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Abstract

Motivation: Chromatin immunoprecipitation sequencing (ChIP-seq) experiments are inexpensive

and time-efficient, and result in massive datasets that introduce significant storage and mainte-

nance challenges. To address the resulting Big Data problems, we propose a lossless and lossy

compression framework specifically designed for ChIP-seq Wig data, termed ChIPWig. ChIPWig

enables random access, summary statistics lookups and it is based on the asymptotic theory of

optimal point density design for nonuniform quantizers.

Results: We tested the ChIPWig compressor on 10 ChIP-seq datasets generated by the ENCODE

consortium. On average, lossless ChIPWig reduced the file sizes to merely 6% of the original, and

offered 6-fold compression rate improvement compared to bigWig. The lossy feature further

reduced file sizes 2-fold compared to the lossless mode, with little or no effects on peak calling and

motif discovery using specialized NarrowPeaks methods. The compression and decompression

speed rates are of the order of 0.2 sec/MB using general purpose computers.

Availability and implementation: The source code and binaries are freely available for download

at https://github.com/vidarmehr/ChIPWig-v2, implemented in Cþþ.

Contact: milenkov@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

ChIP-seq files contain information gathered using inexpensive ChIP-

seq technologies designed to analyze the interactions between pro-

tein and DNA by combining chromatin immunoprecipitation and

next generation sequencing methods. Consequently, in many emerg-

ing -omic data repositories, ChIP-seq files constitute a significant

fraction of stored information: ChIP-seq data have been curated by

projects such as the ENCODE project (Consortium et al., 2004),

hosted at the UCSC Genome Browser, various National Institutes of

Health (NIH) programs, the Roadmap Epigenomics (Bernstein

et al., 2010) and the Cistrome projects (Liu et al., 2011). Methods

for downstream analysis of ChIP-seq data have also been reported in

a vast volume of the bioinformatics literature, and they include peak

calling and motif finding (Bailey et al., 2013; Kuan et al., 2011;

Machanick and Bailey, 2011; Nakato and Shirahige, 2016).

ChIP-seq experiments generate raw reads in FASTQ format that

require large storage space and are unsuitable for visualization.

Consequently, most FASTQ files are accompanied by Wig files that

provide summary information contained in the reads that needs to

be visualized, such as read density. Furthermore, the sizes of ChIP-

seq files in Bed and Wig format, available from ENCODE, Gene

Expression Omnibus, or Galaxy repositories, often exceed 1 GB.

Given that they are accessed and downloaded with high frequency,

it becomes hard to avoid storage and communication bottlenecks.

To enable efficient maintenance and organization of these and other

genomic databases, specialized compression methods have been

developed that can significantly reduce the size of the sequencing

datasets (Cao et al., 2007; Hoang and Sung, 2014; Kent et al., 2010;

Pinho et al., 2011; Tabus and Korodi, 2008; Yu et al., 2015). For

Wig files, two of the most frequently used compression techniques
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are bigWig and bigBed (Kent et al., 2010). BigWig essentially uses

classical gzip compression and leads to moderate reductions in file

sizes. A more efficient compression method for RNA-seq and ChIP-

seq Wig files, termed cWig (Hoang and Sung, 2014), was recently

proposed, but appears to require special compilers and is currently

not publicly available.

Recently, some of the authors proposed a compression method

for RNA-seq Wig files termed smallWig (Wang et al., 2016) that

represents the state-of-the-art method in the field, offering signifi-

cantly improved compression rates when compared to bigWig, cWig

and gzip. SmallWig enables fast queries from the compressed files in

addition to access to summary statistics features paralleling those

offered by the UCSC Genome Browser. At the core of the smallWig

algorithm are two separate encoding pipelines for location and

expression tracks via differential and run-length encoding, and

accompanying arithmetic compaction. Although smallWig allows

for a large gain in terms of compression rate and compression/

decompression time for RNA-seq Wig files, it is not suitable for

direct use on ChIP-seq data due to different properties and forms of

the data tracks. In RNA-seq files, the first column of the data lines

represents chromosome locations that appear as consecutive positive

integers, while in ChIP-seq Wig files, the chromosome locations in

the first column are positive integers that are not necessarily consec-

utive. Furthermore, in ChIP-seq files, the average read densities may

have high variance both globally and locally; by contrast, in RNA-

seq Wig files, the processed expression values are mostly locally

smooth. This is best illustrated by the histograms of two typical

ChIP-seq and RNA-seq files, shown in Supplementary Figure S2. As

a result, the smoothness feature of RNA-seq expression tracks

makes them suitable candidates for run-length encoding, which may

not be optimal for ChIP-seq data. Most importantly, smallWig is

only designed to operate in a lossless mode, which may not be

needed for highly noisy data or data used for visualization such as

ChIP-seq Wig data. ChIP-seq data is typically processed through

sequential peak calling followed by motif discovery, which makes it

possible to exactly characterize the effects of lossy data quantization

on the performance of two these inference algorithms. Thus, in

many applications it may be desirable to perform lossy compression

of ChIP-seq data, as it significantly reduces file sizes while preserv-

ing information relevant for downstream processing. No lossy data

compression methods for ChIP-seq Wig or other visualization files

are currently available.

We introduce a compression technique for ChIP-seq data, termed

ChIPWig, which may be executed both in a lossless and lossy mode.

The algorithm employs delta encoding, run-length encoding and

arithmetic encoding akin to smallWig, but in a fundamentally differ-

ent manner. In particular, ChIPWig aims to smooth out the variance

in the average read densities and hence performs a transform step on

the relevant data track. Furthermore, it uses specialized coding

methods for the location sequence. Unlike smallWig, ChIPWig

offers a lossy compression feature through uniform and nonuniform

quantization. Uniform quantization ensures best compression

results, as it significantly smoothes out the data which may then be

efficiently compressed using runlength coding. Unfortunately, and

as expected, uniform quantization degrades peak calling accuracy

due to the same described smoothing properties. Nonuniform quan-

tization leads to significant compressed file size reduction when

compared to lossless methods, and it does not change the visual

quality of the data or the output of peak calling and motif finding

algorithms, as it performs smoothing in a specialized fashion con-

trolled by the data distribution.

To illustrate the utility of our lossless and lossy compression

methods, we tested the lossless and lossy mode of the algorithm on

numerous ChIP-seq files from the ENCODE project. We include

detailed information on 10 ChIP-seq files from the ENCODE proj-

ect and compared the lossless ChIPWig compression rate to those of

bigWig, cWig, gzip and the original Wig files. Our results show that

lossless ChIPWig compression rates, on average, outperform those

of bigWig by 6-fold, gzip 4.5-fold and cWig 2-fold. Lossless

ChIPWig also enables random query of different chromosome

regions by partitioning the data tracks into blocks of suitable size. In

the random access mode, compression is performed on each block

individually, trading-off compression rate for ease of targeted

access. ChIPWig, unlike bigWig and cWig, also accepts different

block sizes. Furthermore, it allows the user to access the summary

statistics information (maximum, minimum, average and standard

deviation of the average read densities, and peak magnitudes) for

each block. Lossy compression is accomplished by first performing

uniform or nonuniform quantization of the average read densities,

and then executing the lossless ChIPWig procedure. Lossy ChIPWig

was tested on the same 10 ChIP-seq files from the ENCODE project,

and led to close to 3-fold reductions in file sizes for the case of uni-

form quantization, and 2-fold reductions in file sizes for the case of

nonuniform quantization. For visualization purposes, the nonuni-

formly quantized files do not introduce any subjective, visible

degradation.

In addition, we did a case study on two example ChIP-seq Wig

files containing information about chromosomes Y and 11. On these

datasets and their uniformly and nonuniformly quantized counter-

parts, we performed peak calling via NarrowPeaks (Madrigal,

2016) [for the most recent version of the software, the reader is

referred to Madrigal and Krajewski (2016)]. Although peak calling

is mostly performed on BAM or SAM files, some peak calling meth-

ods such as NarrowPeaks allow one to directly operate on Wig files;

note that despite its name, NarrowPeaks can identify both narrow

and broad peaks. We fed the output of the peak caller into MEME-

ChIP (Machanick and Bailey, 2011) for the purpose of identifying

binding motif sequences. The results reveal that in contrast to the

uniform quantizer, the near-optimal (with respect to mean-square

distortion, and for a sufficiently large number of thresholds) nonuni-

form quantizer did not introduce any performance loss in peak call-

ing and motif finding. In other words, the results produced by

NarrowPeaks and MEME-ChIP were identical for the original and

nonuniformly quantized files in terms of preserving peak positions

and motifs.

The paper is organized as follows. In Section 2, we outline the

ChIPWig compression architecture and describe how a ChIP-seq

Wig file is processed via delta, run-length and arithmetic encoding.

In Section 3, we first describe the implementation of the lossless

ChIPWig algorithm and illustrate its performance with respect to

compression/decompression rate and execution time. Then, we pro-

ceed to introduce the quantization schemes used in the implementa-

tion of the lossy ChIPWig algorithm. In Section 4, we describe the

results of peak calling and motif analysis of the example unquan-

tized and quantized ChIP-seq dataset. In Section 5, we discuss the

features of the algorithm and Section 6 concludes the paper.

2 Materials and methods

2.1 Lossless encoding
The output of a ChIP-seq experiment is sequence information in

FASTQ format which is used for downstream analysis that generates
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a vast amount of other types of data. A typical pipeline includes

read mapping, peak calling and motif discovery, which in turn pro-

duce SAM/BAM, Wig and Bed files. There is a storage and computa-

tion time trade-off for each of the file types: keeping all files incurs a

high cost of storage, while re-running large scale analysis is compu-

tationally expensive. A solution is to store raw data in a lossless

manner, and highly processed data in a lossy form. In particular,

Wig files contain ‘processed’ counts for protein binding sites, often

containing read counts themselves, averaged over a window of

25 bp, or fold-control ratios. Typically, ChIP-seq files are stored in

bigWig format which represents a compressed version of the Wig

format. One advantage of the Wig files is a simple data structure

that can accommodate visualization on genome browsers, which

does not require large precision due to low sensitivity of the human

eye.

For these reasons, we suggest lossy compression (quantization)

of read densities site information in Wig files using scalar quantiza-

tion schemes that map the large set of average read densities into a

significantly smaller one. We investigate both uniform and nonuni-

form scalar quantization, as described in Section 2.2., coupled with

lossless compression of the quantized values which offers further file

size reductions.

For simplicity, we start by outlining the lossless ChIP-seq Wig

file processing comprising delta and run-length encoding and then

proceed to describe the compression technique based on arithmetic

encoding. The ChIP-seq Wig files used in our experiments were gen-

erated as part of the ENCODE project, where the ChIP-seq files

used for visualization are originally stored in bigWig format that has

to be converted into a Wig format for subsequent ChIPWig

compression.

A sequence is defined with a capital letter and elements of

the sequence are denoted by lower case letters. For instance,

A ¼ a1; a2; . . . ; aNð Þ is a sequence with N elements. We write

j½ � ¼ f1; 2; . . . ; jg, for any positive integer j 2 N and j; k½ � ¼ fj; jþ 1;

. . . ;kg for any non-negative integers j and k where j<k.

The ChIP-seq Wig files comprise the following sequence tracks:

• The location sequence L ¼ ‘1; ‘2; . . . ; ‘Nð Þ; where N denotes the

length of the sequence and ‘i 2 N for all i 2 N½ � satisfies

‘i < ‘iþ1; i 2 N � 1½ �. In this sequence, one often has ‘iþ1 ¼ ‘i
þs; where s > 1; and i 2 N½ �, except for some skipped locations,

for which ‘iþ1 > ‘i þ s. We note that while in most of the tested

ChIP-seq data, s is a constant and is equal to 25, in some cases

s ¼ 21 and s ¼ 10 were used as well. We also observed that loca-

tions such that ‘iþ1 > ‘i þ s are exceptions rather than the norm,

but still appear significantly often. As an example, in one proto-

typical ChIP-seq Wig file used as the running example and

described in the Results section, the number of locations for

which s > 25 equals 6 723 719, while the number of locations

for which s ¼ 25 equals to 73 575 541.
• The average read density sequence C ¼ c1; . . . ; cNð Þ; where ci

2 Rþ for all i 2 N½ �. The ci’s indicate the average read density

corresponding to the location ‘i [Read density refers to the aver-

age number of reads in a given window length (the length of the

window varies from application to application), whereas cover-

age refers to the average number of reads mapped to a location

in the reference genome.]. The sequences L and C have the same

length.

Having defined the sequences L and C which represent the two col-

umns of an ENCODE ChIP-seq Wig file, we are ready to describe

the lossless compression techniques applied on the sequences.

Compressing the location sequence L involves the following

steps.

1. Delta encoding refers to computing the difference sequence

D ¼ d1; d2; . . . ; dNð Þ; di 2 Z; i 2 N½ �; of a sequence. When the

underlying sequence equals L, one has di ¼ ‘i � ‘i�1.

2. Run-length encoding results in two sequences S ¼ s1; . . . ; sKð Þ;
R ¼ r1; . . . ; rKð Þ obtained by performing run-length encoding

on the delta encoded sequence D, where si 2 D captures the

symbol, while ri equals the number of consecutive appearances

(i.e. the runlength) of si in D, for all i 2 K½ �.
3. Arithmetic encoding is a form of entropy coding that uses the

symbol probability distribution to perform variable-length inter-

val parsing that leads to a sequence being represented by an

interval. Arithmetic coding often outperforms Huffman entropy

coding, as it operates on the sequence as a whole, rather than on

individual symbols. The sequences S and R are compressed by

an arithmetic encoder.

The compression method for the average read density sequence C

involves the following steps.

1. Scaling refers to converting the average read density sequence,

which consists of non-negative real-valued numbers, into inte-

gers. Each ci 2 C is multiplied by a scaling factor 10E, for some

E 2 N, where E is chosen based on the number of decimals in ci.

This results in a sequence A ¼ a1; . . . ; aNð Þ;where the ai’s are

integers and i 2 [N]. In most ENCODE ChIP-seq Wig files, the

average read densities are represented with at most four decimal

digits, resulting in E ¼ 4. In lossless ChIPWig, all four decimal

digits are retained, while in the lossy implementation, only up to

two decimal digits are preserved.

2. Delta encoding results in a difference sequence W

¼ w1; . . . ;wNð Þ; wi 2 Z; i 2 N½ � is generated according to

wi ¼ ai � ai�1.

3. Arithmetic encoding is applied on the delta encoded sequence

W, separately from S and R. Joint compression is not pursued,

as extensive analysis of joint track statistics performed for

smallWig (Wang et al., 2016) reveals that joint encoding for

Wig files in general does not significantly improve performance,

but increases computational time.

The block diagram of the compression scheme for the location

sequence and the average read density sequence is shown in Figure

1a. The lossless ChIPWig performs scaling, delta encoding and arith-

metic encoding on the average read density sequence, while the lossy

ChIPWig adds a quantization step to the read density sequence. The

quantized data is then processed by scaling, delta encoding and

arithmetic encoding. The decompression method of ChIPWig is

illustrated in Figure 1b. Both the lossless and lossy ChIPWig perform

the same decompression steps.

Figure 2 provides a snapshot of the lossless compression algo-

rithm outputs for a ChIP-seq Wig file. The average read densities

were represented with at most three decimal digits. Thus, all values

were multiplied by 1000 to obtain a list of integer values.

2.2 Quantization
The exposition in this section is heavily based on definitions, con-

cepts and formulas from classical sources on quantization (Gallager,

2006; Gersho and Gray, 1992). Details regarding density estimation

and relevant quantization results are deferred to the Supplementary

Material.
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2.2.1 Scalar quantization

A scalar quantizer divides the set of real numbers or a given interval

into M subsets (subintervals) Q1; . . . ;QM, also called quantization

regions. Each quantization region Qi ¼ ti; tiþ1ð Þ contains a chosen

representative point xi 2 Qi, termed a level. Quantization refers to

mapping values in Qi to the level xi, for all i 2 M½ �. The set ft0; t1;

. . . ; tMg in which ti; tiþ1ð Þ defines the interval Qi, is called the set of

thresholds and the set fx0;x1; . . . ;xM�1g is called the set of levels.

Thus, a scalar quantizer may be viewed as a function Q xð Þ : R! R

where Q xð Þ ¼ xi if x 2 Qi (Gallager, 2006).

Let X ¼ X1;X2; . . . ;XNð Þ be a sequence of i.i.d. random varia-

bles with individual probability density function fXi
xð Þ or some

adequate distribution function, whenever the variables are discrete.

Assume that the variables are quantized to Y ¼ Y1;Y2; . . . ;YMð Þ and

let Q(X) be the quantizer function used in the process. Then, the sec-

ond order distortion is defined as follows:

D2 ¼ E X�Q Xð Þð Þ2
h i

¼
ðþ1
�1
ðX�Q Xð ÞÞ2fX xð Þdx (1)

Since the second order distortion measures the difference between

the original data and quantized data, the goal is to design a quan-

tizer function that minimizes D2, given X and fX xð Þ. The second

order distortion is also called the mean-squared distortion or the

mean-squared error (MSE). This distortion may be generalized to

arbitrary orders m, m � 1, as described in the Supplementary

Material. The choice of the distortion function may be governed by

the downstream processing tasks performed on the quantized data.

For example, if one only seeks very accurate quantization for certain

ranges of values, a distortion with value of m larger than two may

be desirable. However, we only consider the case that m¼2, as this

choice is adequate for our implementation and describe optimal

quantizer derivations for m � 2 in the Supplementary Material. We

make use of both uniform and nonuniform quantizers and state

closed-form formulas the MSE in both cases, which are known from

the quantization literature. The formulas are used on the estimated

data distributions, as outlined in the Supplementary Material.

A. Uniform scalar quantization. In uniform scalar quantization,

each quantization region Qi has the same length jQij ¼ D, provided

that the underlying distribution has finite support. Each value x

2 Qi ¼ ti; tiþ1ð Þ is mapped to the midpoint xi ¼ tiþtiþ1

2 . The uniform

quantization function takes the form:

Q xð Þ ¼ D� bx
D
c þ D

2
: (2)

An example of a uniform quantizer with M¼7 quantization levels is

shown in Figure 3. When the data is supported on an infinite inter-

val, one of the quantization intervals has to be of infinite length, and

the corresponding level has to be chosen with care. Given that all

Compression of the location sequence

Compression of the average read density sequence

ChIP-seq
Data(Wig)

Compressed
ChIP-seq Data

Delta 
Encoding

Run-length 
Encoding

Arithme�c 
Encoding

Quan�za�on Scaling Delta 
Encoding

Arithme�c 
Encoding

(a)
Decompression of the location sequence

Decompression of the average read density sequence

(Quan�zed)ChIP-seq
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(Quan�zed) ChIP-seq 
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Run-length 
Decoding

Arithme�c 
Decoding

Delta 
Decoding
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Decoding
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Fig. 1. The block diagram of the ChIPWig compression and decompression algorithms. (a) compression model; (b) decompression model
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Fig. 2. Snapshot of the processing stages of the lossless ChIPWig compression algorithm on a ChIP-seq Wig file, applied to the sequences L, C, D, S, R, A and W
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Fig. 3. An example of a uniform quantizer with seven quantization levels,

where D ¼ t7�t0

7 and xi ¼ tiþtiþ1

2 for i 2 ½0; 6�
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our data is supported in a finite interval, we do not discuss this sce-

nario in detail.

It is known that for a uniform quantizer with M quantization

levels between a and b and D ¼ b�a
M , one has

MSE ¼ D2

12
: (3)

The proof for the general mth order distortion result is retraced in

the Supplementary Material.

B. Nonuniform scalar quantization. In nonuniform quantization,

the lengths of quantization regions are not necessarily equal. Each

value x 2 Qi ¼ ti; tiþ1ð Þ is mapped to either xi ¼ tiþtiþ1

2 , or another

carefully selected level. Here, we only pursue the former level imple-

mentation. An example of a nonuniform quantizer with seven quan-

tization levels is given in Figure 4, where the Di’s, for i 2 1; 7½ �, are

the length of the quantization regions.

To design a quantization scheme with M quantization levels,

when M is large, one usually refers to asymptotic quantization

theory (Gallager, 2006). The point density of a quantizer is defined

as a function k xð Þ such that for any a and b, a<b,

ðb

a

k xð Þdx ffi number of levels between a and b

M
; (4)

where k xð Þ � 0 and
Ðþ1
�1 k xð Þdx ¼ 1.

It can be shown that for a nonuniform quantizer with M quanti-

zation levels, the MSE depends on the probability density function

fX xð Þ and the point density function k xð Þ as:

MSE ffi 1

12M2

ðþ1
�1

fX xð Þ
k2 xð Þ

dx: (5)

The point density that minimizes the MSE reads as

k xð Þ ¼ a�
1
3f

1
3

X xð Þ; (6)

where the constant a is obtained from
Ð1
�1 k xð Þdx ¼ 1.

The extension of this result for the general mth order distortion

is outlined in the Supplementary Material.

Thus, given fX xð Þ, the constant a and the density k xð Þ may be

obtained from
Ð1
�1 k xð Þdx ¼ 1 and (6), respectively. Furthermore,

for a given number of quantization levels M, using (4), the number

of quantization levels between any two values in the support of the

distribution, v1 and v2, v1 < v2 can be obtained. Hence, asymptoti-

cally optimal (with respect to the MSE and for a large number of

levels) quantizer design may be guided by the point density, as we

illustrate on ChIP-seq Wig file data in the Supplementary Material.

3 Results

We start by describing the features of the lossless ChIPWig method

both in the standard mode and random query mode and present a

set of results pertaining to compression rates, compression and

decompression times for 10 test files downloaded from the

ENCODE hg19 browser. The files were selected randomly among

ChIP-seq files of sufficient large size. We then proceed to present the

same result for the lossy mode, which we accompany with a case

study of downstream peak calling and motif finding on quantized

data.

3.1 Lossless ChIPWig
As explained in Section 2, we use arithmetic encoders/decoders to

process the sequences S, R and W. The arithmetic encoding that is

used in our implementation is the same as the one used in smallWig

(Wang et al., 2016). This arithmetic compression algorithm is based

on range coding (Martin, 1979) and some techniques from the ran-

gemapper by Polar (http://ezcodesample.com/reanatomy.html?

Source¼Toþarticleþandþ sourceþcode).

The random access function is implemented through block-wise

encoding, in which a ChIP-seq Wig file is divided into blocks of

fixed length b where b ¼ 2k; k ¼ 12; . . . ; 18; and where each block

is processed and encoded separately. The encoded blocks are merged

into one file which forms the compressed file. When the random

query mode is active, a summary statistics of each block is stored in

the compressed file. The summary statistics includes: (i) the mini-

mum average read density in the block, (ii) the maximum average

read density in the block, (iii) the mean of average read densities in

the block and (iv) the standard deviation of the average read den-

sities in the block. We also store two more values for each block

that are not usually recorded in Wig files. These values represent the

minimum jump and maximum jump in read density, which are of

relevance for identifying relevant peak regions, and are defined as

follows. Each local maxima in the average read density is identified

with its value and the average densities appearing before and after

the maxima. A jump is defined as the difference between the max-

ima and the average read densities immediately preceding and fol-

lowing the maxima. The minimum jump and the maximum jump

are the smallest and largest jump within each individual block.

For our experiments, we used 10 ChIP-seq data files in bigWig

format from the ENCODE hg19 browser listed in Table 1 which

were converted to Wig format.

Figure 5 shows the compression rates achieved by the ChIPWig,

compared to the rates of bigWig and gzip with 3 compression levels

1, 6 and 9. The compression rate equals the ratio of the compressed

file size and the uncompressed file size. ChIPWig offers 6-fold rate

improvement compared to bigWig and almost 4.5-fold improvement

(on average) compared to gzip. Using gzip, the compression rate

slightly decreases as the compression level increases. For compres-

sion with random queries with block size 65 536, ChIPWig offers a

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7

0 71 2 3 4 5 6ω0 ω1 ω2 ω3 ω4 ω5 ω6

Fig. 4. An example of a nonuniform quantizer with seven quantization levels,

where Di ¼ ti � ti�1 for i 2 ½1; 7� and xi ¼ tiþtiþ1

2 for i 2 ½0; 6�

Table 1. Names and sizes (in MB) of the 10 ChIP-Seq files used in

the compression experiments, retrieved from the ENCODE hg19

browser

File

Number

File

Size

File Name

1 959 wgEncodeBroadHistoneA549H3k09acEtoh02Sig

2 1000 wgEncodeBroadHistoneA549CtcfEtoh02Sig

3 938 wgEncodeBroadHistoneA549CtcfDex100nmSig

4 1460 wgEncodeBroadHistoneA549ControlEtoh02Sig

5 1210 wgEncodeBroadHistoneA549H3k04me3Etoh02Sig

6 925 wgEncodeBroadHistoneA549H3k27acEtoh02Sig

7 1090 wgEncodeBroadHistoneA549H3k27me3Dex100nmSig

8 781 wgEncodeBroadHistoneA549H3k79me2Dex100nmSig

9 1020 wgEncodeBroadHistoneCd20ro01794Ezh239875Sig

10 1210 wgEncodeBroadHistoneDnd41Ezh239875Sig
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5.5-fold rate improvements compared to bigWig. In order to com-

pare the size of the compressed files with ChIPWig and cWig, we

compared the average size of the ChIP-seq Wig files that we

obtained with those reported in the paper introducing cWig, and

found that our method offers almost 2-fold decrease in file size com-

pared to cWig. We had to resort to this type of comparison as cWig

is no longer available online.

In Figure 6, we present the running time of the ChIPWig com-

pression/decompression schemes, as well as those of BigWig and

gzip with 3 compression levels 1, 6 and 9. In general, the running

time of ChIPWig is slightly longer, but comparable, to that of

bigWig and gzip. However, in one case, compression time of the

gzip with compression level 9 is longer than that of ChIPWig,

bigWig and gzip with other compression levels. We would like to

mention that gzip with compression level 9 has the best compression

rate compared to bigWig and other compression levels of the gzip,

which is still 4 times greater than that of in ChIPWig. The average

compression times in the standard mode of ChIPWig is on average

0.12 sec/MB longer than that of in bigWig and gzip with compres-

sion level 6, and the average decompression time is 0.15 and

0.17 sec/MB per MB longer than that of in bigWig and gzip, respec-

tively. To compare the effect of different block sizes used for ran-

dom query on compression rate and compression/decompression

time, we refer the reader to Figure 7. In these experiments, the block

sizes ranged from 4096 to 65 536. In general, the results show that

as the size of the block increases, the compression/decompression

time and compression rate decrease. The ChIPWig algorithm with

random access leads to a slight increase in compression rate from

0.06114 in standard mode to 0.1067 in random access mode with

the block size 4096. It also leads to a modest increase from 0.2066

to 0.3443 sec/MB in the compression time rate and an increase from

0.1684 to 0.2252 sec/MB for the decompression time rate when

compared to the standard mode. We also ran the ChIPWig algo-

rithm in random query mode to determine the average decompres-

sion time of a query of length 1000 in compressed ChIP-seq files; the

files were compressed by ChIPWig using blocks of sizes 4096, 8192,

16 384 and 32 768. This average decompression time was compared

to the average time for a query of the same length (1000) in files

compressed by bigWig, using the same block sizes. Figure 8 shows

the average query time and the compression rates of the bigWig and

ChIPWig methods. The results show that the average query time for

queries of length 1000 over all 10 Wig files and 10 queries on each

file increases as the block size increases for both bigWig and

ChIPWig. The average compression rate of files compressed by

bigWig is at least 4 times greater than that of with ChIPWig, while

the query time for the bigWig is almost 10 times smaller than

ChIPWig. However, we would like to note that ChIPWig also pro-

vides a statistical analysis during queries and returns the minimum,

maximum, average and standard deviation of average read densities.

3.2 Lossy ChIPWig
In our second round of tests, we also applied both nonuniform and

uniform quantization schemes on the 10 tested ChIP-seq Wig files.

We first set a threshold s on the average read density and applied the

designed quantization schemes on values that lie on 0; sð Þ. For values

outside of this interval, we used one level as specified in the

Supplementary Material. For our analysis, we first assumed that

s¼50 and designed quantizers with M¼50 levels. Then, we

repeated the simulations by letting s be 70% of the maximum aver-

age read density in the file and let M¼50 and M¼100. For
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nonuniform quantization, we used an optimized point density for

these two choices of the cutoff threshold s. The average ChIPWig

compression rate of the quantized files is shown in Figure 9. Overall,

the uniform quantizer has a lower compression rate than the nonuni-

form quantizer with the same number of quantization levels and

threshold. While the average compression rate in the lossless standard

mode is almost 0.06, with nonuniform quantization, the average com-

pression rate is reduced to 0.042 when M¼50 and s¼50; for uni-

form quantization, it is reduced to 0.024 for the same parameters. For

the nonuniform quantizer, there is a small increase in the average

compression rate from 0.023 for M¼50 and s equals to the 70% of

the maximum average read density in the file to 0.042 for M¼50 and

s¼50. The results for the uniform quantizer also shows an increase in

the average compression compression rate from 0.006 to 0.024, where

the former result is obtained for M¼50 and s equal to the 70% of the

maximum average read density in the file; the latter is obtained for

M¼50 and s¼50. Figure 10 shows the compression rates achieved

by the ChIPWig both in the lossless and lossy modes, compared to the

rate of smallWig. In order to perform smallWig on ChIP-seq files, we

first converted the ChIP-seq files into a format used by smallWig, i.e.

we converted ChIP-seq files to Wig files whose location sequence con-

sists of consecutive integer values and then we performed smallWig

on the corresponding Wig files. It is seen that even in the lossless com-

pression mode, ChIPWig offers roughly a 10% improvement in com-

pression rate when compared to ChIPWig. Furthermore, lossless

ChIPWig coupled with nonuniform quantization offers a compression

rate reduction of 65%. We would like to note that the size of the file

created by converting a ChIP-seq file to a Wig file in the format that is

used by smallWig is almost 30 times bigger than the size of the origi-

nal ChIP-seq file, which in turn may create data storage issues. Also,

we observed that the running time for compression of a ChIP-seq file

with smallWig is at least five times slower than ChIPWig which

directly compresses ChIP-seq files with different span sizes. For the

lossy ChIPWig, we chose the compression rate corresponding to the

compression of nonuniformly and uniformly quantized files with

M¼50 and threshold equals to the 70% of the maximum average

read density in each of the ChIP-seq files. In this case, the lossy

ChIPWig with nonuniform quantization improves the compression

rate by 2.86 fold compared to smallWig and the lossy ChIPWig using

uniform quantization has almost 10 fold improvement compared to

smallWig.

4 Peak calling and motif analysis

4.1 Peak calling
One of the most critical steps in ChIP-seq data analysis is to identify

enriched regions and discover potential binding sites of proteins.

Generally, a peak is called when the number of covering reads

exceeds a predetermined threshold, or when the enriched region is

statistically significantly compared to the background peaks (Bailey

et al., 2013; Nakato and Shirahige, 2016; Steinhauser et al., 2016).

Among frequently used peak calling algorithms are MACS (Zhang

et al., 2008), SPP (Kharchenko et al., 2008) and NarrowPeaks

(Mateos et al., 2015). NarrowPeaks operates on ChIP-seq data in

Wig and bigWig formats (Mateos et al., 2015) and recovers both

narrow and broad peaks. We hence focus our attention on analyzing

the performance of this peak caller on lossless and quantized Wig

files.

To see how quantization affects peak calling, we use the first file

in Table 1, ‘wgEncodeBroadHistoneA549H3k09acEtoh02Sig’ as

our running example and focus on the locations and average read

densities reported for chromosome Y; for simplicity, we refer to this

file as the chrY ChIP-seq file. NarrowPeaks is applied with the

default parameters both on the chrY ChIP-seq file and the corre-

sponding (non) uniformly quantized files. NarrowPeaks returns the

list of peaks with the start position, end position and width of the

peak, as well as the peak position and its score. As an illustration,

the first five peaks of the chrY ChIP-seq file identified by

NarrowPeaks are listed in Table 2.

The compression rates of the uniformly and nonuniformly quan-

tized chrY ChIP-seq file are shown in Figure 11. As expected, the

uniform quantizer has a lower compression rate compared to the

nonuniform quantizer. Both uniform and nonuniform quantizer

have the lowest compression rate when M¼50 and s¼307.

The compression rate for the nonuniform quantizer shows a

slight increase from 0.032 for M¼50, s¼307 to 0.045 for

M ¼ 50; s ¼ 50 and the compression rate for the uniform quantizer

has also an increase from 0.012 to 0.025 for the same parameters as

the nonuniform quantizer.

To evaluate the accuracy of the peak positions/scores found

based on the quantized files, we calculated the Pearson correlation
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Table 2. The first five peaks identified by the NarrowPeaks when

applied to chrY ChIP-seq file

Index Chr. Start End Width Strand Peak Position Score

1 ChrY 2649426 2649625 200 * 2649426 2

2 ChrY 2649701 2650500 800 * 2650051 12

3 ChrY 2650676 2651150 475 * 2650751 3

4 ChrY 2653751 2653975 225 * 2653776 3

5 ChrY 2654326 2654500 175 * 2654326 2

Note: The symbol ‘*’ denotes that the strand information is not used. The

same values were recovered using optimal nonuniform quantization techni-

ques with only 50 levels.
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coefficient (The Pearson correlation coefficient between two random

variables equals the ratio of the covariance of the variables and the

product of their standard deviations. This correlation measure is

used to assess the degree of linear dependence between the varia-

bles.) between the corresponding random variables for the unquan-

tized file and the quantized files with M¼50 and s¼50. The

Pearson correlation coefficient between two random variables

equals the ratio of the covariance of the variables and the product of

their standard deviations. This correlation measure is used to assess

the degree of linear dependence between the variables. Details of the

derivations may be found in the Supplementary Material. We found

that the correlation coefficient of the peak positions and scores

between the unquantized file and the nonuniformly and uniformly

quantized file are 1 and 0.8663, respectively. Hence, there exists a

linear relationship that perfectly describes the peak positions/scores

of the original and nonuniformly quantized data. A snippet of peak

positions and scores for the running example is given in Table 2.

More detailed results are found in the Supplementary Material.

4.2 Motif analysis
A widely accepted assumption is that many transcription factors

exhibit DNA binding motifs so as to successfully locate themselves

in the genome. Thus, discovering DNA motifs from the peaks is

another step in the downstream analysis of ChIP-seq data. Although

approaches may vary by software packages, the general workflow

involves finding overrepresented sequences among a set of sequences

covering the peak positions (Park, 2009). MEME (Bailey et al.,

2006) is the most popular tool for accomplishing this task, and it is

based on the Expectation-Maximization (EM) algorithm. The

authors of MEME have also developed MEME-ChIP (Machanick

and Bailey, 2011) to accommodate large datasets. To demonstrate

that quantization has little or no effects on the motif downstream

analysis, we discovered motifs from the peaks identified in the pre-

vious testing stage. For each of the seven generated peak files (one

original unquantized file, three uniformly quantized and three

nonuniformly quantized files), we ran MEME-ChIP in default mode

as described in what follows. We first computed the center of the

peak regions by taking the floor [median(start, end)], and extended

the sequence by 150 base pairs in both directions. Using the hg19

reference genome, we fetched fasta files containing sequences of 301

bps and ran MEME-ChIP under default setting. Figure 12 shows the

three most significant (sorted by E-values) motif logos discovered by

MEME-ChIP for the unquantized file. Of our six quantized files,

three nonuniformly quantized files discovered the exact same motifs

as the original file, verifying that near-optimal nonuniform quanti-

zation has no effects on downstream analysis. The remaining uni-

formly quantized files led to the discovery of similar, but different

motifs. We listed the most significant motifs of the files obtained

from uniform quantization in the Supplementary Material.

We also selected another chromosome at random from the

remaining 22 chromosomes, chromosome 11, which is an average-

length chromosome. In the text, we refer to the corresponding data

file as the chr11 ChIP-seq file. We performed both nonuniform and

uniform quantization of the file, with parameters s¼50, M¼50

and s ¼ 70% of the maximum average read density, with parame-

ters M¼50 and M¼100. We found that the number of peaks iden-

tified for the chr11 ChIP-seq file and three nonuniformly quantized

files are equal. Running MEME-ChIP on the peaks of the nonuni-

formly quantized files produced the same most significant motif

logos as those obtained from the unquantized file, which confirms

that there is no performance degradation in the peak calling and

motif discovery pipeline using near-optimal nonuniform quantiza-

tion. The motif logos are shown in Figure 13. We listed the first five

peaks of each file along with the most significant motifs of the peaks

of uniformly quantized files in the Supplementary Material. As for

the other chromosome, uniform quantization resulted in a signifi-

cant change of identified motifs.

5 Discussion

The basic design principles supporting ChIPWig compression can be

easily modified and used on any other Wig data file. In case that

ChIPWig is used to compress RNA-seq Wig files with integer expres-

sion values, performing run-length encoding on gene expression val-

ues is useful to reduce the size of the compressed file, while scaling is

redundant and is to be skipped. In the random access mode,

ChIPWig operates similarly to smallWig, and uses simple block-

based encoding. ChIPWig accepts a variety of block sizes for encod-

ing which is not the case for cWig that encodes fixed blocks of size

512 and gzip. ChIPWig is also implemented both in the lossless and

lossy compression modes, while the smallWig, bigWig, gzip and

cWig have been implemented only for the lossless compression. In

the Supplementary Material, several examples of nonuniformly
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Fig. 11. Compression rates of the chrY ChIP-seq file before and after perform-

ing uniform and nonuniform quantizations. The portion of the file allocated to

chromosome Y is 5 MB

Fig. 13. The most significant motif logos discovered by MEME-ChIP for the original unquantized chr11 ChIP-seq file and all three nonuniformly quantized files

Fig. 12. The most significant motif logos discovered by MEME-ChIP for the original unquantized chrY ChIP-seq file and all three nonuniform quantized files
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quantized ChIP tracks are magnified and visualized alongside

uncompressed tracks, showing that there is almost no shape distor-

tion which may be of importance for visualization applications.

Furthermore, given that nonuniform quantization techniques may

be easily designed for any subjective distortion measure and that

they tend not to influence peak calling and motif finding in any sig-

nificant manner, it appears desirable to store these files only in

quantized form.

6 Conclusion

We proposed an algorithm termed ChIPWig for compression of

ChIP-seq Wig files, operating both in a lossless and lossy mode.

ChIPWig has a significantly lower compression rate compared to

bigWig and gzip. ChIPWig also has random access feature and pro-

vides access to summary statistics of each block. The performance of

lossless and lossy ChIPWig on different ChIP-seq Wig files from the

ENCODE hg19 browser was evaluated in terms of the compression

rate and running time in the standard mode as well as the random

access mode. Lossy ChIPWig first performs quantization on the

average read density sequence of the ChIP-seq files and then per-

forms lossless ChIPWig. Lossy ChIPWig shows an even lower com-

pression rate compared to the lossless ChIPWig, while still

maintaining important features of ChIP-seq data used in peak call-

ing and motif finding.
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