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Abstract of the Dissertation

Contextualized Semantic Maps for Retrieval and

Summarization of Biomedical Literature

by

Jean Imelda Garcia-Gathright

Doctor of Philosophy in Biomedical Engineering

University of California, Los Angeles, 2016

Professor Denise R. Aberle, Chair

As the volume of biomedical literature increases, it can be challenging for clinicians to stay

up-to-date on this massive store of knowledge. Graphical summarization systems condense

knowledge into a more tractable form via �concept maps� � networks of nodes (concepts)

and edges (relations between concepts). In existing graphical summarization systems, the

context of the extracted relations (such as study design and study population) is omitted.

However, context is crucial for capturing the full meaning of a relation. With context, the

user may pose more detailed queries than those accommodated by traditional, context-free

maps.

This dissertation describes Casama, a system for creating �contextualized semantic maps�

to represent the current state of scienti�c knowledge in the domain of non-small cell lung can-

cer (NSCLC). A formalism for contextualized semantic maps is presented, including targeted

relations, study design context, and study population context. An annotated gold standard

conforming to this representation is produced, and methods for extracting these contexts

are developed. Contextualized semantic maps are evaluated in an information retrieval task

and a summarization usability study, showing signi�cant improvement over PubMed and

SemRep.
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CHAPTER 1

Introduction

In the domain of clinical practice, the primary medium of new knowledge is �natural lan-

guage�: free, unstructured text in the form of research articles, clinical trial reports, and

clinical guidelines. With the volume and accessibility of published biomedical literature in-

creasing at an unprecedented rate, it is challenging for a clinician to stay up-to-date on this

massive amount of knowledge. Aggregating and summarizing the current state of knowl-

edge in a disease domain can help inform a clinician's thinking on disease processes and the

e�ectiveness of treatment strategies. Ultimately, the goal of summarization is to improve pa-

tient care by providing accurate, structured, and tractable knowledge, thereby illuminating

pathways between disease, therapies, and patient outcomes.

Summarization systems such as UpToDate provide manually-curated overviews of clinical

topics. However, given the expense associated with expert curation, utilizing natural lan-

guage processing techniques for automatic summarization is an attractive alternative. One

approach to automatic summarization is relation extraction, the process of automatically

mining natural language text for entities of interest (such as treatments and outcomes) and

the semantic relationships that exist between them (such as �treatment X improves outcome

Y�). Relation extraction has been relatively well-studied. Current relation extraction systems

omit the context of the extracted relations. In other words, if a relation such as �treatment

X improves outcome Y� is detected, this association is considered �true� regardless of the

context in which the relation was found. However, context is crucial for capturing the full

meaning of a relation.

In this dissertation, the notion of �context� is characterized at two levels, informed by two

current perspectives in medicine: evidence-based medicine and precision medicine. The �rst
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level of context is the study level, which describes experimental conditions such as study

design and outcome measures. In doing so, the resulting summaries inform the clinician

regarding strength of evidence, thus facilitating clinical decision making based on evidence

from compelling, well-designed studies. The second level of context is the patient/population

level, which captures properties of the study population. In accordance with the e�orts of

precision medicine, leveraging this type of context assists the clinician in retrieving studies

whose study populations are similar to an individual patient, customizing clinical decisions

to an individual's personal features.

Figure 1.1 illustrates an example of a clinical use case and how contextualization can

address problems inherent to uncontextualized summarization. Consider a clinician seeking

information on non-small cell lung cancer (NSCLC) harboring EGFR mutation (EGFR+).

The clinician has a limited amount of time to review all the literature on NSCLC. A graphical

summary based on relations mined from published literature can save time. However, even

a small collection of documents will produce a large, potentially con�icting set of extracted

relations. Furthermore, these relations each exist in separate contexts. Some relations

were found in clinical trials; others were discovered in less compelling retrospective studies.

Also, some study populations were unlike the clinician's current patient, while other study

populations matched exactly.

The clinician may wish to answer the following questions: What treatments are available

for this disease? What is a likely prognosis for this disease and treatment strategy? This

dissertation describes a framework that aims to assist a clinician in answering these questions,

in addition to more complex queries concerning the strength of the claims found in the

literature and the applicability of those claims to an individual patient. For instance, is this

treatment safe and appropriate to prescribe to the patient, given his or her overall health

status? Is this treatment likely to be e�ective, based on compelling, consistent evidence in

the literature?

These e�orts are demonstrated in the domain of clinically-oriented knowledge of driver

mutations and targeted therapies in NSCLC. The Lung Cancer Mutation Consortium, the

National Cancer Institute's e�ort to characterize driver mutations in lung cancer, found that
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Figure 1.1: Without context, every relation is considered �true� regardless of di�ering study and

population contexts. Contextualized relations can help tailor summarized knowledge.

Circles represent concepts of interest; arrows are the relations between these concepts. Red and

blue arrows indicate that con�icting relations were found. Context, represented as the attributes of

a relation, can reduce the size of the network and resolve con�icting information.

driver mutations were present in 64% of lung adenocarcinomas, and that patients who were

treated with targeted therapy lived longer than those who did not receive such treatment

[KJB14]. Currently, targeted treatments approved by the Federal Drug Administration are

available for cancers with epidermal growth factor receptor (EGFR) mutations and anaplas-

tic lymphoma kinase (ALK) gene rearrangement. Improvement of clinical outcomes with

targeted therapies has been demonstrated in clinical trials, and new advances continue to be

made [CFH14].

The major contribution of this work is the Contextualized Semantic Map, a formalism

that ties relations to their contexts. Figure 1.2 provides a visual overview of the components

of a contextualized semantic map, and the technical contribution of each component. First,

to instantiate a contextualized semantic map in a particular domain, it is necessary to de�ne

the concepts and relations relevant to that domain. Then, these relations and concepts can

be identi�ed from a body of literature. Manual annotation of a subset of documents from a

large corpus of biomedical literature such as PubMed provides a gold standard against which
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Figure 1.2: An overview of the Contextualized Semantic Map formalism and the contributions of

each element.

current and future automatic extraction tasks can be evaluated. These extraction methods

automatically tag the document set with concepts and relations in the representation. The

document set can then be indexed and searched to retrieve documents most relevant to a user-

de�ned query, i.e., the attributes of individual patient. Finally, a contextualized semantic

map, in which the contexts of each relation are represented as edge attributes, provides a

summary of the desired knowledge.

The collection of representations, gold standards, and methods for extraction, retrieval,

and summarization shall herein be referred to as �Casama,� a Tagalog word meaning �to-

gether.�

Formally, this dissertation addresses the following speci�c aims:

1. Developing a new formalism, the �contextualized semantic map,� that abstracts the

�ndings, strength of evidence, and population attributes in a scienti�c study.

2. Demonstrating how this formalism can be used to facilitate evidence-based and patient-
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tailored information retrieval and automatic summarization.

These aims are achieved via the following technical contributions:

1. A formal de�nition of the contextualized semantic map, and an instance of this repre-

sentation for NSCLC.

2. An annotated gold standard conforming to this representation.

3. Methods for automatic extraction of concepts, relations, and their contexts.

4. Evaluation of information retrieval and automatic summarization methods that lever-

age the contextualized semantic map representation.

The dissertation is organized as follows. Chapter 2 provides an overview of related work in

automatic summarization, relation extraction, study and patient/population representations,

and information retrieval. Chapter 3 introduces the representation for a contextualized

semantic map, including targeted relations, study context, and patient/population context.

Chapter 4 describes the annotation of a corpus of literature on driver mutations in NSCLC.

Chapters 5 and 6 describe methods for automatic extraction of relations and context. In

Chapter 7, these extractors are used to improve information retrieval on a previously unseen

data set. Chapter 8 examines the use of contextualized semantic map for summarization,

and Chapter 9 reviews the �ndings and points to future work.
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CHAPTER 2

Background

This literature review is organized as follows. First, relation extraction as a summarization

paradigm is examined, investigating the various rule-based, statistical, and pattern-based

approaches developed in the last twenty years. Then, various representations are presented

for two types of context: strength of evidence and patient/population context, followed by

a presentation of methods for automatic extraction of key entities from clinical trial reports

and other scienti�c literature. Discussed next are annotation methods, metrics of evaluation,

and existing biomedical corpora. Finally, two applications of contextualized relations are

reviewed: information retrieval and automatic summarization.

2.1 Relation extraction

The representation of knowledge as concepts and relations was �rst explored in the 1970s by

Novak, who applied this representation for education [Nov77], and Sowa, who developed a

computable formalism that supports querying and inference [Sow76]. The basic element of

knowledge proposed was the proposition � two or more concepts linked by a relationship

to form a semantic unit. The collection of these propositions, referred to as �concept maps�

or �conceptual graphs� have been shown to be an e�ective way to represent, visualize, and

communicate knowledge [NG84]. As natural language processing techniques developed and

matured, the automatic extraction of relational knowledge became a logical continuation of

their work.

Relation extraction has been an active area of research for over twenty years. Like many

arti�cial intelligence tasks, early approaches relied on rule-matching. Rule-based systems
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tend to be brittle, because no �nite set of rules can capture the in�nite possibilities of

language. As statistical natural language processing grew to fruition, machine learning

methods were applied to the relation extraction task. While statistical methods are more

robust, they require annotated training data, which can be time-intensive to produce. For

these reasons, both rule-based and supervised statistical approaches typically focus on a

small, pre-speci�ed set of relations of interest. As such, much of the current work in relation

extraction is driven by the existence of annotated training sets via shared tasks. Extraction

methods that do not rely on a set of targeted relations have grown in popularity with the

development of large, heterogeneous sources of natural language text such as the World Wide

Web.

2.1.1 SemRep: a rule-based system

This dissertation was in�uenced most signi�cantly by SemRep [RFL05], a rule-based relation

extraction system developed by Rind�esch et al. SemRep automatically extracts the rela-

tionships between concepts, referred to as �semantic predications,� from natural language

text, usually in the form of journal abstracts. SemRep combines a syntactic parse and a

set of grammar rules with domain knowledge from the Uni�ed Medical Language System

(UMLS): the text is mapped to concepts in the Metathesaurus, and the relations are from

the Semantic Network [Bod04].

The development of SemRep and related work by the National Library of Medicine over

the past decade has been thoroughly described in published literature. EDGAR [RTW00],

a predecessor to SemRep, focuses on the extraction of drugs and genes for a document clus-

tering task. EDGAR uses several strategies for cell and gene identi�cation: a short list of

characteristic signal words (such as �cell,� �line,� �gene,� and �mutated�), rules for identifying

cell and gene references, and MetaMap. SemGen [RLH03], a system based on SemRep, fo-

cuses on identifying gene-disease relations (causes, predisposes, associated_with) and

gene-gene interactions (inhibits, stimulates, interacts_with). SemGen adds to SemRep

with a labeled categorizer (for recognizing content relating to molecular genetics) and by in-
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corporating domain knowledge for identifying genetic phenomena. In [AFD07], Ahlers et al.

developed Enhanced SemRep, a system for identifying semantic predications in the domain of

pharmacogenomics. The semantic predications targeted by Enhanced SemRep encompass ge-

netic etiology (predisposes, causes), substance interactions (inhibits, stimulates), phar-

macological e�ects (disrupts, augments), clinical actions (administered_to, treats),

organism characteristics (part_of, process_of), and co-existence (coexists_with).

2.1.2 Machine learning approaches

SemEval (Semantic Evaluation), a general domain shared task, included a relation extraction

task in 2007 and 2010 [GNN07, HKK09]. Targeted relations that are potentially applicable

to the biomedical domain include: cause-e�ect, product-producer, origin-entity, and

part-whole. The highest-performing system in 2007 by Beamer et al. [BBC07] trained

a support vector machine (SVM) classi�er on a set of linguistic features. The feature set

consisted of core features (such as position of arguments) and context features (sentence-level

grammatical and semantic information). Rink and Haribagiu developed the winning system

in 2010 [RH10]; they also used an SVM classi�er and a number of external knowledge sources

including WordNet, PropBank, FrameNet, TextRunner, and Google N-grams.

The BioNLP Event Extraction shared task focuses on the extraction of bio-molecular

events such as gene expression, transcription, and regulation [NBK13]. Best performance

was achieved by Bjorne et al. in 2009 [BHG09], 2011 [BS11], and 2013 [BS13]. Their sys-

tem, TEES (Turku Event Extraction System), divides the task into multiple stages: trigger

detection (identifying predicates that signify an event), edge detection (discovering event

arguments), and unmerging (constructing valid trigger and argument relations). An SVM is

used at each stage to classify triggers, arguments, and relations as positive or negative.

SemEval included a drug-drug interaction task in 2011 and 2013. The overviews of all the

participants' results for both years [SMS11, SMH13] highlighted the advantage of non-linear

kernel methods over linear approaches such as SVMs. In 2011, the winning system developed

by Thomas et al. used ensemble learning, combining multiple kernel-based classi�ers in a
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voting approach [TNS11]. In 2013, Chowdhury and Lavelli devised a hybrid kernel combining

shallow linguistic and tree features [CL13].

Outside of shared tasks, similar trends can be seen in the use of machine learning meth-

ods such as SVMs ( [PKT06, YRH11]), kernel methods ( [MB05, GLR06]), and others (neu-

ral networks: [RH04, BWC09], conditional random �elds: [BDS08], maximum entropy:

[FLD11]).

Machine learning approaches provide more robust performance and better generalizabil-

ity than rule-based systems. However, the supervised learning techniques described above

require an annotated training corpus. While it is possible to leverage existing annotated

corpora, for many applications the cost of manually annotating a large training corpus is

signi�cant, especially as the number of targeted relations increases. Semi-supervised and

unsupervised approaches, many of which are pattern-based, attempt to mitigate this prob-

lem. These pattern-based approaches, which require little-to-no annotated data, can then

be scaled up to tackle vast corpora such as the World Wide Web.

2.1.3 Pattern-based approaches and Web scale relation extraction

Hearst's seminal paper on extracting is-a relations [Hea92] describes an approach for au-

tomatically discovering lexico-syntactic patterns (LSPs or Hearst patterns) from Grolier's

Academic Encyclopedia. Given a list of terms in which the relation holds (e.g., England is-a

country), the input corpus (Grolier's Academic Encyclopedia) is searched for co-occurrences

of those terms. Frequently occurring syntactic patterns surrounding these co-occurrences

are hypothesized to indicate the relation of interest. New patterns are used to gather more

instances of the relation, and the process is repeated.

In [GM02], Girju and Moldovan apply Hearst's LSP discovery algorithm to the task

of causal relation extraction, extracting relations from news articles, with WordNet used

as the source of known relations. In [PP08], Pantel and Pennacchiotti describe Espresso,

a relation extraction system that modi�es Hearst's approach by discovering broad cover-

age noisy patterns, then ranking them to create a set of reliable patterns. Performance
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of Espresso was evaluated with respect to �ve relations (is-a, part-of, succeeds, reacts

with, produces) on two corpora (TREC-9 and CHEM). Rong and Xu extract drug-disease

treatment pairs by learning patterns bootstrapped from known drug-disease relations found

in ClinicalTrials.gov [XW13].

In [IB11], [SKW08], and [MAG14], Wikipedia is used as the external knowledge source

for relation extraction. Ittoo and Bouma [IB11] apply Hearst patterns for extracting explicit

(causes) and implicit (a�ects, in�icts) causal relations. Sentences from Wikipedia are

transformed into lexico-syntactic patterns, then a small number of seed cause-e�ect pairs are

used to identify patterns that encode causality. The most reliable patterns are used to extract

relations from a domain-speci�c, sparse corpus. Suchanek et al. leverage the structured

knowledge in Wikipedia and WordNet to create YAGO, a high precision, broad coverage

ontology [SKW08]. YAGO uses Wikipedia page titles, infoboxes, category hierarchies, and

WordNet synsets to collect entities, classes (groups of similar entities), and facts (relations

between two entities). Mousavi et al. automatically extract structured information from the

text of Wikipedia articles to populate a knowledge base known as TextGraph [MAG14].

Information extraction at the Web scale presents a new set of challenges. Because the

corpus is vast and heterogeneous, extraction algorithms must be e�cient, generalizable, and

minimally supervised. Thus, several systems use a Hearst-like approach to populate large

knowledge bases with relations extracted from the World Wide Web. DeepDive uses �distant

supervision� to automatically create a noisy training set, leveraging the existing ontology

FreeBase to provide positive examples of relations. DeepDive then uses Markov logic to

statistically infer which linguistic patterns are the most reliable [NZR12]. In [BCS07], Banko

et al. develop TextRunner, a system that uses no human input to extract a large number of

unspeci�ed relations from the input corpus. First, the system uses a few manually-de�ned

heuristics to automatically tag positive and negative examples of relations in a small corpus.

Syntactic patterns extracted from these examples are used to train a naive Bayes classi�er,

which labels patterns as trustworthy or untrustworthy. These labeled patterns are then used

to extract relations during a single-pass over the input corpus. At the time of this writing, this

new paradigm of Open Information Extraction is in its fourth generation, adding a semantic
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role labeling step that enables support for n-ary relations and conditionality [CSE10].

There has been some interest in adapting Open Information Extraction to the biomedical

domain. BioNELL, a biomedical variant of the Never-Ending Language Learner, bootstraps

its extraction patterns from several biomedical ontologies and a small number of seed ex-

amples [MC12]. Nebot and Berlanga utilize semantic annotation of entities, lexico-syntactic

patterns, and clustering to identify biomedical relations [NB14]. PASMED uses syntactic

patterns observed in the GENIA bio-molecular event corpus to extract relations from MED-

LINE with an emphasis on recall over precision [NMT15]. Coulet et al. use rules on the

dependency graph of a sentence to extract relationships between key entities in pharmacoge-

nomics [CSG10].

In summary, both rule-based and statistical methods have been applied to the relation

extraction task. SemRep, a popular biomedical relation extraction tool, is rule-based. Su-

pervised machine learning methods are often used for extraction of limited sets of relations;

however, an annotated corpus is required, and manually annotating a corpus can be very

labor-intensive. Unsupervised methods, such as those used for web-scale relation extraction,

mitigate the high cost of manual annotation and are not limited to a pre-speci�ed set of

relations.

The Casama representation for relations (described in detail in Chapter 3) includes a

large set of relations, some of which are not covered by any existing ontology or relation

extraction system. Thus, a relation extraction system was implemented that combines rule-

based concept recognition, document classi�cation using machine learning, and Web-scale

extraction based on OpenIE 4.0. This system is presented in Chapters 5 and 6.

Crucially, few of the systems described above attempt to ascertain the context of the

extracted relations. The following section explores the use of context in knowledge-based

systems, both in general and biomedical applications. Then, existing representations for

Casama's contextual domains (strength of evidence and patient/population) are investigated.
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2.2 Context in arti�cial intelligence and biomedicine

Contextualization in arti�cial intelligence (AI) has been explored since the 1990s, notably by

McCarthy who �rst motivated the need for a formalism of context. Arguing that existing AI

systems lacked generality, McCarthy aimed to develop a mathematical de�nition of context

and introduced the ist(c, p) relation (signifying that proposition p was true under context c)

[McC93]. Since then, many in the AI community have recognized the importance of context

in knowledge-based systems. Cyc [Len95], a large common sense knowledge base, explicitly

includes a context mechanism � each assertion is placed in the appropriate location on a

lattice of hundreds of contexts. Walther et al. develop a context ontology in [WEM92];

Turney addresses the issue of context for machine learning in [Tur96]; Giunchiglia [Giu93],

Sera�ni and Bouqet [SB04], and Brezillon [Bre03] develop formalisms for representing

and reasoning with context. While context in general has been explored in the domain of

arti�cial intelligence, there has been relatively little development of context-sensitive systems

to enhance biomedical relation extraction.

A few biomedically-oriented systems augment their extracted relations with some notion

of context. Lussier et al. describe PhenoGO [SML09], a natural language processing system

based on BioMedLEE, which identi�es concepts and semantic types from multiple ontolo-

gies to assign phenotypic context such as anatomical structure, body substance, and body

system to Gene Ontology annotations. In [GSB12a], Gerner et al. develop BioContext,

a text mining system that contextualizes biomolecular events in terms of species involved,

anatomical location, and speculation or negation. BIOSMILE augments relations with the

surrounding words signifying the location, manner, and timing of an event [TCS07].

This dissertation aims to build upon current work in relation extraction by developing a

framework in which the context of relations is represented and extracted, thus providing a

more comprehensive summary that includes relevant knowledge such as experimental context

and population attributes. The inclusion of additional knowledge in its summaries, and the

tying of contextual knowledge to relations, can then be used to improve information retrieval

(Chapter 7) and facilitate discovery of relevant facts by users (Chapter 8). Furthermore, by
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using context to constrain truth values (as proposed by McCarthy), spurious relation chains

(e.g., A correlated with B under one context, B correlated with C under a di�erent

context, which does not imply A correlated with C) can be expressed correctly by the

system.

Casama targets two types of contextual knowledge: study context and patient/population

context. To discover current research trends related to these types of context, a literature

review was conducted on systems that represent and apply knowledge from clinical trials.

Articles from the last �ve years related to clinical trials were retrieved from two major med-

ical informatics journals: Journal of Biomedical Informatics and Journal of the American

Medical Informatics Association. A few research trends emerged: 1) the development of

formal representations for clinical trial protocols; 2) the evaluation of bias in clinical trials

(and the larger goal of representing and extracting strength of evidence); 3) a variety of

methods for representing and extracting eligibility criteria for matching patients to clinical

trials. A comprehensive review, presented in the next section, provides an overview of e�orts

to represent these types of knowledge.

2.3 Study context

2.3.1 Standardizing clinical trials and other biomedical literature

Several research endeavors have aimed to standardize the reporting of randomized clinical

trials (RCTs). An early e�ort to standardize the reporting of RCTs led to the publication

of the CONSORT statement [SAM10], which consists of a �ow diagram illustrating the

progress through the phases of a randomized trial, and a checklist describing the details of

the clinical trial in terms of background, methods, results, discussion, and more. Studies

showed that use of CONSORT improves the quality of clinical trial reports. For example,

in [MSA01], Moher et al. showed that omission of allocation concealment dropped from

61% to 39% after the enforcement of the CONSORT standard. Related work by Tong et

al. describes a process model representation of clinical trials for structuring experimental
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context such as therapy descriptions [TT12] and numerical data [THT13].

The Cochrane Collaboration [HG08] focuses on providing a framework for communi-

cating systematic reviews of RCTs. Each review in the Cochrane Database of Systematic

Reviews includes contact information about the reviewers, sources of support for preparing

the review, a structured report of the review, citations of studies included, characteristics of

the trials, and statistical analyses.

In [SN12], Sim and Niland go beyond standardization and advocate for a computable

protocol model, or �e-protocol.� E-protocols allow computational approaches to data organi-

zation, information management, and knowledge discovery. The authors argue that utiliza-

tion of an e-protocol will improve study design, clinical study e�ciencies, and application

to care and research. The e-protocol developed includes background rationale, hypotheses,

eligibility criteria, measurements and variables, and statistical analysis plans.

Sim et al. subsequently initiated the Human Studies Database (HSDB) Project [SCT10],

which aims to de�ne and implement an infrastructure for the sharing of human study designs.

The authors de�ne a study typology for classifying studies into various study types (human

or non-human, qualitative or quantitative, interventional or observational). The Ontology

of Clinical Research (OCRe) [TCR09] is used by HSDB as the semantic model for the

federated sharing of studies. Important entities in the ontology include Study (scienti�c

hypothesis, study plan, investigators, subjects, data sets, start date and end date, study

sites, study purpose, study design features, study status), Study Protocol (characteristics

of the subjects, activities to be performed, data to be collected, outcomes to be assessed,

analysis methods), and Events (observations, interventions).

While these e�orts aim to represent the details of a clinical trial for purposes of sys-

temized reporting, others have examined the representation of scienti�c studies in terms of

clinical questions. In [RWN95], Richardson et al. develop a framework for formulating

patient-speci�c questions, in order to facilitate searching for precise answers in the clinical

setting. The framework consists of four parts: Problem/Population, Intervention, Compari-

son, and Outcome (PICO). Huang et al. evaluate the suitability of the PICO framework for
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representing clinical questions [HLD06]. They analyzed 59 primary-care clinical questions

and found prevalent structural patterns for four types of clinical questions: therapy, diag-

nosis, prognosis, and etiology. Huang et al. conclude that PICO is best suited for therapy

questions.

In [DPS07], Dawes et al. explore the feasibility of a modi�ed PICO framework for in-

dexing and retrieval of medical journal abstracts. �Intervention� is replaced with �Exposure�

in order to enable the inclusion of case control and cohort studies, in addition to randomized

clinical trials. �Duration� and �Results� were added to the framework. The �nal represen-

tation is: Patient/Population/Problem, Exposure, Comparison, Outcome, Duration, and

Results (PECODR). Twenty synopses from the journal Evidence-Based Medicine and their

corresponding PubMed abstracts were manually examined for PECODR elements. The six

PECODR elements were found in nearly all abstracts.

2.3.2 Strength of evidence

Clinical trials and other biomedical studies sometimes fall short of the optimal level of

evidence in terms of design, implementation, or the nature of the population. In order for a

clinician to determine whether the results provide su�cient evidence to in�uence his or her

clinical decision, the clinician must consider the strength of evidence.

The National Cancer Institute has published guidelines on how to assess quality of ev-

idence in cancer treatment studies [Ins15]. Types of study designs, endpoints, and popu-

lations are organized hierarchically, in descending order of strength. Study designs include

blinded and non-blinded randomized controlled clinical trials, nonrandomized controlled clin-

ical trials, and case series. Study endpoints include total mortality, cause-speci�c mortality,

carefully assessed quality of life, and indirect surrogates (event-free survival, disease-free

survival, progression-free survival, tumor response rate).

The Oxford Centre for Evidence-Based Medicine provides a more detailed hierarchy for

grading study designs [Evi11]. Experimental studies such as clinical trials provide the

highest level of evidence, followed by several observational study types. In descending order
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of strength of evidence, the study types are: prospective cohort studies, retrospective cohort

studies, cross-sectional studies, case control studies, and case series.

In [JAE01], Juni et al. summarize another set of elements used to assess the quality of

controlled clinical trials for the purposes of meta-analysis. Selection bias, performance bias,

detection bias, and attrition bias determine the level of systematic error in a clinical trial.

Patient characteristics, treatment regimens, care settings, and outcome measures are used to

assess the generalizability of a clinical trial. Other potential sources of bias in clinical trials

include publication bias [VH13] and under-representation in study populations [HRH16].

Previous work in classifying studies by strength of evidence relies on independently es-

tablished standards of evidence, often reduced to two or three classes of evidence level.

Aphinyanphongs et al. designated their input articles as ACP+ or ACP- depending on

whether they were listed in the American College of Physicians Journal Club [ATS05]. Kil-

icoglu et al. used the Clinical Hedge Database, the manually-annotated input set used to

produce PubMed's Clinical Queries �lters; articles were tagged with regard to their �scien-

ti�c rigor� (a binary yes/no assessment) [KDR09, FBS10, CRY12]. Mollá and Gyawali used

strength of recommendation scores (A, B, or C) as a metric of evidence [MS12, GSB12b]. In

the domain of neuroscience research, Landreth proposes a graphical summary of published

literature in which study reproducibility and convergence are used to weight evidence [LS13].

2.3.3 Casama and study context

Current work in the representation of scienti�c studies ranges in granularity from the highly

detailed (e.g., CONSORT, Cochrane, OCRe) to the highly distilled (e.g., works that auto-

matically grade studies by strength of evidence). The representation developed for Casama

is the backbone of the semantic map produced; thus, an e�cient and well-structured repre-

sentation of clinical studies is crucial. In this dissertation, a subset from existing resources

was selected in order to create a representation that is well-suited to application in infor-

mation retrieval and summarization in a clinical setting. Thus, the representation described

in Chapter 3, rather than focusing on every detail relating to the conducting and reporting
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of a clinical study, instead targets one important aspect of clinical studies: strength of evi-

dence. Furthermore, these concepts are extracted in a more granular fashion than existing

automatic classi�cation systems to enable meaningful interpretation by human users.

2.4 Patient/population context

Much of the current research in representing patient populations involves the representation

and extraction of eligibility criteria. The main purpose of examining eligibility criteria is

to identify candidates for enrollment in clinical trials or retrospective studies. Secondarily,

eligibility criteria help inform a clinician as to whether an intervention described in a clinical

trial report is appropriate for a speci�c patient. ClinicalTrials.gov reports eligibility criteria

in free text form � a list of patient characteristics that include or exclude a patient from

a study. These characteristics can be straightforward (�con�rmed advanced non-small cell

lung cancer�) or may include temporal information (�disease free from a previously treated

malignancy for more than three years�), numeric comparisons (�white blood cell count >

3,000 mm3�), and conjunctions of these (�alkaline phosphatase, aspartate aminotransferase

and alanine transaminase < 2.5 x upper limits of normal�).

In [TPC11], Tu et al. describe ERGO, an annotation system which formalizes eligibility

criteria into a computable representation. Criteria are classi�ed into one of three categories

(simple statements, comparison statements, and complex statements) and are then rewritten

according to a set of rules to conform to the ERGO representation. Automatic extraction

relies on a set of heuristics to extract noun phrases, modi�ers, comparisons, and quantities.

Luo et al. manually de�ned 27 eligibility criteria categories, organized into six topic

groups: demographics, health status, treatment or health care, diagnostic or lab tests, ethical

consideration, and lifestyle choice in [LJL11]. The authors also de�ne an ontology for

representing temporal constraints in eligibility criteria. Conditional random �elds classify

eligibility criteria into one of the classes in the ontology.

In contrast to the top-down, representational approaches described above, other systems

use a bottom-up approach, mining eligibility criteria to discover common elements and enable

17



automatic clustering and �ltering. Weng et al. developed EliXR, which uses categories from

the UMLS Semantic Network to automatically induce commonly-found semantic patterns

and semantic role labels found in eligibility criteria [WWL11]. They found that the 12

most common semantic role labels are: medical condition, therapy or surgery, medication,

patient group, modi�ers, temporal constraint, body location, manifestation, diagnosis or

assessment, consequence, medical specialist, and device. He et al. describe VITTA (Visual

Analysis Tool of Clinical Study Target Populations), a tool for identifying and visualizing

common recruitment features [HCS15]. Luo et al. annotate clinical trials with UMLS terms

to discover common data elements in eligibility criteria [LMW13]. Hao et al. [HRB14]

locate similar clinical trials by clustering them based on their eligibility criteria. Miotto

[MJW13] and Riccardo [MW13] use eligibility criteria to �lter and index clinical trials.

While a detailed representation is necessary for capturing all the criteria involved in

matching patients to clinical trials, this level of granularity is overly strict for the purposes

of summarization and information retrieval and may lead to the exclusion of potentially

useful information [Geo96]. Matching patients to published literature for the purposes of

information retrieval has thus far relied on a general representation. For example, Demner-

Fushman and Lin use the PICO representation to retrieve literature regarding a clinical

question; P stands for �Population� or �Problem� [DL07]. Their extractors were designed

for broad coverage, tagging mentions of semantic types Group and Disorder from the UMLS

vocabulary.

2.4.1 Casama and patient/population context

Again, de�ning the intended level of granularity in Casama's representation is key. Current

work in eligibility criteria is highly granular, as it is designed to capture the strict require-

ments needed to include or exclude patients from participation in clinical trials. Demner-

Fushman and Lin use a much less granular representation for purposes of information re-

trieval; Casama aims for a more information-rich approach that includes many relevant

details of patient population to enable patient-tailored information retrieval. Greater ex-
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pressive capabilities are possible with a domain-speci�c representation, such as the represen-

tation developed for Casama in the domain of lung cancer. These capabilities are explored

in Chapter 3.

2.5 Information extraction from clinical trials

Complementary to the e�orts of representing clinical trial entities is the automatic extraction

of these entities. Most of the current work in information extraction from clinical trial reports

is based on the preliminary step of sentence classi�cation. Xu et al. use text classi�cation and

hidden Markov models (HMMs) to label sentences for the automatic structuring of clinical

trial abstracts [XSH06]. Naive Bayes, maximum entropy, and decision tree classi�ers were

trained to categorize sentences into one of �ve classes: Introduction, Objective, Method,

Result, and Conclusion.

In [CC07], Chung and Coiera use conditional random �elds (CRFs) and support vector

machines (SVMs) to label sentences in an abstract with one of �ve rhetorical roles (Aim,

Method, Participants, Results, Conclusion). Using similar methods, Chung classi�ed sen-

tences referring to Intervention, Participants, and Outcome Measures. Classi�cation features

included unigram bag-of-words, part-of-speech tags, sentence position, features from previ-

ous and following sentences, and rhetorical roles. Kim et al. use CRFs to classify sentences

into 6 categories: Background, Population, Intervention, Outcome, Study Design, and Other

[KMC11]. In addition to features used by Chung, Kim et al. also used bigrams, semantic

information from the UMLS, and section headings. Blake and Lucic [BL15] identi�ed com-

parison sentences from full-text articles then used SVMs to extract the endpoints.

In [DCK08], de Bruijn et al. describe an architecture for extracting information elements

from the full-text of clinical trial reports. The elements extracted are based on CONSORT

Plus, an extension of the CONSORT statement that includes eligibility criteria, experimental

and control treatments, intervention parameters, sample size, start and end date, primary

and secondary outcomes, funding information, and publication details. The information

extraction process consists of two stages � an SVM classi�er that determines which sentences
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contain information elements, and a regular expression based stage that extracts the exact

information value. In [KBC10], Kiritchenko et al. describe ExaCT, an end-to-end system

based on [DCK08] that highlights key information from clinical trial reports, and displays

them in a web-based interface.

Less work has been done in this area without a sentence classi�cation stage. Summerscales

et al. frame the problem as a named-entity recognition task [SAB11]. The authors trained

a CRF classi�er for identifying treatments, treatment groups, and outcomes from BMJ

abstracts. Features included part-of-speech, MeSH concept ID, semantic tags, position in

the abstract, and features of surrounding words.

Chung examines the use of linguistic features (speci�cally, coordinating constructions) for

the identi�cation of intervention arms in RCTs in [Chu09]. Coordinating constructions con-

sist of constituent phrases that are linked by conjunctions (�and,� �or,� �but�). A maximum

entropy classi�er was trained using syntactic and bag-of-word features.

In [DL07], Demner-Fushman and Lin describe extractors for elements in the PICO

representation. The population, problem, and intervention extractors are rule-based; the

outcome extractor consists of a set of supervised classi�ers. Boudin et al. exploit document

structure to extract PICO elements for an information retrieval task [BSN10]. The detection

of PICO elements is framed as a sentence classi�cation task. When available, document

headings such as �Patients� or �Outcomes� are used to locate sentences containing PICO

elements. Syntactic and semantic features are used to build a hybrid classi�er consisting

of multiple classi�ers (decision tree, support vector machine, multi-layer perceptron, and

naive Bayes). Dawes et al. identi�ed commonly-occurring textual patterns which could

be used for automatic extraction of Comparisons (�placebo,� �compared,� �than�), Outcomes

(�mortality,� �outcome,� �incidence�), and Results (�di�er,� �increase,� �signi�cant�) [DPS07].

There have been many approaches to the automatic extraction of study elements from

scienti�c literature. Often these approaches are based on section and sentence classi�cation,

followed by rule- or pattern-based extraction of individual elements. Chapter 6 will present

Casama's use of these techniques for extraction of contextual elements.
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2.6 Creation of annotated gold standards

An annotated gold standard is a collection of documents that have been marked up by hu-

man readers with respect to a standardized representation of the knowledge contained within

the documents. Annotated gold standards are valuable to the research community because

they bridge the gap between human-level understanding of free text and computable rep-

resentations. These gold standards can then be used as �ground truth� for computational

tasks such as automatic concept extraction, relation extraction, and information retrieval.

Typically, the development of annotated gold standards involves: a training phase, in which

annotators work through a small number of sentences or documents together; an iterative

annotation phase, in which annotators independently annotate the document collection; and

an adjudication phase, in which disagreement between annotators is resolved. To ensure

high quality of annotations and facilitate reproducibility, concepts and relations in the on-

tology are clearly de�ned and annotation guidelines provide instructions and examples for

the annotators. Inter-rater agreement measures the �trustworthiness� of the gold standard.

For document classi�cation tasks (i.e., placing documents into pre-speci�ed categories), the

Kappa statistic is typically used [LK77]. For tasks involving the tagging of mentions in free

text, F-score is a commonly used metric [HR05].

2.6.1 Annotated gold standards for biomedical concepts and relations

Several annotated gold standards exist in the domain of biomedicine, spanning a variety

of subdomains. Gold standards annotated for biomedical concepts include PhenoCHF, the

Mantra Gold Standard Corpus, the Colorado Richly Annotated Full-Text (CRAFT) corpus,

and GENETAG. PhenoCHF [ATA14] is a corpus of biomedical articles and clinical notes

annotated with phenotypic information on congestive heart failure. The Mantra Gold Stan-

dard Corpus [KCA15] is a multi-lingual corpus of 5,530 concept annotations from MEDLINE

abstract titles, drug labels, and biomedical patents based on UMLS. The CRAFT corpus

includes over 100,000 annotated entities in 97 full-text articles for concepts from nine biomed-

ical ontologies [BEE12]. GENETAG is a corpus of 20,000 MEDLINE sentences tagged for
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mentions of gene/protein names for the BioCreative shared task [TXT05].

In the domain of biomedical relations, Mihaila et al. developed BioCause, 851 mentions of

causal relations from 19 full-text biomedical articles [MOP13]. The BioText corpora include

sentences tagged for seven types of disease-treatment relations [RH04]. A gold standard

corpus for chemical-induced disease extraction was developed for BioCreative V [LSJ15].

Kilicoglu et al. describe the SemRep gold standard [KRF11], 1,371 semantic predications

based on the UMLS Semantic Network from 500 MEDLINE sentences. The Clinical E-

Science Framework (CLEF) corpus focuses on conditions, investigations, interventions, and

results found in clinical reports [RGH07].

Many gold standard corpora exist for bio-molecular events, particularly interactions be-

tween proteins and genes [RH05, BGK05, CMB09, PGH07]. The largest e�ort to date in

annotating bio-molecular events is the GENIA corpus. Based on the GENIA ontology, the

GENIA corpus includes nearly 100,000 annotated concepts from 1,000 MEDLINE abstracts.

These entities participate in relations or biological �events� such as binding, localization, and

regulation [KOT08]. GENIA also includes meta-knowledge annotations that indicate origin

of knowledge, certainty, and negation [TNM11]. Other corpora for bio-molecular events

include GREC (Gene Regulation Event Corpus) [TIM09] and PASBio [WSC04].

2.6.2 Justi�cation for a Casama gold standard

While several ontologies and annotated gold standards exist for biological concepts and

events, each corpus focuses on its own set of targeted relations (e.g., treatment-disease,

protein-protein, causal relations, bio-molecular events). The SemRep ontology includes the

widest variety of clinically-oriented relations; however, at the time of this writing it does not

contain a gold standard for all the relations targeted by Casama, such as relations between

patient features and outcomes and the improvement of survival with therapy. Furthermore,

few gold standards include an element of contextualization (the parameters under which

relations held true). Thus, an annotated gold standard of relations and their contexts was

developed for Casama; a description of this process is found in Chapter 4.
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2.7 Patient-tailored information retrieval

The most familiar form of literature retrieval, from Google to PubMed, is via an ad hoc

query, in which the user issues an unstructured, free text query to the search engine. Under

this paradigm, the corpus of documents is often represented as an inverted index: a list

of all the terms appearing in the corpus and links to the documents containing each term.

For each term of each document, a term frequency × inverse document frequency (TFIDF)

score is computed. This metric favors terms that appear frequently in the document and

infrequently in the corpus, thus giving greater weight to rare terms. Documents and queries

can be represented as vectors of TFIDF scores. Similarity between documents and queries

is computed by taking the cosine of these vectors.

The vector space model is useful for general information retrieval because no domain

knowledge is required. However, biomedical search engines such as PubMed include features

that leverage the known document structure of scienti�c literature and the availability of

standardized terminologies. For example, PubMed performs query expansion using Medical

Subject Headings (MeSH). As illustrated in Figure 2.1a, a query for �lung cancer� would

be automatically expanded to include the MeSH synonym �lung neoplasms.� PubMed also

supports several types of metadata that can be used to �lter the result set in a structured

manner. Figure 2.1b depicts PubMed's �lters on coarse patient attributes, such as species,

age, and sex.

Many have investigated the use of patient/population information to automatically match

relevant research articles to individual patients. Early research focused on identifying the

thought processes used by physicians to judge relevance of papers to individual patients.

Florance interviewed three clinicians on their information seeking behavior and discovered

that clinicians prioritized information such as patient age, sex, condition, history, and diag-

nosis, in addition to study-related information such as study size, study location, treatment

applied, and outcomes [Flo92]. Rennels et al. developed Roundsman, a system that auto-

matically critiques proposed therapy regimens for a given patient [RSS87]. Critiques were

generated by means of a structured representation of the clinical literature that includes
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(a) (b)

Figure 2.1: Screenshots from PubMed illustrating (a) query expansion, and (b) population �lters.

sample size, interventions compared, and outcomes. Relevance of a study to an individ-

ual patient is assessed by means of a distance metric. In the domain of patient/treatment

matching for alcoholism interventions, Finney and Moos identi�ed three conceptual issues:

selecting the patient/treatment matching variables, identifying the desired outcome, and

determining when matching decisions should be made [FM86].

Other work has focused on integrating information from the electronic health record

for information retrieval or identi�cation of clinical trial candidates. ERGO, an eligibility

criteria formalization system, matches patients to eligibility criteria by translating ERGO

annotations to SQL and storing them in a relational database [TPC11]. Clinical trials for

which a patient is eligible are retrieved by issuing a query corresponding to the patient's

attributes. In [EKK05], Elhadad et al. describe PERSIVAL, a patient-tailored summariza-

tion system that extracts information from the patient record and matches it to the �ndings

of the paper. Cimino et al. explore methods for mapping clinical data such as narrative text

to standardized terminologies; these terms are used to explore information resources such as

PubMed [CEZ97].

There has been some work in integrating patient/population information with standard

vector space model of information retrieval. Boudin et al. developed automatic annotators

for PICO elements (�P� standing for a coarse representation of Problem/Population) and use

these to enhance retrieval [BSN10]. The authors discovered that retrieval could be improved

24



signi�cantly despite only moderate accuracy of the annotators. Recently, the Text REtrieval

Conference (TREC) Clinical Decision Support shared task sought to retrieve full-text articles

from PubMed Central given a short, free text description of a patient case [RSD14]. During

the inaugural run in 2014, most participants implemented traditional information retrieval

techniques such as query expansion and vocabulary standardization. Five teams included a

simple representation for patient attributes, consisting of age, sex, and race. Two of these

teams (Soldaini et al. [SCY14], Garcia-Gathright et al. [GMH14]) saw an improvement in

performance when including patient attributes in the retrieval process.

Notably, the systems described above use varying levels of granularity in representing

patients/populations, depending on the overarching goal of the system. Representations of

eligibility criteria use a �ne-grained representation in order to discover strict matches to

clinical trials. PERSIVAL tags relevant �ndings in papers and matches them to patient at-

tributes; however, this process is based on syntactic patterns rather than a representation of

salient patient features. Retrieval systems such as PubMed, Boudin's PICO-based system,

and systems developed for TREC 2014 all use coarse representations of patients/populations

(i.e., basic demographic features). In contrast, Casama incorporates a more fully developed

patient representation (tailored speci�cally to lung cancer) to improve upon standard in-

formation retrieval methods. In doing so, more detailed queries may be posed and more

relevant results retrieved. This is demonstrated in Chapter 7.

2.8 Automatic summarization

Researchers have been interested in automatic summarization as early as the 1950s [Luh58].

Previous work in automatic summarization has spanned multiple domains, including sum-

marization of news articles [MMM97, RJB00, Nen05] and search engine results [RF00,

KLR04, ZE99]. Automatic summarization of biomedical journal articles is an active re-

search area, reviewed thoroughly by Mishra in [MBF14]. Mishra enumerates several trends

among state-of-the-art summarization systems: 1) interest in multi-document summarization

is increasing with the move toward evidence-based medicine; 2) most existing summarization
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systems are extractive, but a signi�cant minority of systems are abstractive; 3) knowledge-

rich techniques are growing in popularity; 4) most systems used natural language processing

methods, sometimes in combination with statistical or machine learning techniques; and 5)

most evaluations were intrinsic (judged against a gold standard for accuracy, relevancy, etc.)

rather than extrinsic (i.e., a task-oriented evaluation).

Casama, the system described in this dissertation, is abstractive and visual; thus, this

portion of the literature review focuses on abstractive, visual summarization systems, fol-

lowed by a brief discussion of evaluation.

2.8.1 Abstractive summarization systems

Automatic summarization can be divided into two general approaches: extractive, in which

summaries are composed of fragments of the source material identi�ed as containing salient

information, and abstractive, in which a new natural language or visual summary is gen-

erated by the system. The majority of the summarization systems reviewed by Mishra

were extractive. Among the abstractive summarization systems, most generated a textual

summary.

The most signi�cant work in abstractive, visual summarization is the National Library of

Medicine's Semantic MEDLINE [RKF11]. Semantic MEDLINE uses a relational framework

based on SemRep to summarize claims made in scienti�c literature. In [FRK04], Fiszman

et al. describe an approach for transforming relations (or �semantic predications�) into a

graphical summary. Semantic MEDLINE utilizes four principles to select which predications

should be included in the summary: relevance to the topic, connectivity of related predica-

tions, novelty of extracted knowledge, and saliency or high frequency of predications within

the source text. These are determined by examining the graph-based or statistical features

of the semantic network: relevance is the number of edges between a node and the central

topic node; connectivity is the number of edges between a node and nodes adjacent to the

central node; novelty is the distance of node from a more speci�c concept, and saliency is

the frequency of the node (concept) within the document set.
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Further work with Semantic MEDLINE has developed novel methods for focusing its

graphical summaries. Zhang explored concepts from graph theory (degree centrality and

clustering of cliques) for producing more focused summaries [ZFS11, ZFS13]. Workman

introduces the Combo algorithm, a technique for re�ning the summary based on desired

point-of-view (treatment, substance interaction, diagnosis, pharmacogenomics, and etiology)

[WFH12].

A few other biomedical summarization systems are relation-oriented or perform visual

abstraction to present their summaries. Telemakus [FRB04] exploits document structure,

concept annotations produced by MetaMap, and relations extracted from tables and �g-

ures to represent claims in biomedical documents. AliBaba uses pattern matching and co-

occurrence �ltering to extract protein-protein, gene-gene, and drug-disease relations, among

others. These relations are then visualized as a graph for real-time browsing of PubMed

query results [PSP06]. BIOSQUASH, an extractive summarizer, produces a semantic graph

to determine which propositions span multiple documents to aid the sentence selection pro-

cess [SMW07]. Similarly, Morales et al. represent documents as a graph and cluster the

sentences within the graph to determine which sentences are most signi�cant [MEG08].

2.8.2 Evaluation of summarization systems

Mishra categorizes the evaluation of summarization systems into two groups: intrinsic and

extrinsic. Intrinsic methods assess the quality of summaries in terms of comprehensiveness,

accuracy, and relevance with respect to a gold standard. As no reference standards exist for

summarization in biomedicine, usually the gold standards used in evaluation are produced

manually in a proprietary fashion. Alternatively, some systems use knowledge sources (such

as the abstracts of papers) as their gold standard. Common evaluation metrics include

precision and recall; in the case of text-based summaries, ROUGE metrics (Recall-Oriented

Understudy for Gisting Evaluation) are often used [Lin04]. Most of the systems reviewed

by Mishra perform intrinsic evaluations. Extrinsic evaluations measure the task-oriented

success of a system (e.g., time to completion, decision making accuracy, usability).
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In [FDK09], Fiszman et al. performed semi-automated and manual evaluations of Se-

mantic MEDLINE on the topic of pharmacological treatments for a variety of disease classes.

A reference standard consisting of two resources for evidence-based medicine was used for

the semi-automated evaluation. Performance was evaluated based on two metrics: mean av-

erage precision and �clinical usefulness score,� a metric devised to positively weight bene�cial

treatments extracted by the system, and negatively weight harmful treatments. The perfor-

mance was compared with that of a baseline system based on co-occurrence. The authors

acknowledge the weaknesses of their summarization system: namely, identi�cation of overly

general concepts, incorrect mappings to Metathesaurus, and lack of information about the

quality of evidence.

2.8.3 Summarization and Casama

Central to all summarization systems is the method for determining which information is

the most relevant. Semantic MEDLINE relies on graph-based or statistical features of the

semantic network to determine relevance, connectivity, novelty, and saliency of presented

knowledge. Degree centrality measures focus the graph further. In contrast, Casama uses a

semantic approach to visual summarization, in which study context or patient/population

context can be leveraged by the user to focus the summary. Thus, Casama's summaries

are both semantically-grounded and transparent: the user has ultimate control over which

data he or she wishes to view. Furthermore, Casama addresses some of the weaknesses of

Semantic MEDLINE identi�ed by Fiszman et al. Inclusion of overly general concepts is

mitigated by a more granular representation than that of Semantic MEDLINE, and strength

of evidence is included explicitly in the Casama representation.

Casama follows many of the research trends identi�ed by Mishra. Casama aggregates

multiple documents to reveal current research directions, abstracts the relevant knowledge

to produce a visual summary, uses knowledge of study design and population to enrich

the summary semantically, combines lexical approaches with machine learning to extract

relations and context, and is evaluated both extrinsically (with respect to an information
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retrieval task) and intrinsically (using UpToDate as a manually-curated reference standard).

2.9 Conclusion

This work develops a novel paradigm for summarization by bringing together current research

areas in clinical study representation, patient/population representation, relation extraction,

and information retrieval. While each individual element o�ers a small contribution to

the current body of knowledge, the sum of these parts makes a signi�cant step forward in

evidence-based and patient-tailored summarization through contextualized relations.
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CHAPTER 3

Representation

3.1 Introduction

The formal de�nition for a contextualized semantic map � a set of concepts and relations

tied to their contexts � is presented in this chapter. The concepts, relations, and contexts

needed to instantiate a contextualized semantic map in the domain of driver mutations in

non-small cell lung cancer (NSCLC) are described in detail.

3.2 Formal de�nition of contextualized semantic maps

A contextualized semantic map consists of the following:

Primitives

• relation_concept_types, a set of concept types that may participate in relations

• relation_names, a set of relation types

• context_concept_types, a set of concept types that provide context to relations

Frames

• context_frame, the collection of context_concept_types:

context_concept_type1 ∈ context_concept_types

context_concept_type2 ∈ context_concept_types

...
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• contextualized_relation_frames, a set of frames comprising the following for each re-

lation_name:

subject_type ∈ relation_concept_types

object_type ∈ relation_concept_types

relation_name ∈ relation_names

context frame is_a context_frame

Instances

An instance of a context frame contains a list of values for each context_concept_type:

context_instance:

is_a context_frame

context_concept_type1 (inherited from parent)

context_concept1 is_a context_concept_type1

context_concept_type2 (inherited from parent)

context_concept2 is_a context_concept_type2

...

A contextualized semantic map is a set of instances of contextualized relation frames:

relation_instance:

is_a contextualized_relation_frame

subject_type (inherited from parent)

object_type (inherited from parent)

relation_name (inherited from parent)

subject is_a subject_type

object is_a object_type

context instance is_a context_instance
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Figure 3.1: An ontological representation for study context. The leaves of this graph are the study

context types.

The following sections de�ne the context concepts, relation concepts, and relations needed

to instantiate a contextualized semantic map in the domain of driver mutations in NSCLC.

The Casama representation includes concepts for two types of context: study context and

patient/population context. Relations of interest and concepts that may participate in these

relations are then de�ned. Finally, two examples of contextualized semantic maps drawn

from recent articles in PubMed are described.

3.3 Study context

Figure 3.1 illustrates Casama's representation for study context. Concepts were chosen

based on guidelines for judging strength of evidence from the Oxford Centre for Evidence-

Based Medicine [Evi11], the National Cancer Institute [Ins15], and expert opinion. The

ontological organization of the representation was informed by the Ontology of Clinical

Research [TCR09]. Study concepts are organized into �ve main classes: study objective,

study design, study design characteristics, statistical concepts, and publishing metadata.

32



3.3.1 Study objective

Top-down and bottom-up strategies were used to identify key classes and elements that

inform clinical decisions. The top-down aspect identi�es clinical information needs by means

of expert opinion. For NSCLC, a thoracic oncologist and thoracic radiologist specializing

in lung cancer clinical trials were both asked to identify a set of patient-oriented questions

perceived as being important in a clinical study. The questions were: 1) how likely is it that

my patient has this mutation; 2) is there a treatment available for this mutation; and 3) is

my patient likely to respond?

The bottom-up approach subsequently employs information gathered manually from the

literature to suggest ways to stratify the document collection to enable retrieval of studies

and to guide the representation of relations that address these questions. Four study objec-

tive classes were consequently identi�ed: mutation characterization (relevant to question 1),

mutation detection (question 1), treatment (question 2), and prognosis (question 3).

In mutation characterization studies, clinical-pathologic features (e.g., age, race, smoking

history) are correlated with biomarker status (e.g., EGFR gene mutation). Other types of

characterization papers report the prevalence of the mutation, either specifying the numerical

prevalence within a population, the prevalence relative to other populations, or the prevalence

with respect to other mutations.

Mutation detection studies describe analytical platofrms for detecting mutation status,

such as polymerase chain reaction (PCR) or �uorescence in-situ hybridization (FISH). Muta-

tion detection studies sometimes specify the type of biological specimen used by the analytical

platform.

Treatment studies examine the association between treatments and outcomes. Treat-

ments can improve outcomes (e.g., longer survival), worsen outcomes (e.g., side e�ects),

or have no e�ect on outcomes. Treatments may also be recommended for a speci�c sub-

population.

Finally, prognosis studies associate clinical-pathologic features, biomarkers, and detection

methods with outcome.
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3.3.2 Study design

Representation of study designs was informed by a hierarchy of epidemiological study designs

identi�ed by the Oxford Centre for Evidence-Based Medicine [Evi11]. Experimental studies

such as clinical trials provide the highest level of evidence, followed by several observational

study types. Prospective cohort studies provide the highest level of evidence among the

observational study types, followed by retrospective cohort studies, cross-sectional studies,

case control studies, and case series.

3.3.3 Study design characteristics

Additional concepts that contribute to a clinician's judgment of strength of evidence include

endpoints and cohort size. The National Cancer Institute has published guidelines for assess-

ing quality of evidence in cancer treatment studies [Ins15]. Study endpoints, in descending

order of strength, include: total mortality, cause-speci�c mortality, carefully assessed qual-

ity of life, and indirect surrogates (event-free survival, disease-free survival, progression-free

survival, tumor response rate).

Cohort size is an attribute that may be helpful as a point of comparison across studies. In

general, a larger cohort size suggests greater strength of evidence (although this comparison

should be done carefully to account for di�ering study designs and e�ect sizes).

Phase and blinding are terms speci�c to clinical trials. Findings from advanced trials

(phase III, IV) are more salient than those from early trials (phase I, II); double-blind

studies are stronger than open label studies.

3.3.4 Statistical concepts

The statistical test concept informs the user of which methods were used to analyze the

results; p-value is a metric used for judging the statistical signi�cance of a test. A p-value of

0.05 or less is often used as a threshold of statistical signi�cance; however, it should be noted

that other factors such as study design should also be considered. Due to the complexity of
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statistical knowledge, interpretation of statistical concepts is left to the user.

3.3.5 Publishing metadata

Publication date and impact factor of journal are two types of publication metadata that

contribute to strength of evidence. Recent publications may be viewed more favorably, as

these represent the latest discoveries in the �eld. Studies published in prestigious journals

with high impact factors also play a role in judging the credibility of a study.

Formal de�nitions of study context terms are given in Table 3.1. When possible, de�ni-

tions were borrowed from existing sources, such as the National Cancer Institute Thesaurus

[SCH07] or Medical Subject Headings [NJH01].

3.4 Patient/population context

The attributes that compose the patient/population context are based on the National Lung

Cancer Audit (LUCADA) [RTS11], an e�ort in the United Kingdom to create a registry

of lung cancer patients and their treatments and outcomes. The LUCADA representation

includes information on patient demographics, risk factors, treatment history, and tumor fea-

tures. The representation was augmented based on expert opinion to include information on

driver mutations, targeted therapy, imaging features, and clinical response. The organization

of the representation was inspired by the National Cancer Institute Thesaurus [SCH07]. Pa-

tient/population information consists of three main classes: personal attributes, treatment-

related concepts, and cancer features. An overview of the representation is given in Figure

3.2. Formal de�nitions are given in Table 3.2.

3.4.1 Personal attributes

Included in the representation are the most common demographic features found in the lung

cancer literature � age, sex, race, and smoking history. Note that �age� may refer to a speci�c

age group (�> 65 years of age�) as well as general categories (�elderly�, �younger�). Similarly,
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Concept De�nition

Study designs

Experimental Studies in which individuals are assigned by an investigator based on a
protocol to receive speci�c interventions.1

Prospective cohort A research study that follows over time groups of individuals who are alike
in many ways but di�er by a certain characteristic and compares them for
a particular outcome.1

Retrospective cohort A research study in which the medical records of groups of individuals who
are alike in many ways but di�er by a certain characteristic are compared
for a particular outcome.1

Cross-sectional A study in which participants are examined at only a single time for char-
acteristics of a disease.1

Case-control A study that compares two groups of people: those with the disease or
condition under study (cases) and a very similar group of people who do
not have the disease or condition (controls).1

Case series A group or series of case reports involving patients who were given similar
treatment.1

Study design

characteristics

Cohort size The number of units (persons, animals, patients, speci�ed circumstances,
etc.) in a population to be studied.2

Endpoint Health events that lead to completion or termination of follow-up of an
individual in a trial or cohort study.3

Phase I Studies performed to evaluate the safety of diagnostic, therapeutic, or pro-
phylactic drugs, devices, or techniques in healthy subjects and to determine
the safe dosage range (if appropriate).2

Phase II Studies that are usually controlled to assess the e�ectiveness and dosage (if
appropriate) of diagnostic, therapeutic, or prophylactic drugs, devices, or
techniques.2

Phase III Comparative studies to verify the e�ectiveness of diagnostic, therapeutic, or
prophylactic drugs, devices, or techniques determined in phase II studies.2

Phase IV Planned post-marketing studies of diagnostic, therapeutic, or prophylactic
drugs, devices, or techniques that have been approved for general sale.2

Open label study A type of study that stipulates both the health provider and the subject be
aware of the drug or treatment assignment.1

Blinded clinical study A type of study in which the patients (single-blinded) or the patients and
their doctors (double-blinded) do not know which drug or treatment is being
given.1

Statistical concepts

Statistical test A test used to determine the statistical signi�cance of an observation.1

P-value A measure of the probability that a result happened by chance. The lower
the p-value, the more likely it is that the result was caused by phenomenon
of interest.1

Publication metadata

Journal impact factor A quantitative measure of the frequency on average with which articles in
a journal have been cited in a given period of time.2

Table 3.1: De�nitions of study design concepts.

Sources:
1National Cancer Institute
2Medical Subject Headings
3McMaster University Epidemiology Terms
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Figure 3.2: An ontological representation for patient/population context. The leaves of this graph

are the patient/population context types.

race refers to any information indicating the racial background of the patient/population,

either speci�cally (e.g., �Chinese�) or generally (e.g., �Western population�). Smoking history

categories (never smoking, former smoking, current smoking) are borrowed from the National

Health Interview Survey [DP09]. Also included are qualitative terms describing smoking

behavior (e.g., light smoking, heavy smoking).

Performance status may be qualititative (��t�) or quantitative by any metric (e.g., Karnof-

sky [SHG84], Eastern Cooperative Oncology Group [SKP93]). Comorbidities, as suggested

by the LUCADA data manual, include additional conditions of the patient/population such

as other malignancies, renal failure, weight loss, etc.

3.4.2 Cancer features

Features of disease are an important factor in lung cancer, consisting of several subfeatures:

biomarkers, clinical stage, histology (as de�ned by World Health Organization/International

Association for the Study of Lung Cancer classi�cation of lung tumors [TBN11]), resistance,

and imaging features as de�ned in the RadLex lexicon [Lan06]).
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3.4.3 Treatment concepts

Treatment concepts consist of two subclasses: treatment history and treatment response.

Treatment history is a highly relevant feature, as the history of successful or failed treatments

can help suggest a strategy for future treatments. LUCADA identi�es three major treatment

types: surgery, radiotherapy, and chemotherapy. Because the domain of interest involves

driver mutations in lung cancer, the Casama representation also includes targeted therapy

(treatments targeting speci�c driver mutations).

Treatment response concepts correspond to clinical response categories de�ned by RE-

CIST (Response Evaluation Criteria in Solid Tumours) [ETB09] and are always associated

with the treatment history during which the response occurred. Progression is worsening

or spreading of disease, whereas recurrence is a return of cancer after a period of no cancer

(such as, after surgical resection). Complete response refers to complete disappearance of

targeted tumors; partial response means shrinkage of tumor was observed; stable disease

means there was little to no change to the number and size of tumors.

3.5 Comparison context

Casama also includes a special type of context for representing comparisons. In a controlled

experiment, �ndings are often communicated in terms of a comparison to placebo or other

treatment. Comparison context permits Casama to include information about a relation

with respect to this comparator. Comparisons are represented as the context of the subject

or object of the relation, and are always of the same type as the subject or object. Com-

parators can be especially useful when communicating negative �ndings, such as �ge�tinib

did not improve survival compared with erlotinib.� To say that �ge�tinib did not improve

survival� would be inaccurate, as it may improve survival compared with chemotherapy or

no treatment. Rather, this sentence expresses less improvement compared with another

treatment, erlotinib.

38



Concept De�nition

Personal attributes

Race Shared heredity, physical attributes and behavior, and in the case of humans,
by common history, nationality, or geographic distribution.1

Never smoker An adult who has never smoked, or who has smoked less than 100 cigarettes
in his or her lifetime.3

Former smoker An adult who has smoked at least 100 cigarettes in his or her lifetime but who
had quit smoking at the time of interview.3

Current smoker An adult who has smoked 100 cigarettes in his or her lifetime and who currently
smokes cigarettes.3

Performance status A measure of how well a patient is able to perform ordinary tasks and carry
out daily activities.1

Comorbidity A concomitant but unrelated disease or pathologic process.4

Cancer features

Biomarker A characteristic that can be objectively measured and serves as an indicator for
normal biologic processes, pathogenic processes, state of health or disease, the
risk for disease development and/or prognosis, or responsiveness to a particular
therapeutic intervention.1

Stage The extent of a cancer in the body. Staging is usually based on the size of
the tumor, whether lymph nodes contain cancer, and whether the cancer has
spread from the original site to other parts of the body.1

Histology The combined microscopic physical features of cells and their surrounding ex-
tracellular environment in tissues.1

Resistance The failure of cancer cells, viruses, or bacteria to respond to a drug used to kill
or weaken them.1

Treatment history

Surgery Operative procedures on organs, regions, or tissues in the treatment of
diseases.2

Radiotherapy The therapeutic use of ionizing and nonionizing radiation.2

Chemotherapy The use of chemical-based agents to treat cancer. Antineoplastic chemotherapy
works by arresting or killing the growth and spread of cancer cells.1

Targeted therapy A type of treatment that uses drugs or other substances, such as monoclonal
antibodies, to identify and attack speci�c cancer cells.1

Treatment response

Progression The worsening of a disease over time.2

Recurrence The return of a sign, symptom, or disease after a remission.5

Complete response The disappearance of all signs of cancer in response to treatment.1

Partial response A decrease in the size of a tumor, or in the extent of cancer in the body, in
response to treatment.1

Stable disease Cancer that is neither decreasing nor increasing in extent or severity.1

Table 3.2: De�nitions of patient/population concepts.

Sources:
1National Cancer Institute
2Medical Subject Headings
3National Health Interview Survey
4Computer Retrieval of Information on Scienti�c Projects
5Consumer Health Vocabulary
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3.6 Relations

3.6.1 De�nitions of relations

Four study objective types (mutation characterization, mutation detection, treatment, and

prognosis) guide the selection of relations of interest. Relations appropriate for each study

type are given below. With the exception of the detects relation (which is similar to

the �diagnoses� relation of UMLS), relations de�ned for Casama had no analogs in the

UMLS Semantic Network. In all de�nitions given below, relation names appear in bold and

arguments of relations appear in italics. Example sentences expressing the relation are also

given.

3.6.1.1 Characterization studies

The term �correlation� indicates a statistically signi�cant �nding between biomarkers and

clinical features.

• biomarker positive correlation clinical feature: The biomarker and clinical feature

tend to occur together. Example: �EGFR mutation rate was higher in female patients.�

[GCZ12]

• biomarker negative correlation clinical feature: The biomarker and clinical feature

tend to not occur together. Example: �Number of cigarette pack years were signi�cantly

lower in patients with EGFR mutations.� [BMZ13]

• biomarker correlation clinical feature: The biomarker and clinical feature are related,

but the direction is not stated. Example: �IGF1R/EGFR FISH+ correlates with

IGF1R/EGFR IHC+.� [LFB13]

• biomarker no correlation clinical feature: The biomarker and clinical feature appear

to have no relationship. Example: �No signi�cant correlation between LKB1 alterations

and mutations in EGFR pathway genes was found.� [LCN13]
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Similarly, the �has rate in� relations describe relations between biomarkers and clinical

features that trend toward positive or negative correlation, but without statistical signi�-

cance. These relations include:

• biomarker has higher rate in clinical feature. Example: �Most of the tumors with

EGFR mutations were acinar with lepidic or papillary subtypes.� [ZMO13]

• biomarker has lower rate in clinical feature. Example: �The frequency of EGFR

mutations was lower in African-American patients compared to Caucasian patients

but did not reach statistical signi�cance.� [BMZ13]

• biomarker has similar rate in clinical feature. Example: �The frequency of EGFR

mutations is similar in US Hispanics compared with non-Hispanic whites.� [ZMO13]

Casama includes several relations for describing the prevalence of a biomarker.

• biomarker has rate rate: This relation states the numerical prevalence of a biomarker.

Example: �EGFR mutation was detected in 36.7% of patients with NSCLC.� [GCZ12]

The following relations compare prevalences between biomarkers. Example: �EGFR

exon 20 insertion represents the third most common type of EGFR mutation after exon 19

deletions and L858R.� [ANC13]

• biomarker has higher rate than biomarker

• biomarker has lower rate than biomarker

• biomarker has similar rate to biomarker

3.6.1.2 Mutation detection studies

Mutation detection studies identify relations between analytical platforms for mutation de-

tection, biomarkers, and biological materials. Relations associated with detection are:
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• detection method detects biomarker. Example: �The ARMS-TaqMan real-time PCR

method for the detection of L858R mutations was applicable in the clinical setting.�

[ZZZ13]

• biomarker detected in material. Example: �We have demonstrated the feasibility of

using cytological specimens for EGFR mutation analysis.� [CWC13]

• detection method detects in material. Example: �Pyrosequencing on cytological blocks

is feasible.� [SKU13]

3.6.1.3 Treatment studies

Relations associated with treatment studies are de�ned below.

• treatment improves outcome: The treatment led to a desired outcome. Example:

�Patients receiving erlotinib experienced improvements in quality of life.� [CFZ13]

• treatment worsens outcomes The treatment led to an unfavorable outcome (e.g., side

e�ects). Example: �Diarrhea, dysphagia, and sore mouth were worse with afatinib.�

[YHS13]

• treatment associated with outcome: The treatment led to an outcome where �im-

proves� or �worsens� is not appropriate. Example: �There was evidence of anticancer

activity in relation to matuzumab.� [HKC13]

• treatment recommended for clinical feature: A treatment is appropriate for a cer-

tain population. Example: �EGFR tyrosine kinase inhibition may be the treatment

of choice for NSCLC patients with miliary intrapulmonary carcinomatosis at initial

diagnosis.� [WHC13]

Each of the treatment relations has a negated analog: does not improve, does not

worsen, not associated with, not recommended for.
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3.6.1.4 Prognosis studies

Finally, prognosis studies explore relations between biomarkers or clinical features and out-

comes.

• biomarker or clinical feature predicts better outcome: The biomarker or clinical

feature is associated with a more desirable outcome. Example: �EGFR mutations

were associated with longer overall survival.� [JSC13]

• biomarker or clinical feature predicts worse outcome: The biomarker or clinical

feature is associated with an unfavorable outcome. Example: �KRAS mutations were

associated with shorter survival.� [JSC13]

• biomarker or clinical feature predicts outcome: An outcome is predicted, but the

direction is not stated. Example: �Metastatic status was signi�cantly associated with

survival time.� [DLW13]

The Casama representation includes a mechanism for distinguishing between prognostic

factors (characteristics that predict outcome independent of treatment) and predictive factors

(characteristics that predict response to treatment). A �predicts� relation that is tied to a

treatment context indicates a predictive factor; otherwise, the feature is prognostic rather

than predictive.

Each �predicts� relation also has a negated analog (does not predict better, does not

predict worse, does not predict).

Formal de�nitions of concepts that participate in relations are provided in Table 3.3.

3.6.2 Hierarchical organization of relations

Note that Casama's granular relation types can be organized into broad families of relations:

correlation, prediction, and treatment relations. This hierarchical organization, depicted

in Figure 3.3, permits granular relations to be subsumed by their parents, regardless of
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Figure 3.3: Hierarchical organization of relations associated with correlation, prediction, and treat-

ment e�ects.

Concept De�nition

Biomarker A characteristic that can be objectively measured and serves as an indicator for
normal biologic processes, pathogenic processes, state of health or disease, the
risk for disease development and/or prognosis, or responsiveness to a particular
therapeutic intervention.1

Clinical feature Clinical-pathologic features of a patient/population, same features as pa-
tient/population context representation.2

Detection method A speci�c test or series of steps done to help diagnose a disease or condition.1

Material A group or layer of cells that work together to perform a speci�c function.1

Outcome A place of termination or completion. This may be a primary or secondary
outcome variable used to judge the e�ectiveness of a treatment.1

Treatment Any type of intervention intended to treat a condition in a patient.1

Rate The ratio (for a given time period) of the number of occurrences of a disease
or event to the number of units at risk in the population.1

Table 3.3: De�nitions of concepts that may participate in relations.

Sources:
1National Cancer Institute
2National Lung Cancer Audit

polarity. This property is utilized in evaluating the manual annotation task (Chapter 4,

Section 4.4.2.3) and automatic extraction task (Chapter 6, Section 6.2.1).

3.7 Contextualized relations

Any relation may be augmented with study or patient/population context, indicating the

parameters under which the relation was found. Context may be found at the whole-study

level (e.g., eligibility criteria, study design), indicating that the context applies to all relations

for that study. Alternatively, context may be relation-speci�c, meaning that the context

applies to a single relation only (e.g., p-values, population subgroups). A contextualized

semantic map is the set of instances of these contextualized relations.

44



3.8 Discussion

The representation described here was designed to capture the main �ndings of a study and

their associated contexts. The following example illustrates how these relations and contexts

can be used to produce tailored graphical summaries of a collection of biomedical articles on

lung cancer.

Consider the following relations discovered in three recent publications examining EGFR

mutation in lung adenocarcinoma:

1. Our results show that docetaxel improves progression-free survival for patients with

NSCLC who have wild-type EGFR tumours. [GMB13]

2. The OPTIMAL study found that erlotinib improved progression-free survival in patients

with EGFR mutation-positive non-small-cell lung cancer (NSCLC). [CFZ13]

3. The results proved a signi�cant improvement in progression-free survival for patients

harboring wild-type EGFR treated with the erlotinib-pemetrexed sequence. [FPF13]

The following context-free relations may be extracted from these sentences:

1. docetaxel improves progression-free survival

2. erlotinib improves progression-free survival

3. erlotinib-pemetrexed sequence improves progression-free survival

These relations can be aggregated and visualized as a contextualized semantic map, shown

in Figure 3.4a. Each of these sentences occurred in di�erent contexts � the �rst, in a clinical

trial of EGFR wild-type patients; the second, in a clinical trial of EGFR mutation positive

patients; the third, in an observational study of mixed EGFR+ and EGFR wild-type patients

where the relation was found in the wild-type subgroup. By including this information as

attributes of the edges of the semantic map, users can now pose more detailed queries than

those accommodated by traditional, context-free graphs. They may choose to only include
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results found in clinical trials, creating a threshold for a minimum level of evidence (Figure

3.4b). They can �lter studies based on biomarker status (Figures 3.4c and 3.4d) in order to

�nd studies relevant to a particular patient.

A more complex example (Figure 3.5) shows how contextualized semantic maps may be

used to present an overview of current research from various perspectives. Two new relations

are added to the semantic map (tyrosine kinase inhibitors improve progression-free survival

and afatanib improves progression-free survival). In addition to contexts for biomarker and

study design, the relations are further augmented with comparators, treatment history, and

stage.

This example depicts �ve total relations; realistically, a semantic map may include dozens

or hundreds of relations. Context may be used to �lter the knowledge space, such that the

remaining relations are speci�c to the user's information need. For example, only erlotinib

and afatinib were demonstrated in clinical trials to be e�ective in EGFR+ patients. For

EGFR wild-type patients, docetaxel was shown to be more e�ective than erlotinib. However,

two retrospective studies found that tyrosine kinase inhibitors (such as erlotinib) improved

progression-free survival in EGFR wild-type patients or patients of unknown EGFR status.

Two of the �ve relations were found in study populations with a prior history of chemother-

apy; these relations may be of interest to a clinician seeing a patient matching this history.

All of the study populations included in this semantic map were of advanced stage.

Context can also be used to resolve con�icting information (Figure 3.6). For instance,

two studies examined the relationship between EGFR mutation and survival. However, one

study found that EGFR mutation predicted better survival; another study claims that EGFR

mutation does not predict survival. This apparently con�icting information can be resolved

by examining the context � EGFR mutation predicted better survival in a cohort of patients

with metastatic disease and a history of radiotherapy. In contrast, EGFR mutation did not

predict survival in a cohort of early stage patients who received surgical resection.
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(a) All relations. (b) Clinical trials only.

(c) biomarker = EGFR-wild type. (d) biomarker = EGFR mutation positive.

Figure 3.4: A few examples of how semantic maps can be �ltered through contextualization.
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Figure 3.5: A more complex contextualized semantic map.

Figure 3.6: A contextualized semantic map that resolves seemingly discrepant �ndings.
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3.9 Conclusion

This chapter described the representation of a contextualized semantic map in both its

general and domain-speci�c forms. The representation presented here is unique in that it

ties relations to their study and patient/population contexts. The following chapters will

show how this representation enables the creation of powerful, contextualized summaries.

49



CHAPTER 4

Creating and evaluating an annotated gold standard

4.1 Introduction

This chapter describes the development of an annotated gold standard conforming to the

representation described in Chapter 3. Recent abstracts on epidermal growth factor receptor

(EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement in non-small cell

lung cancer were acquired. Two annotation studies were carried out: the �rst study classi�ed

papers by study objective and study design; the second annotation study tagged mentions of

study population, relations, and remaining study concepts on a subset of the abstracts. Inter-

annotator agreement was evaluated to validate the suitability of this annotated document

set as a gold standard for automatic classi�cation and extraction tasks.

4.2 Data collection

Both annotations tasks were performed against a snapshot of PubMed from September 2013.

PubMed was searched for �EGFR� and �lung� in the titles of articles published between

January 2012 and August 2013. Restricting the search to titles ensured that the retrieved

abstracts belonged to the domain of lung cancer (as opposed to a study in another cancer

domain that cites previous work on lung cancer in the abstract). Excluded from the search

were empty abstracts, case reports, reviews, and pre-clinical studies. 211 studies on EGFR

mutation in lung cancer were retrieved via PubMed. A similar query replacing �EGFR� with

�ALK� resulted in 61 articles. The full PubMed query is given in Table 4.1.

Also included in the data set were abstracts from the �Non-Small Cell Lung Cancer -
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Original query egfr [Title] AND lung [Title] AND (�2012/01/01� [PDAT]:�2013/09/01� [PDAT])
Exclusion �lter NOT review [ptyp] AND hasabstract [text] NOT �cells� [title/abstract]

NOT �cell lines� [title/abstract] NOT systematic [sb] NOT case reports [ptyp]

Table 4.1: Baseline PubMed queries for retrieving abstracts on EGFR mutation in lung cancer.

Metastatic� category of the American Society of Clinical Oncologists (ASCO) annual meet-

ings from 2011-2013. This data source was chosen because of its high value as a source of

information on current, clinically-oriented cancer research. A longer time frame was chosen

compared to PubMed in order to retrieve a su�cient number of articles for automatic classi-

�cation and extraction tasks. Similar to the PubMed query, the ASCO archive was searched

for abstracts not containing �cell lines� whose titles contained �EGFR� or �ALK.� 124 studies

on EGFR and 34 studies on ALK were retrieved.

4.3 First annotation study: study objective and study design

4.3.1 Methods

A set of annotation guidelines was developed to enable annotation by multiple readers. One

physician and four non-physicians with 0.5 - 2 years of clinical lung cancer research experience

annotated the document collection. The document collection was divided into �ve sets of

86 abstracts each. Each annotator reviewed two sets; thus, each abstract was read by two

annotators. The annotators placed each abstract into one or more study objective categories

(mutation characterization, mutation detection, treatment, prognosis), and identi�ed the

methodological design of the study (experimental, prospective cohort, retrospective cohort,

cross-sectional, case-control, case series).

In order to utilize the most information available for classi�cation, annotators were per-

mitted to consult the full-text of the article if available (21% of the document set). Typi-

cally, this information would be used to determine the �ner details of a study design, such

as whether a cohort study was prospective or retrospective. As full-text was not available

for most studies, a catch-all class for cohort studies was used when the direction of inquiry

was not stated.
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Annotation was performed iteratively. After each round of annotation, agreement was

calculated by Kappa analysis. Classes with low Kappa scores were targeted for discussion.

The annotators met to identify di�ering interpretations of the guidelines, developing strate-

gies for unifying their interpretations by talking through di�cult cases.

The annotation guidelines were updated to remove ambiguities identi�ed during the

discussion. For instance, one point of disagreement involved whether naming the percentage

of patients in a study who were EGFR-positive constituted a mutation characterization study.

After a period of discussion, the annotators agreed that a study should only be considered a

mutation characterization study if one of its aims was to identify the rate of mutation within

a population, selecting its study population carefully for this purpose. Thus, the annotation

guidelines were modi�ed to specify this distinction.

Readers then re-annotated their sets of abstracts according to the revised annotation

guidelines, and the process was repeated until su�cient agreement across the collection was

reached. The Kappa scores presented here were obtained after three rounds of annotation. In

order to produce a gold standard, two annotators were selected to resolve discrepancy. They

viewed the annotations provided by the �rst pair of readers, and provided a tie-breaking

vote. The two annotators were selected such that no annotator performed tie-breaking on a

study for which he or she was one of the original annotators.

The counts in the gold standard for each category are summarized in Table 4.2.

4.3.2 Results

Table 4.3 details the inter-annotator agreement after three iterations of annotation. Kappa

agreement for study objectives over all document subsets ranged from 0.518 to 0.846, indi-

cating moderate to substantial agreement [VG05]. Standard deviations over each category

ranged from 0.061 to 0.109. Mutation detection studies had the highest Kappa agreement

at 0.792, while prognostic studies had a Kappa of 0.604. Over the entire document space

and all study objectives, Kappa agreement was 0.684.

For the major classes of study design (experimental, cohort, cross-sectional), Kappa
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Counts: Counts: Counts: Counts:

Category EGFR PubMed ALK PubMed EGFR ASCO ALK ASCO

Mutation Characterization 74 26 40 8
Mutation Detection 35 20 14 7
Treatment 38 5 40 15
Prognosis 81 12 68 8

Experimental 20 3 27 10
Cohort (all) 89 14 63 12

Prospective cohort 7 1 1 0
Retrospective cohort 47 1 35 8
Unknown 35 12 27 4

Cross-sectional 60 27 20 10
Case-control 3 0 0 0
Case series 5 5 4 0

Table 4.2: Number of documents in the training and test sets for each study objective and study

design type.

agreement ranged from 0.518 to 0.860, with intraclass standard deviations ranging from

0.031 to 0.128. Experimental studies had the highest overall Kappa score (0.728) while

cohort studies had the lowest (0.608). Overall, the Kappa agreement for this subset of study

design classes was 0.688.

Kappa agreement for the smaller study design types (subtypes of cohort studies, case

control, case series) was signi�cantly lower, with greater deviations from the mean. Of

these, retrospective studies had the best agreement, ranging from 0.352 to 0.634, indicating

fair to substantial agreement. For the study design classes that had less than 0.5 Kappa

agreement, I reviewed the gold standard and con�rmed that the value in the gold standard

was in agreement with the annotation guidelines.

4.3.3 Discussion

Inter-rater agreement (per the Kappa score) for study objectives was moderate to substantial.

One source of disagreement between annotators stemmed from the fact that studies could

have more than one objective. Indeed, 86% of studies had at least one study objective

that was agreed upon by both annotators; thus, primary objectives were �easy� to annotate

whereas it was more di�cult to determine secondary aims of a study. Also, some study

objective classes di�ered from each other in subtle ways, such as mutation characterization
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Category Set A Set B Set C Set D Set E Mean Std Dev

Mutation Characterization 0.725 0.563 0.65 0.718 0.65 0.661 0.066
Mutation Detection 0.846 0.821 0.689 0.813 0.793 0.792 0.061
Treatment 0.634 0.552 0.705 0.649 0.845 0.677 0.109
Prognosis 0.606 0.518 0.643 0.725 0.527 0.604 0.086

Experimental 0.781 0.860 0.649 0.621 0.731 0.728 0.097
Cohort (all) 0.622 0.636 0.573 0.577 0.633 0.608 0.031

Retrospective Cohort 0.519 0.635 0.560 0.438 0.352 0.501 0.109
Prospective Cohort 0.378 0.488 0.312 0 0 0.236 0.224
Unknown Cohort 0.254 0 0.270 0.497 0.239 0.252 0.176

Cross-sectional 0.835 0.673 0.518 0.74 0.569 0.667 0.128
Case control n/a 0 0 0 0 0 0
Case series 0 0.222 0.271 0.467 0.271 0.246 0.167

Table 4.3: Inter-rater agreement (Kappa) for the entire document collection. The collection was

divided into �ve sets; each set was reviewed by two annotators.

and prognostic studies, which both aim to characterize various aspects of a mutation. This

subtle di�erence is re�ected in the lower Kappa score for prognostic studies.

Kappa scores for study design were moderate to substantial for the main study design

classes. Experimental studies and cross-sectional studies had better Kappa agreement within

this set of classes, as these are clearly associated with certain study types (clinical trials and

mutation detection studies, respectively) and therefore were easier to agree upon. More

granular study design types were more di�cult to annotate. In particular, the di�erence

between retrospective and prospective study designs was not often communicated clearly

in abstracts. Annotators had varying levels of con�dence in identifying cohort studies as

prospective, whereas retrospective studies often stated their study design explicitly.

4.4 Second annotation study: Study context, population context,

and relations

4.4.1 Methods

The remainder of the annotations were performed by myself and a graduate student special-

izing in medical informatics. The brat rapid annotation tool [SPT12] was used to highlight

the spans of text in the abstracts that referred to a contextual element or relation. Com-
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pared to the �rst annotation study, this second study was wider in scope (more elements

to annotate) and more labor-intensive (highlighting spans rather than simple classi�cation).

Thus, a subset of the data was selected for annotation. For this task, only the EGFR data

set was used. Furthermore, only abstracts published in 2013 were included. Excluding the

�out of scope� abstracts, as determined in the �rst annotation study, there were 99 PubMed

abstracts and 36 ASCO abstracts.

Study context, population context, and relations were converted to brat format (i.e., a

list of concepts and relations, where relations are constrained by permitted concept type).

Annotation guidelines were composed to formalize the annotation process. The annotation

guidelines provided de�nitions of each concept type and relation, as well as speci�c direc-

tions regarding the scope of the annotations. For example, population context is limited

to eligibility criteria and populations under which relations were observed, rather than de-

scriptive statistics of the cohort. Also out of scope are relations for which interpretation of

numeric data is required. For example, the sentence �Progression-free survival was 6 months

for erlotinib vs. 3 months for docetaxel� would not be annotated, whereas �Progression free

survival was longer with erlotinib vs. docetaxel� constitutes a valid relation. The underlying

assumption is that key �ndings are often restated qualitatively in the Conclusion section

of an abstract, thus simplifying automatic extraction by obviating the need to interpret

quantitative data.

Because information is often repeated in di�erent sections of an abstract, the guidelines

also provided suggestions for where to expect certain types of information. For instance,

mentions of population context are likely to be found in Background and Methods sections,

whereas study context may be found in the Methods or Results sections. While exceptions

to these rules did exist in the data, these suggestions aimed to enable better agreement

between annotators in the case of repeated information. Sentences expressing the �ndings of

the study were assumed to be found in the Results and Conclusion sentences of the abstracts.

Thus, only these sections were annotated for relations.

During the training phase, the annotators reviewed ten papers together, noting and

correcting ambiguities in the annotation guidelines prior to independently annotating the
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entire corpus. Agreement was calculated on this set, and entities with low agreement were

selected for discussion. For instance, one area of disagreement was appropriate usage of the

treatment recommended for population relation. Consider the sentence, �These results

show clinical bene�t with afatinib in EGFR+ patients.� One reader annotated, �afatinib

associated with clinical bene�t in EGFR+ patients,� while the other annotated, �afatinib

recommended for EGFR+ patients.� Discussion of this example led to the conclusion that

because the sentence is not an explicit recommendation of treatment, the �rst annotation

type should be used. Consequently, the agreed-upon de�nition of �outcome� should include

general terms such as �bene�t.� After discussing several points of clari�cation, annotation

guidelines were again updated. The readers corrected their annotations until consensus was

achieved.

Annotator agreement was calculated in terms of F1-score, holding my annotations as the

ground truth for the purposes of evaluation. The Kappa statistic was not used because the

nature of the task ensured that the chance of random agreement was very low, and Hripcsak

showed that F1-score approaches Kappa as the number of negative cases grows large [HR05].

For study context and population context, agreement was calculated using document-level

matching (i.e., annotations may appear anywhere in the abstract). For relations, agreement

was calculated for each relation as well as semantically related groups of relations (e.g.,

improves and associated with, predicts better and predicts, positive correlation and

correlation, see: Chapter 3, Figure 3.3). To create a gold standard, discrepant annotations

were reviewed and resolved by discussion between the annotators.

4.4.2 Results

4.4.2.1 Study context

Annotation agreement for study context was substantial, with an overall F1-score agreement

of 0.88. Full results are given in Table 4.4.
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Concept Total (both
annotators)

Precision Recall F1-score

p-value 136 0.95 0.86 0.90
cohort size 119 0.89 0.88 0.88
endpoint 98 0.83 0.90 0.86
statistical test 46 0.87 0.84 0.85
phase 12 0.86 1.0 0.92
blinding 3 1.0 1.0 1.0
All concepts 414 0.89 0.88 0.88

Table 4.4: Annotator agreement for study context types.

4.4.2.2 Population context

Of the 20 population context types, 10 types contributed to over 90% of the total annotations.

Among these, F1-score agreement ranged from 0.56 for progression to 0.92 for surgery history.

F1-score agreement over all concept types was 0.78. Full results are given in Table 4.5.

4.4.2.3 Relations

Of the 27 relation types, 13 contributed to roughly 90% of the total annotations. Among

these, F1-score agreement ranged from 0.40 for associated with to 0.80 for does not pre-

dict and predicts worse. Overall agreement for relations was 0.68. Combining semantically

similar relations proved bene�cial to F1-score agreement. Notably, the combined relation

improves or associated with had an F1-score of 0.79. Full results are given in Table 4.6.

4.4.3 Discussion

During the consensus phase of the annotation task, major causes of annotator disagreement

were noted. First, human error contributed to annotations being missed completely. Sec-

ond, annotators had di�ering interpretations of the annotation guidelines, indicating that

the guidelines were vague in some cases. These cases were identi�ed and resolved for the

�nal guidelines and gold standard. Finally, the inherent ambiguity of language made some

sentences impossible to resolve, even by human readers (Figure 4.1).

One �nding from the annotation study was that the representation was overspeci�ed �

in some cases, there was more than one way to express a concept or relation. Indeed, the
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Concept Total (both
annotators)

Precision Recall F1-score

biomarker 151 0.68 0.88 0.77
stage 146 0.80 0.85 0.82
histology 93 0.75 0.90 0.82
targeted therapy history 91 0.78 0.80 0.79
race 67 1.0 0.63 0.78
chemotherapy history 40 0.94 0.77 0.85
progression 32 0.53 0.60 0.56
other treatment history 29 0.56 0.91 0.69
resistance 27 0.71 0.77 0.74
surgery history 26 0.86 1.0 0.92
performance status 11 0.83 1.0 0.91
radiotherapy history 9 0.80 1.0 0.89
smoking history 9 0.60 0.75 0.67
other clinical feature 6 0.50 0.25 0.33
recurrence 6 0.67 0.67 0.67
sex 6 0.25 0.50 0.33
age 4 1.0 1.0 1.0
comorbidity 2 0.0 N/a N/a
partial response 2 1.0 1.0 1.0
stable disease 2 1.0 1.0 1.0
All concepts 759 0.75 0.81 0.78

Table 4.5: Annotator agreement for population concepts.

Figure 4.1: An example of annotator disagreement caused by the inherent ambiguity of natural

language. Annotator 1 (top) and Annotator 2 (bottom) disagreed on whether response was predicted

by unchanged EGFR mutation status or expression of ERCC1.
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Relation Total (both
annotators)

Precision Recall F1-score

has rate 207 0.60 0.90 0.72
improves 131 0.88 0.70 0.78
does not predict 113 0.87 0.74 0.80
predicts better 112 0.82 0.66 0.73
predicts worse 112 0.92 0.71 0.80
predicts 107 0.61 0.67 0.64
detects 94 0.66 0.58 0.62
positive correlation 93 0.80 0.63 0.71
detected in 56 0.67 0.77 0.71
correlation 47 0.48 0.78 0.60
associated with 45 0.33 0.50 0.40
has higher rate in 41 0.87 0.50 0.63
recommended for 25 0.75 0.69 0.72
not associated with 21 0.14 0.29 0.19
detects in 18 0.50 0.25 0.33
has higher rate than 16 1.0 1.0 1.0
no correlation 16 1.0 0.60 0.75
worsens 16 0.07 1.0 0.13
negative correlation 14 0.60 0.33 0.49
has lower rate in 12 0.50 0.25 0.33
does not improve 8 0.33 0.20 0.25
has lower rate than 5 0.67 1.0 0.80
has similar rate in 5 0.33 0.50 0.40
does not predict better 2 1.0 1.0 1.0
not recommended for 2 1.0 1.0 1.0
does not predict worse 1 0.0 N/a N/a
has similar rate to 1 0.0 N/a N/a
All relations 1320 0.68 0.68 0.68
Combined relations

predicts better or predicts 215 0.82 0.80 0.81
improves or associated with 173 0.80 0.77 0.79
positive correlation or correlation 140 0.84 0.84 0.84

Table 4.6: Annotator agreement for relations.
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representation was designed for maximal expressiveness, in which relations are organized

hierarchically by level of granularity (Chapter 3, Figure 3.3). For example, �erlotinib im-

proves progression-free survival� could equivalently be annotated as �erlotinib associated

with longer progression-free survival.� Thus, higher precision and lower recall for improves

were observed; conversely, associated with had lower precision and higher recall. While the

guidelines stated that the most speci�c relation should be used, variation between annotators

still came into play when making these types of judgments.

Lower agreement was also observed for less common relation types, such as not as-

sociated with, detects in, and worsens. As in any task, performance improves with

experience, and annotators were more likely to disagree when faced with a rare case. How-

ever, the rarity of these cases ensured that they did not contribute signi�cantly to the overall

agreement score.

4.5 Conclusion

This chapter presented the annotation and evaluation of a gold standard corpus for the

Casama representation. While annotation tasks are challenging by nature, the results show

that Casama's representation is well-de�ned and speci�c enough to produce moderate to

substantial inter-rating agreement for study objective (κ=0.68), study design (κ=0.69), re-

lations (F1=0.68), study context (F1=0.88), and population context (F1=0.78). Certain

types of annotations showed lower agreement, such as secondary study objectives, sub-types

of cohort studies, and more granular relation types such as associated with vs. improves.

However, these disagreements were resolved manually for the �nal gold standard, establish-

ing a ground truth for automatic classi�cation and extraction tasks described in Chapters 5

and 6.
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CHAPTER 5

Automatic Classi�cation

5.1 Introduction

This chapter describes the automatic classi�cation of abstracts by the Casama concepts

of study objective and study design. A document classi�cation algorithm as developed

by Joachims using support vector machines (SVMs) was implemented [Joa02]; this algo-

rithm has been used by many for automatic text classi�cation in the biomedcal domain

[DMD03, PNR05, YP05, CMS06, YCD08, WTL10, YXT10, KC14]. Classi�cation perfor-

mance was compared to that of PubMed's Clinical Queries, a set of Boolean �lters derived

by empirically discovering combinations of search terms that yield optimal sensitivity and

speci�city [HMW05].

Classi�cation performance was evaluated against the gold standard described in Chapter

4, Section 4.3. The classi�cation results and the top features of the classi�ers were examined

to determine whether this scheme could generalize to other mutations in lung cancer and

studies on driver mutations in other cancer domains.

5.2 Methods

5.2.1 Document classi�cation algorithm

Each article in the document set is associated with one or more study objectives (mutation

characterization, mutation detection, treatment, prognosis), whereas articles are assigned

a single study design label (experimental, prospective cohort, retrospective cohort, cross-

sectional, case-control, case-series). Described below are the steps involved in pre-processing
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the document collection, performing the classi�cation using SVMs, and evaluating perfor-

mance on the training set (EGFR PubMed) and test sets (ALK PubMed, EGFR ASCO,

ALK ASCO).

Joachims' document classi�cation algorithm was implemented using Python's natural

language toolkit (NLTK) and machine learning package scikit-learn [BKL09, PVG11]. If

full-text was available for an article, the patient-selection portion of the Methods section

(determined by matching regular expressions to the section headings) was concatenated

with the abstract in order to improve detection of study design.

NLTK pre-processed the text by stemming and removing stop words. Unigram and

bigram frequency distributions over the document collection were calculated; a binary feature

vector indicating whether each unigram or bigram appeared in the text was created for each

abstract.

ASCO abstracts were further processed to expand common abbreviations (e.g., �pts� for

�patients�, �PFS� for �progression-free survival�). Regular expressions were also used to detect

abbreviation de�nitions (e.g., �patients previously treated with E (erlotinib)�; abbreviations

were then replaced with their full names.

To classify study objective, scikit-learn trained a set of two-class linear-kernel SVMs;

each SVM in the set corresponded to one of the study objective classes. The hyperplane

constructed by each SVM was used to decide whether the document belonged in the corre-

sponding study objective class or not.

A multi-class, one-versus-rest SVM was trained to classify documents by study design.

The multiple study design classes were reduced to a set of binary SVMs; each abstract was

classi�ed according to the SVM that produced the highest output score. For study design

classes with very few training examples (case-control studies, case series, sub-types of cohort

studies), documents were classi�ed by a set of hand-crafted rules, as described in Table 5.1.

5-fold cross validation was performed on the training set (EGFR PubMed); precision and

recall across the folds were calculated. To test the performance of the classi�er to previously

unseen data, the SVMs were then trained on the entire training set and tested on the ALK
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Study design Extraction rules

Retrospective title/abstract contains �retrospective� OR �review� OR �data� OR �charts� OR
�records� OR �analyze�

Prospective title/abstract contains �prospective�
Unknown cohort any cohort study not matching rules for retrospective or prospective study
Case-control title/abstract contains �case� AND �control�
Case series title/abstract contains �series�

Table 5.1: Casama uses hand-crafted rules to extract sparsely-represented study designs.

PubMed, EGFR ASCO, and ALK ASCO sets.

The generalizability of these classi�ers was further assessed by examining the most dis-

criminative features of the linear-kernel SVM. Features with the highest-magnitude coe�-

cients were considered highly discriminative. Features that are not domain-speci�c suggest

the potential for generalizability. Study design classes that were classi�ed by rules were not

included in the analysis of top features.

5.2.2 Creating a baseline set for comparison

A baseline for classi�cation performance was calculated by evaluating PubMed's �lters

against the manually-annotated input set of EGFR PubMed abstracts. PubMed Clinical

Queries or Medical Genetics �lters analogous to Casama's categories were applied to the

original PubMed query (see: Chapter 4, Table 4.1), resulting in a subset of retrieved docu-

ments. For each �lter, the retrieved documents were matched by PMID (PubMed identi�er)

to the annotated set; the number of results in each Casama category was then tabulated

to calculate precision and recall. Newly added studies that were not found in the original

set (i.e., studies that were added between the time of retrieval in September 2013 and the

time of evaluation) were excluded. The PubMed queries examined are summarized in Tables

5.2-5.3.
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PubMed Filter Query

Clinical Description Natural History OR Mortality OR Phenotype OR Prevalence OR
Penetrance AND Genetics

Genetic Testing DNA Mutational Analysis OR Laboratory techniques and procedures
OR Genetic Markers OR diagnosis OR testing OR test OR screening
OR mutagenicity tests OR genetic techniques OR molecular diagnostic
techniques AND genetics

Diagnosis (broad) sensitiv*[Title/Abstract] OR sensitivity and speci�city[MeSH Terms]
OR diagnose[Title/Abstract] OR diagnosed[Title/Abstract] OR
diagnoses[Title/Abstract] OR diagnosing[Title/Abstract] OR
diagnosis[Title/Abstract] OR diagnostic[Title/Abstract] OR
diagnosis[MeSH:noexp] OR diagnostic * [MeSH:noexp] OR
diagnosis,di�erential[MeSH:noexp] OR diagnosis[Subheading:noexp]

Diagnosis (narrow) speci�city[Title/Abstract]
Therapy (narrow) randomized controlled trial [Publication Type] OR (randomized

[Title/Abstract] AND controlled [Title/Abstract] AND trial
[Title/Abstract])

Therapy (broad) (clinical [Title/Abstract] AND trial [Title/Abstract]) OR clinical trials
[MeSH Terms] OR clinical trial [Publication Type] OR random*
[Title/Abstract] OR random allocation [MeSH Terms] OR therapeutic
use [MeSH Subheading]

Management Therapy [Subheading] OR treatment [Text Word] OR treatment
outcome OR investigational therapies AND Genetics

Etiology (broad) risk*[Title/Abstract] OR risk*[MeSH:noexp] OR risk *[MeSH:noexp]
OR cohort studies[MeSH Terms] OR group[Text Word] OR
groups[Text Word] OR grouped [Text Word]

Etiology (narrow) relative[Title/Abstract] AND risk*[Title/Abstract]) OR (relative
risk[Text Word]) OR risks[Text Word] OR cohort studies[MeSH:noexp]
OR (cohort[Title/Abstract] AND study[Title/Abstract]) OR
(cohort[Title/Abstract] AND studies[Title/Abstract]

Table 5.2: PubMed Clinical Queries and Medical Genetics �lters, discovered by Haynes in [HMW05].
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Casama Category Analogous PubMed Query

Mutation characterization Original query + Exclusion �lter + Clinical Description [�lter]
Mutation detection Original query + Exclusion �lter + Genetic Testing [�lter]

Original query + Exclusion �lter + Diagnosis/Broad [�lter]
Original query + Exclusion �lter + Diagnosis/Narrow [�lter]

Treatment Original query + Exclusion �lter + Therapy/Broad [�lter]
Original query + Exclusion �lter + Therapy/Narrow [�lter]
Original query + Exclusion �lter + Management [�lter]

Prognosis Original query + Exclusion �lter + Prognosis/Broad [�lter]
Original query + Exclusion �lter + Prognosis/Narrow [�lter]

Experimental studies Original query + Exclusion �lter + Clinical Trial [ptyp]
Cohort studies Original query + Exclusion �lter + Etiology/Broad [�lter]

Original query + Exclusion �lter + Etiology/Narrow [�lter]
Original query + Exclusion �lter + �cohort studies� [MeSH]

Prospective cohort studies Original query + Exclusion �lter + �cohort studies� [MeSH] AND
�prospective studies� [MeSH]

Retrospective cohort studies Original query + Exclusion �lter + �cohort studies� [MeSH] AND
�retrospective studies� [MeSH]

Cross-sectional studies Original query + Exclusion �lter + �cross-sectional studies� [MeSH]
Case-control studies Original query + Exclusion �lter + �case-control studies� [MeSH]

Table 5.3: Map of Casama categories to PubMed queries. Original query and exclusion �lters can

be found in Chapter 4, Table 4.1.

5.3 Results

5.3.1 Study objective classi�cation

Table 5.4 presents the results of Casama's automatic classi�cation of its four study objective

categories (mutation characterization, mutation detection, treatment, prognosis), and com-

pares them to PubMed's results with analogous �lters. Casama outperformed PubMed in

all categories based on 5-fold cross validation. Classi�cation of study objectives had better

F1-scores (balanced precision and recall) than PubMed's narrow �lters (high precision, low

recall) and its broad �lters (high recall, low precision). As shown in Table 5.5, there was a

decrease in performance on the test sets compared to the training set.

Receiver operating characteristic (ROC) curves for study objective classi�cation by Casama

are presented in Figure 5.1. (ROC curves for PubMed are not available as only a single set

of results is returned per query.)
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(a) (b)

(c) (d)

Figure 5.1: Casama's receiver operating characteristic and area under the curve for study objective

classi�cation on (a) EGFR PubMed, (b) ALK PubMed, (c) EGFR ASCO, (d) ALK ASCO.
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Casama Cross Validation PubMed Filter
P R F1 P R F1

Mutation characterization 0.82 0.68 0.74 Clinical description 0.48 0.39 0.43
Mutation detection 0.96 0.69 0.80 Genetic testing 0.22 0.94 0.35

Diagnosis (broad) 0.36 0.89 0.52
Diagnosis (narrow) 0.92 0.31 0.47

Treatment 0.84 0.71 0.77 Therapy (broad) 0.35 0.95 0.51
Therapy (narrow) 0.77 0.26 0.39
Management 0.25 0.71 0.37

Prognosis 0.76 0.77 0.76 Prognosis (broad) 0.58 0.78 0.67
Prognosis (narrow) 0.71 0.51 0.59

Table 5.4: Comparison of precision (P), recall (R), and F1-scores (F1) between Casama and PubMed

�lters for study objective classi�cation.

ALK PubMed EGFR ASCO ALK ASCO
P R F1 P R F1 P R F1

Mutation characterization 0.80 0.62 0.69 0.66 0.48 0.55 0.56 0.63 0.59
Mutation detection 0.93 0.65 0.76 0.82 0.64 0.72 0.75 0.43 0.55
Treatment 0.67 0.67 0.67 0.82 0.78 0.79 1.0 0.80 0.89
Prognosis 0.77 0.58 0.67 0.76 0.65 0.70 1.0 0.38 0.55

Table 5.5: Casama's precision (P), recall (R), and F1-scores (F1) on test sets for study objective

classi�cation.

5.3.2 Study Design Classi�cation

Tables 5.6 and 5.7 summarize the results of Casama's study design classi�er. In Table 5.6,

classi�cation performance is compared to that of PubMed's �lters (if available).

Casama outperformed PubMed in classi�cation of cross-sectional studies, cohort studies,

and prospective cohort studies. Casama's performance was similar to PubMed in retrieval

of experimental and retrospective cohort studies. PubMed slightly outperformed Casama in

classi�cation of case-control studies. Rule-based classi�cation worked best for retrospective

studies; for the remaining classes, F1-scores were less than 0.50. There was no degradation

in performance between the training and test sets.

5.3.3 Representational Class Features

Tables 5.8 and 5.9 specify the top features used to discriminate between each pair of study

objective classes. Characterization studies aim to �nd correlations with mutation status ;
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Casama Cross Validation PubMed Filter
P R F1 P R F1

Experimental 0.46 0.65 0.54 Clinical trials 0.48 0.60 0.53
Cross-sectional 0.77 0.80 0.79 Cross-sectional (MeSH) 0 0 0
Cohort (all) 0.81 0.72 0.76 Cohort (MeSH) 0.65 0.48 0.55

Etiology (broad) 0.68 0.54 0.61
Etiology (narrow) 0.60 0.10 0.17

Prospective Cohort 0.67 0.29 0.40 Prospective cohort (MeSH) 0.14 0.29 0.19
Retrospective Cohort 0.53 0.66 0.59 Retrospective cohort (MeSH) 0.63 0.57 0.60
Unknown Cohort 0.44 0.23 0.30

Case-control n/a 0 n/a Case-control (MeSH) 0.05 0.67 0.08
Case-series 0.29 0.40 0.33

Table 5.6: Comparison of precision (P), recall (R), and F1-scores (F1) between Casama and PubMed

for study design classi�cation.

ALK PubMed EGFR ASCO ALK ASCO
P R F1 P R F1 P R F1

Experimental 0.60 1.0 0.75 1.0 0.63 0.77 0.75 0.60 0.67
Cross-sectional 0.79 0.85 0.82 0.73 0.80 0.76 0.80 0.80 0.80
Cohort (all) 0.81 0.75 0.78 0.81 0.86 0.83 0.63 0.58 0.60

Prospective Cohort n/a 0 n/a n/a 0 n/a n/a 0 n/a
Retrospective Cohort 0.17 1.0 0.26 0.56 0.80 0.65 0.50 0.38 0.43
Unknown Cohort 0.75 0.25 0.375 0.64 0.33 0.44 0.20 0.25 0.22

Case-control n/a 0 n/a n/a 0 n/a n/a 0 n/a
Case-series 0.33 0.20 0.25 0.50 0.50 0.50 n/a 0 n/a

Table 5.7: Casama's precision (P), recall (R), and F1-scores (F1) on test sets for study design

classi�cation.
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(a) (b)

(c) (d)

Figure 5.2: Casama's receiver operating characteristic and area under the curve for study design

classi�cation on (a) EGFR PubMed, (b) ALK PubMed, (c) EGFR ASCO, (d) ALK ASCO.
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Mutation Mutation

Characterization Detection Treatment Prognosis

status sample progression survival
kras method advanced overall survival
higher serum mg prognosis
correlated detect median epidermal overall
conclusive evaluate control analyze
patient tumour month overall prognostic
smoker dna symptom patient egfr
hospital rearrangement receive month
egfr kras copy chemotherapy di�er
result sensitivity follow signi�cantly

Table 5.8: Top features for study objective classi�cation.

Experimental Cohort Cross-sectional

patient epidermal cancer patient exon
toxicity prognostic detect
mg retrospective result
receive worse evaluate
clarify observe egfr kras
day worse examine
progression month prevalence
grade prognosis specimen
progression free di�er pcr
six signi�cant di�erence exon egfr

Table 5.9: Top features for study design classi�cation.

mutation detection studies evaluate sensitivity of detection methods in DNA samples. Top

features for treatment studies include explicit references to treatment (chemotherapy, mg

(dosage)). Prognostic studies usually explicitly mention prognosis and examples of outcomes

such as overall survival.

Discriminative features for the study design classi�er indicate that experimental studies

describe the details of the intervention (mg, toxicity). Top features for the other study design

classes reveal that there is a relationship between study objective and study design � cohort

studies tend to overlap with prognostic studies; detection or prevalence studies tend to be

cross-sectional. In both cases, this relationship is unsurprising. Cohort studies by de�nition

include follow-up and enable assessment of outcomes, as in a prognostic study. No follow-

up is required to demonstrate a mutation detection technique, so these studies are often

cross-sectional.
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Category Precision Recall F-score

Characterization 0.67 1.0 0.8
Detection 1.0 0.29 0.44
Treatment 1.0 0.87 0.93
Prognosis 0.53 1.0 0.70

Experimental 0.75 0.90 0.82
Cohort (all) 0.86 0.58 0.69

Prospective cohort n/a n/a n/a
Retrospective cohort 0.63 0.63 0.63
Unknown n/a 0 n/a

Case-control n/a 0 n/a
Cross-sectional 1.0 0.80 0.89
Case series n/a 0 n/a

Table 5.10: Classi�cation performance on ALK ASCO when trained on EGFR ASCO.

5.4 Discussion

Casama's automatic classi�cation performance was comparable to or better than PubMed's

retrieval in every category. Notably, Casama automatically classi�ed experimental studies

with similar F1-score compared to PubMed's manual tagging of clinical trials.

For study objective classi�cation, a decrease in performance was observed between the

training set and the test sets (Tables 5.4 and 5.5). The ALK PubMed test set had the

smallest decrease in performance; the decrease was greatest in the �treatment� category.

A manual review of the incorrectly classi�ed abstracts revealed that many errors could be

attributed to di�ering stages of research between EGFR and ALK (e.g., ALK treatment

studies were missed because they were descriptive rather than analytical).

In contrast, the ASCO test sets had a more dramatic drop in performance compared

to the training set. In this case, a major source of error was the di�erence in vocabulary,

writing style, and types of knowledge reported between PubMed and ASCO. As shown in

Table 5.10, performance improved when the classi�er was trained on the EGFR ASCO set

and tested on the ALK ASCO set. This �nding indicates that performance is indeed sensitive

to vocabulary di�erences between PubMed and ASCO. Thus, creating a large training set

of ASCO abstracts would be a useful direction for future work.

For study design classi�cation, performance was preserved between training and test sets
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(Tables 5.6 and 5.7). This is a very promising �nding, as it suggests that the automatic

extraction of study designs is a viable and generalizable strategy. However, rule-based per-

formance was generally poor. Part of this stems from the e�ect of few examples of prospective

cohort studies, case-control studies, and case series in the data set � small n results in a large

penalty for missed abstracts. The other contributing factor is the fact that most studies do

not explicitly name their study design in the abstract. Semantic modeling of study design,

including identi�cation of exposures, outcomes, and direction of inquiry for improved study

design classi�cation is a possible avenue for future work.

5.4.1 Top features

An examination of the top features reveals some interesting characteristics of the vocabulary

used across studies. Many of these features would be expected (e.g., chemotherapy for

treatment studies), and some are even included in PubMed's �lters (e.g., DNA for mutation

detection studies). The top features also reveal less obvious terms that can be used to

discriminate between studies (e.g., receive for experimental studies vs. observe for cohort

studies). However, simply entering a few top features into a PubMed search query is unlikely

to produce good retrieval results as the vocabulary is modeled in a high-dimensional feature

space via an SVM, going beyond the basic Boolean querying available in PubMed. Indeed,

issuing the baseline query to PubMed with the top term for treatment studies (progression)

results in an F1-score of 0.54. AND-ing the two most discriminative terms (progression,

advanced) results in decreased recall; OR-ing them results in decreased precision.

Given the domain-speci�c nature of this representation, it is important to assess if the

classi�ers developed here can be applied outside the target domain (i.e., EGFR mutations

in lung cancer). Markedly, many of the top features for the study objective classi�er are

not speci�c to EGFR mutation. As such, this classi�er may be applicable to other driver

mutations in NSCLC, especially those with similar treatment strategies. Furthermore, the

top features of the study design classi�er are not domain dependent and may generalize well

to other disease and cancer domains.
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5.5 Conclusion

In this chapter, the automatic classi�cation of study objective and study design in abstracts

on EGFR and ALK mutation in lung cancer was explored. Improved classi�cation perfor-

mance was achieved on the training and test sets compared to PubMed. Study objective

classi�cation was sensitive to di�erences in vocabulary between corpora; however, study de-

sign classi�cation was robust to these di�erences. Based on an examination of top features,

both classi�ers could generalize outside the lung cancer domain.
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CHAPTER 6

Automatic Extraction

6.1 Introduction

This chapter describes the automatic extraction of relations, population context, and study

contexts (except study objective and study design, discussed in Chapter 5). A combination

of lexical matching and OpenIE 4.0 was used to extract the most frequent concepts and

relations in the Casama representation. Performance was evaluated using the gold standard

described in Chapter 4, Section 4.4. Extraction performance varied by type of concept or

relation; suggestions for improvement of the extraction system are discussed.

6.2 Methods

6.2.1 Selecting concepts and relations to extract

Given the large number of concepts and relations in the representation, a subset of concepts

and relations was selected for automatic extraction to demonstrate proof of concept and

establish a starting point for future development. The following relations were selected,

corresponding to the most frequent relation(s) for each study objective type. This subset of

relations accounts for 65% of the total relations found in the gold standard.

• biomarker correlation clinical feature

• detection method detects biomarker

• biomarker predicts outcome
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• biomarker predicts worse outcome

• biomarker does not predict outcome

• treatment treatment relation outcome

Recall that relations associated with correlation, prediction, and treatment e�ects are

organized hierarchically (see: Chapter 3, Figure 3.3). Based on the observed distribution of

relations (see: Chapter 4, Table 4.6), 80% of relations are stated in the positive, except for

does not predict and predicts worse, which make up a signi�cant portion of the total

relations. For this automatic extraction task, the remaining negated relations (e.g., not

correlated with, does not improve) are subsumed by their parent relations. Thus, the

extraction system tags any associations found, regardless of polarity.

A subset of clinical features / population context was selected based on an analysis

of most frequently-occurring types in the manually-annotated gold standard. This subset

comprises: stage, histology, biomarker, and treatment history (including targeted therapy

history, chemotherapy history, and surgery history). Sex, race and smoking history were also

targeted as these were readily extracted by lexicon or regular expression. These contexts

represent 75% of the observed population context space. In this �rst attempt at extracting

contextualized relations, extraction was limited to population contexts mentioned in the

same sentence as a relation.

Similarly, the most frequent study contexts were selected for automatic extraction. The

extracted subset, accounting for 85% of study contexts, comprises: cohort size, p-value, and

endpoint.

6.2.2 Extraction algorithm

Automatic extraction of relations and population context was achieved by a four-step process.

An overview of this process is given in Figure 6.1.
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Figure 6.1: Overview of the automatic extraction method. First, abstracts are pre-processed to

extract sentences, sections, and noun phrases. Lexicons are used to identify concepts from the noun

phrase chunks. In parallel, OpenIE is used to extract relations from raw sentences in a domain-

independent manner. Tagged concepts and relations are mapped to frames to produce the �nal

relations. These relations are compared to the manual annotations to calculate precision and recall.
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Semantic type Source
Biomarker Hensing et al.
Detection method Ellison et al.
Endpoint/Outcome National Cancer Institute
Histology WHO/IASLC
History of chemotherapy SNOMED-CT (anti-neoplastic agents)
History of targeted therapy SNOMED-CT (protein-tyrosine kinase inhibitors)
History of surgery LUCADA
Race SNOMED-CT (ethnic group)
Treatment RxNorm

Table 6.1: Sources used for the development of concept lexicons.

6.2.2.1 Pre-processing

Pre-processing was performed by the Python library NLTK (natural language toolkit). Ab-

stracts were tokenized into sentences and noun phrase chunks. To leverage the structured

nature of most abstracts, XML section headings were parsed (for the PubMed corpus) and

regular expressions used (for the PubMed and ASCO corpora) to detect section boundaries

(i.e., Background, Methods, Results, Conclusion). ASCO abstracts were further processed to

expand common abbreviations (in the same manner described in Chapter 5, Section 5.2.1).

6.2.2.2 Concept matching using lexicons and regular expressions

The collection of pre-processed sentences was semantically tagged using manually-curated

lexicons based on existing resources, such as SNOMED-CT [Don06], LUCADA [RTS11],

RxNorm [NZK11], the WHO/IASLC Histologic Classi�cation of NSCLC [TBN11], National

Cancer Institute guidelines [Ins15], National Cancer Institute Common Terminology Criteria

for Adverse Events (CTCAE) [TCS03], and papers on driver mutations in lung cancer [HS13,

EZM13]. The resources on which these lexicons are based are given in Table 6.1. Each noun

phrase in the sentence was searched for in the lexicon and tagged if a match was found.

Stage, sex, smoking history, cohort size and p-value were extracted by regular expression.
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6.2.2.3 Extraction of OpenIE relations

OpenIE 4.0 utilizes a self-supervised classi�er, automatically labeling parsed syntactic pat-

terns as trustworthy or untrustworthy based on a set of heuristic rules [BCS07]. A semantic

role labeling step improves recall by including information about a noun phrase's relation to

the verb in the sentence [CSE10]. The system is trained on a general English language cor-

pus, designed to work at the Web scale on highly heterogeneous data. OpenIE was chosen as

the relation extraction tool for Casama because its free availability and domain-independent

nature were attractive features upon which to build a relation extraction system for Casama's

unique representation.

Relations were extracted from the set of Results and Conclusion sentences. OpenIE rela-

tions are of the form <noun phrase> <verb phrase> <noun phrase>, where each argument

in the relation may be a complex phrase such as, �<EGFR+ patients receiving erlotinib>

<experienced> <clinically relevant improvements in quality of life>.� The concatenation of

these arguments form the �relation sentence.�

6.2.2.4 Negation detection

An approach similar to that of NegEx [CBH01] is used for detection of does not predict and

predicts worse relations. The EGFR PubMed data set was searched manually for linguistic

triggers indicating no evidence of a relation or evidence of worse outcome, respectively. If one

of these triggers was found in a relation sentence between a biomarker and an outcome, the

relation was tagged accordingly. Otherwise, the relation was tagged as a predicts relation

(implicitly, predicts_better). The full list of triggers is given in Table 6.2.

6.2.2.5 Frame matching

Having semantically tagged the noun phrases and identi�ed relations between them, these

tagged relations were then compared with the set of relations in the representation. Consider

the relation, �<EGFR+ patients receiving erlotinib> <experienced> <clinically relevant
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No relation Worse outcome
not low
similar short
no relationship poor
no signi�cant di�erence unfavorable
not an independent predictor worse
no signi�cant association negative prognostic
not associated with adverse prognostic
comparable
no di�erence
signi�cant di�erences were not observed
no correlation

Table 6.2: For the �predicts� family of relations, linguistic triggers indicate no relation or worse

outcome.

improvements in quality of life>� and its associated tags, EGFR+ (biomarker / clinical fea-

ture), erlotinib (treatment), and quality of life (outcome). An expected relation in treatment

studies is <treatment> improves <outcome> in <clinical feature>. Thus, each element

of the relation frame can be �lled as �<erlotinib> improves <quality of life> in <EGFR+

patients>�.

The system was designed to favor precision over recall � it is important for a summary to

state facts that are true (high precision); furthermore, a low-recall system can still achieve

broad coverage by using a large data set. To maximize precision, the subject of the relation

(in this example, �erlotinib�) must be identi�ed by OpenIE as such; the object of the argument

(�quality of life�) must appear somewhere in the entire relation sentence; and the context

(�EGFR+�) may appear anywhere else in the sentence.

6.2.2.6 Training and test sets

The extraction algorithm was trained on the EGFR PubMed corpus, incrementally adjusting

the lexicons and frame matching parameters to optimize performance. EGFR ASCO data

formed the blind test set.
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training test

Relation Total in

gold standard

Precision Recall Total in

gold standard

Precision Recall

correlation 52 0.64 0.31 14 0.63 0.36
detects 24 0.71 0.21 20 0.38 0.15
treatment_relation 61 0.60 0.30 39 0.44 0.21
predicts 53 0.58 0.42 8 0.0 0.0
does not predict 20 0.67 0.20 11 0.75 0.55
predicts worse 33 0.81 0.52 6 1.0 0.17

Table 6.3: Precision and recall for each relation type extracted by Casama.

6.3 Results

6.3.1 Relation extraction

On the training set, performance ranged from 0.58-0.81 for precision and 0.20-0.52 for recall.

On the test set (for relations having 10 or more examples), precision ranged from 0.38-0.75

and recall ranged from 0.15-0.55.

Negation detection favored precision over recall, achieving 0.67-0.81 precision on the

training set and 0.75-1.0 precision on the test set. Unfortunately, no predicts relations were

correctly identi�ed on the test set after negation detection was performed.

6.3.2 Context extraction

Extraction of study design context was excellent, ranging from near perfect precision and

recall for p-value to 0.61 precision and 0.62 recall for endpoint.

Extraction of study population context varied by semantic type, ranging from 0.79 preci-

sion and 0.52 recall for histology, to precision and recall of 0.27 for biomarker. Some semantic

types had few or no instances in the training and test sets, making it di�cult to estimate

precision and recall.
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training test

Concept Total in

gold standard

Precision Recall Total in

gold standard

Precision Recall

p-value 78 1.0 1.0 23 0.96 0.96
cohort size 58 0.88 0.88 13 0.85 0.85
endpoint 63 0.61 0.62 59 0.85 0.80

Table 6.4: Precision and recall for the study contexts extracted by Casama.

training test

Concept Total in

gold standard

Precision Recall Total in

gold standard

Precision Recall

biomarker 22 0.27 0.27 16 0.22 0.31
histology 21 0.79 0.52 5 0.0 0.0
stage 21 0.80 0.38 7 0.83 0.63
history of targeted
therapy

14 0.50 0.29 9 0.50 0.22

history of
chemotherapy

10 0.60 0.30 0 n/a n/a

history of surgery 5 1.0 0.60 0 n/a n/a
race 4 1.0 0.25 3 1.0 0.67
sex 1 n/a 0.0 0 0.0 n/a

Table 6.5: Precision and recall for the extraction of study population context by Casama.

6.4 Discussion

These initial extraction results are promising: they show that a relation extraction system

based on OpenIE 4.0 can be devised that conforms to the representation developed; no other

system exists currently. With the exception of biomarker, the system performed well in

precision, as designed. Study contexts in particular were extracted with high precision and

recall.

6.4.1 Error analysis

For the relation extraction task, there were two main sources of false negatives: concepts

missing from the lexicons, and incorrect or incomplete parses by OpenIE. These sources of

error contributed approximately equally to the total error and together accounted for the

majority of false negatives.

Several concepts missing from lexicons contributed to false negatives. In particular,

several biomarkers and outcomes were not found in any of the source lexicons and could
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not be anticipated. While biomarker often refers to genetic alterations found in tumor

tissue, other biomarkers studied included levels of substances found in serum (e.g., CYFRA

21-1, RANTES, adiponectin). Uncommon measured outcomes included �time from bone

metastasis to �rst skeletal-related event� and �incidence of leptomeningeal metastasis.�

OpenIE was another source of false negatives due to incorrect or incomplete parses. Al-

though OpenIE's domain-independence was a key reason for using it, its lack of biomedical

knowledge was ultimately a weakness. Abbreviations, mutation names, and drug names were

not always included in the relation sentence, despite their semantic signi�cance. For exam-

ple, �Global health status/QoL was also improved over time with afatinib compared with

chemotherapy� was parsed by OpenIE as <Global health status/QoL> <was also improved>

<over time>. (The ideal parse would be: <Global health status/QoL> <was also improved

over time> <with afatinib>.) Furthermore, complex sentences were likely to be parsed

incorrectly. �Analyses revealed signi�cant predictors for having EGFRMUT to be: female

gender, non-smoking status, and adenocarcinoma subtypes� was parsed as <EGFRMUT>

<to be> <female gender> (missing the other predictors of EGFR mutation).

OpenIE also produced false positives by including contextual elements such as com-

parisons in the relation sentence. The sentence, �Progression-free survival was signi�cantly

better with docetaxel than erlotinib� was parsed as <Progression-free survival> <was signi�-

cantly better> <with docetaxel than erlotinib>. A more useful parse would be: <Progression-

free survival> <was signi�cantly better> <with docetaxel>, thus identifying the object of

the relation without its context. The context could then be extracted by examining the full

sentence.

Sentences reporting numeric data were another source of false positives (e.g., �Progression-

free survival was 6.2 months on erlotinib vs 3.4 months on docetaxel�). Because the interpre-

tation of numeric data is outside the scope of this study, these sentences were not annotated.

However, the automatic extraction system recognized the co-occurences and tagged them as

valid relations.

There was a decrease in performance between the training and test sets, particularly for
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treatment studies, mutation detection studies, and prognosis studies after negation detec-

tion. As seen in Chapter 5, Section 5.4, vocabulary di�erences between the PubMed training

set and ASCO test set a�ected concept mapping performance. An error analysis also showed

that EGFR ASCO sentences were longer and denser, contributing to errors caused by the

combined e�ect of bad OpenIE parses and co-occurences not expressing a relation. Deeper

linguistic analysis (for example, using dependency trees rather than syntactic pattern match-

ing) may result in more robust relation extraction of complex sentences such as those found

in ASCO abstracts.

In the case of prognosis studies after negation detection, one salient observation is that

negated relations have less than perfect performance, even in the training set from which

the linguistic triggers were mined. Thus, the main error contribution is from the relation

extraction algorithm itself, rather than e�ects intrinsic to negation detection. Indeed, an

error analysis on the test set showed that most of these errors were due to missed concept

mapping.

For context extraction, low precision scores were seen for biomarker. In this case, low

recall of relations contributed to low precision of context (because if a mention is incorrectly

missed as a biomarker argument in a relation, it may be incorrectly tagged as a biomarker

context).

6.4.2 Comparison to existing resources

A proprietary extraction method was developed rather than leveraging existing tools such as

MetaMap (for concept extraction) or SemRep (for relation extraction). Although MetaMap

is useful for providing access to a broad, comprehensive vocabulary, more granular entities

required by Casama were missing from MetaMap's lexicons (�overall survival,� a frequently

used endpoint that is distinct from �progression-free survival,� was mapped to the more gen-

eral term �survival�; speci�c alterations such as �EGFR mutation� and �exon 19 deletion�

were similarly mapped to general terms �mutation� and �deletion� respectively). The repre-

sentation on which SemRep is based is also limited, particularly in its omission of clinical
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outcomes (see Chapter 8 for a more detailed comparison of Casama to SemRep).

6.4.3 Future work

This chapter presented a �rst attempt at automatic extraction of contextualized relations.

Improvements could be made in three major areas: increased granularity of targeted relation

types, more comprehensive concept recognition, and more accurate relation extraction via a

biomedical OpenIE framework.

Casama's relation extraction system in its current state targets only the broadest rela-

tions in its representation. As a result of this simpli�cation, relations can be discovered

by only examining the argument types (disregarding the signi�ers between the arguments,

e.g., �survival was longer with erlotinib�). The next iteration of Casama could include this

information as a feature in a supervised learning setting to di�erentiate between the various

relation types.

As discussed in Section 6.4.1, Casama's usage of a highly specialized lexicon led to

false negatives. A hybrid method that combines Casama's specialized representation with

MetaMap's broader lexicon might prove bene�cial. For example, a system could �rst search

the MetaMap lexicon for broad concepts, then narrow down to a more speci�c concept from

Casama's lexicon.

Finally, performance could be improved by training an OpenIE/semantic role labeling

system on a biomedical rather than a general vocabulary; this could improve recognition of

mutation names and other biomedical terms, promoting their inclusion in relations. A few

biomedical OpenIE systems have been developed recently [MC12, NB14]; investigating these

methods would be a fruitful avenue for future work.

6.5 Conclusion

This chapter explored the automatic extraction of study context, population context, and

relations. Lexicon-based extraction of study context and population context varied by con-
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cept type, performing particularly well for study contexts. A method for automatic relation

extraction based on OpenIE 4.0 was also investigated, showing modest but promising results.

Chapters 7 and 8 will show that the performance of these automated tagging methods are

su�cient to enhance information retrieval and summarization.
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CHAPTER 7

Patient-tailored information retrieval

7.1 Introduction

This chapter examines the application of Casama's structured representation for improving

retrieval with respect to a given patient case. The design of this experiment is based on

the Text REtrieval Conference (TREC) 2014 Clinical Decision Support shared task, which

challenged participants to retrieve full-text articles from PubMed Central given a short

narrative of a patient case [SVH14]. The following sections cover in detail the creation and

automatic annotation of a blind document set, the composition of ad hoc and structured

queries, the relevance judgment process, the comparison of results between PubMed and

Casama, and a sensitivity analysis.

7.2 Methods

7.2.1 Annotating and indexing a blind document set

A previously unseen document set was automatically annotated for study and population

concepts using the annotators described in Chapters 5 and 6. On December 15, 2015,

PubMed was queried for recent articles pertaining to EGFR mutation in lung cancer. The

query parameters were similar to those from the initial retrieval step described in Chapter

4. Reviews, case reports, and pre-clinical studies were excluded. The initial retrieval query

was restricted to articles containing �EGFR� and �lung� in the title to ensure highly relevant

results. For this experiment, this portion of the query was expanded to include titles and ab-

stracts. The annotated gold standard consisted of articles from January 1, 2012 - September

86



Original query egfr [Title/Abstract] AND lung [Title/Abstract] AND
(�2013/09/01� [PDAT]:�2015/12/15� [PDAT])

Exclusion �lter NOT review [ptyp] AND hasabstract [text] NOT �cells� [title/abstract]
NOT �cell lines� [title/abstract] NOT systematic [sb] NOT case reports [ptyp]

Table 7.1: PubMed queries for retrieving previously unseen abstracts on EGFR mutation in lung

cancer.

1, 2013; the blind set included articles published between September 1, 2013 and December

15, 2015. 1,340 articles were returned. The full query is given in Table 7.1.

In Chapters 5 and 6, annotation of frequently-occurring concepts was formally evaluated.

These concepts included study objective, study design, cohort size, p-values, endpoints, stage,

histology, biomarkers, and treatment history. For this information retrieval task, additional

regular expression extractors were developed for study phase, smoking history, treatment

line, progression, and resistance.

A Lucene index was created containing the raw data associated with each article (title,

date, authors, abstract) and Casama's structured �elds. Each concept type in the Casama

representation corresponded to a Lucene �eld. The �elds were populated with the concate-

nation of terms annotated for each concept type. Documents were indexed using standard

information retrieval methods: the vector space model with term frequency × inverse doc-

ument frequency (TFIDF) weightings. An overview of the information retrieval process is

given in Figure 7.1.

7.2.2 Creating queries from patient cases

A lung cancer oncologist composed �ve narratives describing clinically relevant patient cases,

and a clinical question associated with each case (Table 7.2). This domain expert also

provided queries to be run on PubMed to produce a baseline performance set. For Cases 3,

4, and 5, the initial queries provided by the expert were non-optimal, returning fewer than

ten results. These queries were broadened by the expert when possible. For Case 5, the

expert left the query as-is, acknowledging that the query was intentionally narrow.

In parallel, I composed structured queries for the cases. Queries were informed by the
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Figure 7.1: Casama's information retrieval approach is based on the standard vector space model.

Casama adds a layer of structure to the documents and queries.

Casama representation and included as much information as possible � if there existed a

concept and annotator for a term in the patient description, it was included in the query. If

there was a relevant term in the patient description not covered by Casama (e.g., �germline

mutation�, �small cell transformation�), it was included in the query as free text. Study

objectives, as determined by the clinical question, were also included in the query.

Construction of Casama queries also included manual and automatic query expansion.

If the patient description included a biomarker (such as EGFR mutation), a negation of

the opposite term (�NOT wild-type�) was manually added to the query. If the patient

description included a prior history of therapy, articles about ��rst-line� therapy were ruled

out. Automatic query expansion was performed if names of drugs were detected in the query.

A list of targeted therapies (�tyrosine kinase inhibitors�) and chemotherapies (�anti-neoplastic

agents�) was extracted from SNOMED-CT. If a speci�c targeted therapy was named in the

query, the term �tki� was automatically added. Similarly, if a chemotherapy was named,

�chemotherapy� was added.

A simple query builder was developed to facilitate the construction of structured queries

(Figure 7.2). The query builder includes a drop-down menu of all the searchable concept

types in Casama, an entry widget for entering the search term, and checkboxes for selecting

study objectives and negation if desired. As search terms are added to the query iteratively,
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Figure 7.2: Screenshot of the Casama query builder.

a textbox displays the query in progress. The user can then run the query on the Lucene

index, which produces a spreadsheet of results.

Patient descriptions, clinical questions, PubMed queries, and Casama queries are given

in Table 7.2.

7.2.3 Evaluation

7.2.3.1 Relevance judgments

Three individuals with 6-8 months of experience in a lung cancer research setting (including

using PubMed for literature reviews) were recruited to provide relevance judgments. Each

judge was given 1-2 spreadsheets, each providing one patient description and the PMIDs,

titles, and abstracts of at most twenty articles � the top ten results from PubMed and

Casama. Ten was chosen as the cuto� due to its correlation with user satisfaction in web

search tasks and limited availability of judges [MRS08]. The judges were blinded as to which

set of results were produced by which system. The articles were presented as ranked by each

system; the order in which each system was presented varied.

The judges were instructed to note in the spreadsheet whether each article was �de�nitely
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Case Case summary Clinical question PubMed query Casama query

1 42 year old woman
with newly diagnosed
stage IV EGFR mu-
tant disease and no
prior therapy.

What is the best
initial therapy for
her?

EGFR mutation
and stage IV and
therapy

biomarker:egfr
-biomarker:wild
treatment_line:�rst
study_objective:treatment
stage:iv

2 63 year old woman
with an EGFR mu-
tation. Received er-
lotinib, followed by
carboplatin and peme-
trexed at progression
followed by afatinib
at progression. Now
again progressing. Un-
known T790M status.

Should she undergo
a biopsy to evaluate
whether she has a
T790M mutation?

EGFR mutation
and T790m and
therapy

biomarker:�egfr t790m�
-biomarker:wild
targeted_therapy_history:
�erlotinib afatinib tki�
chemotherapy_
history:�carboplatin
pemetrexed
chemotherapy�
study_objective:
characterization
-treatment_line:�rst
progression:progressed

3 67 year old woman
with an EGFR mu-
tation. Received er-
lotinib. Now un-
derwent repeat biopsy.
T790M negative, but
small cell transforma-
tion noted on repeat
biopsy.

What is the optimal
treatment approach
for her?

EGFR and small
cell transformation

small cell transformation
biomarker:�egfr�
-biomarker:�wild t790m�
targeted_therapy_history:
�erlotinib tki�
study_objective:treatment
-treatment_line:�rst

4 62 year old EGFR mu-
tant man status post
frontline carboplatin,
paclitaxel and beva-
cizumab with main-
tenance bevacizumab
and erlotinib, not pro-
gressing and rebiop-
sied. Noted to have a
T790M mutation.

Would this patient
bene�t from a
change in therapy
from his current
erlotinib and beva-
cizumab?

T790M and therapy biomarker:�egfr t790m�
-biomarker:wild
chemotherapy_
history:�carboplatin
paclitaxel bevacizumab�
targeted_therapy_history:
�erlotinib egfr tki�
study_objective:treatment
-treatment_line:�rst
-progression:progressed

5 27 year old woman
with newly diagnosed
EGFR mutant NSCLC
with a T790M muta-
tion and L858R muta-
tion in the EGFR gene.

Should she be
tested for a
germline T790M
mutation?

EGFR and T790M
and germline

germline biomarker:�egfr
t790m l858r�
-biomarker:wild
treatment_line:�rst
study_objective:
characterization

Table 7.2: Patient cases and their corresponding PubMed and Casama queries. For Casama queries,

�-� indicates negation. All PubMed queries were limited to papers published between September 1,

2013 and December 15, 2015.
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relevant,� �potentially relevant,� or �non-relevant.� Judges were given guidelines for deter-

mining the relevance of an article. A de�nitely relevant article is applicable to the patient

and addresses the clinical question. If the judge were searching for information regarding

this type of patient, he or she would de�nitely click through to learn more. A potentially

relevant article may apply to the patient but not the clinical question, may apply to the

patient for some features but not others, or may simply provide an overview of a topic re-

lated to the clinical question. A non-relevant article would be ignored during an information

seeking activity.

7.2.3.2 Evaluation metrics

Evaluation metrics were normalized discounted cumulative gain (NDCG), precision, and

binary preference (bpref), calculated for the top ten results for each system [MRS08].

Discounted cumulative gain (DCG) is a measure of the ranking of the documents re-

trieved. De�nitely relevant documents, potentially relevant documents, and not relevant

documents have rank scores (rel) of 2, 1, and 0 respectively. DCG, given by the formula

below, penalizes relevant documents that appear lower in the result list by a factor logarith-

mically proportional to the position of the document.

DCGk = rel1 +
∑k

i=2
reli

log2(i)

k in this evaluation is 10, the number of results judged for each system; reli is the

relevance of the i-th document retrieved.

Normalizing DCG ensures that value of this metric is between 0.0 and 1.0. ideal_DCG

is the result of perfect ranking, i.e., sorted in descending order of relevance. NDCG is

obtained by dividing DCG by the ideal_DCG.

NDCG = DCG
ideal_DCG

precisionk is the proportion of relevant documents retrieved within the top k=10 results.

precisionk =
|relevant_documents_retrieved|

k
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The �nal metric selected for this task, binary preference or bpref , is a measure of the

ranking e�ectiveness of the system with respect to the known relevant documents pooled

from both systems. This metric was designed to be robust to incomplete judgment sets

[BV04]. bpref is de�ned as:

bpref = 1
R

∑
r 1−

n_ranked_higher_than_r

R

R is the total number of known relevant documents, and r is a single relevant document.

n is a member of the top R judged non-relevant documents; |n_ranked_higher_than_r|

is the number of documents in this set ranked higher in the result list than r. Thus, bpref

is calculated by counting the number of non-relevant, higher ranked documents for each

relevant document, and scaling by the total number of known relevant documents. For cases

in which very few relevant documents were returned (i.e., all cases under strict evaluation,

and case 5 under both strict and relaxed evaluation) an alternative to bpref , referred to as

bref_10, broadens n_ranked_higher_than_r to span the top R+10 judged non-relevant

results:

bpref_10 = 1
R

∑
r 1−

n_ranked_higher_than_r

R+10

For each metric, strict and relaxed versions were calculated. Strict evaluation only con-

siders de�nitely relevant documents as true positives, whereas relaxed evaluation combines

de�nitely relevant and potentially relevant documents into a single relevance class.

7.2.3.3 Sensitivity analysis

A sensitivity analysis was carried out to investigate Casama's retrieval behavior with varia-

tions on query structure and length. The aim of this experiment was to identify the causes

of non-optimal behavior and suggest strategies for improving retrieval results. An overview

of the sensitivity analysis pipeline is given in Figure 7.3.

Two types of query variations were examined. Structural variations assessed the contri-

bution of structured �elds to the retrieval process. For each term in the original query, the
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Figure 7.3: Overview of the sensitivity analysis pipeline.

Original query Structural variations Term varations
biomarker:egfr biomarker:t790m biomarker:egfr biomarker:t790m biomarker:egfr biomarker:t790m

biomarker:egfr abstract:t790m biomarker:egfr
abstract:egfr biomarker:t790m biomarker:t790m
abstract:egfr abstract:t790m

Table 7.3: Structural variations and term variations for a simple two-term query.

structural variation query included either the term within a structured �eld or as a free-text

search within the abstract. Every combination of structured or free-text query terms was

generated automatically.

Term variations assessed the impact of query length and selection of query terms. Each

term in the query was either included or not included in the term variation query. An

example of structural variations and term variations for a simple two-term query is given in

Table 7.3.

No new relevance judgments were carried out for this task. Thus, many queries returned

results that were not in the original judgment set. bpref-10 was chosen as the evaluation

metric, as it was designed to remain stable despite incomplete judgment sets.
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7.3 Results

7.3.1 Relevance judgments

Results for each case are presented in Tables 7.4-7.8.

Case 1: Casama outperformed PubMed on all metrics.

Strict Relaxed

Case 1 PubMed Casama PubMed Casama

Precision 0.2 0.3 0.5 0.9

Normalized discounted 0.57 0.87 0.68 0.99

cumulative gain

Binary preference 0.30+ 0.63+ 0.28 0.68

Table 7.4: Case 1: Retrieval results comparing PubMed and Casama.
+bpref-10 variation was used.

Case 2: PubMed outperformed Casama in NDCG in both strict and relaxed evaluation.

For the other metrics, Casama outperformed PubMed in strict evaluation; the result was

reversed when relaxed metrics were used. An investigation of the relevance judgments showed

that the PubMed set consisted of eight consecutive potentially relevant documents, resulting

in high relaxed precision and NDCG, but a strict precision of zero.

Strict Relaxed

Case 2 PubMed Casama PubMed Casama

Precision 0.0 0.2 0.8 0.6

Normalized discounted 0.95 0.43 0.95 0.74

cumulative gain

Binary preference 0.0+ 0.67+ 0.57 0.38

Table 7.5: Case 2: Retrieval results comparing PubMed and Casama.
+bpref-10 variation was used.
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Case 3: PubMed outperformed Casama in strict evaluation; performance was similar in

relaxed evaluation.

Strict Relaxed

Case 3 PubMed Casama PubMed Casama

Precision 0.5 0.3 0.8 0.8

Normalized discounted 0.88 0.73 0.89 0.85

cumulative gain

Binary preference 0.56+ 0.35+ 0.45 0.46

Table 7.6: Case 3: Retrieval results comparing PubMed and Casama.
+bpref-10 variation was used.

Case 4: Casama outperformed PubMed on all metrics, except strict NDCG, for which

their performance was similar.

Strict Relaxed

Case 4 PubMed Casama PubMed Casama

Precision 0.3 0.6 0.5 0.9

Normalized discounted 0.73 0.75 0.73 1.0

cumulative gain

Binary preference 0.36+ 0.75+ 0.31 0.74

Table 7.7: Case 4: Retrieval results comparing PubMed and Casama.
+bpref-10 variation was used.

95



Case 5: PubMed retrieved only one document, which was judged de�nitely relevant.

Thus, precision and NDCG at k=10 could not be determined. Casama also retrieved this

document as the top result; additionally, the judge identi�ed another de�nitely relevant

document and �ve potentially relevant documents that were retrieved by Casama but not

PubMed.

Strict Relaxed

Case 5 PubMed Casama PubMed Casama

Precision n/a* 0.2 n/a* 0.7

Normalized discounted n/a* 0.68 n/a* 0.80

cumulative gain

Binary preference 0.50+,* 0.79+ 0.14+,* 0.88+

Table 7.8: Case 5: Retrieval results comparing PubMed and Casama.
+bpref-10 variation was used.
*Only one document was retrieved.

7.3.2 Sensitivity analysis

Figures 7.4-7.8 illustrate bpref-10 for the structural and term variations, sorted in descending

order for each case. Performance for PubMed and the original Casama query are also noted.
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Case 1: When all terms in the query are structured terms (Figures 7.4c and 7.4d), no

gains in improvement can be achieved by streamlining the query. However, Figure 7.4a shows

that there exists a better query than the original Casama query. This optimal query was:

biomarker:EGFR, biomarker:T790m, treatment_line:�rst, and free-text search for all other

terms.

(a) (b)

(c) (d)

Figure 7.4: Case 1: The original Casama query was optimal compared to other term combinations

(Figures 7.4c and 7.4d) and in relaxed evaluation (Figures 7.4b and 7.4d).
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Case 2: Casama outperformed PubMed in strict evaluation, yet performance was further

improved by using only the structured terms biomarker:EGFR and biomarker:T790m (Fig-

ures 7.5a and 7.5c). PubMed outperformed Casama in relaxed evaluation, despite optimal

performance by Casama (Figures 7.5b and 7.5d).

(a) (b)

(c) (d)

Figure 7.5: Case 2: Casama outperformed PubMed in strict evaluation, yet its performance could

be further improved. The Casama query was optimal in relaxed evaluation, yet performance never

reached that of PubMed.
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Case 3: The original Casama query was near-optimal among both the structure variations

and the term variations. Despite this, Casama's performance never reached that of PubMed

in strict evaluation. Their performance was equal in relaxed evaluation.

(a) (b)

(c) (d)

Figure 7.6: Case 3: The original Casama query was near optimal for both types of variations.

Nonetheless, Casama never reached PubMed's level of performance in strict evaluation.
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Case 4: The original Casama query was optimal over all query variations.

(a) (b)

(c) (d)

Figure 7.7: Case 4: The original Casama query was optimal over all variations.
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Case 5: Casama performed optimally in relaxed evaluation; however, performance could

be improved by broadening the search query.

The top structural variation was study_objective:characterization, with free-text search

for the remaining terms.

The top term variation included the terms biomarker:egfr, biomarker:T790m,

NOT biomarker:wild, and study_objective:characterization.

(a) (b)

(c) (d)

Figure 7.8: Case 5: Casama performed optimally in relaxed evaluation. However, in strict evaluation

performance bene�ted from broadening of the search space.

101



7.4 Discussion

Casama performed optimally in many cases, such as in Cases 1 and 4 in which Casama

outperformed PubMed and no query variation resulted in improved performance. Crucially,

every term in the query was covered by Casama's structured representation. In this situation,

a robust representation of patient characteristics proved bene�cial to retrieval in terms of

number of relevant documents retrieved and their ranking.

In contrast, in Case 3, the key concept �small cell transformation� was not included as a

structured query term because it is not covered by the Casama representation. (The repre-

sentation has a concept for the presence of resistance, but not the mechanism of resistance.

The biomarker concept focuses primarily on genetic rather than histological alterations.)

�Small cell transformation� was included in the query as free text, reducing Casama's search

to a more standard approach. Thus, PubMed outperformed Casama in this case, most pro-

nouncedly in strict evaluation, despite near optimal performance by Casama with respect

to the query variations. Because Casama's approach is sensitive to terms missing from its

representation, one key �nding from this analysis is the importance of keeping Casama's

representation and lexicons up to date as new discoveries are made.

Cases 2 and 5 were challenging for both systems: very few de�nitely relevant documents

were discovered. For clinical questions that are known to be narrow in scope, one strat-

egy for improving performance is through broadening of the search query. In Cases 2 and

5, broad queries (biomarker:egfr biomarker:T790m and study_objective:characterization re-

spectively) gave the best results. (Interestingly, the queries composed by the lung cancer

expert are also very broad, despite being based on a description consisting of multiple patient

attributes. The lung cancer expert possesses a mental model of the patient and knowledge

domain; these are distilled to a query containing very few terms.) One potential improvement

to Casama would be a method for intelligently broadening search terms when unsatisfactory

results are returned. A knowledge-based solution could leverage the hierarchical structure

of the Casama representation to replace speci�c terms in the query with more general ones.

This could also be performed interactively by presenting the user with a set of candidate
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terms to on which to generalize.

In Chapter 6, it was shown that Casama's concept annotation algorithm achieved only

moderate results (0.28-0.91 in precision, 0.23-0.48 for recall). However, even simple, lexicon-

based matching was su�cient to improve retrieval signi�cantly. These results are consistent

with the �ndings of Boudin, who developed a retrieval system based on the PICO represen-

tation (which includes a less granular patient representation compared to Casama). Boudin

demonstrated signi�cant improvements in retrieval even with relatively low accuracy in the

detection of PICO elements [BSN10].

7.4.1 Limitations and Future Work

An important limitation of this study was the relatively few number of relevance judgments

performed. Each metric was assessed at k=10. Evaluating at the higher k would give more

robust results; however, limited resources were available for performing relevance judgments.

It is also important to note that inter-rater agreement was not investigated. Rather, the

results for each patient case were evaluated by a single judge. Ultimately, the results of each

system were dependent on each judge's opinion. Nevertheless, improvements by Casama were

seen across judges. Case 1 and Case 4, which showed substantial improvement by Casama

over PubMed, were judged by di�erent individuals. In the TREC Clinical Decision Support

shared task, inter-rater agreement was lower than expected, indicating that standardized

judgment criteria remain an area for future investigation [SVH14].

The results of the sensitivity analysis showed that out-of-date lexicons led to worse re-

trieval performance. Future versions of Casama should include a mechanism for keeping

vocabularies up-to-date as new literature is published. This should be done automatically

to ensure scalability. Existing resources that are frequently updated (e.g., RxNorm for drug

names [NZK11], UpToDate for clinical reviews [Pro16]) could be leveraged for this task.

This study focused on an information retrieval task that was temporally static (i.e., re-

trieval was evaluated at a single point in time). However, real-world information retrieval

systems experience many user interactions per day. Relevance feedback, the process of
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continually training the system based on user interactions, was a common feature of the

top-performing systems in the 2014 TREC Clinical Decision Support track [RSD14]. Incor-

porating these methods would enable Casama to improve over time, even as new knowledge

is discovered.

7.5 Conclusion

This chapter evaluated the use of the Casama representation on an information retrieval

task. Results on an automatically annotated, previously unseen document set showed that

a structured retrieval approach based on the Casama representation outperformed PubMed

in many cases and across several metrics. Areas of improvement include frequent updates

to the concept lexicons to ensure maximum coverage, intelligent broadening of the search

space in the case of unsatisfactory results, and improved evaluation with additional relevance

judgments and assessment of inter-rater agreement. Next, Chapter 8 will present a second

task-oriented evaluation of Casama: summarization.
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CHAPTER 8

Summarization

8.1 Introduction

This chapter describes an evaluation study that compared the summarization capabilities

of Casama with a baseline system SemRep, a representation based on the Uni�ed Medical

Language System [RFL05]. Manual and automatic annotations of several articles on driver

mutations in cancer were reviewed and rated by multiple users. The results of the �nal anal-

ysis demonstrated signi�cant advantages of Casama's contextualized relations over SemRep,

particularly in the representation of strength of evidence.

8.2 Methods

The design for this user evaluation consists of the following steps. First, articles on a variety

of topics were selected to form a gold standard. These articles were annotated both manually

and automatically according to the Casama and SemRep representations. Then, users were

recruited to review the articles and associated summaries. A questionnaire was composed

that enables users to rate the summarization quality of Casama and SemRep on a number

of topics.

A statistical analysis was performed to discover whether one system rated signi�cantly

higher than the other. This analysis was performed both on individual articles and in

aggregate. A separate analysis examined how summaries produced by manual annotation

compared to those generated automatically.

A diagrammatic overview of this process is given in Figure 8.1.
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(a)

(b)

Figure 8.1: Overview of the evaluation pipeline for (a) manually-annotated relations and (b)

automatically-extracted relations.
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8.2.1 Article collection and annotation

To test Casama's generalizability outside of its target domain, a variety of articles span-

ning multiple topics were selected for this study. UpToDate and Medscape, two sources of

human-curated summaries on a variety of clinical topics, were searched for articles on �driver

mutations in cancer� and �targeted therapies in cancer.� The top ten relevant articles were

selected to form the summarization gold standard in this evaluation.

The articles were numbered and organized into the following families:

Driver mutations in lung cancer (UpToDate):

1. Anaplastic lymphoma kinase (ALK) fusion oncogene positive non-small cell lung

cancer

2. Systemic therapy for advanced non-small cell lung cancer with an activating mutation

in the epidermal growth factor receptor

Driver mutations in cancers other than lung (UpToDate):

3. Systemic treatment for HER2-positive metastatic breast cancer

4. Anti-angiogenic and molecularly targeted therapy for advanced or metastatic clear-cell

renal cell carcinoma

5. Molecularly targeted therapy for metastatic melanoma

Lung cancer, other topics (UpToDate):

6. Systemic therapy for the initial management of advanced non-small cell lung cancer

without a driver mutation

7. Advanced non-small cell lung cancer: Subsequent therapies for previously treated

patients

8. Personalized, genotype-directed therapy for advanced non-small cell lung cancer

Driver mutations in cancer (Medscape):

9. Genetics of Non-Small Cell Lung Cancer

10. Breast Cancer and HER2
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To discover how well the Casama and SemRep representations were able to capture

the knowledge expressed in each article, I used the brat rapid annotation tool [SPT12] to

manually annotate each of these articles twice: �rst, for Casama relations and contexts;

second, for SemRep relations. To mitigate the bias inherent in performing the annotations

myself, I adhered to a set of annotation guidelines in both cases. The Casama guidelines

for annotating relations and context can be found in Appendix B. Three sources were used

for annotating SemRep relations: SemRep annotation guidelines detailed in [KRF11], the

existing SemRep gold standard [Bio13], and the output of the SemRep relation extraction

program.

The annotations were subsequently exported to spreadsheets containing each relation,

the semantic types of its subject and object, the sentence in which the relation was found,

and for Casama, the contexts in which the relation was found. On average, the articles

contained instances of 244 Casama relations and 338 SemRep relations.

To evaluate the summarization quality of automatically extracted relations and contexts,

a document set consisting of recent articles on EGFR mutation in lung cancer was auto-

matically annotated by both Casama and SemRep. The document set used was identical to

the collection described in Chapter 7, Section 7.2.1: 1,340 articles containing �EGFR� and

�lung� in the title/abstract, published between September 1, 2013 and December 15, 2015.

The automatic annotations were exported to the same spreadsheet format described

above. SemRep extracted many more relations compared to Casama (>7,000 relations for

SemRep vs. 318 relations for Casama). This was due to 1) a greater number of relation

types targeted by SemRep (29 for SemRep vs. 6 for Casama) and 2) signi�cant repetition

of general relations (e.g., 600+ instances of �Non-small cell carcinoma process of Human�).

Only unique relations were exported to the spreadsheet to ease the examination process by

users. The number of instances of each relation was also exported to the spreadsheet.
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8.2.2 User assignments

Seven users were recruited: three graduate students with 2-3 years of experience in medical

informatics, and four researchers with 1-3 years of experience in a lung cancer clinic. Article

assignments were allocated such that each article and its associated spreadsheets were viewed

by 3-4 users.

To minimize variability among the users, three of the researchers evaluated the same set

of articles (Group A); the three graduate students evaluated the remaining articles (Group

B). The groups of articles were selected such that each group contained 1-2 articles from

each family described in Section 8.2.1.

The seventh evaluator, a researcher, was assigned a set of higher di�culty articles and the

spreadsheets of automatically extracted relations. �Higher di�culty� articles included those

in domains for which Casama was not tailored (i.e., �driver mutations in non-lung cancers�

and �other topics in lung cancer.�). As a result, the number of users viewing these articles

was maximized to improve the probability of seeing a signi�cant di�erence between SemRep

and Casama.

The �nal user assignments were as follows:

Group A: Articles 1, 3, 4, 6, 9

Group B: Articles 2, 5, 7, 8, 10, automatic annotations

Seventh evaluator: Articles 2, 3, 4, 7, automatic annotations

8.2.3 Questionnaire

I composed a user questionnaire to measure the quality of the SemRep and Casama relations

from various perspectives. As in the annotation step, bias is introduced by designing the

questionnaire myself, rather than through an individual not involved with Casama. Thus,

I aimed to include a wide variety of topics that are covered by SemRep and/or Casama to

discover the overlap between systems and the relative advantages of each system. During

the annotation step, I noted the set of topics covered by either SemRep or Casama. The
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users rated the quality of the SemRep relations and Casama contextualized relations with

respect to these topics on a 5-point Likert scale (5=excellent, 4=very good, 3=good, 2=fair,

1=poor). The topics were:

Identi�cation of drugs/treatments

E�ectiveness of drugs/treatments

Clinical guidelines for drugs/treatments

Side e�ects of drugs/treatments

Identi�cation of genes/biomarkers

Prognostic e�ects of genes/biomarkers

Clinical characteristics of genes/biomarkers

Biochemical characteristics of genes/biomarkers

Diagnostic tests/detection methods

Strength of evidence

Additionally, the users rated the overall summarization quality, comprehensibility, and

usefulness of SemRep and Casama for several high-level applications: clinical decision sup-

port, precision medicine, evidence based medicine, meta-analysis, and general biomedical

research.

In a free-text portion of the questionnaire, users were asked to state what relevant in-

formation was missing from the SemRep and Casama summaries. Additional free-text com-

ments on any topic relating to SemRep and Casama were also encouraged.

8.2.4 Analysis

The Wilcoxon rank sums test, a non-parametric test commonly used to analyze ordinal

data, determined whether one representation tended to have higher scores than another. A

signi�cance threshold of 0.05 was selected; however, due to the large number of hypothesis

tests (one for every topic and article), Bonferroni correction was applied, resulting in various

p-value thresholds for each group of tests [McD09].
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ALK
(lung)

HER2
(breast)

VEGF
(renal)

EGFR
wild-type
(lung)

Medscape
(lung)

Identi�cation of drugs 0.66 0.31 0.56 0.51 0.51
E�ectiveness of drugs 0.05 0.021 0.030 0.05 0.13
Clinical guidelines 0.08 0.11 0.030 0.05 0.05
Side e�ects 0.51 0.19 0.47 1.0 1.0
Identi�cation of genes 0.28 0.15 0.77 0.28 0.38
Prognostic e�ects of genes 0.08 0.15 0.15 0.38 0.05
Clinical characteristics of genes 0.13 0.39 0.39 1.0 0.05
Biochemical characteristics of
genes

0.13 0.77 1.0 0.38 0.66

Diagnostic tests 0.13 0.56 1.0 1.0 0.13
Strength of evidence 0.05 0.021 0.021 0.05 0.05

Overall summarization quality 0.05 0.021 0.030 0.38 0.05
Comprehensibility 0.19 0.15 0.39 0.05 0.19
Clinical decision support 0.05 0.03 0.083 0.05 0.05
Precision medicine 0.13 0.061 0.061 0.13 0.05
Evidence based medicine 0.05 0.11 0.043 0.081 0.081
Meta-analysis 0.080 0.083 0.083 0.081 0.081
General biomedical research 0.13 0.25 0.15 0.081 0.081

Table 8.1: Group A: P-values for Wilcoxon rank sums, testing the hypothesis that Casama's scores

tend to be higher than SemRep's. Signi�cance threshold was 0.0006 due to Bonferroni correction.

First, scores were compared per topic per article (p-value threshold = 0.05 / (17 questions

× 5 articles) = 0.0006). As each article was reviewed by only 3-4 users, the sample size for

each observation was quite small. With this number of observations, signi�cant results would

only be expected if very large e�ect sizes were observed. To achieve greater statistical power

for each topic, responses were then aggregated over all articles (p-value threshold = 0.05 / 17

= 0.003). Finally, the ratings for automatic extraction of relations by SemRep and Casama

were compared to that of manual annotation (p-value threshold = 0.05 / 17 = 0.003).

8.3 Results

8.3.1 SemRep vs. Casama per topic per article

Tables 8.1 and 8.2 show the p-values produced by the Wilcoxon rank sums test. As expected,

the sample size was too small to be statistically signi�cant for any topic.
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EGFR
(lung)

BRAF
(melanoma)

Treatment
history
(lung)

Targeted
therapy
(lung)

Medscape
(breast)

Identi�cation of drugs 0.083 0.51 0.39 0.51 0.51
E�ectiveness of drugs 0.043 0.081 0.021 0.05 0.081
Clinical guidelines 0.030 0.081 0.021 0.05 0.05
Side e�ects 0.67 0.28 0.083 1.0 0.05
Identi�cation of genes 0.25 0.38 0.89 0.38 1.0
Prognostic e�ects of genes 0.11 0.05 0.15 0.81 0.05
Clinical characteristics of genes 0.021 0.13 0.89 0.05 0.38
Biochemical characteristics of
genes

1.0 0.83 0.77 1.0 1.0

Diagnostic tests 0.67 0.081 1.0 0.05 1.0
Strength of evidence 0.021 0.05 0.021 0.05 0.05

Overall summarization quality 0.021 0.05 0.030 0.05 0.05
Comprehensibility 0.19 0.081 0.043 0.05 0.05
Clinical decision support 0.043 0.05 0.083 0.081 0.13
Precision medicine 0.083 0.05 0.083 0.13 0.081
Evidence based medicine 0.021 0.05 0.030 0.05 0.05
Meta-analysis 0.043 0.13 0.030 0.05 0.19
General biomedical research 0.060 0.081 0.15 0.081 0.05

Table 8.2: Group B: P-values for Wilcoxon rank sums, testing the hypothesis that Casama's scores

tend to be higher than SemRep's. Signi�cance threshold was 0.0006 due to Bonferroni correction.

8.3.2 SemRep vs. Casama per topic over all articles

Tables 8.3 and 8.4 present the median scores for each topic when aggregated over all articles

and the p-values for the Wilcoxon rank sums test.

Groups A and B rated Casama similarly to SemRep for identi�cation of drugs/treatments,

side e�ects, identi�cation of genes/biomarkers, clinical characteristics of genes/biomarkers,

biochemical characteristics of genes/biomarkers, and diagnostic tests. For all remaining

topics, Casama received signi�cantly high scores compared to SemRep.

8.3.3 Automatic extraction

Table 8.5 presents the p-values for the Wilcoxon rank sums test comparing SemRep's auto-

matically extracted relations to Casama's automatically extracted relations and contexts. No

individual topic showed signi�cantly higher Casama scores; however, Casama did outperform

SemRep when aggregated over all topics (p = 4.7 e-05).
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Topic Median
(SemRep)

Median
(Casama)

p-value

Identi�cation of drugs 4 4 0.079
E�ectiveness of drugs 2 4 2.8e-06

Clinical guidelines 2 4 6.5e-06

Side e�ects 3 4 0.16
Identi�cation of genes 3 3 0.044
Prognostic e�ects of genes 2 3 0.00032

Clinical characteristics of genes 2 3 0.027
Biochemical characteristics of genes 2 3 0.22
Diagnostic tests 2 3 0.55
Strength of evidence 2 4 6.5e-07

Overall summarization quality 2 4 1.5e-05

Comprehensibility 2 4 0.00089

Clinical decision support 2 4 4.3e-06

Precision medicine 2 3 1.8e-05

Evidence-based medicine 2 4 1.7e-05

Meta-analysis 2 4 3.6e-05

General biomedical research 2 4 0.00032

Table 8.3: Group A: Median scores and p-values for Wilcoxon rank sums when aggregated over

all articles, testing the hypothesis that Casama's scores tend to be higher than SemRep's. Bold:

p ≤ 0.003 (signi�cant after Bonferroni correction).

Topic Median
(SemRep)

Median
(Casama)

p-value

Identi�cation of drugs 4 5 0.026
E�ectiveness of drugs 2 4 7.5e-07

Clinical guidelines 2 5 2.2e-06

Side e�ects 2 3 0.014
Identi�cation of genes 4 4 0.26
Prognostic e�ects of genes 1 5 4.8e-05

Clinical characteristics of genes 1 3 0.013
Biochemical characteristics of genes 1 1 0.89
Diagnostic tests 1 3 0.11
Strength of evidence 1 5 6.5e-07

Overall summarization quality 2 4 1.1e-06

Comprehensibility 2 3.5 7.6e-05

Clinical decision support 2 5 6.0e-05

Precision medicine 2 4 4.8e-05

Evidence-based medicine 2 5 1.4e-06

Meta-analysis 2 4 2.5e-05

General biomedical research 2 4 8.0e-05

Table 8.4: Group B: Median scores and p-values for Wilcoxon rank sums when aggregated over

all articles, testing the hypothesis that Casama's scores tend to be higher than SemRep's. Bold:

p ≤ 0.003 (signi�cant after Bonferroni correction).
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Topic p-value
Identi�cation of drugs 0.89
E�ectiveness of drugs 0.043
Clinical guidelines 0.56
Side e�ects 0.15
Identi�cation of genes 0.19
Prognostic e�ects of genes 0.083
Clinical characteristics of genes 0.043
Biochemical characteristics of genes 0.89
Diagnostic tests 0.89
Strength of evidence 0.11

Overall summarization quality 0.043
Comprehensibility 0.08
Clinical decision support 0.15
Precision medicine 0.06
Evidence-based medicine 0.25
Meta-analysis 0.06
General biomedical research 0.47
All topics 4.7e-05

Table 8.5: P-values for Wilcoxon rank sums, testing the hypothesis that Casama's scores for au-

tomatically extracted relations and contexts tend to be higher than SemRep's. Bold: p ≤ 0.003

(signi�cant after Bonferroni correction).

Finally, manual annotations were compared with automatically extracted relations for

both SemRep and Casama (Table 8.6). SemRep's automatic extraction of relations on EGFR

mutation in lung cancer was not signi�cantly di�erent from manual annotations on the same

topic, either individually or in aggregate.

Similarly for Casama, no signi�cant e�ects were seen for the individual topics. How-

ever, when aggregating Casama scores over all topics, manual annotation of Casama rela-

tions/contexts signi�cantly outperformed automatic extraction (p = 0.00061).

8.3.4 Free-text comments

The free-text comments were generally favored Casama over SemRep. Four users noted

a larger number of concept and relation types with SemRep, resulting in more di�culty

in �nding the desired information. In contrast, users described Casama's representation as

�concise� and �easy to search.� Three users felt that the relations targeted by SemRep (such as

�chemotherapy treats human patients�) were �very broad� and �not useful,� whereas Casama
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Topic Manual vs.
automatic
(SemRep)

Manual vs.
automatic
(Casama)

Identi�cation of drugs 0.89 0.25
E�ectiveness of drugs 1.0 0.56
Clinical guidelines 0.25 0.19
Side e�ects 0.89 0.03
Identi�cation of genes 0.56 0.56
Prognostic e�ects of genes 0.67 0.31
Clinical characteristics of genes 0.56 0.25
Biochemical characteristics of genes 1.0 0.89
Diagnostic tests 0.021 0.31
Strength of evidence 1.0 0.25

Overall summarization quality 1.0 0.15
Comprehensibility 0.22 0.38
Clinical decision support 0.77 0.083
Precision medicine 1.0 0.39
Evidence-based medicine 0.89 0.39
Meta-analysis 0.67 0.39
General biomedical research 0.89 0.31
All topics 0.67 0.00061

Table 8.6: P-values for Wilcoxon rank sums, comparing manual annotation to automatic extraction.

Bold: p ≤ 0.003 (signi�cant after Bonferroni correction).

was described as �detailed� and �focused.� Two users stated that the SemRep relations were

�repetitive� or �redundant,� which one user wrote might be useful for users unfamiliar with

the knowledge space.

Certain Casama concept and relation types were identi�ed as being most useful: biomark-

ers, treatments, and outcomes were called out speci�cally for helping users locate relevant

information. In particular, users appreciated that each concept type was unique (as op-

posed to SemRep, in which multiple semantic types such as �pharmacologic substance� and

�therapeutic procedure� both refer to treatment). Users also named the improves and rec-

ommended for relations as very helpful in capturing e�ectiveness of drugs and associated

clinical guidelines.

Casama's contextual elements were also viewed positively by the users, especially contexts

related to strength of evidence. Nearly every user expressed appreciation for �clinical trial

information� or �whether or not a clinical trial determined the results.� One user said of

Casama's representation for strength of evidence, �This is where Casama excels.� There
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were fewer comments related to Casama's representation of patient characteristics, though

these were generally favorable as well (�stage of cancer or past treatment is very helpful,�

�Casama provided more nuance in clinical characteristics of genes/biomarkers.�)

Lastly, users gave examples of relevant information that was not targeted by SemRep

or Casama. These included: statistical details (p-value thresholds, hazard ratios), knowl-

edge spanning multiple sentences, names of clinical trials, names of agencies with published

guidelines, and details of diagnostic tests (clinical recommendations, scoring mechanisms).

8.4 Discussion

This user evaluation showed that Casama outperformed SemRep on many topics and applica-

tions, although statistical signi�cance was not reached in the per-topic-per-article evaluation.

Positive ratings for Casama were more apparent when aggregating user scores over all arti-

cles, providing compelling evidence for the value of Casama's contextualized relations across

domains. Indeed, Casama's relation and context types are general enough to be applied in

many areas (e.g., speci�c treatment names may vary for di�erent diseases, but the concept

of treatment history is very generally applicable).

Comparisons of user ratings between SemRep and Casama demonstrated that there does

exist overlap between the representations, particularly in the identi�cation of drugs/treatments

and genes/biomarkers. However, Casama did better than SemRep in the representation of

strength of evidence, which was highly rated both quantitatively and qualitatively.

One important observation is that SemRep's manual annotations are not signi�cantly

di�erent from SemRep's automatic annotations; in contrast, Casama's manual annotations

outperformed Casama's automatically extracted relations. Therefore, SemRep's fundamen-

tal limitation is its representation rather than its relation extraction method; the opposite is

true for Casama. A �rst priority for future work would be improvement of Casama's relation

extraction algorithms (see: Chapter 6, Section 6.4.1). Despite this, Casama's summaries

produced via automatic extraction outperformed that of SemRep.
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A limitation of this study design is the relatively small number of evaluators and the

�nite amount of time available to review the articles and summaries. Consequently, no

article was reviewed by all evaluators, potentially resulting in variability between Groups

A and B. While ratings were consistent between Groups A and B, a larger evaluation with

more reviewers per article would be ideal. An evaluation with clinical experts would also

reveal further insights about the summarization systems.

While I attempted to be as objective as possible in creating the annotations and designing

the questionnaire, it is impossible for me, the designer of the Casama representation, to be

perfectly unbiased. A future evaluation should utilize external annotators; the questionnaire

should be designed with respect to an expert-curated set of summarization requirements.

8.5 Conclusion

This chapter described an evaluation study in which users rated the summarization quality

of Casama and SemRep. While both representations achieved high scores for identi�cation of

drugs and genes, Casama outperformed SemRep in capturing knowledge related to strength

of evidence, drug e�ectiveness, clinical guidelines, and more. Casama was also highly rated

for overall summarization quality and applications such as evidence-based medicine.
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CHAPTER 9

Conclusion

9.1 Introduction

This chapter provides an overall summary of the dissertation, discusses �ndings and contri-

butions synthesized over multiple chapters, and points to limitations and future work.

9.2 Summary of the dissertation

This dissertation presented Casama, a summarization system based on �contextualized se-

mantic maps,� a novel representation for enhancing relation-based summaries of biomedical

literature with contextual knowledge about study features and patient population. An in-

stance of the Casama representation was developed in the domain of driver mutations in

non-small cell lung cancer (NSCLC), encompassing relations between treatments, outcomes,

biomarkers, clinical-pathologic features, and detection methods. Study context included

methodological design, cohort size, endpoints, and p-values; study population context in-

cluded personal attributes, disease features, treatment history, and response.

A variety of methods were used to evaluate Casama as a representation and a summariza-

tion system. Casama performed equal to or better than PubMed in classi�cation of study

objectives and study designs. Automatic extraction of relations and context showed modest

but promising results. The automatically-extracted study population contexts were used to

retrieve more relevant articles compared with PubMed (assuming the Casama representation

is complete and up-to-date). Finally, a user evaluation of Casama as a summarization system

demonstrated signi�cant advantage of Casama over a context-free representation, SemRep.
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9.3 Contributions

In addition to Casama's technical contributions (e.g., annotated gold standard, automatic

extraction methods), Casama's broader contributions to the research community include:

a generalizable method for structuring knowledge as contextualized relations; a representa-

tion for strength of evidence and methods for extracting these features accurately; and a

representation for patient/population features in cancer.

The system presented here is tailored to the domain of lung cancer; however, the central

contribution of this work is a formal method for de�ning the relations, study contexts, and

population contexts that can be applied in any domain of interest. Literature review, existing

ontologies, and iterative consultation with experts were all used to de�ne and structure the

knowledge space. The �contextualized semantic map� generated by integrating the relations

and contexts discovered in biomedical literature was demonstrated to improve information

retrieval and summarization compared to established techniques.

Given that the representation developed in this work is domain-speci�c, it is important to

ask whether Casama would generalize well to other domains. The balance between speci�city

and generalizability is a delicate one: an overly general representation may not capture the

richness of the desired knowledge; in contrast, a highly domain-speci�c representation may

prove rigid and unscalable. This issue was addressed at several points in this dissertation.

Chapter 5 concluded that Casama's study design classi�er could generalize well, given that

the classi�er was robust to di�erences in vocabulary and top classi�cation features were

not speci�c to lung cancer. To a lesser extent, this was also true of the study objectives

classi�er. Chapter 8 evaluated Casama as a summarization system across a variety of topics,

including driver mutations in lung cancer, general topics in lung cancer, and driver mutations

in non-lung cancers. In this evaluation, user ratings were consistently high when aggregating

across all articles types, suggesting that Casama can indeed capture knowledge across various

domains within cancer.

In particular, Casama's study context representation performed well across all evalu-

ations. Kappa agreement was excellent in the annotation of study context. Automatic
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classi�cation of study design was equal to or better than PubMed; automatic extraction of

study context was high for most study context types. Users rated Casama's summarization

quality for strength of evidence very favorably (median Likert score of 4-5, indicating very

good or excellent). Additionally, several users stated explicitly that including information

about clinical trials was very valuable. Thus, the handling of study context is one strength

of Casama. Application of contextualized relations to evidence-based decision support is a

promising direction for future investigation.

Within the domain of lung cancer, Casama's representation of patient/population fea-

tures was based on existing lung cancer ontologies and was augmented by experts to include

knowledge of driver mutations, targeted therapy, and imaging features. Thus, Casama's

representation brings together knowledge that previously has not been captured by a single

ontology. This type of contextual knowledge is in accordance with a trajectory in clini-

cal care: precision medicine. One application of such a representation is patient-tailored

information retrieval, demonstrated in Chapter 7.

This dissertation has demonstrated that strength of evidence and population contexts

are not only useful, but necessary elements in clinical decision support systems that examine

biomedical literature. A rich representation, such as the one developed for Casama, is

required to enable clinicians to make decisions that are evidence-based and individually

tailored. Importantly, this work has presented a method for operationalizing the process of

developing, implementing, and evaluating such a representation.

9.4 Limitations

The representation and capture of numerical data is a de�nite area of improvement. Users

evaluating Casama as a summarization system noted that statistical information such as

con�dence intervals and hazard ratios are relevant to the interpretation of clinical trial results

and should be included in the summaries.

Furthermore, in the annotation task described in Chapter 4, Section 4.4, it was decided

that numerical comparisons (e.g., �Progression-free survival was 6 months for erlotinib vs.
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3 months for docetaxel�) would not be annotated. Rather, Casama focuses on relations

stated qualitatively (e.g., �Progression-free survival was higher with erlotinib vs. docetaxel�)

to simplify the automatic extraction process. But because both types of sentences express

the same Casama relation (�erlotinib improves progression-free survival�), a more robust

system would be able to extract the numerical data, perform the appropriate comparison,

and distill this into relational form. Ultimately, sentences containing numerical data were still

problematic for Casama's automatic extraction system, as relations expressed numerically

were not annotated, but the co-occurence between treatments and outcomes were tagged by

Casama as valid relations (see: Chapter 6, Section 6.4).

Indeed, Casama would bene�t greatly from improved automatic extraction algorithms.

Only a subset of all Casama relations and contexts were targeted for automatic extrac-

tion; of these, precision was modest and recall was low. The impact of these results on

summarization quality was demonstrated in Chapter 8: manual annotations signi�cantly

outperformed automatically extracted Casama relations and contexts. Improved lexicons

for concept identi�cation and a relation extraction system trained on biomedical literature

could yield signi�cant bene�ts to Casama overall.

Nearly every experiment in this dissertation relied on multiple individuals for annotation,

relevance judgments, and user evaluation. While doing so minimizes the amount of bias

inherent in using a single individual, it also introduces variability between individuals that

must be acknowledged. In Chapter 7, no set of results was reviewed by more than one person.

As a result, agreement between reviewers is unknown. It is possible that the judgments

made were highly variable and noisy, especially given that the concept of �relevance� was

very loosely de�ned. In Chapter 8, each summary was reviewed by 3-4 people; ideally, all

7 reviewers would have looked at each summary. Unfortunately, this was not possible due

the amount of time and e�ort required. A more robust evaluation would include more users

and more overlap between users. Inclusion of clinical experts in the evaluation (rather than

graduate students or research sta�) would also be highly desirable in future evaluations.
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9.5 Future work

Development and evaluation of a visual summarization system for Casama remains an open

area of investigation. A preliminary visualization is described in Appendix E. Furthermore,

Casama currently only captures relations expressed within a single sentence. Co-reference

resolution, an active research area in natural language processing, would enable the capture

of relations expressed over multiple sentences.

An open question raised by this research is: how should expert systems deal with the

dynamic nature of scienti�c knowledge? This issue was brought to light in Chapter 7, in

which Casama's information retrieval performance was hindered by the incompleteness of the

representation, which remained static from the time of development to the time of evaluation.

Representations of knowledge must evolve, in content as well as structure, as new knowledge

is discovered and new clinical practices are developed. The work presented here captures a

moment in scienti�c knowledge; how representational systems adapt to change will be an

intriguing new frontier.

Going beyond the applications described in this dissertation, a representation for popu-

lation contexts could prove useful at a consumer level as more non-experts search for health-

related information online. Expert-curated summaries of disease are available, but consumers

may �nd it di�cult to apply this knowledge to themselves or their loved ones without a knowl-

edge model of the disease. Giving consumers access to a structured representation of relevant

patient/population attributes can help them target their searches more meaningfully.

The improvement of patient-tailored retrieval with Casama's structured representation

suggests that this information should be leveraged in the document indexing process. One

way to accomplish this would be to require authors to provide this data as part of the

publishing process. This proposition has several advantages: the information would not be

subject to errors introduced by automatic extraction; no single person or group of people

would bear the burden of annotating a large document set; improved retrieval of one's

articles provides signi�cant incentive for authors to participate. To achieve this, authors

must adhere to a standardized representation and vocabulary (preferably mediated by a
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centralized organization such as the National Library of Medicine). The representation such

as Casama could be a �rst step in this direction.

9.6 Conclusion

This dissertation has described a method for representing biomedical literature that cap-

tures the �ndings of the study (relations) and their associated contexts (study design, study

population). This approach was shown to add substantial value to information retrieval

and summarization applications, particularly for clinical decision support systems seeking to

enable evidence-based and precision medicine.
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APPENDIX A

Glossary of abbreviations

ALK - Anaplastic lymphoma kinase

bpref - Binary preference

DCG - Discounted cumulative gain

DFS - Disease free survival

EGFR - Epidermal growth factor receptor

HSDB - Human Studies Database

LSP - Lexico-syntactic pattern

LUCADA - Lung Cancer Database (National Lung Cancer Audit)

NCI - National Cancer Institute

NDCG - Normalized discounted cumulative gain

NSCLC - Non-small cell lung cancer

OCRe - Ontology of Clinical Research

OS - Overall survival

P - Precision

PICO - Problem/Population, Intervention, Comparsion, Outcome

PMID - PubMed Identi�er

PFS - Progression-free survival

R - Recall

ROC - Receiver operating characteristic
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SVM - Support vector machine

TFIDF - Term frequency, inverse document frequency

TKI - Tyrosine kinase inhibitor

TREC - Text REtrieval Conference

UMLS - Uni�ed Medical Language System

125



APPENDIX B

Annotation guidelines for document classi�cation

You will be given a spreadsheet containing a set of abstracts on EGFR or ALK mutation in

lung cancer.

Abstracts can be found in Column F of the spreadsheet. Please read each abstract

carefully and annotate it for STUDY OBJECTIVE and STUDY DESIGN by �lling out each

row.

You may consult the full-text if available (hyperlink in Column P).

B.1 Study Objective

Please categorize each study into one or more of the following groups by placing a '1' in

Column H (characterization), Column I (detection), Column J (treatment), and/or Column

K (prognosis). If the abstract does not belong in the group, place a 0 in the cell. Classify

abstracts by the purpose of the study. The categories are:

1. Mutation characterization studies

These types of studies aim to discover clinical-pathologic features of a driver mutation,

such as age, sex, smoking status, and histology. Also belonging to this category are

mutation prevalence studies and studies that aim to characterize biomarkers for a driver

mutation.

2. Mutation detection studies

These types of studies demonstrate a method (either new or existing) for detecting

driver mutations.
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3. Treatment studies

Treatment studies examine the e�ects, such as response or adverse events, of a drug

regimen or other therapy.

4. Prognosis studies

Prognosis studies associate driver mutations or clinical-pathologic features with out-

comes such as survival, tumor response, or adverse events.

Short version using typical examples:

Study identi�es prevalence of mutation in a de�ned population → characterization

Study compares clinical features between mutated and wild-type groups →

characterization

Study demonstrates a method for detecting driver mutations → detection

Study examines the e�ect of a treatment, perhaps comparing it to another treatment →

treatment

Study compares outcomes such as survival between mutated and wild-type groups →

prognosis

Some studies will not �t into any category. Studies on cell lines or mice, case reports,

reviews, meta-analyses, cost analyses, papers not about EGFR, ALK, or NSCLC are con-

sidered out of scope. Place a 0 in rows H-K, and an �na� in the study design column.

Sometimes the di�erence between various document classes can be very subtle. Classify

the studies by purpose � mere mentions aren't enough. Ask yourself what the variables

or comparison groups are in this study. For example, a study that compares response to

ge�tinib in EGFR-mutated vs. EGFR-wild type groups is a prognosis study, because the

variable in question is presence of driver mutation. In contrast, a study that compares

response to ge�tinib vs. chemotherapy is a treatment study, because the variable is the type

of treatment applied.

Studies can �t in more than one category � for example, a study that compares smoking

history between mutated and wild-type groups (thus it is a characterization study) and also
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analyzes the clinical features that predicted improved survival (thus it is a prognosis study).

B.2 Study Design

Please annotate each study for STUDY DESIGN by entering the corresponding code into

Column O.

1. Experimental studies.

These types of studies apply some kind of intervention to the patient and observe the

results. Clinical trials fall into this category.

Code: ex

2. Cohort studies.

Cohort study is a type of observational study (i.e., no intervention is applied).

Various cohorts (groups of patients di�ering by the variable in question) are de�ned

and compared. Observations are made at more than one timepoint (thus, temporal

outcomes such as survival can be assessed). If possible, di�erentiate between cohort

studies that are prospective (the outcome of the study is not known at the beginning

of the study) or retrospective (study looks back on old data where the outcome has

already occurred).

Codes:

prospective cohort study: pc

retrospective cohort study: rc

cohort study, cannot di�erentiate further: ch

3. Case control studies.

These studies di�er from cohort studies in that patients are selected based on having

the outcome/event in question. These �cases� are compared to a group that did not
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have the outcome/event (these are the �controls�). The investigators look back in time

to determine factors leading to that outcome/event.

Code: cc

4. Case series.

These studies are descriptive (rather than analytical) and describe the experiences of a

group of patients (perhaps who share a common clinical-pathologic feature or treatment

history). There is no control group.

Code: cs

5. Cross-sectional studies.

These type of studies make an observation of the population at a single timepoint.

Prevalence studies will fall into this category.

Code: xs
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APPENDIX C

Annotation guidelines for concept and relation

annotation

You will be presented with a set of sentences from abstracts on EGFR and ALK mutations

in lung cancer. Your goal is to annotate the key pieces of information that summarize the

�ndings of the study and their associated context. This knowledge is represented in the form

of relations (�ndings) and concepts (context).

Below, we de�ne the 3 types of annotations:

1. Study context (e.g., cohort size, statistical tests, p-values, etc.)

2. Population context

(a) Relational population context: erlotinib improved PFS in patients with EGFR

mutation

(b) Eligibility criteria: the cohort consisted of Japanese non-smoking patients

3. Relations (e.g., erlotinib improved PFS)

C.1 Annotation rules

C.1.1 Study context

Annotate context by selecting the text span of the concept phrase and choosing the concept

type.
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Study design context is usually found in the Background or Methods section of an ab-

stract, although mentions may occur in other sections as well. Study context includes:

stat_test

Statistical tests are used to determine overall trends and/or statistical signi�cance of

results. Commonly used statistical tests are Cox proportional hazards, logistic regression,

student's t-test, univariate analysis, multivariate analysis.

phase

Clinical trial phase (i, ii, iii, iv). Annotate as: �phase i� (not �i�).

blinding

Whether the people involved in the clinical trial knew whether the drug was being ad-

ministered or not (open-label, blind, double blind).

endpoint

The �nal clinical outcomes measured in a study. Common ones are: progression free

survival, overall survival, quality of life, safety, toxicity.

cohort_size

The number of patients included in the study population. If expressed only in terms of

the size of 2 or more arms, annotate the size of each arm. Only include the size of cohort

included in the analysis!

C.1.2 Population context

Annotate context by selecting the text span of the concept phrase and choosing the concept

type.

The following clinical features describe the population of a study. Annotate these if they

describe the eligibility criteria of a study (usually found in the Methods section) or to add

context to a relation (found in Results and Conclusions sections).

Demographics
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age

Annotate speci�c age groups (�> 65 years of age�) as well as general categories (�elderly�,

�younger�).

sex

Annotate �men,� �women�, �males,� �females,� etc.

race

Annotate ethnicity or nationality of the study population (e.g., Caucasian, Chinese,

Western population, etc.)

smoking_history

Annotate terms describing history of smoking, e.g., �never smoking,� �light smoking,�

�current smokers,� etc.

Prognostic factors

performance_status

Annotate speci�c values for performance status (�ECOG 0 or 1�) as well as general ref-

erences to performance status, e.g., ��t,� �PS,� etc.

comorbidity

Annotate additional conditions of the patient such as other diseases, organ function

values, etc.

Tumor features

biomarker

Biomarkers are molecular/genetic features of the tumor, such as EGFR mutation, EGFR

wild-type, ALK re-arrangement, etc.

stage

Annotate clinical stage (i-iv) as well as general references to primary tumor or metastatic

disease. Annotate �stage i� rather than �i�.

histology
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Annotate mentions of histology and other cellular features of tumor (e.g. adenocarci-

noma, squamous cell carcinoma, poorly-di�erentiated nodules, etc.)

imaging_feature

Annotate imaging features such as opacity, enhancement, consolidation, etc.

Treatment responses

Annotate mentions of the following clinical response categories as features of the study

population.

progression

Progression indicates that the disease worsened (e.g., tumor growth, more tumors). Pro-

gression may occur if a patient never responded to treatment, or initially responded and

progressed later. Annotate mentions of progression status (if possible, with respect to a

treatment history of targeted therapy or chemotherapy).

resistance

Resistance indicates that a patient's tumor is not sensitive to a treatment. Resistance

may be de novo or acquired. Annotate mentions of resistance status (if possible, with respect

to a treatment history of targeted therapy or chemotherapy).

recurrence

Recurrence indicates that the patient's disease was eradicated completely (for example,

in the case of surgical resection or complete response), then returned.

stable_disease

Stable disease means that known tumors did not change in size, and no tumors appeared.

partial_response

Partial response means that there was at least a 50% decrease in tumor volume, but

residual disease remains.

complete_response

Complete response means all detectable tumor has disappeared.
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Treatment histories

Note: these refer to history of treatment in the study population, not the drugs whose

e�ects/outcomes are being studied.

surgery_history

Annotate mentions of a history of surgery (e.g., resection, lobectomy, pneumectomy, etc.)

radiotherapy_history

Annotate mentions of a history of radiotherapy.

chemotherapy_history

Annotate mentions of a history of chemotherapy (e.g., platinum-based chemotherapy,

docetaxel, cisplatin, pemetrexed, etc.)

targeted_therapy_history

Annotate mentions of a history of targeted therapy (e.g., EGFR TKIs, erlotinib, afatinib,

ge�tinib, etc.)

combined_therapy_history

Annotate mentions of combined therapy (e.g., EGFR TKIs with chemotherapy).

treatment_line

Treatment line tells us how many treatment types have been attempted previously (e.g.

�rst-line = no prior therapy).

other_treatment_history

Catch-all for references to treatment history.

other_clinical_feature

Annotate clinical features not included in this representation.

C.2 Relations and relational context

Annotate relations by:
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1. selecting the text span of the subject of the relation,

2. choosing a concept type for the subject,

3. selecting the text span of the object of the relation,

4. choosing a concept type for the object,

5. selecting the subject and dragging a relation arrow to the object,

6. selecting the relation type.

C.2.1 Relational context

Annotate context by selecting the text span of the concept phrase and choosing the concept

type.

Relation context tells us more about the proposition besides A [relation] B. Most common

examples are:

A [relation] B in [population] Example: erlotinib improved progression-free survival in

EGFR+ patients

A [relation] B with p-value [p] Example: EGFR mutation was positively correlated with

female sex (p < 0.05)

A [relation] B with [treatment] Example: EGFR mutation predicted better overall sur-

vival with erlotinib Note: use the treatment concept type in this case, as erlotinib is the drug

being studied. In contrast, use one of the treatment history concept types to refer to a past

history of treatment.

[treatment] [relation] [outcome] as [treatment_line] Annotate treatment line with respect

to a treatment mentioned in the same sentence.

C.2.2 Concepts that participate in relations only

outcome
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An outcome is the result of a treatment. Progression-free survival, overall survival,

quality of life are commonly-studied outcomes. Outcomes can also be less speci�c results of

a treatment intervention, such as �bene�t,� �e�cacy,� �toxicity.�

rate

A rate is the numerical frequency of a mutation. (e.g., 10%)

detection_method

Detection methods such as PCR and IHC aim to detect biomarker status in biological

samples.

material

Material is the type of biological sample used in a detection test, such as blood or tissue.

Concepts that can participate in relations or provide relational context

treatment

A treatment is any type of intervention intended to treat a condition in a patient. Use

this concept type to annotate chemotherapy, targeted therapies, surgeries, etc.

biomarker

Biomarkers are molecular/genetic features of the tumor, such as EGFR mutation, EGFR

wild-type, ALK re-arrangement, etc.

Example of treatment participating in a relation, with biomarker providing context:

�erlotinib improved progression-free survival in EGFR+ patients�

Example of biomarker participating in a relation, with treatment providing context:

�EGFR+ patients experienced better progression-free survival on erlotinib�

While these examples appear to be conveying the same information, they are actually

quite di�erent. The �rst example came from a treatment study, where the aim was to

characterize the e�ects of erlotinib. In the second example, the study characterized EGFR

status with respect to outcome (i.e., a prognosis study).

Any clinical feature (enumerated in the �study population� section above) can participate
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in a relation or provide relational context.

C.2.3 Concepts that only provide relational context

pvalue

P-values provide a measure of statistical signi�cance of the results. (e.g., 0.05, 0.01)

C.2.4 Relations

Use the given study objectives to inform you regarding which relations you'll expect to see.

Characterization studies

In characterization studies, clinical-pathologic features are correlated with biomarker

status (and, occasionally, other clinical-pathologic features).

clinical_feature positive_correlation biomarker | clinical_feature indicates that the fea-

ture and the biomarker tend to occur together with statistical signi�cance.

clinical_feature negative_correlation biomarker | clinical_feature indicates that the fea-

ture and the biomarker tend to not occur together with statistical signi�cance.

clinical_feature no_correlation biomarker | clinical_feature indicates that the feature

and the biomarker appear to have no relationship.

clinical_feature correlation biomarker | clinical_feature indicates that the feature and

the biomarker are related but the directionality is not stated.

Other types of characterization papers study the frequency of a mutation within a pop-

ulation.

biomarker has_rate rate speci�es the numeric value of the frequency of the mutation.

biomarker has_higher_rate_in, has_lower_rate_in, has_similar_rate_in clinical_feature

qualitatively describes the mutation rate in a certain population (speci�ed by clinical_feature)

This relation suggests an observed trend between the biomarker and clinical feature that did

not reach statistical signi�cance.
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biomarker has_higher_rate_than, has_lower_rate_than, has_similar_rate_to biomarker

compares mutation rates between biomarkers.

Note: only annotate mutation frequencies if the aim of the paper is the characterize a

particular population (not simply descriptive statistics of the cohort being studied).

Detection studies

In detection studies, a method for detecting mutation status is demonstrated.

detection_method detects biomarker speci�es the name of the method and the biomarker

it detects.

biomarker detected_in material indicates the type of biological specimen used to detect

the biomarker

detection_method detects_in material indicates the type of biological specimen used in

the detection_method.

Treatment studies

In treatment studies, the association between treatments and outcomes is studied.

treatment improves, does_not_improve outcome indicates that the treatment did or did

not lead to a desired outcome (e.g., longer survival).

treatment worsens, does_not_worsen outcome indicates that the treatment did or did

not lead to a less desirable outcome.

treatment associated_with, not_associated_with outcome indicates an association or no

association with the outcome, but improves or worsens is not appropriate (e.g., treatment

associated_with favorable safety pro�le)

treatment recommended_for, not_recommended_for clinical_feature states that the treat-

ment is or is not appropriate for a certain population.

Prognosis studies

In prognosis studies, clinical-pathologic features, biomarkers, and detection methods are

associated with outcomes.
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clinical_feature | biomarker | detection_method predicts_better, does_not_predict_better

outcome indicates that a more desirable outcome was or was not predicted by the clinical

feature / biomarker / detection_method.

clinical_feature | biomarker | detection_method predicts_worse, does_not_predict_worse

outcome indicates that a less desirable outcome was or was not predicted by the clinical fea-

ture / biomarker / detection_method.

clinical_feature | biomarker | detection_method predicts, does_not_predict outcome in-

dicates that an outcome was or was not predicted, but �better or �worse is not appropriate

(e.g., biomarker predicts bene�t, biomarker predicts resistance)

All types of studies

entity compared_with entity This relation is used to to indicate that an entity partici-

pating in the relation is being compared to another entity of the same type.

C.3 General instructions

Annotate sentences that interpret the �ndings of the study. Do not annotate raw, numeric

results.

Do not annotate general remarks about previous work or descriptive statistics such as

baseline demographics.

In some cases, there may be more than one relation and associated context in the sen-

tence (for example: multiple p-values, each associated with a di�erent relation). Use the

nary_relation annotation type to tie relations to their context. Select the text span of the

relation subject, then choose nary_rel from the dialog box. Select the nary-relation and

drag the arrow to the relation subject, the relation object, and the associated context.

Aim to annotate phrases completely yet minimally (e.g., advanced NSCLC with EGFR

wild-type).

Use the most semantically meaningful relation when possible (e.g., favor predicts_better

over predicts, improves over associated_with)
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Special case for resistance and progression concepts: should always be annotated with

an overlapping treatment_history concept if possible.
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APPENDIX D

Relevance judgments

42 year old woman with newly diagnosed stage IV EGFR mutant disease and no prior therapy.
What is the best initial therapy for her?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

24736073 Comparison of clinical outcomes following ge�tinib
and erlotinib treatment in non-small-cell lung can-
cer patients harboring an epidermal growth factor
receptor mutation in either exon 19 or 21.

x

26096453 Epidermal growth factor receptor exon 20 insertions
in advanced lung adenocarcinomas: Clinical out-
comes and response to erlotinib.

x

26262682 Post-Progression Survival after EGFR-TKI for Ad-
vanced Non-Small Cell Lung Cancer Harboring
EGFR Mutations.

x

25057173 EGFR biomarkers predict bene�t from vandetanib in
combination with docetaxel in a randomized phase
III study of second-line treatment of patients with
advanced non-small cell lung cancer.

x

25288198 Phase Ib study evaluating a self-adjuvanted mRNA
cancer vaccine (RNActive) combined with local ra-
diation as consolidation and maintenance treatment
for patients with stage IV non-small cell lung cancer.

x

25261231 A single-arm, multicenter, safety-monitoring, phase
IV study of icotinib in treating advanced non-small
cell lung cancer (NSCLC).

x

25349291 Phase II trial of stereotactic body radiation therapy
combined with erlotinib for patients with limited but
progressive metastatic non-small-cell lung cancer.

x

24439569 Does KRAS mutational status predict chemore-
sistance in advanced non-small cell lung cancer
(NSCLC)?

x

25202368 A new receptor tyrosine kinase inhibitor, icotinib, for
patients with lung adenocarcinoma cancer without
indication for chemotherapy.

x

24263064 First-line ge�tinib in Caucasian EGFR mutation-
positive NSCLC patients: a phase-IV, open-label,
single-arm study.

x

Table D.1: Casama results for Case 1.

141



63 year old woman with an EGFR mutation. Received erlotinib, followed by carboplatin and
pemetrexed at progression followed by afatinib at progression. Now again progressing. Should she
undergo a biopsy to evaluate whether she has a T790M mutation?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

25841484 Patient reported outcomes from LUX-Lung 3: �rst-
line afatinib is superior to chemotherapy-would pa-
tients agree?

x

26354527 Afatinib in Non-Small Cell Lung Cancer Harboring
Uncommon EGFR Mutations Pretreated With Re-
versible EGFR Inhibitors.

x

25517450 [E�cacy of �rst-line afatinib versus chemotherapy
in EGFR mutation positive pulmonary adenocarci-
noma].

x

25242668 Activity of the EGFR-HER2 dual inhibitor afatinib
in EGFR-mutant lung cancer patients with acquired
resistance to reversible EGFR tyrosine kinase in-
hibitors.

x

25232040 Experience with afatinib in patients with non-small
cell lung cancer progressing after clinical bene�t from
ge�tinib and erlotinib.

x

23912954 Rare and complex mutations of epidermal growth
factor receptor, and e�cacy of tyrosine kinase in-
hibitor in patients with non-small cell lung cancer.

x

26349474 EGFR-TKI rechallenge with bevacizumab in EGFR-
mutant non-small cell lung cancer.

x

24789720 The application of real-time PCR technique to detect
rare cell clones with primary T790M Substitution of
EGFR gene in metastases of non-small cell lung can-
cer to central nervous system in chemotherapy naive
patients.

x

24493829 The impact of EGFR T790M mutations and BIM
mRNA expression on outcome in patients with
EGFR-mutant NSCLC treated with erlotinib or
chemotherapy in the randomized phase III EURTAC
trial.

x

26309190 Spatiotemporal T790M Heterogeneity in Individual
Patients with EGFR-Mutant Non-Small-Cell Lung
Cancer after Acquired Resistance to EGFR-TKI.

x

Table D.2: Casama results for Case 2.
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67 year old woman with an EGFR mutation. Received erlotinib. Now underwent repeat biopsy.
T790M negative, but small cell transformation noted on repeat biopsy. What is the optimal
treatment approach for her?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

26306902 Randomized Phase II Trial of Erlotinib Beyond
Progression in Advanced Erlotinib-Responsive Non-
Small Cell Lung Cancer.

x

26003540 Phase II study of erlotinib in elderly patients
with non-small cell lung cancer harboring epidermal
growth factor receptor mutations.

x

26474959 Phase 1 study of romidepsin plus erlotinib in ad-
vanced non-small cell lung cancer.

x

25435849 Intercalated chemotherapy and erlotinib for ad-
vanced NSCLC: high proportion of complete remis-
sions and prolonged progression-free survival among
patients with EGFR activating mutations.

x

25669662 Phase I dose-escalation study of pilaralisib
(SAR245408, XL147), a pan-class I PI3K in-
hibitor, in combination with erlotinib in patients
with solid tumors.

x

25170013 A phase I/II study combining erlotinib and dasatinib
for non-small cell lung cancer.

x

25450874 Prospective assessment of pemetrexed or pemetrexed
plus platinum in combination with ge�tinib or er-
lotinib in patients with acquired resistance to ge�-
tinib or erlotinib: a phase II exploratory and prelim-
inary study.

x

25349291 Phase II trial of stereotactic body radiation therapy
combined with erlotinib for patients with limited but
progressive metastatic non-small-cell lung cancer.

x

26174465 A prospective, multicentre phase II trial of low-
dose erlotinib in non-small cell lung cancer patients
with EGFR mutations pretreated with chemother-
apy: Thoracic Oncology Research Group 0911.

x

25841484 Patient reported outcomes from LUX-Lung 3: �rst-
line afatinib is superior to chemotherapy-would pa-
tients agree?

x

Table D.3: Casama results for Case 3.
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62 year old EGFR mutant man status post frontline carboplatin, paclitaxel and bevacizumab with
maintenance bevacizumab and erlotinib, not progressing and rebiopsied. Noted to have a T790M
mutation. Would this patient bene�t from a change in therapy from his current erlotinib and
bevacizumab?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

25870087 Phase I/II Study of HSP90 Inhibitor AUY922 and
Erlotinib for EGFR-Mutant Lung Cancer With Ac-
quired Resistance to Epidermal Growth Factor Re-
ceptor Tyrosine Kinase Inhibitors.

x

26349474 EGFR-TKI rechallenge with bevacizumab in EGFR-
mutant non-small cell lung cancer.

x

23912954 Rare and complex mutations of epidermal growth
factor receptor, and e�cacy of tyrosine kinase in-
hibitor in patients with non-small cell lung cancer.

x

24478319 Poor response to erlotinib in patients with tumors
containing baseline EGFR T790M mutations found
by routine clinical molecular testing.

x

26309190 Spatiotemporal T790M Heterogeneity in Individual
Patients with EGFR-Mutant Non-Small-Cell Lung
Cancer after Acquired Resistance to EGFR-TKI.

x

26153496 A randomized, double-blind, placebo-controlled,
phase III trial of erlotinib with or without a c-
Met inhibitor tivantinib (ARQ 197) in Asian pa-
tients with previously treated stage IIIB/IV non-
squamous nonsmall-cell lung cancer harboring wild-
type epidermal growth factor receptor (ATTEN-
TION study).

x

26306902 Randomized Phase II Trial of Erlotinib Beyond
Progression in Advanced Erlotinib-Responsive Non-
Small Cell Lung Cancer.

x

26003540 Phase II study of erlotinib in elderly patients
with non-small cell lung cancer harboring epidermal
growth factor receptor mutations.

x

24636848 Phase I/II trial of vorinostat (SAHA) and erlotinib
for non-small cell lung cancer (NSCLC) patients with
epidermal growth factor receptor (EGFR) mutations
after erlotinib progression.

x

25923549 AZD9291 in EGFR inhibitor-resistant non-small-cell
lung cancer.

x

Table D.4: Casama results for Case 4.
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27 year old woman with newly diagnosed EGFR mutant NSCLC with a T790M mutation and
L858R mutation in the EGFR gene. Should she be tested for a germline T790M mutation?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

24736066 Hereditary lung cancer syndrome targets never
smokers with germline EGFR gene T790M muta-
tions.

x

26577492 Monitoring EGFR T790M with plasma DNA from
lung cancer patients in a prospective observational
study.

x

26572169 Next-generation sequencing of tyrosine kinase
inhibitor-resistant non-small-cell lung cancers in pa-
tients harboring epidermal growth factor-activating
mutations.

x

26514492 Correlation between EGFR Gene Mutations and
Lung Cancer: a Hospital-Based Study.

x

24724747 Routine implementation of EGFR mutation testing
in clinical practice in Flanders: 'HERMES' project.

x

25355724 Small-cell lung cancer detection in never-smokers:
clinical characteristics and multigene mutation pro-
�ling using targeted next-generation sequencing.

x

25722667 Lung Adenocarcinoma with Pulmonary Miliary
Metastases and Complex Somatic Heterozygous
EGFR Mutation.

x

26362141 EGFR mutation status in Middle Eastern patients
with non-squamous non-small cell lung carcinoma:
A single institution experience.

x

25450875 Clinical likelihood of sporadic primary EGFR
T790M mutation in EGFR-mutant lung cancer.

x

26609535 The Impact of Sequence of Chemotherapy and
EGFR-TKI Treatment on Di�erent EGFR Mutation
Lung Adenocarcinoma.

x

Table D.5: Casama results for Case 5.
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42 year old woman with newly diagnosed EGFR mutant disease and no prior therapy. What is the
best initial therapy for her?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

25702091 Statins augment e�cacy of EGFR-TKIs in patients
with advanced-stage non-small cell lung cancer har-
bouring KRAS mutation.

x

24994038 Mutations of EGFR or KRAS and expression of
chemotherapy-related genes based on small biopsy
samples in stage IIIB and IV inoperable non-small
cell lung cancer.

x

26639246 Radiotherapy e�ects on brain/bone metastatic ade-
nocarcinoma lung cancer and the importance of
EGFR mutation test.

x

25514801 Dynamic plasma EGFR mutation status as a predic-
tor of EGFR-TKI e�cacy in patients with EGFR-
mutant lung adenocarcinoma.

x

24263064 First-line ge�tinib in Caucasian EGFR mutation-
positive NSCLC patients: a phase-IV, open-label,
single-arm study.

x

26047516 Classi�cation of Epidermal Growth Factor Recep-
tor Gene Mutation Status Using Serum Proteomic
Pro�ling Predicts Tumor Response in Patients with
Stage IIIB or IV Non-Small-Cell Lung Cancer.

x

25936883 [Clinical Research of EGFR and KRAS Mutation in
Fine Needle Aspiration Cytology Specimens of Non-
small Cell Lung Carcinoma].

x

24682604 Features and prognostic impact of distant metastasis
in patients with stage IV lung adenocarcinoma har-
boring EGFR mutations: importance of bone metas-
tasis.

x

25589191 Afatinib versus cisplatin-based chemotherapy for
EGFR mutation-positive lung adenocarcinoma
(LUX-Lung 3 and LUX-Lung 6): analysis of overall
survival data from two randomised, phase 3 trials.

x

25538894 EGFR Mutation Positive Stage IV Non-Small-Cell
Lung Cancer: Treatment Beyond Progression.

x

Table D.6: PubMed results for Case 1.
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63 year old woman with an EGFR mutation. Received erlotinib, followed by carboplatin and
pemetrexed at progression followed by afatinib at progression. Now again progressing. Unknown
T790M status. Should she undergo a biopsy to evaluate whether she has a T790M mutation?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

25450875 Clinical likelihood of sporadic primary EGFR
T790M mutation in EGFR-mutant lung cancer.

x

24768581 Incidence of T790M mutation in (sequential) rebiop-
sies in EGFR-mutated NSCLC-patients.

x

25939061 Acquired EGFR C797S mutation mediates resistance
to AZD9291 in non-small cell lung cancer harboring
EGFR T790M.

x

26267891 The epidermal growth factor receptor (EGFR /
HER-1) gatekeeper mutation T790M is present in
European patients with early breast cancer.

x

26577492 Monitoring EGFR T790M with plasma DNA from
lung cancer patients in a prospective observational
study.

x

25560642 Usefulness of nano�uidic digital PCR arrays to quan-
tify T790M mutation in EGFR-mutant lung adeno-
carcinoma.

x

24789720 The application of real-time PCR technique to detect
rare cell clones with primary T790M Substitution of
EGFR gene in metastases of non-small cell lung can-
cer to central nervous system in chemotherapy naive
patients.

x

26309190 Spatiotemporal T790M Heterogeneity in Individual
Patients with EGFR-Mutant Non-Small-Cell Lung
Cancer after Acquired Resistance to EGFR-TKI.

x

25091415 Structural signature of the G719S-T790M double
mutation in the EGFR kinase domain and its re-
sponse to inhibitors.

x

24737599 Clinical outcome according to the level of preexisting
epidermal growth factor receptor T790M mutation in
patients with lung cancer harboring sensitive epider-
mal growth factor receptor mutations.

x

Table D.7: PubMed results for Case 2.
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67 year old woman with an EGFR mutation. Received erlotinib. Now underwent repeat biopsy.
T790M negative, but small cell transformation noted on repeat biopsy. What is the optimal
treatment approach for her?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

26400668 Small cell lung cancer transformation and T790M
mutation: complimentary roles in acquired resis-
tance to kinase inhibitors in lung cancer.

x

26557922 Histological transformation from non-small cell to
small cell lung carcinoma after treatment with epi-
dermal growth factor receptor-tyrosine kinase in-
hibitor.

x

26187428 Emergence of RET rearrangement co-existing
with activated EGFR mutation in EGFR-mutated
NSCLC patients who had progressed on �rst- or
second-generation EGFR TKI.

x

26473643 Mechanisms of Acquired Resistance to AZD9291, a
Mutation-Selective, Irreversible EGFR Inhibitor.

x

26424310 An Autopsy Case of Two Distinct, Acquired Drug
Resistance Mechanisms in Epidermal Growth Factor
Receptor-mutant Lung Adenocarcinoma: Small Cell
Carcinoma Transformation and Epidermal Growth
Factor Receptor T790M Mutation.

x

24768581 Incidence of T790M mutation in (sequential) rebiop-
sies in EGFR-mutated NSCLC-patients.

x

26152920 Shades of T790M: Intratumor Heterogeneity in
EGFR-Mutant Lung Cancer.

x

24457237 Small-cell carcinoma in the setting of pulmonary ade-
nocarcinoma: new insights in the era of molecular
pathology.

x

24828667 Small-cell lung cancers in patients who never smoked
cigarettes.

x

25826094 Constitutive asymmetric dimerization drives onco-
genic activation of epidermal growth factor receptor
carboxyl-terminal deletion mutants.

x

Table D.8: PubMed results for Case 3.
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62 year old EGFR mutant man status post frontline carboplatin, paclitaxel and bevacizumab with
maintenance bevacizumab and erlotinib, not progressing and rebiopsied. Noted to have a T790M
mutation. Would this patient bene�t from a change in therapy from his current erlotinib and
bevacizumab?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

26577492 Monitoring EGFR T790M with plasma DNA from
lung cancer patients in a prospective observational
study.

x

26309190 Spatiotemporal T790M Heterogeneity in Individual
Patients with EGFR-Mutant Non-Small-Cell Lung
Cancer after Acquired Resistance to EGFR-TKI.

x

24768581 Incidence of T790M mutation in (sequential) rebiop-
sies in EGFR-mutated NSCLC-patients.

x

25560642 Usefulness of nano�uidic digital PCR arrays to quan-
tify T790M mutation in EGFR-mutant lung adeno-
carcinoma.

x

25450875 Clinical likelihood of sporadic primary EGFR
T790M mutation in EGFR-mutant lung cancer.

x

24789720 The application of real-time PCR technique to detect
rare cell clones with primary T790M Substitution of
EGFR gene in metastases of non-small cell lung can-
cer to central nervous system in chemotherapy naive
patients.

x

24737599 Clinical outcome according to the level of preexisting
epidermal growth factor receptor T790M mutation in
patients with lung cancer harboring sensitive epider-
mal growth factor receptor mutations.

x

26267891 The epidermal growth factor receptor (EGFR /
HER-1) gatekeeper mutation T790M is present in
European patients with early breast cancer.

x

24478319 Poor response to erlotinib in patients with tumors
containing baseline EGFR T790M mutations found
by routine clinical molecular testing.

x

25405807 Quanti�cation and dynamic monitoring of EGFR
T790M in plasma cell-free DNA by digital PCR
for prognosis of EGFR-TKI treatment in advanced
NSCLC.

x

Table D.9: PubMed results for Case 4.

27 year old woman with newly diagnosed EGFR mutant NSCLC with a T790M mutation and
L858R mutation in the EGFR gene. Should she be tested for a germline T790M mutation?
PMID Title De�nitely

relevant
Potentially
relevant

Not rele-
vant

24736066 Hereditary lung cancer syndrome targets never
smokers with germline EGFR gene T790M muta-
tions.

x

Table D.10: PubMed results for Case 5.
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APPENDIX E

Visualization

E.1 Introduction

This appendix describes a tool developed for visualizing contextualized semantic maps. The

Casama visualization suite includes features such as vocabulary standardization, use of color

and size, and �ltering. A custom plugin was developed that, inspired by force-based layouts,

arranges nodes and edges in a semantically meaningful way.

E.2 Creating a contextualized semantic map

A contextualized semantic map was produced by loading the manually-annotated relations

and contexts into a graph structure using the Python library networkx [SS08]. Each rela-

tion (edge) has a set of attribute-value pairs corresponding to the contextual types in the

representation and their instances from the annotated document set. Gephi [BHJ09], an

open-source, Java-based network visualization tool was used to render and manipulate the

network (Figure E.1).

E.2.1 Vocabulary standardization

Because the raw annotations include a variety of expressions referring to the same concept

(e.g., EGFR+, EGFR positive, EGFR mutation), vocabulary standardization is performed

prior to creating the graph structure. In doing so, synonymous nodes are consolidated

to minimize redundancy. Common abbreviations were detected by regular expression and

replaced with their normalized forms. Table E.1 provides the complete list of standardized
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Figure E.1: Screenshot of Gephi interface. The central panel depicts the entire contextualized

semantic map, generated from manual annotations. The left panel contains parameters for adjusting

layout. The right panel contains the �ltering interface.

Term Normalized form
<biomarker> + mutation, mut, postive, + <biomarker> mutation
<biomarker> + negative, wild, without <biomarker> wild-type
<biomarker> + expression, deletion, insertion, <biomarker> + modifying text
rearrangement, translocation, ampli�cation (no surrounding words)
progression free survival, progression-free survival, pfs progression-free survival
overall survival, os overall survival
disease-free survival, disease free survival, dfs disease-free survival
mean survival time, mst mean survival time
tyrosine kinase inhibitors, tki tyrosine kinase inhibitors

Table E.1: Common terms and their normalized forms.

terms.

E.2.2 Basic functions: �ltering, color, and size

Filtering is the easiest way to reduce the overall size of the graph. The contextualized

semantic map produced from the manual annotations contains 570 nodes and 591 edges

(Figure E.2). The user can create a �lter, for example, that displays just the predicts

relations with respect to overall survival. Filtering is performed by accessing a list of potential

�lters corresponding to the contextual types in the Casama representation (e.g., relation type,

subject of the relation). When a �lter is selected, the user is then shown a list of annotated
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instances of this type of context. The user selects which instances to �lter in and out (e.g.,

relation type = predicts, subject of the relation = overall survival). Filtering reduces the

size of the graph and produces subgraphs the facilitate knowledge discovery relevant to the

user's information need. Filtering may be also be applied iteratively, as results from the �rst

�lter help the user modify his or her query.

Gephi also provides mechanisms for depicting the statistical and semantic properties of

nodes and edges using color and size. For example, the size of a node can be scaled by its

number of associated edges. Similarly, the width of an edge is scaled by the number of times

the relation was found in this document set. In this way, statistically �important� nodes and

edges draw the eye.

Nodes and edges may also be color coded by their semantic properties. Coloring nodes by

semantic type (e.g., biomarker, treatment, outcome) can help users quickly pick out concepts

and relations of interest. Edges may be colored by any type of edge metadata, including

relation type (e.g., improves, predicts), study design context (e.g., study objective, study

design), or study population context (e.g., biomarker, treatment history).

Figure E.3 illustrates a �ltered contextualized semantic map with node and edge scaling

applied. It is easily observed that the relation between overall surival and biomarkers,

especially EGFR mutation, KRAS mutation, and exon 19 deletion, is well-studied in this

data set.

E.2.3 Semantic force layout

A custom Gephi plugin was developed for using the semantic knowledge provided by Casama

to inform the layout of the graph. The plugin is based on Force Atlas, a layout style included

in Gephi. Force-based layouts utilize a physical model of attraction and repulsion. Nodes

repel, but connected nodes attract. After multiple iterations of attraction and repulsion, the

graph settles into a balanced layout in which edge crossings are minimized.

The plugin developed for Casama is based on a similar principle of attraction and repul-

sion. Nodes repel, connected nodes attract, and nodes or edges containing similar semantic
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Figure E.2: The entire contextualized semantic map: 570 nodes and 591 edges.

Figure E.3: The contextualized semantic map after 1) coloring nodes and edges by type, 2) scaling

nodes by degree and edges by frequency, and 3) applying �lters (relation_type=predicts, sub-

ject_of_relation=overall survival).
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knowledge attract. The user may select a node attribute and an edge attribute on which

to arrange a �semantic force layout.� The plugin iterates over each pair of nodes and edges,

adding attractive force if they share the same metadata for the user-selected attribute. An

example of semantic force layout is illustrated in Figure E.4.

E.2.4 Spreadsheet view

The contextualized semantic map may also be viewed in spreadsheet form, allowing the ex-

amination of relations and contexts in a tabular form. Spreadsheet view includes relations

in their raw, unaggregated form (as opposed to the graphical view which combines multiple

instances of a relation into a single edge). The user may sort and �lter on raw concept men-

tions, normalized forms, relation types, and each type of study design and study population

context. The spreadsheet can also be searched for speci�c terms of interest.

Spreadsheet view also includes article metadata such as authors, journal, and publication

date. Importantly, the raw abstract is also available in spreadsheet view, allowing the user

to trace relations back to their sources.

E.2.5 Filtering on study design context

Figures E.6 and E.7 are fragments of the contextualized semantic map examining treatment-

oriented relations (improves, associated_with, and recommended_for). Figure E.6a

has been �ltered to include only relations found in experimental studies such as clinical tri-

als. Erlotinib, docetaxel, and an erlotinib-pemetrexed sequence are identi�ed as treatments

associated with positive outcomes at the highest level of evidence. Newer treatments afatinib

and matuzumab with paclitaxel are also identi�ed.

If the user wishes to include more information, they may broaden the �lter to include

relations from prospective and retrospective studies (Figure E.6b). A new treatment node,

�tyrosine kinase inhibitors�, appears, in addition to its associated outcomes. The user may

also observe that erlotinib is a recommended treatment after ge�tinib failure, and that afa-

tinib is associated with improved quality of life.
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(a) Nodes clustered by semantic type.

(b) Edges clustered by relation type.

Figure E.4: Semantic force layout.
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Figure E.5: Spreadsheet view, sorted by relation type.

E.2.6 Filtering on study population context

Consider a query pertaining to a patient with a prior history of EGFR tyrosine kinase

inhibitors (TKIs). Figure E.7a is a fragment of the graph depicting the factors that in�u-

ence overall survival (�lter: subject_of_relation=overal survival). A variety of factors are

displayed, including treatments, biomarkers, and demographic information such as smoking

history and gender. However, when a sub-�lter is applied to focus the graph on relations from

study population with a history of EGFR-TKIs (�lter: targeted_therapy_history=TKI, er-

lotinib, ge�tinib), a more speci�c picture emerges (Figure E.7b). Certain biomarkers predict

improved survival, whereas weight loss, presence metastases, poor performance status, and

heavy pretreatment predict worse overall survival in a study population similar to the pa-

tient/query.
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(a) Experimental studies only.

(b) Experimental studies, prospective cohort studies, and retrospective cohort studies.

Figure E.6: A fragment of the contextualized semantic map, examining treatment-oriented relations

(improves, associated_with, recommended_for).
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(a) No additional �lters.

(b) targeted_therapy_history=EGFR tyrosine kinase inhibitors.

Figure E.7: A fragment of the contextualized semantic map examining factors that in�uence overall

survival.
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