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Abstract

Essays on Supply Chain Management with Model Uncertainty

by

Mengshi Lu

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Shen, Chair

Traditional supply chain management models typically require complete model informa-
tion, including structural relationships (e.g., how pricing decisions affect customer demand),
probabilistic distributions, and parameters. However, in practice, the model information
may be uncertain. My dissertation research seeks to address model uncertainty in supply
chain management problems using data-driven and robust methods. Incomplete informa-
tion typically comes in two forms, namely, historical data and partial information. When
historical data are available, data-driven methods can be used to obtain decisions directly
from data, instead of estimating the model information and then using these estimates to
find the optimal solution. When partial information is available, robust methods consider
all possible scenarios and make decisions to hedge against the worst-case scenario effectively,
instead of making simplified assumptions that could lead to significant loss.

Chapter 1 provides an overview of model uncertainty in supply chain management, and
discusses the limitations of the traditional methods. The main part of the dissertation is
on the application of data-driven and robust methods to three widely-studied supply chain
management problems with model uncertainty.

Chapter 2 studies the reliable facility location problem where the joint-distribution of fa-
cility disruptions is uncertain. For this problem, usually, only partial information in the form
of marginal facility disruption probabilities is available. Most existing models require the
assumption that the disruptions at different locations are independent of each other. How-
ever, in practice, correlated disruptions are widely observed. We present a model that allows
disruptions to be correlated with an uncertain joint distribution, and apply distributionally-
robust optimization to minimize the expected cost under the worst-case distribution with
the given marginal disruption probabilities. The worst-case distribution has a practical in-
terpretation, and its sparse structure allows us to solve the problem efficiently. We find
that ignoring disruption correlation could lead to significant loss. The robust method can
significantly reduce the regret from model misspecification. It outperforms the traditional
approach even under very mild correlation. Most of the benefit of the robust model can be
captured at a relatively small cost, which makes it easy to implement in practice.
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Chapter 3 studies the pricing newsvendor problem where the structural relationship be-
tween pricing decisions and customer demand is unknown. Traditional methods for this
problem require the selection of a parametric demand model and fitting the model using
historical data, while model selection is usually a hard problem in itself. Furthermore,
most of the existing literature on pricing requires certain conditions on the demand model,
which may not be satisfied by the estimates from data. We present a data-driven approach
based only on the historical observations and the basic domain knowledge. The conditional
demand distribution is estimated using non-parametric quantile regression with shape con-
straints. The optimal pricing and inventory decisions are determined numerically using the
estimated quantiles. Smoothing and kernelization methods are used to achieve regulariza-
tion and enhance the performance of the approach. Additional domain knowledge, such as
concavity of demand with respect to price, can also be easily incorporated into the approach.
Numerical results show that the data-driven approach is able to find close-to-optimal solu-
tions. Smoothing, kernelization, and the incorporation of additional domain knowledge can
significantly improve the performance of the approach.

Chapter 4 studies inventory management for perishable products where a parameter of
the demand distribution is unknown. The traditional separated estimation-optimization
approach for this problem has been shown to be suboptimal. To address this issue, an
integrated approach called operational statistics has been proposed. We study several im-
portant properties of operational statistics. We find that the operational statistics approach
is consistent and guaranteed to outperform the traditional approach. We also show that the
benefit of using operational statistics is larger when the demand variability is higher. We
then generalize the operational statistics approach to the risk-averse newsvendor problem
under the conditional value-at-risk (CVaR) criterion. Previous results in operational statis-
tics can be generalized to maximize the expectation of conditional CVaR. In order to model
risk-aversion to both the uncertainty in demand sampling and the uncertainty in future de-
mand, we introduce a new criterion called the total CVaR, and find the optimal operational
statistic for this new criterion.
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Chapter 1

Model Uncertainty in Supply Chain
Management

Dealing with uncertainty effectively is one of the fundamental motivations for supply chain
management research. Sources of uncertainty that have been widely studied include cus-
tomer demand, production yield, fluctuations in the leadtimes, unreliable suppliers or fa-
cilities, etc. However, most of the traditional supply chain management models assume
that the variable(s) and/or parameter(s) of interest, although uncertain, can be character-
ized probabilistically using the model information. There are typically three types of model
information, namely, structural relationships, probabilistic distributions, and parameters.

To illustrate the three types of model information, consider the classical pricing newsven-
dor problem as an example. In this problem, the retailer jointly determines the selling price
and the order quantity to maximize the expected profit. The customer demand is uncertain
and depends on the selling price. To characterize customer demand, we first need to know
the structural relationship between price and demand. This is typically in the form of a
demand function. For example, we can assume the demand, D, is a linear function of price,
p, plus some random factor, ε, i.e.,

D(p, ε) = α + βp+ ε,

where α and β are the coefficients of the linear mean demand function. Then, given the
price and a realization of the random factor, the demand is determined. Second, we need to
know the probabilistic distribution of the random factor. For example, we can assume that
the random factor is normally distributed, i.e.,

ε ∼ N (µ, σ2),

where µ and σ2 are the mean and variance of the normal distribution, respectively. Under
certain circumstances, there may be multiple interdependent random factors. In such a case,
we also need to know their joint distribution. Finally, we need to know the parameters,
including the coefficients, α and β, in the demand function, as well as the mean, µ, and vari-
ance, σ2, of the random factor. With the complete model information, the customer demand
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is characterized probabilistically. We can then derive the expected profit and optimize the
pricing and inventory decision.

In practice, some or even all of the model information may be unknown. In the presence of
model uncertainty, decisions need to be made based on the information that is available. We
consider two types of available information. The first type is historical data. For example,
we may have price and demand observations from the previous periods. In this case, the
traditional method is to estimate the model information from the data. The estimate is then
used to substitute for the unknown model information in the optimal solution. The second
type of limited information is partial information. For example, when there are multiple
random factors with an unknown joint distribution, we may know the marginal distribution of
each random factor. In this case, the traditional method is to make simplifying assumptions
based on the available partial information. For example, a common practice when only the
marginal distribution is known is to assume the random factors are independent. Then, the
joint distribution can be constructed as the product of the marginal distributions.

There are several limitations of the traditional methods for dealing with model uncer-
tainty. First, estimating the model information from data is not an easy task. There are
usually many available probabilistic models. Selecting a good model usually requires train-
ing or technical support that most supply chain managers do not have. If the model is not
selected properly, the estimates and the resulting decisions may be highly suboptimal. Sec-
ond, the model selection and estimation process needs to be repeated for each new data set,
which may entail an extensive amount of work. Third, classical supply chain management
models typically require certain conditions on the model input. For example, in order to
use classical results in pricing, we usually need the demand function to satisfy certain price
elasticity conditions and the distribution of the random factor to have an increasing failure
rate. These conditions may not be satisfied by the estimates from data. Finally, even when
model information can be properly estimated, separation of estimation and optimization still
results in suboptimality. When only partial information is available, traditional methods can
also be problematic. Assumptions based on the available information can be hard to verify
in practice. If an oversimplified model is used due to strong assumptions, the corresponding
decisions can be highly suboptimal.

Data-driven and robust methods can be applied to effectively address model uncertainty.
When historical data are available, data-driven methods derive decisions from data without
using a specific parametric model or separating estimation and optimization. They do not
require model selection and fitting by managers, or strong conditions on the model input,
and thus can be directly applied in practice. When partial information is available, robust
methods consider the worst-case among all possibilities based on the available information.
Thus, it avoids making ungrounded assumptions, and can prevent massive loss due to model
misspecification.

My dissertation consists of essays on the application of data-driven and robust meth-
ods for three widely studied supply chain management problems with model uncertainty.
Chapter 2 is on the reliable facility location problem under facility disruption risk. For this
problem, usually, only the partial information, i.e., the marginal facility disruption proba-
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bility, is available, while the joint distribution for all the facilities is unknown. Using robust
optimization, we avoid making the assumption that the disruptions are independent. We
consider all the joint distributions with the given marginal disruption probability, and derive
the worst-case distribution in closed form. We find that the robust method can significantly
reduce the regret from model misspecification. It outperforms traditional approaches for this
problem even under very mild correlation. Solving the robust model also requires much less
computational effort than the traditional approach. Most of the benefit of the robust model
can be captured at a relatively small cost, which makes it easy to implement in practice.

Chapter 3 is on the pricing newsvendor problem where the structural relationship between
price and customer demand is unknown. We present a data-driven approach that does not
require any parametric demand model. Instead, the approach is based only on historical
observations and basic domain knowledge. The conditional demand distribution is estimated
using non-parametric quantile regression with shape constraints. The optimal pricing and
inventory decisions are determined numerically using the estimated quantiles. Smoothing
and kernelization methods are used to achieve regularization and enhance the performance
of the approach. Additional domain knowledge, such as demand concavity, can also be
incorporated in the approach. Numerical results show that the data-driven approach is
able to find close-to-optimal solutions. Smoothing, kernelization, and the incorporation of
additional domain knowledge can significantly improve the performance of the approach.

Chapter 4 is on inventory management for perishable products where a parameter of
the demand distribution is unknown. The traditional separated estimation-optimization ap-
proach for this problem is shown to be suboptimal. We study several important properties of
an integrated approach called operational statistics. We find that the operational statistics
approach is consistent and guaranteed to outperform the separated estimation-optimization
approach. The benefit of using operational statistics increases as the demand variability in-
creases. We then generalize the operational statistics approach to the risk-averse newsvendor
problem under the conditional value-at-risk (CVaR) criterion. Previous results in operational
statistics can be generalized to solve the problem of maximizing the expectation of condition-
al CVaR. In order to model risk-aversion to both demand sampling risk and future demand
uncertainty risk, we introduce a new criterion called the total CVaR, and find the optimal
operational statistic for this new criterion.
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Chapter 2

Reliable Facility Location Design with
Distributional Uncertainty

2.1 Introduction

In the recent years, supply chain disruptions have caused significant losses due to facility
damage and production or service interruption. Designing reliable supply chains when fa-
cilities are subject to random disruptions has gained a lot of attention from industry and
academia. For example, IBM has launched the Business Continuity and Resilience Service
to help companies evaluate their disruption risk and improve their resilience using optimized
planning and design. In operations research and management sciences, the reliable facility
location problem has been extensively studied (e.g., Snyder and Daskin, 2005; Cui, Ouyang,
and Shen, 2010; Lim et al., 2010). In this problem, the decision maker needs to design a
supply chain network, where the facilities will be disrupted according to some probabilistic
distribution. (It is assumed that the arcs of the network, i.e., transportation links between
facilities and customers, are not disrupted.) Customers can only be served by available fa-
cilities. Unlike the classical facility location models, customer assignment, and thus, the
transportation cost, in the reliable facility location problem is random, and depends on the
joint distribution of the disruptions. The decision maker seeks an optimal design which
minimizes the total expected cost.

In most of the existing reliable facility location literature, disruptions at different locations
are assumed to be independent. However, in practice, correlated disruptions are widely
observed. For example, consider the disruptions caused by Hurricane Sandy in October,
2012. Figure 2.1 shows the 48-hour forecast by the National Oceanic and Atmospheric
Administration (NOAA) on the impact probability of Hurricane Sandy at the time of its
landfall. The forecast consisted of a number of regions where the hurricane could cause
severe impact with specific probability. Consider a customer in Columbus, OH, who is
served primarily by a DC in Cleveland, OH, and backed-up by another DC in Pittsburgh,
PA. As shown in the figure, the disruption probabilities of the DCs can be estimated as 40%
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Figure 2.1: 48-hour impact probability forecast of Hurricane Sandy at the time of its landfall
(NOAA, 10-29-2012)

Note: a location is impacted if it has tropical storm force surface wind (1-minute average speed ≥ 39 mph).

“�”: the hurricane center, “◦”: facility or customer.

and 20%, respectively. If disruptions are assumed to be independent, the customer faces a
fairly low risk of disruption with only 8% probability. However, under this circumstance,
if Cleveland is impacted, Pittsburgh will also be impacted with a high probability, i.e., the
disruptions at these two facilities are positively correlated. As a result, the customer could
actually face a much higher risk, with disruption probability close to 20%.

The previous example shows that disruption correlation can significantly affect the mag-
nitude of the disruption risk faced by the supply chain. As we will show later in this
chapter, it also affects the optimal facility location design. However, due to the difficulty
in estimation, modeling, and optimization, most of the existing literature on reliable facil-
ity location design only considered independent disruptions. In this chapter, we present
a distributionally-robust optimization model to incorporate correlated disruptions. We as-
sume that the disruptions have an unknown joint distribution, and minimize the expected
cost under the worst-case distribution with given marginal disruption probabilities. Using
the structural property of a class of widely-studied reliable facility location problems, we are
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able to derive the worst-case distribution in closed-form, which has a practical interpretation.
The sparse structure of the worst-case distribution also allows us to transform this seemingly
complicated problem to a much simpler equivalent problem, and solve it efficiently.

We compare the optimal solutions of the robust model with those of the traditional model,
which is based on the assumption of independent disruptions. We are particularly interested
in the regret of the models, which is the increase in cost when the optimal solution of one
model is erroneously used for the other model. We find that ignoring disruption correlation
could lead to significant losses. On the other hand, the regret from applying the robust
model under independent disruptions is much lower. As key factors, such as source disaster
probability, disruption propagation effect, and service interruption penalty, increase, the
regret of the traditional optimal design increases dramatically, while the regret of the robust
design only increases mildly, or largely stays the same. In practice, we expect that the
disruptions are positively correlated, but the correlation is smaller than the worst-case. We
compare the two models under different degrees of correlation, and find that even though
the robust model is based on the worst-case correlation, it still outperforms the traditional
model when disruptions are only mildly correlated. We also consider a weighted-average
objective consisting of the worst-case expected cost and the normal operating cost with no
disruption. We find that most of the benefit of the robust model can be captured at a very
small cost.

Given these advantages, we believe this robust model can serve as a promising alternative
approach for reliable facility location problems. It does not require any additional model
input, and thus can be applied directly to real-world problems that are currently being solved
by the traditional approach, which is based on the assumption of independent disruptions.
The robust model also requires much less computational effort, and thus can effectively
handle large-scale problems.

The remainder of the chapter is organized as follows. Section 2.2 reviews related litera-
ture. In Section 2.3, we present the distributionally robust reliable facility location model
and its equivalent formulation. Section 2.4 shows the numerical results. Section 2.5 discusses
how the robust approach can be applied to other reliable facility location problem. Section
2.6 summarizes the resutls and discusses directions for future work.

2.2 Literature Review

In this section, we briefly review existing reliable facility location models, and discuss why
most of these models are not applicable for correlated disruptions. We then review the
few papers that either incorporated correlated disruptions or considered interdependence
between locations, and discuss how our model differs from these models.

As noted by Snyder et al. (2012), there are two major streams of reliable facility location
models: stochastic (S) models and robust (R) models. The stochastic models further fall
into four main categories, namely, Scenario-Based (SB) models, Implicit Formulation (IF)
models, Reliable Backup (RB) models, and Continuum Approximation (CA) models. For
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Table 2.1: Summary of literature on reliable facility location

Category Literature

S

SB

IF

Snyder and Daskin (2005), Berman, Krass, and Menezes (2007), Shen,
Zhan, and Zhang (2011), Cui, Ouyang, and Shen (2010), Aboolian, Cui,
and Shen (2013), Chen, Li, and Ouyang (2011), Li and Ouyang (2011),
Li and Ouyang (2012), Li, Ouyang, and Peng (2013)

RB
Lim et al. (2010), Li, Zeng, and Savachkin (2013), An, Zhang, and Zeng
(2011), Liang, Shen, and Xu (2013)

CA
Cui, Ouyang, and Shen (2010), Li and Ouyang (2010), Lim et al. (2013),
Berman, Krass, and Menezes (2013)

Other Qi and Shen (2007), Qi, Shen, and Snyder (2010), Mak and Shen (2012)

R
IM

Church, Scaparra, and Middleton (2004), Church and Scaparra (2007),
Scaparra and Church (2008a); Scaparra and Church (2008b), Losada et
al. (2012), Liberatore, Scaparra, and Daskin (2012), An et al. (2012)

Other Snyder and Daskin (2006), Peng et al. (2011)

robust models, most of the existing literature is based on the Interdiction Median (IM)
model. Table 2.1 summarizes the literature in these categories. For a more comprehensive
and detailed review, please refer to Snyder et al. (2012). From the table, we can see that the
IF model has been the most popular approach for stochastic reliable facility location. Thus,
in this chapter, we refer to the IF model as the traditional model.

Next, we discuss why most of the existing models are not applicable or suitable for
correlated disruptions. The SB model can incorporate correlated disruptions using sample
average approximation (SAA). However, it has been shown that SAA performs poorly for
independent disruptions (e.g., Shen, Zhan, and Zhang, 2011). We expect its performance
would still be unsatisfactory, if not worse, for correlated disruptions. The IF model is based
on calculating the probability of a customer being served by each facility, which requires that
the disruptions are independent. The RB model assumes each customer is backed-up by a
fixed fortified facility under all disruption scenarios. If the fortified facilities have infinite
capacity (which is assumed by all existing literature using the RB model), disruption corre-
lation will not affect the expected cost. In the capacitated case, disruption correlation does
affect the expected cost. However, it only captures the effect of correlation on the probability
of the aggregate demand exceeding the capacity constraint. It does not capture the effect
of correlation on the probability of customers being rerouted to distant facilities, which is
the main focus of reliable facility location models. The existing robust models consider all
possible disruption scenarios. But they do not consider the probabilistic distribution of the
disruption scenarios. Thus, they cannot model disruption correlation.

To our knowledge, CA is the only approach that has been successfully applied to incor-
porate correlated disruptions. Li and Ouyang (2010) considered the CA counterpart of the
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IF model given the conditional probability of the disruptions. They found that the expected
cost is higher when disruptions are positively correlated. Their numerical study shows that
the impact of correlation on the expected cost can be significant when both the disruption
probability and the service interruption penalty are high. Lim et al. (2013) considered the
CA counterpart of the RB model with capacitated backup facilities. The main purpose is to
study the effect of misspecifying the disruption probability and/or correlation on the relative
regret. They found that the expected cost is increasing in the correlation and decreasing in
the capacity. Their numerical result shows that joint underestimation of disruption prob-
ability and correlation results in higher loss compared to joint overestimation. In related
work, Berman, Krass, and Menezes (2013) considered the continuous 2-median and 2-center
problems restricted to a unit line segment. They derived in closed-form the trajectory of
optimal locations as a function of the disruption probability and correlation.

The major difference between our model and the CA-based models is that our model is a
discrete location model, while the CA model is a continuous location model. The continuous
model requires that the demand can be well approximated by a continuous function, and that
the potential locations are not restricted to given candidate sites. While these conditions
may hold under certain circumstances (for example, individual customers within an urban
area can be well approximated by a continuous function), they may not hold under many
other circumstances. We consider a detailed supply chain design problem. The customers are
distributed across the nation, and thus the demand is hard to approximate using a continuous
function. Also, the potential locations for the facilities (e.g., warehouses and distribution
centers) are typically restricted to a number of candidate sites. Thus, we believe a discrete
model is more suitable for this setting.

Given the difference in the nature and specific settings of the models, it may not be
completely appropriate to directly compare the results and insights from this chapter and
those from the CA-based papers. Nonetheless, we notice the following key differences. First,
in contrast to Li and Ouyang (2010) who found that the regret of ignoring correlation is
usually not significant, we find that such regret is significant in our real-world motivated
case study and most of our simulated examples, and it is also much higher than the regret
from using the robust design for independent disruptions. Also, Li and Ouyang (2010) found
that the number of opened facilities is smaller when disruptions are correlated, while we find
the opposite result. We think these differences are probably due to the different nature (i.e.,
discrete vs. continuous) of the models and the difference in the correlation structure. Second,
Lim et al. (2013) found that the effect of misspecification in disruption correlation alone is
very limited. We find that misspecification of correlation alone can also result in significant
loss, and overestimating correlation (i.e., assuming worst-case correlation) is in general better
than underestimating (i.e., assuming independence). We think these differences are probably
due to the fact that Lim et al. (2013) considered the CA counterpart of the RB model with
capacitated backup, which, as we mentioned, does not reflect the effect of correlation on
rerouting customers to distant facilities.

In addition to the CA-based models, the literature includes discrete location models that
considered specific (deterministic) interdependence structure between locations. Liberatore,
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Scaparra, and Daskin (2012) considered one type of interdependence known as the “ripple
effect”, where a disruption at one location causes a nearby facility to lose a fixed proportion
of capacity. They incorporated the ripple effect in the IM model with fortification decisions.
Our model differs from Liberatore, Scaparra, and Daskin (2012) in that the IM model is
for determining the worst-case disruption scenarios for a given design, while our model is
for determining the optimal design. Another difference is that we consider correlated ran-
dom disruptions, while Liberatore, Scaparra, and Daskin (2012) considered a deterministic
interdependence structure between locations. Li, Ouyang, and Peng (2013) considered an-
other type of interdependence known as “supporting station”, where different locations may
require resources provided by the same supporting station. Thus, independent disruptions
to the supporting stations may result in correlated disruptions to the facilities. Technically
speaking, the supporting station model is still a model with independent disruptions. Our
model does not require the special structure of supporting stations, and thus can be applied
under more general settings.

In summary, our model significantly differs from the existing literature. In contrast to
the CA-based models, our model is a discrete model which is applicable under more general
problem settings. We also draw new insights from the numerical results. Compared with
the models of Liberatore, Scaparra, and Daskin (2012) and Li, Ouyang, and Peng (2013),
our model is based on correlated random disruptions instead of special interdependence
structure.

2.3 Model and Formulation

In this section we focus on the reliable uncapacitated fixed-charge location (RUFL) problem,
as an example to illustrate the distributionally-robust optimization model for reliable facility
location design, and show how it can be transformed to an equivalent problem. The same
approach applies to other widely studied reliable facility location problems, including the
p-median problem, the capacitated fixed-charge location problem, and the multi-allocation
hub location problem.

Consider the problem of locating facilities at a set J = {1, . . . , J} of candidate locations
to serve a set I = {1, . . . , I} of customers. Let di denote the demand of customer i ∈ I,
and fj the fixed cost of opening a facility at location j ∈ J . Serving customer i from a
facility at location j incurs unit transportation cost cij. Let x = (x0, x1, . . . , xJ) denote
the facility location decision, where xj = 1 if facility is opened at location j, and xj = 0
otherwise. The facilities are subject to random disruptions. Let ξ = (ξ0, ξ1, . . . , ξJ) denote
the disruption scenario, where ξj = 0 if location j is disrupted, and ξj = 1 if it is online,
i.e., not disrupted. We will sometimes, for convenience, use the set of online locations, S, to
denote the disruption scenario, with the correspondence

S(ξ) = {j ∈ J : ξj = 1},
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and
ξ(S) = (I(0 ∈ S), I(1 ∈ S), . . . , I(J ∈ S)),

where I(·) is the indicator function.
Given x and ξ, each customer is either assigned to an available (i.e., opened and online)

facility (with yij = 1 if customer i is assigned to facility j, and yij = 0 otherwise), or its
service is interrupted. In order to model service interruptions, a virtual facility 0 is added to
J . yi0 = 1 means customer i’s service is interrupted, with ci,0 being the unit penalty cost.
The virtual facility is never disrupted, i.e., ξ0 ≡ 1, and its fixed cost f0 = 0. Note that in
the RUFL model, the facilities are uncapacitated. Thus, service interruptions, if any, are
not due to limited supply capacity. In Section 2.5, we show how to handle limited capacity.

Let h(x, ξ) denote the transportation and penalty cost under the optimal customer as-
signment/interruption decisions, given location design x and disruption scenario ξ, i.e.,

h(x, ξ) = min
∑
i∈I

∑
j∈J

dicijyij

s.t.
∑
j∈J

yij = 1, ∀i ∈ I

yij ≤ xjξj, ∀i ∈ I, ∀j ∈ J
yij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J

(2.1)

Let p(ξ) be the joint distribution of the disruptions, i.e., p(ξ) is the probability that
disruption scenario ξ occurs, the RUFL problem is defined as

(RUFL) min
x∈X

{∑
j∈J

fjxj + Ep[h(x, ξ)]

}
,

where X = {x : xj ∈ {0, 1},∀j ∈ J }. Traditional RUFL models (e.g., Snyder and Daskin,
2005; Cui, Ouyang, and Shen, 2010) consider the special case where disruptions are inde-
pendent, i.e.,

p(ξ) =
∏
j∈J

(1− qj)ξj(qj)1−ξj ,

where qj is the marginal disruption probability of location j.
In distributionally-robust optimization, instead of assuming some specific joint distribu-

tion, we assume p(ξ) to be uncertain, but within a distributional uncertainty set. In specific,
we consider the set of all joint distributions such that the marginal disruption probability of
location j is equal to qj, i.e.,

P =

p
∣∣∣∣∣∣∣
∑

S:j∈Sp(S) = 1− qj, ∀j ∈ J
p(S) ≥ 0, ∀S ⊆ J
p(S) = 0, ∀S, 0 /∈ S

 .
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Recall that the virtual facility is never disrupted, i.e., 0 ∈ S for any disruption scenario S,
and the disruption probability q0 = 0. Thus, we have the following constraint∑

S:0∈S

p(S) = 1− q0 = 1.

This constraint guarantees that p(S) is a probability measure. Also, Note that the distribu-
tional uncertainty set P does not require any additional model input other than the marginal
disruption probability. Thus, it is possible to directly compare the robust model with the
traditional model.

The distributionally-robust reliable uncapacitated fixed-charge location (DR-RUFL) prob-
lem minimizes the expected cost under the worst-case distribution in P , i.e., the one that
leads to the maximum expected cost,

(DR-RUFL) min
x∈X

{∑
j∈J

fjxj + max
p∈P

Ep[h(x, ξ)]

}
. (2.2)

Distributionally-robust optimization has been extensively studied and applied to various
problems. For a review, please refer to Bertsimas, Brown, and Caramanis (2011). More
specifically, our model falls into the category of marginal moment models studied by Bert-
simas, Natarajan, and Teo (2004). Agrawal et al. (2010); Agrawal et al. (2012) also studied
the marginal moment models. Their focus is to derive an upper bound on the regret from
ignoring correlation for a class of problems. Most reliable facility location models are not in
this class, which means ignoring correlation can result in substantial regret.

Considering the worst-case distribution is certainly conservative. However, we believe it
can usually be justified in practice. First, previous studies suggest that in supply chain risk
management, managers are more concerned of the “maximum exposure”, i.e., the worst-case
(Tang, 2006). Second, as we will discuss later, the worst-case distribution for the DR-RUFL
problem has a practical interpretation. Under certain circumstances, we expect that it is
closer to the actual distribution than the independent distribution. Third, since the actual
distribution is typically unknown, given only the marginal probability, one could either as-
sume the disruptions are independent, or apply the DR-RUFL model. Our numerical results
in Section 2.4 show that the latter option usually outperforms the former. Furthermore, the
optimal design under the worst-case distribution is not expensive to implement in practice,
and much of its benefit can be achieved at a relatively low cost.

Equivalent Formulation of DR-RUFL

The DR-RUFL problem in (2.2) is a mini-max formulation. The inner problem has the goal
of choosing the worst disruption distribution p for a given design x, which can be formulated
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as a linear program

maxEp[h(x, S)] = max
∑
S⊆J

h(x, S)p(S)

s.t.
∑
S:j∈S

p(S) = 1− qj, ∀j ∈ J

p(S) ≥ 0, ∀S ⊆ J
p(S) = 0, ∀S, 0 /∈ S

(2.3)

This linear program has 2J variables, which could still make the DR-RUFL problem com-
putationally intractable. However, due to a property of RUFL, we can derive the worst-case
distribution in a closed-form that does not depend on x or h(x, S). The DR-RUFL problem
can then be transformed into a much simpler equivalent problem and solved efficiently.

First, we need to show that with any given x, the cost function h(x, S) in (2.1) is
supermodular in S. A set function g is said to be supermodular if for any S, T ⊆ J ,

g(S ∩ T ) + g(S ∪ T ) ≥ g(S) + g(T ).

g is supermodular if and only if for any S ⊂ T ⊂ J , and any j ∈ J \T ,

g(S ∪ {j})− g(S) ≤ g(T ∪ {j})− g(T ). (2.4)

Condition (2.4) is known as the condition of increasing differences. g(S ∪ {j}) − g(S) is
the difference in function value from augmenting subset S with j ∈ J \S. Similarly, g(T ∪
{j})−g(T ) is the difference in function value from augmenting subset T with j ∈ J \T . The
differences are increasing if for any S ⊂ T , g(S ∪ {j}) − g(S) ≤ g(T ∪ {j}) − g(T ). Many
reliable facility location problems have increasing differences. The intuition is that having
additional available facilities has diminishing marginal returns. For the RUFL problem, we
have the following lemma.

Lemma 1 (Supermodularity). For any x ∈ X , the cost function h(x, S) given in (2.1) is
supermodular in S.

Using supermodularity, we can derive the worst-case distribution. Without loss of gener-
ality, assume the facilities are indexed in ascending order of marginal disruption probabilities,
i.e.,

0 ≡ q0 ≤ q1 ≤ · · · ≤ qJ ≤ qJ+1 ≡ 1.

Consider J + 1 disruption scenarios denoted by ξ0, ξ1, . . . , ξJ . The s-th scenario is defined
as

ξs = (ξs0, ξ1, . . . , ξJ),

where ξsj = I(j ≤ s) for all j ∈ J , and I(·) is the indicator function. In other words, in
the s-th scenario, the less reliable locations s+ 1, . . . , J are disrupted, and the more reliable
locations 0, 1, . . . , s are online.
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We will show that in the worst-case distribution, only the J + 1 disruption scenarios we
just defined will have non-zero probability. All the other disruption scenarios will have zero
probability. Also, the worst-case distribution does not depend on the location design x, and
can be found in closed-form. The following lemma is due to Edmonds (1971) and Agrawal
et al. (2010). It can also be shown using basic linear program duality.

Lemma 2 (Worst-case disruption distribution). In the worst-case disruption distribution for
DR-RUFL, only disruption scenarios ξ0, ξ1, . . . , ξJ may have nonzero probabilities, and the
probability of scenario ξs is equal to qs+1 − qs for all s = 0, 1, . . . , J .

To better understand Lemma 2, consider the case where a hazard originates at a source,
and propagates along certain direction (for example, an earthquake). Assume there are J
impact regions which are indexed in ascending order of impact probabilities, (e.g., region 1 is
the outermost region, and region J is the innermost region), and assume there is a candidate
location in each region. In scenario ξs, facilities in regions s + 1, . . . , J are disrupted, i.e.,
the disruption has propagated far enough to reach region s+ 1, and thus all regions that are
closer to the hazard source. On the other hand, facilities in regions 1, . . . , s are online, i.e.,
the disruption has not propagated far enough to reach region s, and thus all regions beyond
it. If we assume the disruption cannot “jump” to a further region without impacting all
regions closer to the hazard source, then we can see that only scenarios ξs, s = 0, 1, . . . , J
are possible. The probability of ξs is the probability of reaching region s+1 but not reaching
region s, which is equal to qs+1 − qs.

We would like to point out that in the DR-RUFL model, we do not make any assumption
on the structure of the disruption. The propagation example we just described is only
a practical interpretation of the worst-case distribution. In this situation, the worst-case
distribution is really close to the actual distribution. There are certainly other disruption
structures. The worst-case distribution can still be used to approximate the unknown actual
distribution, and we will show its performance is better than the traditional model in the
numerical study presented later in this chapter.

A direct result from Lemma 2 is the worst-case correlation. Let ρ∗jk be the worst-case
correlation between locations j and k, with j < k. It is easy to verify that

ρ∗jk =

√
qj(1− qk)
qk(1− qj)

. (2.5)

Two observations can be made. First, as a result of supermodularity, the worst-case cor-
relation achieves the maximum correlation with the given marginal disruption probability.
Second, the correlation is stronger between locations with similar marginal disruption prob-
abilities. We think this partially reflects practical situations, since facilities that are close to
each other tend to have similar disruption probabilities, and they are also more likely to be
disrupted at the same time due to common hazards.

Another observation from Lemma 2 is that the worst-case disruption distribution only
depends on the marginal disruption probability, but not on the transportation cost. Recall
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that traditional RUFL models are based on the implicit formulation (IF) model where cus-
tomers are assigned to multiple backup facilities with different backup levels. The level r
backup facility will only be used, if level 1 through level r−1 backup facilities are disrupted.
Under independent disruptions, it is optimal to assign backup facilities level by level in in-
creasing order of transportation cost without considering reliability, given that the number of
backup level is large enough (Cui, Ouyang, and Shen, 2010). However, under the worst-case
correlated distribution, if the level r backup facility is less reliable than the level r−1 backup
facility, it will be disrupted whenever the level r − 1 facility is disrupted. Thus, assigning
a less reliable facility as a higher level backup is meaningless. This shows when disruptions
are correlated, one needs to consider both transportation cost and reliability in determining
backup levels.

Using the worst-case disruption distribution, we obtain an equivalent formulation of the
DR-RUFL problem, which we refer to as the worst-case reliable uncapacitated fixed-charge
location (WC-RUFL) problem.

Proposition 3 (Equivalent formulation). The DR-RUFL problem is equivalent to

(WC-RUFL) min
x∈X

{∑
j∈J

fjxj +
∑
s∈J

(qs+1 − qs)h(x, ξs)

}
.

The WC-RUFL problem is a stochastic program with only J + 1 scenarios, and thus can
be solved efficiently using standard methods such as Benders decomposition (e.g., Magnanti
and Wong, 1981).

2.4 Numerical Results

In this section, we use numerical results to show the advantage of the distributionally-
robust model over the traditional model that assumes independent disruptions. First, we will
present an example motivated by a real-world situation and show how considering disruption
correlation affects the optimal location design. Then, we will compare the two models with
numerical experiments and draw managerial insights.

Example: Supply Chain Design under Severe Weather Hazards

We consider the case where a large nation-wide company is planning its distribution center
(DC) network to serve retail stores that replenish from the DCs. The customers are rep-
resented by the 48 states in the contiguous US and Washington, D.C., and the demand is
proportional to the state population. The fixed cost for a DC is proportional to the median
home price, and the unit transportation cost is proportional to the Great Circle Distance
(calculated using the geographic coordinates of the state capitals). Specifically, we use the
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Figure 2.2: The optimal design under independent disruptions (Design I)

49-node data set described in Daskin (1995). This data set has been widely used in location
analysis, especially for designing supply chains. It has also been used in reliable facility
location problems (e.g., Snyder and Daskin, 2005).

Based on previous experience, disruptions to the DCs are mainly caused by severe weather
hazards, e.g., tornadoes, storms, etc. It is assumed that disrupted DCs will not be able
to serve customer demand for the entire planning horizon (a quarter). The company has
obtained the severe weather hazard data from the Storm Prediction Center of the NOAA.
Using this data set, it can estimate the marginal disruption probabilities. More details can
be found in Appendix B.1. Although the company tries its best to fulfill all the demand,
service interruption is still possible under a severe disruption. It is estimated that there is a
$40,000 penalty cost for each unit of unfulfilled customer demand. Given all these data, the
company seeks to design a reliable supply chain to minimize the total cost consisting of the
fixed cost and the expected transportation/penalty cost.

Since only the marginal disruption probabilities are available, the manager is faced with
two options. The first option is to assume that the disruptions are independent and apply
the traditional RUFL model (e.g., Cui, Ouyang, and Shen, 2010). The optimal design (I) is
shown in Figure 2.2. The second option is to consider all joint distributions with the same
marginal disruption probability and apply the DR-RUFL model. The optimal design (R) is
shown in Figure 2.3. The details of the two designs can be found in Table 2.2. We see that
the two designs only differ by two facilities (and the customer assignments related to these
facilities). The California (CA) and Michigan (MI) facilities in design I are moved to Nevada
(NV) and West Virginia (WV), respectively, in design R. Table 2.3 compares the performance
of the two designs. When there is no disruption, or when the disruptions are independent,
design I performs slightly better. Implementing design R will increase the expected cost by
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Figure 2.3: The optimal design under worst-case correlated disruptions (Design R)

Table 2.2: Optimal location designs of the two models

Design I Design R
Location % Disruption % Demand Location % Disruption % Demand

PA 6.96 28.93 – – 25.52
TX 7.95 8.76 – – –
AL 10.80 16.58 – – 15.17
IA 12.88 15.27 – – –
CA 1.45 18.56 NV 0.83 18.56
MI 6.99 11.89 WV 3.45 16.71

Note: % Disruption: marginal disruption probability, % Demand: proportion of total demand served, “–”:

same as design I.

Table 2.3: Comparison of the performance of the two designs

Performance
Design I Design R

Cost Increase % Increase Cost Increase % Increase

No disruption 857,166 – – 889,919 32,753 3.82
Independent disruption 927,027 – – 945,836 18,808 2.03
Worst-case correlated 2,495,053 663,401 36.22 1,831,652 – –

Note: Increase: increase in cost compared to the design with the lower cost, % Increase: relative increase,

“–”: not applicable.
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4% and 2%, respectively. However, under the worst-case distribution, design R performs
much better than design I, and implementing design I will increase the expected cost by over
30%.

To understand why design I results in such high additional costs, consider the Pennsylva-
nia (PA) facility which serves the most populous New England and Mid-Atlantic regions. In
design I, almost 30% of the total demand is served by the PA facility. When PA is disrupted,
most of these customers will be rerouted to the MI facility. However, since PA and MI have
marginal disruption probabilities 5.01% and 5.03%, the correlation between them can be
very high. As a result, MI usually fails to serve as a backup facility. On the other hand, in
design R, most of the customers served by PA are backed-up by the much more reliable WV
facility. The correlation between PA and WV has a much lower upper bound. Thus, WV is
a much more effective backup than MI is.

The worst-case correlation is a conservative estimate. Under the actual correlation, the
regret of design I will be smaller. (The regret of design R will also be smaller.) However, we
expect that the actual correlation between PA and MI is still relatively high, as these two
locations are more likely to be affected by common hazard originating from the Great Lakes.
We also expect that the robust design is more favorable in practice, since the extra cost (i.e.,
the increase in cost when there are no disruptions or when the disruptions are independent) is
small but the potential savings is huge. As we mentioned in Section 2.3, there are also other
reasons to consider the worst-case distribution rather than the independent distribution. In
the next subsection, we show this by numerical experiments using simulated data.

Numerical Results

We would like to compare the robust model and the traditional model in a more compre-
hensive numerical study. Instead of using the severe weather hazard data from the NOAA,
we generate the disruption probabilities in the same way as Cui, Ouyang, and Shen (2010).
Let α be the probability that a disastrous event occurs at a certain source. The disaster
then propagates and causes disruptions to facilities at different distances from the source.
The marginal disruption probability decreases exponentially in the distance. Let Dj be the
distance of location j from the source, then the marginal disruption probability of location
j is given by

qj = αe−Dj/θ,

where θ is a parameter that measures the strength of the disruption propagation effect. The
source disaster probability α, the disruption propagation factor θ, along with the service
interruption penalty ω, are the key factors that significantly affect the cost and the optimal
design. For each factor, we consider three levels, which gives us 27 different combinations,
as shown in Table 2.4.

We use the same demand, fixed cost, and transportation cost data as in the previous
example, i.e., the 49-node data set in Daskin (1995). Similar results were found using a larger
data set in Daskin (1995). Those results are available in Appendix B.2. The robust model
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Table 2.4: Levels for important factors

factor low medium high
α 0.1 0.2 0.3
θ 200 400 800
ω 20000 40000 80000

is solved using an accelerated Benders decomposition algorithm. The traditional model is
solved using the search-and-cut (SnC) algorithm in Aboolian, Cui, and Shen (2013), which
to our knowledge is the state-of-art for the traditional RUFL model. Both algorithms are
implemented and tested using ILOG Cplex 12.4 with MATLAB R2009b on a Intel Core
i7-930 2.80 GHz quad core processor running 64-bit Windows 7. The SnC algorithm uses 4
levels of backup and a neighborhood size of 3 (for details please refer to Aboolian, Cui, and
Shen, 2013), and is solved to a 0.1 % optimality gap or 7200 seconds maximum runtime,
whichever occurs first.

Table 2.5 summarizes the solutions under different α, ω, and θ. The subscript R rep-
resents the robust model and the subscript I represents the traditional with independent
disruptions. n is the number of open facilities in the optimal solution. z is the optimal
expected cost. ∆z is the regret, i.e., the increase in cost when the optimal solution under
one disruption distribution is erroneously used in the other disruption distribution. For ex-
ample, ∆zR is the regret if the optimal solution under independent disruptions is used when
the disruptions are actually worst-case correlated. %∆z is the percentage relative regret,
i.e., %∆z = 100 × ∆z/z. CPU and GAP are the computation time and optimality gap,
respectively, when the algorithm terminates.

From Table 2.5, we have several observations. First, comparing columns nR and nI ,
we see that the number of opened facilities in the robust solution is greater than or equal
to that of the independent solution for all instances. This shows that more facilities are
required to mitigate correlated disruptions. Second, from columns ∆zR and %∆zR, we see
that failing to consider disruption correlation could lead to significant loss, with an average
regret of 187,000 (11.98%). For some of the instances, the relative regret is more than 20%.
On the other hand, from columns %∆zI and %∆zI , we see that although assuming the
worst-case correlation is conservative, it does not lead to a significant cost increase even
when disruptions are independent, with an average regret of 25,000 (2.76%), and the relative
regret is less than 8% for all instances. Finally, we consider the computational performance.
Comparing columns CPUR and CPUI , and columns GAPR and GAPI , we see that the robust
model requires much less computational effort than the traditional model. This gives the
robust model a great advantage for solving large-scale problems.

From Table 2.5, we also see that the performance of the solutions is significantly affected
by the parameters α, ω, and θ. In Figure 2.4, we show the impact of these factors on the
regret. Consider the source disaster probability α, for example. For each level of α, we
consider different combinations of the other two factors, i.e., ω and θ, and compare the
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Figure 2.5: Expected cost under different degrees of disruption correlation

average regret. We see that the regret of the independent solution increases dramatically
as α increases. On the other hand, the regret of the robust solution only increases mildly.
Similar results are observed for ω and θ.

We have compared the robust solution and the independent solution under two extreme
distributions, i.e., disruptions are either independent or worst-case correlated. In practice,
we expect that the actual distribution is between the two extreme cases, i.e., the disruptions
are positively correlated, but the correlation is smaller than the worst-case. We also like to
compare the performance of the robust and independent solutions under these intermediate
cases. Assume the disruption correlation between location j and k is given by βρ∗jk, where
ρ∗jk is the worst-case correlation given in (2.5), and β ∈ [0, 1] is a parameter that controls the
degree of correlation. When β = 0 or 1, the joint distribution reduces to the independent
or the worst-case distribution, respectively. We use simulation to evaluate the expected cost
of the optimal robust solutions and independent solutions under different β. The average
cost is shown in Figure 2.5. We see that even though the independent model has a slightly
lower expected cost when the degree of correlation is close to zero, the robust model starts
to outperform the independent model under mildly correlated disruptions (e.g., β = 0.3),
and has a substantial advantage when the correlation is relatively high.

One common criticism of robust optimization is that it focuses on the worst case, and
thus can be overly conservative and too expensive to implement in practice. In order to



CHAPTER 2. FACILITY LOCATION WITH DISTRIBUTIONAL UNCERTAINTY 22

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Weight γ

 

 

Increase in φ0

Reduction in φ1

Figure 2.6: Benefit and cost of the robust design with different weights

address this issue, we consider a weighted-average objective function

φγ(x) = γφ1(x) + (1− γ)φ0(x),

where φ1 is the expected cost of the DR-RUFL problem, and φ0 is the normal operating
cost, i.e., the cost when there is no disruption. γ ∈ [0, 1] is a parameter that measures the
degree of conservativeness. By Proposition 3,

φ1(x) =
∑
j∈J

fjxj +
J∑
s=0

(qs+1 − qs)h(x, ξs).

Recall that in scenario ξJ , no facility is disrupted. Thus,

φ0(x) =
∑
j∈J

fjxj + h(x, ξJ).

As a result, the weighted-average objective can be easily incorporated by adjusting the
disruption probabilities, i.e.,

φγ(x) =
∑
j∈J

fjxj +
J−1∑
s=0

γ(qs+1 − qs)h(x, ξs) + (1− γqJ)h(x, ξJ).
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Figure 2.7: Percentage of maximum benefit captured and maximum cost incurred by different
weights

Let xγ = argmin {φγ(x)}, i.e., the optimal solution with parameter γ. If γ = 0, x0 is
the optimal solution when there is no disruption, i.e., the most cost-effective but also the
least reliable design. For γ > 0, applying the reliable design xγ instead of design x0 has two
effects. It will reduce the worst-case expected cost by φ1(x0)− φ1(xγ), which is its benefit,
while increasing the normal operating cost by φ0(xγ)− φ0(x0), which can be considered as
its cost. Figure 2.6 compares these two effects under different γ. We see that a large amount
of benefit can be achieved with a relatively small cost.

On the other hand, when γ = 1, x1 is the optimal solution for the DR-RUFL problem,
i.e., the most reliable but also the most conservative design. It will result in the maximum
benefit φ1(x0)− φ1(x1) and the maximum cost φ0(x0)− φ0(x1). For 0 < γ < 1, the ratio

φ1(x0)− φ1(xγ)

φ1(x0)− φ1(x1)

is the proportion of maximum benefit captured by xγ. Similarly,

φ0(xγ)− φ0(x0)

φ0(x1)− φ0(x0)

is the proportion of maximum cost incurred by xγ. Figure 2.7 compares these two proportions
for different γ. We see that over 90% of maximum the benefit can be captured at a small
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conservative level (e.g., γ = 0.2), with only 40% of the maximum cost. This shows that the
DR-RUFL model is not expensive to implement in practice. Managers can assign a small
weight to the worst-case expected cost and still capture most of its benefit.

It is necessary to point out that most of the observations are based on the average of
numerical results with parameters shown in Table 2.4. For a given problem instance, the
result will depend on the specific parameter setting and the other input data.

2.5 Extensions to Other Reliable Facility Location

Problems

In this section, we show how the distributionally-robust approach can be applied to oth-
er reliable facility location problems, including the reliable p-median problem, the reliable
capacitated fixed-charge location problem, and the reliable multi-allocation hub location
problem.

The Reliable p-Median Problem

The reliable p-median (RPM) problem is very similar to the RUFL problem except that
exactly k facilities with no fixed cost are located (since p is already used to denote the joint
distribution of disruptions, we use k to denote the number of facilities to be located). The
distributionally-robust RPM (DR-RPM) problem is defined as

(DR-RPM) min
x∈X

{
max
p∈P

Ep[h(x, ξ)]

}
,

where X = {x : xj ∈ {0, 1},∀j ∈ J ;
∑

j∈J xj = k+1}, and h(x, ξ) is the same as in the RU-
FL case. Thus, Lemma 1 also applies to the distributionally-robust reliable p-median (DR-
RPM) problem. Similar to the interdiction median model with fortification (e.g., Church
and Scaparra 2007), the DR-RPM problem can also be embedded in a facility fortification
problem. This is left as a topic for future research.

The Reliable Capacitated Fixed-Charge Location Problem

The reliable capacitated fixed-charge location (RCFL) problem generalizes the RUFL prob-
lem by assuming each location has a capacity Bj. The distributionally-robust RCFL (DR-
RCFL) problem is defined as

(DR-RCFL) min
x∈X

{∑
j∈J

fjxj + max
p∈P

Ep[h(x, ξ)]

}
,
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where X = {x : xj ∈ {0, 1},∀j ∈ J } and

h(x, ξ) = min
∑
i∈I

∑
j∈J

dicijyij

s.t.
∑
j∈J

yij = 1, ∀i ∈ I∑
i

diyij ≤ xjξjBj, ∀j ∈ J

yij ≥ 0, ∀i ∈ I, ∀j ∈ J

(2.6)

We have the following lemma.

Lemma 4. For any x ∈ X , the cost function h(x, ξ) in (2.6) is supermodular in ξ.

Due to the capacity constraint in the DR-RCFL problem, the Benders decomposition
algorithm for the DR-RUFL problem may be inefficient. A cross-decomposition algorithm
can be applied.

The Reliable Multi-Allocation Hub Location Problem

In fixed-charge location and p-median problems, we are interested in the flow between fa-
cilities and customers. However, in some logistics, transportation, or telecommunication
systems, it is also possible that most flows occur between pairs of customers, known as
origin-destination (OD) pairs. In order to achieve economies of scale, each O-D pair is
connected through one or multiple interconnection facilities, known as hubs. Hub location
problems are concerned with the optimal location of such facilities. We focus on the most
common case where each O-D pair is connected through no more than two hubs. There
are two different cases, multi-allocation and single-allocation. In the single-allocation case,
each customer is connected to a fixed hub in all O-D pairs. In the multi-allocation case, a
customer can be connected to different hubs in different O-D pairs.

We focus on the fixed-charge hub location problem. The same argument holds for the
p-hub median problem, where exactly k hubs are located. For ease of presentation, assume
the set of candidate locations is the same as the set of customers, denoted by V = {1, . . . , V }.
For i, i′ ∈ V , let dii′ be the flow volume between O-D pair (i, i′). For j ∈ V , xj = 1 if a hub
is built at node j, which incurs fixed charge fj; xj = 0 otherwise. Let ξ be the disruption
scenario vector. ξj = 1 means location j is online, and ξj = 0 means it is disrupted. For
O-D pair (i, i′), let yii′jj′ = 1 if customers i and i′ are connected through hubs j and j′,
which incurs unit transportation cost cii′jj′ ; yii′jj′ = 0 otherwise. Similar to the RUFL
problem, service interruption is represented by a virtual facility with index 0. It has a fixed
charge f0 = 0, unit transportation cost cii′00 equal to the service interruption penalty for
O-D pair (i, i′), and cii′0j = cii′j0 = ∞ for all j 6= 0. The distributionally-robust reliable
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multi-allocation hub location (DR-RMHL) problem is defined as

(DR-RMHL) min
x∈X

{∑
j∈V

fjxj + max
p∈P

Ep[h(x, ξ)]

}
,

where X = {x : xj ∈ {0, 1},∀j ∈ J }, and the hub allocation problem h(x, ξ) is given by

h(x, ξ) = min
∑

i,i′,j,j′∈V

dii′cii′jj′yii′jj′

s.t.
∑
j,j′∈V

yii′jj′ = 1, ∀i, i′ ∈ V

yii′jj +
∑
j′ 6=j

(yii′jj′ + yii′j′j) ≤ xjξj, ∀i, i′, j ∈ V

yii′jj′ ≥ 0, ∀i, i′, j, j′ ∈ V

(2.7)

We have the following lemma.

Lemma 5. For any x ∈ X , the cost function h(x, S) in (2.7) is supermodular in S.

Given supermodularity, the worst-case distribution result in Lemma 2 will still hold for
the aforementioned reliable facility location problems. However, several other reliable facility
location problems, including the reliable p-center problem and the reliable single-allocation
hub location problem, are not supermodular. Thus, the distribution given in Lemma 2
will not be the worst-case distribution for these problems. However, it is worth mentioning
that these problems are not submodular either. For these problems, ignoring disruption
correlation can still result in significant loss, and the distribution given in Lemma 2 could
be used as a better approximation than the independent distribution.

2.6 Summary and Future Directions

In this chapter, we present a distributionally-robust optimization model to incorporate corre-
lated disruptions in reliable facility location design. We find that this seemingly complicated
problem is actually equivalent to a much simpler problem and can be solved efficiently. Our
numerical results show that this model has several advantages compared to the traditional
model, which is based on the assumption of independent disruptions, and thus we believe it
can serve as a promising alternative approach for reliable facility location design problems.

One limitation of our model is that it focuses on the worst-case distribution, which can
be overly conservative in practice. In our future work, we plan to study a more general
model where the disruption correlation is explicitly given. Also, we focus on locating facil-
ities for regular supply chain operations and assume the demand is deterministic and not
affected by the disruptions. When locating facilities for humanitarian operations in disaster
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relief, the demand will be highly uncertain and depend on the disruptions. We will incor-
porate uncertain demand in our future work. Our model is suitable for location design in
a medium-to-large area (e.g., nation-wide). New models need to be developed for problems
in a relatively small area (e.g., a city). We also plan to consider the facility fortification
problem under correlated disruptions and study the impact of correlation on the effect of
fortification.
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Chapter 3

Joint Pricing-Inventory Management
with Structural Uncertainty

3.1 Introduction

The interaction between price and demand has been one of the central topics studied in
business. Pricing strategies can affect customer demand effectively. Inventory decisions affect
the cost to satisfy the customer demand, and thus also the effectiveness of pricing strategies
(Yano and Gilbert, 2004). In order to maximize the expected profit, pricing and inventory
decisions need to be jointly optimized. Coordinated or joint pricing-inventory management
considers the important interface between marketing and operations management. It has
been widely studied by the operations research and management sciences community (see
Elmaghraby and Keskinocak, 2003; Chan et al., 2004; Yano and Gilbert, 2004; Chen and
Simchi-Levi, 2012). The most basic version of joint pricing-inventory management is the
pricing newsvendor problem, where a retailer jointly determines the selling price and the
order quantity of a perishable product. Despite its simplified setting, the pricing newsvendor
problem is the backbone of many joint-pricing inventory management models, and has been
shown to have significant theoretical and practical value (see Petruzzi and Dada, 1999; Raz
and Porteus, 2006; Lu and Simchi-Levi, 2013).

In joint pricing-inventory management, the most important and also the most difficult
task is to model the relationship between price and demand. In most of the existing literature,
the relationship is modeled using the demand function, i.e., the demand is a function D(p, ε)
of the selling price p and a random factor ε with distribution function Fε. Commonly used
demand function forms include

• Additive model, D(p, ε) = d(p) + ε,

• Multiplicative model, D(p, ε) = εd(p),

• Additive-multiplicative model, D(p, ε) = µ(p) + εσ(p).
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The forms of d(p) or µ(p) and σ(p) also need to be specified. Some commonly used forms
include

• Linear function, d(p) = a− bp, a, b > 0,

• Exponential function, d(p) = ae−bp, a, b > 0,

• Iso-elastic function, d(p) = ap−b, a > 0, b > 1.

For the distribution function Fε, one can choose from all the commonly used distributions
in operations research and management sciences, or any distribution that is suitable for the
problem.

As we have seen, there are a large number of candidate demand models. The structural
properties of the problem and the optimal solution depend on the selection of the demand
model. For example, it has been shown that the additive model and multiplicative model
cause the optimal price to move in opposite directions compared with the optimal riskless
price (i.e., the price that maximizes the expected revenue) (e.g., Mills, 1959; Karlin and
Carr, 1962; Petruzzi and Dada, 1999; Salinger and Ampudia, 2011). Furthermore, most of
the existing models require conditions on the demand function D(p, ε) and the distribution
function F (ε), (or equivalently, the conditional distribution function of price F (p, x), where
F (p, x) = P{D(p, ε) ≤ x},) in order to guarantee that the expected profit function is u-
nimodal or quasi-concave (e.g., Federgruen and Heching, 1999; Yao, Chen, and Yan, 2006;
Kocabıyıkoğlu and Popescu, 2011; Lu and Simchi-Levi, 2013; Roels, 2013).

In practice, the functional forms of D(p, ε) and d(p), along with the distribution of the
random factor, are typically unknown. They need to be estimated from historical price
and demand observations with properly selected parametric forms. Although several recent
studies have considered more general functional forms and less restrictive required condi-
tions, the structural uncertainty in the relationship between price and demand could still
undermine the applicability of joint pricing-inventory management models in several ways.
First, selecting and fitting models can be a hard problem in itself. Managers who make the
pricing and inventory decisions usually do not have sufficient training and technical support
to perform this task satisfactorily. Furthermore, whenever a new data set is used, the model
selection and fitting process needs to be repeated again. This can create a large amount
of work for companies with a large number of products and markets, or those in a rapidly
changing business environment. Second, even if the models are properly selected and fitted,
the estimated demand model may not satisfy the conditions required by many of the classical
joint pricing-inventory models. For example, one classical result for the pricing-newsvendor
problem requires that the mean demand function have increasing price elasticity, and the
distribution of the random factor have a generalized increasing failure rate (Yao, Chen, and
Yan, 2006). These conditions are non-trivial, and may be violated by the estimates from
historical observations. Third, if an improper parametric form for the demand model is se-
lected, or an overly simplified assumption is made, decisions from the misspecified model can
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be highly suboptimal. As a result, there can be significant loss or regret (Raz and Porteus,
2006).

In this chapter, we present a data-driven approach for the pricing-newsvendor problem
to address the structural uncertainty in the relationship between price and demand. The
approach does not assume any parametric demand model. Instead, it only requires informa-
tion which is typically available in practice, i.e., historical price and demand observations,
and the basic domain knowledge in pricing, known as the Law of Demand. The conditional
demand distribution is estimated using nonparametric quantile regression with monotone
shape constraints. Parametric programming is used to efficiently estimate the entire quan-
tile path. The optimal price and order quantity are found numerically using the estimated
demand quantiles. Smoothing and kernelization methods are applied to avoid overfitting
and improve the quality of estimates and decisions. Additional domain knowledge, such as
demand concavity with respect to price, can also be incorporated in the model. Numerical
results show that the data-driven approach is able to find close-to-optimal solutions. Smooth-
ing, kernelization, and the incorporation of additional domain knowledge can significantly
improve the performance of the approach.

The rest of this chapter is organized as follows. Section 3.2 reviews the related literature.
Section 3.3 presents the data-driven approach using isotonic quantile regression. Section 3.4
discusses how the approach can be improved by smoothing, kernelization, and incorporating
additional domain knowledge. Section 3.5 analyzes the performance of the approach using
numerical experiments. Section 3.6 summarizes the results and discusses directions for future
research.

3.2 Literature Review

Literature on coordinated or joint pricing-inventory management abound. Elmaghraby and
Keskinocak (2003), Chan et al. (2004), Yano and Gilbert (2004), and Chen and Simchi-
Levi (2012) provided excellent comprehensive surveys on the related literature. We focus
on the single period pricing newsvendor problem. Whitin (1955) was the first to study
this problem. He used the conditional demand distribution to model the dependence of
demand on price. Later, Mills (1959) studied the case of additive demand model, and Karlin
and Carr (1962) studied the case of multiplicative demand model. Young (1978) was the
first to study the more general additive-multiplicative demand model. Petruzzi and Dada
(1999) presented a unified framework for additive and multiplicative demand models. Most
of the later studies focus on two research questions. First, what conditions are sufficient to
guarantee the unimodality or quasi-concavity of the expected profit function? Second, how
does demand uncertainty affect the optimal price? In other words, how does the optimal
price for the pricing newsvendor problem differ from the riskless optimal price, i.e., the
optimal price under deterministic demand?

For the first question, Yao, Chen, and Yan (2006) provided an excellent survey of the
demand models used in previous literature and the corresponding sufficient conditions. They
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showed that to guarantee unimodality of the expected profit function, it is sufficient for the
mean demand function to have increasing price elasticity, and for the distribution of the
random factor to have a generalized increasing failure rate. These conditions are shown to
be more general than most of those previously used in the literature. Xu, Cai, and Chen
(2011) provided more details on this result, and showed several applications. Lu and Simchi-
Levi (2013) considered the more general additive-multiplicative demand model. They used
three conditions, namely, the log-convexity of the coefficient of variation, the log-concavity
of the deterministic profit function, and the log-convexity of the random factor’s expectation
conditioning on having leftover inventory, to establish the log-concavity of the expected
profit function. Roels (2013) derived another set of sufficient conditions, which is shown to
be complementary to the set of conditions in Lu and Simchi-Levi (2013), i.e., neither set of
conditions implies the other. Kocabıyıkoğlu and Popescu (2011) took a different approach
by considering the conditional distribution function directly. They proposed a new measure,
called the lost-sales rate (LSR) elasticity, and showed that the structural properties of the
problem can be fully characterized by conditions regarding the LSR elasticity.

For the second question, it is well known that additive and multiplicative demand models
cause the optimal price to move in opposite directions compared with the riskless optimal
price. Let p∗ denote the optimal price for the pricing newsvendor problem, and p0 the riskless
optimal price. Mills (1959) found that p∗ ≤ p0 for additive demand, and Karlin and Carr
(1962) found that p∗ ≥ p0 for multiplicative demand. Petruzzi and Dada (1999) summarized
the results, and argued that the difference can be explained by the monotonicity of variance
and coefficient of variation of demand. Salinger and Ampudia (2011) explained the difference
using simple economics regarding the marginal cost of each expected unit sold and the price
elasticity of expected sales. Young (1978) studied the effect of the additive-multiplicative
demand model on the relationship between p∗ and p0, and derived conditions regarding the
conditional mean and variance, which can be used to determine the relationship. Lu and
Simchi-Levi (2013) and Roels (2013) also studied the effect of the additive-multiplicative
demand model on the relationship between p∗ and p0. They showed that the relationship
can be characterized using the sufficient conditions that they derived to guarantee the u-
nimodality or quasi-concavity of the expected profit function. Kocabıyıkoğlu and Popescu
(2011) studied the relationship between p∗ and p0 using the conditional demand distribution
function, and showed that the relationship can be characterized by conditions regarding the
LSR elasticity.

There have also been various extensions to the pricing newsvendor problem. Aydin
and Porteus (2008) studied joint pricing-inventory management for an assortment. Murray,
Gosavi, and Talukdar (2012) studied the multi-product newsvendor problem with a shared
resource constraint. Chen, Xu, and Zhang (2009) and Arcelus, Kumar, and Srinivasan (2012)
considered the pricing newsvendor problem under risk-aversion. Yang, Shi, and Zhao (2011)
considered the pricing newsvendor problem where the decision maker seeks to maximize
the probability that a profit target is achieved. Xu, Chen, and Xu (2010) and Xu and Lu
(2013) studied the impact of demand and supply uncertainty, respectively, in the pricing
newsvendor problem.
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All of the aforementioned papers are based on the classical demand models, i.e., the
demand function or the conditional demand distribution function. An exception is the paper
by Raz and Porteus (2006), who provided a fractile perspective to the pricing newsvendor
problem. (We use the term “quantile” instead of “fractile” to be consistent with the related
statistics literature.) They assumed that the conditional demand distribution is represented
by a finite number of linear or piecewise linear quantile functions. For the linear case, they
characterized the optimal pricing and inventory decisions. For the general piecewise linear
case, they developed an exact approach for finding the optimal solutions numerically. Using
the quantile representation, they were able to identify effects that are not usually seen when
using the classical demand models. For example, the optimal price may be nonmonotone
in the ordering cost. They also found that using a simplified demand model can result in
substantially lower expected profit.

The quantile-based approach of Raz and Porteus (2006) greatly enhances the applicability
of the pricing newsvendor model. It is also closely related to the data-driven approach in this
chapter. However, we notice that their approach still has several limitations. First, it is not
clear how the finite number of representative quantile levels should be selected and how the
corresponding quantile functions can be estimated from data. Second, the exact approach
is suitable for piecewise linear quantiles with a relatively small number of breakpoints. It
is not clear how these breakpoints should be determined, or how well these piecewise linear
quantiles can approximate the conditional distribution. Furthermore, in practice, there may
be a large number of observations with prices between the breakpoints. Those observations
are not utilized effectively. Our approach is fully data-driven in that it does not require
the predetermined representative quantile levels or breakpoints. A nonparametric quantile
estimate is used instead of the piecewise-linear structure. This allows us to consider a large
number of unique prices, and the observations are utilized more effectively.

All of the aforementioned papers assume that the demand information is given. Very
few have considered how to obtain the required information from data. Feng, Luo, and
Zhang (2014) studied demand estimation for the additive-multiplicative model in multi-
period dynamic pricing-inventory problem. The generalized additive model (GAM) is applied
to estimate the demand function. They derived sufficient conditions under which a base
stock list price policy is optimal. They also developed a constrained maximum likelihood
estimation approach to obtain estimates that satisfy these conditions. The GAM approach
of Feng, Luo, and Zhang (2014) makes a big step towards applying joint pricing-inventory
models with additive-multiplicative demand in practice. However, it is still a parametric
approach.

To the best of our knowledge, Burnetas and Smith (2000) presented the only fully data-
driven approach for the pricing newsvendor problem in the existing literature. The pricing
problem is modeled as a multi-armed bandit problem. For a given price, the optimal in-
ventory level is found using stochastic approximation. The main difference between their
approach and ours is that in Burnetas and Smith (2000) one needs to consider a relatively
small number of feasible price decisions. For each price decision, a sufficient demand sam-
ple size is required. Our approach can handle effectively the case where there are a large
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number of unique prices and very few demand observations are available for each price. Our
approach also makes use of domain knowledge such as the Law of Demand. This introduces
interdependence between demand observations at different prices. Thus, when estimating
the demand at one specific price, information contained in all the observations is utilized
effectively. In Burnetas and Smith (2000), demand observations with different prices are
treated separately.

Another related work is Chu, Shanthikumar, and Shen (2009). They considered a special
case of the multiplicative demand model with an exponential mean demand function and
exponentially distributed random factors. The mean of the random factor and the param-
eter of the mean demand function are unknown, and need to be estimated from historical
price-demand observations. They applied a data-driven approach for parameter uncertainty,
called operational statistics, to integrate parameter estimation and optimization. Parameter
uncertainty and operational statistics will be discussed in more detail in Chapter 4. For the
pricing newsvendor problem, our data-driven approach applies to more general cases where
the demand model does not have a known parametric form.

Data-driven methods have also been applied to inventory management and pricing, sep-
arately. For inventory management, the optimal inventory level is found by estimating the
demand quantile that corresponds to the optimal newsvendor critical ratio. Papers based
on this approach includes Levi, Roundy, and Shmoys (2007), Levi, Perakis, and Uichanco
(2012), Huh and Rusmevichientong (2009), Huh et al. (2011), and Jain et al. (2011). More
details of these papers are reviewed in Chapter 4. All of these papers considered invento-
ry decisions solely, while we consider price-dependent demand and jointly optimize pricing
and inventory decisions. For revenue management, Besbes and Zeevi (2009) developed a
sampling-based algorithm for dynamic pricing. Their approach is based on the closed-form
solution in Gallego and van Ryzin (1994) for the same problem with complete information.
The entire selling horizon is divided into a learning phase and an optimization phase. In the
learning phase the empirical demand function is estimated. In the optimization phase, the
estimated demand function is used in the closed-form result in Gallego and van Ryzin (1994).
Wang, Deng, and Ye (2011) improved the algorithm in Besbes and Zeevi (2009) by iterating
between learning and optimization. Besbes and Zeevi (2012) developed a sampling-based
algorithm for the network revenue management problem. These papers considered pricing
decisions solely, but did not consider the effect of inventory decisions on the effectiveness of
pricing.

3.3 A Data-Driven Approach Based on Isotonic

Quantile Regression

In this section, we present a data-driven approach for the pricing-newsvendor problem. We
adopt the repeated newsvendor setting, which is suitable for perishable products. At the
beginning of each period, the products are ordered with unit ordering cost c. At the end of
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each period, all remaining products are salvaged, i.e., no inventory is carried over. Without
loss of generality, assume there is no salvage value. The customer demand is a function
D(p, ε) of the selling price p and a random factor ε with distribution function Fε. Given p
and order quantity y, the newsvendor achieves a random profit

Φ(p, y, ε) = pmin{y,D(p, ε)} − cy.

The newsvendor jointly optimizes p and y to maximize the expected profit

φ(p, y) =

∫
Φ(p, y, x)dFε(x).

As we mentioned, in practice, the demand function D(p, ε) and the distribution function
Fε are typically unknown or uncertain. We assume historical price-demand observations in
the previous n periods, denoted by (p1, d1), (p2, d2), . . . , (pn, dn), are available. In addition
to the historical observations, we also assume the Law of Demand holds, which is the basic
domain knowledge in pricing. The Law of Demand states that, holding all else constant, the
demand is decreasing (non-increasing) in the price in the usual stochastic order, i.e.,

di �st dj, if pi > pj.

The Law of Demand is widely observed in business. There are exceptions where raising
the price may increase the demand. Those special circumstances are not considered in this
chapter.

Our data-driven approach is based only on the information available in practice, i.e.,
the historical price-demand observations and the Law of Demand. The approach consists of
two sequential stages. In the first stage, the conditional quantile functions of the demand
are estimated using nonparametric regression. In the second stage, pricing and inventory
decisions are made based on the estimated quantiles. For a given price p, the optimal
inventory level is given by the conditional quantile corresponding to the critical ratio 1−c/p.
The expected profit can also be estimated using the quantiles. The optimal price can then
be determined numerically as the one with the highest estimated expected profit.

Isotonic Quantile Regression

The τ -quantile of a random variable X is defined as

qτ (X) = min{q : P{X ≤ q} ≥ τ}.

For the standard newsvendor problem, it is well known that the optimal inventory level is
the τ ∗-quantile of the demand distribution, where the τ ∗ is the critical ratio

τ ∗ = 1− c

s
.
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Given historical demand data, the optimal inventory level can be found by one-sample quan-
tile estimation. This approach has been adopted by Levi, Roundy, and Shmoys (2007); Levi,
Perakis, and Uichanco (2012).

For the pricing newsvendor problem, with a given price p, the optimal inventory level
is the τ ∗-quantile of conditional demand distribution. If the demand function has a known
parametric form, for example,

D(p, ε) = α + βp+ ε, (3.1)

we can apply quantile regression (Koenker and Bassett, 1978) to estimate the conditional
quantile function of the demand. Quantile regression is analogous to ordinary least square
(OLS) regression. In OLS regression, the conditional mean is estimated by minimizing
the sum of squared errors. In quantile regression, the conditional quantile is estimated by
minimizing a different empirical risk. In univariate linear quantile regression, we solve the
following optimization problem,

(
α̂, β̂

)
= argmin

{
n∑
i=1

ρτ (di − α− βpi)

}
,

where ρτ (di − α− βpi) is the weighted absolute error, with

ρτ (a) = (τ − I(a < 0))a.

The conditional τ -quantile can then be estimated as

q̂τ (p) = α̂ + β̂p.

However, this approach can only be used when the demand function D(p, ε) has a known
parametric form, e.g., the linear function in (3.1). When D(p, ε) is unknown, using a mis-
specified demand model could result in highly suboptimal estimates.

To address the uncertainty in D(p, ε), we can apply a nonparametric method called
isotonic regression. Recall that the Law of Demand states that the demand is decreasing
in the price in the usual stochastic order. This means the conditional quantile function is
monotone decreasing. Let qi be the estimate for the conditional quantile given price pi. We
have

qi ≤ qj, ∀i, j such that pi > pj.

This means that the quantile estimate q = (q1, q2, . . . , qn) is an isotonic vector, i.e., it
preserves the partial order defined by pi > pj. The optimal isotonic vector estimate for
the conditional quantile function is found by solving the following problem to minimize the
empirical risk

min
q

{
n∑
i=1

ρτ (di − qi) : q isotonic

}
.
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The least squares version of isotonic regression, i.e., isotonic mean regression, is widely
applied in statistics and engineering. Please refer to Barlow et al. (1972) for more details.
Isotonic median (i.e., 0.5-quantile) regression was studied by Cryer et al. (1972).

Without loss of generality, assume that the price-demand observations are sorted in
increasing order of the price, i.e., p1 < p2 < · · · < pn. It is easy to generalize the approach
to the case where multiple observations have the same price. Define auxiliary variables ui
and vi to represent the positive and negative errors, respectively, i.e.,

ui = max{di − qi, 0},
vi = max{qi − di, 0}.

Also define qn+1 = 0. We have the following linear program formulation for isotonic quantile
regression

min
n∑
i=1

τui + (1− τ)vi

s.t. qi + ui − vi = di, ∀i
qi ≥ qi+1, ∀i
ui, vi ≥ 0, ∀i

Throughout this chapter, we may sometimes use boldface lowercase letters to denote vectors
without further declaration, e.g., u = (u1, . . . , un). We can then write the above linear
program in a more compact form.

min τ1′u+ (1− τ)1′v

s.t. q + u− v = d

Uq ≥ 0

u,v ≥ 0

(3.2)

where 0 and 1 are vectors of proper dimension, with all elements equal to 0 or 1, respectively,
and U is an n×n upper bi-diagonal matrix, with all entries equal to 1 on the main diagonal,
and all entries equal to −1 on the first upper diagonal, i.e.,

U =


1 −1 0 · · · 0

0 1 −1
. . .

...

0
. . . . . . . . . 0

...
. . . 0 1 −1

0 · · · 0 0 1

 .

Figure 3.1 shows several examples of isotonic median regression (i.e., 0.5-quantile regression)
with different numbers of observations. The line in dark color shows the estimated median.
The line in light color shows the actual median. We see that as the number observations
increases, the estimate becomes closer to the actual median. Consistency of isotonic median
regression was shown in Cryer et al. (1972).
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Figure 3.1: Examples of isotonic quantile regression estimates

Note: x-axis: price, y-axis: demand, n: number of observations.

Estimation of Full Quantile Path using Parametric Programming

For a given quantile level τ , the linear program in (3.2) is easy to solve. However, in order
to solve the pricing-newsvendor problem, we need to estimate the full quantile path, i.e., we
need to estimate the conditional quantile function for any given quantile level (technically,
any given quantile level below the critical ratio 1 − c/p, where p is the highest price). We
can certainly focus on several prespecified quantile levels (as in Raz and Porteus, 2006), and
estimate the conditional quantile function for each of the levels separately. However, it is
not clear how many unique quantiles are necessary and/or sufficient and how the quantile
levels should be determined.

To address this issue, we use parametric programming to efficiently compute the full
quantile path. Note that the linear program in (3.2) is parameterized by the quantile level
τ . Starting from the trivial case where τ = 0, we find the optimal quantile estimate for
the current τ . Then, based on the simplex pivoting rule, we find the next breakpoint for τ ,
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Figure 3.2: Quantile path and breakpoints in parametric programming

i.e., the largest τ such that the current optimal basis/solution remains optimal. τ is then
increased to its next breakpoint, and the linear program is re-solved to optimality from the
current basis. This process continues until τ reaches the highest necessary level. Since this
method is well known for linear programming, we do not include the details of the algorithm.
Interested readers may refer to popular textbooks on linear programming such as Bertsimas
and Tsitsiklis (1997). Figure 3.2 shows an example of the full quantile path estimated using
parametric programming and the breakpoints for τ .

One important question is how many breakpoints will be encountered in the parametric
programming process. The number of breakpoints affects the computational efficiency. Let
Tn be the number of breakpoints given n observations. For linear quantile regression, Portnoy
(1991) showed that

Tn = Op(n log n),

where Op is the big O in probability notation, i.e., for any ε > 0, there exists a finite M > 0
such that

P
{

Tn
n log n

> M

}
< ε.

We conjecture that for isotonic regression, the number of breakpoints is at most Op(n log n).
In fact, numerical results suggest that the number of breakpoints is Op(n). Figure 3.3 shows
a numerical example. The solid lines show the number of breakpoints Tn as we increase the
number of observations n. The dashed line shows n. We see that Tn is bounded by n in all
of the sample paths.
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Figure 3.3: Number of breakpoints in isotonic quantile regression

Inventory and Pricing Decisions

Technically speaking, given the estimated demand quantile functions, the optimal inventory
and pricing decisions can be obtained using the exact approach described in Raz and Porteus
(2006). However, when there are many unique prices, the exact approach is computationally
intractable. Instead, we focus on a discrete subset of feasible prices P = {pi, i = 1, . . . ,m}.
A simple choice for P is the set of historical prices.

For a given price p, suppose there are k breakpoints for τ , denoted by τ1, . . . , τk, that
are smaller than or equal to the critical ratio 1− c/p. Let q̂j(p) denote the demand quantile
estimate with quantile level τj. The optimal order quantity for price p is given by the
conditional quantile with level 1− c/p. Thus, it can be estimated as

ŷ(p) = q̂k(p).

Define τk+1 = 1 − c/p. Let ϕ(p) denote the optimal expected profit of price p, i.e., ϕ(p) =
φ(p, y∗(p)), where y∗(p) is the optimal inventory level for price p. ϕ(p) can be estimated as

ϕ̂(p) = p
k∑
j=1

(τj+1 − τj) q̂j(p).

The optimal price in P can then be found by searching over the feasible prices, i.e.,

p̂ = argmax
p∈P

{ϕ̂(p)} .
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Figure 3.4: Estimated optimal inventory level, expected profit function, and optimal price

Figure 3.4 shows the estimated optimal inventory level, expected profit function, and optimal
price, for the same numerical example as we used for Figure 3.2. We see that although the
data-driven approach was able to find a solution that is close to the theoretical optimal
solution, its performance is not satisfactory. This is because the nonparametric method in
(3.2) is not regularized and leads to overfitting, i.e., the estimates and the decisions are
overly sensitive to the observations. As a result, the problem is ill-posed, which can be seen
from the estimated expected profit function. Small changes in the observations may cause
significant changes in the decisions. We can prevent overfitting using regularization. The
performance of the data-driven approach can thus be improved.

3.4 Smoothing, Concavity Constraint and

Kernelization

In this section, we show how the basic data-driven approach in Section 3.3 can be improved
through regularization and incorporating additional domain knowledge. We consider two
regularization methods, namely, smoothing and kernelization. In some cases, we may have
additional domain knowledge other than the Law of Demand. We consider one such case
where the demand function is known to be concave. Later in Section 3.5, we use numer-
ical results to show that regularization and additional domain knowledge can significantly
improve the quality of the estimates and decisions.
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Smoothed Demand Quantile Estimate

Isotonic quantile regression in (3.2) can be regularized by smoothing, i.e., penalizing the
roughness of the estimated quantile function. One measure of roughness is the total variation
of the (piecewise) derivative. Recall that the estimated quantile function is a piecewise linear
function. The slope of the segment between (pi, qi) and (pi+1, qi+1) is given by

qi+1 − qi
pi+1 − pi

.

Define hi = (pi+1− pi)−1. The total variation of the piecewise derivative is equal to the sum
of the absolute differences between the slopes of consecutive linear segments, i.e.,

TV (q) =
n−2∑
i=1

|hi(qi+1 − qi)− hi+1(qi+2 − qi+1)|

=
n−2∑
i=1

|−hiqi + (hi + hi+1)qi+1 − hi+1qi+2| .
(3.3)

We can write TV (q) in matrix form as

TV (q) = ‖Kq‖1,

where ‖ · ‖1 is the L1 norm, and K is an (n− 2)× n matrix,

K =


−h1 h1 + h2 −h2 0 · · · 0

0 −h2 h2 + h3 −h3
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −hn−2 hn−2 + hn−1 −hn−1

 . (3.4)

Let λ be the smoothing factor, i.e. the weight for the roughness penalty. The smoothed
isotonic quantile estimate is then found by solving the following linear program,

min τ1′u+ (1− τ)1′v + λ‖Kq‖1

s.t. q + u− v = d

Uq ≥ 0

u,v ≥ 0

(3.5)

We note that smoothed isotonic quantile regression is equivalent to estimating the demand
quantiles using quantile smoothing splines with shape constraints (Koenker, Ng, and Port-
noy, 1994). The factor λ measures the strength of smoothing. When λ is sufficiently large,
smoothed isotonic quantile regression reduces to linear quantile regression.

For a given λ, problem (3.5) is parameterized by τ . Thus, we can use the same paramet-
ric programming approach for problem (3.2) to efficiently compute the full quantile path.
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Figure 3.5: Quantile path and breakpoints using smoothing

10 12 14 16 18 20
15

20

25

30

35

40

45

Price

Q
ua

nt
ity

Optimal inventory level

 

 
Data−driven
Theoretical

10 12 14 16 18 20
150

200

250

300

Price

P
ro

fit

Expected profit and optimal pricing

 

 

Data−driven
Theoretical

Figure 3.6: Improved data-driven solutions using smoothing
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Figures 3.5 and 3.6 show the estimated demand quantiles and decisions using smoothing
for the same example we used for Figures 3.2 and 3.4. Comparing these results with those
without smoothing, we see that the use of smoothing improved the quality of the estimates
and the decisions. (Both the estimated expected profit and the optimal price are closer to
the theoretical values.) More numerical results will be presented in Section 3.5.

The performance of smoothing depends largely on the selection of λ, known as nonpara-
metric model selection. Model selection is a very important topic in statistics. Numerous
model selection methods have been proposed and studied. In this chapter we select the
smoothing factor using cross validation. In cross validation, the observations are split into
a training set and a validation set. For a given λ, the optimal estimate is obtained using
the training set. Then, the estimate is applied to the validation set, and the empirical risk,
known as the cross validation risk, is calculated. Different λ values are tested, and the one
with the lowest cross validation risk is selected.

The cross validation procedure described above is standard in statistics. However, for
isotonic quantile regression, this procedure can be improved. Note that for a given τ , problem
(3.5) is parameterized by λ. Thus, we can use parametric programming to efficiently compute
the smoothed quantile estimate for all λ values. Recall that when λ is sufficiently large,
smoothed isotonic quantile regression will reduce to linear quantile regression. We can start
from this trivial case with λ =∞. We then find the next breakpoint for λ, i.e., the smallest
λ such that the current solution/basis remains optimal. λ is then decreased to the next
breakpoint, and the linear program is re-solved to optimality from the current basis. This
process continues until λ is reduced to 0. This parametric approach was also used in Koenker,
Ng, and Portnoy (1994), but they selected the parameter using the Schwarz Information
Criterion (Schwarz, 1978). In order to select a λ that performs well for the full quantile path,
we repeat this procedure for several prespecified τ levels, and use the average cross validation
risk to determine the optimal λ. Figure 3.7 shows an example of the average cross validation
risk for all possible λ values.

Incorporation of Demand Concavity

Under certain circumstances, we may have additional domain knowledge other than the Law
of Demand. For example, in pricing, it may be reasonable to assume the demand function
D(p, ε) is concave in p for any ε (see Federgruen and Heching, 1999). Demand concavity (or
convexity) can be easily incorporated in the isotonic quantile regression model. Recall that
the estimated quantile function is a piecewise linear function. The differences between the
slopes of consecutive linear segments are given by the vector Kq. Concavity of the demand
function is equivalent to having quantile functions with monotone decreasing slopes, i.e.,
the differences Kq are non-negative. Thus, we can add the constraints Kq ≥ 0 to (3.2)
to guarantee that the estimated quantile function is concave. We have the following linear
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Figure 3.7: Cross validation risk of different smoothing parameters

program
min τ1′u+ (1− τ)1′v

s.t. q + u− v = d

Uq ≥ 0

Kq ≥ 0

u,v ≥ 0

(3.6)

Similarly, convex demand information can be incorporated by adding the constraintsKq ≤ 0
to the linear program in (3.2).

Note that incorporating demand concavity achieves an effect that is similar to smoothing.
To see this, consider the Lagrangian dual of problem (3.6) when the concavity constraints
Kq ≥ 0 are relaxed with Lagrangian multipliers w = (w1, . . . , wn−2). By duality theory,
there exist multipliers w ≥ 0, such that problem (3.6) is equivalent to the following problem,

min τ1′u+ (1− τ)1′v +w′Kq

s.t. q + u− v = d

Uq ≥ 0

u,v ≥ 0

The optimal solution to the above problem also satisfies the constraints Kq ≥ 0. Thus, the
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Figure 3.8: Quantile path and breakpoints with concavity constraint

last term in the objective function of the above problem is equal to

n−2∑
i=1

wi |−hiqi + (hi + hi+1)qi+1 − hi+1qi+2| . (3.7)

Let us compare (3.7) with the definition of total variation in (3.3). The expression in (3.7)
can be viewed as the weighted total variation. Thus, incorporating demand concavity is
equivalent to employing a weighted version of smoothing. Figures 3.8 and 3.9 show a nu-
merical example with the concavity constraint.

Kernelization

We have used smoothing to improve the basic data-driven approach. Another widely used
regularization method the kernelization method, which is widely used in support vector
machines (SVM; see Suykens and Vandewalle, 1999). Assume the demand quantile function
is of the form

qτ (p) = α + 〈β,φ(p)〉,

where 〈·, ·〉 denotes the inner product, and φ(p) = (φ1(p), φ2(p), . . . , ) is a set of basis func-
tions or feature map, which maps the observations into a higher dimensional space. 〈β,φ(p)〉
can be viewed as a linear combination of the basis functions. It can also be viewed as a func-
tion in the reproducing kernel Hilbert space (RKHS) corresponding to the feature map φ.
The definition and theoretical foundations of RKHS are beyond the scope of this chapter.
Interested readers may refer to the review paper by Wahba (1999).
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Figure 3.9: Improved data-driven solutions with concavity constraint

Takeuchi et al. (2006) developed a nonparametric quantile regression method using the
kernelization method. Consider the following optimization problem which is similar to mul-
tivariate linear quantile regression

n∑
i=1

ρτ (di − α− 〈β,φ(pi)〉) +
λ

2
‖β‖2

2.

The first term is the same empirical risk, i.e., the sum of weighted absolute errors, as in linear
and isotonic quantile regression. The second term can be viewed as L2 regularization of the
linear combination of basis functions. It can also be viewed as penalizing the RKHS norm
(see Wahba, 1999). Monotone quantile estimates are obtained by constraining the derivative
of qτ (p). Let ψ = (ψ1(p), ψ2(p), . . . , ) denote the derivative of φ, i.e.,

ψj(p) =
d

dp
φj(p).

Then, the derivative of qτ (p) is given by

d

dp
qτ (p) = 〈β,ψ(p)〉.

The following constraints are added to obtain monotone quantile estimates

〈β,ψ(pi)〉 ≤ 0, ∀i = 1, . . . , n.
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As in (3.2), define auxiliary variables ui and vi to represent positive and negative errors.
We have the following quadratic program

min
α,β,u,v

n∑
i=1

τui + (1− τ)vi +
λ

2
‖β‖2

2

s.t. α + 〈β,φ(pi)〉+ ui − vi = di, ∀i = 1, . . . , n

〈β,ψ(pi)〉 ≤ 0, ∀i = 1, . . . , n

ui, vi ≥ 0, ∀i = 1, . . . , n

(3.8)

We do not solve this problem directly. Instead, we solve the dual problem, and the optimal
estimate can be recovered from the dual solution.

Consider the Lagrangian of (3.8) with multipliers µ and ν ≥ 0

L(α,β,u,v,µ,ν)

=
n∑
i=1

τui + (1− τ)vi +
λ

2
‖β‖2

2

+
n∑
i=1

µi (di − α− 〈β,φ(pi)〉 − ui + vi) +
n∑
i=1

νi〈β,ψ(pi)〉

=
n∑
i=1

(τ − µi)ui + (1− τ + µi)vi − α
n∑
i=1

µi

+
λ

2
‖β‖2

2 −

〈
β,

n∑
i=1

µiφ(pi)− νiψ(pi)

〉
+

n∑
i=1

µiYi

Minimizing L(α,β,u,v,µ,ν) with respect to α,β and u,v ≥ 0, we obtain the dual of (3.8)

min
1

2λ

[
µ
ν

]T [
K −D
−DT H

] [
µ
ν

]
− dTµ

s.t. (τ − 1)1 ≤ µ ≤ τ1

1Tµ = 0

ν ≥ 0

(3.9)

where K, D, and H are n× n matrices with elements

Kij = 〈φ(pi),φ(pj)〉,
Dij = 〈φ(pi),ψ(pj)〉,
Hij = 〈ψ(pi),ψ(pj)〉.

The variable α in (3.8) is the dual variable corresponding to the equality constraint in
(3.9). Also, when minimizing L(α,β,u,v,µ,ν), we obtain the intermediate result that

β =
1

λ

n∑
i=1

µiφ(pi)− νiψ(pi).
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Let µ̂ and ν̂ be the optimal solution to (3.9) and let α̂ be the optimal dual variable associated
with the equality constraint in (3.9). The conditional quantile function can then be recovered
as

q̂τ (p)

=α̂ +
〈
β̂,φ(p)

〉
=α̂ +

1

λ

n∑
i=1

µ̂i〈φ(pi),φ(p)〉 − ν̂i〈ψ(pi),φ(p)〉

(3.10)

From (3.9) and (3.10), we see that the feature map φ(p) or its derivative ψ(p) does not
appear in the optimization problem or the recovered quantile estimate. This suggests that we
do not need to specify φ(p). Instead, we only need to know the inner products 〈φ(p),φ(p′)〉,
〈φ(p),ψ(p′)〉, and 〈ψ(p),ψ(p′)〉 for given p and p′. This can be done using the “kernel trick”.
Let κ(p, p′) be a kernel function such that

κ(p, p′) = 〈φ(p),φ(p′)〉.

Taking the first and second partial derivatives of the kernel function, we have

κ2(p, p′) ,
∂

∂p′
κ(p, p′) = 〈φ(p),ψ(p′)〉,

and,

κ12(p, p′) ,=
∂2

∂p∂p′
κ(p, p′) = 〈ψ(p),ψ(p′)〉.

Thus, the matrices in (3.9) are given by

Kij = κ(pi, pj),

Dij = κ2(pi, pj),

Hij = κ12(pi, pj),

and the recovered quantile estimate is given by

q̂τ (p) = α̂ +
1

λ

n∑
i=1

µ̂iκ(p, pi)− ν̂iκ2(p, pi).

Similarly to the isotonic quantile regression case, we need to estimate the full quantile
path. Note that the quadratic program in (3.9) is parameterized by τ . We can apply
the parametric active set method (PASM) in Best (1996) to efficiently compute all the
necessary quantile levels. PASM takes advantage of the fact that the optimal solution to a
parametric quadratic program of the form (3.9) is piecewise linear in the parameter τ . The
breakpoints of the piecewise linear solution path are τ values such that the primal or dual
active sets will change, and can be found from the Karush-Kuhn-Tucker (KKT) conditions.
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Figure 3.10: Quantile path and breakpoints using kernelization
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Figure 3.11: Improved data-driven solutions using kernelization
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An implementation of PASM was presented by Potschka et al. (2010). Note that since the
solution path is piecewise linear, calculation of the expected profit is slightly different than
in the isotonic regression case. Figures 3.10 and 3.11 show results for a numerical example
of the kernelization method.

For the kernelization method, the smoothing factor λ measures the penalty associated
with the model complexity. When λ is sufficiently large, the problem reduces to one-sample
unconditional quantile estimation. The performance of the method also depends on the
kernel function. In this chapter, we use the Gaussian radial-based function (RBF) kernel

κ(p, p′) = exp

{
−(p− p′)2

2σ2

}
.

The intuition underlying RBF kernels is that if the price difference |p − p′| is small, the
difference between the conditional demand distributions of p and p′ should also be small.
Thus, demand observations with a price p′, which is close to p, should carry more weight when
estimating the demand for price p. The parameter σ is called the bandwidth. It controls the
degree to which differences between prices affect the weights of the observations. When σ is
small, the estimate depends more on local observations, i.e., those with small |p− p′|. When
σ is large, the estimate depends on the observations more globally. Observations with large
|p−p′| may still have substantial impact on the estimate. Selection of λ and σ is extensively
studied for SVM. Please refer to Cherkassky and Ma (2004) and the references therein. In
this chapter, we select the parameters using cross validation. More details are discussed in
Section 3.5.

3.5 Numerical Experiments

We study the performance of the data-driven approach using numerical experiments. De-
mand data are generated using the additive-multiplicative model

D(p, ε) = µ(p) + σ(p)ε.

For µ(p) or σ(p), we consider four different types of functions, which are constant, concave,
linear, and convex, respectively. Prices p1, . . . , pn are generated randomly from a uniform
distribution on the interval [p, p]. The random factors ε1, . . . , εn are independent and iden-
tically distributed. We consider three different distributions for the random factor, namely,
exponential, uniform, and normal. The distributions are transformed such that the random
factor has mean 0 and variance 1. Given pi and εi, demand di is calculated using the demand
function D(p, ε). To avoid negative demand, we then let di = max{0, di}.

Combinations of different functional forms of µ(p) and σ(p) and different distributions of
ε create 48 different demand models (including 3 trivial cases where both µ(p) and σ(p) are
constant.) For each demand model, we generate data sets with sample sizes n = 50, 100, and
200, respectively. For each sample size, we further generate 10 random replications. For each
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Table 3.1: Summary of the numerical experiment results

n Method ∆p |∆p| ∆y |∆y| ∆φ

50
I -4.35 11.38 10.16 13.00 7.76
S -0.59 8.18 3.77 7.37 3.68
K 4.00 8.24 5.93 9.12 4.83

100
I -4.35 11.70 11.07 12.73 8.32
S -1.53 6.42 1.90 4.82 2.04
K 1.95 7.06 3.13 5.86 3.31

200
I -5.31 11.47 9.32 10.63 7.12
S -0.76 5.52 1.23 3.87 1.56
K 0.27 5.24 0.42 4.33 1.82

Note: n: sample size; ∆p: % price difference; ∆y: % inventory difference; ∆φ: % optimality gap; I: isotonic;

S: smoothing; K: kernelization.

sample, we solve the data-driven pricing-newsvendor problem using three different methods,
namely, the basic isotonic regression method with no regularization, the improved method
with smoothing, and the improved method with kernelization.

As we mentioned in the previous section, the smoothing factor λ and bandwidth σ are
selected using cross validation. For the smoothing method, we use parametric programming
to efficiently evaluate all possible λ in [0,∞).. For the kernelization method, we apply the
bandwidth selection trick described in Takeuchi et al. (2006). We first determine an initial
bandwidth σ0, equal to the average of the 10-th and 90-th percentiles of the differences
between prices, and an initial smoothing factor λ0 = n−2 log(n). Then, combinations of
bandwidths 10kσ0, k = −2,−1, 0, 1, 2, and smoothing factors 10kλ0, k = −2,−1, 0, 1, 2, are
enumerated. We use repeated random sub-sampling cross validation. In five independent
replications, we randomly partition the sample into a training set and a validation set with
equal sizes. In order to select proper parameters for the full quantile path, we consider
representative quantiles with τ = 0.2, 0.4, and 0.6. The average cross validation risk from
different replications and quantile levels is used to select the parameters.

We focus on the relative difference between the data-driven solution and the theoretical
optimal solution. Let p̂ be the optimal price found by the data-driven approach, and p∗ the
theoretical optimal price. The relative difference in the pricing decision is defined as

∆p =
100(p̂− p∗)

p∗
.

Similarly, the relative difference in the inventory decision is defined as

∆y =
100(ŷ − y∗(p̂))

y∗(p̂)
,

where ŷ is the optimal inventory level by the data-driven approach, and y∗(p) is the theoret-
ical optimal inventory level for price p. Note that we do not compare ŷ with y∗(p∗), i.e., the
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Table 3.2: Summary of the numerical experiment results with demand concavity

n Method ∆p |∆p| ∆y |∆y| ∆φ

50

I 4.61 5.53 3.81 8.78 4.95
S 1.48 3.85 0.76 6.47 2.86
K 2.09 4.63 0.47 7.69 3.31
C 0.80 3.10 -0.46 5.77 2.01

100

I 1.26 4.84 1.26 6.27 2.75
S -0.17 2.31 -0.81 3.46 0.82
K 1.71 3.32 0.17 3.87 2.31
C -0.20 1.93 -0.62 3.87 0.95

200

I 1.20 4.45 1.72 5.51 2.70
S 0.26 2.45 -0.31 2.96 1.12
K 1.23 2.38 -2.75 5.70 2.00
C -0.37 2.39 -0.06 2.95 1.26

Note: n: sample size; ∆p: % price difference; ∆y: % inventory difference; ∆φ: % optimality gap; I: isotonic;

S: smoothing; K: kernelization; C: demand concavity.

theoretical optimal inventory level given the pricing decision is also theoretically optimal.
Instead, we compare ŷ with the theoretical optimal inventory level for p̂. The optimality
gap, i.e., the relative difference in the expected profit, is defined as

∆φ =
100(φ∗ − φ(p̂, ŷ))

φ∗
,

where φ∗ is the theoretical highest expected profit. Note that ∆φ is always positive. Table
3.1 summarizes the average relative differences, as well as the average of their absolute values,
across all 48 demand models, each with 10 random replications.

From Table 3.1, we see that in general, the data-driven approach is able to find close-
to-optimal solutions. Comparing different methods with the same sample size, we see that
substantial improvement is achieved by smoothing and kernelization. Comparing different
sample sizes, we see that due to the lack of regularization, the basic isotonic approach may
not benefit from more observations. On the other hand, for smoothing and kernelization,
the performance can be significantly improved when more observations become available.

We also study the effect of incorporating demand concavity. We focus on concave ad-
ditive demand models, where D(p, ε) is guaranteed to be concave for given ε. Table 3.2
summarizes the corresponding results. As we mentioned, incorporating demand concavity is
equivalent to smoothing with some weighted total variation penalty. From Table 3.2, we see
that incorporating demand concavity can also enhance the performance of the data-driven
approach, and it indeed achieves an effect similar to that of smoothing.
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3.6 Summary and Future Directions

In this chapter, we present a data-driven approach for the pricing-newsvendor problem where
the relationship between price and demand is unknown. The approach does not make any
parametric assumption on the underlying demand model. Instead, it is based on histori-
cal observations and basic domain knowledge, which are available in practice. Parametric
programming is applied to efficiently estimate the conditional quantile path of the demand.
Smoothing and kernelization are used to improve the estimates and decisions. Additional do-
main knowledge, such as demand concavity, can also be easily incorporated in the approach.
Numerical experiments show that the data-driven approach is able to find close-to-optimal
solutions. Smoothing, kernelization, and the incorporation of additional domain knowledge
can significantly enhance the performance of the approach. The contribution of this chapter
is twofold. First, it presents a new method for the pricing newsvendor problem that does
not require model selection, while most of the existing methods require the selection of a
parametric demand model. Thus, it improves the applicability of the joint pricing-inventory
management models. Second, it applies nonparametric statistical learning methods (i.e., s-
moothing spline and kernelization) to improve the performance of the data-driven approach.
These methods are relatively new in the operations research literature, and we believe they
have great potential in solving many other operations research problems.

For future research, we plan to generalize this approach for joint pricing-inventory man-
agement for an assortment. In assortment management, the demand for one product may
depend on the prices of other related products. For example, if two products are substitutes
for each other, then demand for one product will increase in the price of the other. If two
products are complementary to each other, then demand for one product will decrease in
the price of the other. These monotonicity constraints can be incorporated in the kernel-
ization method. Instead of univariate quantile regression, we will use multivariate quantile
regression to estimate the conditional demand distribution which depends on the prices of
multiple products. The current approach can also be improved in several dimensions. First,
the current smoothing method uses L1 regularization, which results in piecewise linear quan-
tile estimates with few breakpoints. We plan to study the effect of L2 regularization. Second,
we have shown how to incorporate demand concavity in the approach. It is important to
consider how other domain knowledge, e.g., price elasticity, can be incorporated. Final-
ly, advanced bandwidth selection methods can be applied to improve the performance of
smoothing and kernelization.
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Chapter 4

Inventory Management for Perishable
Goods with Parameter Uncertainty

4.1 Introduction

Consider the classical newsvendor model in stochastic inventory management. It is typically
assumed that the customer demand has a known distribution function F (·; θ) with param-
eter θ. (Note that we are abusing the notation θ, as it can denote a vector of parameters.
Later in this chapter, we consider the case where the distribution has a location parameter
and a scale parameter.) For each θ, we can find the optimal order quantity y∗(θ). In prac-
tice, given historical demand observations X = (X1, . . . , Xn), we can first select the form
of the distribution function. Then, the parameter of the demand distribution is estimated
using a specific criterion, e.g., maximum likelihood. With the estimated parameter θ̂, we
find the optimal order quantity as y∗(θ̂). This sequential approach, which we call separated
estimation-optimization in this chapter, has been the standard approach in inventory man-
agement and many other operations management problems. Liyanage and Shanthikumar
(2005) showed that the separation of parameter estimation and order quantity optimization
will lead to suboptimality. They proposed an integrated approach called operational statis-
tics. In this approach, instead of having the intermediate step of parameter estimation, one
determines the order quantity as a function or statistic g(·) of demand observations directly.
For a given demand sample X, the optimal order quantity can then be determined as g(X).
They studied three types of operational statistics based on the sample mean, the empirical
distribution, and the sample spacings, respectively. Chu, Shanthikumar, and Shen (2008)
found the optimal operational statistic within a general class of functions.

In this chapter, we first study properties of the optimal operational statistic in Chu,
Shanthikumar, and Shen (2008). We show that the optimal operational statistic is consistent
and guaranteed to outperform the traditional separated estimation-optimization approach.
We also find that the benefit achieved by operational statistics is higher when demand
variability is larger. We then generalize the operational statistics approach to the risk-averse
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newsvendor problem under the conditional value-at-risk (CVaR) criterion. (Note that the
CVaR criterion usually leads to overly conservative solution. We chose this criterion for ease
of exposition, while the results can be generalized to other coherent risk measures, e.g., a
weighted sum of mean and CVaR.) The results in Chu, Shanthikumar, and Shen (2008) can
be directly generalized to maximize the expectation of conditional CVaR. In order to model
risk-aversion to both demand sampling risk and future demand uncertainty risk, we introduce
a new criterion, called total CVaR, and find the optimal operational statistic under this new
criterion. We think the total CVaR criterion could be a useful framework for modeling
risk-aversion in the presence of parameter uncertainty.

The remainder of the chapter is organized as follows. Section 4.2 reviews the related
literature. Section 4.3 introduces the model setting and some background on operational
statistics. Section 4.4 presents several properties of operational statistics. Section 4.5 gen-
eralizes operational statistics to the risk-averse case under the CVaR criterion. Section 4.6
summarizes the results and discusses directions for future work.

4.2 Literature Review

Inventory management, or more specifically, the newsvendor problem, is widely studied in the
operations research literature. We consider a repeated newsvendor setting, i.e., the ordering
decision is repeated for multiple periods, but excess inventory at the end of each period is not
carried over to the next period. This setting is suitable for perishable products. We focus
on the case where the parameters of the demand distribution are unknown. The problem of
demand parameter estimation in the newsvendor problem was first studied by Hayes (1969).
He proposed minimizing the expected total operating cost (ETOC), which leads to a special
case of the operational statistics approach in Liyanage and Shanthikumar (2005) and Chu,
Shanthikumar, and Shen (2008). Akcay, Biller, and Tayur (2011) generalized the ETOC
framework to more general demand distributions using the Johnson translation system. Ra-
mamurthy, Shanthikumar, and Shen (2012) studied the operational statistics approach when
the demand distribution has an unknown shape parameter. Chu, Shanthikumar, and Shen
(2009) studied operational statistics for the pricing-newsvendor problem. The focus of this
chapter is to study several important properties of operational statistics, and to generalize
the operational statistics approach to the risk-averse case.

In the presence of parameter uncertainty, the most popular approach for inventory man-
agement is the Bayesian framework. It was first applied to the newsvendor problem by Scarf
(1959), and then by Iglehart (1964). Unlike the Bayesian framework, operational statistic-
s is a frequentist approach. Interestingly, the optimal operational statistic found by Chu,
Shanthikumar, and Shen (2008) coincides with a non-trivial Bayesian framework. In Section
4.5, we find the optimal operational statistic under the total CVaR criterion, which also
has a Bayesian interpretation. We note that this interesting phenomenon, i.e., the optimal
frequentist procedure coinciding with a Bayesian framework, is not rare in the Statistics
literature (see Bayarri and Berger, 2004, for more details).
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Another related approach is the sampling-based approach. In this approach, only his-
torical demand data are available. No parametric model is assumed. Instead, the em-
pirical counterpart of the problem is solved. Levi, Roundy, and Shmoys (2007) studied
sampling-based policies for the newsvendor problem and its multi-period version with in-
ventory carry-over. They derived bounds on the performance of the policies. Levi, Perakis,
and Uichanco (2012) improved the bound for the newsvendor problem presented in Levi,
Roundy, and Shmoys (2007) using spread information. Huh and Rusmevichientong (2009)
studied a sampling-based approach for the newsvendor problem with censored demand ob-
servations. Huh et al. (2011) studied the same problem using the Kaplan-Meier estimator.
Jain et al. (2011) considered the case where demand depends on the inventory level. They
developed a new approach called operational objective learning based on kernel smoothing.
Unlike the sampling-based approach, the operational statistics approach considers the case
where the distribution family is known, e.g., after a distribution function has been selected,
and focuses on parameter uncertainty only.

Another related stream of research is on the distribution-free or distributionally-robust
newsvendor problem. It was first studied by Scarf (1958) and then by Gallego and Moon
(1993). In this problem, the parameters (i.e., mean and variance) of the demand are known,
but the distribution is unknown. The order quantity is chosen to minimize the expected
cost under the worst-case distribution. Other types of distributional information have al-
so been used in the newsvendor model. Lim, Shanthikumar, and Shen (2006) considered
the case where the demand distribution is close to a known nominal distribution. The
distance between the actual distribution and the nominal distribution is measured by the
Kullback-Leibler divergence, also known as the relative entropy. Wang, Glynn, and Ye (2010)
considered a similar problem, except that the nominal distribution is the empirical distribu-
tion given by the previous demand observations. Focusing on the worst-case may be overly
conservative in practice. An alternative objective is to minimize the worst-case regret. Per-
akis and Roels (2008) studied the newsvendor model where the order quantity is chosen to
minimize the maximum regret of not acting optimally.

Risk-aversion is widely observed in inventory management. The risk-averse newsvendor
problem has been studied by Eeckhoudt, Gollier, and Schlesinger (1995) using expected util-
ity functions, and by Chen and Federgruen (2000) using mean-variance analysis. Recently,
modeling risk-aversion in inventory management using coherent risk measures (e.g., CVaR)
has gained intensive attention. Coherent risk measures have important theoretical and prac-
tical value in risk analysis. The newsvendor problem under coherent risk measures has
recently been studied by Ahmed, Cakmak, and Shapiro (2007), Gotoh and Takano (2007),
and Choi and Ruszczyński (2008). In addition to the standard newsvendor problem, Chen,
Xu, and Zhang (2009) considered the pricing newsvendor problem under CVaR, and Choi,
Ruszczyński, and Zhao (2011) considered the multi-product newsvendor problem. Yang et
al. (2009) studied coordinating contracts when selling to a risk-averse newsvendor under the
CVaR criterion. Bertsimas and Thiele (2005) proposed a sampling-based approach for the
newsvendor problem. Instead of maximizing the empirical mean profit, they proposed to
maximize the empirical CVaR of the profit to improve the robustness of the solutions. We
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are the first to consider the CVaR newsvendor problem with parameter uncertainty. We
also introduce a new criterion, called total CVaR, which incorporates risk-aversion to both
demand sampling risk and future demand uncertainty risk.

4.3 Background on Operational Statistics

In this section, we introduce the model setting and some background on the operational
statistics approach. We adopt the same setting for the repeated newsvendor problem as in
Chu, Shanthikumar, and Shen (2008). Let s be the unit selling price, and c the unit ordering
cost. We assume there is no salvage value, which is consistent with the setting in Chu,
Shanthikumar, and Shen (2008). Incorporating salvage value will not change the structure
of the problem significantly. The profit from order quantity y and demand X is given by

Φ(y,X) = smin{y,X} − cy.

Assume the demand distribution is characterized by a location parameter τ and a scale
parameter θ > 0, i.e., X = τ + θZ, where Z has a known distribution. Let F (x; τ, θ)
and f(x; τ, θ) denote the cumulative distribution function and the density function of the
demand, respectively. With some abuse of notation, we use F (z) and f(z) to denote the
distribution function and density function of Z, i.e., F (z) = F (z; 0, 1) and f(z) = F (z; 0, 1).
The expected profit from order quantity y is denoted by

φ(y; τ, θ) =

∫
Φ(y, x)f(x; τ, θ)dx.

From the well known result for the newsvendor problem, the optimal order quantity

y∗(τ, θ) = F−1
(

1− c

s
; τ, θ

)
,

where F−1 is the inverse of the cumulative distribution function.
Assume the parameters τ and θ are unknown, but demand observations in the previ-

ous n periods X = (X1, . . . , Xn) are available. In the separated estimation-optimization
approach, one first obtains parameter estimates τ̂(X) and θ̂(X). Using the estimates, the
order quantity can be found as y∗(τ̂(X), θ̂(X)). In the operational statistics approach, one
directly determines the order quantity as a function or statistic g(X) of the observations, to
maximize the a priori expected profit EX [φ(g(X); τ, θ)]. In order to find a uniformly optimal
operational statistic for all parameters, the form of the function g must be restricted. Chu,
Shanthikumar, and Shen (2008) considered the following class of functions

He
1 = {g : Rn → R : g(αx− δe) = αg(x)− δ, α > 0} .

They showed that the optimal operational statistic in class He
1 is given by

h∗(x) = argmax
y

{∫
τ

∫
θ

φ(y; τ, θ)
1

θn+2

n∏
i=1

f

(
xi − τ
θ

)
dθdτ

}
. (4.1)
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4.4 Properties of Operational Statistics

In this section, we present several desirable properties of the operational statistics approach.

Finding the Optimal Operational Statistic

First, we observe that for a general class of distributions, the optimization problem in (4.1)
is relatively easy to solve, i.e., the optimal operational statistics is relatively easy to find.
The integral in (4.1) preserves the concavity of φ(y; τ, θ). The optimal operational statistic
can then be found from the first order condition. Note that the derivative of the expected
profit is given by

φ′(y; τ, θ) = s− c− sF (y; τ, θ).

The derivative is uniformly bounded, i.e.,

sup
y
|φ′(y; τ, θ)| ≤ max{s− c, c}.

Thus, if the distribution satisfies∫
τ

∫
θ

1

θn+2

n∏
i=1

f

(
xi − τ
θ

)
dθdτ <∞, (4.2)

then we can take the derivative of the objective function in (4.1) by interchanging the order
of the differentiation and the double integral in (4.1).

Proposition 6. For distributions such that (4.2) holds, the optimal operational statistic can
be found by solving∫

τ

∫
θ

(s− c− sF (y; τ, θ))
1

θn+2

n∏
i=1

f

(
xi − τ
θ

)
dθdτ = 0. (4.3)

For general distributions, equation (4.3) can be solved numerically. For certain distribu-
tion types, (4.3) leads to closed-form optimal operational statistic. For example, when the
demand is exponentially distributed with mean θ, the optimal operational statistic is given
by

h∗(X) =
(

(s/c)
1

n+1 − 1
) n∑
i=1

Xi. (4.4)

When the demand is uniformly distributed in [0, θ]. The optimal operational statistic is
given by

h∗(X) =


(

s

(n+ 2)c

) 1
n+1

X[n] for n ≤ s

c
− 2,

n+ 2

n+ 1

(
1− c

s

)
X[n], for n >

s

c
− 2,

(4.5)
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where X[n] is the n-th order statistic of the observations. We will use these examples to
illustrate some of the results presented later in this chapter.

Asymptotic Optimality

The optimal operational statistic can be viewed as an estimator for the theoretical optimal
solution. We will show that the operational statistics approach is asymptotically optimal
(i.e., consistent). For ease of exposition, we assume only the scale parameter is unknown,
i.e., X = θZ, where Z has a known distribution. The result can be generalized to the case
where both the location and the scale parameters are unknown.

Proposition 7. The optimal operational statistic converges almost surely to the theoretical
optimal solution with known parameter.

We can verify the result using previous examples given in (4.4) and (4.5) for which
the optimal operational statistic is given in closed-form. If the demand is exponentially
distributed with mean θ, the optimal order quantity with known parameter is given by

y∗(θ) = θ ln
(s
c

)
.

By the Strong Law of Large Numbers,∑n
i=1Xi

n

a.s.−−→ θ,

where
a.s.−−→ stands for almost sure convergence. Also, we can show that

n(s
1

n+1 − 1)→ ln s.

Thus, the optimal operational statistic for the exponential distribution in (4.4) is asymptot-
ically optimal, i.e.,

h∗(X)
a.s.−−→ y∗(θ).

When demand is uniformly distributed on [0, θ], the optimal order quantity with a known
parameter is given by

y∗(θ) =
(

1− c

s

)
θ.

We can show that
X[n]

a.s.−−→ θ.

Recall that when n is large,

h∗(X) =
n+ 2

n+ 1

(
1− c

s

)
X[n],

which is also asymptotically optimal.
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Integrated vs. Separated Approach

We have shown that the operational statistics approach is asymptotically optimal. However,
the separated estimation-optimization approach is also asymptotically optimal, as long as an
consistent estimator for the parameter is used. We will show that the operational statistics
approach is superior to the separated estimation-optimization approach, in that it achieves
higher a priori expected profit. We assume that the maximum likelihood estimator is used
for parameter estimation in the separated estimation-optimization approach. However, the
result does not necessarily require using maximum likelihood estimation. A similar result
can be shown for the method of moments. Note that we could also compare the operational
statistics approach with the sampling-based approach in Levi, Roundy, and Shmoys (2007).
However, since the sampling-based approach does not require knowledge of the form of the
demand distribution, this comparison will not be fair. Thus, we focus on comparing the
operational statistics approach with the separated estimation-optimization approach. The
disadvantage of the separated estimation-optimization approach is due to the fact that it
sequentially optimizes parameter estimation and the inventory decision. Loss of information
occurs when a distribution is selected and fitted in the first stage.

Proposition 8. The a priori expected profit achieved by the optimal operational statistic is
greater than or equal to the one achieved by the separated estimation-optimization approach
for all parameters.

In order to better understand how the operational statistics approach achieves higher a
priori expected profit, we illustrate the difference between operational statistics and sepa-
rated estimation-optimization using a numerical example where the demand is exponentially
distributed. We randomly generate one million demand data sets. Each data set has three
observations. For each data set, we calculate the optimal operational statistics solutions
using the closed-form expressions in (4.4). The optimal separated estimation-optimization
solutions are obtained using the maximum likelihood estimators.

In Figure 4.1, we compare the histograms of the operational statistics and separated
estimation-optimization solutions. We can see that the separated estimation-optimization
approach generates more solutions near the theoretical optimal solution than the opera-
tional statistics approach. However, there are also more separated estimation-optimization
solutions that are far from the theoretical optimum.

We can measure how close to optimal the solutions are using the optimality gap, i.e.,
the relative difference between the achieved expected profit and the theoretical optimal
expected profit. In Figure 4.2, we compare the histograms of the optimality gaps for the
two approaches. We consider four groups of solutions, with optimality gap less than 10%,
between 10% and 50%, between 50% and 90%, and greater than 90%, respectively. We see
that although the separated estimation-optimization approach generates more solutions in
the first group, it also generates more solutions in the last group. On the other hand, the
operational statistics approach generates more solutions in the second group. As a result,
the operational statistics approach is able to achieve higher a priori expected profit.
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Figure 4.1: Comparison of operational statistics and separated estimation-optimization so-
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Figure 4.3: Impact of demand coefficient of variation on the benefit of operational statistics
(shifted exponential distribution)

The Impact of Demand Variability

We have shown that the operational statistics approach is superior to the separated estimation-
optimization approach, in that it achieves higher a priori expected profit. In this subsection,
we examine the impact of demand variability on the benefit of using operational statistics.
We define the benefit of operational statistics as the relative difference between the a priori
expected profits achieved by operational statistics and separated estimation-optimization,
respectively. We use a commonly used measure for variability, the coefficient of variation,
i.e., the ratio between the standard deviation and the mean.

Proposition 9. The benefit of operational statistics is larger when the demand variability
is higher.

We illustrate Proposition 9 with a numerical example. The shifted exponential distribu-
tion has the probability density function

f(x) =
1

θ
exp{−(x− τ)

θ
},

for x ≥ τ . The coefficient of variation for the shifted exponential distribution is given by
θ/(θ + τ). Although the optimal operational statistic for the shifted exponential distribution
does not have a closed-form expression, we can solve for it numerically using Proposition
6. In Figure 4.3, we plot the benefit of operational statistics vs. the demand coefficient of
variation. We see that as the coefficient of variation increases, using operational statistics
achieves higher benefit.

Note that coefficient of variation is a common measure for risk. Thus, the previous result
suggests that using operational statistics achieves larger benefit under higher risk. However,
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we have thus far focused on the optimal operational statistic for the risk-neutral case. In
the next section, we generalize operational statistics to the risk-averse case.

4.5 Operational Statistics under Risk Aversion

In this section, we generalize operational statistics to the newsvendor problem under risk-
aversion. For inventory management, risk-aversion has been modeled using expected utility
functions or mean-variance analysis. Recently, modeling risk-aversion using the conditional
value-at-risk (CVaR) criterion has received a significant amount of attention. CVaR is an
important and widely used risk measure in finance and operations research. For a profit
maximization problem, the β-CVaR, denoted by ρ

β
, is the mean of the lowest 100β percent

of the profit outcomes. For continuous distributions, it is equal to the conditional expectation
of profit below the lower 100β-percentile. The parameter β ∈ (0, 1] reflects the degree of
risk-aversion. A smaller β represents a higher degree of risk-aversion. If β = 1, it reduces to
the risk-neutral case. CVaR is a coherent risk measure with the following properties:

Convexity: ρ
β
[αU + (1−α)V ] ≥ αρ

β
[U ] + (1−α)ρ

β
[V ] (concave for a maximization prob-

lem).

Translation Equivariance: ρ
β
[V + a] = ρ

β
[V ] + a, for a ∈ R.

Positive Homogeneity: ρ
β
[αV ] = αρ

β
[V ], for α > 0.

These properties are essential in solving the risk-averse newsvendor problem and generalizing
operational statistics to the risk-averse case.

The CVaR Newsvendor Problem

Consider the newsvendor problem under the CVaR criterion. Let ρ
β
[y; τ, θ] denote the CVaR

of profit from order quantity y when the demand has parameters τ and θ. Using the dual
representation in Rockafellar and Uryasev (2000),

ρ
β
[y; τ, θ] = ρ

β
[Φ(y,X)] = sup

η

{
η − 1

β

∫
[η − Φ(y, x)]+f

(
x− τ
θ

)
dx

}
.

In the CVaR newsvendor problem, the optimal order quantity y is chosen to maximize
ρ
β
[y; τ, θ]. The optimal solution is a variant of the standard risk-neutral newsvendor order

quantity. The following result is due to Chen, Xu, and Zhang (2009).

Proposition 10. In the CVaR newsvendor problem with parameters τ and θ, the β-CVaR
of profit is given by

ρ
β
[y; τ, θ] = (s− c)y − s

β

∫ y

0

F

(
x− τ
θ

)
dx, (4.6)
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and the optimal order quantity is given by

y∗(τ, θ) = τ + θF−1
(
β
(

1− c

s

))
. (4.7)

Optimal Operational Statistic

Next we solve the CVaR newsvendor problem with unknown parameters using operational
statistics. Given demand observations X, the conditional CVaR using operational statistic
g(·) is given by ρ

β
[g(X); θ]. Note that the conditional CVaR is a random variable that

depends on X. We can then take the expectation of conditional CVaR over X, which we
call the a priori expected CVaR.

We seek the optimal operational statistic to maximize the a priori expected CVaR
EX

[
ρ
β
[g(X); τ, θ]

]
. Using the results in (4.6) and (4.7), we can show that the optimal

operational statistic in (4.1) can be generalized to this case. We can also show that the
properties in Propositions 6 through 9 still hold.

Proposition 11. For the a priori expected CVaR objective, the optimal operational statistic
in class He

1 is given by

h∗(x) = argmax

{∫
τ

∫
θ

ρ
β
[y; τ, θ]

1

θn+2

n∏
i=1

f

(
xi − τ
θ

)
dθdτ

}
.

The optimal operational statistic under risk-aversion is a variant of that for the risk-
neutral case in (4.1). For example, when demand is exponentially distributed with mean θ,
the optimal operational statistic under risk-aversion also has a closed-form expression, which
is given by

h∗(X) =

((
s

(1− β)s+ βc

) 1
n+1

− 1

)
n∑
i=1

Xi.

When the demand is uniformly distributed in the interval [0, θ], the optimal operational
statistic is given by,

h∗(X) =


(

s

(n+ 2)((1− β)s+ βc)

) 1
n+1

X[n] for n ≤ s

(1− β)s+ βc
− 2,

n+ 2

n+ 1
β
(

1− c

s

)
X[n], for n >

s

(1− β)s+ βc
− 2.

Comparing the optimal operational statistics under risk-aversion with those for the risk-
neutral case in (4.4) and (4.5), we see that for the same demand sample X, the optimal
operational statistic under risk-aversion is smaller than the risk-neutral case. Also, we see
that the optimal operational statistic is increasing in β, i.e., the order quantity is decreasing
in the degree of risk-aversion. This result can be generalized to more general distribution
types.
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Proposition 12. For distributions such that∫
τ

∫
θ

1

θn+2

n∏
i=1

f

(
xi − τ
θ

)
dθdτ <∞,

the optimal operational statistic is decreasing in the degree of risk-aversion.

The Total CVaR Criterion

In the previous subsection, we found the optimal operational statistic that maximizes the
a priori expected CVaR. Note that the profit Φ(g(X), Xn+1) is a random variable induced
by both the demand observations X and the future demand Xn+1. In the a priori expected
CVaR objective EX

[
ρ
β
[g(X); θ]

]
, the conditional CVaR ρ

β
[g(X); τ, θ] is calculated with

respect to Xn+1 only. The expectation EX [·] is taken with respect to X. Both X and
Xn+1 contribute to the risk in this problem, but risk-aversion is only incorporated for the
uncertainty in Xn+1, i.e., the future demand uncertainty. Risk-aversion is not reflected for
the uncertainty in X, i.e., uncertainty in demand sampling.

An alternative objective is the actual CVaR of the random variable Φ(g(X), Xn+1),
denoted by ρ

β
[Φ(g(X), Xn+1)]. It reflects risk-aversion to both the sampling risk (i.e., risk

originating from X) and the future demand uncertainty risk (i.e., risk originating from
Xn+1). Thus, we call this objective the total CVaR criterion.

For ease of exposition, we focus on the case where only the scale parameter is unknown,
i.e., X = θZ, where Z has a known distribution. The result can be generalized to the case
where both the location and the scale parameters are unknown. Using the dual representation
in Rockafellar and Uryasev (2000), the total CVaR of profit is given by,

ρ
β
[Φ(g(X), Xn+1)] = sup

η

{
η − 1

β

∫ ∫
[η − Φ(g(x), xn+1)]+

n+1∏
i=1

f (xi; θ) dxn+1dx

}
.

Although the optimal operational statistic in the previous section was obtained using the
a priori expected CVaR objective, we can still compare the performance of the operational
statistics solution and the separated estimation-optimization solution under the total CVaR
criterion. We randomly generate one million demand data sets. Each data set consists of
demand observations in the three periods immediately before an inventory decision is made
plus the demand observed in the subsequent period. Using the historical observations, we
calculate the optimal order quantities using operational statistics and separated estimation-
optimization. We then calculate the realized profit in the next period using the order quantity
and the realized demand. The total CVaR is then estimated using the empirical CVaR of
the realized profits from all the demand samples. In Figure 4.4, we plot the total CVaR
obtained using operational statistics and separated estimation-optimization. We can see
that, although the operational statistics solution is derived for the a priori expected CVaR
objective, it still achieves higher total CVaR than the separated estimation-optimization
solution.



CHAPTER 4. INVENTORY MGMT WITH PARAMETER UNCERTAINTY 66

0.20.40.60.81
0

50

100

150

200

250

Degree of risk−aversion

T
ot

al
 C

V
aR

 

 
OS
SEO

Figure 4.4: Total CVaR achieved by operational statistics and separated estimation-
optimization

Next we show how to find the optimal operational statistic for the total CVaR criterion.
As in the risk-neutral case, we consider functions within the class,

H1 = {g : Rn → R : g(αx) = αg(x), α ≥ 0} .

Proposition 13. For the total CVaR criterion, the optimal operational statistic in class H1

is given by
h∗(x) = argmax

y
H(x, y), (4.8)

where

H(x, y) = sup
η

{∫ ∞
0

∫ [
η − 1

β

[
η − Φ(y, xn+1)

θ

]+
]

1

θn+2

n+1∏
i=1

f
(xi
θ

)
dxn+1dθ

}
.

Recall that the optimal operational statistic for the risk-neutral case in (4.1) coincides
with a Bayesian framework. The optimal operational statistic under the total CVaR crite-
rion also has a Bayesian interpretation. Using Jeffrey’s non-informative prior for the scale
parameter, the term

1

θn+1

n∏
i=1

f

(
Xi

θ

)
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can be viewed as the posterior distribution of the random parameter Θ. Thus∫ ∞
0

(∫ [
η − 1

β

[
η − φ(y, xn+1)

θ

]+
]

1

θ
f
(xn+1

θ

)
dxn+1

)
1

θn+1

n∏
i=1

f
(xi
θ

)
dθ

can be viewed as the posterior mean of

η − 1

β

[
η − Φ(y,Xn+1)

Θ

]+

.

The objective function in (4.8) is thus the CVaR of the normalized profit φ(y,Xn+1)
Θ

with
regard to the posterior distribution of parameter Θ.

4.6 Summary and Future Directions

In this chapter, we study the operational statistics approach in Chu, Shanthikumar, and
Shen (2008) for perishable inventory management with parameter uncertainty. We find that
the operational statistics approach is consistent and guaranteed to outperform the separated
estimation-optimization approach. We find that the benefit of using operational statistics
is greater when demand variability is higher. We then study operational statistics for the
risk-averse newsvendor problem under the conditional value-at-risk (CVaR) criterion. We
find that the results in Chu, Shanthikumar, and Shen (2008) for the risk-neutral case can
be generalized to the objective of maximizing the expected CVaR. In order to model risk-
aversion to both demand sampling risk and future demand uncertainty risk, we introduce
a new criterion called the total CVaR, and find the optimal operational statistic under this
criterion.

A challenging problem for future research is to derive operational statistics for multi-
period inventory management problems. An interesting question is whether the well-studied
base-stock policy will still be optimal. The operational statistics framework can also be
applied to other problems in operations research, such as pricing and revenue management.
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Appendix A

Proofs

Proof of Lemma 1. First, note that the minimization problem in (2.1) is decomposable in
i ∈ I. For each i ∈ I, the optimal solution is straightforward:

hi(x, S) = di min{cij : j ∈ S, xj = 1}.

For any S ⊂ T ⊂ J , let us evaluate the decrease in cost after adding j ∈ J\T to the
set. If xj = 0, then adding j will not affect the assignment or the cost, and thus condition
(2.4) holds trivially. So we only need to consider the case where xj = 1. Let j(S) denote
the facility to which customer i is assigned given disruption scenario S, and similarly j(T ).
Since S ⊂ T , it is easy to see that ci,j(T ) ≤ ci,j(S). There are three cases depending on the
value of cij:

1. ci,j ≤ ci,j(T )

In this case, having the additional facility j will reduce the cost for both disruption
scenarios S and T . For disruption scenario S, the amount of reduction is given by,

hi(x, S)− hi(x, S ∪ {j}) = ci,j(S) − ci,j.

Similarly, for disruption scenario T , the amount of reduction is given by,

hi(x, T )− hi(x, T ∪ {j}) = ci,j(T ) − ci,j.

Since ci,j(T ) ≤ ci,j(S), we have

hi(x, S)− hi(x, S ∪ {j}) ≥ hi(x, T )− hi(x, T ∪ {j}).

2. ci,j(T ) ≤ ci,j ≤ ci,j(S)

In this case, having the additional facility j will reduce the cost for only disruption
scenario S. Thus,

hi(x, S)− hi(x, S ∪ {j}) ≥ hi(x, T )− hi(x, T ∪ {j}).
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3. ci,j(T ) ≤ ci,j(S) ≤ ci,j

In this case, having the additional facility j will not reduce the cost for either disruption
scenario. Thus,

hi(x, S)− hi(x, S ∪ {j}) = hi(x, T )− hi(x, T ∪ {j}).

The condition of increasing differences holds for all three cases. Thus, hi(x, S) is supermod-
ular in S for all i ∈ I. For all customers, the total cost h(x, S) =

∑
i hi(x, S) is the sum of

supermodular functions. Thus h(x, S) is also supermodular in S.

Proof of Lemma 2. We prove the result by confirming that the solution given in Lemma 2
is both primal feasible and dual feasible for the inner problem given in (2.3). It is easy to
see that the solution is primal feasible, and has objective value

φ =
J∑
s=0

(qs+1 − qs)h(x, ξs).

The dual problem with dual variables λ is given by,

min
∑
j∈J

(1− qj)λj

s.t.
∑
j∈S

λj ≥ h(x, S), ∀S ⊆ J , 0 ∈ S

Consider solution
λj = h(x, ξj)− h(x, ξj−1), ∀j = 1, . . . , J,

and
λ0 = h(x, ξ0).

We will show this solution is dual feasible, i.e.,∑
j∈S

λj ≥ h(x, S), ∀S ⊆ J .

For any S ⊆ J , without loss of generality, assume S = {j0, j1, . . . , jn}, where 0 = j0 < j1 <
· · · < jn. Define disruption scenarios ζ0, ζ1, . . . , ζn, where ζsj = I(j ∈ S ∩ j ≤ s). It is easy
to see that ζs ≤ ξs for all s = 0, 1, . . . , J . By property (2.4) of supermodular functions,

h(x, ξjk)− h(x, ξjk−1) ≥ h(x, ζjk)− h(x, ζjk−1).

Also notice that ξjn = ζjn is the disruption scenario where all locations in S are online, and
that ξj0 = ζj0 is the scenario where only location 0 is online. Thus,

n∑
k=1

λj =
n∑
k=1

[
h(x, ξjk)− h(x, ξjk−1)

]
≥

n∑
k=1

[
h(x, ζjk)− h(x, ζjk−1)

]
= h(x, S)− λ0.
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Thus, the solution λj, j = 0, 1, . . . , J , is dual feasible. The corresponding dual objective
value

ψ =
J∑
j=1

(1− qj)[h(x, ξj)− h(x, ξj−1)] + h(x, ξ0) = φ.

Thus, by duality, the solution given in Lemma 2 is optimal for the inner problem in (2.3),
i.e., it is the worst-case distribution.

Proof of Lemma 4. Consider the Lagrangian of problem (2.6) where the capacity constraint
is relaxed with multipliers µ = (µ0, . . . , µJ):

L(x, ξ,µ) =
∑
j∈J

xjBjξjµj + min
y

{∑
i∈I

∑
j∈J

di(cij − µj)yij

∣∣∣∣∣
∑

j∈J yij = 1, ∀i ∈ I
yij ≥ 0, ∀i ∈ I, ∀j ∈ J

}
We will first show that L(x, ξ,µ) is supermodular in (ξ,µ). By Theorem 2.3.4 in Simchi-
Levi et al. (2004), the first term in L(x, ξ,µ) is supermodular in (ξ,µ). The second term is
equal to

∑
i∈I di min{cij − µj}. For each i, min{cij − µj} is also supermodular in µ. Thus,

L(x, ξ,µ) is supermodular in (ξ,µ). By strong duality, h(x, ξ) = maxµ≤0 L(x, ξ,µ). By
Proposition 2.3.5 in Simchi-Levi et al. (2004), hC(x, ξ) is supermodular in ξ.

Proof of Lemma 5. The proof is similar to the proof for Lemma 1. Without loss of generality,
we consider the restricted set of nodes V(x) = {j ∈ V : xj = 1}, i.e., the set of opened
facilities. Notice that the hub allocation problem is separable by O-D pairs. For O-D pair
(i, i′), the cost is given by

hii′(x, S) = dii′ min{cii′jj′ : j, j′ ∈ V(x)}

For any S ⊂ T ⊂ V(x), consider the decrease in cost after adding j ∈ V(x)\T to the set. It
is easy to see that the decrease for S is always greater than or equal to the decrease for T .
Thus, h(x, S) is supermodular in S.

Proof of Proposition 7. The proof is based on the observation by Chu, Shanthikumar, and
Shen (2008) that the optimal operational statistic coincides with a Bayesian framework. For
the scale parameter, the Jeffrey’s non-informative prior is given by 1/θ. Thus, the second
term in the integrand in (4.1), i.e.,

1

θn+1

n∏
i=1

f

(
Xi

θ

)
,

can be regarded as the posterior distribution (without normalization) of Θ after observing
demand sample X = (X1, . . . ,Xn). Chu, Shanthikumar, and Shen (2008) showed that this
posterior distribution is proper. The objective function in (4.1) can then be regarded as the
posterior mean of the normalized profit

φ(y; Θ)

Θ
.
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Let θ0 denote the unknown true parameter, and let Θ|X denote the posterior distribution
of the random parameter Θ. For simplicity, let

g(y, θ) =
φ(y; θ)

θ
.

Let Mn(y) denote the posterior mean, i.e., Mn(y) = EΘ|X [g(y,Θ)], and M(y) the objective
under the true parameter, i.e., M(y) = g(y, θ0). Let ŷn denote the optimal operational statis-
tic, i.e., ŷn = argmaxMn(y), and y∗ the theoretical optimal solution with known parameter,
i.e., y∗ = argmaxM(y). We need to show that ŷn

a.s.−−→ y∗, where
a.s.−−→ denotes almost sure

connvergence.
Ibragimov and Has’Minskii (1981) showed that the posterior distribution Θ|X is consis-

tent, i.e., for any ε > 0,
PΘ|X(θ0 − ε, θ0 + ε)

a.s.−−→ 1.

The result requires certain regularity conditions on the likelihood function, which hold in
general for almost all parametric distributions. We do not list the conditions here. Interested
readers may refer to Ibragimov and Has’Minskii (1981) for more details. The consistency
of posterior distribution implies the point-wise convergence of Mn(y) to M(y), i.e., for any
given y > 0,

Mn(y)
a.s.−−→M(y).

Next we need to show that Mn(y) is stochastically Lipschitz continuous in y, i.e.,

sup
y1,y2

|Mn(y1)−Mn(y2)| < K|y1 − y2|,

where K is a random variable that depends on X and is almost surely bounded. The
expected profit

φ(y; θ) = s

∫ y

0

F̄
(x
θ

)
dx− cy.

Thus,

|φ(y1)− φ(y2)| =
∣∣∣∣s ∫ y1

y2

F̄
(x
θ

)
dx− c(y1 − y2)

∣∣∣∣ ≤ (s+ c) |y1 − y2| ,

and,

|Mn(y1)−Mn(y2)| ≤
∫
|φ(y1; θ)− φ(y2; θ)| 1

θn+2

n∏
i=1

f(xi; θ)dθ

≤ (s+ c)

∫
1

θn+2

n∏
i=1

f(xi; θ)dθ |y1 − y2| .

Notice that ∫
1

θn+2

n∏
i=1

f(xi; θ)dθ = EΘ|X
[
Θ−1

]
.
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By continuity and consistency of the posterior distribution, EΘ|X [Θ−1] is almost surely
bounded. Thus Mn(y) is stochastically Lipschitz continuous. Point-wise convergence and
Lipschitz continuity then imply that Mn(y) converges uniformly to M(y), i.e.,

sup
y
Mn(y)

a.s.−−→M(y).

Using uniform convergence, we can show Mn(ŷn)
a.s.−−→M(y∗). By the definition of ŷn and

y∗, we have Mn(ŷn) ≥Mn(y∗) and M(y∗) ≥M(ŷn). Thus,

|Mn(ŷn)−M(y∗)| ≤ max {|Mn(y∗)−M(y∗)| , |Mn(ŷn)−M(ŷn)|}
≤ sup

y
|Mn(y)−M(y)| a.s.−−→ 0,

and,
|M(ŷn)−M(y∗)| ≤ |M(ŷn)−Mn(ŷn)|+ |Mn(ŷn)−M(y∗)| a.s.−−→ 0

Thus,
M(ŷn)

a.s.−−→M(y∗).

We have also shown that the objective function Mn(y) is strictly concave. This guarantees
the convergence of their maxima, ŷn

a.s.−−→ y∗.

Proof of Proposition 8. We prove the result by showing that the separated estimation-optimization
approach using MLE is actually a special case of operational statistics in class He

1. Recall
that the demand is given by X = τ + θZ. Let X = (X1, X2, . . . , Xn) be n i.i.d. demand
observations. The MLE for parameters τ and θ is given by

(τ ∗(X), θ∗(X)) = argmax
τ,θ

{
1

θn

n∏
i=1

f

(
Xi − τ
θ

)}
.

The optimal order quantity in the separated estimation-optimization approach is then given
by

ŷ(X) = y∗(τ ∗(X), θ∗(X)) = τ ∗(X) + θ∗(X)F−1
(
β
(

1− c

s

))
.

Now consider another demand sample X̃ = αX − δ, where α > 0. The MLE based on
these observations is given by

(τ ∗(X̃), θ∗(X̃)) = argmax
τ,θ

{
1

θn

n∏
i=1

f

(
αXi − δ − τ

θ

)}
.

It is easy to see that

(τ ∗(αX − δ), θ∗(αX − δ)) = (ατ ∗(X)− δ, αθ∗(X)).
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The corresponding optimal order quantity is given by

ŷ(αX − δ) = ατ ∗(X)− δ + αθ∗(X)F−1
(
β
(

1− c

s

))
= αŷ(X)− δ.

Thus ŷ(X) ∈ He
1. Since the optimal operational statistic h∗(X) achieves the highest a priori

expected profit in class He
1, it must achieve a higher a priori expected profit than ŷ(X),

which is a special case of operational statistics in class He
1.

Proof of Proposition 9. Recall that the demand is from a location-scale family, i.e., X =
τ + θZ. It is easy to see that for any function g ∈ He

1,

E[φ(g(X); τ, θ)] = θE[φ(g(Z); 0, 1)] + (s− c)τ.

As we have shown, both the optimal operational statistic and the optimal solution from
the separated estimation-optimization approach using MLE are in class He

1. Let h∗(X)
denote the optimal operational statistic, and ŷ(X) the optimal solution from the separated
estimation-optimization approach. Then the relative benefit of using operational statistics
is given by

E[φ(h∗(X); τ, θ)]− E[φ(ŷ(X); τ, θ)]

E[φ(ŷ(X); τ, θ)]

=
θ (E[φ(h∗(Z); 0, 1)]− E[φ(ŷ(Z); 0, 1)])

θE[φ(ŷ(Z); 0, 1)] + (s− c)τ

=
E[φ(h∗(Z); 0, 1)]− E[φ(ŷ(Z); 0, 1)]

E[φ(ŷ(Z); 0, 1)] + (s− c) τ
θ

Thus, the relative benefit of using operational statistics increases in θ/τ . Without loss of
generality, we can assume E[Z] = 0 and

√
V[Z] = 1. Thus E[X] = τ and

√
V[X] = θ, and

the coefficient of variation of demand is equal to θ/τ . This completes the proof.

Proof of Proposition 10. Using the dual representation of CVaR,

y∗(τ, θ) = argmax
y

{
sup
η
G(η, y)

}
,

where

G(η, y) = η − 1

β

∫
[η − Φ(y, x)]+f(x; τ, θ)dx

= η − 1

β

∫
[η − smin{y, x}+ cy]+f(x; τ, θ)dx

= η − 1

β

[∫ y

0

[η − sx+ cy]+f(x; τ, θ)dx+ [η − sy + cy]+
∫ ∞
y

f(x; τ, θ)dx

] (A.1)

The function G given in (A.1) is concave. For a given y, it is piecewise differentiable in
η. Consider the following three cases:
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1. For η ≤ −cy, G(η, y) = η, ∂G/∂η = 1.

2. For −cy < η ≤ (s− c)y,

G(η, y) = η − 1

β

∫ y

0

[η − sx+ cy]+f(x; τ, θ)dx

= η − 1

β

∫ η+cy
s

0

(η − sx+ cy)f(x; τ, θ)dx.

Thus,
∂G

∂η
= 1− 1

β
F

(
η + cy

s
; τ, θ

)
.

In particular,
∂G

∂η

∣∣∣∣
η=−cy

= 1,
∂G

∂η

∣∣∣∣
η=(s−c)y

= 1− 1

β
F (y; τ, θ) .

3. For (s− c)y < η,

G(η, y) = η − 1

β

∫ y

0

(η − sx+ cy)f(x; τ, θ)dx− 1

β
(η − (s− c)y)[1− F (y; τ, θ)].

Thus,
∂G

∂η
= 1− 1

β
< 0.

Let η∗(y) be the optimal η that maximizes G(η, y) for a given y. Based on the three cases
given above, we have η∗(y) ∈ (−cy, (s− c)y].

For the second case, we have the stationary point η̂(y) = sF−1(β; τ, θ)−cy. Observe that
the stationary point may not be feasible. If y ≥ F−1(β; τ, θ), then η̂(y) ∈ (−cy, (s − c)y].
Thus, η∗(y) = η̂(y), and the objective function,

G(η∗(y), y) = sF−1(β; τ, θ)− cy − 1

β

∫ F−1(β;τ,θ)

0

s
(
F−1(β; τ, θ)− x

)
f(x; τ, θ)dx.

Taking the derivative of the above expression w.r.t. y, we obtain

d

dy
G(η∗(y), y) = −c < 0.

Thus, F−1(β; τ, θ) is optimal in this region.
If y ≤ F−1(β; τ, θ), the η̂ ≥ (s − c)y, and ∂G/∂η ≥ 0. Thus, η∗(y) = (s − c)y, and the

CVaR of profit can be expressed as

ρ
β
[y; τ, θ] = G(η∗(y), y) = (s− c)y − 1

β

∫ y

0

s (y − x) f(x; τ, θ)dx.
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Taking the derivative of CVaR w.r.t. y, we have

d

dy
G(η∗(y), y) = s− c− s

β
F (y; τ, θ).

In particular,
d

dy
G(η∗(y), y)

∣∣∣∣
y=F−1(β;τ,θ)

= −c < 0.

Thus,

y∗(τ, θ) = F−1
(
β
(

1− c

s

)
; τ, θ

)
.

Proof of Proposition 13. First, we will show that a uniform optimal operational statistic
exists for all parameters. Since X = θZ and Xn+1 = θZn+1, for g ∈ H1, we have

Φ(g(X), Xn+1) = θΦ(g(Z), Zn+1).

By the positive homogeneity of coherent risk measures, we have

ρ
β
[Φ(g(X), Xn+1)] = θρ

β
[Φ(g(Z), Zn+1)].

Thus, for any g1, g2 ∈ H1, either

ρ
β
[Φ(g1(X), Xn+1)] ≥ ρ

β
[Φ(g2(X), Xn+1)],

or
ρ
β
[Φ(g1(X), Xn+1)] ≤ ρ

β
[Φ(g2(X), Xn+1)],

for all θ. In other words, if g1 is better than g2 for one parameter, then g1 is also better than
g2 for all parameters.

Since the optimality of operational statistics is uniform for all parameters, we can focus
on one specific parameter, e.g., θ = 1. Using the dual representation of CVaR, i.e.,

ρ
β
[Φ(g(Z), Zn+1)] = sup

η

{∫ ∫ [
η − 1

β
[η − Φ(g(z), zn+1)]+

] n+1∏
i=1

f (zi) dzn+1dz

}
,

We need to choose g and η to maximize the objective function,∫ ∫ [
η − 1

β
[η − Φ(g(z), zn+1)]+

] n+1∏
i=1

f (zi) dzn+1dz

In order to find an operational statistic within the class H1, we change the objective
function into a path integral over

{z = rw : ‖w‖2 = 1, r ≥ 0} .
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The path integral objective is given by∫
w:‖w‖2=1

∫ ∞
0

G(r,w)rn−1

n∏
i=1

f(rwi)drdw,

where

G(r,w) =

∫ [
η − 1

β
[η − Φ(g(rw), zn+1)]+

]
f(zn+1)dzn+1

Applying the change of variable σ = 1
r
, the path integral objective becomes∫

w:‖w‖2=1

∫ ∞
0

G

(
1

σ
,w

)
f(zn+1)

1

σn+1

n∏
i=1

f
(wi
σ

)
dzn+1dσdw.

Applying another change of variable wn+1 = σzn+1, we obtain

G

(
1

σ
,w

)
=

∫ [
η − 1

β

[
η − Φ

(
g
(w
σ

)
,
wn+1

σ

)]+
]

1

σ
f
(wn+1

σ

)
dwn+1.

By the properties of the profit function Φ(y,X) and the class H1,

Φ
(
g
(w
σ

)
,
wn+1

σ

)
=

Φ(g(w), wn+1)

σ
.

Thus, the path integral objective becomes∫
w:‖w‖2=1

∫
σ>0

∫
zn+1

[
η − 1

β

[
η − Φ(g(w), wn+1)

σ

]+
]

1

σn+2

n+1∏
i=1

f
(wi
σ

)
dwn+1drdw.

Using pointwise maximization of the path integral objective for a given demand sample w,
we will have exactly the same result as h∗(·) in (4.8).

Finally, we need to show that the pointwise solution in (4.8) indeed belongs to the class
H1, i.e., it is positive homogeneous of degree one. Consider x = θw, for some θ > 0. The
operational statistic is given by,

h∗(θw)

= argmax
y

{
sup
η

{∫ ∞
0

∫ [
η − 1

β

[
η − Φ(y, xn+1)

σ

]+
]

1

σn+2
f
(xn+1

σ

) n∏
i=1

f

(
θwi
σ

)
dxn+1dσ

}}
.

Applying change of variable σ′ = 1
θ
σ, y′ = 1

θ
y, and wn+1 = 1

θ
xn+1, we have

h∗(θw)

= argmax
y

{
sup
η

{∫ ∞
0

∫ [
η − 1

β

[
η − Φ(y, θwn+1)

θσ′

]+
]

1

θn
1

(σ′)n+2

n+1∏
i=1

f
(wi
σ′

)
dwn+1dσ′

}}

=θ argmax
y′

{
sup
η

{∫ ∞
0

∫ [
η − 1

β

[
η − Φ(y′, wn+1)

σ′

]+
]

1

(σ′)n+2

n+1∏
i=1

f
(wi
σ′

)
dwn+1dσ′

}}
=θh∗(w)
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Thus, g∗(·) is in class H1. This completes the proof.
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Appendix B

Data and Supplementary Results

B.1 Severe Weather Hazard Data for the Supply

Chain Design Example

In Section 2.4, we presented a supply chain design example motivated by a real-world sit-
uation. The marginal disruption probability is estimated using the severe weather hazard
probability data provided by the NOAA Storm Prediction Center (SPC). The original da-
ta we obtain contains the probability that at least one significant hazard (e.g., tornadoes,
windstorms, hails, etc.) occurs within 25 miles of any node on a 50-mile grid in one calen-
dar year. For a given geographic coordinate, the probability is found by interpolation on
this grid. Given the yearly probability pY , we first convert it to an approximate quarterly
probability pQ, using pQ = 1− (1− pY ).25. Notice that this is the probability that a hazard
will occur within 25 miles of the facility. We assume that when a hazard occurs, there will
be a 50% chance that the facility will actually be disrupted and remain closed for the entire
quarter. The final estimated disruption probability is shown in Table B.1. Notice that we
do not assume the worst-case distribution given in Lemma 2, or the disruption propagation
effect that we used to illustrate Lemma 2. We only use the severe weather hazard data to
estimate the marginal disruption probabilities.

B.2 Selected Reliable Facility Location Results Using

the 88-Node Data Set

The numerical results in Table 2.5 are based on the 49-node data set in Daskin (1995). We
also compare the two models using the 88-node data set in Daskin (1995), which includes
Washington, D.C., the state capitals and the 50 largest cities in the contiguous United States
minus duplicates. Both data sets are available at http://coral.ie.lehigh.edu/~larry/

wp-content/datasets/RPMP/RPMP_data.zip by courtesy of Professor Larry Snyder. As
shown in Table B.2, we have observations that are similar to those from the 49-node data
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Table B.1: Estimated marginal disruption probability for the supply chain design example.

Location q Location q Location q
CA 1.45 WA 0.79 UT 1.28
NY 3.73 MD 6.68 NE 12.34
TX 7.95 MN 8.57 NM 1.59
FL 7.49 LA 10.14 ME 0.93
PA 6.96 AL 10.80 NV 0.83
IL 11.32 KY 8.78 NH 2.08
OH 7.08 AZ 1.24 ID 0.88
MI 6.99 SC 8.26 RI 2.01
NJ 5.43 CO 8.41 MT 0.92
NC 7.72 CT 3.34 SD 5.99
GA 9.93 OK 13.02 DE 5.42
VA 7.02 OR 0.97 ND 6.65
MA 1.76 IA 12.88 DC 6.91
IN 10.62 MS 13.43 VT 1.55

MO 9.47 KS 11.42 WY 7.71
WI 8.74 AR 11.20
TN 10.31 WV 3.45

Note: q: marginal disruption probability

set. The main difference is that the regret of the traditional model assuming independent
disruptions is now much lower. The reason is that the transportation cost in the 88-node
data set is much higher. As a result, more facilities are opened, and the regret from ignoring
correlation is smaller. Nonetheless, the regret and relative regret from the traditional model
is still much higher than that of the robust model.
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