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Abstract
The slowing of agricultural productivity growth globally over the past two decades has brought a new urgency to detect its drivers and 
potential solutions. We show that air pollution, particularly surface ozone (O3), is strongly associated with declining agricultural total 
factor productivity (TFP) in China. We employ machine learning algorithms to generate estimates of high-resolution surface O3 

concentrations from 2002 to 2019. Results indicate that China’s O3 pollution has intensified over this 18-year period. We coupled 
these O3 estimates with a statistical model to show that rising O3 pollution during nonwinter seasons has reduced agricultural TFP by 
18% over the 2002–2015 period. Agricultural TFP is projected to increase by 60% if surface O3 concentrations were reduced to meet the 
WHO air quality standards. This productivity gain has the potential to counter expected productivity losses from 2°C warming.

Keywords: air pollution, satellite-based O3 estimation, agricultural productivity, China
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Understanding the drivers of the slowdown in global agricultural productivity in recent years is critical for effective agricultural policy 
design. We develop high-performance machine learning models to estimate surface ozone (O3) concentrations and find a strong, ro-
bust negative association between O3 and agricultural productivity in China. In particular, we estimate that O3 has reduced China’s 
agricultural total factor productivity (TFP) by 18% over the 2002–2015 period, greatly exceeding the combined productivity losses from 
PM2.5 and temperature extremes. If China’s surface O3 concentrations can meet the WHO air quality standards, the country’s agricul-
tural TFP is projected to increase by 60%. Our results suggest that reducing air pollution, especially O3, can significantly enhance agri-
cultural productivity in China.
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Introduction
Sustaining productivity growth in agriculture is vital to meeting 
the world’s growing demand for food, feed, fiber, timber, and 
fuel (1–6). Continuous investments in agricultural research, 
coupled with improved policies, have greatly boosted agricultural 
productivity growth in many countries around the world (7). 
However, this growth in productivity has begun to level off in re-
cent years (3) and shown great sensitivity to air pollution and tem-
perature extremes (8–12), even in the United States (13–15). This is 
of particular concern as global demand for agricultural products 
is projected to increase with growing population, rising incomes, 
and rapid urbanization (16).

Current understanding of the impacts of air pollution and tem-
perature extremes on agricultural productivity is lacking in two 

major aspects. First, to date, these efforts have overwhelmingly fo-
cused on partial productivity measures such as yields of a few staple 
crops, or profitability in the cropping sector (12, 15, 17, 18). Other 
sectors largely ignored by this literature, including livestock, forest-
ry, and fisheries, jointly account for nearly 40% of global agricultural 
output by value (19). Thus, recent studies in this area are inad-
equate to assess how pollution and temperature extremes affect 
the overall productivity in the agricultural sector. Second, total fac-
tor productivity (TFP) that measures aggregate output per unit of ag-
gregate input has been proven to better reflect production efficiency 
and technological progress than partial productivity measures 
(1, 20). Yet, prior studies assessing the sensitivity of agricultural 
TFP to environmental factors have exclusively focused on climate 
factors, neglecting the influence of air pollution on TFP (11, 13, 14, 20).
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This study examines the impacts of surface ozone (O3), fine par-
ticulate matter (PM2.5), and temperature on China’s agricultural 
productivity. China provides an ideal setting for evaluating the 
impacts of pollution and temperature extremes on agricultural 
productivity. As the world’s largest agricultural economy, China 
is a dominant producer of rice, wheat, and vegetables globally, 
and has been the world’s largest livestock producer since overtak-
ing the United States and Europe in the early 1990s (21). China’s 
agricultural productivity has experienced remarkable growth 
since the introduction of the Household Responsibility System in 
1978 that reallocated collectively owned land to individual house-
holds, endowing them with autonomy in production and manage-
ment decisions (22, 23). However, there are signs that this growth 
has plateaued since the early 2000s (24).

In this article, we focus on O3 and PM2.5, as they are the two pri-
mary air pollutants in China and have been shown to adversely 
impact crop yields (12, 15, 17, 18) (although it is worth noting 
that PM2.5 may indirectly enhance crop productivity by increasing 
diffuse radiation). China’s national air quality action plan imple-
mented in 2013, which set targets for particulate pollution reduc-
tions, has lowered the nation’s annual population-weighted 
average PM2.5 concentrations by 32% between 2013 and 2017 
(25). However, during this same period, warmer-season surface 
O3 pollution has grown significantly. Ground-level pollution data 
show that the mean maximum daily average 8-h (MDA8) O3 con-
centrations during nonwinter seasons, especially in summer, 
have frequently and significantly exceeded the WHO global air 
quality guidelines in the North China Plain (26), a major agricul-
tural production region. These guidelines set a threshold of 
60 μg/m3 for O3 in the peak season, equivalent to 31 parts per bil-
lion (ppb) at 298 K and 1,013 hPa. Severe O3 pollution has also been 
observed in other seasons and regions (26, 27). In addition, over 
the past 70 years, China’s annual mean temperature has in-
creased by an average of 0.26°C/decade, outpacing the global 
average of 0.15°C/decade (28).

There are several ways in which O3 and PM2.5 are expected to 
damage agricultural productivity. A large body of observational 
and experimental studies demonstrates that the two pollutants 
cause damage to terrestrial vegetation, by adversely affecting 
crop yields, forests, and grasslands (12, 15, 17, 18, 29). As a strong 
oxidant, O3 harms crops by entering leaves via stomata and react-
ing with compounds in the exposed wet cell-wall surfaces, gener-
ating harmful radicals that accelerate plant aging (15, 30). On the 
other hand, PM2.5 hinders crop growth by reducing solar radiation 
reaching the earth’s surface (12, 17). Notably, aerosols like PM2.5 

may increase crop productivity by scattering solar radiation, 
thus increasing the efficiency of photosynthesis (31). High O3 

and PM2.5 concentrations may reduce the productivity in the live-
stock sector directly by damaging respiratory systems of livestock 
animals, similar to their effects on human health, and indirectly 
by causing damage to vegetation, food supplies, and ecosystem 
for livestock species that rely upon grasslands (32). 
Furthermore, the medical literature finds that exposure to high 
levels of O3 and PM2.5 is strongly associated with increased health 
and mortality risks in humans (33–35). Research has found robust 
evidence supporting negative impacts of elevated O3 and PM2.5 

levels on worker productivity (36, 37).
In this article, we first estimate a panel regression model to 

analyze the sensitivity of agricultural TFP to O3, PM2.5, and tem-
perature extremes at the county level for the years 2002–2015, 
controlling for other weather variables, technological change, 
and unobserved time-invariant location-specific factors (e.g. soils, 
geography). This sample period is determined by the availability 

of historical data on both agricultural TFP and O3 concentrations. 
Over this period, China has also transitioned from a modest food 
exporter to the world’s largest importer. We next use the model to 
predict TFP under two conditions: (i) using historical, observed O3, 
PM2.5, and days with high temperatures exceeding 35°C for each 
year between 2002 and 2015, and (ii) hypothetical scenarios as-
suming that each of these factors had been kept at their 2002 lev-
els. The percentage differences in predicted TFPs between the two 
conditions were subsequently used to estimate the relative im-
portance of O3, PM2.5, and high temperatures in driving TFP vari-
ation over the sample period.

Our analysis addresses two significant challenges. First, na-
tionwide ground-based O3 and PM2.5 monitoring data before 
2013 are not available in China. While several studies have used 
satellite-driven models to generate high-resolution and long-term 
PM2.5 estimates, the corresponding estimates for surface O3 con-
centrations are very limited. Thus, national-scale studies focusing 
on the health effects of O3 exposure are mostly restricted to the 
post-2013 period (38). Second, air pollution concentrations are 
not randomly distributed across regions and the agricultural sec-
tor is a major source of air pollution. Agricultural operations such 
as cultivation, planting, weeding, mowing, and harvesting, which 
rely heavily on machinery and fuels, significantly contribute to 
particulate emissions (39). Emissions from livestock production 
also have the potential to form O3 and PM2.5 (40). Thus, the esti-
mates based on ordinary least square (OLS) regressions are biased 
because of the reverse causality between agricultural production 
and pollution concentrations. We deal with this head on using an 
instrumental variable (IV) strategy.

We tackle the data challenge by employing machine learning 
techniques to generate the estimates of surface O3 concentrations 
for the period 2002–2019. This approach involves utilizing 
satellite-based pollution data at a spatial resolution of 45 km ×  
55 km, combined with recorded surface O3 concentrations, me-
teorological, geographical, and socioeconomic factors in the 
post-2013 period, to build relationships between surface O3 con-
centrations and these predictors. Assuming that these relation-
ships remain stable across a given time period and utilizing the 
long-term satellite-based pollution data, we predict surface O3 

concentrations before 2013. We then aggregate gridded O3 data 
to the county level to match up with the county-level agricultural 
TFP estimates for the regression analysis. We address the endoge-
neity of O3 and PM2.5 by using an IV approach that relies on 
changes in local wind direction as exogenous shocks to local pol-
lution levels (41). Prior research has demonstrated that wind can 
affect pollution concentrations either by reallocating pollution 
produced from local sources (e.g. power plants or traffic) or by 
transporting external pollution generated in upwind regions into 
the county (41, 42). This approach generates a large number of in-
struments and therefore allows us to separately identify the 
causal effects of each pollution variable.

Results
Performance of machine learning models
Figure 1 shows our study domain. We employed three machine 
learning algorithms, including Light Gradient Boosted Machine 
(LightGBM), eXtreme Gradient Boosting (XGBoost), and Super 
Learner, to generate monthly mean surface O3 concentrations. 
The details of these machine learning models and the predictor 
variables incorporated are described in Materials and methods.

Figure 2 shows the cross-validation performance of the Super 
Learner model across different seasons in six regions of China, 
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which were created using a k-means cluster algorithm (Materials 
and methods). The key parameters characterizing model 
performance include cross-validated (CV) R2, the root- 
mean-squared-error (RMSE), and mean absolute percentage error 
(MAPE), which were obtained by training these machine learning 
models separately for each of the six regions and across seasons 
using historical data in 2013–2019. Our models exhibit high fidelity 
in predicting the surface O3 concentrations in all regions, indi-
cated by the fitted relationship between the predicted monthly 
mean MDA8 O3 and the corresponding ground measurements 
being nearly coincident with the 1:1 line. Nationally, the random 
10-fold CV R2 is 0.89, with an RMSE of 5.2 ppb and a MAPE of 
only 10.8%. Across seasons, the model performed best in summer 
and fall, with a CV R2 = 0.88–0.89, an RMSE of 4.6–5.6 ppb, and a 
MAPE of 9.1–12.4%. Performance in other seasons is slightly lower 
(R2 = 0.80, RMSE = 4.5–5.7 ppb, and MAPE = 9.7–12.3%). Regionally, 
the Super Learner model performed best in the North China re-
gion, with a CV R2 = 0.94, an RMSE of 5.2 ppb and a MAPE of 
13.8% when trained using year-around observations, and relative-
ly poorly in the northwest region (R2 = 0.79, RMSE = 6.6 ppb, and 
MAPE = 14.4%). The slightly poor performance in northwest is pri-
marily due to the sparse meteorological and air monitoring sta-
tions in the area, resulting in insufficient observations for model 
training. The LightGBM and XGBoost models also performed 
well across all regions and exhibited similar predictive accuracy 
(Figs. S1 and S2).

To evaluate the predictive capability of our models prior to 
2013, we collected historical ground-based O3 measurements in 
2002–2012 from 100 ozone observation sites located in mainland 
China, Hong Kong, Macao, and Taiwan (depicted as red triangles 

in Fig. 1, Table S1). We used these trained machine learning mod-
els to predict monthly mean MDA8 O3 concentrations for these 
observation sites. We found that, at the national level, the pre-
dicted O3 concentrations are in moderate agreement with re-
corded historical O3 concentrations at the monthly level, with a 
CV R2 of 0.60, an RMSE of 8.9 ppb, and a MAPE of 16.6–16.9%. 
The predictive accuracy is significantly higher in major agricultural 
production regions (i.e. East China with a CV R2 = 0.70, an RMSE =  
6.5–6.6 ppb, and a MAPE = 11.0–11.3%, Table S2).

Spatiotemporal trends of surface O3 
concentrations
While all three machine learning models demonstrated similar 
performance (Figs. S3 and S4), the Super Learner model exhibited 
a slight advantage. Hence, we used predictions from the Super 
Learner model as our preferred O3 estimates. Figure 3 shows the 
spatial and temporal distributions of monthly mean MDA8 O3 

concentrations estimated by the Super Learner model at a spatial 
resolution of 45 km × 55 km in 5 years, 2002, 2005, 2010, 2015, and 
2019. Temporally, annual mean MDA8 O3 concentrations across 
China increased from 38.1 ppb in 2002 to 47.8 ppb in 2019, with 
substantial variations across seasons and regions (Fig. S5). 
Surface O3 levels peaked during the summer, with the highest 
concentrations occurring in the North China Plain. Winter was 
the only season with the lowest O3 levels (Table S3).

China’s summer O3 pollution intensified over the 18-year peri-
od. In 2002, only a few regions in northern China had summer 
mean MDA8 O3 concentrations above 60 ppb. However, O3 pollu-
tion grew increasingly severe in other regions. Since 2010, most 
of the areas in northern China have experienced severe summer 

Fig. 1. Spatial distribution of ground ozone monitoring stations. The solid dots are ground monitoring stations from the CNEMC network during the 2013– 
2019 period, while the triangles show observation sites for historical O3 measurements during the 2002–2012 period. PRD, Pearl River Delta region.

Chen et al. | 3

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data


O3 pollution. In Beijing–Tianjin–Hebei (BTH), Henan, and Shanxi, 
monthly mean summer MDA8 O3 concentrations have been high-
er than 70 ppb (Fig. S6), substantially exceeding the WHO air qual-
ity guidelines for the peak season O3 level of 31 ppb (43).

Intense O3 pollution has also been observed in the spring and 
fall seasons during this time span. In 2019, the BTH and 
Shandong province recorded monthly mean MDA8 O3 concentra-
tions in spring above 64 ppb. Meanwhile, a few counties in 

Fig. 2. Cross-validation performance of the Super Leaner model across seasons in six subregions of China at the monthly level. These figures show 
density scatter plots of the monthly predicted MDA8 O3 levels vs. monitored levels from 2013 to 2019. RMSE, root-mean-squared prediction error; MAPE, 
mean absolute percentage error; PRD, Pearl River Delta region. Figures S1 and S2 show the performance of the LightGBM and XGBoost models.
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Yunnan province, located in Southwest China, saw a spring mean 
MDA8 O3 level exceeding 66 ppb. High O3 pollution also occurred 
during the fall in eastern China and the Pearl River Delta (PRD) re-
gion, with average monthly mean MDA8 O3 concentrations in 
both regions reaching 56 ppb in 2019.

Responses of agricultural TFP to pollution  
and temperature extremes
We employed several approaches to estimating county-level 
agricultural TFP, which represents the growth in aggregated 

agricultural output from all subsectors (cropping, livestock, for-
estry, and fisheries) that is not accounted for by changes in pri-
mary inputs (such as land, labor, fertilizer, and agricultural 
machinery). More technical details can be found in Materials 
and methods. Consistent with prior studies (20, 24), we observed 
a leveling-off of agricultural TFP in China between 2002 and 
2015, with considerable variation across counties and years 
(Fig. S7).

Because agricultural TFP measures the efficiency of all agricul-
tural production activities over the year, our baseline analysis 
used annual mean MDA8 O3 and PM2.5 concentrations as pollution 

Fig. 3. Spatial distribution of monthly mean MDA8 O3 concentrations in China from 2002 to 2019 at 45 km × 55 km spatial resolution. Maps in top five 
rows show O3 estimates based on the Super Learner model. Maps in the bottom row show observed O3 levels in 2019.
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controls. Given the sensitivity of agricultural TFP to weather and 
the strong correlation between air pollutant concentrations and 
weather conditions, our regression analyses also control for a flex-
ible set of weather variables, including the number of days with 
daily temperatures falling into specific ranges, linear and quad-
ratic terms of cumulative precipitation, sunshine duration, aver-
age relative humidity, air pressure, and wind speed, as well as 
technological changes, geographical, and other location-specific 
unobserved factors. We tested the robustness of our results using 
alternative pollution and temperature measures.

Table 1 reports the estimated impacts of pollution and tem-
perature on agricultural TFP. The OLS estimates reported in col-
umn 1 in panel A suggest that the increases in the annual mean 
MDA8 O3 and PM2.5 concentrations and high temperatures above 
35°C were negatively correlated with agricultural TFP derived 
from the Translog conventional production function without con-
stant returns to scale (TL-CPF) model (Materials and methods). 
However, these estimates are subject to a range of biases, because 
(i) pollution was not randomly distributed across regions; (ii) pol-
lution data might be subject to measurement error; and (iii) there 
may exist reverse causality between agricultural production and 
pollution concentrations. We deal with these sources of endoge-
neity head on by adopting a classic IV strategy, as discussed 
below.

Hence, column 2 presents the IV estimates of the causal effects 
of O3 and PM2.5 on agricultural TFP, with the two pollution varia-
bles instrumented by wind direction (Eq. 2 in Materials and meth-
ods). The first stage Kleibergen–Paap F-statistic is >10. The 
estimated O3 and PM2.5 coefficients are negative and statistically 
significant (P < 0.01). The IV estimate implies that each 1 ppb in-
crease in the annual mean MDA8 O3 concentrations was associ-
ated with a 2.24% reduction in agricultural TFP. In comparison, 
the estimated PM2.5 impact is smaller. Holding all else equal, 
each 1 μg/m3 increase in PM2.5 concentrations was correlated 
with a 0.92% reduction in TFP. It is worth noting that the estimated 
coefficient for PM2.5 may also reflect the effects of aerosols like 
PM10 that are highly correlated with PM2.5. This suggests that 
the interpretation regarding the impact of PM2.5 should be made 
cautiously, as it may represent some of the broader effect of aero-
sol pollution on agricultural productivity. Each additional day of 
exposure to temperatures above 35°C during a year is estimated 
to depress TFP by 0.5%. Columns 3–5 confirm the robustness of 
these findings when agricultural TFP was estimated with alterna-
tive approaches. The difference between OLS and IV estimates 
underlines the importance of addressing the endogeneity of pollu-
tion variables using the IV approach.

Column 6 reports the corresponding impacts on labor product-
ivity, defined as the output value per agricultural worker. 
Although labor productivity is a partial productivity measure, 
this exercise helps to identify the underlying mechanisms 
through which pollution and temperature extremes affect agri-
cultural TFP. Labor productivity was strongly influenced by 
elevated O3 pollution and exposure to high temperatures above 
35°C, while the impact from PM2.5 was negative but statistically 
insignificant. These point estimates align with those reported in 
columns 2–5 using TFP to measure productivity. These results 
suggest that reduced labor productivity is one of the possible 
channels by which pollution and extreme temperatures negative-
ly affected TFP. Coefficients for other weather variables are re-
ported in Table S4. For example, holding all else equal, each 1-h 
increase in total sunshine hours was associated with a 0.04– 
0.07% increase in agricultural TFP. Other weather variables have 
weak statistical significance. That said, it is of key importance to 

include these in the regression to avoid omitted variables bias 
concerns.

Our findings are robust to alternative measures of exposure to 
O3. The annual mean MDA8 O3 measure used in our main specifi-
cation assigns equal weight to monthly O3 observations through-
out the year, potentially underestimating the true impact of O3 

exposure on TFP, given that major agricultural production activ-
ities contributing to TFP predominantly occur in summer. To ad-
dress this, we considered three well-established cumulative O3 

indices: W126, AOT40, and SUM06. The W126, proposed by the 
U.S. Environmental Protection Agency (EPA), is the sum of hourly 
concentrations weighted by a sigmoidal function, placing greater 
emphasis on higher concentrations. AOT40 and SUM06 aggregate 
the sum of hourly O3 concentrations exceeding 40 ppb and 60 ppb, 
respectively (Materials and methods). All three metrics give more 
weight to higher O3 values, capturing the specific months–most 
notably the summer months—that exert a significant detrimental 
impact on agricultural TFP. These indices have been widely 
adopted in previous studies estimating O3-crop yield relationships 
(15). We calculated annual values of the three cumulative indices to 
examine the sensitivity of our results. We found that all three indi-
ces were negatively correlated with agricultural TFP (P < 0.01) and 
that estimated impacts from PM2.5 and high temperatures are con-
sistent with our baseline results (panel A of Table S5).

Winter vs. nonwinter O3 impacts
Motivated by the fact that winter was the only season without se-
vere O3 pollution in China (Fig. 3), we further estimated a model 
that includes the average MDA8 O3 concentrations during winter 
and nonwinter seasons as two separate O3 variables. The IV esti-
mates of the O3 impacts in Panel B of Table 1 indicated that 
each 1 ppb increase in the average MDA8 O3 concentrations dur-
ing the nonwinter seasons was associated with a 1.78–2.08% re-
duction in agricultural TFP (P < 0.01). These estimates are close 
to the estimated impacts of annual mean MDA8 O3 on productiv-
ity. In contrast, we found a null effect of winter O3 on TFP. This in-
dicates that elevated O3 concentrations during the nonwinter 
seasons were the key driver behind the decline in agricultural 
TFP. The estimated coefficients of the PM2.5 and weather variables 
are nearly unchanged (Table S6). These findings are also robust 
when using labor productivity as the dependent variable, or using 
W126, AOT40, and SUM06 as alternative O3 measures (panel B of 
Table S5).

Robustness checks
As is standard in the impacts literature, we conducted a series of 
robustness checks of our findings to alternative specifications, IV, 
estimation strategies, and data treatments. Specifically, we con-
sidered different clustering choices to account for spatial and 
temporal correlations in error terms (Table S7). We changed spec-
ifications by using different types of fixed effects, time trends, and 
weather controls (Table S8). We allowed instruments to vary with 
the size of wind angle bins and the number of county groups, and 
estimated the model using the limited information maximum 
likelihood estimator to make sure that our estimates do not suffer 
from weak instrument bias (Table S9). We also re-estimated the 
model by removing possible outliers (Table S10). Given the limited 
evidence of pollution affecting fisheries, we excluded coastal 
counties with a significant dependence on fisheries from our pri-
mary sample (Table S11). Moreover, we excluded the PM2.5 vari-
able from the regression models to examine whether the 
estimated impacts of O3 on agricultural productivity are sensitive 
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to the removal of this pollution covariate (Table S12). The main 
conclusions drawn above survive all of these robustness analyses.

Furthermore, we conducted two placebo checks to ensure that 
the estimated relationship between pollution and TFP did not 
arise by chance. We first estimated models using 1,000 datasets 
that were generated by randomly mismatching the county-year 
TFP and pollution data. We then generated additional 1,000 data-
sets where TFP and pollution data were randomized within sea-
sons and regions. Our baseline estimate falls outside of the 
resulting distributions of the estimates derived from these pla-
cebo datasets (Fig. S8), demonstrating that the estimated relation-
ship between TFP and pollution is unlikely to be spurious.

Regional heterogeneity
The sensitivity of TFP to O3 pollution may vary across regions due to 
differences in agricultural production systems and, as a result, TFP 
composition. To explore this, we divided our sample counties into 
four agricultural divisions: the Northeast and North China Plain, 
the Northwest Region, the Southwest Region, and the South and 
Yangtze River Region, according to the “Sustainable Agricultural 
Development Planning” released by China’s Ministry of Agriculture 
and Rural Affairs (MARA). These divisions capture the regional het-
erogeneity in agricultural production patterns across China.

Our findings show that TFP sensitivity to O3 is regionally het-
erogeneous. Specifically, exposure to rising O3 levels was associ-
ated with lower productivity in the Northeast and North China 
Plain as well as the South and Yangtze River Region (P < 0.05), re-
gions traditionally recognized for substantial grain production. 
The effects largely remain statistically insignificant in other re-
gions (P > 0.1) (Table S13). Moreover, by using MARA’s list of re-
gions designated as major grain- or livestock- producing regions, 
we found that the negative impact of O3 on agricultural product-
ivity was statistically significant in major grain-producing regions 

(P < 0.05), yet remains insignificant in major livestock-producing 
regions (P > 0.1).

Responses of crop and livestock yields to O3 
pollution
Given the pronounced adverse effects of O3 on agricultural product-
ivity, identifying the origins of agricultural TFP’s sensitivities to ris-
ing O3 levels is vital for effective policy design. Ideally, a thorough 
analysis would entail estimating TFP for each agricultural subsec-
tor. However, this is not plausible due to the limited availability of 
sector-specific input data. As an alternative, we examined the yield 
responses of major crop and livestock commodities to elevated O3 

levels. For the crop sector, we focused on the five most widely 
planted crops in China: maize, soybean, rice, wheat, and tubers. 
For the livestock sector, the only available productivity measure 
in our dataset is milk production per cow. We performed separate 
regressions using cumulative O3 indices, constructed during the 
growing seasons of crop or livestock products. This exercise helps 
to illuminate whether sensitivities of TFP to O3 pollution originate 
from the crop sector or the livestock sector.

The regression results indicate that O3 pollution has negatively 
affected yields of maize, single-season rice, wheat, and tubers 
(Tables S14–S16). In contrast, the O3 impact on milk yield was stat-
istically insignificant. Taken together with the fact that O3 signifi-
cantly reduced TFP in major grain-producing regions, these 
findings suggest that the adverse effect of elevated O3 pollution 
on agricultural TFP likely arises mainly from the crop sector’s vul-
nerability to O3 concentrations.

Historical productivity losses due to exposure to 
pollution and temperature extremes in 2002–2015
To contextualize our regression analysis and determine which 
factor accounted for significant variation in historical agricultural 

Table 1. The effects of pollution and temperature extremes on agricultural productivity.

Dependent variable Log (Agricultural productivity)

(1) (2) (3) (4) (5) (6)
OLS IV IV IV IV IV

TL-CPF TL-CPF TL-CPF-w/CRS CD-CPF CD-SFA-w/CRS Labor productivity

Panel A: Productivity responses to annual mean MDA8 O3

Annual MDA8 O3 −0.0008 −0.0224a −0.0219a −0.0199a −0.0210a −0.0250a

(0.0027) (0.0070) (0.0070) (0.0069) (0.0069) (0.0084)
PM2.5 −0.0039a −0.0092a −0.0102a −0.0087a −0.0087a −0.0058

(0.0008) (0.0033) (0.0032) (0.0031) (0.0030) (0.0038)
≥35°C −0.0032c −0.0050b −0.0053a −0.0053a −0.0055a −0.0054b

(0.0018) (0.0020) (0.0020) (0.0020) (0.0020) (0.0026)
F-test (KP statistics) — 12.4088 12.4088 12.4088 12.4088 12.4088
Observations 26,788 26,788 26,788 26,788 26,788 26,788

Panel B: Productivity responses to winter and nonwinter mean MDA8 O3

Winter MDA8 O3 −0.0027c 0.0051 0.0016 0.0028 0.0043 0.0127
(0.0014) (0.0088) (0.0087) (0.0086) (0.0087) (0.0103)

Nonwinter MDA8 O3 0.0005 −0.0208a −0.0191a −0.0178a −0.0194a −0.0259a

(0.0023) (0.0055) (0.0055) (0.0054) (0.0053) (0.0068)
PM2.5 −0.0032c −0.0092a −0.0102a −0.0087a −0.0087a −0.0060

(0.0018) (0.0033) (0.0032) (0.0031) (0.0030) (0.0038)
≥35°C −0.0032c −0.0050b −0.0054a −0.0054a −0.0056a −0.0055b

(0.0018) (0.0020) (0.0020) (0.0020) (0.0019) (0.0026)
F-test (KP statistics) — 10.9139 10.9139 10.9139 10.9139 10.9139
Observations 26,788 26,788 26,788 26,788 26,788 26,788

This table shows estimated coefficients of pollution and high temperatures on agricultural productivity. The dependent variables are the natural log of agricultural 
TFP derived from the TL-CPF model (columns 1 and 2), the TL-CPF-w/CRS model (column 3), the CD-CPF model (column 4), the CD-SFA-w/CRS model (column 5), and 
labor productivity (defined as the output per agricultural worker in column 6). Column 1 reports the OLS estimates. Columns 2–6 report the estimated coefficients 
from the IV design. All regressions include the number of days with daily temperatures falling into specific bins at a width of 5°C, as well as linear and quadratic terms 
of cumulative precipitation, sunshine duration, average relative humidity, air pressure, and wind speed as weather controls. The symbol “≥35°C” denotes the 
number of days with daily temperatures exceeding 35°C. All regressions include county fixed effects and year fixed effects. Standard errors (in parentheses) are 
clustered at county level. Significance: aP < 0.01, bP < 0.05, cP < 0.1.

Chen et al. | 7

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad435#supplementary-data


TFP, we used the baseline estimates from column 2, panel B of 
Table 1 to predict county-level TFP under two conditions (i) using 
historical, observed O3, PM2.5, and days with high temperatures 
above 35°C for each year between 2002 and 2015, and (ii) hypothet-
ical scenarios with each of these factors held at their 2002 levels. 
We then calculated the percentage changes in county-level TFP 
between the two conditions, which were weighted by total agricul-
tural output value and summed to derive national-level TFP im-
pacts of recent pollution and temperature trends. We note that 
the first stage of our IV models can accurately predict surface O3 

and PM2.5 concentrations (Fig. S9).
Estimates of historical agricultural TFP loss due to rising O3 con-

centrations over the 2002–2015 period increased rapidly from 1.6% 
in 2003 to 20.4% in 2013 (Fig. 4A). We found that TFP was 17.9% low-
er in 2015 than it would have been if O3 pollution was kept at the 
2002 level. In comparison, TFP loss due to PM2.5 was smaller, ran-
ging from 3.3 to 10.1% in 2003–2013 (Fig. 4B). Due to reduced PM2.5 

pollution since 2013 (25), agricultural TFP increased by ∼1.0% in 
2014 and 2.2% in 2015. The percentage changes in TFP due to high 
temperatures above 35°C fluctuated between −0.9% and +0.4% 
over the sample period (Fig. 4C). Results remained similar when 
agricultural TFP was estimated with alternative approaches 
(Fig. S10).

Regionally, rising ambient O3 levels reduced agricultural TFP 
in nearly all regions of China in 2015, with the largest TFP loss 
(about 38%) occurring in the north China Plain (Fig. S11). 
Because PM2.5 concentrations have begun to decline since 2013 
(25) and the estimated impact of PM2.5 on TFP is relatively small, 
PM2.5-induced TFP loss was small, with most significant losses 
occurring in the northeast regions of China (4.4%). The percent-
age changes in agricultural TFP due to high temperatures were 
generally <5% in all regions, which is consistent with estimates 
found in the literature focusing on the detected impacts of cli-
mate change in China (20).

Projected productivity gains from pollution 
reductions
The substantial reduction in agricultural productivity since 2002 
due to O3 implies that more stringent and comprehensive air 
quality regulation policy that encompasses other pollutants be-
sides PM2.5 can produce further benefits for agricultural product-
ivity in China. Figure 4D shows that, holding all else constant, 
national average agricultural TFP would increase by 60% if sur-
face O3 concentrations during the nonwinter seasons met the 
WHO air quality guidelines for peak-season O3 exposure, which 
requires a 40% reduction in national average O3 concentrations 
compared to the 2015 level. National average TFP would increase 
by 21% if PM2.5 concentrations were to reach the “Beautiful 
China” strategy that aims to reduce PM2.5 levels to 35 μg/m3 by 
2035. The estimates of productivity gains due to pollution reduc-
tions range from 36 to 70% for O3 and from 20 to 24% for PM2.5, de-
pending on the methods used to compute TFP and generate 
surface O3 estimates (Table S17). Taken together, simultaneously 
reducing O3 and PM2.5 would lead to a significant increase in agri-
cultural TFP. These productivity gains have the potential to coun-
ter expected productivity losses (∼2%) from a scenario of 2°C 
warming. In this simple scenario, daily temperatures of all 
Chinese counties are assumed to uniformly rise by 2°C relative 
to the 2015 levels. This rightward shift of 2°C in the daily tem-
perature distribution would lead to an increased frequency of 
temperature extremes.

Discussion
Conclusions
Using machine learning methods, this analysis first estimates 
fine-scale monthly ground-level MDA8 O3 concentrations from 
2002 to 2019 in China. These estimates were subsequently used 
in econometric models to analyze the impacts of two major air 
pollutants, namely O3 and PM2.5, alongside high temperatures 
on agricultural productivity. We present four major findings. 
First, China’s surface O3 pollution deteriorated spatially and tem-
porally over the 18-year period, with severe O3 pollution occurring 
during summer and in northern China. Heavy O3 pollution also 
occurred in the spring and fall seasons as well as in other regions, 
such as PRD, Southwest and eastern China. Second, China’s agri-
cultural productivity exhibited strong negative responses to rising 
surface O3 levels during the nonwinter seasons, and this negative 
impact increased with higher levels of O3 pollution (Table S18). 
Third, O3 pollution adversely impacted the yields of major crops 
and was associated with a decline in agricultural labor productiv-
ity. Given that China’s crop sector is more labor intensive than its 
livestock sector, this implies that the sensitivity of China’s agricul-
tural TFP to O3 pollution may have predominantly originated from 
the crop sector. Lastly, the productivity loss due to elevated O3 lev-
els increased nearly linearly over time from 1.6 to 20.4% across the 
2002–2015 period, far exceeding the corresponding losses from 
PM2.5 and extreme temperatures.

We further projected the potential gains in agricultural prod-
uctivity from hypothetical pollution reductions. The results 
show that, holding all else fixed, national average agricultural 
productivity would increase by 60% relative to its level in 2015, 
if surface O3 concentrations meet the WHO air quality guidelines 
for the peak-season O3 concentrations, or by 21% if PM2.5 concen-
trations are reduced to 35 μg/m3. These productivity gains from 
pollution reductions can offset the projected productivity loss 
due to a simulated 2°C rise in temperature in the future. Our find-
ings demonstrate that meeting the WHO air quality guidelines, 
which are primarily designed to protect human health, would 
also yield significant cobenefits in terms of enhanced agricultural 
productivity.

The existing literature mainly examined the direct effect of O3 

pollution on crop yields, which is just one aspect of agricultural 
production efficiency. Our research, on the other hand, adopts a 
broader approach by considering the impacts on overall agricul-
tural production efficiency and labor productivity. Our analysis 
provides a more comprehensive understanding of how air pollu-
tion affects agricultural TFP and identifies reduced labor product-
ivity as an important driving factor. It also highlights the need for 
strategies to mitigate the adverse impacts of air pollution on agri-
cultural productivity, beyond just addressing crop yield losses.

Comparisons with existing studies
The absence of reliable pollution monitoring data prior to 2013 
has stimulated a rapidly growing body of research employing ma-
chine learning models combined with satellite remote sensing 
data to estimate ground-level pollution concentrations in China. 
Many studies have predicted spatiotemporal patterns of PM2.5 

concentrations across China for the historical period before 2013 
(see review in Liang et al. (44)). Several recent studies have devel-
oped machine learning models to predict MDA8 O3 concentra-
tions; however, these studies are limited in terms of their spatial 
or temporal coverage and machine learning approaches. For ex-
ample, most of these studies focused only on small sets of 
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Chinese regions (45–48). The literature contains only a few nation-
wide studies estimating historical MDA8 O3 concentrations in 
China. Liu et al. (49) predicted ambient O3 concentrations from 
2005 to 2017 using the XGBoost algorithm at a spatial resolution 
of 0.1° × 0.1° (monthly CV R2 = 0.90, RMSE = 5.7 ppb). Zhan et al. 
(50) simulated O3 levels in 2015 using the random forest algorithm 
at a resolution of 0.1° × 0.1° (monthly CV R2 = 0.71, RMSE =  
9.7 ppb). Using an iterative random forest model, Chen et al. (51) 
estimated surface O3 concentrations from 2008 to 2019 at 0.1° ×  
0.0625° resolution (CV R2 = 0.79, RMSE = 11.0 ppb). A key limitation 
of these national studies is that they all applied one single ma-
chine learning algorithm without demonstrating the robustness 
of their estimates to alternative algorithms.

Our research contributes to the literature on estimating surface 
O3 concentrations in China in two major aspects. First, we em-
ployed three machine learning algorithms (namely LightGBM, 
XGBoost, and Super Learner) and provided O3 estimates for a rela-
tively longer time span (2002–2019). The three machine learning 
models that we adopted have demonstrated higher prediction 
accuracy, computational efficiency, and reduced possibility of 

over-fitting relative to the random forest algorithm employed by 
other national studies (52). Second, in contrast to studies consider-
ing China as a whole, we trained the machine learning models sep-
arately for each of the six subregions and reported model 
performance, which has greatly enhanced the credibility of our ma-
chine learning models. Our models exhibited comparable perform-
ance to Liu et al. (49) and outperformed other nationwide studies. 
Our models also outperformed many chemical transport model 
simulations (53, 54), whose applications are often constrained due 
to coarse spatial resolutions and high computational costs (55). 
Our estimates of spatiotemporal trends of surface O3 concentra-
tions were in agreement with existing studies (49).

While the sensitivity of agricultural TFP to pollution remains 
poorly understood, several studies have examined how tempera-
ture shocks affected agricultural TFP (11, 13, 14, 20). Focusing on 
China’s agriculture, Chen and Gong (20) found that one additional 
day with exposure to temperatures above 33°C was associated 
with a reduction of 2.6% in agricultural TFP over the 1980–2015 pe-
riod, which is larger than our estimate (0.5%). In their study, agri-
cultural output per unit of land, defined as a county’s aggregated 

Fig. 4. Estimated agricultural productivity changes due to pollution and high temperatures. A–C) Estimated changes in TFP resulting from variations in 
nonwinter O3 concentrations, PM2.5, and days with high temperatures above 35°C, respectively, for the years 2003–2015. Productivity changes were 
calculated by using Eq. (1) to predict TFP under two conditions: (i) using historical, observed values of O3, PM2.5, and days with high temperatures above 
35°C for each year between 2002 and 2015, and (ii) hypothetical scenarios with each of these factors held at their 2002 levels. Each point is a weighted 
mean of percentage changes in county-level TFP between the two conditions, where the value of a county was weighted by its total output value. The 
black, dashed, horizontal line marks 0 change for reference. The shallow bands in each panel are 95% confidence intervals. D) The projected changes in 
agricultural TFP from hypothetical pollution reductions and a scenario of 2°C warming, in which daily temperatures across all counties would uniformly 
increase by 2°C relative to the 2015 levels. The length of a bar shows the projected percentage change due to a given factor relative to 2015, and the 
whiskers are 95% confidence intervals of the estimates.
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agricultural value of outputs divided by the total acreage of arable 
land in this county, was used to compute agricultural TFP. To rec-
oncile our estimate with theirs, we replicated their analysis by us-
ing the same specification, TFP calculation, and sample from 2002 
to 2015. The results showed that TFP declined by only 0.1% 
(Table S19) for each additional day with temperatures above 
33°C, which is broadly consistent with our estimate. The decline 
in temperature sensitivity is due to the significant improvement 
in China’s agricultural resilience to climate shocks since the 
1990s, primarily because of the rapid expansion of irrigation infra-
structure in the country (56).

Our findings of large and detrimental impacts of O3 pollution 
on crop yields are in agreement with the estimates reported in 
the literature, which have investigated the combined impacts of 
climate change and air pollution on crop yields in other countries. 
For example, Burney and Ramanathan (17) found that over 90% of 
the yield changes for wheat and rice in India during the 1980–2010 
period could be attributed to air pollution (e.g. black carbon and 
O3). Auffhammer et al. (57) concluded that brown clouds were a 
key driver reducing Indian rice harvests. Using a global vegetation 
and crop model, Schauberger et al. (58) estimated that historical 
yield losses due to O3 pollution amounted to ∼6% for soybeans 
and 34% for wheat in China from 2008 to 2010. Furthermore, esti-
mates based on exposure-response functions indicated that ex-
posure to O3 pollution led to relative yield losses of 33, 23, and 
9% for wheat, rice, and maize, respectively, in China (59). Our ana-
lysis extends these findings by showing that, in addition to maize, 
wheat, and rice, rising O3 pollution correlated with lower tuberous 
root yields.

Uncertainty and limitations
We performed several uncertainty analyses to examine the ro-
bustness of our predicted O3 estimates and their impact on agri-
cultural productivity. The results show that the model 
performance and the predicted spatial and temporal patterns of 
O3 concentrations remain robust to variations in predictor varia-
bles and data (Fig. S12). The estimated impacts of pollution and 
temperature extremes were also in agreement with the baseline 
results (Fig. S13).

Several caveats should be applied to our analysis. First, despite 
our efforts to compile and utilize all available historical observa-
tion data to validate O3 predictions, our machine learning models 
did not perform equally well in all regions of China, with slightly 
poorer performance in northwestern China due to the scarcity 
of meteorological and air monitoring stations. Second, uncertain-
ties may be introduced when constructing cumulative indices of 
O3. In the absence of estimates of hourly O3 concentrations, we 
made simplifying assumptions when calculating AOT40, SUM06, 
and W126 indices: (i) the hourly O3 concentrations during the 
peak 8 h (or during the nonpeak hours) each day in a month are 
the same and the O3 concentrations during the peak hours are 
equal to the predicted monthly mean MDA8 ozone concentrations 
over the 2002–2015 period; (ii) the ratio of mean O3 concentrations 
during the peak 8 h to that during the nonpeak hours, though dif-
fering by month and by region, remained stable over the 2002– 
2019 period. We computed this ratio using the observed hourly 
data over the 2013–2019 period and then estimated the mean 
hourly O3 concentrations during the nonpeak hours for 2002– 
2015. We investigated the validity of these two assumptions by 
comparing cumulative O3 indices computed using the observed 
and estimated hourly data in 2013–2019. The results showed 
that the percentage differences in the sample means based on 

the two data sources were generally <11% (Table S20), suggesting 
that these assumptions are reasonable in our setting. However, to 
what extent these assumptions hold in years before 2013 cannot 
be examined. Third, our analysis may have underestimated O3 

concentrations in rural China, as most of the ground-level O3 

monitoring stations used in our analysis are located in urban 
areas, which typically have lower O3 levels than rural regions (59).

Our main analysis did not consider the impacts of other air pol-
lutants. Recent studies found that agricultural production exhib-
ited negative responses to SO2 and NOx (17), which were often 
emitted from the same pollution source and were thus highly cor-
related with PM2.5 and O3 concentrations (Table S21). While it is 
possible to generate SO2 and NOx estimates using similar machine 
learning models, the lack of historical data for these pollutants be-
fore 2013 restricted our ability to evaluate the predictive capabil-
ity of these models prior to 2013. Nonetheless, we conducted 
additional robustness checks by progressively adding predicted 
values for SO2 and NO2, which were generated using the three ma-
chine learning models, as additional controls, even though these 
values were not validated against historical data. We found that 
these machine learning models performed well in predicting sur-
face SO2 and NO2 concentrations (Tables S22 and S23). The regres-
sion results indicated that the estimates for PM2.5 and O3 were 
consistent with our main results (Table S24). This robustness 
check reinforces our main findings.

Our findings highlight the urgency of reducing O3 pollution to 
sustain China’s agricultural productivity growth. Environmental 
policies need to incentivize research and investments to reduce 
NOx and volatile organic compounds (VOCs) emissions, the pre-
cursors of O3 pollution. The rapid rise of summer O3 pollution in 
the North China Plain calls for immediate action in order to reduce 
the adverse impacts of O3 pollution in this region given its import-
ant role in China’s agriculture. Improved agricultural policies are 
also needed to guide research toward identifying the origins of 
sensitivity of agricultural productivity to air pollution and mitigat-
ing the associated negative impacts.

Materials and methods
We used multiple data sources to estimate surface O3 concentra-
tions during the period of 2002–2019, including a dataset of ground 
O3 measurements, high-resolution satellite-derived pollution 
data from the National Aeronautics and Space Administration 
(NASA), a meteorological dataset, and datasets containing other 
predictor variables for O3 estimation. Combined with the ground 
O3 estimates, we relied on a dataset of ground PM2.5 estimates 
and county-level agricultural TFP estimates to assess the impacts 
of pollution and temperature extremes on agricultural TFP.

Ground O3 measurements
We obtained hourly O3 concentrations from 1,715 ground moni-
toring stations during the 2013–2019 period from the China 
National Environmental Monitoring Center (http://www.cnemc. 
cn/), Hong Kong Environmental Protection Department (https:// 
www.epd.gov.hk/epd/english/top.html), Macao Environmental 
Protection Agency (https://www.dspa.gov.mo/index.aspx), and 
Taiwan Environmental Protection Administration (https://www. 
epa.gov.tw/) (Fig. 1). Based on these hourly O3 concentrations, 
we computed the MDA8 O3 concentrations and then aggregated 
them to the monthly mean, which were used for training of ma-
chine learning models and cross-validation.

To assess the predictive capability of the machine learning 
models for O3 concentrations before 2013, we collected historical 
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O3 measurements during the 2002–2012 period from 100 O3 obser-
vation sites. The O3 concentrations at these sites were originally 
recorded at the hourly level, except for sites in Macao, where re-
cordings were made at the daily maximum 8-h level. Initially, 
the O3 concentrations were reported in the unit of μg/m3 under 
the standard temperature and pressure conditions (273 K, 
1,013 hPa). We converted these concentrations to parts per billion 
(ppb), adjusting for conditions at 298 K and 1,013 hPa, following 
the methodology outlined in Gelaro et al. (60). These recordings 
were then computed as the MDA8 O3 concentrations and aggre-
gated to the monthly mean for validating historical O3 predictions 
from 2002 to 2012.

Satellite-derived pollution data
We were aware of the availability of several satellite-based reanaly-
sis products, and selected the MERRA-2, the latest version of global 
atmospheric reanalysis product developed by NASA. This product 
assimilates space-based observations of meteorological variables, 
aerosols, and O3 and incorporates their interactions with other 
physical processes in the climate system (60). MERRA-2 has been 
widely used by previous studies to estimate ground-level PM2.5 

pollution (44, 61). The variables reported in the MERRA-2 datasets 
include O3 mixing ratio, air density, and surface mass concentra-
tions of major aerosols components across the globe. The O3 mixing 
ratio and air density were extracted from the product MERRA-2 
3-hourly Instantaneous Model (M2I3NVASM, https://disc.gsfc. 
nasa.gov/datasets/M2I3NVASM_5.12.4 and M2I3NVAER, https:// 
disc.gsfc.nasa.gov/datasets/M2I3NVAER_5.12.4, respectively). The 
surface mass concentrations of major aerosols components were 
extracted from the product MERRA-2 1-hourly time-averaged mod-
el (M2T1NXAER, https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_ 
5.12.4). These satellite-based pollution data are reported at a spatial 
resolution of 0.5°×0.625° (∼45 km × 55 km). We extracted these 
grid-level pollution data for China between 2002 and 2019. We cal-
culated the surface O3 concentration by multiplying the O3 mixing 
ratio (in kg kg−1) with the air density (in kg m−3). Major aerosol com-
ponents reported by MERRA-2 include organic carbon, black car-
bon, dust, sulfate, and sea salt. We converted these hourly 
satellite-based pollution concentrations into the corresponding 
monthly means. The MERRA-2 data come with its own limits, in-
cluding well-documented regional biases and aerosols components 
not validated by ground-based observations. To address these is-
sues, we performed one uncertainty analysis using only ground- 
validated total PM2.5 as the pollution predictor variable. Our main 
findings remain robust to this change.

Meteorological data
Meteorological data were collected from China Meteorological Data 
Service Center (http://data.cma.cn/), Hong Kong Observatory 
(https://www.hko.gov.hk/sc/index.html), Macau Meteorological 
and Geophysics Bureau (https://www.smg.gov.mo/en), and Taiwan 
Central Weather Bureau (https://codis.cwa.gov.tw/StationData), 
which report daily mean temperature, wind speed, wind direc-
tion, relative humidity, air pressure, total precipitation, and total 
sunshine hours, for ∼877 weather stations. The datasets also re-
port coordinates of each weather station. Daily weather data 
were aggregated to generate monthly averages of these weather 
variables.

Other predictor variables for O3 estimation
We extracted normalized difference vegetation index (NDVI) and 
elevation data at 1-km resolution from the Institute of Geographic 

Sciences and Natural Resources Research of the Chinese Academy 
of Science for years 2002–2019 (https://www.resdc.cn/Default. 
aspx). Population density at 1-km resolution was downloaded 
from the WorldPop datasets (https://www.worldpop.org/).

Merging datasets
We merged the ground O3 data, satellite-derived pollution data, 
and meteorological data from 2013 to 2019 by grid cell and month 
to train the machine learning models. The surface O3 data and the 
satellite-derived pollution data were merged by overlaying two 
maps: one with locations of air quality monitoring stations and 
another with satellite grid cells. Because air quality monitoring 
stations in China are not evenly distributed, some grid cells may 
contain more than one monitoring station. For those grid cells, 
we took an average of monthly mean MDA8 O3 concentrations 
across monitoring stations within a grid cell. To match up with 
our pollution data, we employed an inverse distance weighting 
(IDW) method to impute meteorological data for each of the grid 
cells covering China. Specifically, we chose a radius of 200 km sur-
rounding the centroid of a grid cell and computed the weighted 
averages of meteorological variables recorded by all weather sta-
tions within the circle, with the distance to the centroid of the grid 
cell as the weight. The NDVI, elevation and population density 
data at 1-km spatial resolution were aggregated to the grid level 
at a spatial resolution of 0.5°×0.625° using ArcGIS.

Ground PM2.5 estimates
We obtained daily PM2.5 concentrations with a spatial resolution 
of 10 km × 10 km from a near real-time air pollutant database in 
China (http://tapdata.org.cn/) (62). The grid-level PM2.5 data were 
processed to impute county-level PM2.5 concentrations using the 
similar IDW method described above.

Agricultural TFP estimates
We employed four approaches to estimate county-level agricul-
tural TFP. The baseline model is the specification based on the 
TL-CPF. We considered alternative specifications based on the 
Translog conventional production function with constant returns 
to scale (TL-CPF-w/CRS), the Cobb–Douglas conventional produc-
tion function without constant returns to scale (CD-CPF), and 
Cobb–Douglas stochastic frontier model with constant returns 
to scale (CD-SFA-w/CRS). In all models, the output variable is 
the aggregate agricultural outputs, which are the sum of the de-
flated total value of outputs from cropping, livestock, forestry, 
and fisheries. There are four primary inputs, including cropland, 
agricultural labor, fertilizer, and machinery. We excluded the 
Tibetan conservation zone and northwestern counties from our 
analysis. The former covers most of the Qinghai-Tibet plateau 
with highly fragmented agricultural production, while the latter 
was excluded because of poor performance of machine learning 
models in northwest. Because county-level agricultural data 
were only available up to 2015, we estimated agricultural TFP 
for 2,298 counties over the 2002–2015 period.

Yield data
The National Bureau of Statistics (NBS) provided county-level ad-
ministrative data on agricultural outputs in mainland China from 
2002 to 2015. The dataset contains county-specific total crop pro-
duction (measured in metric tons) and planted acreage (measured 
in hectares) for major food/feed crops. These major crops include 
rice, wheat, maize, soybeans, and tuber crops. Several rice crop-
ping systems are practiced in China, including single-season 
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rice, double-cropped rice (a combination of early and late rice pro-
duction technology), and multiple-cropped rice. The dataset does 
not report total production and planted acreages for early and late 
rice in regions with double or multiple rice cropping systems. To 
accurately match yield data with pollution and weather data, 
we focused solely on single-season rice production. We calculated 
county-average crop yields as the total county-level production 
divided by their respective planted acreage. Regarding livestock, 
the NBS dataset reports county-level milk production (measured 
in metric tons) and the total number of cows (measured in heads). 
We computed milk production per cow.

Machine learning model training
We employed three machine learning algorithms, namely 
LightGBM, XGBoost, and Super Learner, to estimate ground-level 
monthly mean MDA8 O3 concentrations between 2002 and 2019. 
Originally developed from the gradient boosting framework based 
on decision tree learning algorithms, LightGBM and XGBoost are 
considered as powerful machine learning algorithms (63, 64). 
These two algorithms significantly improve prediction accuracy, 
have higher computational efficiency, and reduce the possibility 
of over-fitting compared to other machine learning algorithms 
such as random forest (52). Both algorithms are also more inter-
pretable than deep learning models such as neural networks 
(49, 65). Super Learner is an integrated machine learning algo-
rithm, which combines various ensemble learning models, such 
as LightGBM, XGboost, random forest, to achieve improved pre-
diction accuracy (66). It creates an optimal weighted average of 
these candidate algorithms and has been proven to perform 
asymptotically as accurate as the best possible prediction algo-
rithm in its library (67).

Predictor variables
Data from 2013 to 2019 were used for machine learning model 
training. We included a comprehensive set of model predictors 
to ensure best predictive power of these machine learning models. 
Several previous studies have shown that meteorological factors 
and anthropogenic emissions can influence O3 concentrations 
(26). Vegetation plays a role in the formation of ground-level O3 

by (i) emitting VOCs that serve as O3 precursors (68), (ii) removing 
nitrogen oxides from the air (69), (iii) facilitating dry deposition 
(68), and (iv) affecting weather conditions like temperature and 
sunlight. We included population density to account for an-
thropogenic influences on O3 levels, which typically include emis-
sions from traffic and industrial activities. The inclusion of this 
variable can also account for variations in O3 levels between rural 
and urban areas in China (59). Local characteristics, such as eleva-
tion and terrain, can affect ground-level O3 by influencing the 
interplay of chemical, physical and meteorological factors. 
Therefore, in addition to satellite-based O3 concentrations, model 
predictors included satellite-derived aerosols components (i.e. or-
ganic carbon, black carbon, dust, sulfate, and sea salt), meteoro-
logical variables (average temperature, relative humidity, air 
pressure, precipitation, wind speed, and sunshine durations), co-
ordinates, elevation, NDVI, and population density. We performed 
a grid search for hyperparameters to identify the best model con-
figurations, guided by statistical measures of CV R2, RMSE, and 
MAPE values.

Given the likely varying correlations between satellite-based 
and ground-recorded O3 across space, we partitioned all the grid 
cells in China into six subregions, using a k-means clustering algo-
rithm, which minimizes within-cluster variances and aims to 

identify clusters with similar spatial features (latitudes and longi-
tudes in this study). K-means is a well-established algorithm, 
noted for its simplicity and efficiency in solving clustering prob-
lems (70). The six subregions that we created are the North, 
Northeast, East, PRD, Qinghai-Tibet, and Northwest (Fig. 1). We 
then trained the three machine learning models separately for 
each of these subregions.

Model validation
We applied 10-fold cross-validation (CV) to assess model perform-
ance. Ten-fold CV is commonly employed in machine learning 
studies, as it can generate test error rate estimates free from 
both high bias and large variance (71). In this process, the merged 
dataset with monthly records from 2013 to 2019 was randomly 
partitioned into ten equal size subsets. Nine of these subsets 
were used to train a machine learning model, while the remaining 
one was reserved as the validation data for testing the model. This 
cross-validation process was repeated 10 times (the folds) to gen-
erate CV O3 concentrations corresponding to each monthly mean 
observation that was used for model training. Using the 
CV-generated O3 estimates and the corresponding observations, 
simple linear regressions were performed to calculate R2, RMSE, 
and MAPE for evaluating model performance.

Econometric model
We estimated the following model to assess the impacts of pollu-
tion and temperature on agricultural TFP:

log (TFPit) = βOzoneOzoneit + βPMPM2.5it + Xitγ + αi + λt + uit (1) 

where TFPit represents the agricultural TFP in county i in year t. 
Ozoneit and PM2.5it denote annual average MDA8 O3 and PM2.5 

concentrations, respectively. Given the sensitivity of agricultural 
productivity to weather and the correlations between air pollu-
tant concentrations and meteorological factors, we controlled 
for a flexible set of weather variables, denoted by the vector Xit, 
which includes total precipitation, total sunshine duration, aver-
age relative humidity, air pressure, and wind speed, all at the an-
nual level. We considered linear and quadratic terms of these 
variables to allow for potential nonlinear effects. Xit also contains 
a set of temperature variables that measure the number of days 
with daily temperature falling into a specific bin. We conducted 
a sinusoidal interpolation between daily maximum and minimum 
temperatures before forming the temperature bins, which allows 
for a portion of a day to be counted toward a certain temperature 
bin. We set up 5°C bins, with the first bin being temperatures be-
low 0°C and the last bin accounting for temperatures above 35°C. 
αi represents county fixed effects, controlling for time-invariant 
location-specific unobserved factors, such as geography. λt de-
notes year fixed effects that control flexibly for common time- 
varying shocks that were experienced by all counties in our sam-
ple, such as technological changes. uit represents the error term. 
Our coefficients of interest are βOzone and βPM, which are inter-
preted as the percentage change in TFP induced by each unit in-
crease in O3 or PM2.5. We clustered standard errors at the county 
level, but our results are robust to alternative clustering choices 
(Table S7).

The OLS estimators of βOzone and βPM are prone to bias. 
Following prior studies (41, 42, 72), we overcame these economet-
ric challenges by using an IV approach that relies on changes in 
wind direction as exogenous shocks to local pollution levels. 
Because wind can transport ambient pollutants hundreds of kilo-
meters away, wind direction is a strong predictor of local pollution 
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levels. More importantly, wind direction is unlikely to directly af-
fect agricultural productivity except through its impacts on air 
pollution. Specifically, we estimated the following first stage 
model:

{Ozoneit or PM2.5it} =


g∈G

2

a=0

πg
a1[Gi = g] × WD90a,90a+90

it + Xitγ

+ αi + λt + σi,t.

(2) 

The variable 1[Gi = g] is an indicator for county i being assigned to 
group g from the set of county group G. We used the k-means clus-
ter algorithm to generate 50 groups for all the sample counties 

based on their coordinates. The variable WD90a,90a+90
it measures 

the number of days in county i in year t with the daily average 
wind direction falling in a specific 90° interval. We chose the range 
of values from 270° to 360° as the reference category. The inter-

action term 1[Gi = g] × WD90a,90a+90
i,t thus contains our excluded in-

struments. Our results remained robust to variations in the 
numbers of spatial groups and wind direction bins (Table S9). 

The coefficient πg
a captures the influence of wind direction on pol-

lution, and it is allowed to vary across regions. Other control var-
iables and the fixed effects were constructed the same as in Eq. (1).

Cumulative indices of O3

These three cumulative indices were calculated as: AOT40 = 

n

h=1
(Ch − 40) for Ch > 40 ppb, SUM06 =

n

h=1
Ch for Ch > 60 ppb and 

W126 =
n

n=1
Ch × 1

(1+4403×e−126×Ch )

 
, where Ch is the hourly O3 concen-

tration in ppb for hour h, and n is the number of hours. These 
vegetation indices were calculated for the entire year. Since O3 

pollution primarily occurs during the nonwinter seasons, coincid-
ing with the growth periods for most crops, the magnitudes of 
these year-round indices are nearly identical to those computed 
solely for the nonwinter season (Table S3). We made two simplify-
ing assumptions to compute hourly O3 concentrations over the 
2002–2015 period. First, we assumed that the hourly O3 concentra-
tions during the peak 8 h (or during the nonpeak hours) each day 
in a month were the same, and that the hourly O3 concentrations 
during the peak hours are equal to the monthly mean MDA8 O3 

concentrations predicted by machine learning models. Second, 
we assumed that the ratio of mean O3 concentrations during the 
peak 8 h to that during the nonpeak hours, though differing by 
month and by region, remained stable. We computed these ratios 
for each month and each region using the observed hourly data 
over the 2013–2019 period, and then estimated the mean hourly 
O3 concentrations during the nonpeak hours for years 2002–2015.

Uncertainty analyses
We conducted a range of analyses to address potential uncertain-
ties. These analyses included the use of validated ground-level 
PM2.5 data for training machine learning models, exclusion of 
NDVI and population density as predictor variables, and exclusion 
of weather stations located within either 10 or 20 km of city cen-
ters in the IDW interpolation. These analyses were conducted us-
ing the Super Learner model. The results show that the model 
performance (R2, RMSE, and MAPE) and the predicted spatial 
and temporal distributions of O3 concentrations remain robust 
across these variations (Fig. S12). Using the O3 estimates gener-
ated from these scenarios, we then reconstructed the average 
MDA8 O3 concentrations for both winter and nonwinter seasons 

and estimated Eqs. (1) and (2) to assess the impacts of pollution 
and temperature extremes on agricultural TFP. The results were 
consistent with our baseline findings (Fig. S13).
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