
UCLA
UCLA Electronic Theses and Dissertations

Title
Program Obfuscation: Applications and Optimizations

Permalink
https://escholarship.org/uc/item/75q380wk

Author
Gupta, Divya

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/75q380wk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Program Obfuscation: Applications and Optimizations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Divya Gupta

2016

c© Copyright by

Divya Gupta

2016

ABSTRACT OF THE DISSERTATION

Program Obfuscation: Applications and Optimizations

by

Divya Gupta

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Amit Sahai, Chair

Recently, candidate constructions were given for indistinguishability obfuscation by Garg, Gentry,

Halevi, Raykova, Sahai, and Waters [FOCS’13]. The goal of general-purpose program obfuscation

is to make an arbitrary computer program “unintelligible” while preserving its functionality. Since

then, this new tool has been used to obtain many new applications. In this dissertation, we study the

problem of protecting software against new and powerful adversary structures as well as optimize

the efficiency of secure general-purpose obfuscation schemes.

In the first part of this dissertation, we initiate the study of hosting services on an untrusted

cloud. Specifically, we consider a scenario where a service provider has created a software service

S and desires to outsource the execution of this service to an untrusted cloud. The software service

contains secrets that the provider would like to keep hidden from the cloud. For example, the soft-

ware might contain a secret database, and the service could allow users to make queries to different

slices of this database depending on the user’s identity. Furthermore, we seek to protect knowl-

edge of the software S to the maximum extent possible even if the cloud can collude with several

corrupted users. We provide the first formalizations of security for this setting, and construction

relying on indistinguishability obfuscation.

The great interest in the utility of obfuscation leads to a natural and pressing goal: to improve

the efficiency of general-purpose obfuscation. In the second part of this dissertation, we initiate the

work to optimize the efficiency of secure general-purpose obfuscation schemes. We focus on the

problem of optimizing the obfuscation of Boolean formulas and branching programs - this corre-

ii

sponds to optimizing the “core obfuscator” from the work of Garg et al., and all subsequent works

constructing general-purpose obfuscators. Our efficiency improvement is obtained by generalizing

the class of branching programs that can be directly obfuscated. This generalization allows us to

achieve a simple simulation of formulas by branching programs while avoiding the use of Bar-

rington’s theorem, on which all previous constructions relied. Furthermore, the ability to directly

obfuscate general branching programs (without bootstrapping) allows us to efficiently apply our

construction to natural function classes that are not known to have polynomial-size formulas.

iii

The dissertation of Divya Gupta is approved.

Suhas Diggavi

Rafail Ostrovsky

Alexander Sherstov

Amit Sahai, Committee Chair

University of California, Los Angeles

2016

iv

To my parents . . .

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Hosting Services on an Untrusted Cloud . 4

1.2 Optimizing Obfuscation . 12

2 Hosting Services on an Untrusted Cloud . 21

2.1 Prelims . 21

2.1.1 Public Key Encryption Scheme . 21

2.1.2 Indistinguishability Obfuscation . 21

2.1.3 Puncturable Pseudorandom Functions . 22

2.1.4 Statistical Simulation-Sound Non-Interactive Zero-Knowledge 23

2.1.5 Cover-Free Set Systems and Authentication Schemes. 25

2.2 Secure Cloud Service Scheme (SCSS) Model . 28

2.2.1 Additional Properties. 32

2.2.2 Secure Cloud Service Scheme with Cloud Inputs. 33

2.3 Our Secure Cloud Service Scheme . 33

2.3.1 Security Proof Overview . 37

2.3.2 Formal Security Proof . 38

2.4 Our Secure Cloud Service Scheme with Cloud Inputs 63

2.4.1 Security Proofs for Secure Cloud Service Scheme with Cloud Inputs 65

3 Optimizing Obfuscation: Avoiding Barrington’s Theorem 101

3.1 Preliminaries . 101

3.1.1 “Virtual Black-Box” Obfuscation in an Idealized Model 101

3.1.2 Boolean Formulae . 102

3.1.3 Branching Programs . 102

vi

3.1.4 Relaxed Matrix Branching Programs . 103

3.2 From Branching Programs to Relaxed Matrix Branching Programs 105

3.2.1 From Formula to Relaxed Matrix Branching Program 109

3.3 Randomization of Random Matrix Branching Programs 112

3.4 Ideal Graded Encoding Model . 119

3.5 Straddling Set System . 121

3.6 Obfuscation in the Idealized Graded Encoding Model 122

3.7 Proof of Virtual Black Box Obfuscation in the Idealised Graded Encoding Model . 126

3.7.1 Decomposition to Single-Input Elements 128

3.7.2 Simulation of Zero-testing . 134

References . 140

vii

LIST OF FIGURES

2.1 Encoded program Compute given to the cloud . 35

2.2 Authentication phase between the provider and the user. 36

2.3 Encoding of input by an authenticated user and evaluation by the cloud 36

2.22 Encoded program Compute given to the cloud (scheme with cloud input) 64

2.23 Authentication phase between the provider and the user (scheme with cloud input) 65

2.24 Encoding of input by an authenticated user and evaluation by the cloud (scheme

with cloud input) . 66

3.1 The branching program for an AND gate. 110

3.2 The branching program for a NOT gate. 110

viii

LIST OF TABLES

1.1 Comparing the efficiency of obfuscation schemes for keyed formulas over differ-

ent bases. We use Õ to suppress the multiplicative polynomial dependence on the

security parameter and other poly-logarithmic terms andOε to suppress multiplica-

tive constants which depend on ε. Here s is the formula size, ε > 0 is an arbitrarily

small constant, and φ is a constant such that for κ-level multilinear encodings, the

size of each encoding is Õ(κφ). The current best known constructions have φ = 2.

Evaluation time is given in the form a·b, where a denotes the number of multilinear

operations (up to lower order additive terms) and b denotes the time for carrying

out one multilinear operation. 19

1.2 Comparing the efficiency of obfuscation schemes for keyed non-deterministic branch-

ing programs and special layered branching programs, as defined in Section 3.1.3.

For a general branching program, s denotes the size of the branching program. For

a special layered branching program, n is the length and w is the width. Other

notation is as in Table 1.1. 20

ix

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support and encouragement of many

people, and here is an attempt to express my gratitude.

I am extremely grateful to my advisor Amit Sahai. He is the one who introduced me to the field

of cryptography and helped me develop expertise in it. I would like to thank him for spending a

countless number of hours discussing intriguing questions in cryptography as well as the philoso-

phies of life. Discussions with him have always been enlightening, have helped me get clarity in

my thoughts, and shaped my personality as a researcher.

I would like to thank Rafail Ostrovsky, Suhas Diggavi and Alexander Sherstov for being on my

dissertation committee and providing encouragement.

I thank Manoj Prabhakaran and Vipul Goyal for hosting me for summer internships and help-

ing me diversify my research interests. Being at UCLA has provided me with the opportunity to

have many intellectual discussions with Yuval Ishai that have also resulted in many fruitful collab-

orations. In all of these discussions, I have been stunned by the breadth of his knowledge.

I would like to thank Hemanta K. Maji for being an excellent collaborator, the go-to person

for professional advice, as well as a constant source of entertainment. I thank my collaborators

Dan Boneh, Ilya Mironov, Sanjam Garg, Abhishek Jain, Omkant Pandey, Prabhanjan Ananth,

Shashank Agrawal and Saikrishna Badrinarayan. I am grateful to my official mentor Sanjam Garg

and seniors in the lab Ran Gelles, Abishek Kumarasubhramanian, Abhishek Jain, Akshay Wadia

and Vanishree Rao for patiently answering all my questions about cryptography and UCLA in

general.

Finally, I would like to thank Rahul Sharma who has been a constant source of constructive

criticism, my friends Anuraag Gupta, Esha Aggarwal, Bharath Hariharan and Saurabh Gupta, and

my parents who helped me retain some sanity during the roller coaster journey of grad school.

x

VITA

2006–2011 B.Tech. and M.Tech. in Computer Science and Engineering, Indian

Institute of Technology, Delhi.

2011 Silver Medal for Department Rank 1 in Computer Science Dual

Degree, Indian Institute of Technology, Delhi.

2011–2012 Computer Science Department Fellowship, UCLA.

2011–2016 Ph.D. Student, Computer Science Department, UCLA.

2015–2016 Dissertation Year Fellowship, UCLA.

PUBLICATIONS

Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj

Prabhakaran, “Optimal Computational Split-state Non-malleable Codes”, In TCC 2016-A

Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai, “Multi-input Functional

Encryption for Unbounded Arity Functions”, In ASIACRYPT 2015

Vipul Goyal, Divya Gupta, and Amit Sahai, “Concurrent Secure Computation via Non-Black Box

Simulation”, In CRYPTO 2015

Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran,

“Explicit Non-malleable Codes Against Bit-Wise Tampering and Permutations”, In CRYPTO 2015

xi

Divya Gupta, Yuval Ishai, Hemanta K. Maji, and Amit Sahai, “Secure Computation from Leaky

Correlated Randomness”, In CRYPTO 2015

Dan Boneh, Divya Gupta, Ilya Mironov, and Amit Sahai, “Hosting Services on an Untrusted

Cloud”, In EUROCRYPT 2015

Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran, “A

Rate-Optimizing Compiler for Non-malleable Codes Against Bit-Wise Tampering and Permuta-

tions”, In TCC 2015

Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai, “Optimizing Obfuscation:

Avoiding Barrington’s Theorem”, In CCS 2014

Sanjam Garg and Divya Gupta, “Efficient Round Optimal Blind Signatures”, In EUROCRYPT

2014

Divya Gupta and Amit Sahai, “On Constant-Round Concurrent Zero-Knowledge from a Knowl-

edge Assumption”, In INDOCRYPT 2014

Vipul Goyal, Divya Gupta, and Abhishek Jain, “What Information Is Leaked under Concurrent

Composition?”, In CRYPTO 2013

Khaled M. Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, and Arindam Pal,

“Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees”, In FSTTCS

2012

xii

CHAPTER 1

Introduction

The goal of general-purpose program obfuscation is to make an arbitrary computer program “un-

intelligible” while preserving its functionality. Obfuscation allows us to achieve a powerful capa-

bility: software that can keep a secret. That is, software that makes use of secrets to perform its

computations, but with the additional property that these secrets remain secure even if the code of

the software is captured in its entirety by an adversary. At least as far back as the work of Diffie

and Hellman in 1976 [DH76]1, researchers have contemplated applications of general-purpose

obfuscation. Indeed, if secure general-purpose obfuscation could be cryptographically achieved

efficiently, the implications to computer security would be profound [BGI01].

To understand why obfuscation can be so useful, it is instructive to contemplate what kinds of

secrets we might want to hide within our software code. An important instance of such secrets is

hiding the existence and nature of rare input/output behavior that our software may exhibit. This

leads to several interesting motivating scenarios:

◦ Our software may be a control algorithm that is programmed to enter a failsafe mode on

certain rare and hard-to-predict inputs. We would not want an adversary that gains access to

the code of the control software to be able to learn these rare inputs. By securely obfuscating

the control software, the existence of the failsafe mode itself would be hidden from the

adversary.

◦ We may modify software to introduce such rare input/output behavior to suit our goals. Con-

sider the problem of software watermarking, where we want to add an undetectable imprint

to our software that we can later identify. We may do so by modifying the behavior of

1Diffie and Hellman suggested the use of general-purpose obfuscation to convert private-key cryptosystems to
public-key cryptosystems.

1

our software, so that on several rare and hard-to-predict inputs, it outputs a watermark code

instead of performing its usual computation. An obfuscated version of this modified soft-

ware would hide the existence of these imprints, and thereby also prevent an adversary from

removing them unless the adversary rewrites from scratch almost all of the software.

◦ So far our examples have dealt with hiding known rare input/output behavior. But obfusca-

tion could also be used to hide the existence of unknown and unintentional rare input/output

behavior: Consider software bugs that are particularly resistant to good-faith software test-

ing, because the input/output behavior that is affected by these bugs only arises from inputs

that are rare and hard to predict given only the functionality of the software. Then, obfus-

cation can be used to hide the existence of such software bugs (and the vulnerabilities they

introduce), even from an attacker that has the code of the software.

◦ Finally, turning the previous example around, obfuscation can also be used to hide which of

these software bugs are being fixed by a software patch, thereby preventing adversaries from

learning vulnerabilities from software patches and using this knowledge to attack unpatched

software.

As these motivating scenarios illustrate, secure obfuscation would greatly expand the scope of

security problems addressable through cryptographic means. However, efficient and secure ob-

fuscation would also have powerful applications to data security, specifically to protecting against

data breaches by low-level insiders. Low-level insiders can cause data breaches if they go rogue,

or if their computing systems are compromised through theft or malware attack. As a result, a

critical problem arises when such insiders hold decryption keys – indeed even low-level insiders

may need such keys to perform basic functions. For example, an employee tasked with generating

summaries of financial statistics may need decryption keys in order to decrypt sensitive financial

spreadsheets. If this decryption key is captured by an adversary, however, it can be used to steal

vast quantities of sensitive information, even though the decryption key was only meant to allow

the insider to generate low-value statistical summaries. Obfuscation, however, provides a powerful

solution to this problem: The decryption keys can be safely hidden within the statistical summary

generation software that is entrusted to the low-level insider. Then, even if the insider turns rogue,

2

the only power he can derive from his software is the ability to generate statistics2; he cannot abuse

his position to directly decrypt the underlying financial files.

The above examples provide only a fractional view of the applicability that efficient secure

obfuscation would have to computer security. However, until 2013, even heuristic constructions

for secure general-purpose obfuscation were not known.

This changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH13b],

which gave the first candidate cryptographic construction for a general-purpose obfuscator. Formal

exploration of the applications of general-purpose obfuscation began shortly thereafter [GGH13b,

SW14]. Since then, the floodgates have opened, and many new applications of general-purpose

obfuscation have been explored [BCC14, BP15, MR13, BCP14, ABG13, MO14, BH15, GJK15,

BST14, PPS15, GGH14b, GGG14, BBC14, BFM14, KNY14, GHR14, HSW14, BR14a, BR14b,

GGH14a].

In this dissertation, we study the problem of protecting software against new and power-

ful adversary structures as well as optimize the efficiency of secure general-purpose obfuscation

schemes.

In the first part of this dissertation, we initiate the study of hosting services on an untrusted

cloud. We consider a scenario where a service provider has created a software service S and de-

sires to outsource the execution of this service to an untrusted cloud. The software service contains

secrets that the provider would like to keep hidden from the cloud. This setting presents significant

challenges not present in previous works on outsourcing or secure computation. Because secrets in

the software itself must be protected against an adversary that has full control over the cloud that is

executing this software, our notion implies indistinguishability obfuscation. Furthermore, we seek

to protect knowledge of the software S to the maximum extent possible even if the cloud can col-

lude with several corrupted users. In this work, we provide the first formalizations of security for

this setting, yielding our definition of a secure cloud service scheme. We provide constructions of

secure cloud service schemes assuming indistinguishability obfuscation, one-way functions, and

non-interactive zero-knowledge proofs. At the heart of our construction are novel techniques to al-

2Of course, the statistical software itself must be carefully written to avoid vulnerabilities that allow a user to
extract specific sensitive information by making unexpected statistical queries.

3

low parties to simultaneously authenticate and securely communicate with an obfuscated program,

while hiding this authentication and communication from the entity in possession of the obfuscated

program.

In the second part of the dissertation, we seek to optimize the efficiency of secure general-

purpose obfuscation schemes. We focus on the problem of optimizing the obfuscation of Boolean

formulas and branching programs – this corresponds to optimizing the “core obfuscator” from the

work of [GGH13b], and all subsequent works constructing general-purpose obfuscators. This core

obfuscator builds upon approximate multilinear maps, where efficiency in proposed instantiations

is closely tied to the maximum number of “levels” of multilinearity required. The most efficient

previous construction of a core obfuscator, due to [BGK14], required the maximum number of lev-

els of multilinearity to be O(`s3.64), where s is the size of the Boolean formula to be obfuscated,

and ` is the number of input bits to the formula. In contrast, our construction only requires the

maximum number of levels of multilinearity to be roughly `s. This results in significant improve-

ments in both the total size of the obfuscation and the running time of evaluating an obfuscated

formula. Our efficiency improvement is obtained by generalizing the class of branching programs

that can be directly obfuscated. This generalization allows us to achieve a simple simulation of

formulas by branching programs while avoiding the use of Barrington’s theorem, on which all

previous constructions relied. Furthermore, the ability to directly obfuscate general branching pro-

grams (without bootstrapping) allows us to efficiently apply our construction to natural function

classes that are not known to have polynomial-size formulas.

1.1 Hosting Services on an Untrusted Cloud

Consider a service provider that has created some software service S that he wants to make acces-

sible to a collection of users. However, the service provider is computationally weak and wants to

outsource the computation of S to an untrusted cloud. Nevertheless, the software is greatly valu-

able and he does not want the cloud to learn what secrets are embedded in the software S. There

are many concrete examples of such a scenario; for example, the software could contain a secret

database, and the service could allow users to make queries to different slices of this database

4

depending on the user’s identity.

At first glance, such a scenario seems like a perfect application of obfuscation and can be

thought to be solved as follows: The provider could obfuscate the software O(S) and send this

directly to the cloud. Now, the cloud could receive an input (id, x) directly from a user with

identity id, and respond with the computed output O(S)(id, x) = S(id, x). Secure obfuscation

would ensure that the cloud would never learn the secrets built inside the software, except for what

is efficiently revealed by the input-output behavior of the software. But this approach does not

provide any privacy to the users. In such a setting, the cloud will be able to learn the inputs x and

the outputs S(id, x) of the multitude of users which use this service. This is clearly undesirable in

most applications. Worse still, the cloud will be able to query the software on arbitrary inputs and

identities of its choice. In our scheme, we want to guarantee input and output privacy for the users.

Moreover, we want that only a user who pays for and subscribes to the service is able to access the

functionality that the service provides for that particular user.

Ideally, we would like that, first, a user with identity id performs some simple one-time set-

up interaction with the service provider to obtain a key Kid. This key Kid would also serve as

authentication information for the user. Later, in order to run the software on input x of his choice,

he would encrypt x to EncKid
(x) and send it to the cloud. The cloud would run the software

to obtain an encryption of S(id, x), which is sent back to the user while still in encrypted form.

Finally, the user can decrypt in order to obtain its output.

Let us step back and specify a bit more precisely the security properties we desire from such a

secure cloud service.

1. Security against malicious cloud. In our setting, if the cloud is the only malicious party,

then we require that it cannot learn anything about the nature of the computation except a

bound on the running time. In particular, it learns nothing about the code of the software or

the input/output of users.

2. Security against malicious clients. If a collection of users is malicious, they cannot learn

anything beyond what is learnable via specific input/output that the malicious users see.

Furthermore, if a client is not authenticated by the service provider, it cannot learn anything

5

at all.

3. Security against a malicious cloud and clients. Moreover, even when a malicious cloud

colludes with a collection of malicious users, the adversary cannot learn anything beyond the

functionality provided to the malicious users. That is, the adversary does not learn anything

about the input/output of the honest users or the slice of service provided to them. More

precisely, consider two software services S and S ′ which are functionally equivalent when

restricted to corrupt users. Then the adversary cannot distinguish between the instantiations

of the scheme with S and S ′.

4. Efficiency. Since the service provider and the users are computationally weak parties, we

want to make their online computation highly efficient. The interaction in the set-up phase

between the provider and a user should be independent of the complexity of the service

being provided. For the provider, only its one-time encoding of the software service should

depend polynomially on the complexity of the software. The work of the client in encrypting

his inputs should only depend polynomially on the size of his inputs and a security parameter.

And finally, the running time of the encoded software on the cloud should be bounded by a

fixed polynomial of the running time of the software.

Note that since the scheme is for the benefit of the service provider, who could choose to provide

whatever service it desires, we assume that the service provider itself is uncompromised.

We call a scheme that satisfies the above listed properties, a Secure Cloud Service Scheme

(SCSS). In this work, we provide the first construction of a secure cloud service scheme, based on

indistinguishability obfuscation, one-way functions, and non-interactive zero-knowledge proofs.

At the heart of our construction are novel techniques to allow parties to simultaneously authenti-

cate and securely communicate with an obfuscated program, while hiding this authentication and

communication from the entity in possession of the obfuscated program.

Relationships to other models. At first glance, the setting we consider may seem similar to

notions considered in earlier works. However, as we describe below, there are substantial gaps

between these notions and our setting. As an initial observation, we note that a secure cloud

6

service scheme is fundamentally about protecting secrets within software run by a single entity

(the cloud), and therefore is intimately tied to obfuscation. Indeed, our definition of a secure cloud

service scheme immediately implies indistinguishability obfuscation. Thus, our notion is separated

from notions that do not imply obfuscation. We now elaborate further, comparing our setting to

two prominent previously considered notions.

◦ Delegation of Computation. A widely studied topic in cryptography is secure delegation

or outsourcing of computation, where a single user wishes to delegate a computation to

the cloud. The most significant difference between delegation and our scheme is that in

delegation the role of the provider and the user is combined into a single entity. In contrast, in

our setting the entity that decides the function S is the provider, and this entity is completely

separate from the entities (users) that receive outputs. Indeed, a user should learn nothing

about the function being computed by the cloud beyond what the specific input/output pairs

that the user sees. Moreover, the vast majority of delegation notions in literature do not

require any kind of obfuscation.

Furthermore, we consider a setting where multiple unique users have access to a different

slice of service on the cloud (based on their identities), whereas in standard formulations of

delegation, only one computation is outsourced from client to the cloud. There is a recent

work on delegation that does consider multiple users: the work of [GHR14] on outsourcing

RAM computations goes beyond the standard setting of delegation to consider a multi-user

setting. But as pointed out by the authors themselves, in this setting, the cloud can learn

arbitrary information about the description of the software. Their notion of privacy only

guarantees that the cloud learns nothing about the inputs and outputs of the users, but not

about the nature of the computation – which is the focus of our work. Moreover, in their

setting, no security is promised in the case of a collusion between a malicious cloud and a

malicious client. The primary technical contributions of our work revolve around guarantee-

ing security in this challenging setting.

◦ Multi-Input Functional Encryption (MIFE). Recently, the work of [GGG14] introduced

the extremely general notion of multi-input functional encryption (MIFE), whose setting

7

can capture a vast range of scenarios. Nevertheless, MIFE does not directly apply to our

scenario: In our setting, there are an unbounded number of possible clients, each of which

gets a unique encryption key that is used to prepare its input for the cloud. MIFE has been

defined with respect to a fixed number of possible encryption keys [GGG14], but even if it

were extended to an unbounded number of encryption keys, each function evaluation key in

an MIFE would necessarily be bound to a fixed number of encryption keys. This would lead

to a combinatorial explosion of exponentially many function evaluation keys that would be

needed for the cloud.

Alternatively, one could try to build a secure cloud service scheme by “jury-rigging” MIFE

to nevertheless apply to our scenario. Fundamentally, because MIFE does imply indistin-

guishability obfuscation [GGG14], this must be possible. But, as far we know, the only

way to use MIFE to build a secure cloud service scheme is by essentially carrying out our

entire construction, but replacing our use of indistinguishability obfuscation with calls to

MIFE. At a very high level, the key challenges in applying MIFE to our setting arise from

the IND-definition of MIFE security [GGG14], which largely mirrors the definition of in-

distinguishability obfuscation security. We elaborate on these challenges below, when we

discuss our techniques in greater detail.

Our Results. In this work, we formalize the notion of secure cloud service scheme (Section 2.2)

and give the first scheme which achieves this notion. In our formal notion, we consider potential

collusions involving the cloud and up to k corrupt users, where k is a bound fixed in advance. (Note

again that even with a single corrupt user, our notion implies indistinguishability obfuscation.) We

then give a protocol which implements a secure cloud service scheme. More formally,

Theorem 1. Assuming the existence of indistinguishability obfuscation, statistically simulation-

sound non-interactive zero-knowledge proof systems and one-way functions, for any bound k on

the number of corrupt users that is polynomially related to the security parameter, there exists a

secure cloud service scheme.

Note that we only require a bound on the number of corrupt clients, and not on the total num-

ber of users in the system. Our scheme provides an exponential space of possible identities for
8

users. We note that the need to bound the number of corrupt users when using indistinguisha-

bility obfuscation is related to several other such bounds that are needed in other applications of

indistinguishability obfuscation, such as the number of adversarial ciphertexts in functional en-

cryption [GGH13b] and multi-input functional encryption [GGG14] schemes. We consider the

removal of such a bound using indistinguishability obfuscation to be a major open problem posed

by our work.

Furthermore, we also consider the case when the software service takes two inputs: one from

the user and other from the cloud. We call this setting a secure cloud service scheme with cloud

inputs. This setting presents an interesting technical challenge because it opens up exponential

number of possible functions that could have been provided to a client. We resolve this issue using

a technically interesting sequence of 2` hybrids, where ` is the length of the cloud’s input (see

Our Techniques below for further details). To prove security, we need to assume sub-exponential

hardness of indistinguishability obfuscation. More formally, we have the following result.

Theorem 2. Assuming the existence of sub-exponentially hard indistinguishability obfuscation,

statistically simulation-sound non-interactive zero-knowledge proof systems and sub-exponentially

hard one-way functions, for any bound k on the number of corrupt users that is polynomially

related to the security parameter, there exists a secure cloud service scheme with cloud inputs.

Our Techniques. Since a secure cloud service scheme implies indistinguishability obfuscation

(iO), let us begin by considering how we may apply obfuscation to solve our problem, and use this

to identify the technical obstacles that we will face.

The central goal of a secure cloud service scheme is to hide the nature of the service software S

from the cloud. Thus, we would certainly use iO to obfuscate the software S before providing it to

the cloud. However, as we have already mentioned, this is not enough, as we also want to provide

privacy to honest users. Our scheme must also give a user the ability to encrypt its input x in such a

way that the cloud cannot decrypt it, but the obfuscated software can. After choosing a public key

PK and decryption key SK for a public-key encryption scheme, we could provide PK to the user,

and build SK into the obfuscated software to decrypt inputs. Finally, each user should obtain its

output in encrypted form, so that the cloud cannot decrypt it. In particular, each user can choose a

9

secret key Kid, and then to issue a query, it can create the ciphertext c = EncPK(x,Kid). Thus, we

need to build a program Ŝ that does the following: It takes as input the user id id and a ciphertext

c. It then decrypts c using SK to yield (x,Kid). It then computes the output y = S(id, x). Finally,

it outputs the ciphertext d = Enc(Kid, y). The user can decrypt this to obtain y. The cloud should

obtain an obfuscated version of this software Ŝ.

At first glance, it may appear that this scheme would already be secure, at least if given an

“ideal obfuscation” akin to Virtual Black-Box obfuscation [BGI01]. However, this is not true. In

particular, there is a malleability attack that arises: Consider the scenario where the cloud can mal-

leate the ciphertext sent by the user, which contains his input x and key Kid, to an encryption of x

and K∗, where K∗ is maliciously chosen by the cloud. If this were possible, the cloud could use

its knowledge of K∗ to decrypt the output d = Enc(Kid, y) produced by the obfuscated version of

Ŝ. But this is not all. Another problem we have not yet handled is authentication: a malicious user

could pretend to have a different identity id than the one that it is actually given, thereby obtaining

outputs from S that it is not allowed to access. We must address both the malleability concern and

the authentication concern, but also do this in a way that works with indistinguishability obfusca-

tion, not just an ideal obfuscation.

Indeed, once we constrain ourselves to only using indistinguishability obfuscation, additional

concerns arise. Here, we will describe the two most prominent issues, and describe how we deal

with them.

Recall that our security notion requires that if an adversary corrupts the cloud and a user id∗,

then the view of the adversary is indistinguishable for any two softwares S and S ′ such that

S(id∗, x) = S ′(id∗, x) for all possible inputs x. However, S and S ′ could differ completely on

inputs for several other identities id. Ideally, in our proof, we would like to use the security of iO

while making the change from S to S ′ in the obfuscated program. In order to use the security of

iO, the two programs being obfuscated must be equivalent for all inputs, and not just the inputs of

the malicious client with identity id∗. However, we are given no such guarantee for S and S ′. So

in our proof of security, we have to construct a hybrid (indistinguishable from real execution on

S) in which S can only be invoked for the malicious client identity id∗. Since we have functional

equivalence for this client, we will then be able to make the switch from Ŝ to Ŝ ′ by security of

10

iO. We stress that the requirement to make this switch is that there does not exist any input to the

obfuscated program which give different outputs for Ŝ and Ŝ ′. It does not suffice to ensure that

a differing input cannot be computed efficiently. To achieve this, in this hybrid, we must ensure

that there does not exist any valid authentication for all the honest users. Thus, since no honest

user can actually get a useful output from Ŝ or Ŝ ′, they will be functionally equivalent. In contrast,

all the malicious users should still be able to get authenticated and obtain outputs from the cloud;

otherwise the adversary would notice that something is wrong. We achieve this using a carefully

designed authentication scheme that we describe next.

At a high level, we require the following: Let k be the bound on the number of malicious

clients. The authentication scheme should be such that in the “fake mode” it is possible to authen-

ticate the k corrupt user identities and there does not exist (even information-theoretically) any

valid authentication for any other identity. We achieve this notion by leveraging k-cover-free sets

of [EFF85, KRS99] where there are a super-polynomial number of sets over a polynomial sized

universe such that the union of any k sets does not cover any other set. We use these sets along

with length doubling PRGs to build our authentication scheme.

Another problem that arises with the use of indistinguishability obfuscation concerns how out-

puts are encrypted within Ŝ. The output of the obfuscated program is a ciphertext which encrypts

the actual output of the software. We are guaranteed that the outputs of S and S ′ are identical for

the corrupt clients, but we still need to ensure that the corresponding encryptions are also identical

(in order to apply the security of iO.) We ensure this by using an encryption scheme which satisfies

the following: If two obfuscated programs using S and S ′, respectively, are given a ciphertext as in-

put, then if S and S ′ produce the same output, then the obfuscated programs will produce identical

encryptions as output. In particular, our scheme works as follows: the user sends a pseudo-random

function (PRF) key Kid and the program outputs y = PRF(Kid, r) ⊕ S(x, id), where the r value

is computed using another PRF applied to the ciphertext c itself. Thus we ensure that for identi-

cal ciphertexts as inputs, both programs produce the same r, and hence the same y. This method

allows us to switch S to S ′, but the new challenge then becomes how to argue the security of this

encryption scheme. To accomplish this, we use the punctured programming paradigm of [SW14]

to build a careful sequence of hybrids using punctured PRF keys to argue security.

11

We need several other technical ideas to make the security proof work. Please see our protocol

in Section 2.3 and proof in Section 2.3.1 for details.

When considering the case where the cloud can also provide an input to the computation, the

analysis becomes significantly more complex because of a new attack: The cloud can take an

input from an honest party, and then try to vary the cloud’s own input, and observe the impact

this has on the output of the computation. Recall that in our proof of security, in one hybrid,

we will need to “cut off” honest parties from the computation – but we need to do this in a way

that is indistinguishable from the cloud’s point of view. But an honest party that has been cut

off will no longer have an output that can depend on the cloud’s input. If the cloud can detect

this, the proof of security fails. In order to deal with this, we must change the way that our

encryption of the output works, in order to include the cloud input in the computation of the r

value. But once we do this, the punctured programming methods of [SW14] become problematic.

To deal with this issue, we create a sequence of exponentially many hybrids, where we puncture out

exactly one possible cloud input at a time. This lets us avoid a situation where the direct punctured

programming approach would have required an exponential amount of puncturing, which would

cause the programs being obfuscated to blow up to an exponential size. The details of this approach

are presented in Section 2.4.1.

1.2 Optimizing Obfuscation

This great interest in the utility of obfuscation leads to a natural and pressing goal: to improve

the efficiency of general-purpose obfuscation. Up to this point, the simplest and most efficient

proposed general-purpose obfuscator was given by [BGK14], building upon [GGH13b, BR14b].

However, the general-purpose obfuscator presented in [BGK14] (see below for more details) re-

mains extremely inefficient.

Our work aims to initiate a systematic research program into improving the efficiency of

general-purpose obfuscation. Tackling this important problem will no doubt be the subject of

many works to come. We begin by recalling the two-stage approach to general-purpose obfus-

cation outlined in [GGH13b] and present in all subsequent work on constructing general-purpose

12

obfuscators:

1. At the heart of their construction is the “core obfuscator” for Boolean formulas (equivalently,

NC1 circuits), building upon a simplified subset of the Approximate Multilinear Maps frame-

work of Garg, Gentry, and Halevi [GGH13a] that they call Multilinear Jigsaw Puzzles. (We

will defer discussion of security to later.)

2. Next, a way to bootstrap from the core obfuscator for Boolean formulas to general circuits

is used. The works of [GGH13b, BR14b, BGK14] all adopt a method for bootstrapping

using Fully Homomorphic Encryption. This bootstrapping method works provably with the

security definition of indistinguishability obfuscation, and can rely on well-studied crypto-

graphic assumptions such as the LWE assumption. Alternatively, the earlier work of Goyal

et al. [GIS10] constructed a universal stateless hardware token for obfuscation that can be

implemented by polynomial-size boolean formulas using a pseudorandom function in NC1.

Applebaum [App14] gives a simpler alternative construction that has the disadvantage of

requiring the size of the Boolean formulas to be polynomial in the input size and the security

parameter (rather than only in the security parameter in [GIS10]). Using either of these al-

ternative approaches [GIS10, App14], however, requires an ad-hoc (but arguably plausible)

assumption to bootstrap from obfuscation for Boolean formulas to obfuscation for general

circuits.

Our work focuses on improving the efficiency of the first of these steps: namely, the core obfuscator

for Boolean formulas. We give one set of results for the setting of boolean formulas over the

{AND, NOT, OR}-basis, and another set of results for general basis.

Previous constructions of a core obfuscator [GGH13b, BR14b, BGK14] first apply Barrington’s

theorem [Bar86] to convert the Boolean formula into an equivalent “matrix branching program,”

which is then obfuscated. Roughly speaking, a matrix branching program computes an iterated

product of n full-rank matrices, where each matrix in the product is determined by one of the input

bits, and the result of the product should be either the identity matrix (corresponding to an output

of 1) or some other fixed full-rank matrix (corresponding to an output of 0). The length of the

program is n and its width is the matrix dimension.
13

For any circuit or formula of depth d, Barrington’s theorem gives a constant-width matrix

branching program of length 4d. Since the length is exponential in the formula depth, it is crucial

to balance the depth of the formula in order to avoid the exponential blowup. Hence, the first

step would be to balance the formula to get a depth which is logarithmic in the size and then

apply Barrington’s theorem. For general formulas of size s, the best known depth obtained by

balancing them is 1.73 log s+d0 by Khrapchenko [Khr78, Juk12] where d0 is a constant. However,

the constant d0 is quite large, which can have an adverse effect on concrete efficiency.3 Instead,

one can balance the formula using a method by Preparata and Muller [PM76]. The depth of the

balanced formula obtained by this method is 1.82 log s. There have been other works which try

to optimize the size of balanced formulas [BB94], but the depth of the formula obtained by these

works is worse.

The matrix branching program obtained by applying Barrington’s theorem to a formula of

depth 1.82 log s has length s3.64. This is a major source of inefficiency. In particular, the bound of

s3.64 on the length of the branching program not only affects the number of elements given out as

the final obfuscation, but also the number of levels of multilinearity required by the scheme. Since

the size of each multilinear encoding grows with the number of levels of multilinearity required

in known realizations of approximate multilinear maps [GGH13a, CLT13], this greatly affects the

size of the final obfuscated program and also the evaluation time. Hence, in order to optimize the

size of obfuscation it is critical to find an alternative approach.

Our Contributions. In our work, we posit an alternative strategy for obfuscation that avoids

Barrington’s theorem, as well as the need to balance Boolean formulas at all. In fact, this strat-

egy can be efficiently applied to general (deterministic or even non-deterministic) branching pro-

grams, which are not known to be simulated by polynomial-size formulas. Our strategy employs

variants of randomization techniques that were used in the context of secure multiparty computa-

tion [FKN94, CFI03], adapting them to the setting of obfuscation.

A crucial first step is to formulate a notion of a “relaxed matrix branching program” (RMBP)

which relaxes some of the requirements of matrix branching programs needed in [GGH13b, BR14b,

3Note that once we apply Barrington’s theorem, d0 goes into the exponent and hence the size of the resulting
obfuscation scheme will incur a factor of 4d0 .

14

BGK14]. The relaxation replaces permutation matrices by general full-rank matrices over a finite

field and, more importantly, determines the output by testing whether some fixed entry in the ma-

trix product is nonzero. (See Section 3.1.4 for a formal definition.) We show how to adapt the

construction and security proofs of [BGK14] to work with RMBPs. The efficiency of this obfus-

cation will be discussed in more detail below. Roughly speaking, given the efficiency of current

candidate multilinear encodings, the complexity of obfuscating RMBPs grows quadratically with

the width and cubicly with the length. For now, we will measure efficiency in terms of the length

and width of the RMBP.

Armed with the ability to obfuscate RMBPs, we look for simple and efficient ways to con-

vert Boolean formulas and traditional types of branching programs into RMBPs without invoking

Barrington’s theorem. For this, we can use a previous transformation implicit in [FKN94] to-

wards converting any ordinary graph-based non-deterministic branching program4 of size s into an

RMBP of length s and width 2(s+ 1). We also provide more efficient variants of this transforma-

tion that apply to classes of layered branching programs that satisfy certain technical conditions

and arise in natural applications.

The above is already enough for efficiently obfuscating functions that are represented by small

branching programs. However, in many cases functions are more naturally represented by Boolean

formulas. In order to efficiently obfuscate formulas, we turn to the (abundant) literature on simu-

lating formulas by branching programs. In the case of formulas consisting of only AND, OR, and

NOT gates, we can use a simple transformation of any such formula of size s into a branching

program of the same size (cf. Theorem 6 in [Mas76] and Section 3.2.1.1).

The above simple transformation is limited in that it does not directly apply to formulas with

XOR gates, and even without such gates its efficiency leaves much to be desired. Concretely, a

formula of size s is transformed into an RMBP whose length and width are roughly s and 2s,

respectively, leading to a total of O(s3) matrix elements. To get around both limitations we rely on

the work of Giel [Gie01], which builds on previous results of [BB94, Cle90] to efficiently trans-

form a formula over the full basis to a layered branching program of constant width. The layered

4A non-deterministic branching program is a standard computational model that corresponds to non-deterministic
logarithmic space. Such branching programs are believed to be strictly stronger than deterministic branching programs
and formulas (see below) and strictly weaker than general circuits. See Section 3.1.3 for a formal definition.

15

branching program described in [Gie01] satisfies our conditions and can be used to obfuscate for-

mulas over the full set of binary gates. Concretely, a formula of size s can be transformed into an

RMBP of length O(s1+ε), for an arbitrarily small constant ε > 0, and constant width (depending

only on ε).

As in previous obfuscation techniques [GGH13b, BR14b, BGK14], a direct application of the

above methods reveals the order in which input variables are read. Thus, to obfuscate a class of

branching programs or formulas which may read the inputs in a varying order, we (as well as

previous works) need to apply an additional step to make the RMBP family input-oblivious. This

incurs an additional multiplicative overhead of ` to the length. However, this step and the resulting

overhead can be avoided when the RMBP family is already input-oblivious. This is guaranteed in

the useful case of obfuscating a class of keyed functions, namely a class of functions of the form

fz(x) = φ(z, x) where φ is a publicly known branching program or formula of size s. In other

words, the goal is to obfuscate the class φ(z, ·) to hide the key z. In this case, an RMBP for φ

can be easily turned into an input-oblivious family of RMBPs for the class fz with no additional

overhead.

Efficiency comparison. We now quantify the efficiency improvements we obtain over previous

work; we will do so both asymptotically and with explicit numbers through examples. The effi-

ciency of our obfuscation scheme can be compared to previous ones by considering (1) the level κ

of the multilinear encoding being employed, and (2) the number S of encoded field elements. The

parameter κ is of special importance, as the bit-length of each encoded element in current multilin-

ear encoding candidates [GGH13a, CLT13] grows quadratically with κ. Thus, a good estimate for

the total size (in bits) of an obfuscated program is Õ(κ2 · S), where Õ hides a multiplicative factor

which depends polynomially on the security parameter. Moreover, our constructions (as well as

previous ones) can be implemented so that the running time required for evaluating the obfuscated

program is quasi-linear in the obfuscation size. Thus, from here on we will not explicitly refer to

the asymptotic running time.

The concrete cost of implementing optimized multilinear encoding candidates is a subject of

much ongoing research [CLT13, LSS14, LS14], and as of the time of this writing, explicit running

16

time and size estimates for multilinear candidates optimized for obfuscation5 are not available

for the κ values that we need. However, as research in this direction is still in its infancy, it is

reasonable to expect major improvements in the near future. For this reason, we do not attempt to

provide real-life running time estimates, but rather compare our constructions with previous ones

by considering the parameters κ and S described above.

The obfuscation methods from [GGH13b, BR14b, BGK14], when applied to a (strict) matrix

branching program of length n and width w (one whose evaluation involves the product of n

matrices of size w × w) requires κ = n levels of multilinearity and S = w2n encoded elements.

The same holds for our method when applied to an RMBP of length n and width w. Our simple

and direct transformation for a (keyed) formula of size s over the standard basis yields an RMBP

of length n ≈ s and width w ≈ 2s. This should be compared with the previous Barrington-based

solution combined with the best known formula balancing results, leading to a matrix branching

program with parameters n = O(s3.64) and w = O(1). Thus, under the quadratic cost assumption

mentioned above, the obfuscation size is improved from Õ(κ2 · S) = Õ(s10.92) to Õ(s5). (For the

case of a completely balanced formula, the obfuscation size of the previous method is reduced to

Õ(s6).) By further applying the result from [Gie01], we can obfuscate formulas over a full basis

while reducing the total size to Õ(s3(1+ε)). See Table 1.1 for a detailed summary of old and new

results for obfuscating formulas.

We note that even if future implementations of multilinear maps achieve an encoding size that

only grows linearly with κ, our results would still yield significant improvements. (An encoding

size that grows sublinearly with κ seems out of reach with current lattice-based methods, due to

error growth.)

Finally, to the best of our knowledge, it is not known how to simulate general branching pro-

grams (even deterministic ones) by strict (i.e., non-relaxed) matrix branching programs with a

polynomial overhead. Thus, for the purpose of obfuscating branching programs without the use

of bootstrapping, our method provides a super-polynomial efficiency improvement over previous

core obfuscators. See Table 1.2 for a detailed summary of old and new results for obfuscating

5We note that obfuscation only requires Multilinear Jigsaw Puzzles [GGH13b], a strict subset of the full multilinear
map functionality, which allows for substantial efficiency improvements in implementations. However, as of this
writing, no experimental study of Multilinear Jigsaw Puzzle implementations has been completed.

17

branching programs.

Examples. We illustrate our concrete efficiency gains by two examples. The first example is

motivated by the goal of obfuscating a psudorandom function (PRF) and deals with a conjectural

PRF. As discussed above, PRFs can be used to bootstrap general obfuscation [GIS10, App14].

While practical PRF candidates such as AES are not known to have small formulas or branching

programs, it seems plausible that there are good PRF candidates with relatively small formulas or

layered non-deterministic branching programs. Suppose that a PRF family fz : {0, 1}100 → {0, 1}

can be implemented by a layered, invertible non-deterministic branching program of length 300

and width 30 (see Section 3.1.3 for definition). Obfuscating such a PRF family using our methods

would require roughly 270,000 encoded field elements, with multilinearity κ ≈ 300. In contrast,

obfuscating such a PRF with previous approaches would require one to decide reachability in a

layered graph of length 300 and width 30. The latter can be done using at least dlog2 300e = 9

levels of recursion, each implemented by a circuit of depth 6, leading to a circuit of at least depth

54. Thus, a direct use of the Barrington-based approach would require using κ > 2100 levels,

which is infeasible. We pose the design and analysis of such an “obfuscation-friendly” PRF as a

major open question that is motivated by our work.

As another example, consider the task of obfuscating a “fuzzy match” functionality, defined

by a Hamming ball of radius r around a secret point z ∈ {0, 1}n. That is, the obfuscated func-

tion fz(x) evaluates to 1 if the Hamming distance between x and z is at most r, and evaluates to

0 otherwise. Functions from this class can be implemented by (input-oblivious, special) layered

branching programs of width r + 1 and length n, leading to an obfuscation that contains roughly

4r2n encoded elements with multilinearity κ ≈ n. For the case n = 100 and r = 20, we get an

obfuscation that consists of roughly 160,000 encoded elements, with multilinearity κ ≈ 100. In

contrast, representing such functions by formulas or low-depth circuits, which is essentially equiv-

alent to computing the (n, r)-threshold function, leads to a best known formula size s > n4.4 and

circuit depth d > 4.9 log2 n [PZ93, Ser14], which in turn require κ > 1019 levels of multilinearity

using previous obfuscation methods. Thus in this concrete example, our improvement just to the

level of multilinearity κ is over 1017; the improvement in the overall running time and size would

be even greater.

18

Table 1.1: Comparing the efficiency of obfuscation schemes for keyed formulas over different

bases. We use Õ to suppress the multiplicative polynomial dependence on the security parameter

and other poly-logarithmic terms and Oε to suppress multiplicative constants which depend on ε.

Here s is the formula size, ε > 0 is an arbitrarily small constant, and φ is a constant such that

for κ-level multilinear encodings, the size of each encoding is Õ(κφ). The current best known

constructions have φ = 2. Evaluation time is given in the form a · b, where a denotes the number

of multilinear operations (up to lower order additive terms) and b denotes the time for carrying out

one multilinear operation.

Work
Levels of Size of Obfuscation/

Multilinearity Evaluation Time

[BGK14] + [PM76]

O(s3.64) O(s3.64) · Õ((s3.64)φ)(previous work)

{AND, OR, NOT}-basis

This work (direct)
s 4s3 · Õ(sφ)

{AND, OR, NOT}-basis

This work + [Gie01]
O(s1+ε) Oε(s

(1+ε)) · Õ((s(1+ε))φ)
any complete basis

Security. While improving security of obfuscation is not the focus of this work, our work on

improving efficiency of obfuscation would be meaningless if it sacrificed security. We give evi-

dence for the security of our constructions in the same way that the work of [BGK14] does: by

showing that our constructions unconditionally achieve a strong virtual black-box notion of secu-

rity [BGI01], against adversaries that are limited to algebraic attacks allowed in a generic multi-

linear model. In fact, our obfuscators are information-theoretically secure against query-bounded

adversaries in this generic model. We note that our work actually provides a new feasibility result

in the generic multilinear model, namely an information-theoretic (and unconditional) obfuscation

for non-deterministic branching programs which capture the complexity class NL. This should be

compared to previous results in the same model, which only efficiently apply to formulas (or the

complexity class NC1).

19

Table 1.2: Comparing the efficiency of obfuscation schemes for keyed non-deterministic branch-

ing programs and special layered branching programs, as defined in Section 3.1.3. For a general

branching program, s denotes the size of the branching program. For a special layered branching

program, n is the length and w is the width. Other notation is as in Table 1.1.

Work
Levels of Size of Obfuscation/

Multilinearity Evaluation Time

Previous work (general) sO(log s) sO(log s) · Õ(sO(log s))

This work (general) s 4s3 · Õ(sφ)

Previous work (special layered) nO(logw) nO(logw) · Õ(nO(logw))

This work (special layered) n 4nw2 · Õ(nφ)

As in the case of [BGK14], our security proof in the generic model can be interpreted in two

natural ways: (1) Our proof can be viewed as evidence of virtual black-box security for practi-

cal applications, in a similar spirit to proofs of security in the random oracle model [BR93]. It

is important to note that analogous to known attacks on contrived schemes in the random oracle

model (e.g. [CGH04]), there are known attacks to virtual black-box security for obfuscating quite

contrived functionalities [BGI01]. However, no attacks are known for virtual black-box obfusca-

tion for obfuscating practical functionalities. (2) Our proof can also be viewed as evidence that

our obfuscator achieves the notion of indistinguishability obfuscation [BGI01], which is a defi-

nition of security of obfuscation that does not suffer from any known attacks even for contrived

functionalities, but which nevertheless has proven to be quite useful.

20

CHAPTER 2

Hosting Services on an Untrusted Cloud

2.1 Prelims

Let λ be the security parameter. Below, we describe the primitives used in our scheme.

2.1.1 Public Key Encryption Scheme

A public key encryption scheme pke over a message spaceM =Mλ consists of three algorithms

PKGen,PKEnc,PKDec. The algorithm PKGen takes security parameter 1λ as input and outputs

the public key pk and secret key sk. The algorithm PKEnc takes public key pk and a message

µ ∈ M as input and outputs the ciphertext c that encrypts µ. The algorithm PKDec takes the

secret key sk and ciphertext c as input and outputs a message µ.

A public key encryption scheme pke is said to be correct if for all messages µ ∈ M following

holds:

Pr[(pk, sk)← PKGen(1λ); PKDec(sk,PKEnc(pk, µ;u)) 6= µ] 6 negl(λ)

A public key encryption scheme pke is said to be IND-CPA secure if for all PPT adversariesA

following holds:

Pr

b = b′

∣∣∣∣∣∣ (pk, sk)← PKGen(1λ); (µ0, µ1, st)← A(1λ, pk);

b
$←{0, 1}; c = PKEnc(pk, µb;u); b′ ← A(c, st)

 6
1

2
+ negl(λ)

2.1.2 Indistinguishability Obfuscation

The definition below is from [GGH13b]; there it is called a “family-indistinguishable obfuscator”,

however they show that this notion follows immediately from their standard definition of indistin-
21

guishability obfuscator using a non-uniform argument.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an in-

distinguishability obfuscator for acircuit class {Cλ} if the following conditions are satisfied:

◦ For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

◦ For any (not necessarily uniform) PPT adversaries Samp, D, there exists a negligible func-

tion α such that the following holds: if Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1λ)] >

1− α(λ), then we have:

∣∣∣Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

In this chapter, we will make use of such indistinguishability obfuscators for all polynomial-

size circuits:

Definition 2 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is called

an indistinguishability obfuscator for P/poly if the following holds: Let Cλ be the class of circuits

of size at most λ. Then iO is an indistinguishability obfuscator for the class {Cλ}.

Such indistinguishability obfuscators for all polynomial-size circuits were constructed under

novel algebraic hardness assumptions in [GGH13b].

2.1.3 Puncturable Pseudorandom Functions

Puncturable Pseudorandom Functions (PRFs) are a simple types of constrained PRFs [BW13,

KPT13, BGI14]. These are PRFs that can be defined on all bit strings of a certain length, except

for any polynomial-size set of inputs. Following definition has been taken verbatim from [SW14].

Definition 3. A puncturable family of PRFs F is given by a triple of turing machines PRFKeyF,

PunctureF,EvalF, and a pair of computable functions n(·) and m(·), satisfying the following con-

ditions.

22

◦ Functionality preserved under puncturing. For every PPT adversary A such that A(1λ)

outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr
[
EvalF(K, x) = EvalF(KS, x) : K ← PRFKeyF(1λ), KS = PunctureF(K,S)

]
= 1

◦ Pseudorandom at punctured points For every PPT adversary (A1,A2) such that A1(1λ)

outputs a set S ⊆ {0, 1}n(λ) and state st, consider an experiment where K ← PRFKeyF(1λ)

and KS = PunctureF(K,S). Then we have∣∣∣Pr
[
A2(σ,KS, S,EvalF(K,S)) = 1

]
− Pr

[
A2(st, KS, S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF(K,S) denotes the concatenation of EvalF(K, x1)), . . . ,EvalF(K, xk)) where

S = {x1, . . . , xk} is the enumeration of the elements of S in lexicographic order, negl(·)

is a negligible function, and U` denotes the uniform distribution over ` bits.

For ease of notation, we write PRF(K, x) to represent EvalF(K, x). We also represent the

punctured key PunctureF(K,S) by K(S).

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen

to yield puncturable PRFs, as recently observed by [BW13, KPT13, BGI14]. Thus we have:

Theorem 3. [GGM84, BW13, KPT13, BGI14] If one-way functions exist, then for all efficiently

computable functions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits

to m(λ) bits.

2.1.4 Statistical Simulation-Sound Non-Interactive Zero-Knowledge

This primitive was introduced in [GGH13b] and was constructed from standard NIZKs using a

commitment scheme.

A statistically simulation-sound NIZK proof system for a relation R consists of three algo-

rithms: NIZKSetup, NIZKProve, and NIZKVerify and satisfies the following properties.

23

Perfect completeness. An honest prover holding a valid witness can always convince an honest

verifier. Formally,

Pr

NIZKVerify(crs, x, π = 1)

∣∣∣∣∣∣ crs← NIZKSetup(1λ); (x,w) ∈ R;

π ← NIZKProve(crs, x, w)

 = 1

Statistical soundness. A proof system is sound if it is infeasible to convince an honest verifier

when the statement is false. Formally, for all (even unbounded) adversaries A, following holds.

Pr

NIZKVerify(crs, x, π) = 1

∣∣∣∣∣∣ crs← NIZKSetup(1λ);

(x, π)← A(crs);x /∈ L

 6 negl(λ)

Computational zero-knowledge [FLS99]. A proof system is zero-knowledge if a proof does

not reveal anything beyond the validity of the statement. In particular, it does not reveal anything

about the witness used by an honest prover. We say that a non-interactive proof system is zero-

knowledge if there exists a PPT simulator S = (S1, S2) such that S1 outputs a simulated CRS and

a trapdoor τ for proving x and S2 produces a simulated proof which is indistinguishable from an

honest proof. Formally, for all PPT adversariesA, for all x ∈ L such w is witness, following holds.

Pr

A(crs, x, π) = 1

∣∣∣∣∣∣ crs← NIZKSetup(1λ);

π ← NIZKProve(crs, x, w)


≈ Pr

A(crs, x, π) = 1

∣∣∣∣∣∣ (crs, τ)← S1(1λ, x);

π ← S2(crs, τ, x)


Statistical simulation-soundness. A proof system is said to be statistical simulation sound if

is infeasible to convince an honest verifier when the statement is false even when the adversary is

provided with a simulated proof (of a possibly false statement.) Formally, for all (even unbounded)

adversaries A, for all statements x, following holds.

Pr

NIZKVerify(crs, x′, π′) = 1

∣∣∣∣∣∣ (crs, τ)← S1(1λ, x);π ← S2(crs, τ, x);

(x′, π′)← A(crs, x, π);x′ /∈ L

 6 negl(λ)

24

2.1.5 Cover-Free Set Systems and Authentication Schemes.

The authentication system we will use in our scheme will crucially use the notion of a cover-free

set systems. Such systems were considered and build in [EFF85, KRS99]. Our definitions and

constructions are inspired by those in [KRS99].

Definition 4 (k-cover-free set system). Let U be the universe and n:=|U |. A family of sets T =

{T1, . . . , TN}, where each Ti ⊆ U is a k-cover-free set family if for all T1, . . . , Tk ∈ T and T ∈ T

such that T 6= Ti for all i ∈ [k] following holds: T \ ∪i∈[k] Ti 6= ∅.

[KRS99] constructed such a set system using Reed-Solomon codes. We define these next. Let

Fq be a finite field of size q. Let Fq,k denote the set of polynomials on Fq of degree at most k.

Definition 5 (Reed-Solomon code). Let x1, . . . , xn ∈ Fq be distinct and k > 0. The (n, k)q-Reed-

Solomon code is given by the subspace {〈f(x1), . . . , f(xn)〉 | f ∈ Fq,k}.

It is well-known that any two distinct polynomials of degree at most k can agree on at most k

points.

Construction of k-cover-free sets. Let Fq = {x1, . . . , xq} be a finite field of size q. We

will set q in terms of security parameter λ and k later. Let universe be U = Fq × Fq. De-

fine d:= q−1
k

. The k-cover-free set system is as follows: T = {Tf | f ∈ Fq,d}, where Tf =

{〈x1, f(x1)〉, . . . 〈xq, f(xq)〉} ⊂ U .

Note that N := |T | = qd+1. For example, by putting q = k log λ, we get N = λω(1). In our

scheme, we will set q = kλ to obtain N > 2λ.

Claim 1. The set system T is k-cover-free.

Proof. Note that each set Tf is a (q, d)q-Reed-Solomon code. As pointed out earlier, any two

distinct Reed-Solomon codes of degree d can agree on at most d points. Hence, |Ti ∩ Tj| 6 d for

all Ti, Tj ∈ T . Using this we get, for any T, T1, . . . , Tk ∈ T such that T 6= Ti for all i ∈ [k],∣∣T \ ∪i∈[k]Ti
∣∣ > q − kd = 1

25

Authentication Scheme based on k-cover-free sets. At a high level, there is an honest authen-

ticator H who posses a secret authentication key ask and announces the public verification key

avk. There are (possibly unbounded) polynomial number of users and each user has an identity.

We want to design a primitive such that H can authenticate a user depending on his identity. The

authentication tid can be publicly verified using the public verification key.

Let PRG : Y → Z be a pseudorandom generator. with Y = {0, 1}λ and Z = {0, 1}2λ. Let the

number of corrupted users be bounded by k. Let Fq = {x1, . . . , xq} be a finite field with q > kλ.

In the scheme below we will use the k-cover-free sets described above. Let d = q−1
k

. Let T be the

family of cover-free sets over the universe F2
q such that each set is indexed by an element in Fd+1

q .

The authentication schemes has three algorithms AuthGen, AuthProve and Authverify de-

scribed as follows.

Setup: The algorithm AuthGen(1λ) works follows: For all i, j ∈ [q], picks sij
$← Y . Set ask =

{sij}i,j∈[q] and avk = {PRG(sij)}i,j∈[q] = {zij}i,j∈[q]. Returns (avk, ask). The keys will also

contain the set-system T . We assume this implicitly, and omit writing it.

Authentication: The algorithm AuthProve(ask, id) works as follows for a user id. Interpret id as

a polynomial in Fq,d for d = q−1
k

, i.e., id ∈ Fd+1
q . Let Tid be the corresponding set in T . For

all i ∈ [q], if id(xi) = xj for some j ∈ [q], then set yi = sij . It returns tid = {yi} for all

i ∈ [q].

Verification: The algorithm Authverify(avk, id, tid) works as follows: Interpret id as a polynomial

in Fq,d for d = q−1
k

, i.e., id ∈ Fd+1
q . Let Tid be the corresponding set in T . Let tid =

{y1, . . . , yq}. For all i ∈ [q], if id(xi) = xj for some j ∈ [q], then check whether PRG(yi) =

zij . Accept tid if and only if all the checks pass.

The security properties this scheme satisfies are as follows:

Correctness. Honestly generated authentications always verify under the verification key. For-

mally, for any id, following holds.

Pr[Authverify(avk, id, tid) = 1 | (avk, ask)← AuthGen(1λ); tid ← AuthProve(ask, id)] = 1

26

k-Unforgeability. Given authentication of any k users {id1, . . . , idk}, for any PPT adversary A, it

is infeasible to compute tid∗ for any id∗ 6= idi for all i ∈ [k]. More formally, we have that for PPT

adversary A and any set of at most k corrupt ids I such that |I| 6 k, following holds.

Pr

 id∗ /∈ I ∧

Authverify(avk, id∗, tid∗) = 1

∣∣∣∣∣∣∣∣∣
(ask, avk)← AuthGen(1λ);

tidi ← AuthProve(ask, idi)∀idi ∈ I;

(id∗, tid∗)← A(avk, {idi, tidi}idi∈I)

 6 negl(λ)

Our scheme satisfies unforgeability as follows: Since T is a k-cover-free set system, there ex-

ists an element in Tid∗ which is not present in ∪idi∈ITidi . Hence, we can use an adversary A who

breaks unforgeability to break the pseudorandomness of PRG.

In our hybrids, we will also use a fake algorithm of setup. Consider a scenario where a PPT

adversary A controls k corrupt users with identities id1, . . . , idk, without loss of generality. The

fake setup algorithm we describe below will generate keys (ask, avk) such that it is only possible

to authenticate the corrupt users and there does not exist any authentication which verifies under

avk for honest users. Moreover, these two settings should be indistinguishable to the adversary.

Below, we describe this setup procedure and then state and prove the security property.

Fake Setup: The algorithm FakeAuthGen(1λ, id1, . . . , idk) works follows: For each i ∈ [k],

interpret idi as a polynomial in Fq,d for d = q−1
k

, i.e., idi ∈ Fd+1
q . Let Tidi be the corresponding set

in T . Define T ∗ = ∪iTidi . Recall that the universe is F2
q .

Start with ask = ∅. For all i, j ∈ [q], if (xi, xj) ∈ T ∗, pick sij
$←Y and add (i, j, sij) to ask. For

all i, j ∈ [q], if (xi, xj) ∈ T ∗, set zij = PRG(sij) else set zij
$← Z. Define avk = {PRG(sij)}i,j∈[q].

Return (avk, ask).

Let I = {id1, . . . , idk}. The security properties of algorithm FakeAuthGen are as follows:

Correct authentication for all id ∈ I. It is easy to see that for any corrupt user id ∈ I, AuthProve

will produce a tid which will verify under avk.

No authentication for all id /∈ I. For any id /∈ I, by property of k-cover-free sets, there exists a

(xi, xj) ∈ Tid such that (xi, xj) /∈ T ∗. Moreover, a random element z $← Z does not lie in
27

im(PRG) with probability 1− negl(λ). Hence, with probability 1− negl(λ), zij has no pre-

image under PRG. This ensures that no tid can verify under avk using algorithm Authverify.

Indistinguishability. This implies that any PPT adversary given avk and tid for all corrupt users

cannot distinguish between real setup and fake setup. More formally, we have that for any

PPT adversary A, and any set of at most k corrupt ids I = {idi}i∈[k], following holds.

Pr

A(avk, {tidi}i∈[k]) = 1

∣∣∣∣∣∣∣∣∣
(ask, avk)← AuthGen(1λ);

tidi ← AuthProve(ask, idi)

∀i ∈ [k]

 ≈

Pr

A(avk, {tidi}i∈[k]) = 1

∣∣∣∣∣∣∣∣∣
(ask, avk)← AuthGen(1λ, I);

tidi ← AuthProve(ask, idi)

∀i ∈ [k]


We can prove this via a sequence of q2 − |T ∗| hybrids. In the first hybrid, we use the al-

gorithm AuthGen to produce the keys. In each subsequent hybrid, we pick a new i, j such

that (xi, xj) /∈ T ∗ and change zij to a random element in Z instead of PRG(sij . Indis-

tinguishability of any two consecutive hybrids can be reduced to the pseudorandomness of

PRG.

2.2 Secure Cloud Service Scheme (SCSS) Model

In this section, we first describe the setting of the secure cloud service, followed by various algo-

rithms associated with the scheme and finally the desired security properties.

In this setting, we have three parties: The provider, who owns a program P , the cloud, where

the program is hosted, and arbitrary many collection of users. At a very high level, the provider

wants to hosts the program P on a cloud. Additionally, it wants to authenticate users who pay for

the service. This authentication should allow a legitimate user to access the program hosted on the

cloud and compute output on inputs of his choice. To be useful, we require the scheme to satisfy

the following efficiency properties:

28

Weak Client. The amount of work done by the client should depend only on the size of the input

and the security parameter and should be completely independent of the running time of the

program P . In other words, the client should perform significantly less work than executing

the program himself. This implies that both the initial set up phase with the provider and the

subsequent encoding of inputs to the cloud are both highly efficient.

Delegation. The one-time work done by the provider in hosting the program should be bounded

by a fixed polynomial in the program size. But, henceforth, we can assume that the work

load of the provider in authenticating users only depends on the security parameter.

Polynomial Slowdown. The running time of the cloud on encoded program is bounded by a fixed

polynomial in the running time of the actual program.

Next, we describe the different procedures associated with the scheme formally.

Definition 6 (Secure Cloud Service Scheme (SCSS)). A secure cloud service scheme consists of

following procedures SCSS = (SCSS.prog, SCSS.auth, SCSS.inp, SCSS.eval):

◦ (P̃ , σ) ← SCSS.prog(1λ, P, k): Takes as input security parameter λ, program P and a

bound k on the number of corrupt users and returns encoded program P̃ and a secret σ to

be useful in authentication.

◦ authid ← SCSS.auth(id, σ): Takes the identity of a client and the secret σ and produces an

authentication authid for the client.

◦ (x̃, α) ← SCSS.inp(1λ, authid, x): Takes as input the security parameter, authentication for

the identity and the input x to produce encoded input x̃. It also outputs α which is used by

the client later to decode the output obtained.

◦ ỹ ← SCSS.eval(P̃ , x̃): Takes as input encoded program and encoded input and produces

encoded output. This can be later decoded by the client using α produced in the previous

phase.

In our scheme, the provider will run the procedure SCSS.prog to obtain the encoded program

P̃ and the secret σ. It will then send P̃ to the cloud. Later, it will authenticate users using σ. A user
29

with identity id who has a authentication authid, will encode his input x using procedure SCSS.inp

to produce encoded input x̃ and secret α. He will send x̃ to the cloud. The cloud will evaluate the

encoded program P̃ on encoded input x̃ and return encoded output ỹ to the user. The user can now

decode the output using α.

Security properties. Our scheme is for the benefit of the provider and hence we assume that the

provider is uncompromised. The various security properties desired are as follows:

Definition 7 (Untrusted Cloud Security). Let SCSS be the secure cloud service scheme as de-

scribed above. This scheme satisfies untrusted cloud security if the following holds. We consider

an adversary who corrupts the cloud as well as k clients I ′ = {id′1, . . . , id′k}. Consider two pro-

grams P and P ′ such that P (id′i, x) = P ′(id′i, x) for all i ∈ [k] and all inputs x. Let m(λ) be

an efficiently computable polynomial. For any m honest users identities I = {id1, . . . , idm} such

that I ∩ I ′ = ∅ and for any sequence of pairs of inputs for honest users {(x1, x
′
1), . . . , (xm, x

′
m)},

consider the following two experiments:

The experiment Real(1λ) is as follows:

1. (P̃ , σ)← SCSS.prog(1λ, P, k).

2. For all i ∈ [m], authidi ← SCSS.auth(idi, σ).

3. For all i ∈ [m], (x̃i, αi)← SCSS.inp(1λ, idi, authidi , xi).

4. For all j ∈ [k], authid′j
← SCSS.auth(id′j, σ).

5. Output (P̃ , {authid′j
}j∈[k], {x̃i}i∈[m]).

The experiment Real′(1λ) is as follows:

1. (P̃ ′, σ)← SCSS.prog(1λ, P ′, k).

2. For all i ∈ [m], authidi ← SCSS.auth(idi, σ).

3. For all i ∈ [m], (x̃′i, αi)← SCSS.inp(1λ, idi, authidi , x
′
i).

4. For all j ∈ [k], authid′j
← SCSS.auth(id′j, σ).

30

5. Output (P̃ ′, {authid′j
}j∈[k], {x̃′i}i∈[m]).

Then we have,

Real(1λ) ≈c Real′(1λ)

Remark: In the above definition, the only difference between two experiments is that Real uses the

program P and honest users inputs {x1, . . . , xm} and Real′ uses program P ′ and honest users inputs

{x′1, . . . , x′m}. Note that no relationship is required to exist between the set of inputs {x1, . . . , xm}

and the set of inputs {x′1, . . . , x′m}.

Definition 8 (Untrusted Client Security). Let SCSS be the secure cloud service scheme as de-

scribed above. This scheme satisfies untrusted client security if the following holds. Let A be a

PPT adversary who corrupts at most k clients I ′ = {id′1, . . . , id′k}. Consider any program P . Let

n(λ) be an efficiently computable polynomial. Consider the following two experiments:

The experiment Real(1λ) is as follows:

1. (P̃ , σ)← SCSS.prog(1λ, P, k).

2. For all i ∈ [k], authid′i
← SCSS.auth(id′i, σ). Send {authid′i

}i∈[k] to A.

3. For each i ∈ [n],

◦ A (adaptively) sends an encoding x̃i using identity id.

◦ Run SCSS.eval(P̃ , x̃i) to compute ỹi. Send this to A.

4. Output ({authid′i
}i∈[k], {ỹi}i∈[n]).

We require that there The definition requires that there exist two procedures decode and response.

Based on these procedures, we define SimP (1λ) w.r.t. an oracle for the program P . Below, dummy

is any program of the same size as P .

1. (d̃ummy, σ)← SCSS.prog(1λ, dummy, k).

2. For all i ∈ [k], authid′i
← SCSS.auth(id′i, σ). Send {authid′i

}i∈[k] to A.

3. For each i ∈ [n],

31

◦ A (adaptively) sends an encoding x̃i using some identity id.

◦ If id /∈ I ′ set ỹ = ⊥. Otherwise, run decode(σ, x̃i) which either outputs (xi, τi) or ⊥.

If it outputs ⊥, set ỹ = ⊥. Else, the simulator sends (id, xi) to the oracle and obtains

yi = P (id, xi). Finally, it computes ỹi ← response(yi, τi, σ). Send ỹi to A.

4. Output ({authid′i
}i∈[k], {ỹi}i∈[n]).

Then we have,

Real(1λ) ≈c SimP (1λ)

Intuitively, the above security definition says that a collection of corrupt clients do not learn

anything beyond the program’s output w.r.t. to their identities on certain inputs of their choice.

Moreover, it says that if a client is not authenticated, it learns nothing.

We describe a scheme which is a secure cloud service scheme in Section 2.3 and prove its

security in Section 2.3.2.

2.2.1 Additional Properties.

Our scheme can also be modified to achieve some additional properties. As providing these prop-

erties is not the focus of this work, however, we omit the details of these extensions in this submis-

sion. But we use this section to mention them below.

Verifiability. In the above scenario, where the cloud outputs ỹ intended for the client, we may

also want to add verifiability, where the client is sure that the received output ỹ are indeed the

correct output of the computation. We stress that verifiability is not the focus of this work. The

scheme we present in Section 2.3 can be augmented with known techniques to get verifiability in

a straightforward manner. One such method is to use one-time MACs as suggested in [GHR14].

To do so, we can encode an augmented program PAuth which gets as input (k, x), evaluates y =

P (id, x) and outputs (y, φ) where φ is an authentication-tag φ = MACk(y) for some message-

authentication code MAC. Later, the client verifies the MAC. For details, see [GHR14].

32

Persistent Memory. Using techniques similar to those in the recent work of [GHR14], we can

also extend our scheme for the setting where the cloud also holds a user-specific persistent memory

that maintains state across different invocations of the service by the user. Then we can ensure that

for each invocation of the functionality by a user, there only exists one valid state for the persistent

memory that can be used for computing the user’s output and the next state for the persistent

memory. This result would require the assumptions present in Theorem 1, and would not require

any complexity leveraging.

2.2.2 Secure Cloud Service Scheme with Cloud Inputs.

Here we consider a more general scenario, where the program takes two inputs: one from the user

and another from the cloud.

This setting is technically more challenging since the cloud can use any input in each invocation

of the program. In particular, it allows users to access super-polynomially potentially different

functionalities on the cloud based on cloud’s input.

Notationally, this scheme is same as the previous scheme except that the procedure

SCSS.eval(P̃ , x̃, z) → ỹ takes additional input z from the cloud. The efficiency and security

requirements for this scheme are essentially the same as the simple scheme without the cloud

inputs.

There is absolutely no change required in Definition 7. This is because it talks about the view

of a malicious cloud. There is a minor change in untrusted client security (Definition 8). The oracle

on query (id, xi), returns P (id′i, xi, zi), where z1, . . . , zn are arbitrarily chosen choice for cloud’s

inputs. Note that the security guarantee for an honest cloud is captured in this definition.

We provide a scheme which is secure cloud service scheme with cloud inputs in Section 2.4

and prove its security in Section 2.4.1.

2.3 Our Secure Cloud Service Scheme

In this section, we describe our scheme for hosting on the cloud. We have three different parties:

The provider who owns the program, the cloud where the program is hosted, and the users. Recall

33

that we assume that the provider of the service is honest.

Let λ be the security parameter. Note that the number of users can be any (unbounded) poly-

nomial in λ. Let k be the bound on the number of corrupt users. In our security game, we allow

the cloud as well as any subset of users to be controlled by the adversary as long as the number of

such users is at most k.

In order to describe our construction, we first recall the primitives and their notation that we

use in our protocol. Let T be a k-cover-free set system using a finite field Fq and polynomials

of degee d = (q − 1)/k described in Section 2.1.5. Let (AuthGen,AuthProve,Authverify) be the

authentication scheme based on this k-cover-free set system. As mentioned before, we will use

q = kλ, so that the number of sets/users is at least 2λ. We will interpret the user’s identity id

as the coefficients of a polynomial over Fq of degree at most d. Let the length of the identity be

`id:=(d+ 1) lg q and length of the authentication be `auth. Note that in our scheme `auth = 2λq.

Let pke = (PKGen,PKEnc,PKDec) be public key encryption scheme which accepts messages

of length `e = (`id + `in + `auth + `kout + 1) and returns ciphertexts of length `c. Here `in is the

length of the input of the user and `kout is the length of the key for PRF2 described below.

Let (NIZKSetup,NIZKProve,NIZKVerify) be the statistical simulation-sound non-interactive

zero-knowledge proof system with simulator (S1, S2). In our scheme we use the two-key paradigm

along with statistically simulation-sound non-interactive zero-knowledge for non-malleability in-

spired from [NY90, Sah99, GGH13b].

We will make use of two different family of puncturable PRFs. a) PRF1(K, ·) that accepts

inputs of length (`id + `c) and returns strings of length `r. b) PRF2(Kid, ·) that accepts inputs of

length `r and returns strings of length `out, where `out is the length of the output of program. Such

PRFs exist by Theorem 3.

Now we describe our scheme.

Consider an honest providerH who holds a program F which he wants to hosts on the cloud C.

Also, there will be a collection of users who will interact with the provider to obtain authentication

which will enable them to run the program stored on the cloud. We first describe the procedure

SCSS.prog(1λ,F, k) run by the provider.

34

1. Chooses PRF key K at random for PRF1.

2. Picks (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Picks (avk, ask) ← AuthGen(1λ) with respect to k-cover-free set system T and pseudoran-

dom generator PRG : {0, 1}λ → {0, 1}2λ.

4. Picks crs← NIZKSetup(1λ).

5. Creates an indistinguishability obfuscation Pcomp = iO(Compute), where Compute is the

program described in Figure 2.1.

Here F̃ = Pcomp and σ = (ask, pk1, pk2, crs, K). Note thatK is not used by the honest provider

in any of the future steps, but we include it as part of secret for completion. This would be useful

in proving untrusted client security later.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

6. Output y = ⊥ and end.

Figure 2.1: Encoded program Compute given to the cloud

Next, we describe the procedure SCSS.auth(id, σ = (ask, pk1, pk2, crs)), where a user sends his

id to the provider for authentication. The provider sends back authid = (tid, pk1, pk2, crs), where

tid = AuthProve(ask, id). We also describe this interaction in Figure 2.2.

Finally, we describe the procedures SCSS.inp and SCSS.eval. This interaction between the user

and the cloud is also described in Figure 2.3.
35

Provider and User

Inputs: Let the user’s identity be id. The provider has input two public keys pk1, pk2, common

reference string crs and the secret key ask for authentication.

1. The user sends his identity id to the provider.

2. The provider computes tid ← AuthProve(ask, id) and sends authid = (tid, pk1, pk2, crs) to

the user.

Figure 2.2: Authentication phase between the provider and the user.

User and Cloud

Inputs: Let the user’s identity be id. Let the user’s input to the function be x. An authenticated

user has the authentication authid = (tid, pk1, pk2, crs) obtained from the provider. The cloud has

obfuscated program Pcomp. The user encodes his input for the cloud using SCSS.inp(1λ, authid, x)

as follows:

1. Pick a key Kid,out for PRF2. Set flag = 0.

2. Let m = (id||x||tid||Kid,out||flag). Compute c1 = PKEnc(pk1,m; r1), c2 =

PKEnc(pk2,m; r2) and a SSS-NIZK proof π = NIZKProve(crs, stmt, (m, r1, r2)), where

stmt is the following statement

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

3. x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

The cloud runs the program Pcomp on the input x̃ and obtains output ỹ. It sends ỹ to the user.

The user parses ỹ as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1)⊕ ỹ2.

Figure 2.3: Encoding of input by an authenticated user and evaluation by the cloud

Procedure SCSS.inp(1λ, authid = (tid, pk1, pk2, crs), x): The user chooses a key Kid,out for PRF2.

Letm = (id||x||tid||Kid,out||0). It then computes c1 = PKEnc(pk1,m; r1), c2 = PKEnc(pk2,m; r2)

36

and a SSS-NIZK proof π for

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

It outputs x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

Procedure SCSS.eval(F̃ = Pcomp, x̃): Run F̃ on x̃ to obtain ỹ. The user parses ỹ as ỹ1, ỹ2 and

computes y = PRF2(α, ỹ1)⊕ ỹ2.

2.3.1 Security Proof Overview

In this section, we give a proof overview for Theorem 1 for the scheme described above. Among

all the security properties, only the proof of untrusted cloud security is most challenging. Hence,

in this section, we will prove untrusted cloud security (Definition 7) of our scheme via a sequence

of hybrids. Before that, since it is easy to see why our scheme satisfies untrusted client security

(Definition 8), we only give a proof overview below.

Proof Overview for untrusted client security. We first prove the untrusted client security.

In our scheme, the secret information σ created after running the procedure SCSS.prog is σ =

(ask, pk1, pk2, crs, K). Hence, on obtaining a encoded x̃ from the adversary the decode procedure

can work identically to the program Compute to extract an input x, authentication tid, a key Kid,out,

and flag from x̃. If flag = 1, it gives y = 0 to response procedure. Else, if authentication tid

verifies using avk, it sends the (id, x) to the oracle implementing P and obtains y which is sent to

response. The response procedure finally encodes the output y using τ = Kid,out and K ∈ σ and

sends it to the corrupt client. if flag = 0 and tid is invalid, send ⊥ to the client. This is exactly

what the obfuscated program would have done. Hence, the real and simulated experiments are

indistinguishable as is required by this security property.

To prove security against unauthenticated clients, we need to prove the following: Any PPT

malicious client id who has not done the set up phase to obtain authid should not be able to learn

the output of F on any input using interaction with the honest cloud. Note that in our scheme F is

invoked only if the authentication extracted by the program verifies under avk. Hence, the security

will follow from the k-unforgeability property of our scheme (see Section 2.1.5).

37

Proof Overview of Untrusted Cloud Security Consider a PPT adversary A who controls the

cloud and a collection of at most k users. Let F and G be two functions such that F and G are

functionally equivalent for corrupt users. Then, we will prove that A can not distinguish between

the cases when the provider uses the function F or G. We will prove this via a sequence of hybrids.

Below, we first give a high level overview of these hybrids.

Let m be the number of honest users in the scheme. Without loss of generality, let their identi-

ties be id1, . . . , idm and inputs be x1, . . . , xm. In the first sequence of hybrids, we will change the

interaction of the honest users with the cloud such that all honest user queries will use flag = 1 and

input 0`in . This will ensure that in the final hybrid of this sequence, function F is not being invoked

for any of the honest users.

In the next sequence of hybrids, we will change the output of the procedure AuthGen such that

there does not exist any valid authentication for honest users. Now, we can be absolutely certain

that the program does not invoke the function F on any of the honest ids. We also know that the

functions F and G are functionally equivalent for all the corrupt ids. At this point, we can rely on

the indistinguishability of obfuscations of program Compute using F and program Compute using

G.

Finally, we can reverse the sequence of all the hybrids used so far so that the final hybrid is the

real execution with G with honest user inputs x′1, . . . , x
′
m.

Formal description of hybrids is provided in Section 2.3.2.

2.3.2 Formal Security Proof

Now, we describe the hybrids formally. We denote changes between subsequent hybrids using

underlined font. In this sequence of hybrids, we will be changing the program being obfuscated

multiple times and rely on the security of indistinguishability obfuscation. Since these changes

are quite subtle, we follow the presentation style of [SW14], where we write one hybrid per page

spelling out the whole experiment in each hybrid.

Each hybrid below is an experiment that takes as input 1λ. The final output of each hybrid

experiment is the output produced by the adversary when it terminates. Moreover, in each of these

38

hybrids, the adversary also receives authentication identities for all the corrupt users. We omit

writing this in each hybrid because these are not changed explicitly.

The first hybrid Hyb0 is the real execution with F.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and pseudorandom

generator PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

7. Authentication for honest users and queries of honest users are also computed as in real

execution. See Figure 2.3 for details.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

6. Output y = ⊥ and end.

Figure 2.4: Program Compute

39

Next we describe the first sequence of hybrids Hyb1:1, . . . ,Hyb1:14, . . . ,Hybm:1, . . . ,Hybm:14.

In the sub-sequence of hybrids Hybi:1, . . . ,Hybi:14, we only change the behavior of the honest user

idi. All the other honest users idj such that j 6= i behave identically as in Hybi−1:14. Hence, we

omit their behavior from the description of the hybrids for ease of notation.

Also, we denote idi by id∗.

Let Hyb0:14 = Hyb0.

Hybi:1. This is same as Hybi−1:14. We use this hybrid as a way to write how the user id∗ behaves

in the real execution explicitly. This would make it easier to describe the changes next.

It is obvious that the output of the adversary in Hybi−1:14 and Hybi:1 is identical.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.3.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

40

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

6. Output y = ⊥ and end.

Figure 2.5: Program Compute

Hybi:2. In this hybrid, we modify the Compute program as follows. First, we add the constants

id∗, c∗, y∗ to the program. Then, we add an if statement at the start that outputs y∗ if the input is

(id∗, c∗), as this is exactly what the original Compute program would do. Now, because the “if”

statement is in place, we know that PRF1(K, ·) cannot be evaluated at (id∗, c∗) within the program.

Hence, we can safely puncture key K at this point.

By construction, the Compute program in this hybrid is functionally equivalent to the Compute

program in the previous hybrid. Hence, indistinguishability follows by the security of iO.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.
41

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.3.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.6: Program Compute

Hybi:3. In this hybrid, the value r∗ is chosen randomly, instead of as the output of PRF1(K, (id∗, c∗)).

Moreover, since r∗ is a uniform random string, it can be picked anytime. So for convenience in

later hybrids, we move it up before picking Kid∗,out.
42

The indistinguishability of two hybrids follows by pseudorandomness property of the punc-

tured PRF PRF1.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. Pick crs← NIZKSetup(1λ).

5. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

6. Set tid∗ = AuthGen(ask, id∗).

7. Set flag∗ = 0.

8. Let r∗ be chosen randomly.

9. Choose a random PRF key Kid∗,out for PRF2.

10. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

11. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

12. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.3.

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:4. In this hybrid, instead of generating crs honestly, we generate it using the simulator S1

and also simulate the proof π∗ using S2.

The two hybrids are indistinguishable by computational zero-knowledge property of NIZK

used.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
43

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.7: Program Compute

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

44

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.8: Program Compute

Hybi:5. In this hybrid, we change m∗2 to include a punctured key Kid∗,out({r∗}) instead of original

key Kid∗,out.

The two hybrids are indistinguishable by IND− CPA security of public key encryption scheme

pke. This is because the hybrids do not use the secret sk2.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

45

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.9: Program Compute

46

Hybi:6. In this hybrid, we start using sk2 in the program instead of sk1.

We claim that the programs Compute in the two hybrids are functionally equivalent in the two

hybrids and hence the indistinguishability follows by the security of iO. This is because for all

c′ = (c′1, c
′
2, π

′) such that c′ 6= c∗, if π′ is accepted then PKDec(sk1, c
′
1) = PKDec(sk2, c

′
2). Also,

on input (id∗, c∗), the output of the program is identical in the two hybrids. Finally, on input (id, c∗)

for some id 6= id∗, both programs output ⊥ due to condition in Step 3. This proves that the two

programs are functionally equivalent.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:7. In this hybrid, we change m∗1 to include a punctured key Kid∗,out({r∗}) instead of original

key Kid∗,out.

47

Compute

Constants: (id∗, c∗, y∗), Secret key sk2, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk2, c2) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.10: Program Compute

The two hybrids are indistinguishable by IND− CPA security of public key encryption scheme

pke. This is because the hybrids do not use the secret sk1.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

48

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk2, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk2, c2) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.11: Program Compute

Hybi:8. In this hybrid, we switch back to using sk1 in the program instead of sk2.

We claim that the programs compute in the two hybrids are functionally equivalent in the two

hybrids and hence the indistinguishability follows by the security of iO. this is because for all

c′ = (c′1, c
′
2, π

′) such that c′ 6= c∗, if π′ is accepted then PKDec(sk1, c
′
1) = PKDec(sk2, c

′
2). Also,

on input (id∗, c∗), the output of the program is identical in the two hybrids. Finally, on input (id, c∗)

for some id 6= id∗, both programs output ⊥ due to condition in Step 3. This proves that the two

programs are functionally equivalent.
49

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:9. In this hybrid, we change the value of y∗ = (r∗, u∗) where u∗ is a uniformly random

string of appropriate length.

The indistinguishability of the two hybrids follows by pseudorandomness property of punc-

tured key Kid∗,out({r∗}). Because of this PRF2(Kid∗,out, r
∗) is indistinguishable from random

string.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.
50

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.12: Program Compute

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗, u∗), where u∗ is a uniformly random string of appropriate length.

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

51

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.13: Program Compute

Hybi:10. In this hybrid, we change the value of y∗ to (r∗,PRF2(Kid∗,out, r
∗)).

Similar to above, the indistinguishability of the two hybrids follows by pseudorandomness

property of punctured keyKid∗,out({r∗}). In particular, PRF2(Kid∗,out, r
∗) is indistinguishable from

random string.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and
52

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.14: Program Compute

Hybi:11. In this hybrid, we change the value of flag∗ to 1 instead of 0 and tid∗ to be a random

string of appropriate length. We also set x∗ = 0`in . We also change back the key Kid∗,out used in

m∗1 and m∗2 to the original unpunctured key.

The indistinguishability follows via a sequence of hybrids similar to hybrids Hybi:5 to Hybi:8

using the two-key switching techniques. Note that here we crucially use that the fact that the
53

program in the previous hybrid does not use x∗ in computing the output when the input is c∗.

Moreover, because of the initial “if” condition, there is no check on flag∗ or tid∗ . Hence, while

switching keys for decryption, functional equivalence follows in a straight-forward manner.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Pick tid∗ to be a uniformly random string of appropriate length.

6. Set flag∗ = 1.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Set x∗ = 0`in . Letm∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.3.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:12. In this hybrid, we again start generating the crs and the proof π∗ honestly.

The indistinguishability follows from the computational zero-knowledge property of the NIZK

used.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

54

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.15: Program Compute

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Pick tid∗ to be a uniformly random string of appropriate length.

6. Set flag∗ = 1.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Set x∗ = 0`in . Letm∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) andm∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick crs← NIZKSetup(1λ).

12. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.3.

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

55

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.16: Program Compute

Hybi:13. In this hybrid, we set r∗ = PRF1(K, (id∗, c∗)) instead of random.

The indistinguishability follows from the pseudorandomness property of the punctured PRF

PRF1.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Pick tid∗ to be a uniformly random string of appropriate length.

6. Set flag∗ = 1.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Set x∗ = 0`in . Letm∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) andm∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).
56

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.3.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗)}), verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

7. Output y = ⊥ and end.

Figure 2.17: Program Compute

Hybi:14. In this hybrid, we remove the initial “if” condition and the constants (id∗, c∗, y∗), and

un-puncture the key K.

The indistinguishability follows from the security of iO.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

57

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Pick tid∗ to be a uniformly random string of appropriate length.

6. Set flag∗ = 1.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Set x∗ = 0`in . Letm∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) andm∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.3.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

6. Output y = ⊥ and end.

Figure 2.18: Program Compute

58

In this sequence of hybrids described above, we have shown that the view of the adversary is

indistinguishable in the following two scenarios: 1) The honest user encodes his actual input xwith

flag = 0 and a valid authentication tid, and obtains output according to the function F on (id, x). 2)

The honest user encodes 0`in with flag = 1 and uniformly random tid, and receives encoding of 0

as output (without invoking the function F.)

Below we write the final hybrid obtained above as Hyb1 as follows:

Hyb1: This hybrid is same as Hybm:14. In the hybrid Hybm:14, all the user queries will have

flag = 1, tid will be a random string, and input will be 0`in. Hence, the program Compute will not

invoke the function F for any of the honest users.

The underlined statement summarizes the main difference between Hyb0 and Hyb1.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

7. For each of the honest users, tid is set to a random string of appropriate length, flag is set to 1

and input is set to 0`in . Ciphertexts (c1, c2) and proof π is generated as in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

59

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

6. Output y = ⊥ and end.

Figure 2.19: Program Compute

Hyb2: We change the setup phase of authentication scheme to use FakeAuthGen instead of AuthGen.

Let I denote the set of corrupt user identities. Note that |I| 6 k and set system T used in our

scheme is a k-cover-free set system.

The two hybrids are indistinguishable by security properties of FakeAuthGen (see Section 2.1.5).

Note that both hybrids do not depend on ask and need only the valid authentications for corrupt

users.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← FakeAuthGen(1λ, I) with respect to cover-free set system T and PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user. As noted

before, AuthProve still returns valid authentication for all users in I.

7. For each of the honest users, tid is set to a random string of appropriate length and flag is set
60

to 1. Ciphertexts (c1, c2) and proof π is generated as in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x)) and end.

6. Output y = ⊥ and end.

Figure 2.20: Program Compute

Hyb3: This is the most important hybrid, where we change the program to use G instead of F.

The two hybrids are indistinguishable by security of iO. Note that in both hybrids the function

is invoked iff the authentication of the user verifies under avk. In the both hybrids, this can happen

only for corrupt users as there is no valid authentication for honest users. Finally, recall that the

functions F and G are equivalent for corrupt users.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← FakeAuthGen(1λ, I) with respect to cover-free set system T and PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

61

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

7. For each of the honest users, tid is set to a random string of appropriate length and flag is set

to 1. Ciphertexts (c1, c2) and proof π is generated as in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output

y = (r,PRF2(Kid,out, r)⊕ G(id, x)) and end.

6. Output y = ⊥ and end.

Figure 2.21: Program Compute

Finally, using a similar sequence of hybrids we can move from Hyb3 to a hybrid which corre-

sponds to real execution using G and honest party inputs x′1, . . . , x
′
m.

62

2.4 Our Secure Cloud Service Scheme with Cloud Inputs

In this section, we describe our modified scheme for service hosting on the cloud with cloud inputs.

As before, we have three different parties: The provider who owns the service, the cloud where the

service is hosted, and the users. Recall that we assume that the provider of the service is honest.

As before, let λ be the security parameter. Note that the number of users can be any (un-

bounded) polynomial in λ. Let k be the bound on the number of corrupt users. In our security

game, we allow the cloud as well as any subset of users to be controlled by the adversary as long

as the number of such users is at most k.

Let T be a k-cover-free set system using a finite field Fq and polynomials of degee d =

(q − 1)/k described in Section 2.1.5. Let (AuthGen,AuthProve,Authverify) be the authentica-

tion scheme based on this k-cover-free set system. As mentioned before, we will use q = kλ, so

that the number of sets/users is at least 2λ. We will interpret the user’s identity id as the coefficients

of a polynomial over Fq of degree at most d. Let the length of the identity be `id:=(d+ 1) lg q and

length of the authentication be `auth. Note that in our scheme `auth = 2λq.

Let pke = (PKGen,PKEnc,PKDec) be public key encryption scheme which accepts messages

of length `e = (`id + `in + `auth + `kout + 1) and returns ciphertexts of length `c. Here `in is the

length of the input of the user and `kout is the length of the key for PRF2 described below.

Let (NIZKSetup,NIZKProve,NIZKVerify) be the statistical simulation-sound non-interactive

zero-knowledge proof system with simulator (S1, S2).

In our scheme we use the two-key paradigm along with statistically simulation-sound non-

interactive zero-knowledge for non-malleability inspired from [NY90, Sah99, GGH13b].

We will make use of two different family of puncturable PRFs. a) PRF1(K, ·) that accepts

inputs of length (`id + `c + `z) and returns strings of length `r > (`id + `c + `z) + λ. Here `z is the

length of the cloud’s input z. b) PRF2(Kid, ·) that accepts inputs of length `r and returns strings of

length `out, where `out is the length of the output of program. Such PRFs exist by Theorem 3.

We put a lower bound on the length of output of PRF1 because in the proof we would require

that a random string of length `r does not lie in the image of PRF1(K, ·).

Now we describe our scheme.

63

Consider an honest providerH who holds a function F which he wants to hosts on the cloud C.

Also, there will be a collection of users who will interact with the provider to obtain authentication

which will enable them to run the program stored on the cloud. The provider does the following:

1. Chooses PRF key K at random for PRF1.

2. Picks (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Picks (avk, ask) ← AuthGen(1λ) with respect to k-cover-free set system T and pseudoran-

dom generator PRG.

4. Picks crs← NIZKSetup(1λ).

5. Creates an indistinguishability obfuscation Pcomp = iO(Compute), where Compute is the

program described in Figure 2.22.

Here F̃ = Pcomp and σ = (ask, pk1, pk2, crs).

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c, z)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

6. Output y = ⊥ and end.

Figure 2.22: Encoded program Compute given to the cloud (scheme with cloud input)

Next, we describe the procedure SCSS.auth(id, σ = (ask, pk1, pk2, crs)), where a user sends his
64

id to the provider for authentication. The provider sends back authid = (tid, pk1, pk2, crs), where

tid = AuthProve(ask, id). We also describe this interaction in Figure 2.23.

Provider and User

Inputs: Let the user’s identity be id. The provider has input two public keys pk1, pk2, common

reference string crs and the secret key ask for authentication.

1. The user sends his identity id to the provider.

2. The provider computes tid ← AuthProve(ask, id) and sends (tid, pk1, pk2, crs) to the user.

Figure 2.23: Authentication phase between the provider and the user (scheme with cloud input)

Finally, we describe the procedures SCSS.inp and SCSS.eval. This interaction between the user

and the cloud is also described in Figure 2.24.

Procedure SCSS.inp(1λ, authid = (tid, pk1, pk2, crs), x): The user chooses a key Kid,out for PRF2.

Letm = (id||x||tid||Kid,out||0). It then computes c1 = PKEnc(pk1,m; r1), c2 = PKEnc(pk2,m; r2)

and a SSS-NIZK proof π for

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

It outputs x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

Procedure SCSS.eval(F̃ = Pcomp, x̃, z): Let the cloud’s input be z. Run F̃ on (x̃, z) to obtain ỹ.

The user parses ỹ as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1)⊕ ỹ2.

Security Proof. We prove that our scheme satisfies Theorem 2 i.e. it is a secure cloud service

scheme with cloud inputs in Section 2.4.1.

2.4.1 Security Proofs for Secure Cloud Service Scheme with Cloud Inputs

In this section, we prove Theorem 2 for the scheme described in Section 2.4.

It is easy to see that our scheme satisfies the untrusted client security defined in Definition 8 and

security against unauthenticated clients in the same way as the previous scheme. In this section,

we will prove untrusted cloud security (Definition 7) of our scheme described in Section 2.4.
65

User and Cloud

Inputs: Let the user’s identity be id. Let the user’s input to the function be x. In addition, An

authenticated user also has the authentication (tid, pk1, pk2, crs) obtained from the provider.

The cloud has obfuscated program Pcomp and input z. The user encodes his input for the cloud

using SCSS.inp(1λ, authid, x) as follows:

1. Pick a key Kid,out for PRF2. Set flag = 0.

2. Let m = (id||x||tid||Kid,out||flag). Compute c1 = PKEnc(pk1,m; r1), c2 =

PKEnc(pk2,m; r2) and a SSS-NIZK proof π = NIZKProve(crs, stmt, (m, r1, r2)), where

stmt is the following statement

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

3. x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

The cloud runs the program Pcomp on the input (x̃, z) and obtains output ỹ. It sends ỹ to the user.

The user parses ỹ as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1)⊕ ỹ2.

Figure 2.24: Encoding of input by an authenticated user and evaluation by the cloud (scheme with

cloud input)

Consider a PPT adversary A who controls the cloud and a collection of at most k users. Let

F and G be two functions such that F and G are functionally equivalent for corrupt users. That

is, for all the inputs of the corrupt users and all the inputs of the cloud, the functions F and G

produce identical outputs. Then, we will prove that A can not distinguish between the cases when

the provider uses the function F or G. We will prove this via a sequence of hybrids. Below, we first

give a high level overview of these hybrids.

Let m be the number of honest users in the scheme. Without loss of generality, let their identi-

ties be id1, . . . , idm and inputs be x1, . . . , xm. In the first sequence of hybrids, we will change the

interaction of the honest users with the cloud such that all honest user queries will use flag = 1 and

input 0`in . This will ensure that in the final hybrid of this sequence, function F is not being invoked

for any of the honest users. In this step, we will have O(m · 2`z) hybrids, where `z is the length of

66

the cloud’s input to the program Compute.

In the next sequence of hybrids, we will change the output of the procedure AuthGen such that

there does not exist any valid authentication for honest users. In this step, we will have at most

q2 hybrids. Now, we can be absolutely certain that the program does not invoke the function F on

any of the honest ids. We also know that the functions F and G are functionally equivalent for all

the corrupt ids. At this point, we can rely on the indistinguishability of obfuscations of program

Compute using F and program Compute using G.

Finally, we can reverse the sequence of all the hybrids used so far so that the final hybrid is the

real execution with G with honest user inputs x′1, . . . , x
′
m.

In this sequence of hybrids, we will be changing the program being obfuscated multiple times

and rely on the security of indistinguishability obfuscation. Since these changes are quite subtle,

we follow the presentation style of [SW14], where we write one hybrid per page spelling out the

whole experiment in each hybrid.

Each hybrid below is an experiment that takes as input 1λ. The final output of each hybrid

experiment is the output produced by the adversary when it terminates. Moreover, in each of these

hybrids, the adversary also receives authentication identities for all the corrupt users. We omit

writing this in each hybrid because these are not changed explicitly.

The first hybrid H̃yb0 is the real execution with F.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and pseudorandom

generator PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

7. Authentication for honest users and queries of honest users are also computed as in real

execution. See Figure 2.24 for details.

67

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c, z)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

6. Output y = ⊥ and end.

Figure 2.25: Program Compute

Next we describe the first sequence of hybrids. We have the following sub-sequence of hybrids

for each honest user idi:

Hyb
(1)
i ,Hyb

(2)
i ,Hyb

(3)
i ,Hybi:1:1, . . . ,Hybi:1:12, . . .Hybi:2`z :1 . . .Hybi:2`z :12,Hyb

(4)
i ,Hyb

(5)
i , Hyb

(6)
i , Hyb

(7)
i

In this sub-sequence of hybrids we only change the behavior of the honest user idi and the

program for all the inputs of the cloud {1, . . . , 2`z}. All the other honest users idj such that j 6= i

behave identically as in Hyb
(7)
i−1. Hence, we omit their behavior from the description of the hybrids

for ease of notation.

Also, we denote idi by id∗.

Hyb
(1)
i . This is same as Hyb

(7)
i−1. We use this hybrid as a way to write how the user id∗ behaves in

the real execution explicitly. This would make it easier to describe the changes next.

It is obvious that the output of the adversary in Hyb
(7)
i−1 and Hyb

(1)
i is identical.

1. Choose PRF key K at random for PRF1.
68

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.24.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, 1)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, 1)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

The computations of r∗, y∗ are not being utilized yet in this hybrid. But will still write these

steps to be consistent with future hybrids. Also, note that y∗ is computed using cloud’s input z = 1.

Hyb
(2)
i . In this hybrid, we modify the Compute program as follows. First, we add the constants

(id∗, c∗, x∗, Kid∗,out) to the program. Then, we add an “if” statement at the start such that the output

in this case is exactly what the original Compute program would do.

The output of the adversary in Hyb
(1)
i and Hyb

(2)
i is indistinguishable by the security of iO.

This is because the constants (x∗, Kid∗,out) are the same as what is being encryped in c∗. Also, in

c∗, tid∗ is valid and flag∗ = 0. Finally, recall that cloud’s inputs are {1, . . . , 2`z}. Hence, the “if”

condition (z < 1) is never satisfied.

1. Choose PRF key K at random for PRF1.

69

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c, z)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

6. Output y = ⊥ and end.

Figure 2.26: Program Compute

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.24.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, 1)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, 1)).

70

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), Secret key sk1, puncturable PRF key K, verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < 1, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.27: Program Compute

Hyb
(3)
i: . In this hybrid, instead of generating crs honestly, we generate it using the simulator S1

and also simulate the proof π∗ using the simulator S2.

The two hybrids are indistinguishable by computational zero-knowledge property of NIZK

used.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

71

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

11. Compute π∗ = S2(crs, τ, stmt).

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, 1)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, 1)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Below, we describe the sequence of hybrids, Hybi:j:1, . . . ,Hybi:j:12 for any j ∈ [2`z].

Hybi:j:1. This hybrid is equivalent to the hybrid Hybi:j−1:12. We consider this hybrid to explicitly

write the changes achieved so far. These have been shown in bold font.

The output of the adversary in Hybi:j:1 and Hybi:j−1:12 is identical.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

72

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), Secret key sk1, puncturable PRF key K, verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < 1, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.28: Program Compute

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

11. Compute π∗ = S2(crs, τ, stmt).

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, j)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

73

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Note that r∗, y∗ are computed using z = 1. These have not been used by the program yet.

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), Secret key sk1, puncturable PRF key K, verification key avk

and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.29: Program Compute

Hybi:j:2. In this hybrid, we modify the Compute program as follows. First, we add the constants

j, y∗ to the program. Then, we add an if statement at the start that outputs y∗ if the user’s input

is (id∗, c∗), and cloud’s input is j as this is exactly what the original Compute program would

do. Now, because the “if” statement is in place, we know that PRF1(K, ·) cannot be evaluated at

(id∗, c∗, j) within the program. Hence, we can safely puncture key K at this point.

By construction, the Compute program in this hybrid is functionally equivalent to the Compute

program in the previous hybrid. Hence, indistinguishability follows by the security of iO.
74

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

11. Compute π∗ = S2(crs, τ, stmt).

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, j)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:j:3. In this hybrid, the value r∗ is chosen randomly, instead of as the output of

PRF1(K, (id∗, c∗, j)). Moreover, since r∗ is a uniform random string, it can be picked anytime. So

for convenience in later hybrids, we move it up before picking Kid∗,out.

The indistinguishability of two hybrids follows by pseudorandomness property of the punc-

tured PRF PRF1.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.
75

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.30: Program Compute

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

12. Compute π∗ = S2(crs, τ, stmt).

76

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.31: Program Compute

Hybi:j:4. In this hybrid, we change m∗2 to include a punctured key Kid∗,out({r∗}) instead of origi-

nal key Kid∗,out.

The two hybrids are indistinguishable by IND− CPA security of public key encryption scheme

pke. This is because the hybrids do not use the secret sk2.
77

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:j:5. In this hybrid, we start using sk2 in the program instead of sk1.

We claim that the programs Compute in the two hybrids are functionally equivalent in the two

hybrids and hence the indistinguishability follows by the security of iO. This is because for all

c′ = (c′1, c
′
2, π

′) such that c′ 6= c∗, if π′ is accepted then PKDec(sk1, c
′
1) = PKDec(sk2, c

′
2). Also,

on input (id∗, c∗), the output of the program is identical in the two hybrids for all cloud inputs.

Finally, on input (id, c∗) for some id 6= id∗, both programs output ⊥ due to condition in Step 3.

This proves that the two programs are functionally equivalent.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

78

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.32: Program Compute

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

79

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk2, c2) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.33: Program Compute

80

Hybi:j:6. In this hybrid, we change m∗1 to include a punctured key Kid∗,out({r∗}) instead of orig-

inal key Kid∗,out. The two hybrids are indistinguishable by IND− CPA security of public key

encryption scheme pke. This is because the hybrids do not use the secret sk1.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:j:7. In this hybrid, we switch back to using sk1 in the program instead of sk2.

We claim that the programs compute in the two hybrids are functionally equivalent in the two

hybrids and hence the indistinguishability follows by the security of iO. this is because for all

c′ = (c′1, c
′
2, π

′) such that c′ 6= c∗, if π′ is accepted then PKDec(sk1, c
′
1) = PKDec(sk2, c

′
2). Also,

on input (id∗, c∗), the output of the program is identical in the two hybrids for all cloud inputs.

Finally, on input (id, c∗) for some id 6= id∗, both programs output ⊥ due to condition in Step 3.

This proves that the two programs are functionally equivalent.
81

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk2, c2) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.34: Program Compute

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

82

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, x∗,Kid∗,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.35: Program Compute

83

Hybi:j:8. In this hybrid, we change the constant in the program from Kid∗,out to Kid∗,out({r∗}).

We claim that the programs compute in the two hybrids are functionally equivalent with all

but negligible probability and hence the indistinguishability follows by the security of iO. This

is because with high probability over the choice of r∗, it is true that r∗ is not in the image of the

PRF1(K, ·), and therefore this puncturing also does not change the functionality of the Compute

program. Recall that PRF1(K, ·) is a puncturable PRF such that its image is a negligible fraction

of its co-domain (see Section 2.4).

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗, j)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:j:9. In this hybrid, we change the value of y∗ to (r∗,PRF2(Kid∗,out, r
∗)).

The indistinguishability of the two hybrids follows by pseudorandomness property of punc-

tured key Kid∗,out({r∗}). Because of this PRF2(Kid∗,out, r
∗) is indistinguishable from random

84

Compute

Constants: (id∗, c∗, x∗,Kid,out({r∗})), (j, y∗), Secret key sk1, puncturable PRF key

K({(id∗, c∗, j)}), verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.36: Program Compute

string. This implies that PRF2(Kid∗,out, r
∗) is indistinguishable from PRF2(Kid∗,out, r

∗)⊕F(id∗, x∗, j).

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.
85

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:j:10. In this hybrid, we change back the key Kid∗,out used in m∗1, m∗2 and the program to the

original unpunctured key.

The indistinguishability follows via a sequence of hybrids similar to hybrids Hybi:j:4 to Hybi:j:8

using the two-key switching techniques.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Let r∗ be chosen randomly.

8. Choose a random PRF key Kid∗,out for PRF2.

9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

86

Compute

Constants: (id∗, c∗, x∗,Kid,out({r∗})), (j, y∗), Secret key sk1, puncturable PRF key

K({(id∗, c∗, j)}), verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.37: Program Compute

12. Compute π∗ = S2(crs, τ, stmt).

13. Set c∗ = (c∗1, c
∗
2, π

∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hybi:j:11. In this hybrid, we set r∗ = PRF1(K, (id∗, c∗, j)) instead of random.

The indistinguishability follows from the pseudorandomness property of the punctured PRF

PRF1.

87

Compute

Constants: (id∗, c∗, x∗,Kid,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.38: Program Compute

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

88

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

11. Compute π∗ = S2(crs, τ, stmt).

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, j)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, x∗,Kid,out), (j, y∗), Secret key sk1, puncturable PRF key K({(id∗, c∗, j)}),

verification key avk and common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ If z = j, output y∗.

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.39: Program Compute

89

Hybi:j:12. In this hybrid, we remove the secondary “if” condition from the first step and the con-

stants (y∗, j), and un-puncture the key K. We move the value of z = j to the second case.

The indistinguishability follows from the security of iO.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

11. Compute π∗ = S2(crs, τ, stmt).

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, j)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Now we describe the hybrid Hyb
(4)
i which is same as Hybi:2`z :12. We underline the changes we

did w.r.t. Hyb
(3)
i .

Note that the Else statement in the first step is never invoked. Hence, we remove this condition

in subsequent hybrids.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

90

Compute

Constants: (id∗, c∗, x∗,Kid,out), Secret key sk1, puncturable PRF key K, verification key avk and

common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < j + 1, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.40: Program Compute

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).

6. Set flag∗ = 0.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

91

11. Compute π∗ = S2(crs, τ, stmt).

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, 2`z)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, x∗,Kid,out), Secret key sk1, puncturable PRF key K, verification key avk and

common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ If z < 2`z + 1, output y = (r,PRF2(Kid∗,out, r)) and end.

◦ Else, output y = (r,PRF2(Kid∗,out, r)⊕ F(id, x∗, z)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.41: Program Compute

Hyb
(5)
i . In this hybrid, we change the value of flag∗ to 1 instead of 0 and tid∗ to be a random string

of appropriate length. We also set x∗ = 0`in .

The indistinguishability follows via a sequence of hybrids similar to hybrids Hybi:j:5 to Hybi:j:8

92

using the two-key switching techniques. Note that here we crucially use that the fact that the

program in the previous hybrid does not use x∗ in computing the output when the input is c∗.

Moreover, because of the initial “if” condition, there is no check on flag∗ or tid∗ . Hence, while

switching keys for decryption, functional equivalence follows in a straight-forward manner. More-

over, we will use the fact that in all these hybrids we are simulating the crs as well as the proof

π∗.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Pick tid∗ to be a uniformly random string of appropriate length.

6. Set flag∗ = 1.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Set x∗ = 0`in . Let m∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) and

m∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick (crs, τ)← S1(1λ, stmt), where stmt is defined in Figure 2.24.

11. Compute π∗ = S2(crs, τ, stmt).

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, 2`z)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Hyb
(6)
i . In this hybrid, we start generating the crs and the proof π∗ honestly.

The indistinguishability of the hybrids follows by computational zero-knowledge property of

the NIZK used.

93

Compute

Constants: (id∗, c∗, x∗,Kid,out), Secret key sk1, puncturable PRF key K, verification key avk and

common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ Output y = (r,PRF2(Kid∗,out, r)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.42: Program Compute

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Pick tid∗ to be a uniformly random string of appropriate length.

6. Set flag∗ = 1.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Set x∗ = 0`in . Letm∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) andm∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ), where stmt is defined in Figure 2.24.

94

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.24.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, 2`z)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, x∗,Kid,out), Secret key sk1, puncturable PRF key K, verification key avk and

common reference string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If (id, c) = (id∗, c∗), do the following:

◦ Compute r = PRF1(K, (id
∗, c∗, z)).

◦ Output y = (r,PRF2(Kid∗,out, r)) and end.

2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

4. Compute r = PRF1(K, (id, c, z)).

5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

7. Output y = ⊥ and end.

Figure 2.43: Program Compute

Hyb
(7)
i . In this hybrid, we remove the initial “if” condition and the constants (id∗, c∗, x∗, Kid,out).

The indistinguishability follows from the security of iO.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
95

3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.

4. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

5. Pick tid∗ to be a uniformly random string of appropriate length.

6. Set flag∗ = 1.

7. Choose a random PRF key Kid∗,out for PRF2.

8. Set x∗ = 0`in . Letm∗1 = (id∗||x∗||tid∗||Kid∗,out||flag∗) andm∗2 = (id∗||x∗||tid∗||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c∗2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).

11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)), where stmt is defined in Figure 2.24.

12. Set c∗ = (c∗1, c
∗
2, π

∗).

13. Let r∗ = PRF1(K, (id∗, c∗, 2`z)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).

16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c, z)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

6. Output y = ⊥ and end.

Figure 2.44: Program Compute
96

After we go through the sequence of hybrids for each honest user, we obtain the hybrid Hyb(7)
m .

In this sequence of hybrids described above, we have shown that the view of the adversary is

indistinguishable in the following two scenarios: 1) The honest user encodes his actual input x

with flag = 0 and a valid authentication tid, and obtains output according to the function F on

(id, x, z). 2) The honest user encodes 0`in with flag = 1 and uniformly random tid, and receives

encoding of 0 as output (without invoking the function F.)

Below, we describe a hybrid H̃yb1 which is equivalent to Hyb(7)
m .

H̃yb1: This hybrid is same as Hyb(7)
m . In the hybrid Hyb(7)

m , all the user queries will have flag = 1,

tid will be a random string, and input will be 0`in. Hence, the program Compute will not invoke the

function F for any of the honest users.

The underlined statement summarizes the main difference between H̃yb0 and H̃yb1.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and pseudorandom

generator PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user.

7. For each of the honest users, tid is set to a random string of appropriate length,

flag and is set to 1 input is set to 0`in . Ciphertexts (c1, c2) and proof π is

generated as in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

H̃yb2: We change the setup phase of authentication scheme to use FakeAuthGen instead of AuthGen.

Let I denote the set of corrupt user identities. Note that |I| 6 k and set system T used in our

scheme is a k-cover-free set system.

97

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c, z)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

6. Output y = ⊥ and end.

Figure 2.45: Program Compute

The two hybrids are indistinguishable by security properties of FakeAuthGen (see Section 2.1.5).

Note that both hybrids do not depend on ask and need only the valid authentications for corrupt

users.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← FakeAuthGen(1λ, I) with respect to cover-free set system T and PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user. As noted

before, AuthProve still returns valid authentication for all users in I.

7. For each of the honest users, tid is set to a random string of appropriate length, flag is set to

1 and input is set to 0`in . Ciphertexts (c1, c2) and proof π is generated as in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

98

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c, z)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y = (r,PRF2(Kid,out, r) ⊕

F(id, x, z)) and end.

6. Output y = ⊥ and end.

Figure 2.46: Program Compute

H̃yb3: This is the most important hybrid, where we change the program to use G instead of F.

The two hybrids are indistinguishable by security of iO. Note that in both hybrids the function

is invoked iff the authentication of the user verifies under avk. In the both hybrids, this can happen

only for corrupt users as there is no valid authentication for honest users. Finally, recall that the

functions F and G are equivalent for corrupt users.

1. Choose PRF key K at random for PRF1.

2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).

3. Pick (avk, ask)← FakeAuthGen(1λ, I) with respect to cover-free set system T and PRG.

4. Pick crs← NIZKSetup(1λ).

5. Let Pcomp = iO(Compute).

6. On receiving a corrupt user’s identity id, return the authentication as in real execution. That

is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the user. As noted

before, AuthProve still returns valid authentication for all users in I.

7. For each of the honest users, tid is set to a random string of appropriate length, flag is set to

99

1 and input is set to 0`in . Ciphertexts (c1, c2) and proof π is generated as in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and common reference

string crs.

Input: Identity id and ciphertext c = (c1, c2, π) from the user, and input z from the cloud.

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.

2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length strings. If id 6= id′,

output ⊥ and end.

3. Compute r = PRF1(K, (id, c, z)).

4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.

5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output

y = (r,PRF2(Kid,out, r)⊕ G(id, x, z)) and end.

6. Output y = ⊥ and end.

Figure 2.47: Program Compute

Finally, using a similar sequence of hybrids (in the reverse order) we can move from H̃yb3 to a

hybrid which corresponds to real execution using G and honest party inputs x′1, . . . , x
′
m.

100

CHAPTER 3

Optimizing Obfuscation: Avoiding Barrington’s Theorem

3.1 Preliminaries

We denote the security parameter by λ. We use [n] to denote the set {1, . . . , n}.

3.1.1 “Virtual Black-Box” Obfuscation in an Idealized Model

Let M be some oracle. Below we define “Virtual Black-Box” obfuscation in the M-idealized

model taken verbatim from [BGK14]. In this model, both the obfuscator and the evaluator have

access to the oracleM. However, the function family that is being obfuscated does not have access

toM.

Definition 9. For a (possibly randomized) oracle M, and a circuit class
{
C`
}
`∈N, we say that

a uniform PPT oracle machine O is a “Virtual Black-Box” Obfuscator for
{
C`
}
`∈N in the M-

idealized model, if the following conditions are satisfied:

◦ Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for every possible

coins forM:

Pr[(OM(C))(x) 6= C(x)] 6 negl(|C|) ,

where the probability is over the coins of C.

◦ Polynomial Slowdown: There exist a polynomial p such that for every ` ∈ N and every

C ∈ C`, we have that |OM(C)| 6 p(|C|).

◦ Virtual Black-Box: For every PPT adversary A there exist a PPT simulator Sim, and a neg-

ligible function µ such that for all PPT distinguishers D, for every ` ∈ N and every C ∈ C`:∣∣Pr[D(AM(OM(C))) = 1]−
101

Pr[D(SimC(1|C|)) = 1]
∣∣ 6 µ(|C|) ,

where the probabilities are over the coins of D,A,Sim,O andM.

Note that in this model, both the obfuscator and the evaluator have access to the oracleM but the

function family that is being obfuscated does not have access toM.

3.1.2 Boolean Formulae

A boolean circuit for a function f : {0, 1}` → {0, 1} is a directed acyclic graph (DAG). The

vertices in this graph are either input variables or gates. We assume that all the gates in the circuit

have fan-in at most 2. The outdegree of an output gate is 0 and it is at least 1 for all other vertices.

The fan-out of a gate is the out-degree of that gate. In this work, we consider a special type of

circuits called formulae. A boolean formula is a boolean circuit where the fan-out of each gate is

1. A formula can be viewed as binary tree where the root is the output gate. We define the size of

a formula to be the number of leaves in this binary tree.

3.1.3 Branching Programs

In this section we define a non-deterministic branching program, and several types of layered

branching programs that are useful for our purpose.

A non-deterministic branching program (BP) is a finite directed acyclic graph with two special

nodes, a source node and a sink node, also referred to as an “accept” node. Each non-sink node

is labeled with a variable xi and can have arbitrary out-degree. 1 Each of the out-edges is either

labeled with xi = 0 or xi = 1. The sink node has out-degree 0. In the following, we denote

a branching program by BP and denote the restriction of the branching program consistent with

input x by BP|x. An input x ∈ {0, 1}` is accepted if and only if there is a path from the source node

to the accept node in BP|x. Note that an input can have multiple computation paths in BP|x. The

length of the BP is the maximum length of any such path in the graph. The size s of the branching

program is the total number of non-sink nodes in the graph, i.e., total number of nodes minus 1.

1We assume for simplicity that the out-degree is bound by some fixed constant (say 4), so that the total number of
paths is bounded by 2O(s) as opposed to ss.

102

A layered branching program is a branching program such that nodes can be partitioned into a

sequence of layers where all the nodes in one layer are labeled with the same variable and edges

go only from nodes of one layer to the next. We can assume without loss of generality that the first

layer contains the source node and the last layer contains the sink node. The length n of a layered

branching program is the number of layers minus 1 and its width w is the maximum number of

nodes in any layer. It will be convenient to assume that a layered BP has exactly w nodes in each

layer. We denote the kth node in layer i by vi,k for 0 6 i ≤ n and k ∈ [w].

The following nonstandard types of branching programs will be useful for our purposes. A

special layered branching program is a layered branching program with the following additional

property. For each layer i, 0 6 i < n, and each k ∈ [w], there is an edge from vi,k to vi+1,k labeled

by both 0 and 1 (namely, this edge is consistent with all inputs).

Finally, we define an invertible layered branching program as follows. An invertible layered

branching program is a type of a layered branching program. Corresponding to each i ∈ [n], we

define two w × w matrices Bi,0 and Bi,1 as follows: Bi,b[x, y] = 1 if and only if there is an edge

from node vi−1,x to node vi,y labeled with b. Otherwise, Bi,b[x, y] = 0. We say that the layered

branching program is invertible if Bi,b is full rank for all i ∈ [n] and b ∈ {0, 1}.

3.1.4 Relaxed Matrix Branching Programs

In this section we define the original notion of matrix branching programs used in [GGH13b]

followed by our notion of relaxed matrix branching programs.

Definition 10 (Matrix Branching Program (MBP)). [BGK14] A matrix branching program of

width w and length n for `-bit inputs is given by a w × w permutation matrix Preject such that

Preject 6= Iw×w and by a sequence:

BP = (inp, Bi,0, Bi,1)i∈[n],

where Bi,b, for i ∈ [n], b ∈ {0, 1}, are w × w permutation matrices and inp : [n] → [`] is the

evaluation function of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is determined

103

as follows:

BP(x) =


1 if

n∏
i=1

Bi,xinp(i) = Iw×w

0 if
n∏
i=1

Bi,xinp(i) = Preject

⊥ otherwise

We say that a family of MBPs are input-oblivious if all programs in the family share the same

parameters w, n, ` and the evaluation function inp.

Barrington [Bar86] showed that every circuit with depth d and fan-in 2 can be represented by a

MBP of length at most 4d and width 5. Previous works [GGH13b, BR14b, BGK14] used MBPs

obtained by applying Barrington’s theorem to obfuscate circuits. Since the MBP obtained has

length exponential in the depth of the circuit, this turns out to be a bottleneck for efficiency. In this

work, we will use relaxed MBPs towards obfuscation.

In MBP after evaluation we either get Iw×w or Preject which decides the output. We relax this

requirement as follows. We only require that a single designated entry in the final product is either

0 or non-zero depending on the output and place no restriction on other entries. Note that this is

a further relaxation of the notion considered in [PST14]. More formally, we define the notion of

relaxed matrix branching programs as follows.

Definition 11 (Relaxed MBP (RMBP)). Let R be any finite ring. A relaxed matrix branching

program (over R) of size w and length n for `-bit inputs is given by a sequence:

BP = (inp, Bi,0, Bi,1)i∈[n],

where each Bi,b is a w × w full-rank, i.e. invertible, matrix and inp : [n] → [`] is the evaluation

function of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is determined as follows:

BP(x) = 1 if and only if
(n∏
i=1

Bi,xinp(i)

)
[1, w] 6= 0

Dual-input Relaxed Matrix Branching Programs. Similar to [BGK14], for the proof of obfus-

cation we would need to consider dual input matrix branching programs. We define dual input

RMBP as follows.

104

Definition 12 (Dual Input RMBP). Let R be a finite ring. A dual-input relaxed matrix branching

program (over R) of size w and length n for `-bit inputs is given by a sequence:

BP = (inp1, inp2, Bi,b1,b2)i∈[n],b1,b2∈{0,1},

where eachBi,b1,b2 is aw×w full-rank matrix and inp1, inp2 : [n]→ [`] are the evaluation functions

of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is determined as follows:

BP(x) = 1 if and only if
(n∏
i=1

Bi,xinp1(i),xinp2(i)

)
[1, w] 6= 0

We say that a family of matrix branching programs is input-oblivious if all programs in the

family share the same parameters w, n, ` and the evaluation functions inp1, inp2.

For the purpose of obfuscation we would consider dual input oblivious relaxed matrix branch-

ing programs.

3.2 From Branching Programs to Relaxed Matrix Branching Programs

In this section we describe a sequence of transformations which allow us to transform a non-

deterministic branching program of size s to a relaxed matrix branching program of width 2(s+ 1)

and length s. These transformations are close variants of similar transformations from [FKN94].

The main steps are to convert a non-deterministic branching program to a special layered branching

program, then to an invertible layered branching program, and finally to an RMBP. These interme-

diate steps can be independently useful, as they allow for more efficient transformations of special

or invertible layered branching programs into RMBPs.

Branching program to special layered branching program.

Lemma 1. Any non-deterministic branching program BP of size s can be efficiently converted to

an equivalent special layered branching program SLBP of length s and width s+ 1.

Proof Sketch. Recall that since we do not include the sink node in the size of a BP, a BP of size

s has s + 1 nodes. Given a branching program with s + 1 nodes, first do a topological sort of the
105

nodes, say {v1, . . . , vs+1}. Without loss of generality, assume that v1 is the source node and vs+1

is the sink node. We construct a special layered branching program with s + 1 layers where each

layer has s + 1 nodes as follows. Let the nodes in layer i be {vi,1, . . . , vi,s+1}. That is, we denote

kth node in layer i by vi,k. For each 0 6 i < s we do the following: Let node vi+1 be labeled with

xj in original BP. Then, we label layer i with xj . We draw the outgoing edges from node vi,i+1 to

node vi+1,k if there was an edge from vi+1 to vk in the original BP. Labels on the edges are retained.

Now, we also add edges between vi,k to vi+1,k for all k ∈ [s+ 1] for both xj = 0 and xj = 1.

It is easy to see that there is a path between source, i.e., v1 to the accept node, i.e., vs in the

original branching program if and only if there is a path from v0,1 to vs,s+1.

Special layered branching program to an invertible layered branching program.

Lemma 2. Any special layered branching program SLBP of length n and widthw can be efficiently

converted to an equivalent invertible layered branching program ILBP of length n and width 2w.

Proof Sketch. Let edges in layer i be {v1, . . . , vw}. For each layer i, where 0 6 i < n, we add

w dummy nodes, say {vi,w+1, . . . , vi,2w} and add the following edges. For each layer i and j ∈ [w]

add edges from vi,j to vi+1,w+j and from vi,w+j to vi+1,j .

It is easy to see that the new layered branching program is invertible. More precisely, the

columns can be re-arranged so that the matrices obtained are upper-triangular with all the main

diagonal entries set to 1. It also easy to observe that if SLBP(x) = 1 then ILBP(x) = 1. For the

other direction, note that adding these extra nodes and edges does not create a path between any

two original nodes if there was no path before.

Invertible layered branching program to relaxed matrix branching program.

Lemma 3. Any invertible layered branching program ILBP of length n and width w can be effi-

ciently converted to an equivalent relaxed matrix branching program RMBP of length n and width

w.

Proof. Consider a large enough 2 prime p. Corresponding to each layer in the layered branching
2In the following construction, we use the fact that the prime p is large enough so that there are no wrap-arounds

106

program, we will have two (w × w) matrices Bi,0 and Bi,1 over Zp. Let the label of this layer be

xj for some j ∈ [`]. For i ∈ [n] and b ∈ {0, 1}, define Bi,b as follows:

For any x, y ∈ [w], set Bi,b[x, y] = 1 if there is an edge between vi−1,x to vi,y labeled xj = b.

Set the rest of the entries in Bi,b to be 0. We define inp to be a function from [n] to `, where ` is the

input length of ILBP. We set inp(i) = j if all the nodes in the ith layer depend on the jth input bit.

Since we are given an invertible layered branching program, it is easy to see that all the matrices

are full-rank. Without loss of generality, let the source node be the node v0,1 and accept node be

the node vn,w of the invertible layered branching program. Then,

Claim 2. Consider an input x ∈ {0, 1}`. Denote the product
∏n

i=1Bi,xinp(i) by P . Then, P [1, w] >

1 if and only if ILBP(x) = 1.

Proof Sketch: We prove this via induction on the number of layers in the branching program.

Intuitively, we will prove that the following invariant is maintained. Let Pj =
∏j

i=1Bi,xinp(i) . Then,

Pj[x, y] will denote the number of paths from v0,x to vj,y. In particular, P [1, w] captures the number

of paths from the source node to the sink node. And hence, P [1, w] is non-zero iff ILBP(x) = 1.

We argue this by induction. We define graph Gj , for j ∈ [n], to be a subgraph of ILBP|x as

follows. It consists of all the vertices in the layers L1, . . . ,Lj+1 and any two vertices in Gj have an

edge if and only if the correpsonding two vertices in ILBP|x have an edge. We will denote the vertex

set associated to Gj as Vj . Without loss of generality we will assume that Vj = {1, . . . , 2(j + 1)},

since each layer has two vertices.

At each point in the induction we maintain the invariant that Pj[u, v] = cu,v, where Pj =∏j
i=1 Bi,xinp(i) and u, v ∈ Vj and cu,v is the number of possible paths from u to v in Gj .

The base case in the induction step is for the case of G1 and the invariant follows from the defi-

nition ofG1. We now proceed to the induction hypothesis. Assume that the matrices (Bi,xinp(i))i∈[j],

for j < n is such that their product, which is Pj , satisfies the condition that Pj[u, v] is the number

of paths from u to v in graph Gj . Consider the product Pj+1 =
∏j+1

i=1 (Bi,xinp(i)) which is essen-

tially the product Pj · Bj+1,xinp(j+1)
. Now, consider Pj+1[u, v] =

∑w
i=1 Pj[u, i]Bj+1,xinp(j+1)

[i, v] for

u, v ∈ Vj+1. Each term indicates the total number of paths from u to v with i as an intermediate

while multiplying the matrices. In particular, assume that p = 2Ω(n).

107

vertex in the graph Gj+1. Note that an intermediate vertex of any path of length at least 2 in Gj+1

should be in Vj . And the summation of all these terms indicates the total number of paths from u

to v in Gj+1.

We have established that Pn[u, v] represents the number of paths from the u to v in graph Gn.

ButGn is nothing but the graph ILBP|x and Pn is nothing but the matrix P . This shows that P [u, v]

denotes the number of paths from u to v in graph ILBP|x and more specifically, P [1, w] is non-zero

iff ILBP(x) = 1. This proves the lemma.

Theorem 4. Any non-deterministic branching program BP of size s can be efficiently converted to

an equivalent relaxed matrix branching program RMBP of length s and width 2(s+ 1).

Proof. It follows directly from Lemmas 1, 2 and 3.

Converting relaxed matrix branching program to dual input oblivious relaxed matrix branch-

ing program. First note that if the family of invertible layered matrix branching programs is in-

put oblivious, then the relaxed matrix branching program obtained from the above transformation

would also be input oblivious. If that is not the case, we can convert it to a dual-input relaxed

matrix branching program by incurring a multiplicative cost of ` in the length of the branching

program. More formally,

Lemma 4. Any relaxed matrix branching program RMBP = (inp, Bi,0, Bi,1)i∈[n] of length n and

width w can be efficiently converted to a dual-input oblivious relaxed matrix branching program

of length at most n` and width w.

Proof. We first make our relaxed matrix branching program oblivious, i.e. make the evaluation

function inp independent of the formula F. Wlog, assume that the length of the relaxed matrix

branching program, n, is a multiple of (` − 1), i.e. n = k · (` − 1) for some k ∈ N. If this not

the case, add at most (` − 2) pairs of identity matrices of dimension w × w to the relaxed matrix

branching program. We will use this assumption while making the branching program dual input.

Now we will describe a new (relaxed) matrix branching program of length n′ = n · ` and width w

and evaluation function inp1 as follows:

108

- Define inp1(i) = i mod ` for all i ∈ [n].

- For each j ∈ [n], M(j−1)·`+inp(j),b = Bj,b for b ∈ {0, 1}. Rest all matrices are set to Iw×w.

Informally the above transformation can be described as follows: In jth block of ` matrices, all

the matrices are identity matrices apart from the matrices at index inp(j). At this index, we place

the two non-trivial matrices Bj,0 and Bj,1 which help in actual computation.

Claim 3. For any input x ∈ {0, 1}`,
∏n

i=1Bi,xinp(i) =
∏n′

i=1 Mi,xinp1(i)
.

Now we make the above relaxed matrix branching program dual-input, by pairing the input

position used at each index with a dummy input position in an oblivious manner which is indepen-

dent of the formula. For convenience of notation, we will also ensure that each pair of input bits

is used as the selector same number of times. We will ensure that at any index of the RMBP, the

two input positions used are distinct, i.e. inp1(i) 6= inp(i) for any i ∈ [`]. We define the evaluation

function inp2 as follows: Consider i of the form k1`(`− 1) + k2`+ k3 then

inp2(i) = ((k2 + k3) mod `) + 1

3.2.1 From Formula to Relaxed Matrix Branching Program

Direct construction. Transforming formulas to branching programs is a well studied problem [Mas76,

Bar86, Cle90, SWW99]. In particular, it is well known [Mas76] that formula of size s over AND,

OR, and NOT gates can be converted to a branching program of essentially the same size; for self

containment, we describe such a transformation next which satisfies the following lemma.

Lemma 5. Any formula of size s can be converted to a branching program of size s.

3.2.1.1 From Formula to Branching Programs

In this section, we give a transformation of boolean formulas over AND and NOT gates to a branch-

ing program. Note that any formula over AND, OR and NOT gates can be converted to a formula

over AND and NOT gates of the same size.
109

source BPF1

acc

rej

BPF

source
BPF2

acc

rej

Figure 3.1: The branching program for an AND gate.

Consider a formula, denoted by F. We inductively transform F to a branching program BP. Our

construction will maintain a stronger induction hypothesis. There will be two sink nodes, “accept”

and “reject.” Also, there will be a path from the source to the accept iff the output is 1 and there

will be a path from the source to the reject iff the output is 0.

The base case corresponds to an input wire w. Let input variable be xi. We construct a branch-

ing program for w, denoted by BPw consists of three nodes denoted by source, acc and rej. We add

an edge labeled 0 from source to rej and an edge labeled 1 from source to acc. We label the source

with xi.

We proceed to the induction hypothesis. Consider a gate G.

Case (1) AND gate:- Let F1 and F2 be two sub-formulae such that their output wires are fed to

F. Let BPF1 and BPF2 be the branching programs for F1 and F2, respectively. We construct a

branching program for F as follows (see Figure 3.1). We merge the accept node of BPF1 with the

source node of BPF2 . Similarly, merge the reject node of BPF1 with the reject node of BPF2 .

Case (2) NOT gate:- Let F′ be the sub-formula such that the output wire of F′ is fed into the gate

G. Let BPF′ be a branching program for F′. To construct the branching program for F we simply

rename accept node of BPF′ as reject node for BPF. We also rename reject node of BPF′ as accept

node for BPF.

source BPF′

acc

rej

BPF

Figure 3.2: The branching program for a NOT gate.

110

Note that once the transformation is complete for the formula, the final reject node can be

deleted. So our final construction will only have one sink node, the “accept” node.

It is easy to see that the above described layered branching program correctly evaluates the

formula F. More formally,

Lemma 6. For every input x ∈ {0, 1}l, we have F(x) = 1 if and only if BPF(x) = 1. Moreover,

for a formula of size s, the size of the branching program BPF is at most s.

Proof Sketch. It follows by an induction on the structure of the formula by noting that the number

of leaves in a formula is the sum of the leaves of the left sub-tree and the right sub-tree.

Completing the transformation. Using the transformations described in the previous section,

we obtain the following.

Theorem 5. Any formula of size s can be efficiently converted to an equivalent relaxed matrix

branching program of width 2(s + 1) and length s. Moreover, it can be converted to a dual input

oblivious matrix branching program of width 2(s+ 1) and length s`.

Keyed formulas. Consider the class of keyed formulas, namely a class of formulas of the form

fz(x) = φ(z, x) such that φ is a formula of size s. While obfuscating this class of formulas, we

only need to hide the key z since φ is public. Since we do not require the matrix branching program

to be input oblivious, we do not incur the additional factor of ` in the length of the matrix branching

program. So the length of the branching program for this class of functions is at most s.

Alternate approach. We note that there is an asymptotically more efficient transformation to

obtain relaxed matrix branching program using the work of Giel [Gie01]. The transformation

consists of the following steps – first the formula is balanced and then the resulting balanced

formula is converted to a linear bijection straightline-program (LBSP) which is then converted to

an RMBP. More formally, we have the following result due to Giel [Gie01].

Theorem 6. [Gie01] Given a boolean formula of size s over any complete basis, there exists

a relaxed matrix branching program of size O(s1+ε) with the width of each matrix is a constant

depending only on ε,where ε > 0 is any constant.

111

3.3 Randomization of Random Matrix Branching Programs

In this section, we describe how to randomize the matrices in the (dual-input and oblivious) re-

laxed matrix branching program obtained from the construction in Section 3.2. The result of the

randomization process is another relaxed matrix branching program such that the restriction of the

relaxed matrix branching program3 on input x can be simulated by just knowing the output of the

branching program on input x. Looking ahead, this property will come in handy when proving

the security of the obfuscation scheme in the ideal graded encoding model. The randomization

technique we employ closely follows a similar randomization technique that was used in [CFI03]

in the context of secure multiparty computation.

The non-triviality of the randomization process here compared to [BGK14] is the following:

in [BGK14] the product matrix corresponding to an input x depends only on the output of the

function on input x. More specifically it is either an identity matrix or a fixed matrix Preject (Defi-

nition 10). Thus, the product matrix does not reveal any information about the branching program.

However, in our case the entries in the product matrix might contain useful information about the

branching program – specifically the product matrix in our RMBP captures the number of paths

between every pair of vertices. Hence, we have to randomize the matrices in such a way that the

product of the matrices only reveals information about the output of the function. We do this in two

steps. In the first step we design a randomization procedure, denoted by randBP, which reveals just

the (1, w)th entry of the product matrix. Note that this itself will not be enough for us because the

(1, w)th entry essentially contains the number of paths between the source and the accept vertex

and hence has more information than just the output of the function. And so in the second step,

we describe how to randomize the RMBP using the procedure randBP′, such that the resulting

(equivalent) RMBP when restricted to any particular input x can be simulated by just knowing the

output of the RMBP on x.

We first describe the randBP procedure. Though the procedure randBP to randomize our ma-

trices is similar in spirit to Kilian’s randomization (also used in [GGH13b, BGK14]), the way we

will simulate these matrices will deviate from that of Kilian.
3Recall that the restriction of a relaxed matrix branching program BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) is

defined to be {Bi,xinp1(i),xinp2(i)
}.

112

Notation. We will denote the relaxed matrix branching program as

BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) with length n, width w and input of ` bits. For any

x ∈ {0, 1}`, define Px :=
n∏
i=1

Bi,xinp1(i),xinp2(i)
and,

BP
∣∣∣
x

:= (Bi,xinp1(i),xinp2(i)
)i∈[n]

Let e1, ew ∈ {0, 1}w, be such that e1 = (1, 0, 0, . . . , 0) and ew = (0, 0, . . . , 0, 1). For notational

convenience, let e1 be a row vector and ew we a column vector.

Procedure randBP. The input to the randomization procedure is an oblivious dual-input RMBP

BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) of length n, width w and input of ` bits.

Procedure randBP(BP):

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

- Compute the matrices B̃i,b1,b2 = Ri−1 ·Bi,b1,b2 ·R−1
i for all i ∈ [n] and b1, b2 ∈ {0, 1}.

- Finally, compute s̃ = e1 ·R−1
0 and t̃ = Rn · ew.

- Output B̃P =
(

inp1, inp2, s̃,
{
B̃i,b1,b2

}
i∈[n],b1,b2∈{0,1}

, t̃
)

.

It follows that the branching program output by the above procedure on input BP is functionally

equivalent to BP.

We can construct a simulator SimBP such that the following theorem holds. At a high level,

the theorem states that the matrices in B̃P (which is the output of randBP on BP) when restricted

to a particular input x can be simulated by just knowing the (1, w)th entry in the product matrix

obtained by evaluating BP on input x.

Theorem 7. Consider an oblivious dual-input RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})

of length n, of width w and input of ` bits. Then for every x ∈ {0, 1}`,{
randBP(BP)

∣∣∣
x

}
≡
{

SimBP(1n, 1w, 1`, Px[1, w])
}
.

Proof. We first describe the simulator SimBP which simulates the output of randBP for any input

x. More formally, let randBP(BP)
∣∣∣
x

be defined as (s̃, {B̃i,xinp1(i),xinp2(i)
}i∈[n], t̃). We describe a

113

simulator SimBP which takes as input

(1n, 1w, 1`, Px[1, w]) and outputs a tuple which is identically distributed to randBP(BP)
∣∣∣
x
. Recall

that s is the size of the formula.

Before we describe SimBP we will first recall the following theorem.

Theorem 8. ([Kil88]) Consider a dual-input branching program

BP =
{

inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}
}

. There exists a PPT simulator SimK such that for every

x ∈ {0, 1}l,

{R0, {Ri−1Bi,xinp1(i),xinp2(i)
R−1
i }i∈[n], Rn}

≡ SimK(1n, 1w, 1`,BP(x))

We are now ready to describe SimBP.

SimBP(1n, 1w, 1`, Px[1, w]):

- If Px[1, w] 6= 0, define the matrix A as A := Px[1, w] · Iw×w. Else, A := “mirror-image” of

Iw×w.

- Run SimK(1n, A) to obtain full-rank matrices

R0, R1, . . . , Rn+1 ∈ Zw×wp such that
∏

i>0Ri = A. Note that SimK is the simulator as

defined in Theorem 8.

- Let R̂0 = e1 ·R−1
0 and R̂n+1 = Rn+1 · ew.

- Output (R̂0, R1, . . . , Rn, R̂n+1).

We now show that: {
randBP(BP)

∣∣∣
x

}
≡
{

SimBP(1s, Px[1, w])
}
.

As a first step, we state the following lemma from Cramer et al. [CFI03] that will be useful to prove

the theorem.

Lemma 7. For any x, y ∈ Zwp \{0} and a full rank matrix M ∈ Zw×wp there exist full rank matrices

X, Y ∈ (Zp)n×n such that the first row of X is xT , the first column of Y is y, and XMY depends

only on xTMy. In particular, there is a procedure Extend, running in time polynomial in n and

114

w, that takes as input (xTMy, x, y,M), where x, y and M are as defined in the above lemma and

outputs X and Y such that XMY is (xTMy) · Iw×w if xTMy 6= 0 else it is “mirror-image” of I . 4

We now proceed to proving that the output distributions of randBP and SimBP are identical. We

first define a sequence of hybrids such that the first hybrid is the real experiment (which is randBP)

while the last hybrid is the simulated experiment (which is SimBP). Then, we show that the output

distribution of each hybrid is identical to the output distribution of the previous hybrid which will

prove the theorem.

Hybrid0: This is the same as the real experiment. That is, on input BP and x it first executes

randBP(BP) to obtain B̃P. It then outputs B̃P
∣∣∣
x

= (s̃, {B̃i,xinp1(i),xinp2(i)
}i∈[n], t̃)

Hybrid1: We describe Hybrid1 as follows. The input to Hybrid1 is B̂P = BP
∣∣
x

= (Bi,xinp1(i),xinp2(i)
)i∈[n].

Let Mi = Bi,xinp1(i),xinp2(i)
.

Hybrid1

(
B̂P = (M1, . . . ,Mn)

)
:

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

- Compute the matrices M̃i = Ri−1 ·Mi ·R−1
i for i ∈ [n].

- Finally, compute s̃ = e1 ·R−1
0 and t̃ = Rn · ew.

- Output
(
s̃, {M̃i}i∈[n], t̃

)
.

It can be seen that the output distribution of this hybrid is identical to the output distribution of the

previous hybrid Hybrid0.

Hybrid2: Hybrid2 is same as Hybrid1 except the way we compute s̃ and t̃. The input to Hybrid2, like

the previous hybrid, is B̂P = BP
∣∣
x
.

Hybrid2

(
B̂P = (M1, . . . ,Mn)

)
:

4The “mirror-image” of a w ×w identity matrix is also a w ×w matrix such that the (i, w − i+ 1)th entry in the
matrix is 1 and the rest of the entries in the matrix are 0.

115

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

- Compute the matrices M̃i = Ri−1 ·Mi ·R−1
i for i ∈ [n].

- Define P :=
n∏
i=1

Mi and c := e1 · P · ew.

- Execute Extend on input (c, e1, ew, P) to obtain w × w matrices S and T as described in

Lemma 7. Compute Ŝ = SR−1
0 and T̂ = RnT . Finally, compute s̃ = e1Ŝ and t̃ = T̂ ew.

- Output (s̃, {M̃i}i∈[n], t̃).

Hybrid1 and Hybrid2 differ only in the way s̃ and t̃ are computed. In Hybrid2, s̃ = e1Ŝ =

e1 · (SR−1
0) = (e1 · S) · R−1

0 = xT · R−1
0 , where x is the first row of S. But the first row of S is

e1 and hence, s̃ = e1 ·R−1
0 , which is same as the value in Hybrid1. Similarly, we can show this for t̃.

Hybrid3: This is same as the simulated experiment. That is, it takes as input (1n, 1w, 1`) and

Px[1, w] and then executes SimBP(1n, 1w, 1`, Px[1, w]). The output of Hybrid3 is the output of

SimBP.

We now argue that Hybrid2 and Hybrid3 are identically distributed. First note that in Hybrid2,

c = P [1, w]. Then it follows from Lemma 7 that if c 6= 0, S ·P ·T = c ·I , else S ·P ·T = J , where

J is the “mirror-image” of I . Theorem 8 can be used to show that hybrids Hybrid2 and Hybrid3 are

identically distributed. This shows that the output distribution of Hybrid0 is identically distributed

to Hybrid3. This completes the proof.

We now move to the second step where we show how to randomize the branching program using

the procedure randBP′ in such a way that the product of the matrices (which will be a 1×1 matrix)

corresponding to an input only reveals the output of the function and nothing else. To achieve this,

we need to ensure that the product of the matrices corresponding to one input is not correlated

to the product of matrices corresponding to a different input, where both the inputs are such that

they evaluate to 1. We solve this by multiplying the matrix Bi,b1,b2 by αi,b1,b2 (which is picked at

random). This ensures that multiplying the matrices corresponding to two different inputs result

in two different products of α’s which are mutually independent which in turn makes it feasible to

116

achieve simulation of these matrices by just knowing the value of the function. We now describe

the procedure randBP′. Note that randBP′ takes as input B̃P which is the output of randBP on the

relaxed matrix branching program BP.

Proceduce randBP′. In this procedure, we describe how to further randomize the output of

randBP and then show how to simulate this by having just the output of BP. The input to randBP′

is a randomized relaxed matrix branching program B̃P = (s̃, {B̃i,b1,b2}i∈[n],b1,b2∈{0,1}, t̃).

Procedure randBP′(B̃P):

- It picks random and independent non-zero scalars {αi,b1,b2 ∈ Zp}i∈[n],b1,b2∈{0,1} and com-

putes Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 . It outputs (s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1}, t̃).

Before we describe how to simulate the output of randBP′, we will prove a claim about

this procedure. Let M1,M2, . . . ,Mn be a given set of matrices. Let (N1, . . . , Nn) be the out-

put of randBP′(M1,M2, . . . ,Mn). We have that N1 = α1M1, N2 = α2M2, . . . , Nn = αnMn,

where α1, α2, . . . , αn are non-zero scalars chosen uniformly at random from Zp. Define c =

(
∏

iNi)[1, w].

Claim 4. If (
∏

iMi) [1, w] 6= 0, then c is distributed uniformly in Z∗p.

Proof. Since c = (
∏

iNi)[1, w] = (
∏

i αiMi)[1, w] = (
∏

i αi) (
∏

iMi) [1, w]. Since each αi

is chosen uniformly at random from Z∗p,
∏

i αi is distributed uniformly in Z∗p. Hence, when

(
∏

iMi) [1, w] 6= 0, c is distributed uniformly in Z∗p.

Simulator Sim′BP. Next, we describe the simulator Sim′BP which takes as input (1s,BP(x)),

where s is the size of the formula and x ∈ {0, 1}`.

Sim′BP(1s,BP(x)):

- If BP(x) = 0, output whatever SimBP(1s, 0) outputs. Else, pick a α uniformly at random

from Z∗p and output whatever SimBP(1s, α) outputs.

117

Now, we prove the following.

Theorem 9. Consider an oblivious dual-input RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) of

length n, width w and input of ` bits. Then there exists a PPT simulator Sim′BP such that for every

x ∈ {0, 1}`, {
randBP′(randBP(BP))

∣∣∣
x

}
≡
{

Sim′BP(1s,BP(x))
}
.

Proof. Let us denote BP
∣∣∣
x

by (M1,M2, . . . ,Mn). Observe that{
randBP′(randBP(BP))

∣∣∣
x

}
≡
{

randBP(randBP′(M1,M2, . . . ,Mn))
}
.

This holds by just observing that applying randBP′(randBP(·)) operation on the relaxed matrix

branching program and then evaluating the result on an input x is equivalent to first evaluating

the relaxed matrix branching program on an input x and then applying the randBP′(randBP(·))

operation. Now, we need to show that{
randBP(randBP′(M1,M2, . . . ,Mn))

}
≡
{

Sim′BP(1s,BP(x))
}
.

We will show that for any tuple V , the probability of output being V is identical in the real

and simulated experiments above. We begin by calculating the probability of V in the real ex-

periment, where probability is taken over the random coins of both randBP and randBP′. Let

V2 = M1,M2, . . . ,Mn.

Pr[randBP(randBP′(V2)) = V] =
∑
V1

Pr[randBP(V1) = V ∧ randBP′(V2) = V1]

=
∑
V1

Pr[randBP(V1) = V] · Pr[randBP′(V2) = V1]

Now let V1 = (N1, N2, . . . , Nn) and βV1 denote (
∏
i

Ni)[1, w]. Then by Theorem 7, Pr[randBP(V1) =

V] = Pr[SimBP(1s, βV1) = V]. Substituting in above, we get

118

Pr[randBP(randBP′(V2)) = V] =
∑
V1

Pr[SimBP(1s, βV1) = V] · Pr[randBP′(V2) = V1]

=
∑
α

∑
V1s.t.βV1=α

Pr[SimBP(1s, α) = V] · Pr[randBP′(V2) = V1]

=
∑
α

Pr[SimBP(1s, α) = V] ·
∑

V1s.t.βV1=α

Pr[randBP′(V2) = V1]

We have two cases based on whether BP(x) = 1 or BP(x) = 0.

- BP(x) = 0: This case is easy to handle. Note that in this case,
∏

iMi[1, w] = 0 = βV1 . Hence, in

the above expression,
∑

V1s.t.βV1=α Pr[randBP′(V2) = V1] = 1 for βV1 = 0 and 0 otherwise.

Substituting in the above expression we get,

Pr[randBP(randBP′(V2)) = V] = Pr[SimBP(1s, 0) = V]

= Pr[Sim′BP(1s,BP(x)) = V]

- BP(x) = 1: In this case,
∏

iMi[1, w] 6= 0. By Claim 4,
∑

V1s.t.βV1=α Pr[randBP′(V2) = V1] =

1
p−1

. Substituting in above equation we get,

Pr[randBP(randBP′(V2)) = V] =
1

p− 1
·
∑
α

Pr[SimBP(1s, α) = V]

= Pr[Sim′BP(1s,BP(x)) = V]

3.4 Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has been taken almost

verbatim from [BGK14]. All parties have access to an oracleM, implementing an ideal graded

encoding. The oracleM implements an idealized and simplified version of the graded encoding

schemes from [GGH13a]. The parties are provided with encodings of various elements at different

119

levels. They are allowed to perform arithmetic operations of addition/multiplication and testing

equality to zero as long as they respect the constraints of the multilinear setting. We start by

defining an algebra over the elements.

Definition 13. Given a ring R and a universe set U, an element is a pair (α, S) where α ∈ R is

the value of the element and S ⊆ U is the index of the element. Given an element e we denote by

α(e) the value of the element, and we denote by S(e) the index of the element. We also define the

following binary operations over elements:

◦ For two elements e1, e2 such that S(e1) = S(e2), we define e1 +e2 to be the element (α(e1)+

α(e2), S(e1)), and e1 − e2 to be the element (α(e1)− α(e2), S(e1)).

◦ For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be the element

(α(e1) · α(e2), S(e1) ∪ S(e2)).

Next, we describe the oracleM. M is a stateful oracle mapping elements to “generic” repre-

sentations called handles. Given handles to elements,M allows the user to perform operations on

the elements.M will implement the following interfaces:

Initialization. M will be initialized with a ring R, a universe set U, and a list L of initial el-

ements. For every element e ∈ L, M generates a handle. We do not specify how the handles

are generated, but only require that the value of the handles are independent of the elements be-

ing encoded, and that the handles are distinct (even if L contains the same element twice). M

maintains a handle table where it saves the mapping from elements to handles. M outputs the

handles generated for all the elements in L. AfterM has been initialized, all subsequent calls to

the initialization interface fail.

Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈ {+,−, ·},M first

locates the relevant elements e1, e2 in the handle table. If any of the input handles do not appear in

the handle table (that is, if the handle was not previously generated byM) the call toM fails. If

the expression e1 ◦ e2 is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or S(e1) ∩ S(e2) 6= ∅ for

120

◦ ∈ {·}) the call fails. Otherwise,M generates a new handle for e1 ◦ e2, saves this element and the

new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h,M first locates relevant element e in the handle table. If

h does not appear in the handle table (that is, if h was not previously generated byM) the call to

M fails. If S(e) 6= U, the call fails. Otherwise,M returns 1 if α(e) = 0, and returns 0 if α(e) 6= 0.

3.5 Straddling Set System

In this section, we describe a straddling set system which is same as the one considered in [BGK14].

Then we will prove two combinatorial properties of this set system, which will be very useful in

proving the VBB security of our scheme.

Definition 14. A straddling set system Sn = {Si,b : i ∈ [n], b ∈ {0, 1}} with n entries over the

universe U = {1, 2, . . . , 2n− 1} is as follows:

S1,0 = {1}, S2,0 = {2, 3}, . . . , Si,0 = {2i − 2, 2i − 1}, . . . , Sn−1,0 = {2n − 4, 2n − 3}, Sn,0 =

{2n− 2, 2n− 1}

S1,1 = {1, 2}, S2,1 = {3, 4}, . . . , Si,1 = {2i − 1, 2i}, . . . , Sn−1,1 = {2n − 3, 2n − 2}, Sn,1 =

{2n− 1}

Claim 5 (Two unique covers of universe). The only exact covers of U are {Si,0}i∈[n] and {Si,1}i∈[n].

Proof. Since any exact cover of U needs to pick a set with element 1, it either contains the set

S1,0 or S1,1. Let C be a cover of U containing S1,0. Then, we prove that Si,0 ∈ C, ∀i ∈ [n]. We

will prove this via induction on i. It is trivially true for i = 1. Let us assume that the statement

is true for i, and prove the statement for i + 1. There are only two sets, namely Si+1,0 and Si,1

which contain the element 2i ∈ U. Since, by induction hypothesis, Si,0 ∈ C and Si,0 ∩ Si,1 6= ∅,

Si+1,0 ∈ C in order to cover all the elements in U. This shows that there is a unique cover of U

containing S1,0.

Similarly, we can show that there is a unique cover of U containing the set S1,1 which is

{Si,1}i∈[n]. As mentioned before, any exact cover of U contains either S1,0 or S1,1 in order to cover

the element 1 ∈ U. This proves the claim.
121

Claim 6 (Collision at universe). Let C and D be non-empty collections of sets such that C ⊆

{Si,0}i∈[n], D ⊆ {Si,1}i∈[n], and
⋃
S∈C S =

⋃
S∈D S, then following must hold:

C = {Si,0}i∈[n] , D = {Si,1}i∈[n].

Proof. We will prove this claim by contradiction. Let us assume that C ⊂ {Si,0}i∈[n]. Then there

exists a maximal sub-interval [i, j] ⊂ [n] such that Sk,0 ∈ C for all i 6 k 6 j but either (1) i > 1

and Si−1,0 /∈ C or (2) j < n and Sj+1,0 /∈ C.

(1) Since (2i − 2) ∈ Si,0 ∈ C and
⋃
S∈C S =

⋃
S∈D S, it should be the case that Si−1,1 ∈ D.

Now by a similar argument, since (2i − 3) ∈ Si−1,1 ∈ D and
⋃
S∈C S =

⋃
S∈D S, it should

be the case that Si−1,0 ∈ C. This contradicts the assumption that i > 1 and Si−1,0 /∈ C.

(2) Since (2j − 1) ∈ Sj,0 ∈ C and
⋃
S∈C S =

⋃
S∈D S, it should be the case that Sj,1 ∈ D. Now

by a similar argument, since (2j) ∈ Sj,1 ∈ D and
⋃
S∈C S =

⋃
S∈D S, it should be the case

that Sj+1,0 ∈ C. This contradicts the assumption that j < n and Sj+1,0 /∈ C.

Since C = {Si,0}[n], it has to be the case that D = {Si,1}[n].

3.6 Obfuscation in the Idealized Graded Encoding Model

In this section, we describe our VBB obfuscator O for polynomial sized formulae in the ideal

graded encoding model.

Input. The input to our obfuscator O is a dual-input oblivious relaxed matrix branching program

BP of length n, width w, input length `:

BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})

such that inp1 and inp2 are evaluation functions mapping [n] → [`], and each Bi,b1,b2 ∈ {0, 1}w×w

is a full rank matrix.

We make a simplifying assumption that every input bit is inspected by BP exactly `′ number of

times. We denote the set of indices that inspect the input bit j by ind(j).

ind(j) = {i ∈ [n] : inp1(i) = j} ∪ {i ∈ [n] : inp2(i) = j} .
122

Step 1: Randomizing the relaxed matrix branching program BP. The obfuscator O random-

izes the branching program in two steps using procedures randBP and randBP′ described in Sec-

tion 3.3. It begins by sampling a large enough prime p of Ω(n) bits.

1. It invokes the procedure randBP on the relaxed matrix branching program BP obtained above

to get B̃P =
(

inp1, inp2, s̃,
{
B̃i,b1,b2

}
i∈[n],b1,b2∈{0,1}

, t̃
)

. Recall that s̃, t̃ ∈ Zwp and B̃i,b1,b2 ∈

Zw×wp for all i ∈ [n], b1, b2 ∈ {0, 1}.

2. It then executes the procedure randBP′ on input B̃P to obtain (s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1},

t̃). The matrices Ci,b1,b2 are such that Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 , where αi,b1,b2 ∈ Zp with

i ∈ [n], b1, b2 ∈ {0, 1} are picked uniformly at random.

The output of this phase is (inp1, inp2, s̃, {Ci,b1,b2} i∈[n],
b1,b2∈{0,1}

, t̃).

Looking ahead, the final obfuscation of BP will consist of ideal encodings of these elements

with respect to a carefully chosen set system. Next, we describe how these sets are chosen.

Step 2: Initialization of the set systems. Consider a universe set U. Let Us, Ut, U1, U2, . . . , U`

be partitions of U such that for all j ∈ [`], |Uj| = (2`′ − 1). That is, Us, Ut, U1, U2, . . . , U` are

disjoint sets and U = Us ∪ Ut ∪
⋃̀
j=1

Uj .

Now let Sj be the straddling set system (defined in Section 3.5) over the elements in Uj . Note

that Sj will have |ind(j)| = `′ sets in the system for each j ∈ [`]. We now associate the entries in

the straddling set system Sj with the indices of BP which depend on xj , i.e. the set ind(j). More

precisely, let

Sj = {Sjk,b : k ∈ ind(j), b ∈ {0, 1}}.

Step 3: Associating elements of randomized RMBP with sets. Next, we associate a set to each

element output by the randomization step. Recall that in a dual-input relaxed matrix branching

program, each step depends on two fixed bits in the input defined by the evaluation functions inp1

and inp2. For each step i ∈ [n], b1, b2 ∈ {0, 1}, we define the set S(i, b1, b2) using the straddling

sets for input bits inp1(i) and inp2(i) as follows:

S(i, b1, b2) := S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

.

123

Step 4: Encoding of elements in randomized RMBP. We use the set S(i, b1, b2) to encode the

elements of Ci,b1,b2 . We will use the sets Us and Ut to encode the elements in s̃ and t̃ respectively.

More formally, O does the following:

O initializes the oracleM with the ring Zp and universe set U. Then it asks for the encodings

of the following elements: {
(s̃[k],Us), (t̃[k],Ut)

}
k∈[w]

{(Ci,b1,b2 [j, k], S(i, b1, b2)}i∈[n],b1,b2∈{0,1},j,k∈[w]

O receives a list of handles for these elements fromM. Let [β]S denote the handle to (β, S).

For a matrixM , let [M]S denote a matrix of handles such that [M]S[j, k] is a handle for (M [j, k], S).

Thus, O receives the following handles, which is then output by O.

[s̃]Us , [t̃]Ut ,
{

[Ci,b1,b2]S(i,b1,b2)

}
i∈[n],b1,b2∈{0,1}

Evaluation of O(BP) on input x. Recall that two handles corresponding to the same set S can

be added. If [β]S and [γ]S are two handles, we denote the handle for (β+γ, S) obtained fromM on

addition query by [β]S +[γ]S . Similarly, two handles corresponding to S1 and S2 can be multiplied

if S1 ∩ S2 = ∅. We denote the handle for (β · γ, S1 ∪ S2) obtained fromM on valid multiplication

query on [β]S1 and [γ]S2 by [β]S1 · [γ]S2 . Similarly, we denote the handle for (M1 ·M2, S1 ∪S2) by

[M1]S1 · [M2]S2 .

Given x ∈ {0, 1}`, to compute BP(x), O(BP) computes the handle for the following expres-

sion:

h = [s̃]Us ·
n∏
i=1

[
Ci,xinp1(i),xinp2(i)

]
S(i,xinp1(i),xinp2(i))

· [t̃]Ut

Next, O(BP) uses the oracle M to do a zero-test on h. If the zero-test returns a 1, then O(BP)

outputs 0 else it outputs 1.

Correctness of Evaluation. We first assume that none of the calls to M fail and show that

O(BP) on x outputs 1 iff BP(x) = 1. We denote bi1 = xinp1(i) and bi2 = xinp2(i) in the following

124

equation. From the description of the evaluation above, O(BP) outputs 0 on x if and only if

0 = s̃ ·
n∏
i=1

Ci,bi1,bi2 · t̃ = s̃ ·
n∏
i=1

αi,bi1,bi2 · B̃i,bi1,b
i
2
· t̃

=

(
(e1R

−1
0) ·

n∏
i=1

R(i−1) ·Bi,bi1,b
i
2
·R−1

i · (Rnew)

)
n∏
i=1

αi,bi1,bi2

=

(
e1 ·

n∏
i=1

Bi,bi1,b
i
2
· ew

)
·
n∏
i=1

αi,bi1,bi2 = Px[1, w] ·
n∏
i=1

αi,bi1,bi2

We conclude with the following theorem and corollary which summarize our results.

Theorem 10. There is a virtual black box obfuscator O in the idealized model for all poly-sized

RMBPs. For a family of input-oblivious RMBPs of length n and width w, the obfuscation requires

n levels of multilinearity over a field of size p = 2Ω(n), the obfuscated program consists of nw2

encodings of field elements, and its evaluation involves O(nw2) multilinear operations.

The proof of the above theorem follows along the lines of Barak et al. [BGK14]. We provide the

formal proof in the next section.

The following corollary follows from Theorem 4, Theorem 5 and the above theorem.

Corollary 11. There is a virtual black box obfuscatorO in the idealized model for non-deterministic

branching programs. For a family of keyed branching programs (or formulas) of size s, the ob-

fuscation requires s levels of multilinearity over a field of size p = 2Ω(s), the obfuscated program

consists of O(s3) encodings of field elements, and its evaluation involves O(s3) multilinear oper-

ations. For a family of input-oblivious, special layered branching programs of length n and width

w, the obfuscation requires n levels of multilinearity over a field of size p = 2Ω(n), the obfus-

cated program consists of O(nw2) encodings of field elements, and its evaluation involves O(nw2)

multilinear operations.

In the above theorem and its corollary, the obliviousness requirement can be relaxed by incur-

ring an additional multiplicative overhead of ` to the levels of multilinearity and the number of

multilinear operations, where ` is the number of input variables.

125

3.7 Proof of Virtual Black Box Obfuscation in the Idealised Graded Encod-

ing Model

In this section, we prove that the obfuscator O described in Section 3.6 is a good VBB obfuscator

for polynomial sized formulas in the ideal graded encoding model.

Let F = {F`}`∈N be a formula class such that every formula in F` is of size O(`). We assume

WLOG that all formulas in F` are of the same size (otherwise the formula can be padded). It

follows from Theorem 5 that for any formula F there exists a RMBP represented in the form of

O(|F|) matrices each of width O(|F|). Hence, there exists linear functions n(·) and w(·) such that

O in Section 3.6 outputs a dual-input oblivious RMBP of size n(|F|) and width w(|F|) computing

on `(|F|) inputs. Hence, O satisfies the polynomial slowdown requirement. We also showed that

O satisfies the functionality requirement and always computes the correct output (see Section 3.6).

We are now left to show that O satisfies the virtual black box property.

The Simulator Sim Here we construct a simulator Sim that takes as input 1|F| and description of

the adversaryA, and is given oracle access to the formula F. This simulator is required to simulate

the view of the adversary.

The simulator begins by emulating the obfuscatorO on F. First, the simulator needs to compute

the RMBP BPF and the matrices Bi,b1,b2 corresponding to the branching program. Note that the

simulator is only given oracle access to the formula F and has no way to compute these matrices.

Thus, Sim initializes the oracleM with formal variables. Also note that the simulator can compute

the evaluation functions inp1 and inp2 and also the system used for encodings since the RMBPs are

oblivious. This would be important when Sim simulates the oracle queries of A.

More formally, we extend the definition of an element to allow for values that are formal

variables and also expressions over formal variables, instead of just being ring elements. When

we perform an operation ◦ on two elements e1 and e2, that contain formal variables, the resultant

element e1 ◦ e2 is a corresponding arithmetic expression over formal variables. This way we

represent formal expressions as arithmetic circuits. We denote by α(e) the arithmetic expression

over formal variables for element e. An element is called basic element if the corresponding

126

arithmetic circuit has no gates, i.e. either it is a constant or a formal variable. We say that e′ is a

sub-element of e if the circuit corresponding to e′ is a sub-circuit of the circuit for e.

Next, Sim will emulate the oracle M that O accesses as follows: Sim will maintain a table

of handles and corresponding level of encodings that have been initialized so far. As mentioned

before, Sim will initialize the oracleM with formal variables. Note that Sim can emulate all the

interfaces of M apart from the zero-testing. Note that O does not make any zero-test queries.

Hence, the simulation of the obfuscator O is perfect.

When Sim completes the emulation of O it obtains a simulated obfuscation Õ(F). Now Sim

has to simulate the view of the adversary on input Õ(F). Our Sim will use the same handles table

for emulating the oracle calls of both O and A. Hence, Sim can perfectly emulate all the oracle

calls made by A apart from zero-testing. The problem with answering zero-test queries is that

Sim cannot zero-test the expressions involving formal variables. Zero-testing is the main challenge

for simulation, which we describe in the next section. Since the distribution of handles generated

during the simulation and during the real execution are identical, and since the obfuscation consists

only of handles (as opposed to elements), we have that the simulation of the obfuscation Õ and the

simulation ofM’s answers to all the queries, except for zero-test queries, is perfect.

Simulating zero testing queries In this part we describe how our simulator handles the zero-

test queries made by A. This part is the non-trivial part of the analysis for the following reason.

The handle being zero-tested is an arithmetic circuit whose value depends on the formal variables

which are unknown to the simulator. The real value for these formal variables would depend on

the formula F. At a very high level, we show that these values can be simulated given oracle access

to F.

There are two steps to zero-testing an element. Note that the adversary may have combined

the handles provided in very convoluted manner. More precisely, A may have computed sub-

expressions involving multiple inputs and hence, the value of the element being zero-tested may

depend on formal variables which correspond to using multiple inputs. Hence, the first step is

to decompose this elements into “simpler” elements that we call single-input elements. As the

name suggests, any single input element’s circuit consists of formal variables corresponding to a

127

distinct input x ∈ {0, 1}`. Namely, it only depends on formal variables in matrices Ci,b1,b2 such

that b1 = xinp1(i) and b2 = xinp2(i). In the first step we show that any element e, such that S(e) = U

which is zero-tested can be decomposed into polynomial number of single input elements.

In the second step, Sim simulates the value of each of the single input elements obtained via

decomposition independently. More formally, we use Theorem 9 to show that value of each single-

input element can be simulated perfectly. But we run into the following problem. We cannot

simulate the value of all the single input elements together as these have correlated randomness of

the obfuscator. Instead we show that it suffices to zero-test each single-input element individually.

For this we use the fact that each of the matrix B̃i,b1,b2 was multiplied by αi,b1,b2 . Using this

we prove that value of each single input element depends on product of different α’s which is

determined by the input being used. Now, we use the fact that the probability that A creates an

element such that non-zero value of two single input elements cancel each other is negligible.

Therefore, it holds that element is zero iff each of the single input elements are zero independently.

3.7.1 Decomposition to Single-Input Elements

Next we show how every element can be decomposed into polynomial number of single-input

elements. We start by introducing some notation.

For every element e, we will assign an input-profile Prof(e) ∈ {0, 1, ∗}` ∪ {⊥}. Intuitevely,

if e is a sub-expression in the evaluation of the obfuscated program on some input x ∈ {0, 1}`,

then Prof(e) is used to represent the partial information about x which can be learnt from formal

variables which occur in e. For example, we say that Prof(e)j is consistent with the bit b if there

exists a basic sub-element e′ of e such that S(e′) = S(i, b1, b2) such that inp1(i) = j and b1 = b

or inp2(i) = j and b2 = b. Next, for every j ∈ [`] we set Prof(e)j = b iff Prof(e)j is consistent

with b and is not consistent with (1 − b). If Prof(e)j is neither consistent with b nor (1 − b),

we set Prof(e)j = ∗. Finally, we set Prof(e) = ⊥ iff there exists a j ∈ [`] such that Prof(e) is

consistent with both b and (1 − b). We call e a single-input element iff Prof(e) 6= ⊥. Finally, if

Prof(e) ∈ {0, 1}`, we say that input-profile of e is complete. Otherwise, we say that input-profile

of e is partial.

We also define the partial symmetric operation � : {0, 1, ∗,⊥} × {0, 1, ∗,⊥} → {0, 1,⊥} as

128

follows: b � ∗ = b for b ∈ {0, 1, ∗,⊥}, b � b = b, and b � (1 − b) = ⊥ for b ∈ {0, 1}, and

⊥�⊥ = ⊥. If � is applied to two vectors, it is performed separately for each position.

Next we describe an algorithm D used by Sim to decompose elements into single-input ele-

ments. Parts of this description have been taken verbatim from [BGK14]. Given an element e, D

outputs a set of single-input elements with distinct input-profiles such that e =
∑

s∈D(e) s, where

the equality between the elements means that their values compute the same function (it does not

mean that the arithmetic circuits that represent these values are identical). Note that the above

requirement implies that for every s ∈ D(e), S(s) = S(e). Moreover, for each s ∈ D(e), D also

computes the input-profile of s recursively.

The decomposition algorithm D outputs a set of elements and their associated input profile and

is defined recursively, as follows:

◦ Element e is basic: D outputs the singleton set {e}. Let S(e) = S(i, b1, b2). Then Prof(e)

is as follows: Prof(e)inp1(i) = b1, Prof(e)inp2(i) = b2, and Prof(e)j = ∗ for all j ∈ [`], j 6=

inp1(i), j 6= inp2(i).

◦ Element e is of the form e1 + e2: D computes recursively L1 = D(e1), L2 = D(e2) and

outputs L = L1 ∪ L2. If there exist elements s1, s2 ∈ L with the same input-profile, D

replaces the two elements with a single element s = s1 + s2 and Prof(s) = Prof(s1). It

repeats this process until all the input-profiles in L are distinct and outputs L.

◦ Element e is of the form e1 ·e2: D computes recursively L1 = D(e1), L2 = D(e2). For every

s1 ∈ L1 and s2 ∈ L2, D adds the expression s1 · s2 to the output set L and sets Prof(s) =

Prof(s1)� Prof(s2). D then eliminates repeating input-profiles from L as described above,

and outputs L.

Remark 1. Note that if s = s1 · s2 such that Prof(s1)j = 0 and Prof(s2)j = 1, then Prof(s)j = ⊥.

Hence, multiplication gates can lead to an element with invalid input-profile. This observation will

be used often in the later proofs.

The fact that in the above decomposition algorithm indeed e =
∑

s∈D(e) s, and that the input

profiles are distinct follows from a straightforward induction. Now, we prove a set of claims and

129

conclude that D(e) runs in polynomial time (see Claim 9). We begin by proving a claim about the

relation between the level of encoding of e and a sub-element e′ of e.

Claim 7. If e′ is a sub-element of e, then there exists a collection of disjoint sets C from our set

systems {Sj}j∈[`], Us and Ut such that the sets in C are disjoint with S(e′) and S(e) = S(e′) ∪⋃
S∈C S.

The above claim says that if e′ is a sub-element of e, the set corresponding to the encoding of

e can be seen as being derived from the set used for encoding of e′. Intuitively, this is true because

in obtaining e from e′, the set of encoding never shrinks. It remains same with each addition and

increases as union of two disjoint sets with each multiplication. Thus, there would exist a collection

of sets such that S(e) can be written as the union of this collection of disjoint sets along with the

set of e′. In other words, there exists a cover for S(e) which involves the set S(e′) and some other

disjoint sets from our set system.

Proof. (of Claim 7) We will prove this claim by induction on the size of e. If e = 1, i.e. e is a

basic element, then the claim trivially holds. If e = e1 + e2, then either (1) e′ = e or (2) e′ is a sub-

element of either e1 or e2. In the first case, the claim is trivially true. In the second case, let wlog

e′ be sub-element of e1. Then by induction hypothesis, there exists a collection of disjoint sets C

from our set systems such that the sets in C are disjoint with S(e′) and S(e1) = S(e′) ∪
⋃
S∈C S.

The claim follows by noting that S(e) = S(e1).

Finally, if e = e1 · e2, either (1) e′ = e or (2) e′ is a sub-element of either e1 or e2. In the

first case, the claim is trivially true. In the second case, let wlog e′ be sub-element of e1. Then by

induction hypothesis, there exists a collection of disjoint sets C1 from our set systems such that the

sets in C1 are disjoint with S(e′) and S(e1) = S(e′) ∪
⋃
S∈C1 S. Now, for e2 either (1) e2 is a basic

element or (2) there exists a basic sub-element e′′ of e2. In the first case, C = C1 ∪ {S(e2)} since

for valid multiplication S(e1) ∩ S(e2) = ∅. In the second case, we apply the induction hypothesis

on e2, e
′′ and get a collection of sets C2 and C = C1 ∪ (S(e′′) ∪ C2). Note that S(e′′) is a union of

two disjoint sets from our set system.

Next, we prove that for elements which can be zero-tested, i.e. elements at the highest level of

encoding, all the elements output by the procedure D are single input elements. In this direction,
130

we first observe that adding two elements does not create new input-profiles. That is, only way

to create new profiles is to multiply two elements. As noted in Remark 1, multiplication of two

elements can lead to invalid profiles. Here we use the observation that if e = e1 · e2 has invalid

input profile then computations involving e cannot lead to an element at the universe set and cannot

be zero-tested. Here we crucially use the properties of straddling sets and Claim 7. More formally,

Claim 8. If U = S(e) then all the elements in D(e) are single-input elements. Namely, for every

s ∈ D(e) we have that Prof(s) 6= ⊥.

Proof. We will prove this claim by contradiction. Let us assume that the claim is false. Then there

exists a sub-element ebad of e such thatD(ebad) contains an invalid input-profile but decomposition

of all sub-elements of ebad have valid input-profiles. We now do a case analysis on the structure of

ebad.

ebad cannot be a basic sub-element since input-profile of all basic sub-elements is valid. Also,

ebad cannot be of the form e1 + e2 because input-profiles in D(ebad) is a union of input-profiles in

D(e1) and D(e2). Hence, ebad is of the form e1 · e2.

The only way D(ebad) contains an invalid input-profile when all input profiles in D(e1) and

D(e2) are valid is the following: There exists a s1 ∈ D(e1) and s2 ∈ D(e2) such that Prof(s1) 6= ⊥

and Prof(s2) 6= ⊥ but Prof(s1 · s2) = ⊥. Then, wlog there exists j ∈ [`] such that Prof(s1) = 0

and Prof(s2) = 1. From the description of input profiles, there exists a basic sub-element ê1 of s1

such that S(ê1) ∩ Uj = Sjk,0 ∈ Sj for some k ∈ ind(j). Similarly, there exists a basic sub-element

ê2 of s2 such that S(ê2) ∩ Uj = Sjk′,1 ∈ Sj for some k ∈ ind(j).

Intuitively, using Claim 5, we show that there is no way of combining ê1 and ê2 to form a

valid element e such that S(e) ⊇ Uj . For this, we critically use the properties of the straddling

set system and the fact that the set used for encoding only grows as union of two disjoint sets (as

we do more multiplications). Hence, to obtain e using ê1 and ê2, we need to find a collection of

disjoint sets whose union along with S(ê1) and S(ê2) gives U. This is not possible by properties

of straddling sets. More formally, we have the following:

Since, ê1 is a basic sub-element of s1, by Claim 7, there exists a collection C1 such that S(s1) =

S(ê1) ∪
⋃
S∈C1 S. Similarly, there exists a collection C2 such that S(s2) = S(ê2) ∪

⋃
S∈C2 S.

131

Since (s1 · s2) is a valid multiplication,
(
S(ê1) ∪

⋃
S∈C1 S

)⋃ (
S(ê2) ∪

⋃
S∈C2 S

)
= S(s1 · s2) =

S(e1 · e2) = S(ebad).

Again, since ebad is a sub-element of e, using Claim 7, there exists a collection C such that

S(ebad) and C form a cover for S(e). This implies that there is an exact cover of U using both

Sjk,0 and Sjk′,1 for some k, k′ ∈ ind(j), j ∈ [`]. This is a contradiction to Claim 5 for straddling set

system Sj for Uj .

Finally, we prove the main claim of this section that D runs in polynomial time. First observe

that only multiplication can create new input profiles. We show that if e is an element of the form

e1 · e2 and D(e) contains a new input-profile then e must itself be a single-input element (that is,

D(e) will be the singleton set {e}). This means that the number of elements in the decomposition

of e is bounded by the number of sub-elements of e, and therefore is polynomial. To prove the

above we first observe that if D(e) is not a singleton, then either D(e1) or D(e2) are also not

singletons. Then we show that if D(e1) contains more than one input-profile then all input-profiles

in D(e1) must be complete. Here again we use the structure of the straddling set system and

therefore the multiplication e1 · e2 cannot contain any new profiles.

Claim 9. D(e) runs in polynomial time, i.e. number of elements in D(e) is polynomial.

Proof. Observe that the running time of D on e is polynomial in the number of the single-input

elements inD(e). Hence, to show thatD runs in polynomial time, we will show that the size of the

set D(e) is bounded by the number of sub-elements of e. More precisely, for each s ∈ D(e), we

show a single-input sub-element e′ of e such that Prof(e′) = Prof(s). Since D(e) has single input

elements with distinct profiles, we get that |D(e)| is polynomial since e has a polynomial number

of sub-elements.

For each s ∈ D(e), let e′ be the first sub-element of e such that D(e′) contains a single input

element with input-profile Prof(s) and decomposition of no sub-element of e′ contains a single-

input element with input-profile Prof(s). Then we claim that e′ is a single input element, i.e.

D(e′) = {e′}. We have the following cases.

e′ is a basic sub-element of e, then by definition,D(e′) = {e′}. Next, if e′ = e1+e2, then all the

input-profiles in D(e′) are either in e1 or e2. That is, e′ cannot be the first sub-element of e which
132

contains the input profile Prof(s). Finally, let e′ = e1 · e2. We need to show that D(e′) = {e′}.

Suppose not, that is |D(e′)| > 1. In this case, we will show that D(e′) cannot contain any new

input profiles. Let s′ ∈ D(e′) such that Prof(s) = Prof(s′).

By the definition of D, either |D(e1)| > 1 or D(e2) > 1. Wlog, let us assume that D(e1) > 1,

that is there exists s11, s12 ∈ D(e1) and s2 ∈ D(e2) such that s′ = s11 · s2. By the definition of D,

it holds that S(s11) = S(s12) and since the all the input-profiles in the decompisition are distinct

Prof(s11) 6= Prof(s12). Wlog, there exists a j ∈ [`] such that Prof(s11)j = 0 and Prof(s12)j ∈

{1, ∗}.

First, we claim that if S(s11) = S(s12) and Prof(s11)j = 0 then Prof(s12)j 6= ∗. By the

definition of input-profiles, S(x) ∩ Uj = ∅ if and only if Prof(x)j = ∗. Hence, if Prof(s11)j = 0

and Prof(s12)j = ∗ then S(s11)∩Uj 6= ∅ and S(s12)∩Uj = ∅. Then, S(s11) 6= S(s12), which is a

contradiction.

The remaining case is Prof(s11)j = 0 and Prof(s12)j = 1. We claim that there is no basic sub-

element s′11 of s11 such that S(s′11) ∩ Uj = Sjk,1. If this not true, then Prof(s11) = ⊥. Similarly,

for s12, there is no basic sub-element s′12 such that S(s′12) ∩ Uj = Sjk,0. This means that s11

and s12 have consistently used xj = 0 and xj = 1 in their evaluation. Now, by Claim 6, for

S(s11) = S(s12) it has to be the case that Uj ⊆ S(s11) = S(s12). By Claim 10, Prof(s11) is

complete. But, multiplying an element with complete profile to another element cannot lead to any

new valid profile. Hence, we get a contradiction to the assumption on e′.

Claim 10. If s is a single-input element such that Uj ⊆ S(s) for some j ∈ [`], then Prof(s) is

complete.

Proof. Since s is a single input element, Prof(s)j 6= ⊥. Also, Prof(s)j 6= ∗ because S(s)∩Uj 6= ∅.

Let Prof(s) = b for some b ∈ {0, 1}. Also, since Uj ⊆ S(s), for every i ∈ ind(j) there exists

a basic sub-element si of s such that S(si) ∩ Uj = Sji,b. Moreover, S(si) = S(i, b1, b2) such that

Prof(s)inp1(i) = b1 and Prof(s)inp2(i) = b2.

We will show that for any k ∈ [`], Prof(s)k 6= ∗. By the property of dual input relaxed

matrix branching program, there exists i∗ ∈ [n] such that wlog, (inp1(i∗), inp2(i∗)) = (j, k). Since

Uj ⊆ S(s), there exists a basic sub-element si∗ of s such that S(si∗) = S(i∗, b1, b2). Since

133

inp2(i) = k, Prof(s)k 6= ∗.

3.7.2 Simulation of Zero-testing

We first describe the simulation of the zero-testing at a high level and then will formally describe

the simulation. The simulator uses the decomposition algorithm defined in the previous section to

decompose the element e, that is to be zero tested, into single-input elements. Zero-testing of e

essentially involves zero-testing every element in its decomposition. Then we establish that if e

corresponds to a zero polynomial then indeed every element in the decomposition of e should cor-

respond to a zero polynomial. The intuition is that every element in its decomposition has product

of α’s which is different for every in its decomposition. And hence, with negligible probability

it happens that the α’s cancel out and yield a zero-polynomial. The only part left is to show that

indeed we can perform zero-testing on every element in decomposition individually. To perform

this we use the simulation algorithm defined in Section 3.3. We evaluate the polynomial corre-

sponding to the single-input element on the output of the simulation algorithm. We then argue

that the probability that if the single-input element was indeed a non-zero polynomial then with

negligible probability the polynomial evaluates to 0. This establishes that if the polynomial is a

non-zero polynomial then we can indeed detect some single-input element in its decomposition to

be non-zero with overwhelming probability.

We now describe zero testing performed by the simulator Sim. Denote the element to be zero tested

to be e and denote the polynomial computed by the circuit α(e) by pe.

1. Sim first executes the decomposition algorithm D described before on e. Denote the set of

resulting single-input elements by D(e). The output of Sim is either “Zero” or “Non-zero”

depending on whether the element is zero or not.

2. For every s ∈ D(e) execute the following steps:

(a) Find the input x that corresponds to the element s. More formally, denote x by Prof(s).

134

It then queries the F oracle on x to obtain F(x).

(b) Execute SimBP on input (1s,F(x)), where s is the size of the formula F to obtain the

following distribution represented by the random variable VSim
s .

{
s̃, B̃i,bi1,b

i
2
, t̃ : i ∈ [n], bi1 = xinp1(i), b

i
2 = xinp2(i)

}
(c) We evaluate the polynomial ps, which is the polynomial computed by the circuit α(s),

on VSim
s . If the evaluation yields a non-zero result then Sim outputs “Non-zero”.

3. For all s ∈ D(e), if ps(VSim
s) = 0 then Sim outputs “Zero”.

This completes the description of the zero-testing as performed by the simulator. We now argue

that the simulator runs in polynomial time.

Running time. From Claim 9 it follows that the first step, which is the execution of the decom-

position algorithm, takes polynomial time. We now analyse the running time of the steps (a), (b)

and (c). Step (a) takes linear time. The running time of Step (b) is essentially the running time

of SimBP which is again polynomial. Finally, Step (c) is executed in time which is proportional

to the number of queries made by the adversary to the oracle O(M) which are simulated by the

simulator. Since the number of queries is polynomial, even Step (c) is executed in polynomial

time. Finally we argue that the Steps (a), (b) and (c) are executed polynomially many times. This

follows from Claim 9 which shows that the number of elements in the decomposition is polynomial

and hence the number of iterations is polynomial. Hence, our simulator runs in polynomial time.

We prove the following two claims about the structure of the polynomial representing the element

to be zero tested that establishes the correctness of simulation. This will be useful when we will

show later that element is zero iff all the elements obtained by its decomposition are zero.

Claim 11. Consider an element e such that U ⊆ S(e). The polynomial computed by the circuit

α(e), denoted by pe, can be written as follows.

pe =
∑
s∈D(e)

ps =
∑
s∈D(e)

qProf(s) · α̃Prof(s)

135

where for every s ∈ D(e) the following holds.

1. The value α̃Prof(s) denotes the product
∏
i∈[n]

αi,bi1,bi2 where (bi1, b
i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)).

2. qProf(s) is a polynomial in s̃, t̃ and in the entries of B̃i,bi1,b
i
2
. Further the degree of every

variable in qProf(s) is 1.

Proof. Consider an element s ∈ D(e). As before denote the circuit representing s by α(s). Alter-

nately, we view α(s) as a polynomial with the kth monomial being represented by sk. Moreover,

the value sk satisfies the following three properties.

◦ For every sk we have that S(sk) = S(s) and therefore Uj ⊆ S(sk) for every j ∈ [l].

◦ The circuit α(sk) contains only multiplication gates.

◦ The basic sub-elements of each sk are a subset of the basic sub-elements of some s

From the first property and Claim 10, we have that Prof(sk) is complete. Since every basic sub-

element of sk is a also a sub-element of s and also because s is a sinlge-input element we have

that Prof(sk) = Prof(s). Further for every i ∈ [l], there exists a basic sub-element e′ of sk such

that S(e′) = S(i, bi1, b
i
2) for bi1 = Prof(sk)inp1(i) and bi2 = Prof(sk)inp2(i). There can be many such

basic sub-elements but the second property ensures that there is a unique such element. The only

basic elements given to the adversary as part of the obfuscation with index set S(i, bi1, b
i
2) are the

elements αi,bi1,bi2 ·B̃i,bi1,b
i
2
. From this it follows that we can write the polynomial ps as qProf(s) ·α̃Prof(s)

where qProf(s) and α̃Prof(s) are described in the claim statement.

Before we describe the next claim we will introduce some notation. Consider a random variable

X . Let g be a polynomial. We say that g(X) ≡ 0 if g is 0 on all the support of X . We define V real
C

to be the distribution of the assignment of the values to pe.

Claim 12. Consider an element e. Let pe be a polynomial of degree poly(n) represented by α(C).

If pe 6≡ 0 then the following holds.

PrV real
C

[pe(V real
C) = 0] = negl(n)

136

Proof. The claim would directly follow from Schwartz-Zippel lemma if the distribution corre-

sponding to the random variable V real
C is a uniform distribution or even if the distribution could be

computed by a low degree polynomial over values uniformly distributed over Zp. But this is not

true since the entries in R−1 cannot be expressed as a polynomial in the entries of R. To this end,

we do the following. We transform pe into another polynomial p′e and further transform V real
C into

another distribution Ṽ real
C such that the following holds:

- Pr
V real
C

[pe(V real
C) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C) = 0]

- The degree of p′e = poly(n).

- The distribution corresponding to V real
C can be computed by a polynomial over values that

are uniform over Zp.

In order to obtain p′e from pe we essentially replace the matrices R−1
i in pe with adjugate matrices

adj(Ri)
∏
j 6=i

det(Rj) where adj(Ri) = R−1
i · det(Ri). In a similar way we obtain Ṽ real

C from V real
C by

replacing all the assignment values corresponding to R−1
i by assignment values corresponding to

adj(Ri)
∏
j 6=i

det(Rj).

We now argue p′e satisfies all the three properties stated above. The following shows that the

first property is satisfied.

Pr
V real
C

[pe(V real
C) = 0] = Pr

V real
C

[pe(V real
C)

∏
i∈[n]

det(Rj) = 0]

= Pr
Ṽ real
C

[p′e(Ṽ real
C) = 0]

We now show that the second property is satisfied. The degree of
∏

i∈[n] det(Ri) is at most n · w

and hence the degree of p′e is at most n · w times the degree of pe, which is still a polynomial in

n. Finally, we show that that the third property is satisfied. To see this note that adj(Ri) can be

expressed as polynomial with degree at most w in the entries of Ri. Using this, we have that the

distribution corresponding to Ṽ real
C can be computed by a polynomial (of degree at most w) over

values that are uniform over Zp.

Now that we have constructed the polynomial p′e, we will invoke the Schwartz-Zippel lemma

137

on p′e to obtain the desired result as follows:

Pr
V real
C

[pe(V real
C) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C) = 0] = negl(n)

We now show that in order to zero-test an element it suffices to individually zero-test all the ele-

ments in its decomposition. This will complete the proof that our simulator satisfies the correctness

property.

Theorem 12. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed

by the circuit α(e). We have the following:

- If pe is a non-zero polynomial then ps(V real
C) = 0 with negligible (in n) probability, for some

s ∈ D(e).

- If pe is a zero polynomial then ps(V real
C) ≡ 0

Proof. We first consider the case when pe is a non-zero polynomial. From Claim 12, we have that

PrV real
C

[pe(V real
C) = 0] = 0 with negligible probability. Further since pe =

∑
s∈D(e) ps, we have the

following.

PrV real
C

[pe(V real
C) = 0] = PrV real

C
[∃s ∈ D(e) : ps(V real

C) = 0]

= negl(n)

Further We now move to the case when pe is a zero polynomial. We claim that ps is a zero

polynomial for every s ∈ D(e). From Claim 12 we know that ps can be expressed as qProf(s)·α̃i,bi1,bi2 ,

where (bi1, b
i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)). Observe that the marginal distribution of α̃Prof(s) is

uniform for every s ∈ D(e). Hence, qProf(s) should be zero on all points of its support. In other

words, qProf(s) ≡ 0 and hence, ps ≡ 0 thus proving the theorem

As a consequence of the above theorem, we prove the following corollary.

Corollary 13. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed

by the circuit α(e). We have the following.

- If pe is a non-zero polynomial then ps(VSim
s) = 0 with negligible (in n) probability, for some

s ∈ D(e).

138

- If pe is a zero polynomial then ps(VSim
s) ≡ 0.

The proof of the above corollary follows from the above theorem and the following claim. This

completes the proof of correctness of the simulation of zero-testing.

Claim 13. For every single-input element s such that U ⊆ S we have that the assignment VSim
s ,

which is the distribution output by SimBP, and the assignment to the same subset of variables in

V real
C are identically distributed.

Proof. The distributions of the following variables generated by Sim and O(F) are identical from

Theorem 9:

R0,
{
Bi,bi1,b

i
2
i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
, Rn

Further, the following variables are sampled uniformly at random both by Sim and by O(F):

{
αi,bi1,bi2 : i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
The claim follows from the fact that the assignment VSim

s generated by Sim and the assignment to

the same subset of variables in V real
C are both computed from the above values in the same way.

139

REFERENCES

[ABG13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
“Differing-Inputs Obfuscation and Applications.” IACR Cryptology ePrint Archive,
2013:689, 2013. 3

[App14] Benny Applebaum. “Bootstrapping Obfuscators via Fast Pseudorandom Functions.”
In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, pp. 162–172, 2014. 13, 18

[Bar86] David A. Mix Barrington. “Bounded-Width Polynomial-Size Branching Programs
Recognize Exactly Those Languages in NC1.” In Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California,
USA, pp. 1–5, 1986. 13, 104, 109

[BB94] Maria Luisa Bonet and Samuel R. Buss. “Size-Depth Tradeoffs for Boolean Fomulae.”
Inf. Process. Lett., 49(3):151–155, 1994. 14, 15

[BBC14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. “Obfuscation for Evasive Functions.” In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pp. 26–51, 2014. 3

[BCC14] Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai, Omer
Paneth, and Alon Rosen. “The Impossibility of Obfuscation with Auxiliary Input or
a Universal Simulator.” In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part II, pp. 71–89, 2014. 3

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. “On Extractability Obfuscation.” In
Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24-26, 2014. Proceedings, pp. 52–73, 2014. 3

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. “Indistinguishability Obfus-
cation and UCEs: The Case of Computationally Unpredictable Sources.” In Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part I, pp. 188–205, 2014. 3

[BGI01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. “On the (Im)possibility of Obfuscating Programs.” In Ad-
vances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pp. 1–18,
2001. 1, 10, 19, 20

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. “Functional Signatures and Pseu-
dorandom Functions.” In Public-Key Cryptography - PKC 2014 - 17th International

140

Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Ar-
gentina, March 26-28, 2014. Proceedings, pp. 501–519, 2014. 22, 23

[BGK14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. “Pro-
tecting Obfuscation against Algebraic Attacks.” In Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
pp. 221–238, 2014. 4, 12, 13, 15, 16, 17, 19, 20, 101, 103, 104, 112, 119, 121, 125,
129

[BH15] Mihir Bellare and Viet Tung Hoang. “Adaptive Witness Encryption and Asymmet-
ric Password-Based Cryptography.” In Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key Cryptography,
Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, pp. 308–331, 2015.
3

[BP15] Elette Boyle and Rafael Pass. “Limits of Extractability Assumptions with Distribu-
tional Auxiliary Input.” In Advances in Cryptology - ASIACRYPT 2015 - 21st Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings,
Part II, pp. 236–261, 2015. 3

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols.” In CCS ’93, Proceedings of the 1st ACM Conference
on Computer and Communications Security, Fairfax, Virginia, USA, November 3-5,
1993., pp. 62–73, 1993. 20

[BR14a] Zvika Brakerski and Guy N. Rothblum. “Black-box obfuscation for d-CNFs.” In
Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January
12-14, 2014, pp. 235–250, 2014. 3

[BR14b] Zvika Brakerski and Guy N. Rothblum. “Virtual Black-Box Obfuscation for All Cir-
cuits via Generic Graded Encoding.” In Theory of Cryptography - 11th Theory of
Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pp. 1–25, 2014. 3, 12, 13, 15, 16, 17, 104

[BST14] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. “Poly-Many Hardcore Bits
for Any One-Way Function and a Framework for Differing-Inputs Obfuscation.” In
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, pp. 102–121, 2014. 3

[BW13] Dan Boneh and Brent Waters. “Constrained Pseudorandom Functions and Their Ap-
plications.” In Advances in Cryptology - ASIACRYPT 2013 - 19th International Con-
ference on the Theory and Application of Cryptology and Information Security, Ben-
galuru, India, December 1-5, 2013, Proceedings, Part II, pp. 280–300, 2013. 22, 23

141

[CFI03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. “Efficient Multi-party
Computation over Rings.” In Advances in Cryptology - EUROCRYPT 2003, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings, pp. 596–613, 2003. 14, 112, 114

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology,
revisited.” J. ACM, 51(4):557–594, 2004. 20

[Cle90] Richard Cleve. “Towards Optimal Simulations of Formulas by Bounded-Width Pro-
grams.” In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA, pp. 271–277, 1990. 15, 109

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. “Practical Multilinear
Maps over the Integers.” In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pp. 476–493, 2013. 14, 16

[DH76] Whitfield Diffie and Martin E. Hellman. “Multiuser cryptographic techniques.” In
American Federation of Information Processing Societies: 1976 National Computer
Conference, 7-10 June 1976, New York, NY, USA, pp. 109–112, 1976. 1

[EFF85] P Erdös, P. Frankl, and Z. Füredi. “Families of finite sets in which no set is covered by
the union of r others.” Israel Journal of Mathematics, 51(1-2):79–89, 1985. 11, 25

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. “A minimal model for secure computation
(extended abstract).” In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pp. 554–563,
1994. 14, 15, 105

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple NonInteractive Zero Knowledge
Proofs Under General Assumptions.” SIAM J. Comput., 29(1):1–28, 1999. 24

[GGG14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. “Multi-input Functional
Encryption.” In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, pp. 578–602, 2014. 3, 7, 8, 9

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. “Candidate Multilinear Maps from
Ideal Lattices.” In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pp. 1–17, 2013. 13, 14, 16, 119

[GGH13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. “Candidate Indistinguishability Obfuscation and Functional Encryption for
all Circuits.” In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pp. 40–49, 2013. 3, 4, 9, 12,
13, 15, 16, 17, 21, 22, 23, 34, 63, 103, 104, 112

142

[GGH14a] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. “Two-Round Secure
MPC from Indistinguishability Obfuscation.” In Theory of Cryptography - 11th The-
ory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26,
2014. Proceedings, pp. 74–94, 2014. 3

[GGH14b] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. “On the Implausibility
of Differing-Inputs Obfuscation and Extractable Witness Encryption with Auxiliary
Input.” In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pp. 518–535,
2014. 3

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random
Functions (Extended Abstract).” In 25th Annual Symposium on Foundations of Com-
puter Science, West Palm Beach, Florida, USA, 24-26 October 1984, pp. 464–479,
1984. 23

[GHR14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. “Outsourcing Pri-
vate RAM Computation.” In 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pp. 404–413,
2014. 3, 7, 32, 33

[Gie01] Oliver Giel. “Branching Program Size Is Almost Linear in Formula Size.” J. Comput.
Syst. Sci., 63(2):222–235, 2001. 15, 16, 17, 19, 111

[GIS10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
“Founding Cryptography on Tamper-Proof Hardware Tokens.” In Theory of Cryp-
tography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings, pp. 308–326, 2010. 13, 18

[GJK15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. “Functional Encryp-
tion for Randomized Functionalities.” In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, pp. 325–351, 2015. 3

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. “Replacing a Random Oracle:
Full Domain Hash from Indistinguishability Obfuscation.” In Advances in Cryptol-
ogy - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings, pp. 201–220, 2014. 3

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of
Algorithms and combinatorics. Springer, 2012. 14

[Khr78] V.M. Khrapchenko. “On a relation between the complexity and the depth.” Metody
Diskretnogo Analiza Synthesis of Control Systems, 32:76–94, 1978. 14

[Kil88] Joe Kilian. “Founding Cryptography on Oblivious Transfer.” In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pp. 20–31, 1988. 114

143

[KNY14] Ilan Komargodski, Moni Naor, and Eylon Yogev. “Secret-Sharing for NP.” In Ad-
vances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, pp. 254–273, 2014. 3

[KPT13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
“Delegatable pseudorandom functions and applications.” In 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pp. 669–684, 2013. 22, 23

[KRS99] Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. “Coding Constructions for Black-
listing Problems without Computational Assumptions.” In Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 15-19, 1999, Proceedings, pp. 609–623, 1999. 11, 25

[LS14] Hyung Tae Lee and Jae Hong Seo. “Security Analysis of Multilinear Maps over the In-
tegers.” In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pp. 224–240,
2014. 16

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. “GGHLite: More Efficient Mul-
tilinear Maps from Ideal Lattices.” In Advances in Cryptology - EUROCRYPT 2014
- 33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pp. 239–
256, 2014. 16

[Mas76] William J. Masek. “A fast algorithm for the string editing problem and decision graph
complexity.”, 1976. 15, 109

[MO14] Antonio Marcedone and Claudio Orlandi. “Obfuscation ⇒ (IND-CPA Security !⇒
Circular Security).” In Security and Cryptography for Networks - 9th International
Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, pp. 77–90,
2014. 3

[MR13] Tal Moran and Alon Rosen. “There is no Indistinguishability Obfuscation in Pessi-
land.” IACR Cryptology ePrint Archive, 2013:643, 2013. 3

[NY90] Moni Naor and Moti Yung. “Public-key Cryptosystems Provably Secure against Cho-
sen Ciphertext Attacks.” In Proceedings of the 22nd Annual ACM Symposium on The-
ory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pp. 427–437, 1990.
34, 63

[PM76] Franco P. Preparata and David E. Muller. “Efficient Parallel Evaluation of Boolean
Expression.” IEEE Trans. Computers, 25(5):548–549, 1976. 14, 19

[PPS15] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. “Obfuscation-Based Non-
black-box Simulation and Four Message Concurrent Zero Knowledge for NP.” In
Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, War-
saw, Poland, March 23-25, 2015, Proceedings, Part II, pp. 638–667, 2015. 3

144

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. “Indistinguishability Obfuscation from
Semantically-Secure Multilinear Encodings.” In Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, pp. 500–517, 2014. 104

[PZ93] Mike Paterson and Uri Zwick. “Shallow Circuits and Concise Formulae for Multiple
Addition and Multiplication.” Computational Complexity, 3:262–291, 1993. 18

[Sah99] Amit Sahai. “Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security.” In 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, 17-18 October, 1999, New York, NY, USA, pp. 543–553, 1999. 34, 63

[Ser14] I. S. Sergeev. “Upper bounds for the formula size of symmetric Boolean functions.”
Russian Mathematics, 58 (5):30–42, 2014. 18

[SW14] Amit Sahai and Brent Waters. “How to use indistinguishability obfuscation: deniable
encryption, and more.” In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pp. 475–484, 2014. 3, 11, 12, 22, 38, 67

[SWW99] Martin Sauerhoff, Ingo Wegener, and Ralph Werchner. “Relating Branching Program
Size and Formula Size over the Full Binary Basis.” In STACS 99, 16th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Trier, Germany, March 4-6, 1999,
Proceedings, pp. 57–67, 1999. 109

145

	Introduction
	Hosting Services on an Untrusted Cloud
	Optimizing Obfuscation

	Hosting Services on an Untrusted Cloud
	Prelims
	Public Key Encryption Scheme
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Statistical Simulation-Sound Non-Interactive Zero-Knowledge
	Cover-Free Set Systems and Authentication Schemes.

	Secure Cloud Service Scheme (SCSS) Model
	Additional Properties.
	Secure Cloud Service Scheme with Cloud Inputs.

	Our Secure Cloud Service Scheme
	Security Proof Overview
	Formal Security Proof

	Our Secure Cloud Service Scheme with Cloud Inputs
	Security Proofs for Secure Cloud Service Scheme with Cloud Inputs

	Optimizing Obfuscation: Avoiding Barrington's Theorem
	Preliminaries
	``Virtual Black-Box" Obfuscation in an Idealized Model
	Boolean Formulae
	Branching Programs
	Relaxed Matrix Branching Programs

	From Branching Programs to Relaxed Matrix Branching Programs
	From Formula to Relaxed Matrix Branching Program

	Randomization of Random Matrix Branching Programs
	Ideal Graded Encoding Model
	Straddling Set System
	Obfuscation in the Idealized Graded Encoding Model
	Proof of Virtual Black Box Obfuscation in the Idealised Graded Encoding Model
	Decomposition to Single-Input Elements
	Simulation of Zero-testing

	References

