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ABSTRACT OF THE THESIS

Millimeter Waves in Single-Carrier Massive MIMO Transmissions

by

Nader P. BEIGI

Master of Science in Electrical Engineering

University of California, Irvine, 2017

Professor Ender Ayanoglu, Chair

This work presents a single-carrier transmission for the frequency selec-

tive Gaussian multi-user channel. It considers both dependent and independent

channel cases and compares them in terms of the user sum-rate as well as the

general performance. We developed a general expression for the achievable rate

among users in the channel with a particular type of correlation. In this channel,

the conventional channel matched filter does not perform as expected. We ap-

plied three different precoders to enhance the performance. Their performances

are determined by simulations.

We showed the superiority of the precoders with a large number of users

through simulations. By increasing the number of users in the system, the con-

ventional pre-coders showed better performance in terms of the user sum-rates.

We showed that a correlation not only between antennas, but also between taps

can affect the performance of the channel matched filter.
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Chapter 1

Millimeter Waves

1.1 Introduction

A basic introduction for millimeter waves (mmW) is that their frequencies are

between 30GHz and 300GHz. Millimeter waves are a new area for cellular

communications that offer greater bandwidth and further gains via beamform-

ing and spatial multiplexing from multi-element antenna arrays [3]. Since de-

mand for cellular data has been increasing significantly during recent years with

conservative estimates ranging from 40% to 70% increase in traffic each year

[3], using millimeter waves can be a solution to the need to support it. This

growth in demand for cellular data implies that within the next decades, there

will be as much as 1000 times data that current levels of capacity can deliver.

As a matter of fact, many new devices will require wireless services within the

next decades due to the benefits of wireless connectivity move beyond smart-

phones, tablets, and other means of communications.

Using millimeter waves instead of current frequency bands can be a sugges-

tion to answer growing demands for cellular data in the future. The available

bandwidth in millimeter waves bands are much wider than today’s cellular net-

works. The available spectrum at these higher frequencies can be two orders of
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magnitude greater than all cellular allocations today that are largely constrained

to the Radio Frequency (RF) spectrum under 3GHz [3]. These tremendous po-

tentials have led to noticeable increasing interest in millimeter waves both in

industry and academia. There is a growing belief that millimeter waves will

play a significant role in future cellular communications systems.

Despite the fact that other aspects of cellular mobile technology have been

tremendously progressed since digital cellular systems have been considered as

a major vehicle for communications, the carrier frequencies of those systems

remain mainly the same. With today’s severe shortage of spectrum, and be-

cause technology has reached the point of being able to support them, it will be

very useful to unleash those frequencies that have not been considered before.

However, it should be kept in mind that the development of millimeter waves

in future cellular networks may still face some technical obstacles.

Due to the higher frequencies of millimeter wave transmissions, any in-

crease in omnidirectional path loss can be completely compensated through di-

rectional transmission and beamforming. However, transmission through mil-

limeter wave bands can result in outages and intermittent channel quality be-

cause signals in millimeter wave bandwidth can be vulnerable to shadowing.

Also, power consumption by the user’s device can be very high to support a

large number of antennas with wide bandwidths. Other obstacles to millime-

ter waves cellular transmission are limited signal range for Non-Line-Of-Sight

(NLOS) propagation and links with long distances. There are a large number

of studies for indoor applications of millimeter waves, but the outdoor studies

are relatively new [3].
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1.2 History of Millimeter Waves

As it is mentioned before, millimeter wave signals refer to wavelengths from

1mm to 10mm, which corresponds to frequencies in the range of 30GHz to

300GHz. Wireless communications in millimeter wave bands is not new, the

first millimeter communications were demonstrate more than 100 years ago [3].

Currently, millimeter wave bands are used mostly for satellite communications

and cellular backhaul. Also, millimeter wave bands have been recently used

for very hight throughput wireless LANs and personal area network systems in

the unlicensed 60GHz band [3]. Most applications (even those new ones) are

mostly for short range or point-to-point Line-Of-Sight (LOS) settings.

As it is mentioned before, the application of millimeter wave bands for

longer range or NLOS cellular scenarios is a new field and the feasibility of

such systems has been the subject of debate. Although millimeter wave spec-

trum offers greater bandwidth and more gains than current cellular communi-

cations network, there is a fear that the propagation of millimeter wave bands

might not be as favorable as it is thought to be. Signals in millimeter wave bands

suffer from shadowing, intermittent connectivity, and will have higher Doppler

spreads. with these limitations in mind, there are considerable skepticisms that

millimeter wave bands would be viable for cellular systems that require reliable

communication across longer range and NLOS paths [3]. It should be noted that

significant progress has been made in particular in power amplifiers and array

combining, and these technologies can advance further with the growth of fre-

quency range in wireless system.
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1.3 Challenges Ahead

Despite all potentials and benefits of millimeter wave bands in cellular systems,

there are a number of major challenges as we will discuss below.

1.3.1 Range and Directionality

It can be shown that the omnidirectional path loss in free space grows with

the square of the frequency (Friis’ transmission law [3]). Therefore, one might

think that higher frequencies of millimeter wave bands can increase the propa-

gation loss in free space. However, the smaller wavelength of millimeter wave

signals can enable greater antenna gains for the same size of antennas. Thus, the

frequencies of the signals in millimeter wave bands will not increase the prop-

agation loss. Note that the reliance on highly directional transmissions might

need certain changes in design of the current cellular systems [3].

1.3.2 Shadowing Effect

As it is mentioned before, one of the major concerns is millimeter wave sig-

nals are extremely vulnerable to shadowing. For example, human bodies can

result in 20dB to 35dB loss. One might think because signals in the millimeter

wave bands are susceptible to shadowing, usage of these signals is not practical.

However, one can see the human body and other obstacles resulting shadowing

and their reflective nature as a main source of scattering for millimeter wave

propagation. Also, humidity and rain fades, the most common issues for the

long range millimeter wave backhaul links, are not a problem in cellular sys-

tems [3].
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1.3.3 Intermittent Connectivity

Due to the higher frequencies of millimeter wave signals, Doppler effect will

be much faster than today’s cellular systems. As we know, channel coherence

time is linear in the carrier frequency for a given mobile velocity. This means

that coherence time in the millimeter wave range is very small and the channel

changes faster than today’s cellular systems. Also, appearance of the obsta-

cles will lead to more swings in path loss due to the high levels of shadowing.

However, beamforming can resolve this issue and in addition, millimeter wave

systems will be built for smaller cell size than today’s [3]. This means that

relative path loss and cell association will also change rapidly. Therefore, com-

munication will need to be rapidly adoptable for the future cellular systems.

1.3.4 Multiuser Coordination

As it is mentioned before, current application of millimeter wave transmission

are mostly focused on point-to-point or local links (such as LAN and PAN

system) with limited number of users. New mechanisms will be needed to

coordinate simultaneous transmissions on multiple interfering links to achieve

high spatial reuse and spectral efficiency in cellular systems.

1.3.5 Power Consumption

Another key challenge of millimeter wave bands is that in order to increase

the gains of antenna arrays, wide bandwidth of the millimeter wave signal con-

sumes a lot of power in the A/D conversion. Note that power consumption

scales linearly in the sampling rate and exponentially in the number of bits per

each sample [3]. This makes high-resolution quantization at side bandwidths

and large number of antennas prohibitive for low-power and low-cost devices.

5



Also, for phased array antennas, efficient RF power amplification and combin-

ing will be needed [3].

1.4 Conclusion

Future wireless networks will have bandwidths centered on carrier frequencies

larger than 10GHz [4]. One can say despite the large path loss, millimeter

wave frequencies can be successfully used to transmit large data-rate over short

distances or slow-moving users (due to the distance and Doppler effects as we

discussed before).

Millimeter wave bands systems have tremendous potentials and using them

in cellular networks can lead to surprising benefits such as greater spectrum and

further gains from high dimensional antenna arrays. However, as we mentioned

in this chapter, millimeter wave cellular systems may need to be significantly

redesigned to obtain the full potentials of millimeter wave bands. Reliance

on directional transmissions and beamforming lead to reconsideration of many

aspects of current cellular systems [3].

In addition, interference mitigation has been dominant in new cellular tech-

nologies in the past few decades. This might have a less significant impact

on millimeter wave systems due to the directional isolation between links. On

the other hand, technologies such as carrier aggregation and multihop relaying

which have modest benefits in current cellular networks can play significant

roles in the millimeter wave space [3].

During next chapters, we will show some millimeter wave applications on

ideal and real channels and see the quality of the performance of millimeter

wave signals in an environment of noise and interference.
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Chapter 2

Independent AWGN Channel

2.1 Introduction

We begin by the description of what we mean by the independent channel.

It is a frequency-selective multiple-user, multiple-input, multiple-output (MU-

MIMO) downlink channel, with M base station antennas and K single antenna

users. Independent channel here means different delay components, users, and

base station antennas are independent from each other. By using the term inde-

pendent, we do not mean that these different components have no interference

on each other. Later on, we will see how they interfere with one another and

discuss how to deal with it. The development we will provide in this chapter

is based on [1], however, we will discuss some of the derivation in [1] in more

detail here.

The channel between the m-th transmit antenna and the k-th user can be

modeled as a finite impulse response (FIR) filter with L taps. The L taps cor-

respond to different delay components. The l-th channel tap can be written as√
dl[k]h∗l [m, k] where dl[k] and h∗l [m, k] correspond to the slow-varying and

fast-varying components of the channel, respectively. The variables dl[k]’s rep-

resent the Power Delay Profile (PDP) of the frequency-selective channel. We
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assume that the slow-varying component, i.e.,
√
dl[k] is fixed (as it is assumed

in [1]). When we say the channel is independent, we mean the matrix of the

fast-varying components of the channel has independent and identically dis-

tributed (i.i.d.) elements (i.e., h∗l [m, k]’s are i.i.d. and they are fixed during the

transmission of N symbols).

We know in the case that the channel is independent (for users, taps, and

base station antennas), the channel matched filter is the best option to use. With

this in mind, the channel matched filter can recover the desired signal out of

the received one while maximizing the output Signal-to-Noise Ratio (SNR) in

the presence of Additive White Gaussian Noise (AWGN). We also assume the

independent channel has AWGN at each receive antenna.

2.2 Channel Matched Filter

We will now describe the system model in more detail. The transmitted symbols

from base station antennas could be sent out without any preprocessing. But

here we choose to use the optimum precoder, which is actually the channel

matched filter. We note the difference with the common use of the channel

matched filter in that we place it on the transmitter, not the receiver side. As

we will show, as long as the channel is independent from taps, users, and base

station antennas, the channel matched filter will perform in an optimum manner.

2.2.1 System Model

We now describe the system model in detail. Assume xm[i] is the symbol trans-

mitted from transmit antenna m at time i, and yk[i] is the signal that the k-th

user receives at time i. The received signal will be obtained after the convolu-

tion of the transmitted signal with the channel and AWGN and can be written

8



as

yk[i] =
L−1∑
l=0

M∑
m=1

√
dl[k]h∗l [m, k]xm[i− l] + nk[i], (1)

where nk[i] is the CN (0, 1) distributed AWGN at the k-th user and at time i.

The channel PDP for each user is normalized such that

L−1∑
l=0

dl[k] = 1,∀k = 1, · · · , K. (2)

The channel PDP possesses the distribution of the received power across differ-

ent channel taps. The base station is assumed to have full Channel State Infor-

mation (CSI), whereas the users only have knowledge of the channel statis-

tics. We can express (2.1) in matrix format. This will enable more com-

pact notation and simplicity in the sequel. First, we need to define ~y[i] ,

[y1[i], · · · , yK [i]]T ∈ CK and ~x[i] , [x1[i], · · · , xM [i]]T ∈ CM as the vec-

tor of received user symbols and the vector of transmitted symbols at time

i, respectively. Let ~n[i] , [n1[i], · · · , nK [i]]T be AWGN with independent

components (we assume it has Gaussian distribution). We also need to define

Dl , diag{dl[1], · · · , dL[k]}, and Hl ∈ CM×K which is a matrix whose [m, k]-

th element is hl[m, k]. With all of these in mind, the received signal vector at

time i can be written as

~y[i] =
L−1∑
l=0

D
1
2
l HH

l ~x[i− l] + ~n[i]. (3)

We can use different techniques to build the transmitted symbol. We can send

the symbol out all by its own, without any equalization or pre-coder. However,

in this section we will employ the channel matched filter as the precoder and

we will analyze its performance. So let’s say sk[i] is the information symbol

to be communicated to the k-th user at time i. We will use the vector form for

9



information symbols such that ~s[i] , [s1[i], · · · , sK [i]]T and it is considered

to have independent and identically distributed CN (0, 1) components. In other

words, E[~s[i]~sH [i + j]] = IKδj , and E[~s[i]~sT [i + j]] = 0 (correlation between

transmit symbols at time i and i + j). As we mentioned before and it is stated

in [1], in this chapter we consider the matched filter precoding scheme, where

the transmitted vector at time i is given by

~x[i] =

√
ρf
MK

L−1∑
l=0

HlD
1
2
l ~s[i+ l], (4)

in which ρf = E[‖~x[i]‖2] is actually the long-term average total power radiated

by the base station antennas.

Proof. To prove that ρf = E[‖~x[i]‖2] we need to calculate an expectation of

(2.4) over ~s[i]. So

E
[
‖~x[i]‖2

]
=

ρf
MK

× E
[ L−1∑
l′=0

~sH [i+ l′]D
1
2

l′H
H
l′

L−1∑
l=0

HlD
1
2
l ~s[i+ l]

]
. (5)

To calculate (2.5), we consider two cases where l 6= l′ or l = l′. With indepen-

dent and identically distributed complex normal entries in Hl, the value of the

expectation in (2.5) is zero when l 6= l′. So we only need to consider the case

that l = l′ in which case (2.5) can be written as

E
[
‖~x[i]‖2

]
=

ρf
MK

× E
[ L−1∑

l

~sH [i+ l]D
1
2
l HH

l HlD
1
2
l ~s[i+ l]

]
. (6)
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For fixed K, we can show that as M →∞ the value HH
l Hl →M × IK . So we

can rewrite (2.6) as

E
[
‖~x[i]‖2

]
=
ρf
K
× E

[ L−1∑
l=0

~sH [i+ l]Dl~s[i+ l]
]

=
ρf
K
× E

[ L−1∑
l=0

K∑
q=1

∣∣~sq[i+ l]
∣∣2√dl[q]

]

=
ρf
K

L−1∑
l=0

K∑
q=1

E
[∣∣~sq[i+ l]

∣∣2]√dl[q].

(7)

Using (2.2) and the fact that information symbols are CN (0, 1) we have

E
[
‖~x[i]‖2

]
=
ρf
K
×

K∑
q=1

1 = ρf . (8)

As a result, the average of the transmitted signal power is equal to ρf .

Later on, we will use this ρf to simulate the channel with different signal

power.

2.2.2 Desired Signal and Effective Noise

First, we define ~vl[k] , HlD
1/2
l ~ek, in which ~ek is the vector with all of its

elements equal to 0 except the k-th element which is equal to 1. It is going to

be used to make the matrix format of our equations simpler. Now we can use

(2.3) and (2.4) to rewrite the signal received by the user k at time i. As a result,

yk[i] is given as

yk[i] =

√
ρf
MK

( L−1∑
l=0

E
[
~vHl [k]~vl[k]

])
sk[i]︸ ︷︷ ︸

Desired Signal Term

+ n′k[i]︸︷︷︸
Effective Noise Term

, (9)
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where n′k[i] is the actual effective noise term and can be written as [1]

n′k[i] =

√
ρf
MK

L−1∑
l=0

(
~vHl [k]~vl[k]− E[~vHl [k]~vl[k]]

)
sk[i]︸ ︷︷ ︸

Additional Interference Term (IF)

+

√
ρf
MK

L−1∑
a=1−L
a6=0

min(L−1+a,L−1)∑
l=max(a,0)

~vHl [k]~vl−a[k]sk[i− a]

︸ ︷︷ ︸
Inter−Symbol Interference (ISI)

+

√
ρf
MK

K∑
q=1
q 6=k

L−1∑
a=1−L

min(L−1+a,L−1)∑
l=max(a,0)

~vHl [k]~vl−a[q]sq[i− a]

︸ ︷︷ ︸
Multi−User Interference (MUI)

+ nk[i]︸︷︷︸
AWGN

.

(10)

The effective noise term includes four different parts, (i) the additional in-

terference (IF) term that we acquired by splitting the coefficient of the term√
ρf
MK

∑L−1
l=0 ~v

H
l [k]~vl[k]sk[i] into a sum of its mean value (which is known to

the receiver) and the deviation around its mean (hence, this term represents the

variation of the desired signal around its mean), (ii) the Intersymbol Interfer-

ence (ISI) term between the current symbol of the user k and symbols intended

to the same users at other time instances (i.e., sk[i + j], j 6= 0), (iii) the Mul-

tiuser Interference (MUI) term from other information symbols intended for

other users, and (iv) AWGN of the channel. All these interference terms in the

effective noise show that the effective noise is no longer Gaussian.

2.3 Sum-Rate of the Users

In the general case, the variance of the effective noise depends on the channel

realization and the channel statistics. We assume codewords are long enough

12



to make the effective noise variance independent from a particular channel re-

alization and only dependent on channel statistics. With this assumption, the

desired signal will be uncorrelated with the effective noise n′k[i] which means

E
[
sk[i]n

′
k[i]
]

= 0 (the expectation is taken over channel realization, the infor-

mation symbols, and additive noise). Together with the assumption that we

made (long enough codewords) that the noise in the channel is effectively addi-

tive non-Gaussian and uncorrelated with the information symbols (i.e., sk[i]).

2.3.1 Noise and the PDP

With all that we mentioned before and assuming that the user has the perfect

knowledge of its channel statistics (it means the user knows the scaling factor,

i.e.,
∑L−1

l=0 E
[
~vHl [k]~vL[k]

]
), we can say we will try to compute the achievable

rate by considering the worst case in the channel. Given that the data signal

sk[i] is Gaussian, the worst uncorrelated additive noise is circularly symmetric

Gaussian distributed with the same variance as the effective noise, i.e., n′k[i] [1].

Hence, we can use the following expression to compute the achievable rate for

the k-th receiver (user)

Rk = log2

(
1 + Sk/Var(n′k[i])

)
, (11)

where Sk is the average power of the desired signal term and can be calculated

by

Sk = Esk[i]

[∣∣∣∣√ ρf
MK

L−1∑
l=0

E
[
~vHl [k]~vl[k]

]
sk[i]

∣∣∣∣2]. (12)

Also the term n′k[i] is the effective noise variance and can be computed by

Var(n′k[i]) , E
[∣∣∣∣n′k[i]− E

[
n′k[i]

]∣∣∣∣2]. (13)
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Both of the equations above are acquired from (2.9). Note that the effective

noise variance is invariant of any channel PDP that satisfies (2.2). With this in

mind, we can compute the effective noise variance as

Var(n′k[i]) = ρf + 1. (14)

Proof. Using the expanded version of the effective noise variance which is pro-

vided in (2.10), we can rewrite the effective noise variance as

Var(n′k[i]) =
ρf
K

K∑
q=1

L−1∑
a=1

L−1∑
l=a

(
dl−a[k]dl[q] + dl[k]dl−a[q]

)
+
ρf
K

K∑
q=1

L−1∑
l=0

(
dl[k]dl[q]

)
+ 1,

(15)

where the expectation is taken over the statistics of the channel realization (here

only Hl), data symbols (i.e., sk[i + a]), and the additive white Gaussian noise

(i.e., nk[i]). As it is exactly stated in [1], we define ∆∆∆ ∈ RK×L such that

[∆∆∆]i,j = dj−1[i] and E ∈ {1}L×L denotes the matrix with all entries equal to 1.

Then, we can rewrite (2.16) as

Var(n′k[i]) =
ρf
K

K∑
q=1

L−1∑
a=1

L−1∑
l=a

~eTk∆∆∆
(
~el−a+1~e

T
l=1 + ~el+1~e

T
l−a+1

)
∆∆∆T~eq

+
ρf
K

K∑
q=1

~eTk∆∆∆∆∆∆T~eq + 1 =
ρf
K

K∑
q=1

~eTk∆∆∆E∆∆∆T + 1.

(16)

Using (2.2), it is shown that ~eTk∆∆∆E = [1, · · · , 1]. From this fact and (2.16), one

can conclude (2.14).

After (2.14) is proved, we provide an explanation from [1] as to why the

variance of the effective noise term is invariant of the PDP. The precoder in
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(2.4) is a matched filter whose impulse response is a time reverse and complex-

conjugated image of the Channel Impulse Response (CIR). Hence, n′k[i] is com-

posed of terms which consist of all non-zero auto-correlation lags of the CIR

for the k-th user (ISI term in (2.10)), as well as all cross-correlation lags be-

tween CIR of user k and the CIR of the remaining (K − 1) users (MUI term in

(2.10)). The effective MUI in yk[i] from the symbols intended for the q-th user

depends only upon the total power in all channel correlation lags between CIRs

of user k and user q. Due to the same channel and information symbol statistics

for all users, the effective MUI in yk[i] from each of the remaining (K − 1)

users is identical, and is independent of the individual PDPs. This means the

total power in cross-correlation lags depends only upon the total power in the

CIR for each user, which is independent of k due to (2.2).

2.3.2 Achievable Rate

The useful signal term in (2.9) is proportional to the zero-lag auto-correlation of

the CIR for the k-th user. We claim that this zero-lag auto-correlation is O(M)

since it is the maximum gain combining of the lags and is proportional to the

combining all tags power, which is proportional to the total channel power gain

from the M base station antennas to the user k. Therefore, it is O(M). With

this in mind and all the information we had from the noise and the channel PDP,

we can say the average power of the desired signal in (2.9) is given by

Sk = Esk[i]

[∣∣∣∣√ ρf
MK

L−1∑
l=0

E
[
~vHl [k]~vl[k]

]
sk[i]

∣∣∣∣2] =
M

K
ρf . (17)
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Proof. We are going to derive (2.17) step by step. First we have

Sk =
ρf
MK

× Esk[i]

[∣∣∣∣ L−1∑
l=0

E
[
~vHl [k]~vl[k]

]
sk[i]

∣∣∣∣2]

=
ρf
MK

× Esk[i]

[ L−1∑
l′=0

sHk [i]E
[
~vHl′ [k]~vl′ [k]

]
×

L−1∑
l=0

E
[
~vHl [k]~vl[k]

]
sk[i]

]
.

(18)

For now, let’s focus on the first multiplier, which is

L−1∑
l′=0

sHk [i]E
[
~vHl′ [k]~vl′ [k]

]
=

L−1∑
l′

sHk [i]E
[
~eTk D1/2

l′ HH
l′ Hl′D

1/2
l′ ~ek

]
. (19)

Note hereM � K, so theK singular values of Hl are all roughly equal to
√
M

(as it is stated in (2.6)) [1]. So we can rewrite the expectation as

Sk =
ρf
MK

× Esk[i]

[∣∣∣∣ L−1∑
l=0

E
[
~vHl [k]~vl[k]

]
sk[i]

∣∣∣∣2]

=
M

K
ρf × E

[ L−1∑
l′=0

L−1∑
l=0

sHk [i]E
[
~eTk Dl′~ek

]
E
[
~eTk Dl~ek

]
sk[i]

]

=
M

K
ρf × E

[
sHk [i]

( L−1∑
l′=0

dl′ [k]
L−1∑
l=0

dl[k]
)
sk[i]

]
.

(20)

By using (2.2), we can compute the final value of (2.20) and it is equal to

Sk =
M

K
ρf × E

[
sHk [i]sk[i]

]
=
M

K
ρf . (21)

Note that (2.21) is equal to (2.17).

Using the equations (2.11) and (2.17), we can compute the k-th user achiev-

able rate

Rk = log2

(
1 +

Mρf
Kρf +K

)
. (22)

16



The achievable sum-rate therefore given by

Rsum(ρf ,M,K) =
K∑
k=1

Rk = K × log2

(
1 +

Mρf
Kρf +K

)
. (23)

We consider that all K users have approximately the same rate, so in order to

compute the sum-rate, we multiply single user rate that we computed before in

(2.22) by the number of users (i.e., K).

2.4 Channel Capacity

Capacity of a Gaussian channel is always considered as the upper bound for

the user’s rate. The sum-capacity for a MIMO block channel is given by beam-

forming along the right singular vectors of the effective channel matrix. It trans-

forms the channel into a set of parallel channels over which Gaussian symbols

are communicated. The power allocation is given by the water-filling scheme

[1].

2.4.1 Cooperative Capacity

For frequency-selective Gaussian broadcast channel (GBC) that we consider,

we are going to set the cooperative upper bound. Basically, we will acquire

this upper bound by reducing the multiple-user channel to a single-user MIMO

channel which means we consider users to be cooperative. We also consider

perfect CSI at both ends (transmitters and receivers). We assume that trans-

mission occurs in time and with large blocks where we can say block size is

much larger than L. To avoid any inter-block interference, we consider the last

few transmitted vector of each block to be zeros. With all of these in mind, the
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general expression for the cooperative upper bound (capacity) is given by

Ccoop = log2

(
1 +

Sk
Var(nk[i])

)
, (24)

where nk[i] is the simple additive white Gaussian noise of the channel.

2.4.2 Users Capacity

To calculate the cooperative capacity, we again use the property of indepen-

dent and identically distributed CN (0, 1) entries of Hl, for which we can say

HH
l Hl ≈ M × IK when M � K. So the power gain for each parallel channel

is approximately M . With a uniform power allocation of ρf/K across the par-

allel channels and using (2.17) and (2.24), the cooperative upper bound on the

ergodic sum-capacity of the frequency selective Gaussian broadcast channel is

given by

Ccoop(ρf ,M,K) ≈ K log2

(
1 +

Mρf
K

)
. (25)

2.5 Simulation Results

Simulations are based on all equations that we mentioned before. Also, the

PDP is considered to be exponential with L = 4 and dl[k] = e−θkl∑3
i=0 e

−θki
,

l = {0, · · · , 3}, where θk = K−1
5

, k = {1, · · · , K}. As it is mentioned be-

fore, the achievable sum-rate is invariant of the channel PDP. Hence, any other

PDP which satisfies (2.2) can also be considered and yield the same results. In

Figure 2.1 it can be seen that when ρf � 1, channel matched filter performance

is near the upper bound which means the performance of the channel matched

filter is almost optimal. As it can be seen in Figure 2.1, the sum-rate is plotted

as a function of ρf for M = 50 base station antennas and K = 10 receiver
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users. The sum-rate performance of the channel matched filter is given both

by the theoretical expression in (2.23) and via simulations. In a similar way,

the cooperative sum-capacity upper bound is computed by (2.25) and via sim-

ulations. As ρf increases, all the interference terms that were discussed before

dominate over the white noise term in (2.10) and the effective noise variance is

equal to ρf +1 ≈ ρf . Because of that, when ρf →∞, the sum-rate of the chan-

nel matched filter saturates to the value K log2

(
1 + M

K

)
which to the regards of

M and K here, is equal to 25.85 bits per channel use (bpcu). This means that

the approximation to the sum-capacity upper bound is almost tight.

In Figure 2.2, for a fixed number of users and a fixed per user rate of 1 bpcu,

the minimum transmit power required by the channel matched filter is plotted as

a function of the number of antennas at the base station. The minimum transmit

power required by the channel matched filter can be reduced roughly 3dB with

every doubling in the number of antennas at the base station (for sufficiently

large M [1]). Also, there is a typical scenario in Figure 2.2, where OFDM is

used (in [1] it is used for comparison). We can show that by considering OFDM

transmission with M � K, the per user ergodic information rate is given by

r ≈ Tu
Tu + Tcp

log2

(
1 + ρ

NEWM
K

f

)
, (26)

in which ρNEWf denotes the total transmitted power for OFDM transmission.

Tcp and Tu are OFDM transmission parameters which are the duration of the

cyclic prefix and the duration of the useful signal, respectively. Note that in

practice, modern wireless standards need X > 1 OFDM symbols per coher-

ence time interval. Each OFDM symbol consists of Nu channel uses for data

transmission and Ncp channel uses for cyclic prefix.
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2.6 Comparison

We now conclude our analysis in this chapter and also relate it to simulation

results. As it is stated and shown in [1], when ρf � 1 and M � K, the chan-

nel matched filter performs in a near optimal fashion, meaning Rsum ≈ Ccoop.

Analytically, when ρf � 1, the additive white Gaussian noise takes over the ef-

fective noise and dominates the interference terms in (2.10) and Var(n′k[i]) ≈ 1.

With this in mind, we can say Kρf + K ≈ K and therefore, sum-rate will be

almost equal to sum-capacity. Also, this near optimality can be observed in

Figure 2.1 where in the low-SNR region, the channel matched filter performs

closely to the upper bound and it is clearly implying optimality. However, it

can be observed in Figure 2.1 that as ρf increases and interference terms dom-

inate the effective noise term in (2.10), the performance of the matched filter

tends to saturate. Clearly one can say that if one uses the matched filter under

interference-dominated circumstances, it is not going to perform well.

Using (2.23), the minimum transmit power that is required to achieve a

fixed desired Rsum with respect to the number of users and antennas at the base

station (i.e., K and M , respectively), can be written as

ρf (M,K) =
K(2Rsum/K−1)

M +K(2Rsum/K−1)
, (27)

and limM→∞
ρf (1,K)

M×ρf (M,K)
= 1

1+K(2Rsum/K−1)
> 0. Hence, it follows that the

matched filter achieves an O(M) array gain power [1]. Therefore, for suffi-

ciently large number of antennas at the base station, ρf (M,K)

ρf (1,K)
∝ 1

M
which means

the total transmitted power can be reduced linearly by increasing M . This is

supported by Figure 2.2. In this figure, for a fixed number of users and a fixed

information rate per user (1 bpcu), the total minimum required power is plotted
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as a function of M . In Figure 2.2, it is also shown that for large number of an-

tennas at the base station the total transmit power required by the matched filter

is almost equal to the total transmit power required by a sum-capacity achieving

scheme.

In OFDM transmission shown in Figure 2.2, we can say that to achieve an

ergodic information rate per user for r bpcu, the minimum required transmitted

power is given by

ρNEWf (r) ≈ K

M

(
2r(Tu+Tcp)/Tu − 1

)
. (28)

By using (2.24) we can say ρcoopf (r) = K
M

(2r − 1). This is roughly equal

to the required transmit power for the cooperative sum-capacity bound with

rK bpcu. Under OFDM transmission, the additional transmitted power re-

quired for a fixed desired per user ergodic information rate, compared to a

Gaussian broadcast channel sum-capacity achieving scheme is upper bounded

by
ρNEWf (r)

ρcoopf (r)
. Therefore, this additional transmit power (required under OFDM

transmission) is given by 2r(1+Tcp/Tu)−1
2r−1

. Since it is larger than 1 and the total

transmit power required by the channel matched filter is almost equal to the to-

tal transmit power of the sum-capacity achieving scheme, the channel matched

filter under the circumstances of ρf � 1 and M � K is more efficient com-

pared to OFDM transmission. We would like to note in concluding that all of

these results are for an independent channel.
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Chapter 3

Dependent Channel

3.1 Introduction

We saw the channel matched filter performs nearly optimal when the fast and

slow-varying components of the channel are independent from the locations,

taps, and base station antennas. But the main question is what will happen

to the channel matched filter results if the channel depends on one or more

of those features. First, we will investigate what happens when there is de-

pendency among base station antennas. Previously, we considered that Hl has

independent and identically distributed complex normal entries. Now we will

study the users’ sum-rate in the situation that entries of Hl are not indepen-

dent anymore. We will consider their dependence upon base station antennas.

The implication of this is that the location of the antennas with respect to one

another can affect the signal users receive. Antennas close to each other have

stronger power to affect their nearby signals going out.

We do not expect improvement in the results of the channel with the pres-

ence of dependency. Actually, we expect that the result of the channel matched
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filter in the presence of considered dependency to degrade in terms of perfor-

mance. When the channel has dependency on users, taps, or base station anten-

nas, the transmitted signal will be changed significantly during communication

through the channel. That is why we expect the channel matched filter to fail in

the circumstances that the dependency exists.

We will show why the channel matched filter fails in the existence of depen-

dency via analysis. We will discuss the difference between users’ sum-rate now

and before when the channel was independent. Then we will discuss results of

the simulations and try to match them with analysis to explain the reasons of

the degradation in the performance of the channel matched filter.

3.2 Base Station Dependency

We are interested in the signal that them-th base station antenna is transmitting.

Previously, we considered that base station antennas transmit independently of

each other. But now the situation is different. We now consider that antennas at

the base station affect each other. The best way to show the dependency is that

if the specific antenna m2 is closer to the antenna m1 than the antenna m3, it

should have a stronger effect on the signal that the antenna m1 is transmitting.

This leads us to model the correlation among the antennas at the base station.

3.2.1 Antenna Correlation Model

Assume antenna mi is in position i and antenna mj is in position j. It is rea-

sonable to expect, and is evidence in literature, that the effect of these antennas

on one another should be related to |i − j|. We consider a basic correlation

factor 0 < a < 1 which shows the effects of antennas with respect to |i− j| on

each other where a is a real number. To show the effect of the distance in this
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modeling, we consider the correlation a|i−j| among base station antennas. This

simple correlation models the effect of the distance. It will affect the channel

realization matrix (i.e., Hl).

We need to define the correlation matrix between base station antennas. By

using the correlation between to antennas and expand it for all M antennas at

the base station, we will have A ∈ CM×M as the correlation matrix among base

station antennas in which the elements are [a]i,j = a|i−j|. To demonstrate the

effect of matrix A on the channel, we consider a new channel realization matrix

H̃l = A1/2 × Hl in which Hl is the independent and identically distributed

CN (0, 1) channel realization without considering the correlation between base

station antennas that we had before. With this in mind, we can use the new H̃l

to model the system with correlation between antennas.

3.2.2 System Model

We still want to use the channel matched filter as the precoder. This time we

assume the transmitter knows the pattern of the correlation between antennas

at the base station. So we design the channel matched filter based on the new

channel realization. We can rewrite the received signal matrix as

~y[i] =
L−1∑
l=0

D
1
2
l H̃

H

l ~x[i− l] + ~n[i], (29)

where ~x[i] is the transmitted signal vector and can be written as

~x[i] =

√
ρf
MK

L−1∑
l=0

H̃lD
1
2
l ~s[i+ l]. (30)
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Note that (2.2) is still valid. Also, by defining ~̃vl[k] = H̃lD
1/2
l ~ek, we can rewrite

the received signal of the k-th user at time i as

yk[i] =

√
ρf
MK

( L−1∑
l=0

E
[
~̃vHl [k]~̃vl[k]

])
sk[i] + n′k[i], (31)

in which the desired signal term and the effective noise term can be identified.

Similarly, we can rewrite the effective noise term in (3.3) by using the new

channel realization

n′k[i] =

√
ρf
MK

L−1∑
l=0

(
~̃vHl [k]~̃vl[k]− E[~̃vHl [k]~̃vl[k]]

)
sk[i]

+

√
ρf
MK

L−1∑
a=1−L
a6=0

min(L−1+a,L−1)∑
l=max(a,0)

~̃vHl [k]~̃vl−a[k]sk[i− a]

+

√
ρf
MK

K∑
q=1
q 6=k

L−1∑
a=1−L

min(L−1+a,L−1)∑
l=max(a,0)

~̃vHl [k]~̃vl−a[q]sq[i− a]

+ nk[i].

(32)

where the first term is the additional interference (IF) term, the second term is

the intersymbol interference (ISI) term, the third term is multiuser interference

(MUI) term, and the last term is AWGN.

As the next step, we need to calculate the average of desired signal term over

channel realization and symbols, similar to what we did for the independent

case. Before doing that systematically, note that the structure we chose to model

the dependency of the channel realization upon base station antennas does not

change the signal power. This can be seen by intuition. Therefore, we can say

the average power of the desired signal term in (3.3) can be shown as

Sk = Esk[i]

[∣∣∣∣√ ρf
MK

L−1∑
l=0

E
[
~̃vHl [k]~̃vl[k]

]
sk[i]

∣∣∣∣2]. (33)
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In order to calculate (3.5) and also power of the effective noise (which we will

see in the next section), we need the following lemma.

Lemma 1: Let ~h , [h1, h2, · · · , hM ]T be an M -dimensional random vector.

If E[~h] = ~µ and Cov[~h] = ΘΘΘ, then

E[~hHA~h] = tr(AΘΘΘ) + ~µHA~µ, (34)

in which, A is a real and symmetric M ×M matrix. Before calculating (3.5),

we prove Lemma 1 as below.

Proof. We can write

~hHA~h = (~h− ~µ)HA~h+ ~µHA~h

= (~h− ~µ)HA(~h− ~µ) + ~µHA~h+ (~h− ~µ)HA~µ.
(35)

If we take expectations over (3.7), we obtain

E[~hHA~h] = E
[
(~h− ~µ)HA(~h− ~µ)

]
+ ~µHA~µ. (36)
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Let xj , hj − µj . Therefore ~x = ~h− ~µ and we obtain

E
[
(~h− ~µ)HA(~h− ~µ)

]
= E[~xHA~x]

=
M∑
i=1

M∑
j=1

E[xiAi,jxj] =
M∑
i=1

M∑
j=1

Ai,j[Cov(~x)]i,j

=
M∑
i=1

M∑
j=1

Ai,j[Cov(~h− ~µ)]i,j =
M∑
i=1

M∑
j=1

Ai,j[Cov(~h)]i,j

=
M∑
i=1

M∑
j=1

Ai,jΘi,j =
M∑
i=1

M∑
j=1

Ai,jΘj,i

=
M∑
i=1

[AΘΘΘ]i,i = tr(AΘΘΘ),

(37)

as desired.

By using Lemma 1, it can be shown that (3.5) is equal to M
K
ρf . Thus, we

can claim the average power of the desired signal remains the same.

Proof. We explained by intuition why the average of the desired signal remains

the same, even when there is dependency between base station antennas. Now

we want to prove it systematically. Again we consider the average power of the

desired signal as

Sk =
ρf
MK

× Esk[i]

[∣∣∣∣ L−1∑
l=0

E
[
~̃vHl [k]~̃vl[k]

]
sk[i]

∣∣∣∣2]

=
ρf
MK

× Esk[i]

[ L−1∑
l′=0

sHk [i]E
[
~̃vHl′ [k]~̃vl′ [k]

]
×

L−1∑
l=0

E
[
~̃vHl [k]~̃vl[k]

]
sk[i]

]
.

(38)
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In the same way, we can claim that the first multiplier can be written as

L−1∑
l′=0

sHk [i]E
[
~̃vHl′ [k]~̃vl′ [k]

]
=

L−1∑
l′=0

sHk [i]E
[
~eTk D1/2

l′ HH
l′ AHl′D

1/2
l′ ~ek

]
. (39)

Note that according to the structure that we chose for the base station antennas

correlation, we claim when M →∞, then HHAH→ M × IK . Let’s focus on

the term E[~̃vHl [k]~̃vl[k]]. If we expand this term, it will be

E[~̃vHl [k]~̃vl[k]] = E
[
~eTk D1/2

l HH
l AHlD

1/2
l ~ek

]
. (40)

Note that D1/2
l ~ek =

√
dl[k]~ek, we can rewrite (3.12) as

E[~̃vHl [k]~̃vl[k]] =
√
dl[k]E

[
~h′l[k]A~hl[k]

]√
dl[k], (41)

where ~hl[k] , Hl~ek. Note that E[~hl[k]] = E[~h′l[k]] = 0 and Cov[~hl[k]] =

Cov[~h′l[k]] = IK . By using Lemma 1, we can say that the expectation is equal to

tr(A) which is equal to M . So the average power of the desired signal remains

the same.

Thus, the model of the dependency causes no change in the average desired

signal power. By adding the correlation among antennas at the base station, the

average power of our desired signal remains the same. Now we need to see its

effect on the effective noise of the channel.

3.2.3 Effective Noise Power

By using the new channel realization, the dependency that we considered shows

itself in the effective noise variance. By considering (3.4), the effective noise
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variance can be written as

Var
(
n′k[i]

)
=

tr(A2)

M
ρf + 1, (42)

where tr(A2) is actually the trace of squared of the correlation matrix between

antennas at the base station.

Proof. By taking a look at (3.4), we will see that different terms in the equation

are independent from each other. Therefore, we can write the variance of the

effective noise as

Var(n′k[i]) =
ρf
MK

× Var

[ L−1∑
l=0

(
~̃vHl [k]~̃vl[k]− E[~̃vHl [k]~̃vl[k]]

)
sk[i]

]

+
ρf
MK

× Var

[ L−1∑
a=1−L
a6=0

min(L−1+a,L−1)∑
l=max(a,0)

~̃vHl [k]~̃vl−a[k]sk[i− a]

]

+
ρf
MK

× Var

[ K∑
q=1
q 6=k

L−1∑
a=1−L

min(L−1+a,L−1)∑
l=max(a,0)

~̃vHl [k]~̃vl−a[q]sq[i− a]

]

+ 1.

(43)

Note that the mean of IF, ISI, and MUI terms are zero and they are independent

from one another. Also, note that Var(sk[i]) = 1 and the information symbols

are independent from all other terms. By combining all summations in (3.4) we
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can rewrite (3.15) as

Var(n′k[i]) =
ρf
MK

K∑
q=1

Esk

[
sHq [i]

L−1∑
l=0

EHl
[∣∣~̃vHl [k]~̃vl[q]

∣∣2]sq[i]]

+
ρf
MK

K∑
q=1

L−1∑
a=1

Esk

[
sHq [i− a]

L−1∑
l=a

EHl
[∣∣~̃vHl [k]~̃vl−a[q]

∣∣2]sq[i− a]

]

+
ρf
MK

K∑
q=1

L−1∑
a=1

Esk

[
sHq [i+ a]

L−1∑
l=a

EHl
[∣∣~̃vHl−a[k]~̃vl[q]

∣∣2]sq[i+ a]

]

− ρf
K

L−1∑
l=0

E
[∣∣sk[i]∣∣2]E[~̃vHl [k]~̃vl[k]

]
+
Mρf
K

+ 1.

(44)

Let’s focus on term E
[
|~̃vHl [k]~̃vl−a[q]|2

]
. We can expand this term as

E
[
|~̃vHl [k]~̃vl−a[q]|2

]
= E

[
~̃vHl′−a′ [q

′]~̃vl′ [k
′]~̃vHl [k]~̃vl−a[q]

]
. (45)

If q 6= q′, all terms inside the expectations in (3.7) will be independent from

each other and the final value of (3.17) will be zero. The result is the same for

the cases that k 6= k′, a 6= a′, and l 6= l′. Thus, we can rewrite (3.17) as

E
[
|~̃vHl [k]~̃vl−a[q]|2

]
= E

[
~̃vHl−a[q]~̃vl[k]~̃vHl [k]~̃vl−a[q]

]
. (46)

Note that in all the summations in (3.16), a 6= 0. By using D1/2
l ~ek =

√
dl[k]~ek

and ~hl[k] = Hl~ek, we have

E
[
|~̃vHl [k]~̃vl−a[q]|2

]
= dl−a[q]× E

[
~hHl−a[q]A~hl[k]~hHl [k]A~hl−a[q]

]
× dl[k]

= dl−a[q]× EH(l−a)

[
~hHl−a[q]A× EHl

[
~hl[k]~hHl [k]

]
× A~hl−a[q]

]
× dl[k].

(47)
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By using Lemma 1, we can calculate (3.19). Note that EHl
[
~̃hl[k]~̃hHl [k]

]
= 1.

Hence, we can rewrite (3.19) as

E
[
|~̃vHl [k]~̃vl−a[q]|2

]
= dl−a[q]× E

[
~̃hHl−a[q]A

2~̃hl−a[q]
]
× dl[k]

= dl−a[q]× tr(A2)× dl[k].

(48)

By using (3.20) in all the summations of (3.16) we obtain

Var(n′k[i]) =
tr(A2)ρf
MK

K∑
q=1

L−1∑
a=1

L−1∑
l=a

(
dl−a[q]dl[k] + dl[q]dl−a[k]

)
+

tr(A2)ρf
MK

K∑
q=1

L−1∑
l=0

dl[k]dl[q] + 1.

(49)

As it can be seen in (3.21), we have computed the value of the above summa-

tions in (2.15). By using (2.16) we have

Var(n′k[i]) =
tr(A2)

M
ρf + 1 (50)

Now that we know everything we need about the desired signal power and

the effective noise of the system, we are able to develop an equation for the

users’ information rate. Note that (2.11) and (2.24) still hold for the users’

sum-rate and cooperative channel sum-capacity.

3.3 Information Rates

By comparing (3.14) and (2.14), we notice the difference is in term tr(A2)
M

. Note

that when a = 0, diagonal elements of A are equal to 1 and other elements

are zero. Therefore, (3.14) and (2.14) are equal (i.e., A2 = A = IM and
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tr(A2) = M ). When a 6= 0, diagonal elements of matrix A remain the same

but other elements have non-zero values and since we chose the correlation

such that a > 0, these values cannot be negative. This means that when a 6= 0,

tr(A2) > M and therefore, tr(A2)
M

> 1. Thus, we can say that the power of

the effective noise has been increased due to the channel dependency on the

antennas at the base station. However, this dependency has no effect on the

average power of the desired signal. This means that we expect noticeable loss

in the users’ information rate and therefore, users’ sum-rate. Using (2.11), each

user’s information rate will be Rk = log2

(
1 +

M2ρf
Ktr(A2)ρf+KM

)
. Therefore, by

considering the fact that each user’s information rate is almost equal to the other

users’, we will have the sum-rate as

Rsum(ρf ,M,K) = K log2

(
1 +

Mρf

K tr(A2)
M

ρf +K

)
. (51)

Comparing this expression with (2.23), the denominator of the fraction inside

the logarithm function increases compared to the independent case. Which

means we face significant loss in the information rate. Note that we choose

matrix A such that [aij] = a|i−j|. So by increasing the parameter a, tr(A2) will

increase exponentially. This means that if the correlation parameter is getting

higher, the information rate (sum-rate) will decrease significantly.

3.3.1 Upper Bound

By using the cooperative capacity expression (2.24) and the fact that the average

of the desired signal power remains the same as before (the independent case),

we conclude that (2.25) for the sum-capacity is still valid. So in the case of
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dependency, the cooperative sum-capacity can be written as

Ccoop(ρf ,M,K) ≈ K log2

(
1 +

Mρf
K

)
(52)

This is not good, because the information rate of the users decreases, but the

capacity is still the same. This means that when there is dependency between

antennas at the base station, there is a huge gap (which depends on the cor-

relation parameter) between users’ sum-rate and the sum-capacity achieving

scheme. Due to the correlation between the antennas, the performance of the

channel matched filter significantly decreases. We show this loss of the perfor-

mance of the channel matched filter through the simulations of the channel.

3.4 Simulation Results

In this part of simulations, we use the same PDP as before, exponential function

with L = 4 and dl[k] = e−θkl∑3
i=0 e

−θki
, l = {0, · · · , 3}, where θk = K−1

5
, k =

{1, · · · , K}. Note that any function that satisfies (2.2) can be used as the PDP

of the channel (achievable sum-rate is invariant of the channel PDP). To keep

the figures comparable with the independent case, we ran the simulations for a

channel with M = 50 antennas at the base station and K = 10 users (i.e. the

simulations characteristics of the independent channel).

In Figure 3.1, it can be seen that when the correlation parameter equals to

0.4, the performance of the channel matched filter under the influence of the

correlation between the antennas at the base station is not that far from the

independent channel matched filter. By increasing the correlation parameter

from 0.4 to 0.7, the gap between performances of the channel matched filter
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of the dependent case and independent case is getting noticeable. As it can be

seen in Figure 3.2, this gap is almost 10 bpcu when ρf = 10 dB.

In practice, a correlation parameter around 0.4 or 0.7 is not considered a

high correlation factor. Setting the correlation parameter a = 0.9 or even higher

between base station antennas is realistic in many cases. In Figure 3.3 and 3.4,

the channel matched filter performance is shown when the correlation parame-

ter is higher than or equal to 0.9. As it can be seen, with a = 0.9 or a = 0.99,

the channel matched filter completely fails. Under these conditions, the chan-

nel matched filter saturates faster and fails to demonstrate an acceptable perfor-

mance.

3.5 Conclusion

As the conclusion of this chapter, according to analytical and simulation results,

it is shown that the channel matched filter is not a good choice in the case there

exists a correlation between antennas at the base station. When the channel

is independent (i.e., a = 0), the white Gaussian noise dominates the effective

noise power. Thus, the channel matched filter is a good choice to send the

information symbols in the shape of transmit signal through the channel. As

ρf increases, the information rate starts to saturate until the interference terms

take over the effective noise power. As the correlation grows, the process of

saturation occurs sooner and faster. This correlation between antennas at the

base station causes the interference terms to be stronger and more effective

than AWGN.
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FIGURE 3: Sum rate and cooperative sum capacity upper bound
as a function of ρf for a channel with correlation parameter a =

0.4.
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FIGURE 4: Information rate and capacity upper bound for a
channel with correlation parameter a = 0.7.
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FIGURE 5: Users information rate and capacity for a channel
with correlation parameter a = 0.9.
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FIGURE 6: How information rate goes down with increasing the
correlation parameter to a = 0.99
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Chapter 4

Conventional Precoders

4.1 Introduction

As it is shown in Chapter 3, using the channel matched filter when the chan-

nel is independent from users, delay components, or transmitter antennas is

nearly optimal. However, the channel dependency is shown to cause a fail-

ure in the channel matched filter performance. Transmission through a channel

with dependency (i.e., a non-i.i.d. channel) needs more complicated prepro-

cessing. There are a lot of precoders that have been considered to use for a

non-i.i.d. channel [2]. We will consider three conventional precoders and re-

place the channel matched filter with them to improve the performance of the

channel under the influence of interference between the channel’s characteris-

tics (i.e., base station antennas, users, or delay components). It is shown in [2]

that using conventional precoders can increase power efficiency of the channel

by decreasing Peak to Average Power Ratio (PAPR).

In this chapter, we will show the similarities and differences between single-

carrier and OFDM transmission. We will see if using one of these two can actu-

ally improve the performance of the system on the channel we consider. Then

we will introduce the conventional precoders and reevaluate the formulations
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that are developed in the previous chapters based on their characteristics. After

obtaining the proper formulations, we will see the results of the simulations for

an assumed i.i.d. channel (a channel without correlation) and compare them

with the results of the channel matched filter. Also, we will run the simulations

for a channel with a non-i.i.d. assumptions to see if these conventional pre-

coders can improve the performance of the transmitter-receiver system in the

non-i.i.d. case.

4.2 Single-Carrier vs. OFDM transmission

Before elaborating on the transmission techniques, it should be noted that block

transmission with cyclic prefix has been considered in this thesis. A prefix, as

a guard interval or as a delimiter between blocks, is presented in nearly all of

the modern digital transmission methods. Although a prefix correlated with the

symbols can be a waste of spectral resources, one can make this wasting of

resources arbitrary small by choosing N � L.

As we discussed before, an achievable rate for user k in a channel (i.e., a

downlink channel) is given by

Rk = log2(1 + SNRk), (53)

where the signal-to-noise ratio (it can be seen as signal-to-interference-and-

noise ratio to be exact) can be calculated using known channel’s noise and in-

puts. For a non-linear amplification, there are two major consequences that can

be seen in [2]. In-band distortion and signal clipping. Both consequences lead

to a loss in power.
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In terms of lower bound on the information rate (i.e., achievable data rate) in

(4.1), which is tight when the channel hardens, single-carrier and OFDM trans-

mission are nearly equivalent in massive MIMO [2]. Channels of all tones of

OFDM transmission are in good status due to the channel hardening, therefore

we can gain a little from the advantage of OFDM (i.e., the possibility of wate-

filling across frequencies). Thus, one can say if the same precoding scheme is

used for all tones, the information rate showed in (4.1) is equal for single-carrier

transmission and for OFDM [2].

In this thesis, as in [2], single-carrier transmission employs a recoding ma-

trix defined in frequency domain. It is converted to time domain via an in-

vert Fourier transform as will be specified in Section 4.3.2. It is beneficial

to mention some of the differences between the two transmission methods.

One of the main differences is that OFDM transmission requires the users to

do a Fourier transform, while single-carrier transmission does not. On the

other hand, OFDM transmission is less sensitive to synchronization errors in

the sampling process since the symbol period of OFDM is longer than that of

single-carrier transmission (i.e., NT compared to T ) [2]. A small time syn-

chronization error leads to a simple phase rotation in OFDM, while it leads to

difficult intersymbol interference in single-carrier transmission. However, for

small frequency synchronization errors, OFDM suffers from intersymbol inter-

ference and single-carrier transmission only experiences a simple phase rota-

tion [2]. Also, OFDM transmission causes a delay of at least N symbols due to

the block-by-block precoding and detection, while single-carrier transmission

experiences smaller delay with implementation of short filters for frequency-

selective channels [2].
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4.3 Precoding Techniques

In wireless communication technologies the precoding scheme has a signifi-

cant role. Note that by using precoding techniques, one can reduce PAPR and

increase SNR at the receiver. This means that with the knowledge of the chan-

nel, the base station can precode the symbols in such a way that the signal’s

gain is large and the interference effect is small. We will focus on conventional

precoders for the rest of this chapter.

4.3.1 OFDM Transmission

The precoder is defined typically in the frequency domain in OFDM transmis-

sion. Note that the time domain transmit signals are obtained from the inverse

Fourier transform. The inverse Fourier transform of a vector ~X[f ] in the fre-

quency domain can be computed by

~x[i] =
N−1∑
f=0

ej2πif/N ~X[f ]. (54)

We define W[f ] as the precoding matrix for the frequency f . Since the

precoding matrix depends only on the channel and not on the symbols, one can

consider the precoding to be linear. Note that for the purpose of the formula,

we can consider a constraint on the precoding matrix as

E
[
|W[f ]|2

]
= K, ∀f, (55)

where K is the number of users.
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4.3.2 Single-Carrier Transmission

In single-carrier transmission, the transmit signals are given by the cyclic con-

volution which is defined as

~x[i] =
N−1∑
l=0

W[l]~s[i− l], (56)

where the indices are taken modulo N . Note that the impulse response of the

precoder is given in terms of its frequency domain counterpart and it can be

written as

W[l] =
N−1∑
f=0

ej2πfl/NW[f ]. (57)

4.3.3 Conventional Precoders

We introduce three different conventional precoders to be considered and stud-

ied for the channel. They will be given as functions of channel estimates matrix

(i.e., Hl) and its Fourier transform that can be computed by

Hf =
L−1∑
l=0

e−j2πfl/LHl. (58)

(1) Maximum-Ratio Precoding: The maximum-ratio precoder aims at

maximizing the gain and the received power of the desired signal. It is given by

WMR[f ] = aMRHf , (59)

where aMR is a power normalization factor.

While it maximizes the received power of the transmission, interference is

still present in the received signal. In typical scenarios with favorable propa-

gation, the maximum-ratio precoding suppresses this interference increasingly
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well with higher number of base station antennas (or increasing the transmitted

signal’s power) and in the limit of infinitely many antennas, the interference

becomes negligible in comparison to the received power [2].

Note that in the case that we considered as a non-i.i.d. channel in the pre-

vious chapter, the interference has a significant effect on the received signal.

Thus, the maximum-ratio precoding scheme might not be a perfect case to be

considered for a non-i.i.d. channel. We will show the result of the simulations

later in this chapter for this precoding scheme.

(2) Zero-Forcing Precoding: The zero-forcing precoder is given by

WZF [f ] = aZFHf ×
(
HH
f Hf

)−1
, (60)

where aZF is again a normalization factor. The zero-forcing precoding scheme

nulls the interference in the cost of lower gain in comparison with maximum-

ratio precoding scheme [2].

(3) Regularized Zero-Forcing Precoding: The regularized zero-forcing

precoding scheme maximizes the power of the desired signal compared to the

power of the noise and interference at the receiver. In the limit of an infi-

nite number of antennas, the optimal linear regularized zero-forcing precoder is

given by

WRZF [f ] = aRZFHf ×
(
HH
f Hf + βIK

)−1
, (61)

where aRZF is a power normalization factor and β ∈ R+ is a system parameter

which depends on the SNRs and the path losses of the users.

The interference and gain of the regularized zero-forcing precoding scheme

depend on the parameter β. As it can be seen, the regularized zero-forcing

precoder balances the interference suppression of zero-forcing and array gain

of maximum-ratio precoding by changing the parameter β. How to find the
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optimal parameter β is described in [2].

It can be seen that when the transmit power is low compared to the noise

variance at the receiver, then a large β is optimal and the interference and array

gain are close to the ones of maximum-ratio precoding scheme. And when

the transmit power relative the noise variance is high, a small β is optimal and

the interference and array gain are close to the ones of zero-forcing precoding

scheme.

4.4 System Model

Let the channel be an i.i.d. case without any dependency on its characteristics

for now. We will study the non-i.i.d. case afterwards. Note that the received

signal vector can be written as

~y[i] =
L−1∑
l=0

D1/2
l HH

l ~x[i− l] + ~n[i], (62)

where we can extract the received signal at user k as

yk[i] =
L−1∑
l=0

~vl[k]H~x[i− l] + nk[i]. (63)

By using the precoders that were discussed before, one can say that the sig-

nal that is sent into the channel can be computed using the precoders matrix.

In order to consider all of the conventional precoding scheme in only one for-

mula, let W[m] introduce the precoding matrix in a general case. Note that in

the definition of the precoders, we already consider the normalization factor.
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Therefore, the vector of the transmit signals is given by

~x[i] =
N−1∑
m=0

W[m]~s[i−m]. (64)

We also define ~wk[m] , W[m]~ek as the vector of the precoding scheme related

to user k at m-th sampled time. Note that ~ek is a K × 1 vector that all of its

elements are zero except k-th element which is equal to 1.

By using (4.12) in (4.11), it can be seen that the received signal at user k is

equal to

yk[i] =
N−1∑
m=0

L−1∑
l=0

~vHl [k]W[m]~s[i− l −m] + nk[i]. (65)

Note that (4.12) represents the cyclic convolution and all the indices of equation

defining the transmit signal are taken modulo N (where it can be seen that

N > L). Therefore, we can rewrite (4.13) as

yk[i] =
0∑

m=1−N

L−1∑
l=0

~vHl [k]W[m]~s[i− l −m] + nk[i]. (66)

By changing variable m + l in (4.14) to a and considering the fact that ~s[i] =∑K
q=1 ~eqsq[i], we can rewrite (4.14) as the following

yk[i] =
K∑
q=1

L−1∑
a=1−N

min(N−1+a,L−1)∑
l=max(0,a)

~vHl [k]~wq[m]sq[i− a] + nk[i]. (67)

Note that the desired signal is given by

Sk[i] =
L−1∑
l=0

E
[
~vHl [k]~wk[−l]

]
sk[i]. (68)

Using the equations of the desired and received signal, one can express the

system model in terms of desired signal and effective noise of the channel.
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Thus, we can rewrite (4.15) as

yk[i] =
L−1∑
l=0

E
[
~vHl [k]~wk[−l]

]
sk[i] + n′k[i], (69)

where n′k represents the effective noise and can be written as

n′k[i] =
L−1∑
l=0

(
~vHl [k]~wk[−l]− E

[
~vHl [k]~wk[−l]

])
sk[i]

+
L−1∑

a=1−N
a6=0

min(N−1+a,L−1)∑
l=max(a,0)

~vHl [k]~wk[a− l]sk[i− a]

+
K∑
q=1
q 6=k

L−1∑
a=1−N

min(N−1+a,L−1)∑
l=max(a,0)

~vHl [k]~wq[a− l]sq[i− a]

+ nk[i],

(70)

which includes IF, ISI, MUI, and AWGN terms, respectively. Note that the

power normalization factor that we had in previous chapters is already consid-

ered in the definition of the precoder matrices.

In order to study the non-i.i.d. channel with dependency on the antennas

at the base station, one can simply replace ~vl[k] and ~wk[l] with ~̃vl[k] and ~̃wk[l]

respectively. Therefore, the effect of matrix A, which indicates the correla-

tion between antennas at the base station and the channel dependency, will be

considered inside of the precoding and the channel estimate vector.

With this system model, we can run the simulations to see if the conven-

tional precoders are able to improve the final results.
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4.5 Simulation Results

The performance of the conventional precoders is observed through numerical

simulations for system with M = 50 antennas at the base station, K = 10

users (receiver antennas), and L = 4 taps. In order to compare the result of the

conventional precoders and their performance on the channel, we also consider

two cases of the channel, (i) an i.i.d. Gaussian channel with white noise, and

(ii) a non-i.i.d. channel with correlation parameters a ∈ {0.4, 0.7, 0.9, 0.99}.

The results of the simulations for an i.i.d. channel (i.e., a channel with cor-

relation parameter a = 0) using the conventional precoding schemes is shown

in Figure 4.1. The top plot refers to the performance of the maximum-ratio pre-

coders, the middle plot shows the result of the simulations for the zero-forcing

precoder, and the bottom plot is the performance of the regularized zero-forcing

precoding scheme.

Note that for the regularized zero-forcing precoder, we ran the simulations

for the arbitrary parameter β, which in our simulations and the results showing

in the figures of this chapter, β = 2.

As it can be seen in Figure 4.1, the performances of the precoders are not

far from the optimal, which is using the channel matched filter. Also, for the

channel with no correlation between antennas at the base station, all precoders

perform equally well.

When it comes to a channel with correlation among antennas at the base sta-

tion, one can see the difference between performances of the conventional pre-

coders. In Figure 4.2, the information rate and the sum-capacity upper bound

are plotted for maximum-ratio, zero-forcing, and regularized zero-forcing pre-

coders for a channel with the correlation parameter a = 0.4. As it can be

seen, zero-forcing and regularized zero-forcing precoders are almost the same
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for a channel with correlation parameter a = 0.4.
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FIGURE 9: The performance of conventional precoders for a
channel with correlation parameter a = 0.7.
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in terms of the information rate, while maximum-ratio precoder has a gap in its

information rate compared to the other precoders.

In Figure 4.3, the performance for a channel with the correlation parameter

a = 0.7 is shown. As the correlation parameter goes higher, the difference

between the maximum-ratio precoder and the other two stands out. While the

zero-forcing and regularized zero-forcing precoders perform near their original

performances (i.e., their performances in an i.i.d. channel), the maximum-ratio

precoder begins to fail.

By increasing the correlation parameter to 0.9 and 0.99, shown in Figure

4.4 and Figure 4.5, the maximum-ratio precoder completely fails. However, the

performances of the other two is still close to the upper bound of the channel.

Note that since we use a dynamic method for normalizing the power, the upper

bound changes by changing the correlation parameter, which causes a change

in the channel estimate matrix and the transmit power.

4.6 Comparisons

From the figures provided in the previous section and the specific formulations

related to the conventional precoders, one is able to compare these three pre-

coders in terms of their performance and power consumption.

It can be seen that the maximum-ratio precoding scheme works well for

low-rate requirements, but it is limited by interference to below a certain rate.

Note that due to the distortion in SNR that scales with radiated power, all pre-

coders have a vertical asymptote, above which the rate cannot be increased

[2]. Therefore, one can say that the vertical asymptote of the maximum-ratio

precoder is located at a lower rate than the asymptote of the zero-forcing and

regularized zero-forcing precoders. Also, it can be noticed from figures in the

51



-20 -15 -10 -5 0 5 10
0

10

20

30

40

0

10

20

30

40

M
R

-20 -15 -10 -5 0 5 10
0

5

10

15

20

25

30

S
u

m
 R

a
te

 (
b

p
c
u

)

0

5

10

15

20

25

30

Z
F

-20 -15 -10 -5 0 5 10

Long-Term Average Power (dB)

0

5

10

15

20

25

30

0

5

10

15

20

25

30

R
Z

F

Sum-Rate with a=0.9

Upper Bound

FIGURE 10: Sum rate and upper bound for a channel with cor-
relation parameter a = 0.9.
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with correlation parameter a = 0.99.
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previous section that the maximum-ratio precoding scheme is more sensitive to

the higher correlation parameter than the other two, which leads to the superi-

ority of the zero-forcing and regularized zero-forcing precoders in the channels

with high correlation amongst the antennas at the base station.

Furthermore, it can be shown that the zero-forcing and regularized zero-

forcing perform equally well when the number of users is small besides per-

forming well in channels with the high correlation parameter. Because of its

ability to balance the resulting array gain and the amount of inter-user interfer-

ence received by the users, the regularized zero-forcing has an advantage over

zero-forcing precoder when it comes to a larger number of users.

Figure 4.6 shows a comparison between the regularized zero-forcing pre-

coder and the channel matched filter when the base station consists of M = 50

antennas and provides information for K = 10 users (typical scenario we had

before) in a channel without any correlation. As it can be seen, when the chan-

nel is correlation-free (a = 0), it is the channel matched filter that shows better

performance and higher achievable data-rate and as SNR increases, the gap be-

tween information rate of these two increases.

Figure 4.7 shows the comparison between the channel matched filter and

the regularized zero-forcing precoder when M = 50 antennas at the base sta-

tion cover K = 15 users in the channel with no correlation. As it can be

seen, the channel matched filter performs better in low-SNR cases, however,

by increasing the power of the transmit signal (increasing SNR) the regularized

zero-forcing precoding scheme starts to show a better performance even there is

no correlation in the channel. This proves the statement that for larger number

of users, precoders are expected to have superiority over the channel matched

filter.

For a further comparison, the performances of the channel matched filter
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regularized zero-forcing for K = 10 users in a channel with

a = 0.7.
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and the regularized zero-forcing precoder are shown in a channel with correla-

tion. Figure 4.8 shows this comparison when the channel has correlation with

parameter a = 0.7 and base station covers K = 10 users. Figure 4.9 shows

comparison of the two in the same channel while base station antennas cover

K = 15 users.

Also, Figure 4.10 and Figure 4.1 illustrate the performance of the two in the

case that the channel correlation parameter increases to a = 0.99. Figure 4.10

shows this comparison when base station has K = 10 users to cover and Figure

4.11 shows the difference between the two when the number of users increases

to K = 15. As it can be seen in both figures, the channel matched filter per-

forms better when SNR is low. However, by increasing the input power, one

can clearly see the difference between the performances of the two. A huge

gap between the two curves (superiority of the regularized zero-forcing precod-

ing scheme) is the corollary of increasing the SNR and the channel correlation

parameter.
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Chapter 5

Conclusion

5.1 Millimeter Waves and 5G

Wireless massive MIMO systems are able to serve a large number of users

using multiuser precoding by a base station equipped with tens or hundreds of

antennas. In modern wireless massive MIMO systems, an order of magnitude

improvements is feasible in spectral and energy efficiency compared to classical

multiuser MIMO. Hence, massive MIMO is expected to be a key component in

the future wireless communications infrastructure [2].

As we discussed it before, the future wireless networks (5G) will be based,

among others, on three main innovations with respect to the legacy of 4G sys-

tems. (i) the use of large scale antenna arrays (massive MIMO), (ii) the use

of small-size cells in areas with a very large data request, and (iii) the use of

carrier frequencies larger than 10GHz [4]. Since millimeter wave frequencies

can successfully transmit very large data rates over short distances, they ap-

pear to be suited for providing wireless communications in a typical 5G sce-

nario. Focusing on the use of carrier frequencies larger than 10GHz leads to

propose millimeter wave frequencies as a strong candidate approach to achieve

the spectral efficiency growth expected to be required by 5G wireless networks.
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Although the use of millimeter wave signals for cellular communications has

been neglected so far due to the higher atmospheric absorption that they suffer

compared to the other frequency bands [4] and the larger values of free-space

path-loss, the recent measurements in [2] and [3] suggest that millimeter waves

attenuation during propagation in dense urban environments and short distances

is slightly worse than attenuations in other bands.

Another feature of cellular communications at millimeter wave frequencies

is that systems based on these frequencies are mainly noise-limited, which will

simplify the implementation of interference management and resource schedul-

ing policies [4].

5.2 System Model

One of the main questions about the use of millimeter wave bandwidths in the

next generation of the cellular communication networks is about the type of

modulation that will be used for these frequencies. There are several reasons

that can be convincing about the use of single-carrier modulation for 5G net-

works at millimeter wave frequency ranges. First of all, the propagation atten-

uation of millimeter wave frequencies make them suitable for small cell, dense

urban environment networks. In these type of cells, few users are assigned to

any given base station, thus one can say the efficient frequency-multiplexing

features of orthogonal frequency division multiplexing (OFDM) modulation

may not be needed. Second, the large bandwidth for the next generation of the

cellular networks seems to cause low OFDM symbol durations, which means

with respect to small propagation delays, users may be multiplexed in the time

domain as efficiently as in the frequency domain. Finally, massive antenna

arrays can operate with millimeter wave frequencies to overcome propagation
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attenuation which makes digital beamforming unfeasible. This is the corollary

of the huge required energy for digital-to-analog and reverse conversions. Thus,

each user will have its own radio-frequency beamforming, which requires them

to be separated in the time domain [4].

As we mentioned above, while it is not even certain that 5G systems will

use OFDM modulation at classical cellular frequencies, there are sufficient rea-

sons for us to say that single-carrier modulation on millimeter wave frequencies

seem to be a valid candidate for the next generation of the wireless cellular net-

works. As a result, one can find the system model that we developed in Chapter

2 viable for the next generation of the wireless cellular networks.

5.3 Tap Correlation Model

In order to see other type of correlation in the channel, we develop circular-type

dependency between delay components of the channel. Imagine that compo-

nents which come from different taps in the channel are no longer independent

and they are related to each other through a circular correlation matrix. We

define this circular correlation such that the correlation among the delay com-

ponents is defined by a rotation matrix. Since we want this correlation model

to be simple and we are considering multiple taps for the channel, we only con-

sider this rotation to be done in a plane (2-dimension) rather than the whole

space of L-dimension.

We ran the simulations for the model mentioned above, in a channel with

correlation among base station antennas and taps. A channel with M = 50

antennas at the base station, K = 10 users, and L = 4 taps has been consid-

ered and the results of the simulations for this channel are shown in Figure 5.1

through Figure 5.4. As it can be seen, the performance of the channel matched
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0.9.
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filter when the taps are dependent to each other is not acceptable even in the case

that antennas at the base station are independent. With increasing the correla-

tion parameter among base station antennas, the information rate of the channel

matched filter decreases dramatically.

We also ran the simulations on the same channel when the conventional

precoders are used. The results of the simulation on the conventional precoders

are shown in Figure 5.5 through Figure 5.8. Although the maximum-ratio pre-

coder failed in the high correlation situation, the zero-forcing and the regular-

ized zero-forcing showed better performance. As one can see, the gaps between

the upper bound on the information rate in the channel and the achievable infor-

mation rate by the zero-forcing and regularized zero-forcing precoders are not

problematic. The zero-forcing and regularized zero-forcing precoder show a

superior performance compared to the channel matched filter. However, the in-

formation rate of the zero-forcing precoder in a highly correlated environment

is extremely low. Thus, we pick the regularized zero-forcing precoding scheme

and compare it to the channel matched filter in terms of information rate. The

results of the comparison are shown in Figure 5.9 through Figure 5.18.

As one can see, the results of the simulations on the channel with both taps

and antennas correlations are similar to the ones with only correlation among

antennas. Every pair of figures compares the results of the simulations for the

channel matched filter and the regularized zero-forcing precoder in a channel

with L = 4 correlated taps and correlation among antennas with the correlation

parameters a ∈ {0, 0.4, 0.7, 0.9, 0.99}. Simulations are run for the channel

when the base station has M = 50 antennas and cover K ∈ {10, 15} users.

When the number of users is small and the environment has small corre-

lations, the channel matched filter seems to have superiority in terms of per-

formance and users’ sum-rate. However, by increasing the number of users,
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tional precoders in a channel with correlated taps.

65



-20 -15 -10 -5 0 5 10
0

10

20

30

40

0

10

20

30

40

M
R

-20 -15 -10 -5 0 5 10
0

2

4

6

8

10

S
u

m
 R

a
te

 (
b

p
c
u

)

0

2

4

6

8

10

Z
F

-20 -15 -10 -5 0 5 10

Long-Term Average Power (dB)

0

5

10

15

20

25

0

5

10

15

20

25

R
Z

F

Sum-Rate, Correlated Taps and a=0.7

Upper Bound
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FIGURE 24: Upper bound and achievable rate of a channel with
correlated taps and correlated antennas with correlation param-

eter a = 0.9 using the conventional precoders.
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FIGURE 25: Information rate and upper bound for the conven-
tional precoders in a channel with correlated taps and a = 0.99

among base station antennas.
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or increasing the correlation parameter of the environment, one can see that

the matched filter loses its superiority to the regularized zero-forcing precoder

which performs near upper bound on the channel.

5.4 Equalization and Precoding

As a result of the simulations and all equations from previous chapters, one can

say that sum-rate of a channel is highly dependent on the channel’s situation.

This means that without any types of correlations, the channel matched filter

is expected to have optimal result and to perform near the upper bound of the

channel. However, considering a correlation pattern among taps and/or anten-

nas at the base station leads to a huge decrease in the achievable sum-rate for the

users in the system. Thus, it can be expected to use a precoder (or equalizer) to

compensate the loss of the users’ sum-rate. In this work, we showed that in the

highly correlated channels, using one of the mentioned conventional precoders

can improve the performance of the channel in terms of users’ sum-rate.
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FIGURE 26: Performance of the channel matched filter and reg-
ularized zero-forcing for K = 10 users in a channel with corre-

lated taps and a = 0.
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FIGURE 27: Achievable rate for K = 15 users in a channel
with correlated taps and correlation parameter a = 0 among
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FIGURE 28: Information rate of the channel matched filter and
regularized zero-forcing for K = 10 users in a channel with

correlated taps and a = 0.4.
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FIGURE 29: Achievable rate for K = 15 users in a channel
with correlated taps and a = 0.4.
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ularized zero-forcing forK = 10 users in a correlated-tap chan-

nel with a = 0.99.
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FIGURE 31: Users’ sum-rate for a channel with correlation
among taps and antennas with a = 0.7 correlation parameter

and K = 0.15 users.
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FIGURE 32: Performance of the channel matched filter and reg-
ularized zero-forcing forK = 10 users in a correlated-tap chan-

nel with a = 0.99.
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FIGURE 33: Achievable rate for K = 15 users in a correlated-
tap channel with correlation parameter among antennas a =

0.99.
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FIGURE 34: Sum-rate of the channel matched filter and regular-
ized zero-forcing for K = 10 users in a channel with correlated

taps and a = 0.99.
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FIGURE 35: Achievable rate for K = 15 users in a channel
with correlated taps and a = 0.99.
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