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ABSTRACT: Reliable chemical property data are the key to
defensible and unbiased assessments of chemical emissions, fate,
hazard, exposure, and risks. However, the retrieval, evaluation, and
use of reliable chemical property data can often be a formidable
challenge for chemical assessors and model users. This
comprehensive review provides practical guidance for use of
chemical property data in chemical assessments. We assemble
available sources for obtaining experimentally derived and in silico
predicted property data; we also elaborate strategies for evaluating
and curating the obtained property data. We demonstrate that both
experimentally derived and in silico predicted property data can be
subject to considerable uncertainty and variability. Chemical
assessors are encouraged to use property data derived through
the harmonization of multiple carefully selected experimental data if a sufficient number of reliable laboratory measurements is
available or through the consensus consolidation of predictions from multiple in silico tools if the data pool from laboratory
measurements is not adequate.
KEYWORDS: chemical property, partition ratio, half-life, quantitative structure−activity relationship, chemical assessment, modeling, risk,
hazard

■ INTRODUCTION
Chemical properties are fundamental prerequisites to assess-
ments of chemical emissions, fate, hazard, exposure, and risks.
For instance, numeric cut-offs of equilibrium phase partition
ratios (also known as partition coefficients) and reaction half-
lives are recommended as bright-line criteria in the regulatory
assessment of a chemical’s potential to resist biotic and abiotic
degradation (“persistence”), to accumulate in organisms
(“bioaccumulation”), to permeate through natural barriers
such as soils, riverbanks, and aquifers (“mobility”), and for
global transport to remote areas (“long-range environmental
transport”).1−6 Combining these separate criteria can inform
the assessment of the overall inherent hazard of chemicals and
prioritize top-ranked chemicals for more stringent scrutiny and
regulation. Also, chemical properties constitute critical input
information to chemical assessment models, which evaluate
chemical emissions, fate, and transport in indoor and natural
environments, as well as the exposure to ecological receptors
and human beings.7−9

Reliable chemical property data are the key to defensible and
unbiased chemical assessments because chemical behaviors in
the environment and organisms can be sensitive to minor

differences in their properties. A well-known example is the
distinct mode of transport of hexachlorocyclohexane (HCH)
isomers from source regions to Northern Oceans: α-HCH is
largely atmospherically transported, but β-HCH is transported
mainly through oceanic currents, although α-HCH’s air−water
partition ratio (KAW) is merely an order of magnitude higher
than that of β-HCH.10 Chemical properties such as the
octanol−water (KOW) and octanol−air (KOA) partition ratios
also inform hazard assessment and classifications derived from
strict “cut-off” criteria. For instance, a persistent chemical is
considered to have bioaccumulation potential in water-
respiring organisms if it has a KOW, e.g., greater than 105

according to the Stockholm Convention or 104.5 according to
the European Chemicals Agency (ECHA),2,11 or in air-
respiring organisms if it has a KOW greater than 102 and a
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KOA greater than 105.12,13 In some cases, even property values
with uncertainties of many orders of magnitude may be
sufficient, for example, if such an uncertain value is far from a
regulatory threshold value of interest or if an investigated fate
process is insensitive to the property within the range of its
uncertainty. In model-based assessments, the uncertainty
associated with chemical input properties can be propagated
to model predictions and, by extension, the decision-making
process. Zhang et al.14 show that a given chemical’s assessed
potential for bioaccumulation and long-range transport can
differ depending on which property prediction tools are used.
Similarly, Odziomek et al.15 found that a model yields widely
divergent values for persistence and long-range environmental
transport potential if the input KAW is calculated from
estimated KOA and KOW or if it is calculated from an estimated
Henry’s law constant (see section Property Data in Chemical
Assessments for the two ways of calculations).

Even though the decisive role of chemical properties in
chemical assessments has long been recognized and widely
acknowledged, the retrieval, evaluation, and use of reliable
chemical property data remain a formidable challenge. First,
although experimentally derived data are generally given the
highest priority in regulatory assessment practices,16−18

measurements performed in different laboratories or based
on different techniques are often associated with different
levels of uncertainty, reliability, and consistency. One example
is the remarkable variability in measured water solubility and
KOW of dichlorodiphenyltrichloroethane (DDT) reported in
the literature, spanning up to 4 orders of magnitude due to the
abundance of biased and even erroneous measurements or
flawed reporting.19 Variabilities of over 3 orders of magnitude
are also evident in chemicals documented in the International
Uniform Chemical Information Database (IUCLID).20

Clearly, experimentally derived data must be critically
analyzed, reviewed, and harmonized before they are suited
for chemical assessment purposes.9,19 While critical evaluation
of properties has been recognized and emphasized for decades,
current chemical assessment practices often continue to ignore
the reliability of experimentally derived data, since regulatory
efforts lack formal property evaluation guidance and build on a
seemingly random or arbitrary selection from the available
experimental data without an in-depth evaluation of the
associated uncertainties.

Furthermore, experimentally derived data are incomplete or
missing for most chemicals used in commerce, a situation that
is even more pronounced for premanufactured chemicals or
chemicals in design. The assessment of these “data-poor”
chemicals necessitates the use of various in silico prediction
tools, such as empirical correlations including single- and poly
parameter linear free energy relationships (sp- or pp-LFERs),
and quantitative structure−activity or −property relationships
(QSARs or QSPRs), whose reliability and predictability are
generally statistically established through a series of internal
and external validations.21 Approaches based on quantum
chemistry and statistical thermodynamics, which calculate
chemical properties by considering solute−solution interac-
tions and require no specific calibration, have also been
developed.22 However, some regulatory and academic
communities have yet to fully embrace the use of in silico
predictions, possibly due to a widely held belief that despite
their potential flaws and errors, experimentally obtained data
are more trustworthy and always superior to in silico
predictions. No single QSAR or QSPR can be the best at

predicting chemical properties for all chemicals because
different tools build on distinct training sets, employ different
prediction algorithms, and therefore demonstrate suitability for
different parts of the chemical space.23 Reliable and suitable
predictions from different in silico tools can be combined and
harmonized before their use in chemical assessments.
Preliminary attempts have been made by several integrated
online platforms, such as CompTox (www.comptox.epa.gov)
developed by the U.S. Environmental Protection Agency and
the Exposure And Safety Estimation (EAS-E) Suite (www.eas-
e-suite.com) developed by ARC Arnot Research & Consulting.

The current literature lacks a critical review guiding the
comprehensive, systematic evaluation of the availability,
quality, and consistency of experimentally derived and in silico
predicted property data for chemical assessments. For many
academic or regulatory chemical assessors, answers to the
following three questions are still missing pieces of the puzzle:

(1) From where and how can we retrieve experimentally
derived or computationally predicted chemical property
data suited for chemical assessments?

(2) How should we evaluate the quality and reliability of the
retrieved data?

(3) How can we aggregate and harmonize experimentally
derived or computationally predicted chemical property
data retrieved from different sources?

To address these issues, we here seek to (i) assemble sources
for retrieving chemical properties for chemical assessments, (ii)
provide general principles for evaluating the quality and
reliability of the retrieved property data, and (iii) demonstrate
how the quality and reliability of property data can be
improved by the harmonization of experimentally derived data
from multiple sources or in silico predictions from multiple
prediction tools.

■ PROPERTY DATA IN CHEMICAL ASSESSMENTS
We limit the scope of this review to pure organic chemicals
with discrete structures. We focus on two categories of
chemical properties that are required by most chemical
assessments, namely partition ratios and rates of reactions.
We begin with a short overview of the definitions and
applications of these properties. For more information about
these properties, we refer readers to Boethling et al.24

Partition ratios (Kij) describe the equilibrium distribution of
chemicals between two immiscible phases i and j.25 Previously,
these equilibrium distribution ratios have been commonly
referred to as partition coefficients.26 However the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) has
recommended the use of “partition ratios” because these
properties are dependent on both the chemical, the solvent
phases, and the temperature of the system.27

These partition ratios can inform the phase distribution
under environmentally and biologically relevant conditions.26

For instance, partition ratios between neutral storage lipids and
water (Knlip‑water), between phospholipids and water (Kplip‑water),
and between proteins and water (Kprotein‑water) characterize the
distribution and accumulation of chemicals within organisms;
organic carbon−water (KOC) partition ratios quantify the
sorption of chemicals by natural organic matter from water in
the environment. Underlying the use of partition ratios is an
assumption of linear phase distribution or sorption, which is
often the case at low concentrations.
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Notably, by using water as a proxy for polar aqueous phases
(e.g., water and mucus) and n-octanol as a proxy for weakly
bipolar organic condensed phases (e.g., lipids, lipid-like plant
constituents, as well as the organic fractions of dust, soils,
sediments, and polymeric materials), one can approximate
various phase distribution processes using three volume-based,
unitless equilibrium partition ratios in a well-defined air (A)−
water (W)−octanol (O) system, namely, KOA, KOW, and KAW.
These partition ratios, also known as “partition constants”,26

can be measured in the laboratory with standard, reproducible
methods. The “three solubilities approach”28,29 expresses the
three partition ratios as ratios of solubilities in air (SA, which is
the saturation vapor pressure VP divided by the product of gas
constant R and temperature T), water (that is, the aqueous
solubility or SW), and octanol (SO). For example, KOW is
defined as the ratio of SO to SW, and KAW is defined as the ratio
of SA to SW. This entails that the three partition ratios are
related via a thermodynamic triangular relationship,28,29 which
allows any one of the three coefficients to be estimated from
the other two, that is, KOW = KOA × KAW.

In many instances, air−water partitioning is also described
by the Henry’s law constant or Henry’s law coefficient in water
(HV

pc) with units of Pa m3 mol−1, which is KAW multiplied with
the product of R and T. Solvent-air partitioning can also be
described by solvent-specific Henry’s law constants or
coefficients; for instance, octanol−air partitioning is related
to the Henry’s law coefficient in octanol.30 Readers are
directed to Sander et al.31 for the specifics of the naming
convention and use of Henry’s law constant.

Partition ratios and solubilities are functions of temperature.
One can convert their values at a given temperature (e.g., 25
°C measured in the laboratory) to another (e.g., an
environmentally relevant temperature32) using an internal
energy (ΔU°; when the abundance in the gas phase at a given
temperature is defined on a volumetric concentration basis) or
enthalpy (ΔH°; when this abudance is defined on a partial
pressure basis) of phase change and a version of the van’t Hoff
equation (the Clausius−Clapeyron equation or the empirical
Antoine equation).26,33

For ionizable chemicals, partition ratios involving the
aqueous phase also depend on the extent of dissociation,
which is a function of a chemical’s acid or base dissociation
constant (pKa or pKb) and the environmental pH according to
the Henderson−Hasselbalch equation.26 A small pKa or pKb
represents a strong acid or base, and a larger difference
between the environmental pH and pKa or pKb indicates a
greater extent of dissociation. Dissociation favors partitioning
into the water phase and disfavors partitioning into the gas
phase because ions are more water-soluble and less volatile
than their neutral counterpart. Therefore, the partitioning
behavior of these chemicals is often described by an
abundance-weighted average of the partition ratios of their
neutral and charged forms, referred to specifically as
distribution ratios (Dij).26,34

Rate constants (k) are used to quantify the rates of chemical
reaction or removal from the environment or organisms,
through processes such as oxidation by the hydroxyl radical in
indoor and outdoor air, microbial biodegradation, and
metabolic biotransformation in higher-level organisms. First-
order rate constants (with units of reciprocal time) are most
common in chemical assessments. Take biochemical reactions
as an example: When chemical concentrations are lower than
the Michaelis−Menten constant KM (a measure of enzyme−

substrate binding affinity), which is typical at low contaminant
exposures, the Michaelis−Menten kinetics can be adequately
approximated by the first-order reaction. Furthermore, the
delivery of the environmental contaminant to the site of
enzymatic activity is often the rate-limiting step, which then
follows first-order kinetics. Second-order rate constants are also
used for certain reactions: for instance, the rate constant for
reaction with the hydroxyl radical (in cm3 molecule−1 s−1) is
often multiplied with the concentration of the hydroxyl radical,
and hydrolysis rate constants (in L mol−1 s−1) are often
combined with the concentration of [H+] or [OH−] in water
(i.e., the water’s pH).

Chemical assessments also utilize the concepts “reaction
half-life” and “reactive residence time”, which both have a unit
of time and are often more intuitive. Half-lives describe the
time required for removing one-half of a given amount of
chemical and are quantified as ln2/k for first-order reactions.
Residence times describe the average time that a given amount
of chemical resists a reaction and is quantified as the reciprocal
of k. For instance, the biodegradation half-life (HLbiodeg) and
biotransformation half-life (HLB,fish for fish and HLB,human for
humans) are input parameters to most fate, exposure, and
bioaccumulation models. Exposure science and toxicokinetics
also use the concept of “clearance” to describe the rate of
chemical reaction or removal; clearance is defined as the
equivalent volume of blood or plasma that can be cleared of a
chemical within a given unit of time. Rate constants can also be
dependent on temperature. One can convert the rate constant
at a given temperature to another using the activation energy
of the reaction and the Arrhenius equation.26 A high Arrhenius
activation energy indicates a greater sensitivity of the rate
constant to temperature.

■ SOURCES FOR RETRIEVAL OF CHEMICAL
PROPERTIES

Laboratory Measurements
Laboratory measurements are the most fundamental approach
for obtaining chemical properties. To date, experimentally
derived data for thousands of chemicals, mostly well-
investigated pharmaceuticals and environmental contaminants
such as organochlorines and organophosphates, have been
compiled and documented in comprehensive reviews (such as
refs. 30, 35, 36; not exhaustive), handbooks (such as refs 34,
37−41; not exhaustive) and online databases (such as REACH
registered substances database, the LOGKOW database by
Technical Database Services, the Henry’s law constant
database,42 the PhysProp database by Syracuse Research
Corporation, and those built in the integrated online platforms
as elaborated later; not exhaustive) for assessment use.

While experimentally derived data are often recommended
to be given the highest priority in chemical assessment
practice,16−18 this must be done with caution because not all
laboratory measurements are of the same quality, and
therefore, they are not equally credible or reliable.24,43 Typical
indications for low data quality include but are not limited to

(1) the use of nonstandard methodologies or noncom-
pliance with Good Laboratory Practices

(2) inadequate documentation of the measurement proce-
dure, test chemical, or biological material19

(3) inconsistency between the chemicals used in the test and
reported in the test results (such as pure chemical vs
technical substance or isomeric mixture, neutral acid/
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base vs electronically charged salt, parent chemical vs
metabolites, liquid vs solid states at the temperature of
interest)19,24

(4) an insufficient number of independent experimental runs
or a lack of replication

(5) the measured properties being outside of the range of
applicability or suitability of an experimental design/
technique or the instrumental analysis method30

(6) errors in processing and reporting data, units, and
references19,44

(7) a lack of appropriate documentation of uncertainty
information, such as the absence of the standard
deviation of measurements, and statistically insignificant
differences between experimental and control groups. A
value without information on its uncertainty can even be
inferior to a value with high reported uncertainty.

Decades ago, Kollig43 proposed a series of criteria to gauge
the quality of experimental data based on analytical,
experimental, statistical, and corroborative aspects.

In general, extreme property values, such as minimal
volatility (VP < 10−5 Pa or KOA > 1012) or high hydrophobicity
(KOW > 105), are more likely to be uncertain because of the
increased complexities of reliably quantifying very small
quantities of a chemical in the gas or aqueous phase,
respectively. In other cases, kinetic limitations may prevent
less volatile or highly hydrophobic chemicals from reaching
phase equilibrium during the determination of an equilibrium
partition ratio.30,45 Likewise, biodegradation rates for highly
recalcitrant chemicals (half-life > 1 year) can be difficult to
determine during short incubation periods because of
minuscule differences between the removal rates in exper-
imental and biologically inactivated control groups. When the
removal rate is smaller than the uncertainty of the analytical
method, such as the typical level of 20−30% in the broadly
used liquid chromatography−mass spectrometry/mass spec-
trometry (LC-MS/MS) techniques in the absence of a suitable
internal standard, the estimated biodegradation rate constant
or half-life becomes unreliable and should not be used for
chemical assessments.46 A prolonged incubation time and
more experimental data points are thus warranted to minimize
the interference of analytical variation.

Some laboratory measurements may also be of low quality
due to the selection of an inappropriate experimental design/
technique or the instrumental analysis method. As a rule of
thumb for quick reference, Figure 1 displays the general ranges
of applicability for commonly used techniques for measuring
partition ratios, water solubility, and vapor pressure. It may be
possible to expand the displayed ranges of applicability if
special considerations or care are taken. Attention needs to be
paid during the selection and evaluation of properties reported
for chemicals located outside these ranges of applicability.

One may also need to pay special attention to data derived
from “indirect” measurements, such as those obtained through
correlations with chromatographic retention times (e.g., KOA
measurements with gas chromatography or KOW measurements
with liquid chromatography) or numbers calculated from
measurements of other properties (e.g., log KAW as the
difference between independent measurements of log KOA and
log KOW).47 For instance, chromatographic retention time
techniques for KOA or KOW often rely on “reference” or
“calibration” compounds with reliably known partition ratio
values. In such a case, chemical assessors must examine

whether the polarity of the reference chemicals is similar to
that of the test chemicals and whether the chemical’s ability to
undergo hydrogen bonding with octanol and the stationary
phase is similar.30 In practice, a chemical can be assessed to be
polar if a linear combination of Abraham solute descriptors for
hydrogen bonding acidity (A) and basicity (B), weighted by
system constants a and b from corresponding pp-LFER
equations (see section Empirical Correlations below), is
high.30,48,49 The check for the similarity in polarity is
particularly important if only a single reference compound is
used. When multiple reference compounds are involved, the
test compound should be located within the range of the
partition ratios of reference compounds such that interpolation
is used. However, extrapolation is acceptable and even
“necessary” for the determination of extremely low or high
partition ratios.50

Flawed experimental data may be the result of unaccounted
sorption processes. For example, Shunthirasingham et al.51

have demonstrated that the bubble stripping method for KAW
determination yields biased results for substances adsorbing to
the air−water surface of the bubbles. This process can affect
not only surfactants but also sparingly soluble solutes.52 The
resulting artifact can be reduced by reducing the surface-to-

Figure 1. Recommended ranges of applicability of commonly used
methods for measuring octanol−water (KOW)60−62 and octanol−air
(KOA) partition ratios,30,63,64 water solubility,65 and vapor pressure.66

The scales for water solubility and vapor pressure are calculated from
KOW and KOA, respectively, using the empirical equations outlined in
Table 2. Also displayed are archetypical chemical contaminants
representative of different combinations of partitioning properties: D5
= decamethylcyclopentasiloxane; DEHP = di(2-ethylhexyl) phthalate;
DDT = dichlorodiphenyltrichloroethane; HBCDD = hexabromocy-
clododecane; TDCiPP = tris(1,3-dichloro-2-propyl)phosphate; PFOA
= perfluorooctanoic acid (the neutral form is considered here). Their
positions are based on the final adjusted values of their KOW and KOA,
as reported in Figure 2.
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volume ratio of the stripping gas through the use of larger
bubbles.53

Another potential source of error is the loss of chemicals in
biodegradation tests due to processes other than biodegrada-
tion, such as dilution, biomass adsorption, and evapora-
tion.54−58 These loss processes can lead to an overestimation
of the biodegradation rate constant. Before using data for
chemical assessments, one may need to first examine, for
example, whether the test was conducted in a closed system,
whether a stringent mass balance of the parent compound was
obtained,54,59 whether appropriate techniques were employed
to quantify biological utilization and integration of the parent
compound into biomass, and whether plausible transformation
products were identified.

Table 1 illustrates the considerations to be applied in the
selection and curation of experimentally derived data for one
example chemical, namely di(2-ethylhexyl)phthalate (DEHP),
a plasticizer commonly found in consumer products and
building materials. While a wide array of laboratory measure-
ments is available for individual properties, most of them may
not be well-suited for a chemical assessment because of failure
to meet one or more quality assurance criteria. It is also
interesting to note that in Table 1, the majority of excluded
values (i.e., marked as “not used”) predate the 1990s and were
produced before international test standards and guidelines
were published. This highlights the fact that “old” experimental
data need to be carefully evaluated to verify that the methods
and analytical techniques used at the time meet current quality
standards. Nevertheless, an evaluation of data quality as strict
as that presented in Table 1 is not always possible because, for
most chemicals used in commerce, experimentally derived data
are scarce. In this case, one may need to compromise by
applying looser quality criteria that reflect shortcomings of the
available data.

When multiple measurements are available for the same
chemical or a suite of structurally similar chemicals (e.g.,
congeners or homologues), one may also check the
consistency between them to identify outliers. For instance,
one can examine whether measurements of vapor pressure at
different temperatures satisfy the Antoine equation by plotting
logarithmic vapor pressure against reciprocal absolute temper-
ature. Data points falling far from a straight line are less likely
to be reliable.37 Also, the properties of individual homologues
often exhibit consistent patterns; comparing experimentally
derived data between homologues may thus allow for the
identification of potentially less reliable measurements.92,93

Carefully evaluated and curated data from a single
experimental study can be suited for chemical assessments,
particularly when the measurements are not too challenging
(e.g., do not involve the determination of KOW or SW for
superhydrophobic compounds or KOA for low volatility
compounds) and were made in compliance with Good
Laboratory Practices using standard methodologies. When
multiple experimentally derived data are available, they can be
consolidated in literature-derived values (LDVs), with their
central tendency described by corresponding means (e.g.,
geometric or arithmetic).44

For properties related to the air−water−octanol system, one
needs to additionally check whether their LDVs are
thermodynamically consistent. While the “three solubilities
approach”28 defines the relationship between partition ratio
and solubilities in octanol, air, and water, such thermodynamic
constraints are often violated in reality if the properties are

sourced from different independent measurements. It is
important to realize that some deviations from thermodynamic
constraints are not due to measurement uncertainty but reflect
an inherent inconsistency between the experimental systems
represented by different measurements. For example, the
partial miscibility between water and octanol implies that a
measured KOW expresses the equilibrium between water-
saturated (“wet”) octanol and octanol-saturated water, whereas
the KAW and KOA involve equilibria with pure solvents (pure
water and “dry” octanol).34,94 Therefore, if using “wet” octanol
for KOA or “dry” octanol for KOW in chemical assessments, one
would expect a biased apparent solubility of polar chemicals in
organic condensed phases such as lipids, dust, soils, sediments,
and polymeric materials. For these reasons, an adjustment to
individual partition ratios and solubilities is warranted to
ensure the adherence to those fundamental thermodynamic
relationships.9,94 By implementing empirical correlations, such
an adjustment converts LDVs to harmonized, thermodynami-
cally consistent values named final adjusted values (FAVs) that
diverge minimally from the LDVs.9,94 The extent of adjustment
can be scaled to the estimated relative uncertainty of the
LDVs.9 A useful tool for such an adjustment is the least-
squares adjustment procedure by Schenker et al.;9 it is available
as a Microsoft Excel spreadsheet with a friendly graphical user
interface.

As an illustrative example, one can calculate the LDVs of VP
(2.16 × 10−5 Pa), SW (0.0227 mg/L), and KOW (107.43) of
DEHP, as the geometric means of laboratory measurements in
Table 1 that are evaluated to be reliable and marked with
“used”. One can then obtain corresponding FAVs (VP of 2.16
× 10−5 Pa, SW of 0.0227 mg/L, SO of 1.56 × 103 mol/m3, KOW
of 107.43, KOA of 1011.25, and KAW of 10−3.82) using the least-
squares adjustment procedure by Schenker et al.9 In this
particular case, FAVs are equal to the LDVs because LDVs for
only three properties could be obtained. A comparison
between these FAVs of DEHP and the collected measurements
in Table 1 indicates that certain laboratory measurements
deviate substantially from FAVs, which underscores the
importance of independent evaluation of experimentally
derived data before applications in chemical assessments.

Following the same approach, we obtain the FAVs of 76
neutral organic chemicals with experimentally derived data sets
that are sufficiently large for the derivation of FAVs; these
chemicals include 11 organobromines, 34 organochlorines, 3
organophosphates, 4 phthalates, 6 perfluoroalkyl substances
(PFASs), 15 polycyclic aromatic hydrocarbons (PAHs), and 3
organosilicons (Figure 2). The LDVs are taken from the
literature92,95−100 (for 60 chemicals) or calculated based on
compiled and curated experimentally derived data reported in
the literature (for 16 chemicals) (see Supporting Information
Tables S1 and S2 for details). The FAVs of the 60 chemicals
differ from earlier reported ones because we use a slightly
different adjustment procedure.

Note that the derivation of FAVs is often an iterative, rather
than a sequential, process. One may first apply the least-
squares adjustment procedure to a preliminary set of LDVs
and check the direction and magnitude of the adjustment of
each LDV. Such information helps identify the LDVs that are
remarkably inconsistent with others and, hence, more likely to
be questionable. One can then return to the data used in the
derivation of the LDVs and check whether the questionable
LDVs are biased by inappropriate data point(s) and whether
recalculation of these LDVs is needed.

ACS Environmental Au pubs.acs.org/environau Review
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Recommended Empirical Values

When experimentally derived data are not available for a
specific chemical of interest, one may be able to use
recommended generic defaults, which reflect the consensus
among the scientific community after critically reviewing
laboratory measurements for many other chemicals. Such a
practice is particularly useful for screening purposes and for
properties that are difficult to measure and/or less influential
on model outputs. An example is the selection of Arrhenius
activation energies. The ECHA recommends an empirical
relationship for correcting the hydrolysis half-life for temper-
ature, which corresponds to a generic activation energy of 54
kJ/mol.101 The European Food Safety Authority recommends
a generic, median activation energy of 65.4 kJ/mol to be used
for chemical biodegradation in soil.102 A generic activation
energy of 8 to 10 kJ/mol, based on experimental data of PCB
congeners,103 is often assumed for the temperature depend-
ence of gas-phase reactions with the hydroxyl radical.

Generic empirical ratios have also been used to extrapolate
degradation half-lives between different environmental media
when chemical-specific experimentally derived data are not
available. Fenner et al.104 recommended the use of a ratio of
1:2:10 for the extrapolation of degradation half-lives between
water, surface soil (aerobic), and sediment (anaerobic) in
screening-level assessments. Also, other extrapolation factors
such as 1:1:4 (Boethling et al.105) and 1:2:9 (Aronson et al.106)
have previously been proposed for screening purposes.

It should be cautioned that the use of such generic values is a
measure of practical expediency because they merely reflect the
central tendency of values of a wide range of chemicals. The
“true” values for a specific chemical may deviate substantially
from the central tendency. For instance, while internal energies
of solvation are often assumed to be 20 and 0 kJ/mol for water
(ΔUW) and octanol (ΔUO), highly hydrophobic and bulky
molecules, e.g., heptachlorodibenzo-p-dioxin, may have neg-
ative values of ΔUW.94 Therefore, the use of generic empirical
values is justified only if the data availability is limited and if
the range of the value is known to be narrow. And it does not
discourage the search for further chemical-specific scientific
understanding.
Empirical Correlations

Chemical properties that are environmentally or biologically
relevant but often demanding or uncertain to determine, can
also be calculated using empirical correlations, based on
properties called descriptors that can be more accurately and
reliably measured with standard methodologies in laboratories.
For instance, a sp-LFER correlates an environmentally or
biologically relevant partition ratio with KOW, KAW, or KOA.
Underlying the sp-LFER practice is a reductionistic assumption
that the partitioning of chemicals between environmental
media can be simplified mainly as the partitioning within the
air−water-octanol system. Likewise, Fenner et al.107 proposed
an empirical relationship correlating the biodegradation half-
life in soil with the biodegradation half-life in active sludge
from municipal wastewater treatment plants, given that the
latter can be readily determined with standard methodologies.
One can also estimate the molar enthalpy or internal energy of
vaporization of liquids and subcooled liquids from VP or KOA of
non-hydrogen bonding liquids and subcooled liquids, based on
Trouton’s rule.108,109 Table 2 compiles published sp-LFERs for
properties widely used in chemical assessments.T
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The literature is full of examples where such empirical
correlations feature divergent numerical values. A well-
recognized example is the Karickhoff relationship,110−113

which calculates KOC from KOW and has been reported in
many different forms (Table 2). One reason is that the
correlations are derived from different empirical data sets, even
those with low-quality or erroneous measurements, using
different regression settings (for instance, with or without a
regression intercept). The earliest form of the Karickhoff
relationship, KOC = 0.411 × KOW, was derived from the
observed sorption of five polycyclic aromatic hydrocarbons on
organic matter-rich sediment,111 whereas a later, more
comprehensive analysis of 117 datapoints of neutral,
moderately to highly hydrophobic chemicals (log KOW < 7.5)
yielded KOC = 0.35 × KOW.112 Before using an empirical
correlation, one is advised to check the training set for the
specific applicable categories of chemicals in terms of
hydrophobicity, polarity, planarity, and ionization.114−116 For
example, the Karickhoff relationship may overestimate the
sorption of superhydrophobic chemicals because of kinetic
limitations to establishing equilibrium partitioning.112,117

Another reason is that the predicted chemical property is
inherently variable under environmentally and biologically
relevant conditions. For example, since variability in soil
organic matter can cause KOC of the same chemical to vary

substantially, it has been recommended to express the
Karickhoff relationship as a distribution bounded by the
upper and lower limits of KOC = 0.89 × KOW and KOC = 0.14 ×
KOW, respectively, rather than discrete numbers derived from
one of the many empirical correlations.112 In this case, the use
of KOC = 0.35 × KOW gives central tendency estimates, with
error bounds of a factor of 2.5.112

To address the issue of the limited applicability domain of
sp-LFERs, environmental chemists attempt to incorporate
more descriptors into the empirical correlations. A successful
example is pp-LFERs, which express partition ratios and molar
enthalpies of phase change as a linear, weighted combination of
a series of Abraham solute descriptors, including polarizability/
dipolarity parameter (S), solute hydrogen-bond acidity (A),
and solute hydrogen-bond basicity (B), as well as McGowan
molar volume (V; optional), excess molar refraction (E;
optional), or hexadecane−air partition ratio (L; option-
al).114,128,129 These solute descriptors are chemical-specific
and can be experimentally determined or calculated (e.g., by
QSARs/QSPRs, as elaborated below) for most environmental
pollutants; the UFZ-LSER database (www.ufz.de/lserd)
includes experimentally determined values for over 2000
chemicals,128 and the ACD/Absolv software includes exper-
imentally determined values for over 5000 chemicals. Each
partitioning system has a set of coefficients, called system

Figure 2. Variability in literature-reported experimentally derived (at a temperature between 20 and 25 °C; blue bars) and in silico predicted (pink
bars) KOW (a) and KOA (b) for 76 investigated neutral organic chemicals. The final adjusted values of these chemicals are displayed as red dots for
comparison. The variation is missing for some chemicals because only a single laboratory measurement is available from the literature. Here, KOW
values are predicted with the KOWWIN module within EPI Suite, OPERA, pp-LFER (with Abraham solute descriptors predicted by IFS-QSAR),
MlogP, AlogP, SPARC, and COSMOtherm. KOA values are predicted with the KOAWIN module within EPI Suite, OPERA, pp-LFER (with
Abraham solute descriptors predicted by IFS-QSAR), and COSMOtherm. For numeric results, see Supporting Information Table S2.
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constants, that is calculated by calibration against experimen-
tally derived data in a training set.

Table 3 aggregates published pp-LFERs for partition ratios
broadly used in chemical assessments. The UFZ-LSER
database includes a more comprehensive list of pp-LFERs.
Compared to sp-LFERs, pp-LFERs have several advantages for
use in chemical assessment:114,128,129 (1) pp-LFERs are not
limited to certain categories of chemicals and have a wider
applicability domain, but they are not any more challenging to
use than sp-LFER; (2) predictions from pp-LFERs have been
demonstrated to agree well with experimentally determined

data; and (3) the combination of each solute descriptor and
the associated system coefficients mechanistically reflects a
certain intermolecular interaction between chemical and the
solvating phases, and its magnitude indicates the relative
importance of this interaction in the overall partitioning. For a
more wholesome discussion of pp-LFERs, we refer to the
reviews by Goss and colleagues.114,128,129 It should also be
noted that pp-LFERs may be evolving as more diverse,
heterogeneous chemical categories become incorporated in the
calibration set. Various versions of pp-LFER equations are
available in the literature, and some versions may be

Table 2. Examples of Empirical Correlations for Predicting the Partitioning in Environmentally or Biologically Relevant
Systems from a Chemical’s Vapor Pressure, Water Solubility, or Partition Ratios

chemical property empirical correlation ref

(I) properties involving pure phases
vapor pressure (PL in

Pa)
log KOA = (−0.988 ± 0.006), log PL + (6.691 ± 0.017) (N = 222, log KOA from −1 to 12, R2 = 0.99) 118

KOA ≈ 106.7/PL (the same data set above) 119
water solubility (SW in

mol/L)
the “general solubility equation”: log KOW = 0.373 − 0.009 (MP − 25) − 0.978 × log SW, where MP denotes the melting point (in

°C; MP = 25 for MP < 25) (N = 1026, log KOW from −2 to 11, R2 = 0.96)
120

KOW ≈ 100.42/SW (the same data set above)
(II) properties involving environmentally or biologically relevant phases
organic carbon−water

(KOC in L/kg)
the Karickhoff relationship: KOC = 0.411 × KOW (N = 5, log KOW from 2.12 to 5.18, R2 = 0.994) 111

log KOC = 0.81 × log KOW + 0.09 (N = 118, log KOW from 1.25 to 7.32, R2 = 0.89) 112
log KOC = 0.679 × log KOW + 0.663 (N = 419, heterogeneous training set, including 20 acids, R2 = 0.912) 113

phospholipid−water
(Kplip‑water)

log Knlip‑water = 1.01 × log KOW + 0.12 (N = 156, log KOW from −2.3 to 8.5, R2 = 0.948) 121

protein−water
(Kprotein‑water)

log Kprotein‑water = 0.73 × log KOW − 0.39 (N = 46, log KOW from 1.3 to 6.2, R2 = 0.86) 122

polymeric material−air
(KPA)

KPA = 0.06 × KOA (N = 1273, log KOA from 2.0 to 18.7, R2 = 0.86, RMSE = 1.21) 123

polymeric material−
water (KPW)

KPW = 0.06 × KOW (N = 1273, log KOW from −0.95 to 9.5, R2 = 0.78, RMSE = 1.21) 123

aerosol−air (KPA in
m3/μg)

log KPA = log KOA + log fm − 11.91, where fm is the organic fraction of the aerosol (N = 59, log KOA from approximately 8 to 12.5) 124

dust−air (KDA) log KDA = 0.860 × log KOA − 0.086 (N = 66, log KOA from 7.5 to 13.1, R2 = 0.78) 13
carpet−air (KCA) log KCA = 0.931 × log KOA − 2.408 (N = 8, log KOA from 1.98 to 4.28) 13
vinyl flooring−air

(KVA)
log KVA = 0.688 × log KOA − 0.693 (N = 13, log KOA from 2.74 to 8.67, R2 = 0.80) 13

cotton−air (KCA) log KCA = 0.248 × log KOA + 4.447 (N = 13, log KOA from 7.97 to 12.2, R2 = 0.545) 125
steel−air (KSA in m) log KSA = 0.216 × log KOA + 1.420 (N = 7, log KOA from 10.7 to 14.5, R2 = 0.62) 126
organic film−air (KFA) log KFA = 1.100 × log KOA − 0.540 (N = 62, log KOA from 6.8 to 10.6, R2 = 0.84 − 0.98) 127

Table 3. System Constants of Poly-Parameter Linear Free Energy Relationships (pp-LFERs) for Calculating Partition Ratios
and Enthalpiesa

e s a b v l constant ref

(I) properties involving pure phases
octanol−air partition ratio (KOA) at 25 °C 0.42 3.52 0.84 0.92 −0.12 131
octanol−water partition ratio (KOW) at 25 °C −1.41 −0.18 −3.45 2.41 0.43 0.34 26
air−water partition ratio (KAW) at 25 °C −2.07 −3.67 −4.87 2.55 −0.48 0.59 132
octanol−air transfer enthalpy (ΔHOA in kJ/mol) 6.04 −53.66 −9.19 1.57 −9.66 −6.67 133
octanol−water transfer enthalpy (ΔHOW in kJ/mol) 5.31 −20.1 34.27 18.88 −8.26 1.74 b
air−water transfer enthalpy (ΔHAW in kJ/mol) −0.73 33.56 43.46 17.31 1.40 8.41 133
(II) properties involving environmentally or biologically relevant phases
organic carbon−water (KOC in L/kg) at 25 °C −0.98 −0.42 −3.34 1.20 0.54 0.02 134
storage of lipid−water (Knlip‑water) at 37 °C 0.70 −1.08 −1.72 −4.14 4.11 −0.07 135
phospholipid−water (Kplip‑water) at 37 °C 0.74 −0.72 0.11 −3.63 3.30 0.29 121
protein−water (Kprotein‑water) at 37 °C 0.51 −0.51 0.26 −2.98 3.01 −0.65 122
polymeric material−air (KPA) at 25 °C −0.1 2.4 −0.4 −2.3 1.4 −0.2 123
polymeric material−water (KPW) at 25 °C −0.9 −2.7 −3.9 0.8 0.7 −0.9 123

aThe pp-LFERs share the general form, log K = s × S + a × A + b × B + e × E + v × V + l × L + constant. bCalculated from ΔHOA and ΔHAW in
this table.
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constrained if certain chemical categories, such as PFASs and
organosilicons, are missing from the training set.130

QSARs/QSPRs
Several QSAR/QSPR prediction tools are currently available
for free for predicting chemical properties commonly used in
chemical assessment, including the Abraham solute descriptors
used for parametrizing pp-LFERs (Table 4), such as the

Estimation Programs Interface (EPI) Suite,136 OPEn struc-
ture−activity/property Relationship App (OPERA),137 QSAR-
INSubria-Chem (QSARINS-Chem),138,139 and Iterative Frag-
ment Selection (IFS-QSAR).140−143 In addition to these free
prediction tools, proprietary software, such as ACDLabs and
SPARC, can be used to make predictions. While all these tools
predict chemical properties based on the extrapolation or
interpolation of experimentally derived data for chemicals in a
training set, they utilize different algorithms for extrapolation
or interpolation. For example, the QSARs/QSPRs in EPI Suite
are largely atom/fragment contribution methods,144 which

segment a molecular structure into atoms or structural
fragments, sum the products of predefined constant
coefficients for individual atoms/fragments with the number
of occurrences of the atoms/fragments in the molecule to
obtain an estimate of the property value, which, if necessary, is
corrected for certain preidentified structural arrangements. The
QSARs/QSPRs developed with the IFS algorithm also rely on
the fragmentation of a molecular structure, but this algorithm
automatically selects a minimum subset of the most influential
fragments and combines them as the final estimate of the
property value.140−142 Instead of using atoms and structural
fragments, QSARs/QSPRs in QSARINS-Chem first calculate a
series of more holistic molecular descriptors (e.g., the states of
mono- and/or bidimensional conformations) and fingerprints,
select the most statistically relevant descriptors using the
genetic algorithm, and then linearly combine their values as the
final estimate of the property value, with coefficients calibrated
from the training set using multivariate linear regression.138,139

Like QSARINS-Chem, OPERA also starts with calculating
molecular descriptors, but it selects the five chemicals that are
most structurally similar to the chemical of interest (“the five
nearest neighbors”) from the training set and predicts the
property value by averaging the experimentally determined
values of these five chemicals weighted by their proximity (the
distance in the chemical space).137

One needs to exercise caution when using and interpreting
QSAR/QSPR predictions. First, since not all QSARs/QSPRs
are of the same quality, their predictions are not equally
credible or reliable. Preference should be given to QSARs/
QSPRs that have been well-validated based on the OECD
Guidance Document on the Validation of (Q)SAR Models145 and
provide detailed documentation of key information in
compliance with the QSAR Model Reporting Format. Second,
one must ensure that the QSAR/QSPR prediction matches
exactly the property required by the chemical assessment, that
is, the QSAR/QSPR is “fit-for-purpose”.146 For instance, since
most QSARs/QSPRs do not consider chemical dissociation
and stereochemistry, the predictions can only be used as values
for the neutral form of a chemical without discrimination
between stereoisomers. Likewise, since most chemical assess-
ment models require half-lives for primary biodegradation
(that is, the disappearance of the parent compound), one
needs to avoid the misuse of the QSAR/QSPR predictions for
ultimate biodegradation (that is, the complete breakdown of all
organic carbons into carbon dioxide or methane).

Third, it is important to know whether a prediction falls
within the applicability domain (AD) of a QSAR/QSPR.146

The AD describes the coverage of the training set, or the
structural and property space, in which a QSAR/QSPR makes
predictions by interpolation rather than extrapolation.145,147

The determination of whether a chemical of interest falls
within the AD of a QSAR/QSPR is based on the similarity
between this chemical and the chemicals in the training set. A
chemical being within the AD indicates the compliance of the
QSAR/QSPR’s specifications with the intended use case, and
therefore, the use of the QSAR/QSPR is legitimate and
suitable.147 Statistically speaking, restricting the use of a
QSAR/QSPR to its AD generally improves its predictive
performance.23 However, a chemical being within the AD does
not necessarily indicate or guarantee the reliability or accuracy
of every single prediction. For instance, the “five nearest
neighbors” algorithm by OPERA predicts a chemical property
as the weighted average of the experimentally determined data

Table 4. Calculation of Chemical Properties by Commonly
Used Nonproprietary QSAR/QSPR Tools (“Y” = Predicted;
“N” = Not Predicted)

EPI
Suite OPERA

IFS-
QSAR

QSARINS-
Chem

output of applicability domain
information

Na Y Y Y

Abraham solute descriptors N N Y Y
chemical properties
boiling point Y Y Y N
melting point Y Y Y N
KOW, KOA, KAW Y Y Yb N
KOC Y Y Yb Y
vapor pressure Y Y Y N
water solubility Y Y Y N
dissociation constants (pKa or

pKb)
N Y N N

reaction with the hydroxy
radical

Y Y N Y

reaction with ozone Y N N Y
biodegradation Yc Y N N
hydrolysis Yd N N N
biotransformation in fish Y Y Y Y
biotransformation in humans N N Y Y
aEPI Suite does not provide explicit information on the applicability
domain. Instead, EPI Suite documentation provides general guidance
to identify “less reliable predictions”, including chemicals that (i) are
outside the experimental range of the training set, (ii) are outside the
range of molar mass of chemicals in the training set, (iii) have more
instances of a given fragment than the maximum among all chemicals
in the training set, and/or (iv) contain structural features not
represented in the training set.136 One can develop an “in-house”
method to determine whether a prediction is within the applicability
domain.8 bIFS-QSAR can predict Abraham solute descriptors
(without discriminating between isomers), which can be combined
with system constants for the prediction of partition ratios. One can
also use experimentally derived Abraham solute descriptors to predict
partition ratios; in this case, if isomer-specific Abraham solute
descriptors are used, then the pp-LFER can provide isomer-specific
predictions. cEPI Suite calculates the probability of primary
biodegradation, which can be extrapolated to the biodegradation
half-life using an empirical relationship by Arnot et al.152 dOnly acid-
and base-catalyzed hydrolysis are considered; the prediction tool does
not estimate neutral hydrolysis rate constants.
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of the five most structurally similar chemicals in the training
set. Such an averaging operation prevents any predictions from

exceeding the upper bound of the training set. For chemicals
structurally similar to chemicals constituting the upper bound

Figure 3. Consensus values (arithmetic means of log-transformed values) of QSAR/QSPR predictions of octanol−water (KOW) and octanol−air
(KOA) partition ratios, fish biotransformation half-life (HLB,fish; normalized to a body weight of 10 g), and primary biodegradation half-life
(HLbiodeg), with and without excluding predictions outside the applicability domains (ADs) of the corresponding QSARs/QSPRs. Diagonal dashed
lines indicate perfect agreement between two sets of consensus values, and dotted lines indicate an order-of-magnitude discrepancy between two
sets of consensus values. Here, KOW values are predicted with the KOWWIN module within EPI Suite, OPERA, pp-LFER (Abraham solute
descriptors predicted by IFS-QSAR), MlogP, AlogP, SPARC, and COSMOtherm. KOA values are predicted with the KOAWIN module within EPI
Suite, OPERA, pp-LFER (Abraham solute descriptors predicted by IFS-QSAR), and COSMOtherm. HLB,fish values are predicted with OPERA,
IFS-QSAR, and QSARINS. HLbiodeg values are predicted with EPI Suite (half-lives converted from the predicted primary biodegradation
probabilities according to Arnot et al.152) and OPERA. Since no AD information is available for EPI Suite, we develop an “in-house” method to
determine whether a prediction is within the AD of EPI Suite based on the description in the EPI Suite technical documentation (see the footnote
of Table 4). Since no AD information is available for SPARC and COSMOtherm, we do not consider them to be within the AD. In addition, a pp-
LFER prediction is deemed to be within the AD if all the predicted Abraham solute descriptors are within the ADs of both the pp-LFER
equations156 and IFS-QSAR.143
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of the training set but with their “true” values beyond the
upper bound, the algorithm would identify them as being
within the AD but underpredict their values. A case is BDE-
183 (with a log KOA FAV of 12.16; Figure 2): while it is
identified as being within the AD because it is structurally
similar to five chemicals in the OPERA training set, OPERA
underestimates its log KOA (11.69) because the FAV exceeds
the maximum log KOA (defined by octachlorodibenzo-p-dioxin;
log KOA = 12.05) among its five nearest neighbors, and even
the maximum log KOA in the entire training set (1-eicosanol;
log KOA = 12.06). In fact, 1-eicosanol sets a cap of
approximately 12 for all of OPERA’s log KOA predictions.
This case demonstrates that predictions within the AD should
not be unconditionally trusted. Conversely, a prediction may
be located outside the AD but can still be reliable or
accurate.145 Furthermore, the definition of AD differs among
QSARs/QSPRs and depends closely on the data structure of
the training set.

Lastly, one needs to recognize the uncertainty associated
with experimentally derived values in the training set. The
quality of the experimentally derived data may also be
questionable because of errors in data selection and curation
(see a list of common errors summarized by Dearden et al.148).
Overall, a QSAR/QSPR’s mathematical extrapolation or
interpolation approach adds uncertainty to the predictions
beyond the uncertainty inherent in the training set.149 To
address this limitation, property prediction techniques based
on quantum chemistry and statistical thermodynamics, e.g.,
COSMOtherm, serve as an ideal complement because they
rarely, or to a very limited extent, rely on experimentally
derived data. Recent studies have demonstrated that
COSMOtherm performed almost as well as QSARs/QSPRs
based on training sets in predicting partition ratios and internal
energies, with the exception of the internal energy change for
dissolution in water.131,150,151 Nevertheless, COSMOtherm
calculations usually require a long time and intensive
computational power because they rely on 3D geometry
optimization of the molecular structure, which limits the use of
this approach in high-throughput chemical screening.

When multiple QSAR/QSPR predictions are available for a
single property, the mean (e.g., geometric, arithmetic,
harmonic, or least-squares mean) or other central-tendency
estimates, referred to as the “consensus value”, are recom-
mended as a reasonable estimate to combine the battery of
QSAR/QSPR predictions for chemical assessments.23,153,154

Such a practice rests on the assumption that QSARs/QSPRs
building on different algorithms may consider, or assign
different weights to, different particular molecular structures or
descriptors and that errant predictions can, therefore, be
mitigated by predictions from other models.155 A systematic
comparison between 15 QSAR models for aqueous toxicity
indicated superior predictivity of consensus values when
compared to individual models.23 Notably, the calculated
consensus values were fairly consistent regardless of whether or
not predictions outside the AD of the QSARs were excluded
from the calculation. Those authors, therefore, concluded that
the use of AD was “less important” for consensus modeling, at
least for the specific data set used in their work, and called for
more tests on additional data sets.23

As an example, Figure 3 compares the consensus values
(arithmetic means) of log KOW, log KOA, log HLB,fish, and log
HLbiodeg predictions for the 76 investigated neutral organic
chemicals, with and without considering the coverage of each

prediction by the AD of each QSAR/QSPR. For chemicals
falling within the AD of at least one QSARs/QSPRs, the two
sets of consensus values agree generally well, with the
discrepancy within an order of magnitude. As such, it makes
little difference for the calculation of consensus values whether
AD is considered or not. An exception is the calculated
consensus value of log KOA for BDE-183, where the
consideration of AD generates a value (11.69) that is 1.66
log units lower than that obtained when disregarding AD
(13.34). This is because BDE-183 only falls within the AD of
OPERA, whose predictions are capped at approximately 12, as
discussed above. Likewise, the calculated consensus values of
log HLB,fish for 4:2 FTOH and 6:2 FTOH are 1.2 and 1.8 log
units lower if AD is considered, as these two chemicals fall only
within the AD of the IFS-QSAR, whose predictions (HLB,fish =
1.2 h for both chemicals) are much shorter than predictions by
OPERA (3 and 14 h, respectively) and QSARINS-Chem (76
and 763 h, respectively). Overall, the consideration of AD may
lead the consensus value to skew toward a single model’s
prediction. Interestingly, if comparing the log KOA consensus
values with the FAV of BDE-183, one can conclude that the
consideration of AD gives slightly better agreement with the
FAV (12.16; Figure 2). However, no measurement is available
for evaluating whether this is also the case for log HLB,fish. We
cannot exclude the possibility that the only working QSAR/
QSPR may give unsatisfactory predictions because the AD
does not guarantee the accuracy of the prediction. Also, the
consideration of AD precludes hexabromocyclododecane
(HBCDD) isomers, PFASs, and certain pesticides and
organophosphates from the calculation of consensus values
of log KOA, log HLB,fish, and log HLbiodeg, respectively, because
they fall outside the ADs of all QSARs/QSPRs used here.
Integrated Online Platforms

With the development of cloud storage and computing,
integrated online platforms become available for efficiently
obtaining chemical property data. Examples of these integrated
online platforms include PubChem (developed and maintained
by the U.S. National Institute of Health), ChemSpider
(developed and maintained by the U.K. Royal Society of
Chemistry), CompTox (developed and maintained by the U.S.
Environmental Protection Agency), ChemIDplus (developed
and maintained by the U.S. National Library of Medicine),
eChemPortal (developed and maintained by OECD), the
REACH registered substances database (developed and
maintained by the ECHA), and EAS-E Suite (developed and
maintained by ARC Arnot Research & Consulting). In
addition to these integrated online platforms, SciFinder,
developed and maintained by the Chemical Abstracts Service,
is also a useful online tool for mining chemical property data
based on its huge number of chemical and bibliographic
records.

The main advantage of these online platforms is that they
store, organize, and integrate chemical data (e.g., physical−
chemical properties, environmental fate, biomonitoring,
toxicokinetic data) for thousands of compounds in online
databases that users can query and retrieve desired
information. The platforms are generally provided with an
interactive graphical user interface that helps users in browsing
and searching data. In general, compounds can be searched by
the CAS Registration Number and/or name (IUPAC and
common names). Some platforms allow the use of other
identifiers such as DSSTox substance identifier (DTXSID), or
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structural information such as the International Chemical
Identifier (InChI) Key, and Simplified Molecular Input Line
Entry System (SMILES).157 These online platforms store
compiled and curated experimentally derived data, which are
collected from multiple sources through aggregation and
standardization. For instance, PubChem integrates measured
chemical property data in the Hazardous Substance Data Bank,
ILO International Chemical Safety Cards, and the Occupa-
tional Safety and Health Administration data, whereas
CompTox integrates chemical property data in the PhysProp
data set with environmental fate, exposure and toxicokinetic
data. The online platforms also contain empirical correlations
and QSARs/QSPRs to allow computation of chemical
property data, allowing users to make predictions for chemicals
that are not immediately included in the curated databases. For
example, CompTox integrates predictions of OPERA, EPI
Suite, ACD/Laboratories, and Toxicity Estimation Software
Tool, and EAS-E Suite contains predictions of EPI Suite,
OPERA, IFS-QSAR, and QSARINS-Chem. Therefore, these
online platforms link experimentally derived data and in silico
predictions and, therefore, aggregate and connect scientific
information from different fields. This is relevant in the context
of risk assessment and chemical evaluation as these platforms
represent places where curated data and metadata can be easily
retrieved and compared.

Moreover, these online platforms include curated structural
information such as InchIKey and/or SMILES that can be
downloaded and used to obtain predictions from QSPRs or
QSARs. For instance, for each chemical, CompTox contains a
standardized “QSAR-ready” SMILES string subject to
“kekulization” (i.e., the localization of double bonds in
aromatic rings),158 whereas EAS-E Suite includes a stand-
ardized canonical SMILES string that is compatible with the
IFS-QSAR input requirement.

Another main advantage of the online integrated platforms is
that they are actively maintained and periodically updated. The
integrated online platforms are of value for scientific and
regulatory communities; they also benefit from these
communities because users can help improve the system by
submitting new data and reporting bugs or errors.

It needs to be kept in mind that these online platforms may
contain inaccuracies or errors since they are secondary sources
aggregated and curated from other databases and publica-
tions.159−162 Examples include mismatched chemical identifiers
(e.g., a CAS Registry Number or name is incorrectly assigned
to one or more irrelevant structures), incorrectly reported
chemical structures (e.g., omitting stereochemistry or
tautomerization), duplicated data, and uninterpretable data
due to a lack of additional relevant information. Efforts to
address such inaccuracies and errors are already in place, and
many online platforms have implemented systems to filter and
validate their data. For instance, ChemSpider has established a
daily curation feed to summarize the validation and deletion
operations of name-structure relationships.159 Other data
curation workflows have been developed to check and verify
chemical information automatically retrieved from the data-
bases.158,163

■ VARIABILITY AND UNCERTAINTY IN CHEMICAL
PROPERTIES

Both experimentally derived data and in silico predictions can
be retrieved from multiple sources, and therefore, the values
may cover wide ranges. This is even the case for properties
related to the air−water−octanol system, which can be
measured using test standards and guidelines and, therefore,
should theoretically have single “true” values. With the
illustrative cases of partition ratios, Figure 2 compares the

Figure 4. Comparison between the final adjusted values of laboratory measurements and consensus values (arithmetic means of log-transformed
values) of in silico predictions (without excluding predictions outside corresponding ADs) for the 76 investigated neutral organic chemicals.
Chemicals with a difference of greater than 1 order of magnitude are identified by their names. Diagonal dashed lines and dotted lines indicate
perfect agreement and an order-of-magnitude discrepancy, respectively, between FAVs and in silico consensus values. See the caption of Figure 2
for in silico prediction tools used to calculate KOW and KOA.
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FAVs of the log KOW and log KOA of the 76 investigated neutral
organic chemicals against the ranges of the collected
experimentally derived data (without excluding data identified
to be erroneous, unreliable, or of low quality and excluded
from the calculation of FAVs) and the ranges of predictions by
the in silico tools used in this paper (without excluding
predictions outside the ADs). The range is particularly large
among log KOW measurements for organosilicons (Figure 2a)
and among log KOA measurements for organophosphates and
fluorotelomers (Figure 2b). The great variability in exper-
imentally derived data results mainly from differences in
measurement technique, different data quality and reliability, as
well as inter- and intra-laboratory variations, as elaborated in
earlier sections. On the other hand, in silico predictions are
also subject to the variability of nearly 2 orders of magnitude
(Figure 2) because different empirical correlations and
QSARs/QSPRs build on different training sets and adopt
distinct algorithms. The discrepancy between predictions is the
largest for chemicals with little overlap with the ADs of the
QSARs/QSPRs, such as highly brominated diphenyl ethers,
HBCDD isomers, endosulfan isomers, and organosilicons
(Figure 2).

For the 76 investigated neutral organic chemicals (Table
S3), OPERA is the best at reproducing the log KOW FAVs (R2

= 0.902; root-mean-square deviation or RMSE = 0.478 units),
followed by COSMOtherm (R2 = 0.865; RMSE = 0.557 units)
and the KOWWIN module in EPI Suite (R2 = 0.846; RMSE =
0.757 units). The pp-LFER with solute descriptors predicted
by IFS-QSAR is best at reproducing the log KOA FAVs (R2 =
0.931; RMSE = 0.784 units), compared to the KOAWIN
module in EPI Suite (R2 = 0.879; RMSE = 0.843 units) and
OPERA (R2 = 0.873; RMSE = 0.780 units). These
comparisons indicate that certain laboratory measurements
or in silico predictions may depart far from the FAVs. As such,
arbitrary selection of laboratory measurements or in silico
predictions, without a comprehensive examination of their
quality and consistency, may bring about substantial biases in
chemical assessments.

As elaborated earlier, the FAVs represent harmonized central
tendencies of experimentally derived data, and the consensus
values represent harmonized central tendencies of in silico
predictions regardless of the exclusion of predictions outside of
the ADs. Figure 4 displays that the FAVs agree well with the
consensus values (arithmetic means of log-transformed values
in this case), with a discrepancy within an order of magnitude,
for most of the 76 neutral organic chemicals investigated here.
Statistically, the consensus values agree better with the FAVs
for both log KOW (R2 = 0.907 and RMSE = 0.472 units) and
log KOA (R2 = 0.935 and RMSE = 0.573 units) than any of the
predictions by individual QSARs/QSPRs (Table S3). Interest-
ingly, the combined use of the two best performing models
(OPERA and COSMOtherm), instead of all, gives even better
performance for predicting log KOW (R2 = 0.930 and RMSE =
0.404 units), whereas the combined use of the three best
performing models (pp-LFER, EPI Suite, and OPERA) give
slightly better performance for predicting log KOA (R2 = 0.946
and RMSE = 0.531 units). Therefore, it is not necessary to use
all available in silico prediction tools in the calculation of
consensus values. As Table S4 shows, such agreement is
apparent not only for the “traditional” nonpolar, semivolatile
chemicals such as organochlorines (RMSE of 0.357 and 0.359
units for log KOW and log KOA, respectively, N = 34) and PAHs
(RMSE of 0.190 and 0.560 units for log KOW and log KOA,

respectively, N = 15) but also for “emerging” chemicals such as
the polar neutral PFASs (RMSE of 0.881 and 0.495 units for
log KOW and log KOA, respectively, N = 6) and the highly
volatile organosilicons (RMSE of 0.374 and 0.099 units for log
KOW and log KOA, respectively, N = 3). Hence, we believe that
the use of consensus values of in silico predictions in chemical
assessment models is justified and defensible, if experimentally
derived data are missing, inadequate, flawed, or lacking
reported uncertainty information for the chemical of interest.
Such a conclusion is important because the use of in silico
predictions is often unavoidable for premanufactured chem-
icals or chemicals in design and for model-based high-
throughput chemical screening and prioritization.7,8 In
addition, Table S5 shows that arithmetic and harmonic
means of log-transformed values show similar agreement
with the FAVs, and the arithmetic means of nontransformed
values perform less satisfactorily in reproducing the FAVs
because they tend to be biased by high extreme values. The use
of different types of means (e.g., geometric, arithmetic, or
harmonic) in calculating the consensus values of different
chemical properties also warrants considerations in the
statistical distribution of in silico predictions,164 the nature of
the properties,44,164 and the intended context of chemical
assessments (e.g., whether conservativeness is desired).165

Previously, Puzyn149 found that for 12 organochlorines and
hydrocarbons, the OECD POV and LRTP Screening Tool makes
consistent predictions for their potential for persistence and
long-range transport, regardless of whether the model was
parametrized with experimentally derived or QSAR/QSPR-
predicted partition ratios and half-lives. The author, therefore,
“strongly recommend[ed] revising the OECD recommenda-
tions that give the highest priority to the application of purely
empirical data in environmental mass balance modeling”.149

Likewise, Tebes-Stevens et al.154 recommended that “without
adequate data to perform a rigorous comparison of individual
calculator performance against measured data, the geometric
mean and the median of the predicted values from multiple
calculators provide more robust estimates of the property value
than any individual calculator.”

Figure 4 also displays exceptions. For KOW, the consensus
values deviate from the FAVs by 1.36 and 1.26 log units for α-
and β-HBCDDs, 1.04 log units for BDE-183, and 1.62 log
units for the neutral form of PFOA. For KOA, the consensus
values deviate from the FAVs by 1.60 to 1.79 log units for
HBCDD isomers, and 1.08 log units for BDE-183. Here,
HBCDDs and BDE-183 fall outside the ADs of almost all of
the QSARs/QSPRs used here. KOW predictions for the neutral
form of PFOA fall within the ADs of OPERA (predicted log
KOW = 3.11) and AlogP (predicted log KOW = 3.81); these
values are closer to the FAV (2.80) compared to their
counterparts outside the AD (5.21 by pp-LFER, 4.81 by EPI
Suite, and 4.17 by MlogP). However, the opposite is seen for
β-endosulfan: although KOA predictions are located in the ADs
of OPERA (predicted log KOA = 8.81) and EPI Suite
(predicted log KOA = 6.41), the pp-LFER prediction that is
outside the AD (9.45) performs much better in reproducing
the FAV (9.53). Due to the small sample size, we cannot arrive
at a general conclusion as to whether the exclusion of in silico
predictions outside of the AD from the consensus estimate can
give consensus values that agree better with the FAVs than the
consensus estimate without such exclusions.

As originally conceived, LDVs, and therefore also the FAVs
derived from them, are exclusively based on experimentally
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derived data.9,94,95,99,100,166,167 However, more recent efforts
reinterpreted the definition of LDVs by incorporating and
tuning in silico predictions with laboratory measure-
ments.150,168 We disagree with this reinterpretation of the
LDV/FAV concept for primarily two reasons. First, since many
in silico prediction tools are developed through calibration
against laboratory measurements, the results of these
prediction tools inherit the uncertainty in the laboratory
measurements and are not necessarily independent of
laboratory measurements. Notably, for chemicals in the
training sets of in silico prediction tools, the in silico
predictions may even be close or identical to the laboratory
measurements used to construct the in silico tools, which is
especially the case of tools based on the “nearest neighbors”
method such as OPERA. As such, including these in silico
predictions duplicates the laboratory measurements in the
calculation of LDVs and, somewhat, biases the calculated
LDVs toward these laboratory measurements. Second, while
many in silico predictions are internally consistent, such an
internal consistency is ostensible because the tools actually
adopt the internal consistency assumption, rather than
independent algorithms, to predict properties from other
predicted properties. An example is that EPI Suite calculates
KOA as the ratio of independent predictions of KOW and KAW.
Such KOA predictions do not add independent information to
the adjustment of FAVs, and moreover, if KOW and KAW
predictions are biased, then the biases will be propagated to
make KOA predictions highly uncertain. In this paper, we
therefore advocate for, and adopt, the original definition of the
LDVs as being solely based on experimental data.

■ RECOMMENDATIONS FOR CHEMICAL
ASSESSMENTS

Both, experimentally derived and in silico predicted chemical
properties, are subject to considerable uncertainty, which is
readily apparent from the variability in the values obtained
from different studies. Importantly, not all experimentally
derived data share the same quality and reliability, and
therefore, they are not always superior to in silico predictions.
On the other hand, in silico derived values may be limited by
the applicability and predictivity of the prediction tools. The
use of randomly or arbitrarily selected experimentally derived
data or in silico predictions can introduce significant
uncertainty and even errors to the assessments of chemical
emissions, fate, hazard, exposure, and risks.

All things considered, for reliable and defensible chemical
assessments, we recommend using either carefully selected
LDVs (or FAVs), if a sufficient number of reliable laboratory
measurements of a chemical’s property is available, or the
consensus values of multiple in silico prediction tools, if the
data pool from laboratory measurements is not adequate and if
there is no particular reason to believe that one prediction
method is better than the others. This is because a single
laboratory measurement may suffer from unknown uncertainty,
inconsistency, bias, and even error, and on the other hand,
different in silico tools build on distinct training sets, employ
different prediction algorithms, and therefore demonstrate
suitability for different parts of the chemical space.
Harmonization of multiple experimentally derived data or in
silico predictions is most likely to give reasonable estimates for
chemical properties. In cases where only a single experimental
measurement is available, it can be used for chemical
assessments if its quality is evaluated to meet the requirements

of quality control and assurance. Also, the LDVs (or FAVs)
can be used as standards to examine the predictivity of
different in silico prediction tools, whereas the consensus
values can also guide the selection of laboratory measurements
to derive the most reasonable LDVs or FAVs. The evaluation
of chemical properties is not necessarily a linear procedure;
rather, it requires the iteration between laboratory measure-
ments and in silico predictions. Table S6 shows different
scenarios of how harmonized FAVs respond to the selection of
laboratory measurements for deriving LDVs and how the
consensus values of multiple in silico prediction tools inform
the plausibility of the harmonized FAVs. Such an iterative
procedure cannot be achieved without individual precise,
accurate laboratory measurements and the constant improve-
ment and development of in silico prediction tools.

To date, while the use of LDVs (or FAVs) has been
recognized, recommended, and practiced by a series of model-
based chemical assessments,9,96,100,167 the use of consensus
values of in silico predictions is still limited. Recently, Li et al.8

developed a workflow of auto-parameterization of chemical
emission, fate, exposure, and risk models using the consensus
values of QSARs/QSPRs. The auto-parameterized model
succeeded in reproducing the inferred U.S. general population
exposure estimates, with 79 and 97% of the predictions
deviating from the observation-based inferences by a factor of
10 and 100.8 This case demonstrates the appealing application
of consensus values in chemical assessments, which is
particularly useful for high-throughput screening and prioriti-
zation of “data-poor” chemicals. Such a workflow has also been
implemented in EAS-E Suite, allowing users to auto-
parameterize built-in models with the same set of standardized,
coherent inputs.
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Gramatica, P.; Öberg, T.; Dao, P.; Cherkasov, A.; Tetko, I. V.

ACS Environmental Au pubs.acs.org/environau Review

https://doi.org/10.1021/acsenvironau.2c00010
ACS Environ. Au 2022, 2, 376−395

391

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alessandro+Sangion"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shenghong+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jon+A.+Arnot"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4295-4270
https://orcid.org/0000-0002-4295-4270
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+Wania"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3836-0901
https://orcid.org/0000-0003-3836-0901
https://pubs.acs.org/doi/10.1021/acsenvironau.2c00010?ref=pdf
https://osha.europa.eu/en/legislation/directives/regulation-ec-no-1907-2006-of-the-european-parliament-and-of-the-council
https://osha.europa.eu/en/legislation/directives/regulation-ec-no-1907-2006-of-the-european-parliament-and-of-the-council
https://osha.europa.eu/en/legislation/directives/regulation-ec-no-1907-2006-of-the-european-parliament-and-of-the-council
http://chm.pops.int
http://chm.pops.int
https://doi.org/10.1139/a06-005
https://doi.org/10.1139/a06-005
https://doi.org/10.1139/a06-005
https://doi.org/10.1897/IEAM_2009-007.1
https://doi.org/10.1897/IEAM_2009-007.1
https://doi.org/10.1897/IEAM_2009-007.1
https://doi.org/10.1016/j.chemosphere.2015.11.017
https://doi.org/10.1016/j.chemosphere.2015.11.017
https://doi.org/10.1016/j.chemosphere.2015.11.017
https://doi.org/10.1289/ehp.1205355
https://doi.org/10.1289/ehp.1205355
https://doi.org/10.1289/EHP9372
https://doi.org/10.1289/EHP9372
https://doi.org/10.1289/EHP9372
https://doi.org/10.1021/es0502526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es0502526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es0502526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es048728t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es048728t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/ieam.4555
https://doi.org/10.1002/ieam.4555
https://doi.org/10.1002/ieam.4555
https://doi.org/10.1002/ieam.4555
https://doi.org/10.1002/ieam.4555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1EM00252J
https://doi.org/10.1039/D1EM00252J
https://doi.org/10.1016/j.envint.2010.03.010
https://doi.org/10.1016/j.envint.2010.03.010
https://doi.org/10.1016/j.atmosenv.2013.02.052
https://doi.org/10.1016/j.atmosenv.2013.02.052
https://doi.org/10.1016/j.atmosenv.2013.02.052
https://www.oecd-ilibrary.org/environment/report-of-the-oecd-unep-workshop-on-the-use-of-multimedia-models-for-estimating-overall-environmental-persistence-and-long-range-transport-in-the-context-of-pbts-pops-assessment_9789264078505-en
https://www.oecd-ilibrary.org/environment/report-of-the-oecd-unep-workshop-on-the-use-of-multimedia-models-for-estimating-overall-environmental-persistence-and-long-range-transport-in-the-context-of-pbts-pops-assessment_9789264078505-en
https://www.oecd-ilibrary.org/environment/report-of-the-oecd-unep-workshop-on-the-use-of-multimedia-models-for-estimating-overall-environmental-persistence-and-long-range-transport-in-the-context-of-pbts-pops-assessment_9789264078505-en
https://www.oecd-ilibrary.org/environment/report-of-the-oecd-unep-workshop-on-the-use-of-multimedia-models-for-estimating-overall-environmental-persistence-and-long-range-transport-in-the-context-of-pbts-pops-assessment_9789264078505-en
https://doi.org/10.1002/ieam.1299
https://doi.org/10.1002/ieam.1299
https://doi.org/10.1002/ieam.1299
https://doi.org/10.1016/j.chemosphere.2022.134886
https://doi.org/10.1016/j.chemosphere.2022.134886
https://doi.org/10.1146/annurev-chembioeng-073009-100903
https://doi.org/10.1146/annurev-chembioeng-073009-100903
https://doi.org/10.1146/annurev-chembioeng-073009-100903
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Combinatorial QSAR modeling of chemical toxicants tested against
Tetrahymena pyriformis. J. Chem. Inf. Model. 2008, 48 (4), 766−784.
(24) Boethling, R. S.; Howard, P. H.; Meylan, W. M. Finding and

estimating chemical property data for environmental assessment.
Environ. Toxicol. Chem. 2004, 23 (10), 2290−2308.
(25) Mackay, D.; Celsie, A. K.; Parnis, J. M. The evolution and

future of environmental partition coefficients. Environ. Rev. 2016, 24
(1), 101−113.
(26) Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M.
Environmental Organic Chemistry, 3rd ed.; John Wiley & Sons:
Hoboken, NJ, 2017.
(27) International Union of Pure and Applied Chemistry (IUPAC).
Compendium of Chemical Terminology (the ″Gold Book″), 2nd ed;
compiled by McNaught, A. D.; Wilkinson, A.; Blackwell Scientific
Publications: Oxford, 1997.
(28) Cole, J. G.; Mackay, D. Correlating environmental partitioning

properties of organic compounds: The three solubility approach.
Environ. Toxicol. Chem. 2000, 19 (2), 265−270.
(29) Mackay, D. Multimedia Environmental Models: The Fugacity
Approach; CRC Press: Boca Raton, FL, 2001.
(30) Baskaran, S.; Lei, Y. D.; Wania, F. A database of experimentally

derived and estimated octanol−air partition ratios (KOA). J. Phys.
Chem. Ref. Data 2021, 50 (4), 043101.
(31) Sander, R.; Acree, W. E.; De Visscher, A.; Schwartz, S. E.;

Wallington, T. J. Henry’s law constants (IUPAC Recommendations
2021). Pure Appl. Chem. 2022, 94 (1), 71−85.
(32) Matthies, M.; Beulke, S. Considerations of temperature in the

context of the persistence classification in the EU. Environ. Sci. Eur.
2017, 29, 15.
(33) Goss, K.-U.; Eisenreich, S. J. Adsorption of VOCs from the gas

phase to different minerals and a mineral mixture. Environ. Sci.
Technol. 1996, 30 (7), 2135−2142.
(34) Sangster, J. M. Octanol-Water Partition Coefficients: Fundamen-
tals and Physical Chemistry; John Wiley & Sons, 1997; Vol. 1.
(35) Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their

uses. Chem. Rev. 1971, 71 (6), 525−616.
(36) Mackay, D.; Shiu, W. Y. A critical review of Henry’s law

constants for chemicals of environmental interest. J. Phys. Chem. Ref.
Data 1981, 10 (4), 1175−1199.
(37) Mackay, D.; Shiu, W.-Y.; Lee, S. C. Handbook of Physical-
Chemical Properties and Environmental Fate for Organic Chemicals;
CRC Press: Boca Raton, FL, 2006.
(38) Yalkowsky, S. H.; Banerjee, S. Aqueous Solubility: Methods of
Estimation for Organic Compounds; Marcel Dekker: New York, 1992.
(39) Yalkowsky, S. H.; He, Y.; Jain, P. Handbook of Aqueous
Solubility Data, 2nd ed.; CRC Press: Boca Raton, FL, 2016.
(40) Wilhoit, R. C.; Zwolinski, B. J. Handbook of Vapor Pressures and
Heats of Vaporization of Hydrocarbons and Related Compounds;
Thermodynamics Research Center, Department of Chemistry,
Texas A&M University: College Station, TX, 1971.
(41) Daubert, T. E.; Danner, R. P. Physical and Thermodynamic
Properties of Pure Chemicals; Taylor & Francis: Washington, D.C.,
1989.
(42) Sander, R. Compilation of Henry’s law constants (version 4.0)

for water as solvent. Atmos. Chem. Phys. 2015, 15 (8), 4399−4981.
(43) Kollig, H. P. Criteria for evaluating the reliability of literature

data on environmental process constants. Toxicol. Environ. Chem.
1988, 17 (4), 287−311.
(44) Mackay, D.; Myland, J. C.; Oldham, K. B.; Parnis, J. M. Pitfalls

in the application of statistics to chemical data: The determination of
the partition ratio KOW as a case in point. J. Math. Chem. 2018, 56 (5),
1407−1427.
(45) Parnis, J. M.; Taskovic, T.; Celsie, A. K. D.; Mackay, D. Indoor

dust/air partitioning: Evidence for kinetic delay in equilibration for
low-volatility SVOCs. Environ. Sci. Technol. 2020, 54, 6723.
(46) Men, Y.; Achermann, S.; Helbling, D. E.; Johnson, D. R.;

Fenner, K. Relative contribution of ammonia oxidizing bacteria and
other members of nitrifying activated sludge communities to
micropollutant biotransformation. Water Res. 2017, 109, 217−226.

(47) Wania, F.; Lei, Y. D.; Harner, T. Estimating octanol−air
partition coefficients of nonpolar semivolatile organic compounds
from gas chromatographic retention times. Anal. Chem. 2002, 74
(14), 3476−3483.
(48) Rodgers, T. F.; Okeme, J. O.; Bidleman, T. F. Comment on “A

database of experimentally derived and estimated octanol−air
partition ratios (KOA)”. J. Phys. Chem. Ref. Data 2022, 51 (2), 026101.
(49) Baskaran, S.; Lei, Y. D.; Wania, F. Response to comment on “A

database of experimentally derived and estimated octanol−air
partition ratios (KOA)”. J. Phys. Chem. Ref. Data 2022, 51 (2), 026102.
(50) Klein, W.; Kördel, W.; Weiss, M.; Poremski, H. Updating of the

OECD test guideline 107 “partition coefficient n-octanol/water”:
OECD laboratory intercomparison test on the HPLC method.
Chemosphere 1988, 17 (2), 361−386.
(51) Shunthirasingham, C.; Lei, Y. D.; Wania, F. Evidence of bias in

air−water Henry’s Law Constants for semivolatile organic compounds
measured by inert gas stripping. Environ. Sci. Technol. 2007, 41 (11),
3807−3814.
(52) Lei, Y. D.; Shunthirasingham, C.; Wania, F. Comparison of

headspace and gas-stripping techniques for measuring the air-water
partitioning of normal alkanols (C4 to C10): Effect of temperature,
chain length, and adsorption to the water surface. J. Chem. Eng. Data
2007, 52 (1), 168−179.
(53) Shunthirasingham, C.; Cao, X.; Lei, Y. D.; Wania, F. Large

bubbles reduce the surface sorption artifact of the inert gas stripping
method. J. Chem. Eng. Data 2013, 58 (3), 792−797.
(54) Fenner, K.; Canonica, S.; Wackett, L. P.; Elsner, M. Evaluating

pesticide degradation in the environment: blind spots and emerging
opportunities. Science 2013, 341 (6147), 752−758.
(55) Gulde, R.; Anliker, S.; Kohler, H. E.; Fenner, K. Ion trapping of

amines in protozoa: A novel removal mechanism for micropollutants
in activated sludge. Environ. Sci. Technol. 2018, 52 (1), 52−60.
(56) Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang,

J.; Liang, S.; Wang, X. C. A review on the occurrence of
micropollutants in the aquatic environment and their fate and
removal during wastewater treatment. Sci. Total Environ. 2014, 473−
474, 619−641.
(57) Li, B.; Zhang, T. Biodegradation and adsorption of antibiotics

in the activated sludge process. Environ. Sci. Technol. 2010, 44 (9),
3468−3473.
(58) Lindqvist, R.; Enfield, C. G. Biosorption of dichlorodiphenyltri-

chloroethane and hexachlorobenzene in groundwater and its
implications for facilitated transport. Appl. Environ. Microbiol. 1992,
58 (7), 2211−2218.
(59) Falas, P.; Jewell, K. S.; Hermes, N.; Wick, A.; Ternes, T. A.;

Joss, A.; Nielsen, J. L. Transformation, CO2 formation and uptake of
four organic micropollutants by carrier-attached microorganisms.
Water Res. 2018, 141, 405−416.
(60) Organisation for Economic Co-operation and Development

(OECD). Test No. 107: Partition Coefficient (n-octanol/water): Shake
Flask Method; Organisation for Economic Co-operation and Develop-
ment: Paris, 2006.
(61) Organisation for Economic Co-operation and Development

(OECD). Test No. 117: Partition Coefficient (n-octanol/water): HPLC
Method; Organisation for Economic Co-operation and Development:
Paris, 2004.
(62) Organisation for Economic Co-operation and Development

(OECD). Test No. 123: Partition Coefficient (1-Octanol/Water): Slow-
Stirring Method; Organisation for Economic Co-operation and
Development: Paris, 2006.
(63) Lei, Y. D.; Baskaran, S.; Wania, F. Measuring the octan-1-ol air

partition coefficient of volatile organic chemicals with the variable
phase ratio headspace technique. J. Chem. Eng. Data 2019, 64 (11),
4793−4800.
(64) Ha, Y.; Kwon, J.-H. Determination of 1-octanol-air partition

coefficient using gaseous diffusion in the air boundary layer. Environ.
Sci. Technol. 2010, 44 (8), 3041−3046.

ACS Environmental Au pubs.acs.org/environau Review

https://doi.org/10.1021/acsenvironau.2c00010
ACS Environ. Au 2022, 2, 376−395

392

https://doi.org/10.1021/ci700443v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci700443v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1897/03-532
https://doi.org/10.1897/03-532
https://doi.org/10.1139/er-2015-0059
https://doi.org/10.1139/er-2015-0059
https://doi.org/10.1897/1551-5028(2000)019<0265:CEPPOO>2.3.CO;2
https://doi.org/10.1897/1551-5028(2000)019<0265:CEPPOO>2.3.CO;2
https://doi.org/10.1063/5.0059652
https://doi.org/10.1063/5.0059652
https://doi.org/10.1515/pac-2020-0302
https://doi.org/10.1515/pac-2020-0302
https://doi.org/10.1186/s12302-017-0113-1
https://doi.org/10.1186/s12302-017-0113-1
https://doi.org/10.1021/es950508f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es950508f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr60274a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr60274a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.555654
https://doi.org/10.1063/1.555654
https://doi.org/10.5194/acp-15-4399-2015
https://doi.org/10.5194/acp-15-4399-2015
https://doi.org/10.1080/02772248809357296
https://doi.org/10.1080/02772248809357296
https://doi.org/10.1007/s10910-018-0862-0
https://doi.org/10.1007/s10910-018-0862-0
https://doi.org/10.1007/s10910-018-0862-0
https://doi.org/10.1021/acs.est.0c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.watres.2016.11.048
https://doi.org/10.1016/j.watres.2016.11.048
https://doi.org/10.1016/j.watres.2016.11.048
https://doi.org/10.1021/ac0256033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0256033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0256033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0085956
https://doi.org/10.1063/5.0085956
https://doi.org/10.1063/5.0085956
https://doi.org/10.1063/5.0090020
https://doi.org/10.1063/5.0090020
https://doi.org/10.1063/5.0090020
https://doi.org/10.1016/0045-6535(88)90227-5
https://doi.org/10.1016/0045-6535(88)90227-5
https://doi.org/10.1016/0045-6535(88)90227-5
https://doi.org/10.1021/es062957t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es062957t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es062957t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je060344q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je060344q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je060344q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je060344q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je301326t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je301326t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je301326t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.1236281
https://doi.org/10.1126/science.1236281
https://doi.org/10.1126/science.1236281
https://doi.org/10.1021/acs.est.7b03556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.7b03556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.7b03556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.scitotenv.2013.12.065
https://doi.org/10.1016/j.scitotenv.2013.12.065
https://doi.org/10.1016/j.scitotenv.2013.12.065
https://doi.org/10.1021/es903490h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es903490h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1128/aem.58.7.2211-2218.1992
https://doi.org/10.1128/aem.58.7.2211-2218.1992
https://doi.org/10.1128/aem.58.7.2211-2218.1992
https://doi.org/10.1016/j.watres.2018.03.040
https://doi.org/10.1016/j.watres.2018.03.040
https://doi.org/10.1021/acs.jced.9b00235?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jced.9b00235?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jced.9b00235?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es9035978?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es9035978?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(65) Birch, H.; Redman, A. D.; Letinski, D. J.; Lyon, D. Y.; Mayer, P.
Determining the water solubility of difficult-to-test substances: a
tutorial review. Anal. Chim. Acta 2019, 1086, 16−28.
(66) Organisation for Economic Co-operation and Development

(OECD). Test No. 104: Vapour Pressure; Organisation for Economic
Co-operation and Development: Paris, 2006.
(67) Howard, P. H.; Banerjee, S.; Robillard, K. H. Measurement of

water solubilities, octanol/water partition coefficients and vapor
pressures of commercial phthalate esters. Environ. Toxicol. Chem.
1985, 4 (5), 653−661.
(68) Harnisch, M.; Möckel, H. J.; Schulze, G. Relationship between

log Pow, shake-flask values and capacity factors derived from reversed-
phase high-performance liquid chromatography for n-alkylbenzenes
and some OECD reference substances. J. Chromatogr. A 1983, 282,
315−332.
(69) Brooke, D.; Nielsen, I.; de Bruijn, J.; Hermens, J. An

interlaboratory evaluation of the stir-flask method for the determi-
nation of octanol-water partition coefficients (Log Pow). Chemosphere
1990, 21 (1−2), 119−133.
(70) De Bruijn, J.; Busser, F.; Seinen, W.; Hermens, J.

Determination of octanol/water partition coefficients for hydrophobic
organic chemicals with the “slow-stirring” method. Environ. Toxicol.
Chem. 1989, 8 (6), 499−512.
(71) Ellington, J. J.; Floyd, T. L. Octanol/Water Partition Coefficients
for Eight Phthalate Esters. Technical Report EPA/600/S-96/006; U.S.
Environmental Protection Agency, National Exposure Research
Laboratory: Cincinnati, OH, 1996.
(72) Pegoraro, C. N.; Chiappero, M. S.; Montejano, H. A.

Measurements of octanol−air partition coefficients, vapor pressures
and vaporization enthalpies of the (E) and (Z) isomers of the 2-
ethylhexyl 4-methoxycinnamate as parameters of environmental
impact assessment. Chemosphere 2015, 138, 546−552.
(73) Hinckley, D. A.; Bidleman, T. F.; Foreman, W. T.; Tuschall, J.

R. Determination of vapor pressures for nonpolar and semipolar
organic compounds from gas chromatograhic retention data. J. Chem.
Eng. Data 1990, 35 (3), 232−237.
(74) Small, P.; Small, K.; Cowley, P. The vapour pressures of some

high boiling esters. Transactions of the Faraday Society 1948, 44, 810−
816.
(75) Perry, E.; Weber, W. Vapor pressures of phlegmatic liquids. II.

High molecular weight esters and silicone oils. J. Am. Chem. Soc. 1949,
71 (11), 3726−3730.
(76) Werner, A. Vapor pressures of phthalate esters. Industrial &
Engineering Chemistry 1952, 44 (11), 2736−2740.
(77) Gobble, C.; Chickos, J.; Verevkin, S. P. Vapor pressures and

vaporization enthalpies of a series of dialkyl phthalates by correlation
gas chromatography. J. Chem. Eng. Data 2014, 59 (4), 1353−1365.
(78) Liang, Y.; Xu, Y. Improved method for measuring and

characterizing phthalate emissions from building materials and its
application to exposure assessment. Environ. Sci. Technol. 2014, 48
(8), 4475−4484.
(79) Hollifield, H. C. Rapid nephelometric estimate of water

solubility of highly insoluble organic chemicals of environmental
interest. Bull. Environ. Contam. Toxicol. 1979, 23 (1), 579−586.
(80) Leyder, F.; Boulanger, P. Ultraviolet absorption, aqueous

solubility, and octanol-water partition for several phthalates. Bull.
Environ. Contam. Toxicol. 1983, 30 (1), 152−157.
(81) Wolfe, N.; Steen, W.; Burns, L. Phthalate ester hydrolysis:

linear free energy relationships. Chemosphere 1980, 9 (7−8), 403−
408.
(82) Defoe, D. L.; Holcombe, G. W.; Hammermeister, D. E.;

Biesinger, K. E. Solubility and toxicity of eight phthalate esters to four
aquatic organisms. Environ. Toxicol. Chem. 1990, 9 (5), 623−636.
(83) Thomsen, M.; Carlsen, L.; Hvidt, S. Solubilities and surface

activities of phthalates investigated by surface tension measurements.
Environ. Toxicol. Chem. 2001, 20 (1), 127−132.
(84) Letinski, D. J.; Connelly, M. J., Jr; Peterson, D. R.; Parkerton,

T. F. Slow-stir water solubility measurements of selected alcohols and
diesters. Chemosphere 2002, 48 (3), 257−265.

(85) Sugatt, R. H.; O’Grady, D. P.; Banerjee, S.; Howard, P. H.;
Gledhill, W. E. Shake flask biodegradation of 14 commercial phthalate
esters. Appl. Environ. Microbiol. 1984, 47 (4), 601−606.
(86) Cartwright, C. D.; Thompson, I. P.; Burns, R. G. Degradation

and impact of phthalate plasticizers on soil microbial communities.
Environ. Toxicol. Chem. 2000, 19 (5), 1253−1261.
(87) Juneson, C.; Ward, O. P.; Singh, A. Biodegradation of bis(2-

ethylhexyl)phthalate in a soil slurry-sequencing batch reactor. Process
Biochem. 2001, 37 (3), 305−313.
(88) Xu, G.; Li, F.; Wang, Q. Occurrence and degradation

characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl)
phthalate (DEHP) in typical agricultural soils of China. Sc. Total
Environ. 2008, 393 (2), 333−340.
(89) Yuwatini, E.; Hata, N.; Taguchi, S. Behavior of di(2-ethylhexyl)

phthalate discharged from domestic waste water into aquatic
environment. J. Environ. Monit. 2006, 8 (1), 191−196.
(90) Yuan, S. Y.; Liu, C.; Liao, C. S.; Chang, B. V. Occurrence and

microbial degradation of phthalate esters in Taiwan river sediments.
Chemosphere 2002, 49 (10), 1295−1299.
(91) Yuan, S. Y.; Chang, J. S.; Yen, J. H.; Chang, B.-V.

Biodegradation of phenanthrene in river sediment. Chemosphere
2001, 43 (3), 273−278.
(92) Li, N.; Wania, F.; Lei, Y. D.; Daly, G. L. A comprehensive and

critical compilation, evaluation, and selection of physical−chemical
property data for selected polychlorinated biphenyls. J. Phys. Chem.
Ref. Data 2003, 32 (4), 1545−1590.
(93) Åberg, A.; MacLeod, M.; Wiberg, K. Physical-chemical property

data for dibenzo-p-dioxin (DD), dibenzofuran (DF), and chlorinated
DD/Fs: A critical review and recommended values. J. Phys. Chem. Ref.
Data 2008, 37 (4), 1997−2008.
(94) Beyer, A.; Wania, F.; Gouin, T.; Mackay, D.; Matthies, M.

Selecting internally consistent physicochemical properties of organic
compounds. Environ. Toxicol. Chem. 2002, 21 (5), 941−953.
(95) Shen, L.; Wania, F. Compilation, evaluation, and selection of

physical− chemical property data for organochlorine pesticides. J.
Chem. Eng. Data 2005, 50 (3), 742−768.
(96) Schenker, U.; Soltermann, F.; Scheringer, M.; Hungerbühler, K.

Modeling the environmental fate of polybrominated diphenyl ethers
(PBDEs): The importance of photolysis for the formation of lighter
PBDEs. Environ. Sci. Technol. 2008, 42 (24), 9244−9249.
(97) Arnot, J.; McCarty, L.; Armitage, J.; Toose-Reid, L.; Wania, F.;

Cousins, I. An Evaluation of Hexabromocyclododecane (HBCD) for
Persistent Organic Pollutant (POP) Properties and the Potential for
Adverse Effects in the Environment. A report submitted to European
Brominated Flame Retardant Industry Panel (EBFRIP), 2009; https://
unece.org/fileadmin/DAM/env/documents/2009/EB/wg5/wgsr45/
I n f o r m a l % 2 0 d o c s /
A n % 2 0 e v a l u a t i o n % 2 0 o f % 2 0 h e x a b r o m o c y c l o d o d e c a n e _
Final%20report.pdf (accessed 2022-07-12).
(98) Buser, A. M.; Schenker, S.; Scheringer, M.; Hungerbühler, K.

Comparing the performance of computational estimation methods for
physicochemical properties of dimethylsiloxanes and selected
siloxanols. J. Chem. Eng. Data 2013, 58 (11), 3170−3178.
(99) Ma, Y.-G.; Lei, Y. D.; Xiao, H.; Wania, F.; Wang, W.-H. Critical

review and recommended values for the physical-chemical property
data of 15 polycyclic aromatic hydrocarbons at 25 °C. J. Chem. Eng.
Data 2010, 55 (2), 819−825.
(100) Li, L.; Liu, J.; Hu, J. Global inventory, long-range transport

and environmental distribution of dicofol. Environ. Sci. Technol. 2015,
49 (1), 212−222.
(101) European Chemicals Agency. Guidance on Information
Requirements and Chemical Safety Assessment. Chapter R.7b: Endpoint
Specific Guidance (Version 4.0); European Chemicals Agency:
Helsinki, Finland, 2017.
(102) Panel on Plant Protection Products and their Residues,

Opinion on a rrequest from EFSA related to the default Q10 value
used to describe the temperature effect on transformation rates of
pesticides in soil. The EFSA Journal 2007, 622, 1−32.

ACS Environmental Au pubs.acs.org/environau Review

https://doi.org/10.1021/acsenvironau.2c00010
ACS Environ. Au 2022, 2, 376−395

393

https://doi.org/10.1016/j.aca.2019.07.034
https://doi.org/10.1016/j.aca.2019.07.034
https://doi.org/10.1002/etc.5620040509
https://doi.org/10.1002/etc.5620040509
https://doi.org/10.1002/etc.5620040509
https://doi.org/10.1016/S0021-9673(00)91610-8
https://doi.org/10.1016/S0021-9673(00)91610-8
https://doi.org/10.1016/S0021-9673(00)91610-8
https://doi.org/10.1016/S0021-9673(00)91610-8
https://doi.org/10.1016/0045-6535(90)90385-7
https://doi.org/10.1016/0045-6535(90)90385-7
https://doi.org/10.1016/0045-6535(90)90385-7
https://doi.org/10.1002/etc.5620080607
https://doi.org/10.1002/etc.5620080607
https://doi.org/10.1016/j.chemosphere.2015.07.035
https://doi.org/10.1016/j.chemosphere.2015.07.035
https://doi.org/10.1016/j.chemosphere.2015.07.035
https://doi.org/10.1016/j.chemosphere.2015.07.035
https://doi.org/10.1021/je00061a003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je00061a003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/tf9484400810
https://doi.org/10.1039/tf9484400810
https://doi.org/10.1021/ja01179a039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01179a039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie50515a063?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je500110d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je500110d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je500110d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es405809r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es405809r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es405809r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/BF01770007
https://doi.org/10.1007/BF01770007
https://doi.org/10.1007/BF01770007
https://doi.org/10.1007/BF01610114
https://doi.org/10.1007/BF01610114
https://doi.org/10.1016/0045-6535(80)90023-5
https://doi.org/10.1016/0045-6535(80)90023-5
https://doi.org/10.1002/etc.5620090509
https://doi.org/10.1002/etc.5620090509
https://doi.org/10.1002/etc.5620200113
https://doi.org/10.1002/etc.5620200113
https://doi.org/10.1016/S0045-6535(02)00086-3
https://doi.org/10.1016/S0045-6535(02)00086-3
https://doi.org/10.1128/aem.47.4.601-606.1984
https://doi.org/10.1128/aem.47.4.601-606.1984
https://doi.org/10.1002/etc.5620190506
https://doi.org/10.1002/etc.5620190506
https://doi.org/10.1016/S0032-9592(01)00196-0
https://doi.org/10.1016/S0032-9592(01)00196-0
https://doi.org/10.1016/j.scitotenv.2008.01.001
https://doi.org/10.1016/j.scitotenv.2008.01.001
https://doi.org/10.1016/j.scitotenv.2008.01.001
https://doi.org/10.1039/B509767C
https://doi.org/10.1039/B509767C
https://doi.org/10.1039/B509767C
https://doi.org/10.1016/S0045-6535(02)00495-2
https://doi.org/10.1016/S0045-6535(02)00495-2
https://doi.org/10.1016/S0045-6535(00)00139-9
https://doi.org/10.1063/1.1562632
https://doi.org/10.1063/1.1562632
https://doi.org/10.1063/1.1562632
https://doi.org/10.1063/1.3005673
https://doi.org/10.1063/1.3005673
https://doi.org/10.1063/1.3005673
https://doi.org/10.1002/etc.5620210508
https://doi.org/10.1002/etc.5620210508
https://doi.org/10.1021/je049693f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je049693f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es801042n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es801042n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es801042n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://unece.org/fileadmin/DAM/env/documents/2009/EB/wg5/wgsr45/Informal%20docs/An%20evaluation%20of%20hexabromocyclododecane_Final%20report.pdf
https://unece.org/fileadmin/DAM/env/documents/2009/EB/wg5/wgsr45/Informal%20docs/An%20evaluation%20of%20hexabromocyclododecane_Final%20report.pdf
https://unece.org/fileadmin/DAM/env/documents/2009/EB/wg5/wgsr45/Informal%20docs/An%20evaluation%20of%20hexabromocyclododecane_Final%20report.pdf
https://unece.org/fileadmin/DAM/env/documents/2009/EB/wg5/wgsr45/Informal%20docs/An%20evaluation%20of%20hexabromocyclododecane_Final%20report.pdf
https://unece.org/fileadmin/DAM/env/documents/2009/EB/wg5/wgsr45/Informal%20docs/An%20evaluation%20of%20hexabromocyclododecane_Final%20report.pdf
https://doi.org/10.1021/je400633h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je400633h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je400633h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je900477x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je900477x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/je900477x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es502092x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es502092x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(103) Anderson, P. N.; Hites, R. A. OH radical reactions: The major
removal pathway for polychlorinated biphenyls from the atmosphere.
Environ. Sci. Technol. 1996, 30 (5), 1756−1763.
(104) Fenner, K.; Scheringer, M.; MacLeod, M.; Matthies, M.;

McKone, T.; Stroebe, M.; Beyer, A.; Bonnell, M.; Le Gall, A. C.;
Klasmeier, J.; et al. Comparing estimates of persistence and long-range
transport potential among multimedia models. Environ. Sci. Technol.
2005, 39 (7), 1932−1942.
(105) Boethling, R. S.; Howard, P. H.; Beauman, J. A.; Larosch, M.

E. Factors for intermedia extrapolation in biodegradability assessment.
Chemosphere 1995, 30 (4), 741−752.
(106) Aronson, D.; Boethling, R.; Howard, P.; Stiteler, W.

Estimating biodegradation half-lives for use in chemical screening.
Chemosphere 2006, 63 (11), 1953−1960.
(107) Fenner, K.; Screpanti, C.; Renold, P.; Rouchdi, M.; Vogler, B.;

Rich, S. Comparison of small molecule biotransformation half-lives
between activated sludge and soil: Opportunities for read-across?
Environ. Sci. Technol. 2020, 54 (6), 3148−3158.
(108) MacLeod, M.; Scheringer, M.; Hungerbühler, K. Estimating

enthalpy of vaporization from vapor pressure using Trouton’s Rule.
Environ. Sci. Technol. 2007, 41 (8), 2827−2832.
(109) Goss, K.-U.; Schwarzenbach, R. P. Empirical prediction of

heats of vaporization and heats of adsorption of organic compounds.
Environ. Sci. Technol. 1999, 33 (19), 3390−3393.
(110) Karickhoff, S. W.; Brown, D. S.; Scott, T. A. Sorption of

hydrophobic pollutants on natural sediments. Water Res. 1979, 13
(3), 241−248.
(111) Karickhoff, S. W. Semi-empirical estimation of sorption of

hydrophobic pollutants on natural sediments and soils. Chemosphere
1981, 10 (8), 833−846.
(112) Seth, R.; Mackay, D.; Muncke, J. Estimating the organic

carbon partition coefficient and its variability for hydrophobic
chemicals. Environ. Sci. Technol. 1999, 33 (14), 2390−2394.
(113) Gerstl, Z. Estimation of organic chemical sorption by soils. J.
Contam. Hydrol. 1990, 6 (4), 357−375.
(114) Goss, K.-U.; Schwarzenbach, R. P. Linear free energy

relationships used to evaluate equilibrium partitioning of organic
compounds. Environ. Sci. Technol. 2001, 35 (1), 1−9.
(115) Droge, S. T.; Goss, K.-U. Sorption of organic cations to

phyllosilicate clay minerals: CEC-normalization, salt dependency, and
the role of electrostatic and hydrophobic effects. Environ. Sci. Technol.
2013, 47 (24), 14224−14232.
(116) Droge, S. T.; Goss, K.-U. Development and evaluation of a

new sorption model for organic cations in soil: contributions from
organic matter and clay minerals. Environ. Sci. Technol. 2013, 47 (24),
14233−14241.
(117) Karickhoff, S. W. Organic pollutant sorption in aquatic

systems. J. Hydraul. Eng. 1984, 110 (6), 707−735.
(118) Xiao, H.; Wania, F. Is vapor pressure or the octanol−air

partition coefficient a better descriptor of the partitioning between gas
phase and organic matter? Atmos. Environ. 2003, 37 (20), 2867−2878.
(119) MacLeod, M.; Scheringer, M.; Götz, C.; Hungerbühler, K.;

Davidson, C.; Holsen, T. Deposition from the atmosphere to water
and soils with aerosol particles and precipitation. In Handbook of
Chemical Mass Transport in the Environment; Thibodeaux, L. J.,
Mackay, D., Eds.; CRC Press: Boca Raton, FL, 2011.
(120) Ran, Y.; He, Y.; Yang, G.; Johnson, J. L. H.; Yalkowsky, S. H.

Estimation of aqueous solubility of organic compounds by using the
general solubility equation. Chemosphere 2002, 48 (5), 487−509.
(121) Endo, S.; Escher, B. I.; Goss, K.-U. Capacities of membrane

lipids to accumulate neutral organic chemicals. Environ. Sci. Technol.
2011, 45 (14), 5912−5921.
(122) Endo, S.; Bauerfeind, J.; Goss, K.-U. Partitioning of neutral

organic compounds to structural proteins. Environ. Sci. Technol. 2012,
46 (22), 12697−12703.
(123) Reppas-Chrysovitsinos, E.; Sobek, A.; MacLeod, M. Screen-

ing-level models to estimate partition ratios of organic chemicals
between polymeric materials, air and water. Environ. Sci. Processes
Impacts 2016, 18 (6), 667−676.

(124) Harner, T.; Bidleman, T. F. Octanol-air partition coefficient
for describing particle/gas partitioning of aromatic compounds in
urban air. Environ. Sci. Technol. 1998, 32 (10), 1494−1502.
(125) Saini, A.; Okeme, J.; Mark Parnis, J.; McQueen, R.; Diamond,

M. From air to clothing: characterizing the accumulation of semi-
volatile organic compounds to fabrics in indoor environments. Indoor
air 2017, 27 (3), 631−641.
(126) Saini, A.; Rauert, C.; Simpson, M. J.; Harrad, S.; Diamond, M.

L. Characterizing the sorption of polybrominated diphenyl ethers
(PBDEs) to cotton and polyester fabrics under controlled conditions.
Sci. Total Environ. 2016, 563, 99−107.
(127) Csiszar, S. A.; Diamond, M. L.; Thibodeaux, L. J. Modeling

urban films using a dynamic multimedia fugacity model. Chemosphere
2012, 87 (9), 1024−1031.
(128) Endo, S.; Goss, K.-U. Applications of polyparameter linear free

energy relationships in environmental chemistry. Environ. Sci. Technol.
2014, 48 (21), 12477−12491.
(129) Breivik, K.; Wania, F. Expanding the applicability of

multimedia fate models to polar organic chemicals. Environ. Sci.
Technol. 2003, 37 (21), 4934−4943.
(130) Endo, S.; Goss, K.-U. Predicting partition coefficients of

polyfluorinated and organosilicon compounds using polyparameter
linear free energy relationships (PP-LFERs). Environ. Sci. Technol.
2014, 48 (5), 2776−2784.
(131) Baskaran, S.; Lei, Y. D.; Wania, F. Reliable prediction of the

octanol−air partition ratio. Environ. Toxicol. Chem. 2021, 40 (11),
3166−3180.
(132) Goss, K.-U. Prediction of the temperature dependency of

Henry’s law constant using poly-parameter linear free energy
relationships. Chemosphere 2006, 64 (8), 1369−1374.
(133) Mintz, C.; Burton, K.; Ladlie, T.; Clark, M.; Acree, W. E.;

Abraham, M. H. Enthalpy of solvation correlations for gaseous solutes
dissolved in dibutyl ether and ethyl acetate. Thermochim. Acta 2008,
470 (1), 67−76.
(134) Bronner, G.; Goss, K.-U. Predicting sorption of pesticides and

other multifunctional organic chemicals to soil organic carbon.
Environ. Sci. Technol. 2011, 45 (4), 1313−1319.
(135) Geisler, A.; Endo, S.; Goss, K.-U. Partitioning of organic

chemicals to storage lipids: elucidating the dependence on fatty acid
composition and temperature. Environ. Sci. Technol. 2012, 46 (17),
9519−9524.
(136) U.S. Environmental Protection Agency. Estimation Programs
Interface (EPI) Suite for Microsoft® Windows, v 4.1; U.S. Environ-
mental Protection Agency: Washington, D.C., 2012.
(137) Mansouri, K.; Grulke, C. M.; Judson, R. S.; Williams, A. J.

OPERA models for predicting physicochemical properties and
environmental fate endpoints. J. Cheminformatics 2018, 10 (1), 10.
(138) Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem:

Insubria datasets and new QSAR/QSPR models for environmental
pollutants in QSARINS. J. Comput. Chem. 2014, 35 (13), 1036−1044.
(139) Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S.

QSARINS: A new software for the development, analysis, and
validation of QSAR MLR models. J. Comput. Chem. 2013, 34 (24),
2121−2132.
(140) Brown, T. N.; Armitage, J. M.; Arnot, J. A. Application of an

Iterative Fragment Selection (IFS) method to estimate entropies of
fusion and melting points of organic chemicals. Mol. Inform. 2019, 38
(8−9), 1800160.
(141) Brown, T. N.; Arnot, J. A.; Wania, F. Iterative fragment

selection: A group contribution approach to predicting fish
biotransformation half-lives. Environ. Sci. Technol. 2012, 46 (15),
8253−8260.
(142) Arnot, J. A.; Brown, T. N.; Wania, F. Estimating screening-

level organic chemical half-lives in humans. Environ. Sci. Technol.
2014, 48 (1), 723−730.
(143) Brown, T. N. QSPRs for predicting equilibrium partitioning in

solvent−air systems from the chemical structures of solutes and
solvents. J. Solution Chem. 2022, DOI: 10.1007/s10953-022-01162-2.

ACS Environmental Au pubs.acs.org/environau Review

https://doi.org/10.1021/acsenvironau.2c00010
ACS Environ. Au 2022, 2, 376−395

394

https://doi.org/10.1021/es950765k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es950765k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es048917b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es048917b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0045-6535(94)00439-2
https://doi.org/10.1016/j.chemosphere.2005.09.044
https://doi.org/10.1021/acs.est.9b05104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.9b05104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es0608186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es0608186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es980812j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es980812j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0043-1354(79)90201-X
https://doi.org/10.1016/0043-1354(79)90201-X
https://doi.org/10.1016/0045-6535(81)90083-7
https://doi.org/10.1016/0045-6535(81)90083-7
https://doi.org/10.1021/es980893j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es980893j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es980893j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0169-7722(90)90034-E
https://doi.org/10.1021/es000996d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es000996d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es000996d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es403187w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es403187w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es403187w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es4031886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es4031886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es4031886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1061/(ASCE)0733-9429(1984)110:6(707)
https://doi.org/10.1061/(ASCE)0733-9429(1984)110:6(707)
https://doi.org/10.1016/S1352-2310(03)00213-9
https://doi.org/10.1016/S1352-2310(03)00213-9
https://doi.org/10.1016/S1352-2310(03)00213-9
https://doi.org/10.1016/S0045-6535(02)00118-2
https://doi.org/10.1016/S0045-6535(02)00118-2
https://doi.org/10.1021/es200855w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es200855w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es303379y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es303379y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C5EM00664C
https://doi.org/10.1039/C5EM00664C
https://doi.org/10.1039/C5EM00664C
https://doi.org/10.1021/es970890r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es970890r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es970890r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/ina.12328
https://doi.org/10.1111/ina.12328
https://doi.org/10.1016/j.scitotenv.2016.04.099
https://doi.org/10.1016/j.scitotenv.2016.04.099
https://doi.org/10.1016/j.chemosphere.2011.12.044
https://doi.org/10.1016/j.chemosphere.2011.12.044
https://doi.org/10.1021/es503369t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es503369t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es034454i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es034454i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es405091h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es405091h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es405091h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/etc.5201
https://doi.org/10.1002/etc.5201
https://doi.org/10.1016/j.chemosphere.2005.12.049
https://doi.org/10.1016/j.chemosphere.2005.12.049
https://doi.org/10.1016/j.chemosphere.2005.12.049
https://doi.org/10.1016/j.tca.2008.02.001
https://doi.org/10.1016/j.tca.2008.02.001
https://doi.org/10.1021/es102553y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es102553y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es301921w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es301921w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es301921w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-018-0263-1
https://doi.org/10.1186/s13321-018-0263-1
https://doi.org/10.1002/jcc.23576
https://doi.org/10.1002/jcc.23576
https://doi.org/10.1002/jcc.23576
https://doi.org/10.1002/jcc.23361
https://doi.org/10.1002/jcc.23361
https://doi.org/10.1002/minf.201800160
https://doi.org/10.1002/minf.201800160
https://doi.org/10.1002/minf.201800160
https://doi.org/10.1021/es301182a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es301182a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es301182a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es4029414?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es4029414?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10953-022-01162-2
https://doi.org/10.1007/s10953-022-01162-2
https://doi.org/10.1007/s10953-022-01162-2
https://doi.org/10.1007/s10953-022-01162-2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(144) Meylan, W. M.; Howard, P. H. Atom/fragment contribution
method for estimating octanol−water partition coefficients. J. Pharm.
Sci. 1995, 84 (1), 83−92.
(145) Organisation for Economic Co-operation and Development

(OECD). Guidance Document on the Validation of (Quantitative)
Structure-Activity Relationship [(Q)SAR] Models; Organisation for
Economic Co-operation and Development: Paris, 2007.
(146) Sarfraz Iqbal, M.; Golsteijn, L.; Öberg, T.; Sahlin, U.; Papa, E.;
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