignoring the constant factor, we further get

d log

(
1− ε

1− ε/2

)
− Λ((1− ε)ud) + Λ((1− ε/2)ud) (6.24)

= −d
∫ (1−ε/2)ud

(1−ε)ud

1

u
du+

∫ (1−ε/2)ud

(1−ε)ud
Λ′(u)du (6.25)

= −
∫ (1−ε/2)ud

(1−ε)ud
(d− L(u))

1

u
du (6.26)

≤ −(d− L((1− ε/2)ud)) log

(
1− ε/2
1− ε

)
, (6.27)

where we used the monotonicity of L in the last line. Therefore, to show that the

fraction in (6.22) converges to 0, it suffices to show that d − L((1 − ε/2)ud) →
∞. The limit is as d → ∞ while ε remains fixed. Using the fact that L(ud) =
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M(ud) log ud = d, we have

d− L((1− ε/2)ud) = d−M((1− ε/2)ud) log((1− ε/2)ud) (6.28)

= d−M((1− ε/2)ud) log(1− ε/2)−M((1− ε/2)ud)
d

M(ud)

(6.29)

= −M((1− ε/2)ud) log(1− ε/2) + d

[
1− M((1− ε/2)ud)

M(ud)

]
.

(6.30)

In the last line, the first term tends to infinity because M(u)→∞ as u→∞ and

ud → ∞, while the second terms is nonnegative in the limit because of (6.14), so

that the last expression tends to infinity.

We conclude that, for the left tail,

P(Ud ≤ (1− ε)ud)→ 0, d→∞. (6.31)

Right tail. Using the fact that u`ψ(u) ≤ u`0ψ(u0) for any u ≥ u0 ≥ u`, where

u` = L−1(`) in congruence with our definition above, and assuming for now that

b := L((1 + ε)ud) > d+ 1, we have

1

cd
P(Ud ≥ (1 + ε)ud) =

∫ ∞
(1+ε)ud

udψ(u)du (6.32)

≤ ((1 + ε)ud)
bψ((1 + ε)ud)

∫ ∞
(1+ε)ud

ud−bdu (6.33)

= ((1 + ε)ud)
bψ((1 + ε)ud)

((1 + ε)ud)
d+1−b

b− d− 1
(6.34)

=
((1 + ε)ud)

d+1

b− d− 1
ψ((1 + ε)ud), (6.35)

and we also have

1

cd
P(Ud ≤ (1 + ε)ud) =

∫ (1+ε)ud

0

udψ(u)du (6.36)

≥
∫ (1+ε/2)ud

ud

udψ(u)du (6.37)

≥ (ε/2)ud((1 + ε/2)ud)
dψ((1 + ε/2)ud). (6.38)
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Taking the ratio, we obtain

P(Ud ≥ (1 + ε)ud)

P(Ud ≤ (1 + ε)ud)
≤

((1+ε)ud)d+1

b−d−1
ψ((1 + ε)ud)

(ε/2)ud((1 + ε/2)ud)dψ((1 + ε/2)ud)
(6.39)

≤ 1 + ε

ε/2

1

b− d− 1

(
1 + ε

1 + ε/2

)d
ψ((1 + ε)ud)

ψ((1 + ε/2)ud)
. (6.40)

We pause to show that b − d → ∞ eventually. This is because, using the fact

that L(ud) = M(ud) log ud = d,

b− d = L((1 + ε)ud)− d = M((1 + ε)ud) log((1 + ε)ud)− d (6.41)

= M((1 + ε)ud) log(1 + ε) +

[
M((1 + ε)ud)

M(ud)
− 1

]
d.

(6.42)

In the last line, the first term tends to infinity because M(u)→∞ as u→∞ and

ud → ∞, while the second terms is nonnegative in the limit because of (6.14), so

that the last expression tends to infinity.

Returning to (6.39), applying the logarithm, and ignoring the first two factors

whose product is bounded by 1 eventually, we further get

d log

(
1 + ε

1 + ε/2

)
− Λ((1 + ε)ud) + Λ((1 + ε/2)ud) (6.43)

= d

∫ (1+ε)ud

(1+ε/2)ud

1

u
du−

∫ (1+ε)ud

(1+ε/2)ud

Λ′(u)du (6.44)

= −
∫ (1+ε)ud

(1+ε/2)ud

(L(u)− d)
1

u
du (6.45)

≤ −(L((1 + ε/2)ud)− d) log

(
1 + ε

1 + ε/2

)
, (6.46)

where we used the monotonicity of L in the last line. Therefore, to show that the

fraction in (6.39) converges to 0, it suffices to show that L((1 + ε/2)ud)− d→∞,

and we already did this in (6.41).

We conclude that, for the right tail,

P(Ud ≥ (1 + ε)ud)→ 0, d→∞. (6.47)

We can therefore conclude that Ud/ud → 1 in probability as d→∞.
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6.2.2 Convergence in distribution

We now turn to establishing a convergence in distribution. Although we spec-

ulate that other cases may arise, we give (additional) sufficient conditions for a

Gaussian limit.

We make the following additional assumptions. We assume that L is differen-

tiable with νd := udL
′(ud)→∞ and that there is ωd →∞ such that∣∣L(ud)− L((1− ε)ud)− εudL′(ud)

∣∣ ≤ |ε|νd/ωd, whenever ε2 ≤ ωd/νd. (6.48)

Note that (6.48) is a form of first-order Taylor expansion around ud.

The following refines Theorem 10.

Proposition 2. In the setting considered here,

P(1− εd ≤ U/ud ≤ 1 + εd)→ 1, whenever εd � 1/
√
νd. (6.49)

Proof. By mononicity in εd > 0, it is enough to show that when ε2
d ≤ ωd/νd. Then

to prove (6.49), as before, it suffices to show that

(left tail)
P(Ud ≤ (1− εd)ud)
P(Ud ≥ (1− εd)ud)

→ 0 and (right tail)
P(Ud ≥ (1 + εd)ud)

P(Ud ≤ (1 + εd)ud)
→ 0.

(6.50)

Left tail. As before, we can show that b := L((1− εd)ud) satisfies b− d→ −∞, so

that we may assume that b < d − 1. Then using the fact that u`ψ(u) ≤ u`0ψ(u0)

for any u ≤ u0 ≤ u`, where u` = L−1(`), we have

1

cd
P(Ud ≤ (1− εd)ud) =

∫ (1−εd)ud

0

udψ(u)du (6.51)

≤ ((1− εd)ud)bψ((1− εd))
∫ (1−εd)ud

0

ud−bdu (6.52)

=
((1− εd)ud)d+1

d− b+ 1
ψ((1− εd)ud). (6.53)

Taking the ratio of (6.53) to (6.21) (but replacing ε by εd), we obtain

P(Ud ≤ (1− εd)ud)
P(Ud ≥ (1− εd)ud)

≤ 1

d− b+ 1

1− εd
εd/2

(
1− εd

1− εd/2

)d
ψ((1− εd)ud)
ψ((1− εd/2)ud)

. (6.54)
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As in (6.23) and (6.27), we apply a logarithm, and obtain the upper bound

log
1− εd

εd
2

(d− b+ 1)
− [d− L((1− εd/2)ud)] log

1− εd/2
1− εd

. (6.55)

By (6.48), which is applicable by our assumption ε2
d ≤ ωd/νd, we have

d− b = L(ud)− L((1− εd)ud) = εdνd ± |εd|νd/ωd ∼ εdνd, d→∞. (6.56)

Similarly,

d− L((1− εd/2)ud) ∼ 1
2
εdνd, d→∞. (6.57)

Also, note that ε2
dνd → ∞ by assumption. Hence, the first term in (6.55) is

∼ − log(ε2
dνd) while the second term (including sign) is ∼ −1

4
ε2
dνd, so that the sum

tends to −∞.

Right tail. The treatment of the right tail is analogous, starting with (6.40) instead

of (6.23). Details are omitted.

In the following we examine the behavior of the normalizing constant cd as

d→∞.

Proposition 3. In the setting considered here,

1

cd
∼
√

2π

νd
ud+1
d ψ(ud), d→∞. (6.58)

Proof. Let εd be such that 1/νd � ε2
d � ωd/νd. Applying Proposition 2 and then

performing a change of variables, we get

1

cd
=

∫ ∞
0

udψ(u)du ∼
∫ (1+εd)ud

(1−εd)ud

udψ(u)du (6.59)

∼
∫ εd

−εd
[(1 + t)ud]

dψ[(1 + t)ud]uddt (6.60)

= ud+1
d ψ(ud)

∫ εd

−εd
(1 + t)d

ψ[(1 + t)ud]

ψ(ud)
dt. (6.61)

As before,

log
{

(1 + t)d
ψ[(1 + t)ud]

ψ(ud)

}
= d log(1 + t)− Λ[(1 + t)ud] + Λ(ud) (6.62)

= d

∫ t

0

s

1 + s
ds−

∫ t

0

udΛ
′[(1 + s)ud]ds (6.63)

=

∫ t

0

1

1 + s

{
d− L[(1 + s)ud]

}
ds. (6.64)
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Noting that |s| ≤ εd, and using (6.48), we get

−sνd−sνd/ωd ≤ d−L[(1+s)ud] = L(ud)−L[(1+s)ud] ≤ −sνd+sνd/ωd. (6.65)

Hence,

−νd(1 + 1/ωd)

∫ t

0

s

1 + s
ds ≤

∫ t

0

1

1 + s

{
d− L[(1 + s)ud]

}
ds

≤ −νd(1− 1/ωd)

∫ t

0

s

1 + s
ds,

(6.66)

with ∫ t

0

s

1 + s
ds = 1

2
t2 +O(t3) = 1

2
t2 +O(ε3

d), (6.67)

since |t| ≤ εd, so that∫ t

0

1

1 + s

{
d− L[(1 + s)ud]

}
ds = −1

2
t2νd +O(εd + 1/ωd)ε

2
dνd, (6.68)

where the big-O is uniform in t ∈ [−εd, εd]. We already took εd such that

(1/ωd)ε
2
dνd → 0, and it is compatible to choose εd such that, in addition, ε3

dνd → 0.

When we do so, the remainder term above is o(1), and in particular,∫ t

0

1

1 + s

{
d− L[(1 + s)ud]

}
ds = −1

2
t2νd + o(1), (6.69)

where the o(1) term is uniform in t ∈ [−εd, εd]. With such a choice of εd, we

continue our derivations above∫ εd

−εd
(1 + t)d

ψ[(1 + t)ud]

ψ(ud)
dt =

∫ εd

−εd
exp

{
− 1

2
t2νd + o(1)

}
dt (6.70)

∼ 1
√
νd

∫ εd
√
νd

−εd
√
νd

exp
{
− 1

2
s2
}

ds ∼ 1
√
νd

√
2π, (6.71)

since εd
√
νd →∞ by assumption.

We are finally equipped to establish a convergence in distribution for Ud.

Theorem 11. In the setting considered here,
√
νd(Ud/ud− 1) converges weakly to

the standard normal distribution as d→∞.
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Example 1 (Continued). It can be checked that the same example of shape function

ψ satisfies the conditions assumed here, with uL′(u) ∼ cβ2(log u)αuβ as u → ∞,

so that

νd = udL
′(ud) ∼ βd, d→∞. (6.72)

Proof. Fix r ∈ R and let εd be as before. As in (6.61), we get

P(
√
νd(Ud/ud − 1) ≤ r) = P(Ud ≤ (1 + r/

√
νd)ud) (6.73)

∼ P((1− εd)ud ≤ Ud ≤ (1 + r/
√
νd)ud) (6.74)

= cdu
d+1
d ψ(ud)

∫ r/
√
νd

−εd
(1 + t)d

ψ[(1 + t)ud]

ψ(ud)
dt. (6.75)

Again, as before,∫ r/
√
νd

−εd
(1 + t)d

ψ[(1 + t)ud]

ψ(ud)
dt ∼

∫ r/
√
νd

−εd
exp

{
− 1

2
t2νd

}
dt (6.76)

=
1
√
νd

∫ r

−εd
√
νd

exp
{
− 1

2
s2
}

ds ∼ 1
√
νd

√
2πΦ(r),

(6.77)

where Φ is the standard normal distribution function. We then combine this with

Proposition 3.

6.3 Consequences for statistical modeling

While there is relatively little related work, a detailed comparison with (Sher-

lock and Elton, 2012) is in order. Sherlock and Elton focus on the non-compact

case — corresponding to Section 6.2 here. They derive the same result as our The-

orem 10 under different conditions. They require that η(u) := Λ(exp(u)) is twice

differentiable with η′′(u)→∞ as u→∞, while our condition is a bit weaker than

requiring that η is once differentiable with η′(u)/u→∞ and increasing. Note that

their condition is equivalent to requiring that L is differentiable with uL′(u)→∞,

a condition that arises in Section 6.2.2. Sherlock and Elton do not establish weak

convergence, however, but they obtain other results. In particular, they establish

concentration for a marginal of Xd and also for the maximum of the marginals.
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In addition, they extend their results to the case of elliptical distributions under

conditions on the eigenvalues of the scaling matrix.

What are possible consequences for statistical modeling? Because of the weak

convergence of the sort established here, the behavior of Ud is asymptotically char-

acterized solely by a few parameters of the underlying distribution. For example,

if the conditions of Theorem 9 are fulfilled, then the distribution of Ud in the

large-dimension limit (d→∞) only depends on u∗ (irrelevant in practice because

scale is typically estimated) and the behavior of ψ near u∗. In particular, whether

ψ(u) = I{u ≤ 1} or ψ(u) = (2 − u)I{u ≤ 1}, in both cases, d(1 − Ud) converges

weakly to the exponential distribution with rate 1. This means that, in order

to even distinguish two such distributions with nontrivial accuracy, we require a

sample of size that increases with d. (We did not attempt to quantify this further,

although this is possible by framing the problem as a hypothesis testing prob-

lem.) A similar phenomenon arises with certain distributions with non-compact

support, based on our Theorem 11. Thus, if the sample size is small relative to

the dimension, very different shape functions (meaning, different ψ’s) could yield

indistinguishable models.

The flip side of this is a form of universality of the Gaussian distribution,

in particular, in context such as Linear Discriminant Analysis (classification) or

Gaussian Mixture Modeling (clustering). Surely, both LDA and GMM have com-

putational advantages over other methods (the latter using the EM algorithm, for

example). Beyond this important computational aspect, our results indicate that

when the sample is small relative to the dimension, fitting a Gaussian model may

be, in fact, indistinguishable from fitting another model base on a shape function

having similar characteristics as the standard normal distribution that dictate the

asymptotic behavior of Ud.
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