
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Blasting off at the speed of light: Exploring relativistic quantum chemistry for core 
spectroscopy and heavy elements

Permalink
https://escholarship.org/uc/item/75b306fd

Author
dos Anjos Cunha, Leonardo

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/75b306fd
https://escholarship.org
http://www.cdlib.org/


Blasting off at the speed of light: Exploring relativistic quantum chemistry for core
spectroscopy and heavy elements

by

Leonardo dos Anjos Cunha

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Martin Head-Gordon, Chair
Professor Eric Neuscamman
Professor Hartmut Häffner

Summer 2023



Blasting off at the speed of light: Exploring relativistic quantum chemistry for core
spectroscopy and heavy elements

Copyright 2023
by

Leonardo dos Anjos Cunha



1

Abstract

Blasting off at the speed of light: Exploring relativistic quantum chemistry for core
spectroscopy and heavy elements

by

Leonardo dos Anjos Cunha

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin Head-Gordon, Chair

Quantum mechanics is one of the most predictive theories that we have at our disposal
to explain natural phenomena with atomistic detail. Yet, applying it to complex system,
such as chemical reactions, is an extremely demanding task. Approximations justified by
physical principles are necessary to reduce the computational cost of these simulations. This
dissertation analyzes two classes of problems in molecular quantum mechanics, highlighting
the main ingredients necessary to qualitatively and quantitatively describe them. First, we
look at how the choice of orbitals influences the description of strong-field ionization processes
in simple systems, drawing an analogy to the well-known symmetry dilemma within quantum
chemistry. We show that, through a simple model and a mean-field treatment, allowing the
wavefunction to simply separate pairs of electrons is not enough to understand the ionization
process, requiring additional flexibility to allow for spin rotations.

The second class of problems discussed in this dissertation concerns the description of excited
states that arise when promoting one of the electrons in an inner-shell of a system. X-ray
spectroscopy is a vibrant field that has been explored in great detail over recent years due to
advances in light sources. From a theory perspective, these core-excited states also pose some
challenges to existing quantum chemical methods, especially due to lack of relaxation effects
after creating a hole in one of the core orbitals. We discuss different approaches to model
X-ray emission and absorption, as well as the role of scalar relativistic effects in accurately
modeling the core-excitation energies and the spectra of heavy elements. In doing so, we
have devised both state-specific and linear-response methods to model core-excited states,
expanding the toolbox available to quantum chemists to interpret new experiments in the
X-ray range of the electromagnetic spectrum.
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Chapter 1

Introduction

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only that

the exact application of these laws leads to equations much too complicated to be soluble
P. A. M. Dirac “Quantum mechanics of many–electron systems” Proc. R. Soc. Lond. A,

123, 714–733, 1929.

At the turn of the twentieth century, most of the physical laws describing natural phe-
nomena were believed to have been already discovered. Isaac Newton had already laid
the foundations of what would be known as classical mechanics and universal gravitation,
whereas James Clerk Maxwell had unified the description of electromagnetism. The so-called
“ultraviolet catastrophe” [1] deeply changed this perspective and revolutionized science as a
whole. By assuming that the electromagnetic radiation can be emitted or absorbed only in
discrete, instead of continuous, packets of energy called quanta [2], Max Planck contributed
to the advent of a new theory capable of explaining the microscopical underpinnings of the
natural world.

This new subject, quantum mechanics (QM), is the foundation upon which most of
modern physics and chemistry is built on. QM describes the interplay between matter
and energy at the atomic level [3]. The very modern idea of the atom itself is, ultimately, a
quantum mechanical concept [4], showcasing how important such theory is to the description
of the most basic processes in chemistry. Despite its extraordinary ability to explain nature
around us, QM suffers from a computational complexity problem, as alluded to by Paul
Dirac in the quote that opens this chapter. Aside from a few small models that can be
solved analytically, such as the hydrogen atom [5, 6], computing the quantum mechanical
properties of complex molecular systems is undeniably an extremely demanding task. Exact
numerical solutions are usually unfeasible for most systems of chemical interest. The field of
quantum chemistry is therefore concerned in developing affordable approximations to extend
the applicability and predictive power of QM to larger systems. The quantum chemist’s
toolbox comprises not only of physical ideas rooted in nature’s reality, but also of an inherent

https://royalsocietypublishing.org/doi/10.1098/rspa.1929.0094
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ability to implement complex mathematical equations as efficient and scalable computer
programs.

In this chapter, we will briefly outline some of these tools, from the non-relativistic
quantum theory for molecular systems and the most common approximations used to solve
the time-independent Schrödinger equation, to an overview of how to reconcile the ideas
from Einstein’s theory of special relativity [7] and quantum mechanics. We will employ
atomic units, i.e. define the mass of the electron (me), and the elementary charge (e) to be
unity, along with the values for the reduced Planck’s constant (ℏ) and the quantity 4πε0,
throughout this work, unless noted otherwise.

1.1 Overview of Non-Relativistic Quantum Chemistry
In classical mechanics, Newton’s equation of motion (or its generalized version from La-
grange’s or Hamilton’s formalisms [8]) is the key ingredient to describe the dynamical prop-
erties of a system. In quantum mechanics, such a role is played by the time-dependent
Schrödinger equation (Eq. 1.1)

H |Ψ(t)⟩ = iℏ
∂

∂t
|Ψ(t)⟩ (1.1)

In Eq. 1.1, the dynamical variable, |Ψ(t)⟩, encodes all of the information about the QM
system and can be interpreted in a statistical sense. Once projected into real space (Eq. 1.2,
assuming a single particle for simplicity, but without loss of generality), the quantity |Ψ(x⃗, t)|2
represents the probability distribution of the location of a particle at a given time.

Ψ(x⃗, t) = ⟨x⃗|Ψ(t)⟩ (1.2)

The dynamics of |Ψ(t)⟩ is dictated by the Hamiltonian operator H. In the case where
this Hamiltonian does not depend explicitly on time, separation of variables lead to the more
common time-independent version of the Schrödinger equation (Eq. 1.3). This is usually the
starting point for modeling within quantum chemistry, and solving Eq. 1.3 yields a complete
basis of stationary states {|ψk⟩} and their respective energies {Ek}. The complexity problem
of QM is hidden in the structure of the Hamiltonian operator and what types of interactions
between particles it is able to describe.

H |ψk⟩ = Ek |ψk⟩ (1.3)

For chemical systems, composed of a set of nuclei and electrons, and in the absence of
external electromagnetic fields, the (non-relativistic) Hamiltonian operator is given by:

H = Te +Tn +Vne +Vnn +Vee (1.4)

Te and Tn are the kinetic energies of the electrons and nuclei respectively. Vne,Vnn and Vee

are purely electrostatic (Coulombic) terms that describe electron-nuclear attraction, nuclear-
nuclear repulsion and electron-electron repulsion respectively. Assuming that the system is
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composed of electrons labeled with indices {i, j . . .}, and nuclei labeled {A,B . . .}, we can
express each one of the terms in the Hamiltonian as follows:

Tn =
∑
A

− 1

2MA

∇2
A (1.5)

Te = −1

2

∑
i

∇2
i (1.6)

Vne = −
∑
i,A

ZA∣∣∣R⃗A − r⃗i

∣∣∣ (1.7)

Vee =
1

2

∑
i,j;i ̸=j

1

|r⃗i − r⃗j|
(1.8)

Vnn =
1

2

∑
A,B;A ̸=B

ZAZB∣∣∣R⃗A − R⃗B

∣∣∣ (1.9)

(1.10)

where {r⃗i} and {R⃗A} are the positions of the electrons and nuclei respectively, while {ZA}
and {MA} are the nuclear charge and mass.

1.1.1 The Born-Oppenheimer Approximation

The task of solving the time-independent Schrödinger equation for the Hamiltonian in Eq. 1.4
is quite daunting. The stationary states (which we will interchangeably refer to as wavefunc-
tions throughout this work) would not only depend on the positions of the many electrons of
the system, but also on the position of the nuclei, leading to a high dimensional and complex
problem. It is, however, worth noticing that nuclei are much heavier than electrons. Indeed,
the lightest nuclei, a single proton in the hydrogen atom, is about three orders of magnitude
more massive than a single electron. This leads to the first common approximation often
used in quantum chemistry. The Born-Oppenheimer (BO) approximation [6, 9, 10] is based
on the mismatch in the time scales of electronic and nuclear motions, which allows us to
decouple the degrees of freedom of these two sets of particles. Within BO, one can write an
electronic Hamiltonian He (Eq. 1.11) that describes the behavior of the electrons at a given
set of fixed nuclear coordinates {R⃗}. Note that Vnn is now simply a scalar quantity, and
does not affect the electronic wavefunction.

He({R⃗}) = Te +Vne({R⃗}) +Vee + Vnn({R⃗}) (1.11)

While helpful in reducing the dimensionality of the problem at hand, employing the BO
approximation comes with its consequences, such as failing to properly describe the properties
of the system when the energy of two (or more) electronic states become near-degenerate at
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a common set of nuclear coordinates [6, 11–13]. These cases, however, will not be considered
in this work and we will assume BO is a valid approximation.

Is this first approximation enough to allow us to investigate complex chemical systems?
Unfortunately, even with the purely electronic Hamiltonian, we would still have to deal with
a high dimensional mathematical object (the electronic wavefunction) that depends on the
coordinates of many electrons. The origin of the issue lies in the electron-electron repulsion
term, Vee, in the Hamiltonian. Vee is a two-body (or two-particle) operator that couples
the motions of different electrons, hindering the separation of variables that would simplify
the solution of the time-independent electronic Schrödinger equation.

1.1.2 Hydrogen-like Atoms

It is instructive, nonetheless, to look at the structure of such solutions when the electron-
electron repulsion is not present in the Hamiltonian. One electron systems, such as the
hydrogen atom or highly charged cations of other elements, provide us with a physically
meaningful, yet simple and analytically solvable, example. These can potentially inspire
other approximations to solve the electronic Hamiltonian for more complex multi-electronic
systems. For these hydrogen-like atoms, the Hamiltonian reduces to

Te = −1

2
∇2;Vne = −Z

r
(1.12)

He = Te +Vne (1.13)

where the nucleus is placed at the origin, r⃗ is the position of the electron and Z is the nuclear
charge.

The exact expression of the hydrogenic wavefunctions (henceforth referred to as orbitals,
which will also be used to denote any one-electron wavefunction later on) are a bit convoluted
and can be easily found in introductory quantum mechanics textbooks [5, 6]. However, it is
worth noticing that, while the orbitals are characterized by a set of three quantum numbers
{n, l,m}, each representing a different aspect of quantization, such as spatial orientation
or number of radial and angular nodes of the orbitals, the energy levels themselves (Enlm)
reveal some degeneracies, as they only depend on the so-called principal quantum number
n (Eq. 1.14). This is an important fact that will be explored later on this chapter, when
relativistic effects are taken into account.

Enlm = − Z2

2n2
(1.14)

1.1.3 Hartree-Fock theory: a bridge between hydrogen-like
systems and multi-electronic molecules

1.1.3.1 The Slater Determinant as a Trial Wavefunction

One of the takeaways from the previous discussion is that, if the term in the Hamiltonian that
couples the electronic motion (Vee) was to be neglected, we would potentially be able to solve
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the electronic structure problem. In this case, even if we had a many-electron system, its
wavefunction could be written as a product of one-electron functions (orbitals). This neglects
the fact that electrons, as fermions, are indistinguishable from each other and have to obey
Fermi-Dirac statistics [14, 15]. As a practical consequence, exchanging the position of any
two electrons should result in an overall sign change in the total wavefunction, keeping all
of the observables unchanged. Alternatively, the total electronic wavefunction of the system
is said to be antisymmetric with respect to exchanging the coordinates of any two particles.
Mathematically, this is expressed as

Ψ(r⃗1, s1; r⃗2, s2; r⃗3, s3 . . .) = −Ψ(r⃗2, s2; r⃗1, s1; r⃗3, s3 . . .) (1.15)

where {r⃗i, si} represent the spatial and spin (or intrinsic angular momentum) coordinates of
each electron. Moreover, if two electron had the same spatial and spin coordinates, Eq. 1.15
shows us that the total wavefunction of the system would vanish. This is known as the
Pauli exclusion principle [16], and it is a consequence of requiring electrons to follow the
Fermi-Dirac statistics.

The simplest way to enforce this antisymmetry requirement into the electronic wavefunc-
tion is to write it as a Slater determinant [17] whose rows and columns are composed of the
single-particle orbitals {χi, χj . . . χN} and the electronic (spatial and spin) coordinates:

Φ(r⃗1, s1; r⃗2, s2; r⃗3, s3 . . .) =
1√
N !

∣∣∣∣∣∣∣
χi(r⃗1, s1) χi(r⃗2, s2) χi(r⃗3, s3) . . . χi(r⃗N , sN)
χj(r⃗1, s1) χj(r⃗2, s2) χj(r⃗3, s3) . . . χj(r⃗N , sN)

...
... . . . ...

∣∣∣∣∣∣∣ (1.16)

where N is the total number of electrons in the system.
Instead of a single product of one-particle orbitals, we now have an antisymmetric lin-

ear combination of such products, enforcing the Fermi-Dirac statistics constraint into the
electronic wavefunction. As we will discuss later on, using the Slater determinant as a
trial wavefunction to solve the electronic structure problem has the physical consequence of
simplifying the electron-electron repulsion term in the Hamiltonian. However, it is instruc-
tive to briefly discuss the properties of the single-particle orbitals that compose the Slater
determinant.

1.1.3.2 On the Choice of Orbitals

So far, nothing has been said or assumed about the single-particle orbitals {χi, χj . . . χN},
aside from their dependence on the spatial and spin coordinates of a given electron. The
eigenstates of the spin operator in any direction form a complete basis that can be used to
provide us with more information about the spin component of these single-particle orbitals.
The eigenstates {|α⟩ , |β⟩} of the z component of the spin operator S⃗ for an electron, a
fermion with spin s = 1

2
, are given by [6]:

Sz |α⟩ =
1

2
|α⟩ and Sz |β⟩ = −1

2
|β⟩ (1.17)



CHAPTER 1. INTRODUCTION 6

The most general expression for a single-particle wavefunction is simply a linear combination
of the z component eigenstates of the spin operator (more generally, any component could
be used). The weights or coefficients of each eigenstate are given by the spatial components
{ϕα

i (r⃗), ϕ
β
i (r⃗)} of the orbital. This is expressed as follows:

χi(r⃗, s) = ϕα
i (r⃗)α(s) + ϕβ

i (r⃗)β(s) (1.18)

This given rise to the generalized (G) class of orbitals. The spatial components
{ϕα

i (r⃗), ϕ
β
i (r⃗)} can be allowed to be complex if necessary, thus being named complex

generalized (cG) orbitals. How should we go about reconciling this with our usual general
chemistry knowledge, where orbitals are either α or β, but not a weird and complex combi-
nation of both? The answer lies in imposing constraints on the spatial and spin components
of single-particle orbitals.

For instance, we can impose that we should have two separate sets, each with a given
spin, either α or β, of orbitals composed of only real, but distinct, spatial parts (Eq. 1.19).
This choice is usually referred to as unrestricted (U) orbitals. If one imposes the additional
constraint that the spatial components of the α and β orbitals should be the same, this
would lead to what is known as restricted (R) orbitals (Eq. 1.20), the most common choice
for systems that do not have any unpaired electrons.

χi(r⃗, s) = ϕα
i (r⃗)α(s) or ϕβ

i (r⃗)β(s) (1.19)
χi(r⃗, s) = ϕi(r⃗)α(s) or ϕi(r⃗)β(s) (1.20)

Choosing a given class of orbitals (generalized, unrestricted, restricted) has its conse-
quences. This is usually reflected on the symmetries obeyed by the electronic wavefunc-
tion. The electronic Hamiltonian in Eq. 1.11 commutes with several operators, such as the
time-reversal Θ, complex conjugation K, the total spin S⃗ and S2 [18, 19]. The electronic
wavefunction should, therefore, also be an eigenstate of all of these operators. For trial
wavefunction composed of a single Slater determinant, this is only true when the choice the
orbitals are real and restricted. For instance, if we allow the spatial parts of α and β orbitals
to be different from one another, such as in the unrestricted case, the wavefunction is no
longer an eigenfunction of S2 and Θ. Lifting all constraints and choosing cG orbitals leads
to a Slater determinant that does not necessarily obey any of the symmetries of the Hamil-
tonian. A summary of the symmetries respected by each choice of orbitals is presented in
Figure 1.1. These considerations will be further explored in the later chapters of this work.
For now, we have the tools to discuss yet another approximation towards the solution of the
electronic structure problem.

1.1.3.3 Variational Principle and the Hartree-Fock Method

So far, we have established the Slater determinant as our trial solution of the electronic
Schrödinger equation, and that we have certain flexibility on the choice of the orbitals. We
still need the tools, however, to obtain these orbitals, and finally calculate the electronic
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Figure 1.1: Different classes of orbitals, with structure of their respective coefficient matrix
in a basis and the preserved symmetries of the exact Hamiltonian.

energy. We shall make use of the variational principle [5, 6], which states that the energy of
any trial wavefunction is bounded by the true, exact ground-state energy of the system:

Eexact ≤
⟨Ψ |Hel|Ψ⟩

⟨Ψ|Ψ⟩
(1.21)

Therefore, the best trial wavefunction, and orbitals, are the ones that minimize this ex-
pectation value. This is the Hartree-Fock (HF) method [20–23]: by using the variational
principle, one can obtain the best set of single-particle orbitals that composes a Slater deter-
minant and minimizes the expectation value of the electronic Hamiltonian. While the details
of the full derivation can be found elsewhere [24, 25], here we emphasize a few important
aspects. In evaluating the expectation value of the electronic Hamiltonian with respect to a
Slater determinant we encounter the following terms:

E0 = ⟨Φ|He |Φ⟩ = ⟨Φ|Te |Φ⟩+ ⟨Φ|Vne |Φ⟩+ ⟨Φ|Vee |Φ⟩+ Vnn (1.22)

Vnn =
1

2

∑
A,B;A ̸=B

ZAZB∣∣∣R⃗A − R⃗B

∣∣∣ (1.23)

⟨Φ|Te |Φ⟩ = −1

2

∑
i

∫
χ∗
i (r⃗, s)∇2χi(r⃗, s)dr⃗ds (1.24)
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⟨Φ|Vne |Φ⟩ = −
∑
i

∫
χ∗
i (r⃗, s)

∑
A

ZA∣∣∣R⃗A − r⃗
∣∣∣χi(r⃗, s)dr⃗ds (1.25)

⟨Φ|Vee |Φ⟩ =
1

2

∑
i,j;i ̸=j

(Jij −Kij) (1.26)

Jij =

∫
χ∗
i (r⃗1, s1)χ

∗
j(r⃗2, s2)

1

|r⃗1 − r⃗2|
χi(r⃗1, s1)χj(r⃗2, s2)dr⃗1ds1dr⃗2ds2 (1.27)

Kij =

∫
χ∗
i (r⃗1, s1)χ

∗
j(r⃗2, s2)

1

|r⃗1 − r⃗2|
χj(r⃗1, s1)χi(r⃗2, s2)dr⃗1ds1dr⃗2ds2 (1.28)

⟨Φ|Te |Φ⟩ and ⟨Φ|Vne |Φ⟩ are sums over the expectation value of these one-electron operators
for each occupied orbital.

The most interesting term is, as discussed earlier, the expectation value of ⟨Φ|Vee |Φ⟩, as
it involves a two-particle operator. Using a Slater determinant as a trial wavefunction allows
us to rewrite ⟨Φ|Vee |Φ⟩ as a sum of two components: Jij and Kij. The former represents the
classical Coulomb repulsion between the probability distributions/densities of each orbital.
The latter is a consequence of imposing Fermi-Dirac statistics in the wavefunction, thus being
a purely quantum mechanical effect and being denoted as the exchange term/contribution.
It is worth noticing that the exchange term only acts between pairs of orbitals that have the
same spin (or components of the orbitals in the cG case).

By minimizing the energy expectation value (Eq. 1.22) with respect to the single-particle
orbitals, we obtain the so called HF equations (Eq. 1.29), an eigenvalue problem that, once
solved, yields the best orbitals that compose a single Slater determinant wavefunction.

f |χi⟩ = εi |χi⟩ (1.29)

f = h+
∑
j

Jj −Kj (1.30)

h = −1

2
∇2 −

∑
A

ZA∣∣∣R⃗A − r⃗
∣∣∣ (1.31)

Jjχi(r⃗, s) =

(∫
|χj(r⃗2, s2)|2

|r⃗ − r⃗2|
dr⃗2ds2

)
χi(r⃗, s) (1.32)

Kjχi(r⃗, s) =

(∫
χ∗
j(r⃗2, s2)χi(r⃗2, s2)

|r⃗ − r⃗2|
dr⃗2ds2

)
χj(r⃗, s) (1.33)

where εi is a Lagrange multiplier resulting from requiring the HF orbitals to remain or-
thonormal. It is possible to attach physical meaning to these quantities through the so-
called Koopman’s theorem, which states that the negative of εi correspond the ionization
energy of an electron occupying χi, assuming no relaxation upon the removal of the electron
[26]. An interesting feature of the HF equation is that, in order to obtain the set of orbitals
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{χi, χj . . .} by solving Eq. 1.29, we first need to guess what this set looks like, as they are key
ingredients to compute the Coulomb (Eq. 1.32) and exchange (Eq. 1.33) contributions to the
Fock operator. This is then accomplished through an iterative protocol, or self-consistent
field scheme, that is discussed in greater detail in Ref. 24.

1.1.3.4 Mean-Field Hamiltonian and Correlation Energy

Finally, Eqs. 1.29, 1.32 and 1.33 remind us of our initial goal: find an approximation that
would allow us to treat the electronic Hamiltonian as a sum of non-interacting single-particle
terms. Consequently, we would then be able to write the wavefunction of the system as an
antisymmetric combination of products of one-electron functions. The HF method finally
allows us to accomplish this goal: by using a single Slater determinant as our total wave-
function, we can write an effective one-electron equation that gives us the single-particle
orbitals. Moreover, it is worth pointing out the physical content hidden in Eqs. 1.32 and
1.33. They indicate that, in the HF method, each electron experiences effectively an average
field generated by the other electrons. This is of paramount importance to understand the
limitations of HF theory and to improve upon it. We can define a many-body operator F
that is composed by the sum of single-particle Fock operators f (Eq. 1.29):

F =
∑
i

f(r⃗i, si) (1.34)

Due to the mean-field nature of the electron-electron interaction in HF, its approximate
energy is not equal to the exact value that one would obtain from solving the full electronic
Hamiltonian (Eq. 1.11). This allows us to define the correlation energy [27] as follows:

Ecorr = Eexact − EHF (1.35)

Correlation effects can then be recovered by including certain contributions of the so-called
fluctuation potential in post HF methods, as we will discuss in the following section.

V = He − F (1.36)

1.1.4 Climbing up the Wavefunction Mountain of Correlated
Methods

HF is the simplest electronic structure method, as it builds upon the concept of trying
to approximate the full electronic Hamiltonian through a sum of independent one-electron
operators. This task is accomplished by using a single Slater determinant. HF does not
yield the exact energy of a system. Indeed, a good estimate is that the correlation energy
accounts for about 1 eV per electron pair [24]. While this does not seem to be much, it is
critical to accurately model chemical process. These usually involve breaking and forming of
chemical bonds (and likely changing the number of electron pairs in the system) and rely on
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relative energies between reactants and products. For instance, an analysis of the simple case
of the H2 molecule, which has a single electron pair, reveals that the estimate for missing
correlation energy corresponds to about 100 kJ/mol, which is on the same order of magnitude
as the bond dissociation energy of the system. It is necessary to include correlation effects
on top of the HF energy and its wavefunction in order to obtain an accurate description of
physics and chemistry. This can be done through a myriad of different methods, of which
we highlight only a few in this work.

1.1.4.1 Møller-Plesset Perturbation Theory

In Quantum Mechanics, Rayleigh-Schrödinger (RS) perturbation theory [28] is usually the
most straightforward way to account for effects that were not previously included in the
zeroth order description of a problem. This is accomplished by partitioning the total Hamil-
tonian into two pieces:

H = H0 + λV (1.37)

where H0 and V are, respectively, the easily solvable part of the full Hamiltonian (i.e.
zeroth-order Hamiltonian) and the perturbation that we, in principle, do not know how to
account for. λ is a simple parameter that controls the strength of the perturbation, but it is
usually just used as a derivation tool. The same partitioning scheme can be applied to the
total wavefunction and energy of the system:

|Ψ⟩ =
∣∣Ψ(0)

〉
+ λ

∣∣Ψ(1)
〉
+ λ2

∣∣Ψ(2)
〉
+ . . . (1.38)

E = E(0) + λE(1) + λ2E(2) + . . . (1.39)

where {E(0), E(1) . . .} and {
∣∣Ψ(0)

〉
,
∣∣Ψ(1)

〉
. . .} are the corrections to the energy and wave-

function at each order of the perturbation, respectively.
By substituting Eqs. 1.37, 1.38 and 1.39 into Eq. 1.3 and collecting the terms by orders

of λ, we obtain (up to second order):

H0

∣∣Ψ(0)
〉
= E(0)

∣∣Ψ(0)
〉

(1.40)

H0

∣∣Ψ(1)
〉
+V

∣∣Ψ(0)
〉
= E(0)

∣∣Ψ(1
〉
+ E(1)

∣∣Ψ(0)
〉

(1.41)

H0

∣∣Ψ(2)
〉
+V

∣∣Ψ(1)
〉
= E(0)

∣∣Ψ(2
〉
+ E(1)

∣∣Ψ(1)
〉
+ E(2)

∣∣Ψ(0)
〉

(1.42)

After some manipulation, we can obtain the expressions for the first and second order cor-
rections to the energy (we will omit the expressions for the wavefunction corrections for
simplicity):

E(1) =
〈
Ψ(0) |V|Ψ(0)

〉
(1.43)

E(2) =
∑
n̸=0

∣∣∣〈Ψ(0)
0 |V|Ψ(0)

n

〉∣∣∣2
E

(0)
0 − E

(0)
n

(1.44)
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where E(0)
n and

∣∣∣Ψ(0)
n

〉
are, respectively, the energy and wavefunction of the n-th eigenstate

of the zeroth order Hamiltonian.
We are now in position to apply RS perturbation theory to the electronic Hamiltonian,

which will be partitioned in a zeroth order part composed by the mean-field Hamiltonian
(Eq. 1.34) and the fluctuation potential as the perturbation. This is the Møller-Plesset
Perturbation Theory (MP) [29, 30]. In this case, we should note that the zeroth order
excited states correspond to Slater determinants that can be obtained by including orbitals
that were previously unoccupied in the ground-state Slater determinant. These orbitals
will be label by {a, b, c . . .}, whereas the occupied ground-state orbitals will be identified by
{i, j, k . . .}. We should also introduce the following notation to label these excited Slater
determinants:

|Ψa
i ⟩ = a†

aai |Ψ0⟩ (1.45)∣∣Ψab
ij

〉
= a†

aa
†
bajai |Ψ0⟩ (1.46)

where a†
p and ap are the usual fermionic creation and annihilation operators for an electron

at orbital p [25].
With these, the MP energy corrections through second order are given as:

E(0) =
∑
i

εi (1.47)

E(1) = EHF −
∑
i

εi (1.48)

E(2) = −1

4

∑
i ̸=j,a̸=b

|⟨ij||ab⟩|2

εa + εb − εi − εj
(1.49)

where ⟨ij||ab⟩ is defined as follows:

⟨ij||ab⟩ =
∫
χ∗
i (r⃗1, s1)χ

∗
j(r⃗2, s2)

1

|r⃗1 − r⃗2|
χa(r⃗1, s1)χb(r⃗2, s2)dr⃗1ds1dr⃗2ds2

−
∫
χ∗
i (r⃗1, s1)χ

∗
j(r⃗2, s2)

1

|r⃗1 − r⃗2|
χb(r⃗1, s1)χa(r⃗2, s2)dr⃗1ds1dr⃗2ds2

(1.50)

The first order MP correction to the energy does not improve over Hartree-Fock. In fact,
we only recover the HF energy at first order. Hence, we only start recovering the correlation
energy at second order (MP2) and Eq. 1.49 indicates the primary role played by doubly
substituted determinants,

∣∣Ψab
ij

〉
, in describing correlation effects.

While being a widely used tool to partially recover electronic correlation, MP theory
has a few issues. One of them is the seemingly arbitrariness in partitioning the electronic
Hamiltonian. Indeed, other perturbative approaches have been devised, with different par-
titioning schemes that yield potentially different results [31–35]. Other issues include lack
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of guaranteed convergence of the perturbative series depending on the system under inves-
tigation, and the fact that the MP energies and wavefunctions are not variational. This not
only means that there is no lower bound for the MP energy, but also calculating properties,
such as dipoles moments and nuclear gradients, are more intricate tasks than in variational
theories, such as HF [30, 36].

1.1.4.2 Configuration Interaction: adding more Slater determinants to the
wavefunction

Despite these issues, MP theory reveals an appealing strategy to recover the correlation
energy: adding more Slater determinants, through substitutions (or excitations) of the orig-
inally occupied orbitals, in our wavefunction. This is accomplished through configuration
interaction (CI) theory [37, 38]. In CI theory, a linear combination of Slater determinants is
used as the trial wavefunction. Assuming intermediate normalization, that is ⟨ΨCI |Ψ0⟩ = 1,
we have:

|ΨCI⟩ = |Ψ0⟩+
∑
i,a

cai |Ψa
i ⟩+

1

4

∑
i ̸=j,a̸=b

cabij
∣∣Ψab

ij

〉
+ . . . (1.51)

where |Ψ0⟩ is the HF determinant, and {cai , cabij , . . .} are the amplitudes, or CI coefficients, of
the excited determinants {|Ψa

i ⟩ ,
∣∣Ψab

ij

〉
, . . .}. We can use the variational principle once again,

but this time minimize the energy expectation value with respect to the CI coefficients, which
yields the following eigenvalue equation:

E0 0 H0D 0 0 · · ·
0 HSS HSD HST 0 · · ·

H0D HSD HDD HDT HDQ · · ·
...

...
...

...
... . . .




1
CS

CD
...

 = E


1
CS

CD
...

 (1.52)

where {CS, CD, . . .} are the coefficients of the singly and doubly substituted, etc Slater
determinants included in the expansion of the wavefunction. Moreover, the blocks of matrix
elements {HOD, HSS, HSD, . . .} are calculated between different Slater determinants:

H0D =
〈
Ψ0 |He|Ψab

ij

〉
(1.53)

HSS =
〈
Ψa

i |He|Ψb
j

〉
(1.54)

HSD =
〈
Ψa

i |He|Ψab
ij

〉
(1.55)

We note that the electronic Hamiltonian, being a two-body operator, can not connect
Slater determinants that differ from each other by more than two orbitals. This is the
reason why H0T = H0Q = . . . = 0. Moreover, the Brillouin’s Theorem and the structure of
the Hartree-Fock wavefunction, in its canonical form, ensures that H0S = 0 [24]. This allows
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us to write an exact expression of the correlation energy in terms of the coefficients of the
doubly excited determinants:

Ecorr =
1

4

∑
i ̸=j,a̸=b

cabij
〈
Ψ0 |He|Ψab

ij

〉
(1.56)

Once again, the importance of including double excitations on top of the HF wavefunction
is highlighted. A note of caution is necessary however: this observation does not mean
that other determinants are not important in the expansion of the wavefunction. As can
be seen from the structure of Eq. 1.52, the double excitations are coupled to other ones,
such as single, triple and quadruple excitations. For instance, projecting the CI Schrödinger
equation by

〈
Ψd

l

∣∣ allows us to (partially) see this coupling more clearly:∑
i,a

cai
〈
Ψd

l |He|Ψa
i

〉
+
∑

i<j,a<b

cabij
〈
Ψd

l |He|Ψab
ij

〉
+
∑

i<j,a<b

cdablij

〈
Ψd

l |He|Ψdab
lij

〉
= Ecdl (1.57)

This plays an important role in determining the coefficients of the doubly excited determi-
nants, as the coupling leads to a system of equations that need to be solved simultaneously.
Hence, the coefficients for the doubly excited determinants are modulated through their
coupling to other excitations (Eq. 1.57), which renders the correlation energy in Eq. 1.56
also implicitly dependent on these other excitations. Finally, we note that Eq. 1.56 does not
hold if H0S ̸= 0 (e.g. when non-HF references are used). In this case, the correlation energy
depends explicitly on the coefficients for singly excited determinants as well.

While CI theory can, in principle, be made exact by including all possible excited Slater
determinants (within a finite basis), it is not tractable, as the cost of evaluating the matrix
elements and storing some of the computable intermediates is prohibitive for most complex
systems, even when highly specialized algorithms are used [39–42]. An obvious alternative
would be to truncate the CI expansion, leading to the hierarchy of CI methods that only
contain single substitutions (CIS), singles and doubles (CISD) and so on.

CIS does not provide any improvement for the ground-state wavefunction and properties,
as the singly excited determinants do not couple with the HF reference. This property,
however, allows CIS to yield variational approximations to excited states that are orthogonal
to the HF ground state. On the other hand, despite seemingly offering a viable path to
recover the ground-state correlation energy, CISD and other truncated versions of CI theory
fail in delivering consistent results for systems of increasing complexity/size. A simple, yet
instructive way, of illustrating this issue is the analysis of the non-interacting H2 dimer.
Each monomer contains only two electrons, hence a truncation at the CISD level would be
enough to exactly describe their wavefunction. The dimer, however, contains four electrons
and CISD would not yield the exact energy of the system, and we would need to include
up to quadruple excitations (CISDTQ) in the wavefunction to recover the exact correlation
energy of the dimer.

This limitation is known as lack of size consistency [25]. Size consistency is the ability
to recover product separable wavefunctions and additive energies when two fragments of a
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system are not interacting. Due to the linear ansatz for the wavefunction, truncated CI
theory does not include enough flexibility to properly describe the total wavefunction of the
system. In our example, this translates to not allowing the total wavefunction to separate
into products of monomer wavefunctions in the non-interacting limit.

1.1.4.3 Exponential Ansatz of the Wavefunction and Coupled-Cluster Theory

CI theory is based on a linear combination of substituted Slater determinants, and truncation
of the CI expansion leads to lack of size consistency. An alternative way of consistently
recovering the correlation energy is to use an exponential ansatz for the wavefunction as
follows:

|ΨCC⟩ = eT |Ψ0⟩ (1.58)
T = T1 +T2 +T3 + . . . (1.59)

T1 |Ψ0⟩ =
∑
i,a

tai |Ψa
i ⟩ (1.60)

T2 |Ψ0⟩ =
1

4

∑
i ̸=j,a̸=b

tabij
∣∣Ψab

ij

〉
(1.61)

where {tµ} is an amplitude/weight associated with a given excited Slater determinant |Ψµ⟩.
This is the couple-cluster (CC) wavefunction and the foundation of CC theory [43–46].

Without truncation, CC is equivalent to CI theory. This can be seen by expanding the
exponential cluster operator and grouping terms by order of excitation:

eT = I+T+
1

2!
T2 + . . . (1.62)

= I+T1 +

(
T2 +

1

2!
T2

1

)
+ . . . (1.63)

All single excitations are generated by the T1 operator, while all doubles excitations are
generated by the T2 and T2

1 operators. Truncated CC theory is more useful than CI as
higher orders of excitations can be included even if the cluster operator T is truncated at
lower order. For instance, CCSD, with T = T1 + T2, is able to include some quadruple
excitations in the wavefunction, a feature that can not be achieved at the same level of
truncation in CI. The exponential ansatz also yields CC energies that are size consistent, as
it allows for product separability of non-interacting fragment wavefunctions [25, 46].

With all of these nice properties, are there any disadvantages in using CC theory to solve
the electronic structure problem? Unfortunately, obtaining the CC energies and cluster
amplitudes is not as straightforward as in CI theory. If we were to calculate the expectation
value of the electronic Hamiltonian with respect to the CC wavefunction (even a truncated
version of it), the expansion would be as computationally demanding as full configuration
interaction (FCI). This renders variational CC [47, 48] impractical for any complex system.
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The alternative approach is based on a projection scheme that makes use of the Baker-
Haussdorf-Campbell (BCH) expansion:

e−ABeA = B+ [B,A] +
1

2!
[[B,A] ,A] + . . . (1.64)

where A and B are arbitrary operators. In the case of the electronic Hamiltonian, which
is a two body operator, in the context of CC theory and the cluster operator T, the BCH
expansion truncates after four nested commutators:

H̄ = e−THeT = H+ [H,T] +
1

2!
[[H,T] ,T] +

1

3!
[[[H,T] ,T] ,T] +

1

4!
[[[[H,T] ,T] ,T] ,T]

(1.65)

Within this formalism, the projected CC equations yield expressions for the CC ground-state
energy and the cluster amplitudes within the truncated subspace. For instance, in CCSD, the
cluster operator is truncated at the singles and doubles excitation, and the corresponding
subspace then includes the HF reference determinant, and its singly and doubly excited
counterparts. Projecting the CC Schrödinger equation (Eq. 1.66) into this subspace gives us
a system of equations to obtain the CC energy and amplitudes.

H̄Ψ0 = ECCΨ0 (1.66)
ECC =

〈
Ψ0

∣∣H̄∣∣Ψ0

〉
(1.67)〈

Ψa
i

∣∣H̄∣∣Ψ0

〉
= 0 (1.68)〈

Ψab
ij

∣∣H̄∣∣Ψ0

〉
= 0 (1.69)

MP and CC theories are intrinsically related to each other. Similar to MP theory, calcula-
tion of properties within the CC formalism is not a simple task, due to the its non-variational
character. Moreover, both MP and CC theory (especially low orders of truncation) rely, to
some extent, on the HF wavefunction being a qualitative good starting point. In other words,
they require that there is a single dominant Slater determinant in the electronic wavefunction.
This configuration is hopefully captured by the HF reference, while the add-on excited config-
urations (either through perturbation theory or the exponential cluster operator) contribute
only slightly to the total wavefunction and energy. This leads to a (somewhat arbitrary)
distinction between strong (or static) and weak (or dynamical) correlation. MP and CC are
effective methods to recover weak correlation. The problem of recovering strong correlation
is out of the scope of this work and we refer the interested reader to additional references
about the topic [49, 50].

1.1.5 DFT and the Central Role of the Electronic Density

So far, all of the electronic structure methods presented rely on having the wavefunction of the
system play a central role. Indeed, the Schrödinger equation, either in its time-dependent or
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time-independent version, gives us a recipe for how to obtain and manipulate such quantities.
One of the disadvantages of such approach is the complexity of these mathematical objects.
The electronic wavefunction for a system containing N particles will depend on 4N variables,
three spatial and a spin coordinate for each electron. Recall that our main goal in the
beginning of this chapter was to list the available tools quantum chemists have at their
disposal to reduce the complexity of the often daunting task of exactly solving the electronic
structure problem. Can we do better than simply relying on this often impractically large
Hilbert space?

We have learned along the way some nice properties that we would like to include in an
“ideal” theory that depends on less information than the 4N variables of the wavefunction
space. For instance, we would like to keep the simplicity of HF theory in dealing with the
electron-electron repulsion term of the Hamiltonian, while also being able to recover corre-
lation effects in order to model chemical processes. This is where density functional theory
(DFT), and more specifically Kohn-Sham (KS) DFT comes to our rescue. KS-DFT empha-
sizes the leading role of the charge (or number) density, a much more amenable mathematical
object that depends only on three spatial coordinates regardless of the number of electrons
in the system, to solve the electronic structure problem.

1.1.5.1 Hohenberg-Kohn Theorems as the Foundation of DFT

While the idea of using the charge density as the primary ingredient to determine the elec-
tronic properties of a system was pioneered by Thomas, Fermi and Dirac [51–53] in the
early days of quantum mechanics, their model failed to predict chemical bonding [54], and
therefore did not encounter widespread use among quantum chemists. The framework, how-
ever, was greatly expanded decades later by Hohenberg and Kohn (HK), laying the main
foundations of modern DFT [55].

Modern DFT is rooted in two theorems. For a system of interacting electrons under the
influence of an external one-body local potential vext(r⃗)

1. There is a 1:1 mapping between the system’s charge density ρ(r⃗) and the external
potential vext(r⃗) (aside from an additive constant) that it is subjected to. Once vext(r⃗)
is known, the whole Hamiltonian of the system is completely specified and the energies
of its eigenstates can be calculated exactly. Consequently, there is an energy functional
E[ρ(r⃗)] that maps the ground-state density of the system into its energy.

2. Let ρ0(r⃗) be the charge density of the ground-state of the system. For any arbitrary
(v-representable, that is originating from a proper electronic wavefunction for a valid
vext(r⃗)) density ρ(r⃗), we have E[ρ0(r⃗)] ≤ E[ρ(r⃗)]. This is the equivalent of the varia-
tional principle in DFT.

In our case, the external potential is, in the absence of other fields, the electron-nuclear
attraction, Vne. Therefore, we will replace that term in the electronic Hamiltonian by vext(r⃗).
Despite their importance in laying the groundwork for modern DFT, the HK theorems do not
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necessarily point to a practical path ahead on how to actually obtain the exact ground-state
density, or even calculate the energy once said density is available. The second HK theorem
also does not provide any useful criteria to check if a trial density is in fact v-representable,
yielding a trial space too large for the minimization process.

Fortunately, Levy proposed a constrained minimization protocol [56] that replaced the
v-representability requirement by a somewhat looser criteria known as the n-representability
condition. In this case, the Hilbert space is broken down into small sectors, each correspond-
ing to a set of wavefunctions {|Ψρ⟩} that are constrained to have the same density ρ(r⃗).
Mathematically, this can be expressed as:

E[ρ0(r⃗)] = ⟨Ψ[ρ0(r⃗)]|Te +Vee + vext(r⃗)|Ψ[ρ0(r⃗)]⟩ (1.70)

E[ρ0(r⃗)] = min
ρ

(
min

|Ψρ⟩→ρ

{
⟨Ψρ|Te +Vee |Ψρ⟩

}
+

∫
vext(r⃗)ρ(r⃗)dr⃗

)
(1.71)

We can then define an universal energy functional that needs to be minimized to yield
the exact ground state energy:

E[ρ] = F [ρ] +

∫
vext(r⃗)ρ(r⃗)dr⃗ (1.72)

F [ρ] = min
|Ψρ⟩→ρ

{
⟨Ψρ|Te +Vee |Ψρ⟩

}
(1.73)

and, since its components are related to the kinetic and electronic repulsion operators, we
can rearrange Eq. 1.72 further to yield

E[ρ(r⃗)] = T [ρ(r⃗)] + Vee[ρ(r⃗)] +

∫
vext(r⃗)ρ(r⃗)dr⃗ (1.74)

E[ρ(r⃗)] = T [ρ(r⃗)] + J [ρ(r⃗)] +Q[ρ(r⃗)] +

∫
vext(r⃗)ρ(r⃗)dr⃗ (1.75)

where the Vee[ρ] term has been further split into a classical Coulomb contribution (J [ρ]) and
a non-classical part Q[ρ]:

J [ρ] =
1

2

∫
ρ(r⃗)ρ(r⃗′)

|r⃗ − r⃗′|
(1.76)

Q[ρ] = Vee[ρ(r⃗)]− J [ρ(r⃗)] (1.77)

Eq. 1.75 indicates how far we can go without introducing extra elements (namely single-
particle orbitals) into the DFT framework, so we are left with two unknown terms: the kinetic
energy functional T [ρ] and the non-classical term Q[ρ]. T [ρ] is larger in magnitude, so early
attempts within this orbital-free DFT formalism focused on finding good approximations
for this term, largely unsuccessful, as illustrated by the Thomas-Fermi-Dirac (TFD) model.
Even later attempts to correct TFD’s T [ρ] expression, by including a dependence not only
on the density itself, but also on its gradient, hoping to generalize the results for non-uniform
systems, did not yield accurate results [57].
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1.1.5.2 Orbitals to the Rescue: the Kohn-Sham Framework for DFT

In 1965, Kohn and Sham (KS) proposed introducing the idea of single-particle orbitals to
DFT [58]. An intuitive justification is that, in HF theory, the kinetic energy piece of the
Hamiltonian seems to be well approximated by the expectation value of a wavefunction
composed of products of orbitals. Well enough such that HF can qualitatively, albeit not
quantitatively due to lack of correlation effects, describe chemical bonding. Hence, KS-
DFT is based on a scheme where a fictitious non-interacting system represented by a Slater
determinant that reproduces the exact density of its interacting counterpart is used as an
intermediate to approximate some of the quantities in Eq. 1.75. We thus have:

ρ(r⃗) = ρKS(r⃗) =
∑
i

|ϕKS
i (r⃗)|2 (1.78)

E[ρ(r⃗)] = Ts[ρKS(r⃗)] + J [ρKS(r⃗)] +Q[ρKS(r⃗)]

+ (T [ρKS(r⃗)]− Ts[ρKS(r⃗)]) +

∫
vext(r⃗)ρKS(r⃗)dr⃗

(1.79)

Ts[ρKS(r⃗)] =
∑
i

〈
ϕKS
i

∣∣∣∣−1

2
∇2

∣∣∣∣ϕKS
i

〉
(1.80)

where {
∣∣ϕKS

i

〉
}, ρKS, and Ts are, respectively, the fictitious KS single-particle orbitals, density

and kinetic energy, the latter being an implicit functional of the density through the KS
orbitals. Note that we still do not know how to compute all the terms in Eq. 1.79. We then
define the exchange-correlation functional as follows:

Exc[ρ(r⃗)] = Q[ρ(r⃗)] + (T [ρ(r⃗)]− Ts[ρ(r⃗)]) (1.81)

and, inspired by the definition of exchange and correlation energy contributions in wavefunc-
tion theories, we go a step further and define:

Exc[ρ(r⃗)] = Ex[ρ(r⃗)] + Ec[ρ(r⃗)] + T [ρ(r⃗)]− Ts[ρ(r⃗)] (1.82)

E[ρ(r⃗)] = Ts[ρ(r⃗)] + J [ρ(r⃗)] + Exc[ρ(r⃗)] +

∫
vext(r⃗)ρ(r⃗)dr⃗ (1.83)

Up to this point, KS-DFT has been discussed as an exact theory. As long as the density
of a system can be reasonably represented by a single Slater determinant, such as in the
case of single reference chemical systems, we can employ the machinery of KS-DFT. After
all of these considerations, it begs the question: can we finally use this arguably powerful
tool, capable of compressing the information contained in high dimensional wavefunctions
into a simple quantity as the charge density, to calculate energies and properties of complex
systems?
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Unfortunately, no. At least not without invoking further approximations. We do not, and
likely will never, know the exact form of the exchange-correlation functional Exc[ρ]. Instead
of seeing this as complete failure of KS-DFT, an optimistic aspiring quantum chemist would
see this as “glass half full” situation. One that would require even more careful thinking to
design physically motivated approximations in order to achieve the elusive goal of accurately
computing energies and properties of complex many-particle systems.

1.1.5.3 KS-DFT Alphabet’s Soup: Surveying Modern Density Functional
Approximations

This is where KS-DFT fledges from its nest of exactness to venture into the wild and vast
quantum chemical land of approximations. Over the past few decades, this has been an area
of growing interest and fast development. Today, more than a hundred different approxi-
mations for Exc have been proposed. This is a testament of how popular KS-DFT is within
the quantum chemistry community [59–61]. Naturally, some approximations are better and
more accurate than others. Furthermore, it is worth noticing that, contrary to most wave-
function theories, it is not guaranteed that these density functional approximations (DFAs)
are systematically improvable.

Figure 1.2: Perdew’s “Jacob’s Ladder” for DFAs, with increasing complexity for the exchange-
correlation functional.

John Perdew has introduced the methaphorical idea of a “Jacob’s ladder” to group differ-
ent DFAs within certain categories that contain the same physical ingredients, as shown in
Fig. 1.2 [62]. Walking up each rung of the ladder statistically improves that class of DFAs.
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The lowest rung is known as the Hartree world, the primeval land devoid of electronic corre-
lation, whereas the highest one is the holy grail of quantum chemistry: the realm of chemical
accuracy. In between, the ladder is commonly divided into five rungs, according to the in-
gredients used in approximating Exc. We do not aim to present an extensive overview of
the performance of DFAs in each rung. Instead, we will favor a simplified discussion of the
physical content added in each rung and refer the interested reader to check the appropriate
references for some of the DFAs mentioned. Finally, we will present expressions for Exc

that depend only on the charge density ρ(r⃗), even though generalizations to spin dependent
cases, either through individual ρα(r⃗) and ρβ(r⃗) for the different spin channels, or one of the
components of the magnetization density ms(r⃗) = ρα(r⃗)− ρβ(r⃗), can be easily devised. It is
worth noting that such extensions are the de facto standard in real calculations.

1. Local Density Approximation (LDA): the simplest form of DFA is the one that
uses the information about the density at a given point in space:

Exc =

∫
ρ(r⃗)ϵxc(ρ) dr⃗ (1.84)

where ϵxc is the exchange-correlation energy density. Analytical forms of the exchange
functional in LDA can be derived from the uniform electron gas (UEG) [55], while
several parametrizations of the correlation energy for UEG have been proposed over
the years [63, 64]. The most widely used LDA functionals are the SVWN [65] and
SPW92 models [66]. Despite being exact for systems with homogeneous densities,
LDA functionals often perform badly in estimating relative energies for a number of
processes of chemical interest. For instance, SPW92 has a root-mean square deviation
(RMSE) of > 40 kcal/mol for thermochemistry [60] (even though it is undoubtedly an
improvement over the “disastrous” TFD model, and even HF theory).

2. Generalized Gradient Approximation (GGA): The next ingredient that can be
added to Exc is information about the behavior of the density in the vicinity of a
certain point in space. This is accomplished by including the density gradient (∇ρ) as
a dependent variable of ϵxc

Exc =

∫
ρ(r⃗)ϵxc(ρ,∇ρ) dr⃗ (1.85)

GGA functionals are often designed by a careful analysis of exact constraint conditions
that they need to satisfy or by fitting against empirical data. The PBE functional [67]
is the mostly widely known example of the former category, whereas the BLYP [68]
and B97-D3 [69] are examples of empirically fitted functionals. GGAs are often more
accurate than LDAs, with PBE’s RMSD for thermochemistry being on the order of 10
kcal/mol [60].

3. Meta-GGA (mGGA): The next stop on the highway towards chemical accuracy
involves adding even more information about the immediate neighborhood of a point
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in space through the density Laplacian ∇2ρ, or more commonly the kinetic energy
density [70], τ , defined as:

τ(r⃗) =
∑
i

∣∣∣∇⃗ϕi(r⃗)
∣∣∣2 (1.86)

Hence, the exchange-correlation piece for a meta-GGA functional can be written as:

Exc =

∫
ρ(r⃗)ϵxc(ρ,∇ρ, τ) dr⃗ (1.87)

Popular choices for DFAs at the meta-GGA level include TPSS [71], SCAN [72], both
designed to satisfy certain (or all) exact conditions for this class of approximation, and
the combinatorially designed B97M-V [73]. mGGAs are usually more accurate than
GGAs, with TPSS having a RMSD of about 6 kcal/mol for thermochemistry [60].

4. Hybrid: The previous three rungs of the Jacob’s ladder use only local (or semi-
local) information about the density in order to calculate the exchange-correlation
contribution to the total energy of the system. Despite seeing statistical improvement
going up each ladder, both LDAs, GGAs and mGGAs suffer from a systematic issue,
namely the inexact cancellation of the classical Coulomb contribution (J [ρ]) by the
local piece of the exchange energy. This leads to the notorious delocalization, or self-
interaction (SIE), error in local DFAs [74]. In HF, as previously discussed, we observe
exact cancellation of the Coulomb and Exchange, which is a non-local operator, terms
for a given electron. Hence, hybrid functionals are designed to account for the mixing
of a fraction of non-local HF, or exact exchange, in the exchange-correlation energy
expression:

Exc = cEK
HF + (1− c)Ex[ρ] + Ec[ρ] (1.88)

SIE can be mitigated even further if, instead of adding a fraction of exact exchange
globally as in Eq. 1.88, we partitioned the electron-electron repulsion operator into a
short-range and a long-range component [75, 76]:

1

r12
=

1− erf(ωr12)
r12

+
erf(ωr12)
r12

(1.89)

where r12 is the interelectronic distance, erf(x) is the error function, and ω is a param-
eter that controls the transition between the short (first term on the right-hand side
of Eq. 1.89) and long-range (second term on the right-hand side of Eq. 1.89) regimes.
Only small fractions of HF exchange are usually added at short-range, as the local piece
is, if well designed, capable of describing effects at small interelectronic separation. At
long-range, however, HF exchange dominates, usually going to 100% at infinite sepa-
ration. Popular choices for hybrid functionals include B3LYP [77] and PBE0 [78] as
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global hybrids, as well as a mGGA range-separated hybrid, ωB97M-V [79], that has
RMSD of about 2.5 kcal/mol for thermochemistry [60]. It is worth noting that other
schemes to include exact exchange contributions to the energy functional have been
devised, such as local hybrids [80, 81]. Although these have historically received less
attention due to computational considerations and certain ambiguity in defining real-
space local mixing functions, recent advances have led to the design of computationally
efficient and accurate local hybrid approximations [82].

5. Double Hybrid: Hybrid functionals add non-local contributions to the exchange
piece of Exc. Double hybrids, as the name suggests, add wavefunction contributions to
the correlation term [83]. Usually this is accomplished by mixing in a fraction of MP2
energy, as expressed by:

Exc = c1E
K
HF + (1− c1)Ex[ρ] + c2E

(2) + (1− c2)Ec[ρ] (1.90)

where E(2) is the MP2 correlation energy, and c1, c2 are parameters that control mix-
ing between local and nonlocal elements. Being at the top of the Jacob’s ladder,
double hybrids are expected to be the most accurate DFAs, although at the usually
demanding cost of having to evaluate wavefunction based correlation energies. Indeed,
a recent double-hybrid, ωB97M(2) presents a remarkable RMSD of 0.96 kcal/mol for
thermochemistry [84].

1.1.6 What about excited states?

So far, we have described the tools available within non-relativistic quantum chemistry to
calculate the properties and energy of a system in its ground-state. It is worth noticing
that, with recent experimental breakthroughs in new spectroscopic techniques [85, 86], and
increased interest in harnessing the power of widely available solar energy through materials
such as perovskites [87], there is an urgency in developing models that allows us to understand
and manipulate electronic excited states of a system.

From a theoretical perspective, we should emphasize that most of the methods previously
mentioned can be extended to calculate excited states. For instance, CI theory, relying on
exact diagonalization, can yield energies and wavefunctions for excited states, although its
truncated version is still plagued by deficiencies in the linear ansatz, leading to an overcor-
relation of the ground-state compared to excited states. MP and CC also have their excited
state analogs. The algebraic diagrammatic construction (ADC) family of models relies on
a polarization propagator that employs the same partitioning scheme as MP theory [88].
On the other hand, equation-of-motion coupled cluster (EOM-CC) [89, 90] theory relies on
diagonalization of the similarity transformed electronic Hamiltonian (H̄, Eq. 1.65) to yield
excitation energies. Even within the DFT framework, time-dependent density functional the-
ory (TDDFT) [91, 92] provides an elegant and incredibly useful avenue to efficiently model
most types of excited states.
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Our main goal in this section is not to provide an extensive overview of the literature
about quantum chemical methods for excited states. It is to highlight the two main ap-
proaches that have been commonly used to calculate them. CIS, TDDFT, ADC and EOM-
CC theories rely, to some extent, on a truncation (usually at linear order) of a propagator
or response function under the effect of a time-dependent perturbation. While useful, these
linear-response methods have their limitations, such as not properly describing double or
charge transfer excitations in CIS/TDDFT. Although both EOM-CC and TDDFT can be
made exact, for instance through expanding the subspace of the diagonalization in the case
of the former, or incorporating memory effects in the latter, none of these extensions are,
to date, of practical value, as their computational cost would be too demanding to model
complex systems.

An alternative approach is to “bend” the variational principle to our needs and “hack” all of
the machinery developed so far to land on an (non-Aufbau) excited electronic configuration.
This can be accomplished through the use of specialized solvers that will be presented more
thoroughly in the later chapters of this work. We will then discuss the use of orbital optimized
methods, especially in the context of DFT, to investigate a class of excited states that is
poorly described by linear-response models. We highlight that this orbital-optimized, or
state-specific, approach is not limited to mean-field theories such as HF and DFT, with
extensions to MP [93] and CC [94, 95] already reported in the literature.

1.2 Not so fast! A Brief Overview of Relativistic
Quantum Mechanics

The methods and approximations outlined so far are useful to understand a variety of physical
and chemical processes. From allowing us to design better pharmaceutical drugs [96], to
enabling high-throughput materials discovery [97, 98], non-relativistic quantum chemistry
has excelled in modeling, even if qualitatively at times, nature around us. Yet, a few aspects
are still missing. For instance, we can not, with the tools so far discussed, understand why
gold is a yellow shiny metal, instead of silver-ish/grey like most other transition metals [99,
100]. They can neither explain the physical properties, such as melting and boiling points, of
certain coinage metals [101]. In fact, not even spin is fully understood within the framework
presented so far, being firstly introduced in an ad hoc fashion by Pauli in 1927 to account
for the behavior of electrons under the influence of external magnetic fields [102, 103] .

To explain and model these and other phenomena that will be later explored in this
work, we need to go beyond the traditional non-relativistic Hamiltonian and find a way to
incorporate the effects of special relativity, and the consequences of having a limit for the
speed of light into our calculations. The discussion presented in this section is by no means
extensive or complete. Instead, we opt to offer a glimpse of how relativity affects the energy
levels of simple systems and describe a strategy to generalize some of these findings to more
complex, molecular cases. We refer the interested reader to Refs. 104, 105, 106 and 107 for
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a more comprehensive discussion.

1.2.1 Particles and Antiparticles: an introduction to the Dirac
Equation

Although early attempts by Klein [108] and Gordon [109], reconciling special relativity and
quantum mechanics remained an elusive goal. This was due especially to issues in interpreting
“negative probabilities” that arise when solving their proposed relativistic equation, which
was second order in time. It is important to recall that the non-relativistic time-dependent
Schrödinger equation (Eq. 1.1) has a first-order derivative with respect to time, and a second-
order spatial derivative through the kinetic energy operator. In 1928, Dirac proposed a new
formulation of the relativistic quantum theory [110]. Relativity treats space and time at
equal footing, so Dirac, assuming that Eq. 1.1 was valid for a (relativistic) Hamiltonian yet
to be revealed, proposed that such Hamiltonian must also have a first order derivative in
space.

Dirac’s proposed Hamiltonian is of the following form:

H = cα⃗ · p⃗+ c2β (1.91)

where p⃗ and c are, respectively, the regular momentum operator and the speed of light
in vacuum. α⃗ and β are coefficients later determined by Dirac. Dirac reasoned that the
components of α⃗ and β could not be simple scalars, as that would lead to a preferential
spatial orientation. Instead, by requiring that the classical relativistic energy-momentum
relation:

E2 = m2c4 + c2p2 (1.92)

is satisfied, we can find a set of equations that α⃗ and β are required to obey. Namely:{
αk, αl

}
= 2δkl (1.93){

αk, β
}
= 0 (1.94){

β, β
}
= 2 (1.95)

where {A,B} = AB+BA is the usual anticommutator. Eqs. 1.93, 1.95 and 1.95 constitute
the Dirac algebra. A careful analysis of these relationships reveals that the simplest case that
satisfies the Dirac algebra is if we consider a set of 4×4 matrices. While many representations
are possible, a solution to the Dirac algebra is given by the Dirac-Pauli representation:

α⃗ =

[
0 σ⃗
σ⃗ 0

]
(1.96)

β =

[
I2 0
0 −I2

]
(1.97)
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where I2 is the 2× 2 identity matrix, and σ⃗ is the vector of Pauli matrices:

σx =

[
0 1
1 0

]
(1.98)

σx =

[
0 −i
i 0

]
(1.99)

σz =

[
1 0
0 −1

]
(1.100)

So far, Eq. 1.91 describes the dynamics of a free relativistic particle represented by a
four-component spinor |Ψ⟩. Interpreting the physical content of |Ψ⟩ leads to the notion of
any particle (e.g., the electron) having its antimatter, or antiparticle, counterpart (e.g., the
positron). For the Dirac spinor |Ψ⟩, two of its components describe the electronic behavior,
while the remaining ones concern the dynamics of the positron. Through minimal coupling,
that is:

H → H + Φ (1.101)

p⃗ → p+
1

c
A⃗ (1.102)

where Φ and A⃗ are the auxiliary scalar and vector potentials, respectively, for the external
fields, we are now in position to write down the Dirac Hamiltonian for a particle interacting
with its environment (through the auxiliary potentials):

H = cα⃗ ·
(
p⃗+

1

c
A⃗

)
−Φ+ c2β (1.103)

1.2.2 The Fine Structure Hamiltonian for Hydrogen-like Systems

Undeniably, Eq. 1.103 is remarkable: it describes the formulation of the quantum theory of
a particle consistent with special relativity. On the other hand, such a formulation seems
to have enlarged the Hilbert space, given that we now have to deal with four-component
spinors Ψ. Once again, we should ask ourselves: is all this extra information really necessary
to describe the chemical process we are interested? If we constrain ourselves to the realm of
low energy physics and chemistry, one in which the velocity of the particle is small fraction
of the speed of light in vacuum, then the answer is likely no.

We do not need all of the information contained in the Dirac Equation and its four-
component spinor, only pieces of it that are on the relevant energy scale. We can then
attempt to expand the Dirac Hamiltonian in powers of

(
v
c

)
to recover the necessary terms

and reduce the dimensionality of the Hilbert space. Consequently, this should recover both
the fully non-relativistic case and Pauli’s ad hoc Hamiltonian with a Hilbert space spanned
by two-component spinors. This can be accomplished by the so-called Foldy-Wouthuysen
(FW) transformation, the details of which can be found elsewhere [104, 111, 112]. It is
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worth pointing, nonetheless, that one of the goals of the FW transformation is to decouple
the upper and lower two-components pieces of the four-component spinor, allowing us to
simply focus in one of them.

For now, we simply note that, after expanding the Dirac Hamiltonian in powers of
(
v
c

)
up to fourth-order and only taking the terms associated with the upper two-components of
the Dirac spinor, we obtain the following (for clarity, we reintroduce the factors associated
with the mass of the electron and its charge):

H = mc2 (1.104)

+
1

2m

(
p⃗+

e

c
A⃗
)2

− eΦ (1.105)

+ g
e

2mc
S⃗ · B̃ (1.106)

− p4

8m3c2
+

e

8m2c2
∇⃗ · E⃗+

1

4m2c2

(
p⃗× E⃗− E⃗× p⃗

)
(1.107)

H = mc2 +Hnr +HP +HRKE +HD +HSOC (1.108)

Eqs. 1.104, 1.105, 1.106 recover, respectively, the rest energy of the particle, the non-
relativistic Hamiltonian of an electron in an external electromagnetic field (Hnr), and Pauli’s
ad hoc description of the interaction of the intrinsic spin of the electron and an external
magnetic field (HP ). The new terms (Eq. 1.107) were previously unknown contributions
that arise solely from relativistic considerations. In order, the terms in Eq. 1.107 recover
corrections for the relativistic kinetic energy (HRKE), considerations about the non-locality
of the interaction between the electron and the external electric field through the Darwin
term (HD), and spin-orbit coupling effects (HSOC). For hydrogen-like systems (and more
general spherically symmetric potentials), the spin-orbit component reduces to the well-
known expression HSOC ∝ L⃗ · S⃗.

Finally, we should note that HRKE, HD and HSOC lift (some of) the degeneracies of
the non-relativistic energies of hydrogenic systems (Eq. 1.14). Moreover, HSOC does not
commute with either L⃗ or S⃗ operators, and hence coupling between states with different
angular momentum and spin orientations is possible. This requires the definition of a new
quantum number based on the coupled/total angular momentum operator J⃗ = L⃗ + S⃗ to
label the states of the relativistic electronic Hamiltonian. Through perturbation theory, we
can obtain the energies of the j-label states of hydrogenic systems:

Enj =

(
− Z2

2n2

)[
1−

(
Z

cn

)2(
3

4
− n

j + 1
2

)]
(1.109)

Curiously, we can see that Eq. 1.109 still predicts degenerate energies for the 2s 1
2

and 2p 1
2

of hydrogen-like systems. Lifting this degeneracy requires considering the role of vacuum
fluctuations of the photon field within the context of the Lamb shift [113, 114]. Despite
being a remarkably rich and interesting field that has gathered increasing interest from the
quantum chemistry community in recent years, quantum electrodynamics [115–118] and its
extension to molecular systems [119] is out of the scope of this work.
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1.2.3 Quantum Chemistry and Relativity

Up to now, our discussion about relativistic effects has been limited to a single particle (or
the electron-positron pair described by the four-component Dirac spinor). To treat many-
particle molecular systems, we need to find a way to extend the Dirac Hamiltonian. As was
done in the non-relativistic case, we can decompose the full relativistic Hamiltonian into its
one and two-body components. Intuitively, the one-body relativistic Hamiltonian for the
molecular case shall be written as a sum of single-particle Dirac Hamiltonians (Eq. 1.103).
The two-body Hamiltonian, however, requires more careful consideration. What two-body
interactions should be included?

Naturally, we should include the Coulombic Vee term (which we will now denote as
V C
ee = 1

rij
). However, this assumes that electrons interact instantaneously. This means

that if one electron at one side of the universe moves, another one an the other side of the
cosmos will react immediately. While exaggerated, the previous statement illustrates that
the Coulomb repulsion term breaks special relativity. In order to correct this, we need to
include the so-called Breit interaction in the Hamiltonian [120] (here just written for the
interaction between two electrons for simplicity):

V B
ee = − 1

2rij

[
α⃗i · α⃗j +

(α⃗i · r⃗ij) (α⃗j · r⃗ij)
r2ij

]
(1.110)

where α⃗i is the vector of Dirac-Pauli matrices (Eq. 1.96) for particle i. Eq. 1.110 include
both the interactions between the magnetic moments of two-electrons, as well as retardation
effects. Hence, the fully relativistic molecular Hamiltonian can be written as:

H =
∑
i

hi +
1

2

∑
i,j

VC
ij +VB

ij (1.111)

where hi and VB
ij are given by Eq. 1.103 and Eq. 1.110, respectively.

With the Hamiltonian at hand, quantum chemists have tried to extend most of the elec-
tronic structure machinery previously discussed to the relativistic realm [121]. Once again,
we should note that the Hamiltonian in Eq. 1.111 acts on the space of four-component
(many-particle) wavefunctions, and therefore contains more information than is necessary
for typical problems of chemical interest. Several approximations, inspired by the FW trans-
formations previously discussed, have been devised in an attempt to decouple the electronic
and positronic blocks of the relativistic Hamiltonian. Among them, we highlight the Breit-
Pauli (BP) Hamiltonian [122], the Douglas-Hess-Kroll (DKH) [123–126] and the exact-two
component method (X2C) [127, 128].

Finally, we shall briefly discuss some of the details of X2C. The starting point for deriving
the X2C relativistic model is the four-component one-electron Dirac Hamiltonian (Eq. 1.112)
represented in a restricted kinetic balance (RKB) form [129]. Our goal is to use a unitary
transformation that effectively decouples the positive and negative-energy solutions of the
Dirac equation, since we are only interested in describing electrons. In Eq. 1.112, T , V
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and S are the usual non-relativistic kinetic energy, nuclear attraction and overlap matrices,
respectively, represented in a basis of atomic orbitals {ϕµ}. W is defined as the matrix
representation of the operator in Eq. 1.113, where σ⃗ is the vector of Pauli matrices, and
p⃗ and V are the momentum and nuclear-attraction operators, respectively. As indicated
in Eq 1.113, Ŵ can be decomposed into spin-free (ŴSF) and spin-orbit (ŴSO) components
(likewise, the matrix representation W can also be separated into WSF and WSO. Finally,
the solutions of Eq. 1.112 are characterized by their large (CL) and small (CS) components.[

V T

T
W

4c2
− T

][
CL

CS

]
= E

[
S 0

0
1

2c2
T

][
CL

CS

]
(1.112)

Ŵ = (σ⃗ · p⃗)V (σ⃗ · p⃗)
= (p⃗ · V p⃗+ iσ⃗ · (p⃗× V p⃗))

= ŴSF + iσ⃗ · ŴSO

(1.113)

Wµν = ⟨ϕµ| Ŵ |ϕν⟩ (1.114)

We can obtain the coupling matrix X for the positive energy solutions of Eq. 1.112 as the
ratio between the large and small components, as indicated in Eq. 1.115. The renormalization
matrix R is then defined as in Eq. 1.116, where S̃ (Eq. 1.117) is a modified overlap matrix
that takes into account the folding of the small component into the large one.

X = CS(CL)
−1 (1.115)

R = S−1/2
(
S−1/2S̃S−1/2

)−1/2

S1/2 (1.116)

S̃ = S +X† 1

2c2
X (1.117)

With the X and R matrices, we can now calculate the effective X2C kinetic energy
(Eq. 1.118) and nuclear attraction (Eq. 1.119) operators for subsequent electronic structure
calculations. Slight modifications are still necessary to incorporate these effects into the
two-body terms[130, 131], but this is out of the scope of the present work. As Eq. 1.113
indicates, a separation of scalar and vector (spin-orbit) effects can be naturally accomplished
within X2C.

TX2C = R† (TX +X†T −X†TX
)
R (1.118)

VX2C = R†
(
V +

1

4c2
X†WX

)
R (1.119)
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1.3 The Three Pillars of Modern Quantum Chemistry
It has been a long theoretical journey so far. From discussing the basis of Schrödinger’s
exact quantum mechanics, to the main approximations used in non-relativistic quantum
chemistry, and even beyond the borders of conventional electronic structure theory, reaching
a “shadowy” land where the speed of light is finite. This is deliberately an incomplete, and,
at times, biased discussion . Our goal was to present the reader with an overview of the
main tools necessary to, hopefully, interpret the next chapters of this work. The primary
message that we wished to convey is that quantum mechanics is one of the great monuments
of modern science. Applying it to complex systems is, as prefaced by Dirac back in 1929, a
Herculean task. Physically motivated approximations, as well as better and more efficient
algorithms are necessary to advance its predictive power.

Figure 1.3: The three pillars of modern quantum chemistry: advancing basis set design,
development of new approximations to recover electronic correlation and augmenting the
number of components of the Hamiltonian to describe relativistic effects.

Thus, it is instructive to illustrate the three main thrusts upon which one can act to ac-
complish these goals (Fig. 1.3). First, we acknowledge that, while omitted from the previous
discussion, electronic structure calculations are usually carried out in a finite basis. Plane
waves [132], real-space grids [133], and more commonly single-particle Gaussian functions (or
atomic orbitals) [134] are usual choices. Designing more efficient and compact basis sets are
of paramount importance to reduce computational requirements (such as memory), although
this topic has not been explored in the present work.

Second, we need to understand what are the limitations of current correlated methods,
either based on wavefunction or density functional theories, to be able to recover as much
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correlation effects as possible. Modern approaches attempt to accomplish this by choosing
appropriate orbitals [135], regularizing certain quantities hoping to incorporate higher order
correlation effects [136], or levering the power of machine learning to design better density
functional approximations [137].

Lastly, we consider the “dimensions” of the Hamiltonian we are interested in. In the
non-relativistic case (or one that simply incorporates scalar effects), a single-component
wavefunction is usually enough. By single-component we mean that there is no coupling
between different spin channels. On the other hand, a fully relativistic treatment requires
a four-component spinor, which contains a lot more information than necessary for most
chemical applications. A compromise seems to be the development of new approximations
within the two-component framework, such as X2C, where some heavy lifting is done a priori
to decouple the components of interest, usually the ones associated with electrons, and then
proceed with the application of the usual methods of non-relativistic quantum chemistry to
calculate the energies and properties of complex chemical systems.

1.4 Outline
The remainder chapters of this thesis aim to advance certain aspects regarding the last two of
the three main pillars of modern quantum described in the previous section. A brief synopsis
of each chapter follows.

Chapter 2

The content and figures of this chapter are reprinted or adapted with permission from
Cunha, L. A.; Lee, J.; Hait, D.; McCurdy, C. W.; Head-Gordon, M. “Exploring spin
symmetry-breaking effects for static field ionization of atoms: Is there an analog to the
Coulson–Fischer point in bond dissociation?” J. Phys. Chem., 155, 014309, 2021.

Löwdin’s symmetry dilemma is a ubiquitous issue in approximate quantum chemistry.
In the context of Hartree-Fock (HF) theory, the use of Slater determinants with some
imposed constraints to preserve symmetries of the exact problem may lead to physically
unreasonable potential energy surfaces. On the other hand, lifting these constraints leads to
the so-called broken symmetry solutions that usually provide better energetics, at the cost
of losing information about good quantum numbers that describe the state of the system.
This behavior has been previously extensively studied in the context of bond dissociation.
This paper studies the behavior of different classes of Hartree-Fock spin polarized solutions
(restricted, unrestricted, generalized) in the context of ionization by strong static electric
fields. We find that, for simple two-electron systems, UHF is able to provide a qualitatively
good description of states involved during the ionization process (neutral, singly-ionized and
doubly ionized states), whereas RHF fails to describe the singly ionized state. For more
complex systems, even though UHF is able to capture some of the expected characteristics of

 https://doi.org/10.1063/5.0054387 
 https://doi.org/10.1063/5.0054387 
 https://doi.org/10.1063/5.0054387 
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the ionized states, it is constrained to a single Ms (diabatic) manifold in the energy surface
as a function of field intensity. In this case a better qualitative picture can be painted by
GHF as it is able to explore different spin manifolds and follow the lowest solution due to
lack of collinearity constraints on the spin quantization axis.

Chapter 3

The content and figures of this chapter are reprinted or adapted with permission from Roy-
choudhury, S.; Cunha, L. A.; Head-Gordon, M.; Prendergast, D.; “Changes in polarization
dictate necessary approximations for modeling electronic deexcitation intensity: Application
to x-ray emission” Phys. Rev. B, 106, 106, 2022.

Accurate simulation of electronic excitations and de-excitations are critical for complement-
ing complex spectroscopic experiments and can provide validation to theoretical approaches.
Using a generalized framework, we contrast the accuracy and validity of orbital-constrained
and linear-response approaches that build upon Kohn-Sham density functional theory (DFT)
to simulate emission spectra of electronic origin and propose a new and efficient approxi-
mation, named Many-Body X-ray Emission Spectroscopy or MBXES, for simulating such
processes. We show analytically as well as with computed examples that for electronic (de)-
excitation leading to an appreciable change in polarization (i.e., density rearrangement), the
adiabatic approximation in a response-based formalism will be inadequate for the calculation
of oscillator strength. Thus, such a change (e.g. in the net electrostatic dipole moment of
a finite system) can be used as a metric for evaluating the applicability of the adiabatic
response-based approach and can be particularly valuable in X-ray emission spectroscopy.
On the other hand, MBXES, the flexible method introduced in this article, can compute
oscillator strengths accurately at a much lower computational expense on the basis of two
DFT based self-consistent field calculations. Using illustrative examples of emission spectra,
the efficacy of the MBXES method is demonstrated by comparison with its parent theory,
orbital-optimized DFT, and with experiments.

Chapter 4

The content and figures of this chapter are reprinted or adapted with permission from
Cunha, L. A.∗; Hait, D.∗; Kang, R.; Mao, Y.; Head-Gordon, M. “Relativistic Orbital-
Optimized Density Functional Theory for Accurate Core-Level Spectroscopy” J. Phys.
Chem. Lett., 13, 15, 3438-3449, 2022. (∗ indicates equal contribution from authors.)

Core-level spectra of 1s electrons (K-edge) of elements heavier than Ne show significant
relativistic effects. We combine recent advances in orbital optimized density functional
theory (OO-DFT) with the spin-free exact two-component (X2C) model for scalar relativis-
tic effects, to study K-edge spectra of elements in the third period of the periodic table.
OO-DFT/X2C is found to be quite accurate at predicting energies, yielding ∼ 0.5 eV root

https://doi.org/10.1103/PhysRevB.106.075133
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mean square error (RMSE) vs experiment with the local SCAN functional and the related
SCANh hybrid functional. This marks a signficant improvement over the > 50 eV deviations
that are typical for the popular time-dependent DFT (TDDFT) approach. Consequently,
experimental spectra are quite well reproduced by OO-DFT/X2C, without any need for
empirical shifts for alignment between the two. OO-DFT/X2C therefore is a promising
route for computing core-level spectra of third period elements, as it combines high accuracy
with ground state DFT cost. We also explored K and L edges of 3d transition metals to
identify possible limitations of the OO-DFT/X2C approach and discuss what additional
features would be needed for accurately modeling the spectra of such electrons.

Chapter 5

The content and figures of this chapter are reprinted or adapted with permission from
Carter-Fenk, K.; Cunha, L. A.; Arias-Martinez, J. E.; Head-Gordon, M. “Electron-Affinity
Time-Dependent Density Functional Theory: Formalism and Applications to Core-Excited
States” J. Phys. Chem. Lett., 13, 41, 9664-9672, 2022.

The particle-hole interaction problem is longstanding within time-dependent density func-
tional theory (TDDFT) and leads to extreme errors in the prediction of K-edge X-ray
absorption spectra (XAS). We derive a linear-response formalism that uses optimized or-
bitals of the n–1-electron system as reference, building orbital relaxation and a proper hole
into the initial density. Our approach is an exact generalization of the static-exchange
approximation that ameliorates particle-hole interaction error associated with the adiabatic
approximation and reduces errors in TDDFT XAS by orders of magnitude. With a statistical
performance of just 0.5 eV root-mean-square error and the same computational scaling as
TDDFT under the core-valence separation approximation, we anticipate that this approach
will be of great utility in XAS calculations of large systems.
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Chapter 2

Exploring Spin Symmetry-Breaking
Effects for Static Field Ionization of
Atoms

2.1 Introduction
Discussions on the usefulness of symmetry-broken approximate solutions are a familiar topic
in time-independent quantum chemistry [138–143]. The issue is encapsulated in what Löwdin
has called the “symmetry dilemma” [144]: a more flexible trial wavefunction that does not
necessarily preserve all of the symmetries of the exact Hamiltonian might lead to better
energetics (i.e. lower energy on account of the variational principle) at the cost of losing
good quantum numbers that characterize the state of a given system. Within the single
determinant Hartree-Fock (HF) model, classification of these symmetry-broken solutions is
based on group theory considerations [145], but most commonly in electronic structure one
uses terminology that reflects constraints imposed on the orbitals the comprise the single
determinant [146]. For instance, requiring that both α and β spin-orbitals share a common
set of spatial functions (i.e. the electrons are paired whenever possible) leads to the well-
known restricted closed-shell (Ms = 0) Hartree-Fock (RHF) and the more general (Ms ̸= 0)
restricted open-shell HF (ROHF) models. RHF and ROHF are both eigenstates of total
spin, Ŝ2, and its z component, Ŝz. Lifting this spin pairing constraint, such that α or β spin
orbitals can have different spatial functions, gives us the unrestricted Hartree-Fock (UHF)
model, whose wavefunction is no longer an eigenfunction of Ŝ2. Further symmetry lowering
by abolishing the notion of separate sets of α and β orbitals leads to the generalized Hartree-
Fock (GHF) wavefunction, which is not an eigenstate of either Ŝ2 or Ŝz. Furthermore, number
symmetry can also be relaxed following Hartree-Fock Bogoliubov theory [147, 148], which
yields a state that is not an eigenstate of the particle number operator (N̂).

Within a finite basis, the HF energy, EHF(θ), is a function of orbital rotation parameters,
θ that mix occupied and virtual orbitals [24, 25, 149]. A solution of the Hartree-Fock
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equations zeros the orbital rotation gradient, such that ∇θEHF = 0 (i.e. it is guaranteed to
be a stationary point). However a solution is not necessarily a minimum, and an analysis
of the orbital Hessian, Eθθ

HF, is required to characterize the nature of a stationary point. If
all of the eigenvalues of the Hessian are greater than zero, we have found a solution that is
a local minimum, and is said to be stable. The question of which set of orbital parameters
to include in the evaluation of the Hessian arises[150]: if the HF solution is stable within
the manifold determined by certain symmetry constraints (e.g. the RHF constraints), it
is said that such a solution is internally stable. Lifting some or all of these symmetry
constraints leads to characterization of the stationary point in manifolds of higher dimension
than the one it was originally optimized in (e.g. characterizing an RHF solution in the
space of UHF variations). This corresponds to an analysis of the external stability of the
given solution. It might be useful to notice that stability analysis is closely connected with
TDDFT/TDHF linear response equations [91, 143] which are routinely available in standard
quantum chemistry packages.

For common problems in ground-state electronic structure, internal stability analysis
avoids convergence to spurious saddle points and excited states. On the other hand, external
stability analysis sometimes reveals interesting physical insight into the nature of electron
correlation. For instance, when single bonds are stretched beyond the so called Coulson-
Fischer (CF) point [151], the lowest triplet excited state (T1) starts to mix with the singlet
ground state (S0) in a process known as the “triplet instability” [152, 153], which leads to
spin symmetry breaking. The resulting spin polarized UHF state has lower energy than the
RHF state, but is no longer an eigenstate of Ŝ2: the state is said to be spin-contaminated
due to its mixed singlet-triplet character. The RHF solution that pairs electrons in order to
keep a well-defined Ŝ2 eigenstate fails to provide a qualitatively correct description of the
dissociation process. The RHF pairing constraint, which fixes natural occupation numbers
at 0 or 2 even at the dissociation limit (when one would expect the two orbitals to be singly
occupied) leads to a state that spuriously preserves ionic character, which consequently fails
to approach the correct asymptotic limit at complete dissociation. On the other hand, UHF is
able to successfully provide a qualitatively accurate description of the ground state potential
energy surface for single bond dissociation [24]. Similar considerations apply to molecules
that are singlet diradicaloid [154–156] in character: because two orbitals have occupation
numbers significantly different from two and zero, RHF cannot be qualitatively correct, while
UHF exhibits spin contamination due to mixing of S0 and T1.

There are surely other situations in which similar symmetry dilemma arises, but where
its consequences have not been so thoroughly explored as bond dissociation processes and
singlet diradicaloids. One example lies in the interaction of atoms and molecules with strong
electric fields [157–165]. Strong field chemistry and physics is a rapidly developing field,
because of the rich array of new highly non-linear phenomena that emerge. For example,
a strong oscillating field will nearly ionize bound electrons in one direction in a first half-
cycle followed by reattachment and near ionization in the opposite direction in the second
half-cycle. This leads to high harmonic generation (HHG) [166–170], the emission of radi-
ation by the driven bound system at frequencies which are many times that of the applied
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radiation. HHG and related phenomena are building blocks for the new field of attosecond
science [171–174]. Therefore the use of quantum chemistry methods to model strong field
phenomena is also attracting increasing interest [175–180]. However, to date there has been
no systematic exploration of the role of symmetry-breaking in the mean field HF method in
this context, to our knowledge. This work represents a first step in this direction, though
the issue of inadequate field-free Hartree-Fock reference for real-time methods in strong field
environments has been briefly mentioned in some previous works [181–184] .

By definition strong fields are those whose scale approaches the strength of internal
electric fields experienced by the valence electrons of atoms and molecules (e.g. 1 a.u. for
the H atom). Therefore the molecule and the field must be considered as a combined system,
rather than treating the field as a perturbation. If such fields are static, then strong field
ionization becomes possible, and some electrons may be unbound. Yet because the molecule-
field system is treated as a whole, the symmetry dilemma may arise for at least some values
of the applied field. In this sense, the magnitude of the field is a control variable similar
to the degree of bond-stretching in the dissociation of a closed-shell stable molecule. This
paper explores the role of symmetry-breaking in HF solutions for atom-field systems where a
static field is scanned across values that can strip one or more electrons from the atom. This
investigation is interesting in its own right, and also may help to set the stage for a subsequent
analysis in the context of time-dependent fields. This chapter is arranged as follows: in
Section 2.2 we discuss our approach to approximate the description of continuum-like states
using ghost basis functions, an analysis of the HF spin symmetry-broken solutions for the
static field ionization of helium and neon is presented in Sections 2.3 and 2.4, respectively,
and in Section 2.5 we assess our main conclusions while presenting an outlook of future work.

2.2 Static Field Ionization in a Finite Basis
The first issue that arises when applying an electric field to an atomic or molecular system
is that, strictly speaking, bound states are no longer supported by the combined potential
arising from the system and the field [185, 186]. These states are now resonances and a
suitable discretization for both localized and continuum states are needed to describe them.
From a theoretical perspective, the scattering community has developed a wide range of tools
to treat these resonance states, such as exterior complex scaling (ECS) [187–194], complex
absorbing potentials (CAP) [195–203], and different grids as schemes to discretize space
[204–210]. On the other hand, the quantum chemistry community has long advocated for
the use of atomic orbital (AO) expansions based on Gaussian functions as an efficient way
to compute ground and excited state properties of molecular systems. Since our goal is to
study static field ionization exploring the common toolbox of quantum chemistry, we shall
resort to the usual finite AO basis set treatment. What are the consequences of such choice?
The most concerning one is that ionization losses are hindered, since electronic density will
be constrained near the atom/molecule. Two possible ways [211] of circumventing this issue
are the use of highly diffuse basis sets and discretizing the relevant part of the space by
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adding a ghost atoms/functions that could be populated by electron density as ionization
takes place. We have opted for this second option and added a series of ghost functions
in a line passing through the atom and in the direction of the applied field. This allows
us to capture some of the effects of ionization as electron density can escape the system
and populate the discretized space (Fig. 2.1). This setup is inspired by previous works that
aimed to study the real-time electron dynamics of systems in the context of strong fields
and high-harmonic generation (HHG), where the addition of diffuse and ghost functions to
the basis set is important for a good description of the Rydberg and unbound states of the
system, respectively [211].

Figure 2.1: Setup of our model for static field ionization. A series of ghost functions was
added passing through the atom and in the direction of the field, allowing electron density
to escape/ionize from the system (the grey crosses represent additional race track ghost
functions, as discussed in Sec. 2.4).

Given this setup for our problem, we also need to interpret what the exact results would
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look like in this finite basis set approach. We start our analysis by noticing that, assuming an
adequate discretization of the space by the ghost centers, we can separate the problem/po-
tential into two parts: one associated with the molecular/atomic system and another related
to the artificial box that is effectively created by the extent of the ghost centers. Introductory
quantum mechanics teaches us that, to first order, the energy levels of a charged particle
in a box subjected to a uniform static electric field decrease linearly with the strength of
the field [212]. Moreover, increasing the field strength affects the molecular potential by
suppressing the barrier to ionization for higher excited state (especially Rydberg states)
and increasing the tunneling probability for low-lying states. In this sense, higher excited
states easily become continuum-like states and “dive” down in energy as the field becomes
stronger. At certain field strengths, these continuum-like states start to interact with the
low-lying bound states and an avoided crossing is observed: the former bound state acquires
continuum-like character by localizing around the edge of the artificial box, with an energy
that decreases linearly as the field strength continues to increase. Notice that the applied
electric field turns all of the states of the system into resonances with finite lifetime [212],
and a proper discussion on how to obtain DC Stark lifetimes for several molecular system
using quantum chemistry methods has already been presented elsewhere [177, 178, 213].

Fig. 2.2 illustrates this process for a He atom (described by the functions contained in
the aug-cc-pVTZ basis set[214, 215]) in an artificial box comprised of 18 hydrogen STO-
3G[216] s-type ghost centers spaced by 0.5 Å spanning a range of 4.5 Å around the atom
(which should be adequate for an unambiguous determination of the state of ionization of the
system given that this distance is much larger than the atomic radius of He). We shall focus
on the behavior of the ground-state S0 and the first singlet excited state S1 as a function
of field strength. Initially, in the absence of the field, these states are well separated in
energy and there is no mixing between them. As the field strength increases, we observe
the characteristic quadratic polarization effect on the energy (which can be described by
perturbation theory) [217]. Higher lying states are more polarizable, so this effect becomes
more evident. These high energy excited states are also more easily ionized and the transition
between the quadratic behavior characteristic of a bound state to a linear dependence of the
energy on field strength happens at lower fields. At F = 0.175 a.u., we observe an avoided
crossing between the first singlet state (which has been previously ionized) and the unionized
ground state. This leads to a change in character of the ground state after the avoided
crossing: initially unionized, with both electrons localized around the atom, the ground
state becomes singly ionized, with one electron detaching from the atom and localizing at
the edge of the box. The second ionization is characterized by yet another avoided crossing
between the singly ionized S0 and doubly ionized S1 at a field of F = 0.36 a.u. Between
these two field strengths, we note that the singly ionized T1 state is degenerate with the
ionized ground state S0. It is worth noticing that the potential energy curves presented here
as a function of field strength are very similar to stabilization graphs proposed by Simons
[218] and widely used to describe temporary ions and other atomic/molecular resonances
[219]. There, information about the resonance’s lifetime can be obtained by an analysis of
the avoided crossing that arise by changing the variational parameters associated with the
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basis set. Here, however, the basis set is fixed and the energy is plotted as a function of
varying field strength.

Our goal is to understand how different approximations, such as HF and MP2 can recover
this exact finite basis behavior. We shall put emphasis on the effects of allowing for spin
polarization (i.e., difference between using restricted and unrestricted orbitals) to describe
field ionization as an analog to what happens in bond dissociation of molecules. All calcu-
lations were performed with the Q-Chem 5.3 package [220] following the same protocol: we
used the aug-cc-pVTZ basis set for the atomic center and hydrogenic STO-3G s functions for
the ghost centers. We also performed internal stability analysis in order to ensure that the
solution within the domain of each HF class (RHF, UHF and GHF) was the lowest possible.

2.3 Field Ionization of He

2.3.1 Hartree-Fock (HF) Minimum Basis Model

We start our discussion about the relation between spin polarization and static field ioniza-
tion by analyzing the behavior of the Hartree-Fock (HF) solution in a simple, yet instructive,
minimum basis model of a two electron system. This model is comprised of a single basis
function localized around the atom (represented by |A⟩ in Table 2.1) and a single function
(represented as |C⟩ in Table 2.1) placed at a distance d from the atom in the direction of
the applied field to represent the discretized continuum and that can support the flux of
ionized electrons once the field is switched on. It should be noted that this is analogous to
the toy model used to describe the bond stretching of H2 in the minimum basis [24, 143].
Here, we have also assumed that the distance d is large enough such that there is no overlap
between the orbitals representing the atom and the discretized continuum. Moreover, we
assumed that the ghost function is diffuse enough that we can neglect its kinetic energy
(⟨C|T̂ |C⟩ ≈ 0), but not too diffuse relative to the distance d. We can then construct the HF
orbitals as linear combinations of these two functions.

In this toy model, the RHF solution is controlled by a single variational parameter θ
that mixes the atomic basis function with the continuum-like ghost function (Table 2.1).
Analyzing the stationary and stability conditions of the energy obtained as the expectation
value of the Hamiltonian with the RHF determinant leads to two limiting cases. The solution
characterized by the double occupancy of the atom-centered orbital (θ = 0) is found to be
stable when the product of the applied field strength (F ) and the distance between the basis
functions (d) is less than the IP1, the first ionization potential of the system (i.e. Fd < IP1).
On the other hand, the θ = π

2
solution, which corresponds to 2 electrons paired up on the

ghost function that supports the ionized flux, is stable when Fd > IP2, where IP2 is the
second ionization potential of the system. At intermediate field strengths, IP1 < Fd < IP2,
the stable solution is given by a state that has mixed neutral and doubly ionized character.
It is interesting to notice that RHF only allows for the combined ionization of the electron
pair and the intermediate state associated with single ionization is never reached. Hence, we
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Figure 2.2: FCI (exact) results for the static field ionization of He for (a) lowest four singlet
states, (b) lowest four triplet states. The “kinks” correspond to avoided crossings between
continuum-like states associated to the artificial finite box and localized states from the
atom. For the ground state, the crossings also give us the signature associated to ionization
events. The atom is described by the aug-cc-pVTZ basis set, whereas each ghost center is
described by hydrogenic STO-3G 1s function separated by 0.5 Å.
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see that restricted HF (RHF) cannot recover the exact behavior shown in Fig. 2.2 for the
ground state, as it only connects the neutral solution (with the electrons paired up on the
atom) and the doubly ionized state.

Model Assumptions
1a. |A⟩ - atomic spatial orbital
1b. |C⟩ - continuum-like orbital
2. ⟨A|C⟩ ≈ 0

3. ⟨C|T̂ |C⟩ ≈ 0
Spatial Orbitals

|1⟩ = cos θ1 |A⟩+ sin θ1 |C⟩
|2⟩ = cos θ2 |A⟩+ sin θ2 |C⟩
Stable RHF - |Ψ⟩ = |11̄⟩

θ = 0 0 < θ < π
2

θ = π
2

Fd < IP1 IP1 < Fd < IP2 Fd > IP2

|Ψ⟩ =
∣∣AĀ〉 mixed solutions |Ψ⟩ =

∣∣CC̄〉
Stable UHF - |Ψ(θ1, θ2)⟩ = |12̄⟩

θ1 = θ2 = 0 θ1 = 0, θ2 =
π
2

or θ1 = π
2
, θ2 = 0 θ1 = θ2 =

π
2

Fd < IP1 IP1 < Fd < IP2 Fd > IP2

|Ψ⟩ =
∣∣AĀ〉 |Ψ⟩ =

∣∣CĀ〉 or |Ψ⟩ =
∣∣AC̄〉 |Ψ⟩ =

∣∣CC̄〉
Table 2.1: Analytic representation of molecular orbitals and ionization states predicted by HF
for minimal basis model. |A⟩ and |C⟩ are the atomic and ghost/continuum basis functions,
respectively. The stationary and stability conditions for RHF and UHF lead to different
character of the solutions as a function of field strength and UHF is the only model capable
of describing single ionization.

The analysis of the unrestricted case is more intricate and interesting. Two independent
variational parameters (θ1, θ2) control the mixing of the basis functions for the independent
sets of α and β orbitals (Table 2.1). The stationary condition on the energy expectation
value for the UHF determinant leads to four different solutions for the (θ1, θ2) pairs. The
solutions (θ1, θ2) = (0, 0) and (θ1, θ2) = (π

2
, π
2
) reduce to RHF, corresponding to double

occupation of the atomic and ghost orbitals, respectively. The former case is stable when
Fd < IP1, whereas the stability for the latter is achieved when Fd > IP2. The difference
in the UHF case is the possibility of achieving intermediate stable solutions (θ1, θ2) = (0, π

2
)

and (θ1, θ2) = (π
2
, 0) for the intermediate range of field strengths IP1 < Fd < IP2. These

extra UHF solutions are characterized by having one electron occupying the atomic orbital
and the other one localized on the ghost function. Therefore, we see that UHF is able to
characterize the singly ionized state. This ability, however, comes at a cost: in an analogy
to the common problem of bond dissociation at the UHF level, these single determinant
unrestricted solutions for the intermediate range of field strengths are composed of an equal
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mixing of singlet and triplet configurations that results in a spin-contaminated state with
⟨S2⟩ = 1[24]. Nonetheless, UHF is qualitatively able to describe the static field ionization
behavior expected from our analysis of the exact results (Fig. 2.2), showing the three dis-
tinct regimes corresponding to the three possible levels of ionization. In addition, the large
separation between |A⟩ and |C⟩ leads to a vanishing singlet-triplet gap, so the contamination
has no direct impact on the energetics. Finally, we note that the 1:1 quantitative mapping
between the position of the “kinks” in the energy curve as a function of field strength and
ionization potentials (IPs) is only possible if the conditions outlined in Table 2.1 are satis-
fied. The model can be easily modified to account for the electrostatic repulsion between |A⟩
and |C⟩ and the kinetic energy of the populated ghost function (⟨C|T̂ |C⟩, leading to a bet-
ter numerical agreement for the IPs. Alternatively, a decomposition of the total energy into
atomic, continuum and interaction contributions could lead to better quantitative agreement
for the IPs. Qualitatively, however, the main features do not depend on the specific nature
of the ghost functions.

2.3.2 Wavefunction Methods in a Larger Basis

We move on to an analysis of the performance of other wavefunction based methods on a
larger basis set to describe the static field ionization of He. We should point out that our
emphasis is, once again, on the difference between how different flavors of self-consistent field
(SCF) solutions can capture ionization effects in this discretized continnum model. In this
case, He is represented by the larger aug-cc-pVTZ basis and the continuum is represented by
a track of 18 1s hydrogenic STO-3G ghost basis functions spanning the range between -4.5
Å and 4.5 Å (with equal spacing of 0.5 Å between each ghost center) along the direction
of the field. Fig. 2.3a summarizes the results in this larger basis set.

Just as expected from the analytical model, RHF cannot qualitatively describe the correct
behavior for single-electron ionization due to the constraint that the two electrons are paired.
For field strengths smaller than 0.175 a.u., we observe the neutral (two electrons localized
around the atom) ground state, and for field strengths greater than 0.36 a.u., we observe the
doubly ionized state of the atom. We notice a smooth transition between neutral atom and
its atom dication state for intermediate field strengths. This can also be observed when we
analyze how the total electric dipole (Fig. 2.3b) of the system and the charge of the He atom
(Fig. 2.3c) change as a function of the applied field. UHF, on the other hand, captures the
essential features expected from the exact solution: the energy curve shows three distinct
regions separated by first derivative discontinuities. These kinks are associated with spin-
polarization effects as illustrated by the transition between ⟨S2⟩ = 0 to ⟨S2⟩ = 1. The
sharpness of this transition (i.e., how fast the spin polarization occurs) is highly dependent
on the size of the basis set: for smaller basis sets, ⟨S2⟩ seems to continuously change from
0 to 1, which indicates another remarkable similarity between the analysis presented in this
work and the nature of the Coulson-Fischer point for bond dissociation. For larger basis sets,
the spin polarization transitions appears to be much more sudden and discontinuous. We
next consider the behavior of electric dipole and He charge for the UHF solution (Figs. 2.3b
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(a) SCF total energy,

(b) Dipole moment, (c) Mulliken charges on He,

Figure 2.3: (a) SCF total energy, (b) Dipole moment and (c) Mulliken charges on He as
a function of field strength for the RHF and UHF solutions. In all cases, the RHF curve
smoothly changes as the field strength increases, while UHF presents the characteristic kinks
that are associated to ionization events.

and 2.3c). We do however note that the numerical magnitude of the change in the dipole
moment is directly proportional to the size of the box created by the ghost functions. Both
observables indicate that UHF qualitatively captures the three distinct regimes expected
for the ionization of helium: the polarization of the electron pair on the neutral atom, the
singly ionized state and the doubly ionized state. Again, the ability of UHF to describe this
singly ionized state comes at the cost of spin polarization as indicated by ⟨S2⟩ = 1 for field
strengths in the range that generates one unit of positive charge on helium.

Moreover, we briefly analyze the MP2 (Fig. 2.4) performance for strong field ionziation
of He using restricted (RMP2) and unrestricted (UMP2) orbitals. As expected, since UHF
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Figure 2.4: RMP2 and UMP2 results for the static field ionization of He. Due to the
poor performance of the RHF reference, RMP2 presents energies lower than the exact ones,
indicating that the MP2 amplitudes are overcompensating for the bad HF reference in the
singly ionized regime. On the other hand, UMP2 is able to correctly recover almost exactly
the FCI.

is a better reference to describe all possible charge regimes for our systems, UMP2 recovers
all of the qualitative features of the exact solution. By contrast, RMP2 seems to oscillate
above and below the exact solution: for field strengths closer to the ionization points, RMP2
energies are, as expected, above the exact values and seem, at first, to follow the same pattern
as the RHF curve. However, RMP2 drops below the exact curve for fields in the mid-range
for the singly ionized state. This indicates the RMP2 is over-correcting for the bad reference
provided by the restricted orbitals in this regime. Nonetheless, this behavior is not as
catastrophic as in the RMP2 potential energy curve for the dissociation of H2, where incipient
orbital degeneracies cause a divergent PES as the bond length increases [24]. Although not
explored in the present work, this failure could be a fertile ground for an investigation of the
efficiency of orbital-optimized MP2 schemes (OO-MP2) with regularization [136] to cheaply
but accurately recapture some of the correlation effects associated to field ionization.

Our final analysis for the He atom is based on an attempt to remove most of the electric
field and spurious discretized continuum contributions to the total energy, accounting only
for the purely electronic energy of the atom as a function of the field strength. Within the
dipole approximation, we defined an internal energy operator Û :

Û = Ĥelec − ˆ⃗µ · F⃗ (2.1)

The electronic energy of the combined atom-continuum system can then be calculated via:

Eelec = ⟨Ĥelec⟩ = Eatom
elec + Eelst + Eghost

elec = ⟨Û⟩+ ⟨ ˆ⃗µ⟩ · F⃗ (2.2)
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Eq. 2.2 includes three main components: (i) the electronic energy of the isolated atom
(Eatom

elec ), (ii) the electrostatic interaction between discretized continuum and He atom (Eelst),
and (iii) the electronic energy of the populated discretized continuum (Eghost

elec ).
In the limit of two non-interacting subsystems (the isolated atom and the discretized

continuum represented by the ghost functions), the super-system wavefunction is given by
the product of the two individual wavefunctions and the super-system density matrix (D)
can be written as a direct sum of the atomic density matrix (DA) and a density matrix
associated with the ghost functions (DG). For our setup, however, the definition of the
atomic subsystem is somewhat fuzzy since, in the complete basis set limit for the atom, the
most diffuse basis functions will overlap with the nearest ghost centers added to represent the
continuum electrons. This situation could be ameliorated by increasing the distance between
this nearest ghost center and the atom or by noticing that, after ionization, electrons will tend
to occupy the ghost functions closer to the edge of the artificial box used for the discretization
of the continuum states. This allows us to have a clear definition of the ghost subsystem
and we can then define the atomic contribution as the difference between the total energy
and the energy contributions from the ghost basis functions.

By following this approach, DA and DG are defined as blocks of the super-system density
matrix associated with the electron density represented by basis functions localized around
the atom and with the density represented by basis functions centered in the track of ghost
centers, respectively. The electrostatic interaction can then be calculated as

Eelst =
∑
µ,ν∈G

DG
µνV

G
µν +

∑
µ,ν∈G

∑
λ,σ∈A

DG
µν(µν|λσ)DA

σλ (2.3)

In Eq 2.3, we separated the contribution of the attractive interaction between the electrons
populating a ghost function and the He nucleus (which is accounted by the ghost function
block of the nuclear attraction one-electron integrals, V G) and the repulsive screening be-
tween the continuum-like electron density (DG) and the remaining electron density localized
around He (DA).

The electronic energy of the populated discretized continuum is expressed as a trace over
its subsystem density matrix, DG:

Eghost
elec =

1

2

∑
µ,ν∈G

(FG
µν + TG

µν)D
G
µν (2.4)

where TG is the kinetic component of the one-electron integrals for the ghost basis functions,
FG is a Fock matrix in which we replaced the usual one-electron integrals by only its kinetic
component (since for the discretized continuum subsystem there is no nuclear attraction).

Eq. 2.4 is clearly correct in the non-overlapping limit. In the presence of overlap, Eq.
2.4 corresponds to the embedded mean-field theory [221, 222] decomposition of the total
energy of two composite systems (in our case He and ghost centers) into the energies of
each subsystem and their interaction energy. It is worth noticing that we have not explicitly
included other energy contributions arising from the mixed atom-ghost density contributions
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or atom-ghost exchange effects in Eq. 2.2. Implicitly, these contributions are accounted for
in the definition of Eatom

elec (Eq. 2.5) and are small due to large separation between the atom
and the ghost function on the edge of the track.

Finally, the quantity of interest ∆Eatom
elec is given in terms of the atomic subsystem elec-

tronic energy at a given field strength

Eatom
elec (F ) = ⟨Û⟩+ ⟨ ˆ⃗µ⟩ · F⃗ − Eelst − Eghost

elec (2.5)

relative to the corresponding quantity at zero field:

∆Eatom
elec = Eatom

elec (F )− Eatom
elec (F = 0) (2.6)

Based on our previous analysis, this approach should be more suitable for the UHF solu-
tion in which the separable density assumption holds to a greater extent and as it can properly
account for ionization. Fig. 2.5 shows that the kinks in the total UHF energy (Fig. 2.3a)
and the dipole and charge discontinuities for the UHF solution (Figs. 2.3b and 2.3c) are,
once again, intrinsically related to ionization events, as we can directly recover information
about the first and second ionization potentials (represented by the dashed lines in Fig. 2.5)
of He by removing the spurious field and ghost functions contributions to the total energy.
Finally, the analysis based on the decomposition of the density matrix into its atomic and
ghost contributions allows us to obtain more information about the electronic structure
of each subsystem: an eigenvalue decomposition of the combined atom-ghost, atomic and
ghost density matrices indicates the number of electrons for each subsystem as illustrated in
Fig. 2.6.

2.4 Field Ionization of a neon atom
In the previous section we thoroughly discussed how spin polarization is essential to qualita-
tively describe ionization by static fields in our model in which the continuum was discretized
by a track of ghost functions placed along the direction of the applied electric field. At least
for the He atom, we concluded that UHF properly captures, at the expense of spin con-
tamination, the features associated with ionization within this limited model: we observe
kinks in the potential energy curves as a function of field strength that are accompanied
by discontinuities in the total electric dipole moment and the charge on the He atom. Now
we move on to investigate if this simplest flavor of spin polarization (i.e., allowing α and β
orbitals to have different spatial parts) is enough to capture the features of atomic ionization
in a heavier atom. Fig. 2.7a shows the RHF and UHF energy for the Ne atom. Once again,
we see characteristic spin polarization and kinks in the UHF potential energy surface that
are associated with ionization. We performed the same previous analysis for the electric
dipole moment (Fig. 2.7b) and Mulliken charges on the Ne atom (Fig. 2.7c) and they both
agree with our previous discussion: at the expense of losing information about the total spin
of the system (i.e. spin contamination and our wavefunction not being an eigenstate of the
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Figure 2.5: ∆Eatom
elec as defined in Eq 2.6. UHF is able to correctly recover information about

both first and second ionization potentials of He, whereas RHF, missing a proper description
of the first ionization event, only captures the second IP. The IP’s were calculated at the
HF/aug-cc-pVTZ+ghost track level of theory.

Ŝ2 operator), we can now ionize an odd number of electrons for Ne through UHF, whereas
those states are not accessible through a RHF reference.

The electronic structure of Ne is more complicated than He which also allows us to analyze
other qualitative features of the ionized states of the system as the strength of the applied
field increases. With this is mind, it is important to point out what one would expect for
each of the Ne ionized states within this limited discretized continuum model that we used
in our analysis. Table 2.2 summarizes simplified electronic configurations expected for Ne,
Ne+, Ne2+ and Ne3+ and the track of ghost functions (with net charge 0,−1,−2,−3) that
represent the continuum-like states. Even though a proper analysis of the nature of the real
ionized states of the atom is hindered due to the single determinant nature of HF theory, one
can notice that the S1 and S2 states in Table 2.2 corresponds to one of the components of the
physical (field-free) 2P state of the Ne cation and 3P state of the Ne dication, respectively.
Our goal now is to see how we can obtain qualitative information about these physical states
through Hartree-Fock theory within our limited model for ionization.

For the first ionization, we expect one unpaired electron at both the atom and the ghost
functions, leading to a spin-contaminated UHF state in a similar fashion to what was de-
scribed for the He case (Fig. 2.6). Fig. 2.8 summarizes some of the features of the UHF for
a field strength of F = 0.25 a.u., which lies within the region for single ionization. We can
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(a) NOONs for He + ghost system (b) NOONs for He subsystem

(c) NOONs for ghost subsystem (d) Spin density for F = 0.25 a.u.

Figure 2.6: Natural Orbital Occupation Numbers (NOONs) for (a) He + Ghost complex
system, (b) He subsystem (c) Ghost subsystem for the ionization of He in different regimes:
neutral (F = 0 a.u.), singly ionized (F = 0.25 a.u.) and doubly ionized (F = 0.5 a.u.). (d)
Spin density for the singly ionized state of He.
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(a) SCF total energy (b) Dipole moment

(c) Mulliken charges on Ne (d) ∆Eatom
elec

Figure 2.7: Hartree-Fock calculations of the field ionization of Ne using the aug-cc-pVTZ
basis set augmented by hydrogenic 1s STO-3G functions at the ghost centers. (a) SCF
total energy, (b) Dipole moment, (c) Mulliken charges on Ne and (d) ∆Eatom

elec as defined in
Eq 2.6 as a function of field strength for the RHF and UHF solutions. In all cases, the RHF
curve smoothly changes as the field strength increases, while UHF presents the characteristic
kinks that are associated with ionization events. The IP’s were calculated at the HF/aug-
cc-pVTZ+ghost track level of theory.

identify two unpaired electrons for the whole system (Fig. 2.8a). Performing an eigenvalue
analysis on the partitioned density matrices for the atom subsystem (DA) and the con-
tinuum/ghost subsystem(DG) to obtain the natural orbital occupation numbers (NOONs)
reveals that, as expected, each subsystem has a single unpaired electron (Figs. 2.8b and
2.8c): an α electron for the discretized continuum and an excess β electron for the atom
(Fig. 2.8d), keeping Ms = 0 for the contaminated ground state.
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Ionization State Ne configuration (only 2p orbitals) Ghost configuration
|S0⟩ (neutral)

∣∣2p2x2p2y2p2z〉 |0⟩
|S1⟩ (singly)

∣∣2p2x2p2y2pαz 〉 |Cα
1 ⟩

|S2⟩ (doubly)
∣∣2p2x2pαy2pαz 〉 |C2

1⟩
|S3⟩ (triply)

∣∣2pαx2pαy2pαz 〉 |C2
1C

α
2 ⟩

Table 2.2: Simplified electronic configuration of Ne and ghost basis functions for the neutral
atom and the first 3 ionized states |Si⟩. Each Ci represents a ghost orbital that can be
populated by ionized electrons.

The doubly ionized state in He simply corresponds to the pairing of the two electrons
in one of the ghost functions, leaving behind just the atomic nucleus (Fig. 2.6, the curve
indicated by a field strength of F = 0.5 a.u.). For Ne, however, we expect the second ionized
electron to pair with the first one and localize around a ghost center while Ne becomes a
triplet state characterized by two unpaired electrons with the same spin and consequently
total Ms = ±1 (see Table 2.2). This state, however, cannot be achieved by following the
UHF potential energy curve which is constrained to the Ms = 0 subspace. Instead, the UHF
solution for this doubly ionized state of Ne is characterized by a ⟨S2⟩ = 1 spin contaminated
state comprised of an α electron and a β unpaired electrons on the atom and no unpaired
electrons for the track of ghost functions, as illustrated in Fig. 2.9. Some physical insight can
be gained here by analyzing which states of the field-free Ne dication are included in the UHF
Ms = 0 field dependent solution in the doubly ionized regime: the external field, breaking
spherical symmetry, mixes the 1S and 1D states of Ne2+. Moreover, due to spin symmetry-
breaking in UHF, we observe that one of the components (Ms = 0) of the 3P is also included
in the mixture. It should be noticed that such behavior also highlights one of the limitations
of our approach to describe the ionized flux: by constraining electron density to escape the
atom through a unique track of ghost functions, we observe a driving force towards pairing
of the ionized electrons. This prevents neon from achieving the desired and expected triplet
configuration. A possible, yet not explored in this work, way to minimize this issue would
be to expand our description of the discretized continuum by adding more ghost functions
into two separate parallel tracks (as illustrated by the grey crosses in Fig. 2.1), which would
possibly allow the delocalization of the ionized electrons, leaving the atom subsystem with
Ms = ±1 and the ghost subsystem with Ms ∓ 1, while maintaining the total Ms = 0 for the
UHF solution.

Alternatively, since the main interest should be to capture as much physical insight for the
atomic subsystem as possible within our limited model, it is possible to remove the Ms = 0
constraint in UHF by exploring the manifold of generalized Hartree-Fock solutions (GHF).
In GHF, all of the exact spin symmetries of the system (namely Ŝ2 and Ŝz) can be broken
by taking spin-orbitals that no longer belong to two independent sets of α and β orbitals,
but now are linear combinations of orbitals in both sets. This allows the spin-quantization
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(a) NOONs for Ne + ghost complex system (b) NOONs for Ne subsystem

(c) NOONs for ghost subsystem (d) UHF spin density

Figure 2.8: Analysis of UHF for the singly ionized regime of Ne (F = 0.25 a.u.), using NOONs
for (a) Ne + Ghost complex system, (b) Ne subsystem (c) Ghost subsystem; (d) UHF spin
density plotted for an isovalue of 0.002 a.u. (blue and red parts indicate an excess of α and
β electrons respectively).

axis of individual electrons to rotate and not necessarily be parallel to each other in order to
achieve the variationally lowest possible energy state. This extra flexibility does not mean
that the GHF solution cannot be obtained through UHF though. A GHF wavefunction
is said to be non-collinear (and sometimes referred to as a true GHF solution) if its spin
cannot be quantized along some axis and this illustrates a real UHF → GHF instability of
the orbital hessian [223, 224]. This is the case for the double bond dissociation in CO2 [223,
225] and for systems presenting spin-frustration [226, 227]. If such a spin quantization axis
exists, the GHF solution can be found by exploring UHF wavefunctions with different spin
multiplicity or lying within different Ms manifolds. One can then find the difference between
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(a) NOONs for Ne + ghost complex system (b) NOONs for Ne subsystem

(c) NOONs for ghost subsystem (d) UHF spin density,

Figure 2.9: Analysis of UHF for the doubly ionized regime of Ne (F = 0.5 a.u.), using
Natural Orbital Occupation Numbers (NOONs) for (a) Ne + Ghost complex system, (b) Ne
subsystem (c) Ghost subsystem; (d) UHF spin density plotted for an isovalue of 0.002 a.u.
(blue and red parts indicate an excess of α and β electrons respectively).

the number of up and down electrons by projecting the spin operators in this quantized axis
[223]. In this context, we see that GHF can provide a convenient way to adiabatically follow
the lowest UHF solution independently of Ms constraints.

Figure 2.10a illustrates the behavior of the different Ms UHF solutions compared to GHF
for the strong field ionization of the neon atom within the race track of ghost functions to
represent discretized continuum states that we have been using so far. Even though we cannot
notice significant differences between UHF and GHF in terms of their description of charges,
dipoles and total number of unpaired electrons for the supersystem, the GHF potential
energy curve follows the lowest UHF solution, highlighting its collinear nature. For instance,
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for field strengths lower than F = 0.15 a.u., we observe that the Ms = 0 UHF solution is the
one with the lowest energy and that there is no difference between this solution and GHF,
whereas the other Ms states are higher in energy. For electric fields ranging from F = 0.15
a.u. and F = 0.309 a.u. (single ionization), however, the Ms = 0 and Ms = 1 states become
degenerate, characterizing the RHF→UHF instability previously discussed. For the regime
between F = 0.309 a.u. and F = 0.60 a.u (which corresponds to the doubly ionized regime)
the Ms = 1 UHF solution becomes the lowest in energy, illustrating the transition between
different Ms subspaces that is captured naturally through GHF. Our first UHF analysis was
constrained within the Ms = 0 subspace and, therefore, the wrong qualitative behavior (one
α and one β electron) was observed for the double ionized state of the atom. GHF however,
abolishes the Ms = 0 constraint and we can access the relevant doubly ionized state lying
in the Ms = ±1 manifold (Fig. 2.10b) and Ne achieves the expected configuration with two
unpaired α electrons which better resembles the Ms = ±1 component of the physical 3P
field-free state of the Ne dication.

Finally, even though the plateau regions in Figs. 2.7b and 2.7c are well characterized
by collinear GHF solutions that represent UHF wavefunctions with different Ms values, the
transition between these ionization states might not present the same behavior. At the
onset of ionization, we suspect that, similarly to what was observed for the RHF → UHF
instability, one would need a non-collinear GHF solution to properly describe the transition
between one ionized state to the other. However, due to the dependence of the sharpness of
this transition on the size of the artificial box delimited by the ghost functions, we did not
pursue further investigation of this question. Hence, we note that GHF was used merely as
a tool to access the lowest UHF state possible without any initial constraints on the number
of α and β electrons.

2.5 Conclusions and Outlook
In conclusion, the present work explored an analogy between the Coulson-Fischer point
that has been extensively characterized for bond dissociation problems and static strong
field ionization phenomena. Such extension is, at first, hindered by the fact that ionization
implies an outgoing electron flux that is poorly described by the atom-centered Gaussian
basis sets commonly used in electronic structure packages [220]. Hence, our basic “race-
track” model was introduced to account for this ionized flux by adding ghost basis functions
spanning an appropriate region of space to allow some characterization of the continuum-like
states of the ionized system.

A preliminary analytical analysis of the ionization problem of He in a minimum basis with
a single distant ghost function hinted that ionization events, which would be characterized
by the localization of the electron density at one of the auxiliary ghost centers of the “race-
track”, would not be well characterized by a restricted Hartree-Fock approach. In particular,
the RHF solution could describe the neutral and the doubly ionized states of the system,
but would lack any information about the singly ionized state given its electron-pairing
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Figure 2.10: (a) Potential energy curves as a function of field strength for Ne. It is possible
to notice that, depending of the field strength, different Ms UHF solutions become the
lowest in energy and GHF connects these different subspaces by variationally targeting the
unconstrained lowest energy state. (b) Difference between number of up and down electrons
along the spin quantization axis for the GHF solution, indicating that for the doubly ionized
regime (between F = 0.309 a.u. and F = 0.60 a.u), we have two unpaired α electrons left on
the Ne dication.

constraint. This analysis also indicated the existence of a RHF → UHF instability for the
singly ionized range of field strengths that was akin to the triplet instability that leads to
spin polarization in the bond dissociation problem. The predictions from this toy model
were validated by computations in a larger basis set. Moreover, the UHF potential energy
surface as a function of field strength reveals kinks that, after an analysis of the charge
population of the atom, the dipole moment of the system and the expectation value of the
Ŝ2 operator, indicate the existence of an analog of the Coulson-Fischer point for static strong
field ionization. We have also made an effort to eliminate possible spurious contributions
stemming from our limited model of the discretized space by devising a partitioning scheme
based on taking traces of the RHF and UHF density matrices over the appropriate basis
functions centered only around the atom. Such scheme allowed us to, once again, determine
the character of each state of the atom for different field strengths, as well as to recover
information about the ionization energies of He. While RHF cannot represent the singly
ionized state, UHF recovers the first and second ionization energies of He at the cost of
breaking spin symmetry and being spin contaminated.

We then extended our analysis to a more complicated system: the Ne atom. The main
takeaways are still valid: by constraining the HF solution to be an eigenfunction of Ŝ2, i.e.
constraining ourselves to the RHF manifold of solutions, we cannot describe ionization of
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an odd number of electrons as the strength of the external field increases. By exploring
the solutions contained in the spin-polarized UHF manifold, on the other hand, we have a
qualitatively correct description of the atomic charge associated with these ionized states.
However, due to a strong drive to pair the electrons at the end of the auxiliary “race-track”
of ghost functions and the constraint imposed on the value of ⟨Ŝz⟩ for UHF solutions, the
results do not correspond to the expected Hund’s rule configuration of Ne for some field
strengths. Thus, we also analyzed the use of GHF solutions to obtain a better qualitative
description of the static strong field ionization of Ne. We observed that, while maintaining
the same behavior as UHF for the atomic charges, GHF can properly rotate spins at the cost
of losing information about the expectation value of Ŝz in order to give the proper high-spin
description of the unpaired electrons on the atomic subsystem. Exploring how different kinds
of symmetry-broken solutions, such as allowing complex polarization in Hartree-Fock (cRHF,
cUHF and cGHF) [228–231], could also prove potentially useful to obtain qualitatively correct
description of strong field ionization of more complex systems.

Even though the results and analysis presented in the current work were obtained for the
case of an applied external static electric field, it can be argued that some of the consequences
of imposing spin constraints on the Hartree-Fock solutions could also lead to a qualitatively
wrong description of the real-time dynamics of the system when a physically meaningful laser
pulse is used. For the more common problem of bond stretching in electronic structure, it
has already been shown that using a qualitatively bad HF solution as the starting point for
more elaborate methods that account for dynamic electron correlation could lead to failures
in obtaining a good description of potential energy surface, for example. In this sense,
work towards extending the analysis here to real-time time-dependent electronic structure
is underway in our group. To achieve more physically meaningful results, a better approach
to represent the continuum states, perhaps through a mixed Gaussian-plane wave basis set
or complex absorbing potentials, is needed [185, 232].

Supplementary Material
Supplementary information for this work can be accessed via Ref. 233. They include raw
data and additional plots.
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Chapter 3

Changes in Polarization Dictate
Necessary Approximations for Modeling
Oscillator Strengths

3.1 Introduction
Investigating the electronic structure of materials is of paramount importance, not only
to advance scientific understanding, but also from a technological perspective. Electronic
structure is typically probed in terms of neutral or charged electronic excited states. A
complete investigation of excited states involves the determination not only of the energies
of the states but also of the transition probabilities for excitation (de-excitation) to (from)
them. There are various experimental methods for this purpose, which provide opportunities
to validate and advance theoretical efforts. For decades, density-functional theory (DFT) [55,
58] has been the primary workhorse in electronic structure calculations [234–237]. Even
though DFT is a ground state theory, various techniques build upon DFT by leveraging
different levels of approximation to probe electronic excited states [238–248]. The two main
avenues for this, both of which are widely used in practice, are: the response-based treatment,
where a response-function is evaluated indirectly by creating electron-hole (e-h) pairs in a
reference state; and the orbital-constrained treatment, which models the target state using
constrained non-aufbau orbital occupancy.

In this paper we link these two disparate approaches within a generalized framework.
For valence-to-core electronic transitions, we show analytically, as well as with computed
examples, that within the computationally tractable adiabatic approximation, inaccuracy in
the response-based approach is correlated with the change in the valence polarization due to
the core-ionization of the system. Additionally, working within the orbital-constrained ap-
proach, by modifying the state-of-the-art orbital-optimized DFT (ooDFT) formalism with
physically-motivated approximations, we propose a new computational method for simu-
lating non-resonant X-ray emission, with a focus on accurate calculation of the transition
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amplitude.
Electronic transitions, which can involve both the core and the valence electrons, typi-

cally span a wide energy range. In order to ensure tractability of our calculation, we focus on
electronic de-excitations since this allows us to limit our attention to the occupied subspace
only, offering appreciable computational advantage. De-excitations can either be confined
fully within the valence subspace, or involve valence-to-core transitions. Due to the avail-
ability of experimental data, the latter kind, which is experimentally accessible within the
non-resonant X-ray emission spectroscopy (XES) technique, will be the primary focus of our
computational demonstrations. Notably, since the goal of this work is the analysis of purely
electronic de-excitations, additional effects which might influence the experimental spectra,
e.g. the ionic vibrations present at finite temperature [249, 250] (note that vibrational ef-
fects typically make the spectra smoother by introducing additional broadening [251] and
can occasionally introduce new peaks [252]) have not been taken into account.

3.2 Non-resonant X-ray emission formalism
In non-resonant XES [253–256], spontaneous X-ray emission (or fluorescence) occurs from
an initially core-ionized sample. As the core-excited system decays from an initial state ΨI

with energy EI to any possible final state ΨF with energy EF , the emission intensity

I(ω) ∝
∑
F

(EI − EF )
4|M I,F |2δ(ω + EF − EI), (3.1)

is recorded as a function of its frequency ω, where, denoting the many-body transition
operator by Ô, the transition matrix element is given by M I,F =

〈
ΨF

∣∣∣Ô∣∣∣ΨI

〉
. Therefore

|ΨI⟩, i.e., the state prior to the X-ray emission process, can be represented by the lowest
energy state of the positively charged system with a core-hole on the excited atom. In our
calculations, this is approximated by a single Slater determinant (SD) composed of Kohn-
Sham (KS) orbitals obtained from a self-consistent field (SCF) DFT calculation, where
one core orbital is constrained to be empty, which we denote as the zero-th orbital. One
numerically stable approach to obtain this core-hole excited state directly is the maximum
overlap method (MOM) [257]. If there are N electrons remaining in the system, then,
denoting the creation operator for the j-th initial-state orbital ϕ̃j by ã†j, we can represent
the SD as

|ΨI⟩ =

(
N∏
j=1

ã†j

)
|0⟩ . (3.2)

Assuming the core is filled in all constituent SDs, the exact F -th final state resulting
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from de-excitation (filling the zero-th orbital via ã†0) can then be formally expressed as

∣∣Ψexact
F

〉
=

[
N∑
j=1

αF
j ãj ã

†
0 |ΨI⟩

]
+[

N∑
l,m=1

all∑
p=N+1

βF
l,m,pãlãmã

†
pã

†
0 |ΨI⟩

]
+ . . .

(3.3)

where α and β are expansion coefficients, and we use tildes to indicate that these initial
state orbitals include a core hole. The terms inside the first (second) set of square brackets
represent the terms obtained from |ΨI⟩ by single (double) substitutions, i.e., by creating one
(two) e-h pairs in |ΨI⟩. The previously excited core orbital is indicated, as stated above,
by subscript 0. Notably, beyond the singles term, i.e., in doubles and beyond, we start
populating the unoccupied valence subspace of |ΨI⟩.

However, only the singles can contribute to the transition-dipole matrix (for simplicity,
we drop the I superscript on M as the initial state, which is the core-ionized state, will be
the same for all de-excitations in XES)

MF
exact =

〈
Ψexact

F

∣∣∣Ô∣∣∣ΨI

〉
=

N∑
j=1

(αF
j )

∗
〈
ϕ0 |ô| ϕ̃j

〉
, (3.4)

since for higher substitutions, the overlap with Ô |ΨI⟩ vanishes. Here, Ô (ô) denotes the
many-body (single-particle) transition operator, defined explicitly below.

3.3 XES within adiabatic linear response
Now, in principle, response-based frameworks, such as linear response time-dependent DFT
(LR-TDDFT) and the Bethe-Salpeter equation (BSE), evaluate the absorption/emission
spectra exactly from the imaginary part of the density-density response function χ – the
change in electron-density as a function of external potential. The complex problem of
finding χ is mapped into that of diagonalizing a fictitious, typically non-Hermitian, two-
particle Hamiltonian H2p. Even though, strictly speaking, the response-based approaches
do not offer any access to the wavefunctions, within the Tamm-Dancoff approximation [258],
the final state is often approximated [259] by an eigenstate of H2p and expressed as a linear
combination of Slater determinants obtained by creating an e-h pair on the initial state |ΨI⟩
(analogous to the configuration-interaction singles approach) as

∣∣∣ΨResp
F

〉
=

N∑
j=1

γFj ãja
†
0 |ΨI⟩ , (3.5)
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such that the corresponding transition amplitude

MF
Resp =

〈
ΨResp

F

∣∣∣Ô∣∣∣ΨI

〉
=

N∑
j=1

(γFj )
∗
〈
ϕ0 |ô| ϕ̃j

〉
(3.6)

is identical to that of a single-particle de-excitation from the auxiliary orbital

∣∣∣ϕResp
F

〉
=

N∑
j=1

(
γFj
)∗ ∣∣∣ϕ̃j

〉
. (3.7)

In response-based approaches, the e-h interaction is encoded with the help of a kernel K,
which, in its exact form, is time-dependent. However, in the standard, computationally viable
adiabatic approximation [248], this dynamic effect is ignored. Within this approximation,
the number of accessible final states equals the number of e-h pairs that can be created
on the initial state and each approximate final state is normalized [248]. The normalization
constraint means that, unless all contributions beyond the singles vanish identically in Eq. 3.3
(which is possible only if the occupied valence subspace of |Ψexact

F ⟩ has no overlap with the
unoccupied subspace of |ΨI⟩), the set of coefficients {γF} must differ from {αF}, resulting
invariably in the relation MF

Resp ̸=MF
exact.

This leads to the crucial inference that if there is appreciable difference between the va-
lence occupied subspaces of the ground and the core-ionized state – if the valence electron
density is significantly rearranged due, in this case, to the annihilation of the core hole in
XES – then, adiabatic response-based approaches will inevitably incur errors in the oscillator
strength. By definition, this rearrangement of the valence electronic density defines a po-
larization response due to the perturbation, which is proportional to the spatially non-local
electronic susceptibility.

Since the susceptibility of a given ground state naturally invokes coupling to the unoc-
cupied orbital subspace, the change in the aforementioned response, i.e., the change in the
valence polarization, serves as a useful metric for the validity of the adiabatic approximation
in the response-based treatment. This metric can be particularly important in XES, since
the annihilation of a localized core hole may easily result in a significant renormalization of
the occupied orbitals, leading to a large change in polarization.

Notably, this argument does not preclude the exact time-dependent kernel from yielding
the accurate oscillator strength, since, in this case, the requirement of normalization will not
be applicable for

∣∣∣ΨResp
F

〉
. In other words, the inadequacy is a consequence of the adiabatic

approximation, not of the response-based approach, which, in principle, calculates χ exactly.
Note that, such valence-to-core de-excitations can help the formulation of accurate frequency-
dependent kernels [260] by providing experimental data for verification of their efficacy.

This analytical conclusion can be demonstrated using the molecular examples shown in
Fig. 3.1, where the polarization response is simply the change in the electrostatic dipole
moment of the molecule. We compare the measured and simulated XES spectra of two
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small molecules (chloromethane [261] and phenol [262]), with calculations using DFT or-
bitals produced by the Q-Chem code [263] using the ωB97M-V exchange-correlation (xc)-
functional [79] and the large aug-cc-pCVQZ basis-set [215, 264]. The energy convergence
threshold was set to 10−8 a.u., and 10−14 a.u. was used as the threshold for screening two-
electron integrals. The SG-2 standard quadrature grid is used for the DFT calculations
which use the Pulay DIIS algorithm for convergence. A value of 10−8 a.u. is chosen as the
threshold for the LR-TDDFT calculations.

Comparison with the experimental spectra reveals that the adiabatic LR-TDDFT spec-
trum is in good agreement for Cl Kβ emission of CH3Cl, which corresponds to a lower
(1.43 D) change in the electrostatic dipole moment. However, for O Kα emission of C6H5OH,
the change is larger (3.01 D) and the mismatch with experiment is noticeable (particularly
near 527 eV).

3.4 XES within the Orbital-constrained Approach

3.4.1 General Framework

Having characterized the shortcomings of the adiabatic response-based technique for simu-
lating valence-to-core de-excitation intensity, we turn our attention to the orbital-constrained
approach. Let us consider the general case of optical dipole transitions between many-body
states, initial and final, comprising single-particle orbitals from distinct SCFs. The many-
body transition operator can be written, with respect to the initial state, as:

Ô =
∑
i,j

〈
ϕ̃j |ô| ϕ̃i

〉
ã†j ãi, (3.8)

where the ordering of operations is deliberate and the sum runs over the entire single-particle
Hilbert space of the initial state. These transitions are individually weighted by their single-
particle dipole matrix elements: õji =

〈
ϕ̃j |ô| ϕ̃i

〉
, where ô = ϵ · r̂ defines the electric field

polarization and its interaction with the electronic position. Whether these transitions are
allowed or not depends on the many-body state and its orbital occupations. We will work
within the single Slater determinant approximation, where the N occupied orbitals that
define the self-consistent field via the electron density can also define a many-body state,
emergent from the vacuum, as:

|Ψ⟩ =
N∏
i=1

a†i |0⟩ , (3.9)

where the creation and annihilation operators correspond to the orbitals of the relevant SCF.
With this notation, we can define the many-body transition amplitude from an initial state
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Figure 3.1: X-ray Emission spectra for (top) Cl Kβ from chloromethane (CH3Cl) and (bot-
tom) O Kα from phenol (C6H5OH) simulated using adiabatic LR-TDDFT (brown), ooDFT
(blue), MBXES (green) and compared with experiment (black), from Refs [261] and [262],
respectively. The associated change in dipole moment (∆D) is indicated in each case. As
detailed in the text, ∆D is a diagnostic for errors in LR-TDDFT arising from the adiabatic
approximation, which is not required in ooDFT or MBXES (an approximation to ooDFT).
A rigid shift is added to each simulated spectrum to align the highest-energy peak with the
experiment.
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|ΨI⟩ to a final state |ΨF ⟩ as:

M I,F = ⟨ΨF |O|ΨI⟩

=
unocc∑

i

occ∑
j

〈
ΨF |Ψ+i−j

I

〉 〈
Ψ+i−j

I

∣∣∣Ô∣∣∣ΨI

〉
=

unocc∑
i

occ∑
j

〈
ΨF |Ψ+i−j

I

〉
õij

(3.10)

where the functional form of O enforces that only single electron-hole pair excitations of the
initial state can couple with the final state. The notation Ψ+i−j

I implies the annihilation of
the electron in orbital j and the creation of an electron in orbital i – a non-self-consistent
creation of a single electron-hole pair within the orbitals defined by the initial state. Thus,
M I,F can be expressed as a linear combination of purely single-particle transition amplitudes
(õij) with the coefficients given by the many-body overlap terms

〈
ΨF |Ψ+i−j

I

〉
.

. (3.11)

FΞ+i−j is essentially the determinant (with a factor of ±1) of an N ×N matrix composed of
overlap terms between the occupied single-particle orbitals of the final and the initial state
with the subscript i − j indicating the removal (addition) of the j-th (i-th) electron in the
initial state, which, for the aforementioned matrix, amounts to substitution of the j-th row
by the i-th one.

For the XES process, ΨI is the state with a core-hole and can be approximated by the
expression shown in Eq. 3.2. Consistently, we will employ the simplest case for the final state,
ΨF , as representing a core-filled state with a single valence hole in orbital f , |ΨF ⟩ =

∣∣∣Ψ+0−f
F

〉
,

where 0 denotes the core orbital. Due to the localized nature of the core electrons, it is
reasonable to expect the core electron of ΨF to have negligible overlap with any electron
present in ΨI , which lacks that core electron. Consequently, for XES,

〈
Ψ+0−f

F |Ψ+i−j
I

〉
≈ 0

unless i = 0. This leads to the following simplification of Eq. 3.10

M I,F =
occ∑
j

〈
Ψ+0−f

F |Ψ+0−j
I

〉
õ0j, (3.12)

where, to reiterate, we have put a tilde over the transition-matrix element, to emphasize
the fact that, for XES, the initial state contains a core-hole. We can expect the core-orbital
subspaces of

∣∣∣Ψ+0−f
F

〉
and

∣∣Ψ+0−j
I

〉
to be approximately equal, for any f and j. First-order

perturbation theory would support this approximation, especially due to the energy isolation
of the core orbitals from the valence subspace – with perturbations scaling as the inverse of
orbital energy differences. This was also observed numerically in our calculations. Therefore,
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in the overlap term
〈
Ψ+0−f

F |Ψ+0−j
I

〉
, the core-contribution, which can be approximated as

unity, can be factored out and the overlap can be evaluated exclusively in terms of the
valence orbitals. This is particularly useful in pseudopotential-based calculations, where
only the valence KS orbitals are readily available.

For a final-state |ΨF ⟩ having a hole in the f -th orbital, the many-body overlap of Eq. 3.10
can now be written as 〈

Ψ+0−f
F |Ψ+0−j

I

〉
= FCj,f =

[
(−1)f+j

]
Fmj,f (3.13)

such that

Fmj,f =

det



F ξ11 . . . F ξ1,f−1
F ξ1,f+1 . . . F ξ1,N

... . . . ...
... . . . ...

F ξj−1,1 . . . F ξj−1,f−1
F ξj−1,f+1 . . . F ξj−1,N

F ξj+1,1 . . . F ξj+1,f−1
F ξj+1,f+1 . . . F ξj+1,N

... . . . ...
... . . . ...

F ξN,1 . . . F ξN,f−1
F ξN,f+1 . . . F ξN,N .


(3.14)

where

F ξq,p =
〈
ϕF
p |ϕ̃I

q

〉
(3.15)

denotes the single-particle overlap between the p-th orbital of final-state F and the q-th
orbital of initial-state I. Since the initial state is assumed fixed as the core-ionized state,
we drop specific reference to state I, but we retain the superscript F as the single particle
orbitals for each final state may vary, as we shall see below. From Eq. 3.13 and 3.14, FC
and Fm can be recognized respectively as the matrix of the cofactors and minors of Fξ, the
(N ×N) overlap matrix composed of the N lowest initial and final state valence orbitals

Fξ = {F ξq,p}Nq,p=1. (3.16)

We will make use of this realization later. The above expressions relied on two assumptions
which we can reiterate here for clarity: (1) the many-body states are represented as single
Slater determinants, which dictates that their overlap is also a determinant; (2) a specific
core orbital 0 on a single atomic site is assumed unoccupied in the initial state and occupied
in the final state.

3.4.2 Orbital-optimized DFT

Within the orbital-constrained framework, the orbital-optimized DFT (ooDFT) approxima-
tion employs a fully self-consistent procedure such that a final state with filled core and a
hole in the f -th valence orbital is approximated by the SD:
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|ΨF ⟩ =
∣∣∣Ψ(f)

−f

〉
= a

(f)
f

(
N∏
j=1

(
a
(f)
j

)†)
a†0 |0⟩ , (3.17)

where
(
a
(f)
j

)†
is the creation operator for the j-th KS orbital ϕ(f)

j corresponding to the SCF
of a system with a hole in the f -th orbital, preserved, for example, using MOM. There is a
distinct set of operators for each final state F .

The resulting transition amplitude is then written as

MF =M f
ooDFT =

〈
Ψ

(f)
−f

∣∣∣Ô∣∣∣ΨI

〉
=

N∑
j=1

C
(f)
j,f õ0j (3.18)

where

C
(f)
j,f =

〈
Ψ

(f)
−f |Ψ

+0−j
I

〉
(3.19)

is the relevant determinantal overlap with
∣∣Ψ+0−j

I

〉
= ãj ã

†
0 |ΨI⟩. Note that the transition

moment is identical to that of the single-particle de-excitation of a non-interacting electron
to the core level from an auxiliary orbital given by

∣∣ϕooDFT
f

〉
=

N∑
j=1

C
(f)
j,f

∣∣∣ϕ̃j

〉
. (3.20)

For phenol, the improvement in agreement with the experimental XES line shape is
apparent in Fig. 3.1. In the SI [265], we provide a comparison of the range-separated and
global hybrid functionals in Figs. S1 and S2 for phenol and in Figs. S3 and S4 for acetone.

3.4.3 The MBXES approach

A major drawback of the ooDFT method is that it requires a separate self-consistent field
calculation for each final state of the system, rendering the computation formidably expen-
sive, especially for large systems. Additionally, depending on the symmetry of the hole,
certain configurations (especially near degeneracies) can be numerically difficult to converge.

To remedy this, we note that if the valence hole is sufficiently delocalized and, conse-
quently, is less likely to induce a drastic change among the occupied electronic orbitals, we
are justified in approximating ooDFT using a formalism which retains the self-consistent
effect of the core-hole in the initial state but entirely neglects that of the valence-hole in the
final state. For instance, a final state containing a hole in the f -th (say) valence orbital is
approximated in terms of the f rozen ground state orbitals as

|ΨF ⟩ = |Ψ−f⟩ = af

(
N∏
j=1

a†j

)
a†0 |0⟩ , (3.21)
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where a†j is the creation operator for the j−th KS orbital (ϕj) of the ground state SCF.
Defining the relevant determinantal overlap as Cj,f =

〈
Ψ−f |Ψ+0−j

I

〉
, the transition amplitude

is then given by

M f
MBXES =

〈
Ψ−f

∣∣∣Ô∣∣∣ΨI

〉
=

N∑
j=1

Cj,f

〈
ϕ̃0 |ô| ϕ̃j

〉
(3.22)

with

∣∣ϕMBXES
f

〉
=

N∑
j=1

Cj,f

∣∣∣ϕ̃j

〉
(3.23)

representing the corresponding auxiliary orbital. Note that since we now construct each |ΨF ⟩
from the frozen ground-state KS orbitals, the many-body overlap of Eq. 3.10, which in the
ooDFT approximation is given by C(f)

j,f (Eq. 3.19), becomes independent of the SCF of the
specific final state, indexed by F and thereby representable as Cj,f , without any superscript.
Likewise, the single-particle overlaps (see Eq. 3.15) are independent of F and can be written
as F ξp,q = ξp,q.

We dub this approximation the many-body X-ray emission spectroscopy (MBXES)
method by direct analogy with a similar approach used for X-ray absorption [266–268].
The similarity between ooDFT (blue) and MBXES (green) plots in Fig. 3.1 justifies the
underlying approximation for these cases.

Unlike ooDFT, the MBXES method requires only two SCF calculations, one with a core-
hole (for the initial state) and one without (for all final states). It also avoids instabilities
resulting from the near-degeneracy of orbitals. Additionally, unlike the response-based ap-
proaches, it can be used in plane-wave calculations in conjunction with pseudopotentials,
where a modification in the pseudopotential incorporates the effects of the core-hole and
thereby eliminates the need for any additional charge-constraining technique. As shown in
Fig. S6, the O K α MBXES spectrum of C6H5OH calculated using Q-Chem, an all-electron
software-package employing localized basis functions compares well with that calculated us-
ing the pseudopotential-based plane-wave software Quantum ESPRESSO [269].

It is also worth noting in Fig. 3.1 (and as we shall see later in Section 3.4.6 and in
the SI) the good agreement between the de-excitation energies of ooDFT (whose energies
are computed self-consistently) and MBXES (derived from the GS KS eigenvalues). For
the particular functional and these systems, this implies that the KS eigenvalues are good
approximations to the quasiparticle excitation energies – although there will obviously be
cases, outside the examples we report, where increased accuracy can be provided by better
functionals or perturbative approaches such as the GW approximation [270, 271].

To illustrate the accuracy of the more efficient MBXES approach vs. adiabatic LR-
TDDFT, we provide multiple examples for the XES of small molecules in Fig. 3.2 where
the corresponding change in dipole moment is also provided. Note that, consistent with the
discussion presented earlier, in general, a larger change in the valence electrostatic dipole
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moment upon core-ionization results in a larger difference between the two spectra, with
the former typically showing better agreement with experiment. For example, for C6H5OH
(spectra also presented in the bottom panel of Fig. 3.1), which corresponds to a relatively
large change (3.01 D) in the electrostatic dipole moment, the penultimate peak at 527.5 eV
in the adiabatic LR-TDDFT spectrum is seen to be the most intense. On the other hand, in
the MBXES, ooDFT and experimental spectra, which show appreciable mutual agreement
in the relative intensity of the peaks, the third peak from the right hand side (at 525.1 eV
for the experimental spectrum and at 525.5 eV for the ooDFT and MBXES spectra) has
the highest intensity. It is to be noted that, although, the simulated spectrum, especially
the de-excitation energies depend, to some extent, on the exchange-correlation functional
and can therefore be made to agree better with experiments by using improved functionals,
the oscillator-strength accuracy, which is our primary focus here, is definitely improved over
LR-TDDFT by the orbital-constrained approaches. Conversely, for CH3Cl (spectra also
presented in the top panel of Fig. 3.1), which corresponds to a much smaller change (1.43 D)
of the electrostatic dipole moment, all of the spectra show an intense peak around 2817 eV
and a shorter but broader feature at a lower energy of 2814 eV.

3.4.4 Single-particle approximations

3.4.4.1 Projected Ground State

Further approximations, sacrificing accuracy in lieu of computational efficiency can be made
beyond MBXES. For example, we propose the projected ground-state (pGS) approximation,
which takes into account the change in the participating valence orbital in response to the
core hole filling, but ignores the same for the other (spectator) orbitals.

From Eq. 3.22 the MBXES transition dipole moment is given by

M f
MBXES =

N∑
j=1

Cj,f õ0j. (3.24)

Now, if we approximate the determinantal overlap with the relevant single-particle counter-
part,

Cj,f =
〈
Ψ−f |Ψ+0−j

I

〉
=
〈
ΨGS

∣∣∣a†f ãj∣∣∣Ψ+0
I

〉
≈
〈
ϕf |ϕ̃j

〉∗
= ξ∗j,f

(3.25)

then, the transition dipole moment becomes

M f
pGS =

N∑
j=1

ξ∗j,f õ0j (3.26)



CHAPTER 3. CHANGES IN POLARIZATION DICTATE NECESSARY
APPROXIMATIONS FOR MODELING OSCILLATOR STRENGTHS 66

Molecule ΔD Spectra 

CH3Cl                             
[Cl K !] 

 

1.43 

 

H2S                         
[S K !] 

 

0.74 

 

NH3                                    
[N K "] 

 

0.45 

 

 

 

CH3OH                          
[O K "] 

 

0.3 

 

C6H5OH 

[Valence De-excitation 
from initial state with hole 

in 11th KS orbital] 

 

0.17 

 
 

 2806  2808  2810  2812  2814  2816  2818  2820  2822

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

 2460  2465  2470  2475

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

 386  388  390  392  394  396  398
In

te
ns

ity
 (a

rb
. u

ni
t)

Energy (eV)

 274  276  278  280  282  284

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

 0  2  4  6  8  10  12  14  16  18

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

Molecule ΔD Spectra 

C6H5F                   
[F K !] 

 

3.28 

 

C6H5OH                
[O K !] 3.01 

 

(CH3)2SO               
[O K !] 2.72 

 

 

(CH3)2CO               
[O K !] 2.57 

 

CF3Cl                      
[Cl K "] 

 

1.75 

 
 
 
 
 

 672  674  676  678  680  682  684

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

 518  520  522  524  526  528  530  532  534

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

 518  520  522  524  526  528  530

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

 518  520  522  524  526  528  530

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

 2808  2810  2812  2814  2816  2818  2820  2822

In
te

ns
ity

 (a
rb

. u
ni

t)

Energy (eV)

LR-TDDFT 

Experiment 

MBXES 

Figure 3.2: Table showing experimental [261, 262, 272–275] (black) adiabatic LR-TDDFT
(brown) and MBXES (green) spectra of different molecules. The second column shows
the change in the electrostatic dipole moment, in Debye units, of the remaining electrons
following the relevant core-ionization.
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while
∣∣∣ϕpGS

f

〉
=
∑N

j=1 ξ
∗
jf

∣∣∣ϕ̃j

〉
gives the corresponding auxiliary orbital.

Significant computational savings arise here due to replacing the N -electron determinant
with a single overlap matrix element. In terms of the physical approximation involved,
pGS takes into account the fact that the participating orbital (i.e., the valence orbital from
which the electronic de-excitation takes place) should be different in presence and in absence
of the core-hole. What is missing in the pGS approximation is the explicit inclusion of
relaxation of the other valence electrons. In general, absorption spectra calculated with the
pGS approximation (see Supplemental Material for Ref. 265 for simulated examples), show
good agreement with MBXES spectra, despite this simplification.

3.4.4.2 Ground State

Note that in all of the aforementioned approximations, separate sets of orbitals {ϕ̃j} and
{ϕj} (or {ϕ(f)

j }) are used for the initial and the final state, indicating separate SCFs for
states with and without a core-hole. As a final approximation within the orbital-constrained
framework, we now neglect this effect by extending the sum in Eq. 3.26 to all orbitals, thereby
approximating the transition moment entirely within a Ground State Single Particle (GS)
treatment as follows: (

M f
GS

)∗
=

all∑
j=1

ξjf

〈
ϕ̃j |ô| ϕ̃0

〉
= ⟨ϕf |

all∑
j=1

∣∣∣ϕ̃j

〉〈
ϕ̃j |ô| ϕ̃0

〉
=
〈
ϕf |ô| ϕ̃0

〉
≈ ⟨ϕf |ô|ϕ0⟩

(3.27)

where the approximation that the core orbital remains unchanged, |ϕ0⟩ ≈
∣∣∣ϕ̃0

〉
, is validated

by our calculations showing
〈
ϕ0|ϕ̃0

〉
≈ 1. A table summarizing the different approximations

within the framework of orbital-constrained XES is presented in Tab. 3.1.

3.4.4.3 Relation between M f
MBXES and M f

GS

It is instructive to investigate analytically the conditions for equivalence of the GS and
the MBXES spectra. To this end, we aim to find the linear-algebraic relation between the
MBXES coefficients ({Ci,j}) and the single-particle overlaps({ξi,j}). The inverse of the lowest
N ×N overlap matrix can be related to its matrix of cofactors as

ξ−1 =
adj(ξ)

det(ξ)
=

CT

det(ξ)
. (3.28)
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Figure 3.3: Emission spectra calculated using the MBXES (green line) and the GS (orange
line) approach. Panel (a) shows Cl Kβ emission from CH3Cl, which is associated with a
1.43 Debye change in valence dipole moment, while panel (b) shows O Kα emission from
C6H5OH, for which the valence dipole-moment changes by 3.01 Debye. Yellow, cyan, red
and green spheres denote C, H, O and Cl atoms, respectively. Each GS spectrum has been
multiplied by a constant factor so that the intensity corresponding to highest-energy peak
matches the MBXES counterpart.

So, for each matrix element, (
ξ−1
)
f,j

=
Cj,f

det(ξ)
(3.29)

Therefore, if the (N ×N) matrix ξ is orthogonal (i.e., if its transpose is equal to its inverse),
then, noting that the determinant of an orthogonal matrix is ±1, we obtain

ξ∗j,f = ±Cj,f , (3.30)

and so, ignoring the ambiguity in sign,

(M f
MBXES)

∗ ≈
N∑
j=1

ξj,f

〈
ϕ̃j |ô| ϕ̃0

〉
, (3.31)

which is the projected ground-state approximation. And, furthermore, if the overlap matrix
ξ is truly orthogonal, then this implies that the initial and final state occupied subspaces
overlap perfectly and ξj,f = 0 for j > N ; f ≤ N . So, we can extend the sum above over all
j and obtain

|M f
MBXES|

2 = |M f
GS|

2 (3.32)
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To reiterate, this is a remarkable simplification, which can be restated as follows: If the
electrons occupy the same space in the ground and the core-excited state, then the GS and
the MBXES spectra will be identical. Thus, the GS approach is likely to be inaccurate if the
core-ionization induces a large change in the valence electron density. Changes in electronic
density in response to perturbations are proportional to the electronic polarizability, and
so the associated polarization response seems like an appropriate metric for assessing this
equivalence between GS and MBXES spectral intensity.

This is reflected in Fig. 3.3, which displays the GS and the MBXES spectra for CH3Cl
Chlorine Kβ and C6H5OH Oxygen Kα emissions. In order to facilitate comparison, for each
system the GS spectrum is scaled by a constant factor to match the intensity of the last
peak, which essentially amounts to equating the oscillator strengths of the highest energy
transition. Fig. 3.3 reveals that for CH3Cl the two spectra are nearly-coincident, which is not
the case for C6H5OH, indicating, for the latter, a disagreement among the relative oscillator
strengths of the different transitions computed within the GS and the MBXES approxima-
tion. In accordance with the aforementioned analytical argument, this disagreement can be
attributed to the larger change in valence electronic polarization in C6H5OH.

For context, the most common practice of using valence-projected density of states
(pDOS) to interpret XES [276–279] is yet a further approximation that ignores the single-
particle matrix elements.

We emphasize here that, even though the inaccuracies of the adiabatic LR-TDDFT and
the GS formalism can be associated with the same metric, they, in fact, stem from quite
different effects. In the former, the drawback lies in a partial description of the final (core-
filled) state while in the latter it can be attributed to a complete neglect of the initial
(core-ionized) state effects. However, in both cases, the shortcoming lies in the inability to
adequately account for the difference between the valence electronic structure of the initial
and the final state. Therefore, the aforementioned metric, which provides a measure for this
difference is applicable for both of these diverse approaches.

3.4.5 Auxilliary orbitals

The auxiliary orbitals can provide a visual justification for the similarity/difference in the
spectra seen in Fig. 3.1. As a representative example, in Fig. 3.4 we show the auxiliary
orbitals corresponding to the 11th de-excitation in CH3Cl (Cl Kβ) and the 23rd de-excitation
in C6H5OH (O Kα)(see also Fig. S1). While for CH3Cl, all three orbitals are in good
agreement, for C6H5OH noticeable differences can be spotted in the auxiliary orbital obtained
using LR-TDDFT. Note, however, that all three auxiliary orbitals on the right-hand-side
panels are qualitatively similar, indicating that they contain appreciable contribution from
the same set of constituent initial state orbitals (see also Fig. S5 in the SI which shows a bar-
plot of the coefficients of the contributing initial-state orbitals). However, as a consequence
of the initial state bias, ϕTDDFT

23 is skewed toward the core hole on the oxygen atom, while
the ooDFT and MBXES counterparts display more delocalized nature. As expected, this
leads to a difference in the associated oscillator strengths.
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Figure 3.4: Panel (a), (c) and (e) display the auxiliary orbital, evaluated using respectively
LR-TDDFT, ooDFT and MBXES associated with the 11-th de-excitation in the Cl K β
emission of CH3Cl. Panels (b) , (d) and (f) plot the same for the 23-rd de-excitation in the
O K α emission of C6H5OH. These plots demonstrate that MBXES effectively approximates
ooDFT while, for phenol, LR-TDDFT exhibits errors associated with the adiabatic approx-
imation.
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Method

Final
orbitals

consistent
with

valence
hole

Relaxation
of

spectator
electronic
orbitals

Initial
orbitals

consistent
with

core-hole

Auxiliary
orbital

ooDFT Yes Yes Yes
∑N

j=1C
(f)
j,f

∣∣∣ϕ̃j

〉
MBXES No Yes Yes

∑N
j=1Cj,f

∣∣∣ϕ̃j

〉
pGS No No Yes

∑N
j=1 ξ

∗
jf

∣∣∣ϕ̃j

〉
GS No No No

∑all
j=1 ξ

∗
jf

∣∣∣ϕ̃j

〉
Table 3.1: Table summarizing important properties and approximations corresponding to
various simulation-methods discussed in the paper. Note that, in each case, the transition-
dipole moment is given by ⟨core |ô|Auxiliary Orbital⟩, where ô is the single-particle dipole
operator.

3.4.6 Extension to valence de-excitations

By contrast with XES, for the majority of low energy valence electronic transitions, the
response-based methods have proven to be highly successful for decades [280]. In reference
to the metric introduced above, it is worth noting that, in most cases, such transitions
are usually associated with a comparatively small change in the polarization owing to the
relatively delocalized nature of the valence hole (compared to the atomic core hole). As an
illustrative example, in Fig. 3.5, we plot the simulated emission spectra of C6H5OH associated
with de-excitation from an initial state with a hole in the 11-th (valence) KS orbital. Owing to
the small (0.17 D) change in the electrostatic dipole moment, the LR-TDDFT result is found
to be in excellent agreement with the ooDFT and the MBXES counterparts. In contrast,
the charge-transfer excitation, which is accompanied by an appreciable spatial separation of
charges resulting typically in a large change in the valence polarization, is a well-documented
example of the failure of adiabatic LR-TDDFT in predicting the excitation-energy [281, 282],
although further studies are needed to investigate the accuracy in the calculation of oscillator
strength.

3.5 Conclusions
In summary, with a focus on valence-to-core electronic de-excitation, we use a generalized
formalism to link the disparate response-based and orbital-constrained approaches, which
are the two standard pathways for modeling electronic excited states starting from DFT
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Figure 3.5: Simulated emission spectra, computed with MBXES, ooDFT and adiabatic LR-
TDDFT, corresponding to electronic de-excitation of C6H5OH from an initial state with a
hole in the 11-th KS valence orbital.The associated change in valence polarization is 0.17 D.

calculations. Our analytical and computational results show that, unless the de-excitation
induces a small change in the valence polarization, the popular adiabatic approximation of
the response-based approach might incur significant inaccuracies in the oscillator strength.
Consequently, such a change in polarization can be used as an effective metric for assessing
the validity of the adiabatic approximation. In fact, a valence-to-core de-excitation can of-
ten render the adiabatic approximation inadequate since the filling of a localized core orbital
may lead to appreciable rearrangement of the valence electrons. The aforementioned short-
coming is not present in the orbital-constrained approach such as ooDFT, which typically
yields accurate results. By modifying the ooDFT formalism with physically-motivated ap-
proximations, we propose a flexible computational technique, MBXES, which can simulate
oscillator strengths accurately at a much lower computational cost.

Supplementary Material
Supplementary information for this work can be accessed via Ref. 265. They include addi-
tional plots for some of the simulated systems.
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Chapter 4

Relativistic Orbital Optimized Density
Functional Theory for Accurate
Core-Level Spectroscopy

4.1 Introduction
Spectroscopy of core-level electrons with X-rays is a convenient and popular tool for studying
chemical systems. A specific core-level of a given element normally has a characteristic energy
that is quite distinct from inner-shells of other elements, making the technique element
specific. Furthermore, core electrons do not play a direct role in chemical bonding, and are
thus effectively localized around the nucleus. Spectroscopic probe of these electrons therefore
yields information about local chemical environment of individual atoms. Core-level spectra
can thus yield useful information about the local coordination environment [283, 284],
extent of covalency in ligand-metal interactions [285, 286] or the oxidation state [287].
Time-resolved core-level spectroscopy can also be used as a probe to study photoinduced
chemical dynamics [288–290].

Computational simulations of core-level spectra are useful for gaining insight into ex-
periment, and potentially identifying new species whose signature may appear in transient
spectra [290–292]. Traditional quantum chemistry methods for excited states [89, 91] are
however quite challenged by this task, especially since such techniques are mostly developed
for (and validated on) problems involving only valence electrons. For example, the widely
used linear-response time-dependent density functional theory (TDDFT) approach [91, 293]
cannot adequately describe the relaxation of the core hole. This leads to rather large errors of
∼ 10-20 eV for the K-edge (1s orbitals) of C, N, O and F [292, 294–298], if highly specialized
functionals [299, 300] are not employed. Heavier elements lead to even larger errors, such as
∼ 50 eV for the P, S, Cl K-edges [301–303] and > 100 eV for the Fe K-edge [304]. TDDFT
spectra therefore usually need to be empirically translated by many eVs, in order to align
with experiment [292, 302, 304, 305]. Similar behavior is observed for the equation-of-motion
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coupled cluster singles and doubles (EOM-CCSD) method [89, 306], although the shift re-
quired is typically much smaller (< 2 eV for second period elements) [307–311]. EOM-CCSD
is however quite computationally demanding, with the computational cost scaling as O(N6)
vs system size N (compared to O(N3−4) for DFT).

Orbital-optimized (OO) methods optimize orbitals for each excited state individually, and
separately from those of the ground state. OO can therefore effectively model the relaxation
of the core hole, leading to much better agreement with experiment [238, 312–314] without
any need for empirical shifts. Unfortunately, OO methods had been historically underutilized
due to a risk of ‘variational collapse’, in which the calculation converges to a lower energy
state (often the ground state) instead of the desired high energy excitation. However, there
has been considerable recent interest in excited state OO, resulting in many new approaches
that aim to reliably converge to any chosen state without the risk of variational collapse [243,
315–320]. In practice, OO-DFT methods require more compute time than TDDFT if a large
number of states are desired, such as in (near-)degenerate bands. This stems from OO-DFT
having to iteratively optimize multiple states individually while TDDFT can simultaneously
compute them. However, OO-DFT retains the same computational scaling as ground state
DFT or TDDFT. An overview of the successes and challenges with OO-DFT methods can be
found in Ref 238. OO-DFT methods are thus increasingly being employed to study core-level
spectra [319, 321–325], with the modern SCAN [72] functional leading to very low error [321,
322, 325, 326] (< 1 eV) vs experiment for the K-edge of C, N, O and F, as well as L-edge of
Si, P, S and Cl.

The K-edge of elements heavier than F however cannot be as accurately modeled with
non-relativistic quantum mechanics. Naive use of the Bohr atom model suggests that the
speed of 1s electrons would scale linearly with the atomic number Z, eventually attaining
the speed of light at Z > α−1 ≈ 137 (where α is the fine structure constant). Relativistic ef-
fects become perceptible at much smaller Z, with calculations indicating that non-relativistic
quantum mechanics underbinds the 1s electrons of Ne by 1 eV [327]. It is therefore necessary
to incorporate relativistic effects into OO-DFT, if < 1 eV error vs experiment is desired for
computed K-edge spectra of third period elements and beyond. Scalar relativistic treatment
is however often overlooked for linear-response TDDFT, as the ad-hoc empirical shifts (typ-
ically larger than the relativistic correction) utilized to align computation with experiment
account for it to some extent [226, 328, 329]. Nonetheless, explicit use of relativistic effects
in TDDFT has been previously explored, albeit mostly within a real-time framework [226,
295, 330]. Similarly, both empirical shifts [308] and explicit inclusion [121, 331] have been
used to account for relativistic effects in coupled cluster methods. The use of element-specific
corrections to nonrelativistic TDDFT results has also been examined in the past [299].

In this work, we utilize the spin-free exact-two component one electron (SFX2C-1e, hence-
forth referred to as just X2C) model for relativistic quantum chemistry [127, 128, 332–338]
to obtain improved OO-DFT core-level spectra. The results indicate that OO-DFT/X2C is
quite accurate for third period elements, permitting semiquantitative prediction of core-level
spectra at ground state DFT cost.
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4.2 Brief overview of theory
The X2C model transforms the one particle terms of the electronic Hamiltonian (i.e. kinetic
energy and external potential) via the solutions of the four component, one electron Dirac
Hamiltonian. The two-particle (i.e. interelectron interaction) terms are treated within the
pure Coulomb formalism and, therefore, are left unaltered in the non-relativistic form, per-
mitting straightforward application of DFT. The transformation is briefly described in the
supporting information, and we invite interested readers to examine Refs. 128 and 336 for
further details regarding X2C.

Using the X2C transformed one particle Hamiltonian, we obtained the ground state en-
ergy via the standard Kohn-Sham [58] (KS) formalism. Excited states are more challenging,
as many excitations unpair electrons and therefore require multiple Slater determinants for
a spin-pure description. DFT for such states is not straightforward, as the KS formalism is
single determinant by construction. We therefore utilize three related OO-DFT ansatze for
modeling three classes of excited states. These ansatze are described in detail in Ref 238,
but we provide a brief outline here for convenience.

(a) Core→SOMO excitation in a radical. (b) Core-ionization of closed-shell system

Figure 4.1: Schematic for processes where ∆SCF is appropriate.

A state with no unpaired electrons, or one with all unpaired electrons of the same spin can
be represented by a single Slater determinant. It is straightforward to optimize a single Slater
determinant with an excited state electronic configuration (apart from the aforementioned
risk of variational collapse). This protocol is called ∆SCF [339, 340] and is suitable for states
that result from 1s→ SOMO (singly occupied molecular orbital) transitions of open-shell
species, or core-ionized states of closed-shell molecules (as shown in Fig 4.1). Relativistic
∆ Hartree-Fock (HF) has indeed been used to study core-ionization energies [341, 342].
However, ∆SCF is not appropriate for singly excited singlet excited states of closed-shell
molecules, as both the up and down spins are equally likely to be excited (as shown in Fig
4.2). Exciting only one spin results in a spin-contaminated determinant midway between
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singlet and triplet. Spin-contaminated ∆SCF energies have nonetheless been utilized in the
past for core-excitation energy calculations, with element-specific relativistic corrections for
heavy elements [312].

Restricted open-shell Kohn-Sham [343, 344] (ROKS) obtains a pure singlet energy by
spin-projection on the spin-contaminated determinant. ROKS is consequently the optimal
OO-DFT approach for singlet excited states with two unpaired spins, although it cannot be
applied if there are more than two unpaired spins. Such states require a more general recou-
pling scheme described in Refs 238 and 322. This is however only necessary for transitions
from the core to completely unoccupied levels in open-shell systems, with ∆SCF and ROKS
being sufficient for all the states considered in this work. OO-DFT therefore encompasses
∆SCF and methods like ROKS and the general recoupling scheme that derive from it.

Figure 4.2: Schematic for a singlet core excitation in a closed-shell species. Two open-shell
determinants (as seen on the right) are equally likely, and are individually halfway between
singlet and triplet in character. ROKS is thus essential for spin-purity of the excited state.

4.3 Computational methods
All calculations were performed with a development version of the Q-Chem 5.4 package [263]
and these new capabilities will be publicly available with the next release of code. Local ex-
change–correlation integrals for DFT were calculated over a radial grid with 99 points and an
angular Lebedev grid with 590 points. Ref 322 lays out the protocol for computing ∆SCF ex-
cited states, while Ref 321 does the same for ROKS. The restricted open-shell optimizations
necessary in this process were performed through square gradient minimization (SGM [318])
and unrestricted optimizations with initial maximum overlap method (IMOM [315]). The
core-hole was localized onto a single atom for species with equivalent atoms (like S in CS2),
in order to prevent errors arising from delocalization [74, 345] of the hole over multiple
sites [321]. Standard values of dielectric constant ϵr and refractive index n were used for IEF-
PCM modeling of common solvents like cyclohexane (listed in the supporting information).
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The corresponding data for most solid state materials was not available, and consequently
all solid state environments were modeled with NaCl parameters (ϵr = 6, n = 1.5). This
should be reasonable for ionic solids, although perhaps a little too polar for molecular solids
like OPPh3 (Table 4.3). However, the resulting values for OPPh3 were quite close to vac-
uum calculations (as shown in the supporting information), suggesting that the environment
exerted negligible impact on the spectrum.

Experimental geometries were used whenever possible, through gas phase data from
NIST [346] or crystal structures from the Cambridge structural database [347]. Structures
were optimized with ωB97M-V [79]/aug-pcseg-1 under gas phase conditions, if experimental
data was unavailable. The source of all of the geometries is listed in the supporting informa-
tion, along with the associated atomic coordinates. In particular, the CuCl42− ion studied is
of D2h (distorted tetrahedral) symmetry, corresponding to Cs2CuCl4 [348]. The ground state
geometries were employed for excited state calculations, consistent with the Franck-Condon
principle [349, 350].

4.4 Results and Discussion
We first examined the performance of OO-DFT/X2C in predicting the gas phase K-edge
spectra of the third period elements (and Ne) with Table 4.1 reporting ∆SCF 1s electron
binding energies for several closed-shell species. All presented functionals have root mean
square error (RMSE) < 1 eV vs experimental X-ray photoelectron spectra (XPS). These
functionals were identified via screening across many functionals over a smaller set of species
(SiH4,PH3,H2S,HCl and Ar). This screening also revealed that other well known functionals
like B3LYP [77, 363], PBE0 [78], or TPSS [71] have larger errors (∼ 1-3 eV, as shown in
the supporting information) that nonetheless represent a major improvement over TDDFT
or non-relativistic OO-DFT. Out of the selected functionals, SCAN fares particularly well,
yielding an RMSE of 0.4 eV and a maximum deviation of 0.8 eV from experiment. X2C
is crucial for this level of agreement, as SCAN with the non-relativistic (NR) Hamiltonian
leads to errors of several eV (as shown in Table 4.1). The related SCANh [364] functional
performs slightly worse, but is still fairly accurate. SCANh does have positive mean error
(ME), indicating it systematically overestimates the binding energy. This overestimation is
a consequence of the presence of HF exchange (10%) in the functional, as pure HF overes-
timates by ∼ 2 eV. Overestimation is more evident for SCAN0 [365] (which has 25% HF
exchange) and BHHLYP [366] (50% HF exchange). However, it is important to note that the
ME is strongly influenced by the choice of the local exchange-correlation model. For exam-
ple, functionals based on PBE [67] appear to be far more sensitive to % HF exchange, than
ones derived from SCAN (as seen in the supporting information). In addition, most local
functionals strongly underbind core-electrons, and would require admixture of a very large
amount of % HF exchange to have low error (BHHLYP being a prominent example). SCAN
is a notable exception in this regard, as it has low error despite being a local functional.

We next considered prediction of X-ray absorption spectra (XAS) with ROKS, which is
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Molecule Expt. SCAN (NR) SCAN SCANh SCAN0 BHHLYP HF
Ne 870.2 [351] 869.3 870.3 870.3 870.3 870.5 869.6
Mg 1311.5 [352] 1309.3 1311.6 1311.6 1311.6 1311.5 1311.4
SiH4 1847.0 [353] 1842.7 1847.1 1847.2 1847.3 1847.3 1848.0
SiF4 1852.5 [353] 1847.8 1852.1 1852.4 1852.7 1852.8 1853.7
SiCl4 1850.6 [353] 1846.1 1850.5 1850.7 1850.9 1851.0 1852.0
SiBr4 1849.7 [353] 1845.5 1849.8 1850.0 1850.3 1850.3 1851.3
PH3 2150.9 [354] 2145.1 2151.0 2151.1 2151.2 2151.0 2152.0
PF3 2156.4 [354] 2150.0 2155.8 2156.1 2156.4 2156.4 2157.7
PF5 2159.4 [354] 2153.2 2159.0 2159.3 2159.8 2160.0 2161.6
POF3 2157.8 [354] 2151.7 2157.5 2157.8 2158.2 2158.4 2159.9
H2S 2478.5 [355] 2470.7 2478.4 2478.6 2478.8 2478.4 2479.5
CS2 2478.1 [356] 2470.4 2478.2 2478.3 2478.5 2478.0 2479.1
SF4 2486.9 [357] 2478.7 2486.5 2486.8 2487.3 2487.4 2489.3
SF6 2490.1 [355] 2481.9 2489.6 2489.9 2490.5 2490.6 2492.7
SO2 2483.7 [355] 2475.9 2483.6 2483.9 2484.3 2484.2 2486.0
CSO 2478.7 [356] 2471.2 2479.0 2479.1 2479.3 2478.8 2479.9
SF5Cl 2488.9 [357] 2480.9 2488.6 2489.0 2489.5 2489.5 2491.5
HCl 2829.8 [358] 2820.3 2830.3 2830.4 2830.6 2830.0 2831.4
Cl2 2830.2 [358] 2820.8 2830.8 2831.0 2831.2 2830.5 2831.9
CH3Cl 2828.4 [261] 2819.2 2829.2 2829.3 2829.5 2828.9 2830.2
SF5Cl 2829.6 [359] 2820.3 2830.4 2830.6 2830.9 2830.3 2831.8
CCl3F 2829.3 [261] 2820.0 2830.0 2830.2 2830.4 2829.8 2831.2
Ar 3206.3 [360] 3194.1 3206.9 3207.0 3207.3 3206.5 3208.1
RMSE 7.4 0.4 0.5 0.6 0.4 1.7
ME -6.9 0.1 0.3 0.5 0.3 1.5
MAX 12.2 0.8 1.0 1.3 0.7 2.7

Table 4.1: Gas phase XPS K-edge binding energies for Ne and third period elements (in
eV). Computed values were found from restricted open-shell ∆SCF calculations, using the
aug-pcX-2 basis [361] when available and decontracted aug-pcseg-2 [362] for H/Br. Non-
relativistic (NR) values from SCAN are also provided for comparison. The root mean square
error (RMSE), mean error (ME) and maximum absolute error (MAX) are also reported.
The atomic site of the ionization is bolded when multiple possibilities exist.

quite effective in predicting singlet core excitation energies of second period elements [321].
Table 4.2 shows that inclusion of scalar relativistic effects through the X2C model permits
high accuracy for third period elements as well. SCANh yields the best performance with an
RMSE of 0.3 eV and a maximum absolute error (MAX) of only 0.6 eV. SCAN and SCAN0
also yield quite good performance. In fact, the RMSE for all the presented functionals
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Molecule Expt. SCAN (NR) SCAN SCANh SCAN0 BHHLYP HF
SiH4 1842.7 [353] 1838.56 1842.9 1843.1 1843.3 1843.4 1844.9
SiF4 1849.0 [353] 1844.13 1848.5 1848.8 1849.1 1849.4 1851.3
SiCl4 1846.0 [353] 1841.37 1845.7 1845.9 1846.2 1846.5 1848.5
SiBr4 1845.0 [353] 1840.58 1844.9 1845.1 1845.4 1845.6 1847.7
PH3 2145.8 [367] 2140.15 2146.0 2146.2 2146.4 2146.3 2148.1
PF3 2149.3 [367] 2143.55 2149.4 2149.6 2149.9 2150.0 2151.9
PF5 2155.0 [367] 2148.59 2154.5 2154.7 2155.2 2155.5 2159.8
POF3 2153.3 [367] 2147.16 2153.0 2153.3 2153.7 2153.9 2158.0
H2S 2472.7 [368] 2465.05 2472.8 2473.0 2473.2 2472.9 2475.0
CS2 2470.8 [356] 2463.53 2471.3 2471.3 2471.4 2471.0 2472.5
SF4 2477.3 [369] 2469.71 2477.4 2477.7 2478.0 2478.0 2480.5
SF6 2486.0 [368] 2477.55 2485.3 2485.7 2486.2 2486.5 2490.1
SO2 2473.2 [368] 2465.53 2473.3 2473.4 2473.6 2473.4 2475.5
CSO 2472.0 [356] 2464.73 2472.5 2472.6 2472.7 2472.2 2473.9
SF5Cl 2483.5 [359] 2475.11 2482.8 2483.2 2483.7 2483.9 2487.3
HCl 2823.9 [358] 2813.79 2823.8 2824.0 2824.2 2823.7 2825.7
Cl2 2821.3 [358] 2811.05 2821.1 2821.2 2821.4 2820.9 2822.8
CH3Cl 2823.5 [261] 2813.60 2823.6 2823.8 2824.0 2823.6 2825.8
SF5Cl 2821.8 [359] 2811.83 2821.8 2821.9 2822.1 2821.6 2823.7
CCl3F 2822.8 [261] 2813.19 2823.2 2823.4 2823.6 2823.2 2825.3
RMSE 7.6 0.4 0.3 0.5 0.5 2.8
ME -7.3 -0.1 0.1 0.4 0.3 2.7
MAX 10.3 0.7 0.6 0.8 0.7 4.8

Table 4.2: Lowest dipole allowed gas-phase XAS excitation energy for third period elements
(in eV). Computed values were found from ROKS, using the aug-pcX-2 basis when avail-
able and decontracted aug-pcseg-2 for H/Br. NR values from SCAN are also provided for
comparison. The atomic site of the ionization is bolded when multiple possibilities exist.

is comparable to the typical experimental energy resolution of ∼ 0.5 eV, and therefore
indicative of semi-quantitative performance. Curiously, SCAN significantly underestimates
the excitation energy for highly fluorinated compounds (SF6, CF3SF5 etc.), highlighting a
potential limitation for this otherwise excellent performing local functional. This systematic
underestimation is partially mitigated with HF exchange, leading to SCANh performing
somewhat better. On the other hand, SCAN0 has a systematic bias towards overestimation
due to a greater part of HF exchange being present. SCANh therefore offers a reasonable
middle path, although it would perform poorly for cases where SCAN already overestimates
or SCAN0 underestimates. We also note that our RMSEs are considerably smaller than the
several eV errors reported by an earlier study [338] using relativistic orthogonality constrained
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DFT (OC-DFT) [242], which may in part stem from use of B3LYP in that work.

(a) K-edge ionization. (b) Lowest dipole allowed K-edge excitation.

Figure 4.3: Box plot for errors (vs experiment) in computed values reported in Tables 4.1-4.2.

Fig 4.3 visually summarizes the key result shown in Tables 4.1 and 4.2, namely that OO-
DFT/X2C is effective in predicting core-level excitation/ionization energies of third period
atoms in isolated small molecules. The error distributions are quite compact overall, with the
typical range being below 1 eV. In particular, the SCAN, SCANh and BHHLYP functionals
typically have errors below 0.5 eV, and never over 1.0 eV (for the species considered). They
therefore appear to be promising routes for prediction of gas-phase core-level spectra.

It is also worthwhile to consider larger systems in order to gauge feasibility of OO-
DFT/X2C for widespread practical use. However, certain computational challenges need to
be considered along the way. Decontracted basis sets of at least triple-ζ quality (ideally of the
Jensen pcX-n [361] or Dunning cc-pCVnZ [370] type) appear to be necessary for computation
of core-level spectra, both to account for relaxation of the core hole and for convergence of
relativistic effects. However, using such bases for all atoms would be quite computationally
demanding. The local nature of the core-excitation permits use of a mixed basis strategy [321]
in which the decontracted triple-ζ basis is only used for the atom whose core-electrons are
being probed, while the corresponding contracted double-ζ basis is sufficient for all other
atoms. We have verified that this mixed basis strategy does not lead to any significant change
in RMSE of SCAN/SCANh for the species in Tables 4.1 and 4.2 (shown in the supporting
information) and have employed this strategy for the calculations reported hereon.

In addition, XAS for larger systems is often collected in the solid state or in solution,
making it necessary to model the effect of the environment on the spectrum. The locality of
core-electrons suggests that only the first coordination shell needs to be considered atomisti-
cally for the first few (‘pre edge’) peaks, with a continuum dielectric model being adequate
for the remainder of the environment. Such polarizable continuum models (PCM [371]) are
likely to be effective for species in which the core electron is excited to a valence level, but
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would probably be insufficient for Rydberg-like excitations without atomistic modeling of a
rather large region around the core-hole. We have employed the integral equation formal-
ism (IEF-) PCM [372] model to account for environment effects, and thereby investigate
how spectra are affected by the phase of the system [373]. IEF-PCM is likely adequate if
it only induces a small shift relative to vacuum results, but more sophisticated embedding
techniques might prove necessary if there is a significant difference between IEF-PCM and
vacuum calculations.

Molecule Environment Expt. SCAN SCANh
Si(Me)4 Gas 1843.6 [374] 1843.5 1843.7
Si(OMe)4 Gas 1845.9 [374] 1845.9 1846.1
(CH3O)2P(S)Cl Gas 2150.2 [367] 2150.0 2150.2
P4O6 Gas 2147.5 [375] 2147.8 2148.0
OPPh3 Solid 2147.3 [301] 2147.4 2147.7
CF3SF5 Gas 2483.8 [376] 2483.2 2483.6
CH3SSCH3 Gas 2471.6 [377] 2472.0 2472.1
(4-Me)C6H4SH Cyclohexane 2472.5 [291] 2472.5 2472.7
(4-Me)C6H4S· Cyclohexane 2467.0 [291] 2467.4 2467.5
TiCl4 Toluene 2821.6 [378] 2821.3 2821.2

Table 4.3: Lowest dipole allowed XAS excitation energy for slightly larger species (in eV)
from experiment and theory. A mixed basis (aug-pcX-2 on excitation site, aug-pcseg-1 on
all other atoms) was utilized for the calculations.

Table 4.3 shows performance for the mixed basis protocol for molecular systems in the gas
phase, or non-polar solvents like cyclohexane (modeled with IEF-PCM, if present). ROKS
was used for all closed-shell systems, while single determinant spin-unrestricted ∆SCF was
sufficient [322] for the S 1s → SOMO transition of the 4-methylthiophenoxy ((4-Me)C6H4S)
radical. Our approach appears to be quite accurate in predicting experimental energies,
indicating that the OO-DFT/X2C approach can be applied to large molecules for prediction
of heavy element K-edges. We also revisited earlier work on light elements [322], and demon-
strated that inclusion of X2C does not cause any degradation of performance in predicting
excitation energies (as shown in the supporting information).

Although we have only considered neutral species so far, core-level spectra of ionic moi-
eties have also been collected in many experiments. These species offer an interesting regime
for both testing the efficacy of our approach and for gauging environment effects in general.
Table 4.4 presents a comparison between experiment and theory for Cl K-edges of several
ionic species. The ions in Table 4.4 can be broadly categorized into two categories. The first
are closed-shell species where Cl has a formally positive oxidation state (ClO−

4 etc) and the
lowest excitation is 1s → σ∗

O-Cl. These σ∗ orbitals are more ‘Cl like’ due to the halogen being
electropositive, leading to excitations that are thus mostly localized on the Cl (which is at
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Species Experiment Vacuum Solid
SCAN SCANh SCAN0 SCAN SCANh SCAN0

ClO4
– 2835.1 [379] 2834.6 2834.9 2835.4 2834.7 2835.0 2835.4

ClO3
– 2831.3 [379] 2830.8 2831.0 2831.4 2830.8 2831.1 2831.4

ClO2
– 2826.8 [379] 2826.5 2826.7 2827.0 2826.6 2826.8 2827.1

CuCl42− 2820.2 [380] 2820.1 2820.3 2820.6 2819.8 2819.9 2820.2
NiCl42− 2821.5 [380] 2821.4 2821.6 2822.0 2821.1 2821.2 2821.6
CoCl42− 2822.5 [380] 2822.3 2822.0 2822.5 2821.4 2822.4 2822.1
FeCl42− 2822.8 [380] 2822.0 2822.3 2822.7 2821.7 2821.9 2822.3
FeCl4− 2820.5 [380] 2820.4 2820.4 2820.4 2820.2 2820.1 2820.1
RMSE 0.4 0.3 0.3 0.6 0.4 0.3
ME -0.3 -0.2 0.2 -0.6 -0.3 -0.1
MAX 0.8 0.5 0.5 1.1 0.9 0.5

Table 4.4: Lowest dipole allowed Cl K-edge excitation energy for ionic species (in eV). All
experimental data correspond to solid state measurements. ROKS was used for closed-shell
species like ClO4

– , and spin-unrestricted ∆SCF for open-shell systems like CuCl42−. A
mixed basis set (aug-pcX-2 on excitation site, aug-pcseg-1 on all other atoms) was utilized.

the center of the ion) and therefore reasonably isolated from the environment. Consequently,
not much difference is found between predictions for vacuum, and an IEF-PCM model ionic
solid. SCAN, SCANh and SCAN0 all fare reasonably at predicting excitation energies, with
the former slightly underestimating and the latter slightly overestimating.

The second class of ions are high-spin tetrahedral transition metal chloride complexes
where the lowest transition is charge-transfer (CT) from Cl to a singly occupied metal d
level. In addition, the Cl site is on the periphery of the molecule, permitting greater influence
from the environment. There is thus a perceptible red-shift in the IEF-PCM results relative
to vacuum (due to greater stabilization of the CT like excited state). In addition, SCAN0
appears to be the best performer for this class of excitations. Nonetheless, SCANh appears
to do a reasonable job at predicting excitation energies for all of the ionic systems, indicating
that the OO-DFT/X2C approach remains capable of delivering semi-quantitative accuracy
even outside of small molecules in the gas phase.

It is also instructive to look beyond computed excitation energies and consider the full
spectrum. Fig 4.4 presents some examples where the experimental spectrum is compared to
computed ones, without using any empirical translations. The peak energies align quite well,
within the expected error range of ∼ 0.5 eV. The peak heights agree less well, although in
some cases this is clearly due to the experimental peaks having different widths (such as in
Fig 4.4b for SO2), vs the uniform broadening utilized for computed spectra. It would be in-
teresting to compute spectral broadening directly from OO-DFT and determine if that leads
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(a) P K-edge XAS of gaseous P4O6 [375], using a
mixed basis (aug-pcX-2 on target P, aug-pcseg-
1 on other atoms).

(b) S K-edge XAS of gaseous SO2 [368], using
a doubly augmented (d-aug-) pcX-2 basis on all
atoms.

(c) Cl K-edge XAS of solid [Ph4P]2TiCl6 [303].
The system was approximated with a TiCl62–

ion, placed in a IEF-PCM dielectric utilizing
NaCl parameters (ϵr = 6, n = 1.5). A mixed
basis (aug-pcX-2 on target Cl, aug-pcseg-1 on
other atoms) was used.

(d) Combined S K-edge XAS (> 2470 eV) and S
Kβ emission (< 2470 eV) of gaseous CSO [356].
ROKS was utilized for the XAS and unrestricted
∆SCF for the emission. A doubly augmented
(d-aug-) pcX-2 basis on all atoms was used.

Figure 4.4: Comparison of experimental K-edge spectra for third period elements, and those
computed with SCAN. Computed spectra were broadened with a Voigt profile with a Gaus-
sian standard deviation of 0.3 eV and Lorentzian γ = 0.121 eV.

to better agreement between theory and experiment. We note that we computed intensities
within the dipole-approximation (using transition dipole moments calculated in the manner
described in the supporting information and utilizing non-orthogonal configuration interac-



CHAPTER 4. RELATIVISTIC ORBITAL OPTIMIZED DENSITY FUNCTIONAL
THEORY FOR ACCURATE CORE-LEVEL SPECTROSCOPY 84

tion techniques [381]). It is quite possible that higher order terms have a nonnegligible impact
on the experimental X-ray spectrum [382]. Nonetheless, it appears that OO-DFT/X2C is
quite effective at reproducing experimental spectra for third period elements.

Experiment SCAN SCANh
TiCl4 4969.2 [378] 4968.9 4969.4
TiCpCl3 4968.1 [378] 4968.1 4968.5
TiCp2Cl2 4967.3 [378] 4967.5 4968.0
VO(acac)2 5468.4 [383] 5468.6 5469.0
VCp2Cl2 5468.4 [383] 5468.3 5468.8
CrO4

2– 5996.5 [384] 5996.3 5996.9
Cr2O7

2– 5996.6 [384] 5996.2 5996.7
MnO4

– 6543.3 [385] 6546.1 6546.6
FeCp2 7111.9 [386] 7116.5 7116.8
FeCl4 – 7113.2 [285] 7117.1 7117.6
CoCl42– 7709.2 [387] 7714.3 7714.7
CuCl42– 8977.6 [388] 8986.6 8986.8
Cu(CF3)4

– 8981.8 [388] 8990.4 8990.4

(a) Individual values (in eV) (b) Excitation energy error vs nuclear charge.

Table 4.5: Lowest symmetry allowed transition metal K-edge transitions. ∆SCF was used for
1s→SOMO transitions of open-shell systems like VO(acac)2, while ROKS was used for closed-
shell species like TiCl4. A mixed basis (decontracted aug-cc-pωCVTZ [389] on excitation
site, aug-cc-pVDZ on all other atoms) was utilized. Experimental data corresponds to the
solid state for all species other than TiCl4, whose spectrum was collected in toluene solution.

We next shift our attention to the 3d transition metals. Transition metal complexes are
often open-shell, and have several low-lying orbitals that core electrons can be excited to.
K-edge spectra of these species are therefore widely studied, despite the 1s→3d transition
in bare atoms being dipole forbidden. Indeed, the transition in centrosymmetric entities
(like octahedral complexes) can only be driven by electric quadrupole terms or vibrational
symmetry breaking [285, 390]. Tetrahedral complexes however can have some p-d mixing,
leading to some dipole allowed intensity for K-edge transitions [390]. Furthermore, X-ray
emission spectra (XES) can be collected for 2p/3p→ 1s dexcitations, yielding further useful
information [284].

Table 4.5 shows the performance of OO-DFT in predicting transition metal K-edge en-
ergies, with the SCAN and SCANh functionals. The results are quite adequate for Ti, V,
and Cr but performance is significantly degraded for heavier transition metals like Mn, Fe,
Co and Cu due to significant overestimation (as made evident by Fig 4.5b). This is quite
interesting, as SCAN had a slight penchant for underestimation when it came to lighter ele-
ments, unlike the significant overbinding observed here for Cu, Co and Fe (beyond the scale
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of typical OO-DFT errors). It should be noted that many of the species in Table 4.5 are
high-spin tetrahedral complexes like FeCl4 – ,CoCl42– and CuCl42– or d0 species like TiCl4,
CrO4

2– and MnO4
– . These species are therefore not particularly multireference, removing

one possible source of the error. While it is possible that this error arises from inadequa-
cies of the density functional approximation, the sudden and rapid increase in error with
increasing Z seems to suggest that relativistic effects are playing a significant role.

Indeed, the spin-free one-electron X2C model employed in our work is hardly complete,
as it does not include vector (spin-orbit) terms, as well as any effects of relativity on the two-
electron terms. The spin-orbit terms are unlikely to be relevant for K-edges, but the missing
two-electron terms are of a comparable magnitude to the error. Specifically, X2C does not
transform the electron-electron repulsion terms (the so-called “picture-change” [128]), incor-
porate additional (Breit) [120] terms in the electron-electron interaction terms, or account for
quantum electrodynamic effects. These additional terms sum to ∼ 20 eV of underbinding for
the Kr K-edge [341, 391, 392], indicating that overestimation by a few eV is quite possible for
heavier fourth period elements from lack of such effects alone. In fact, the good performance
of SCAN up to Cr is possibly fortuitous to some degree. However, it is worth stressing that
the X2C model nonetheless manages to account for the vast majority of relativistic effects
for even species like Cu/Kr. It is also worth noting that translating OO-DFT/X2C metal K-
edge spectra for alignment with experiment would involve much smaller shifts than TDDFT,
reducing the magnitude of potential translation driven error. Nonetheless, we wish to avoid
any need for empirical translation of spectra, and instead intend to pursue more accurate
relativistic models to quantitatively model the K-edge spectra of heavier elements.

Experiment Theoretical L3 edge
L3 L2 3J=L2-L3 SCAN SCANh SCAN0

TiCl4 456.9 [393] 462.5 5.6 455.9 456.4 457.1
Mn(OH2)6

2+ 639.7 [394] 649.1 9.4 638.7 638.9 639.3
Fe(CN)6

3– 705.8 [395] 718.4 12.6 706.1 706.5 707.1
FeCp2 708.9 [396] 721.2 12.3 708.2 708.5 709.0
CuCl42− (D2h) 930.1 [388] 950.1 20 929.4 929.5 929.8
Cu(CF3)4

– 934.7 [388] 954.7 20 933.5 933.5 933.7

Table 4.6: Lowest symmetry allowed L-edge (2p) transitions for transition metal containing
species (in eV). ∆SCF was used for 2p→SOMO transitions of open-shell systems like CuCl2−4 ,
while ROKS was used for closed-shell species like ferrocene (FeCp2). Computed multiplet
averaged energies (found from averaging over all the 2p orbitals) were red-shifted by J (where
3J is the experimental energy gap between the L2 and L3 peaks) to better approximate the
experimental L3 peaks. A mixed basis (decontracted aug-cc-pωCVTZ on excitation site,
aug-cc-pVDZ on all other atoms) was utilized for the calculations.

Metal L-edge (2p) spectra are also extensively studied via experiment. Accurate com-
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putation of spectra necessitates going beyond the scalar relativistic paradigm as the degen-
eracy of the 2p levels is broken by spin-orbit coupling. Scalar relativistic models like X2C
can potentially yield a reasonable estimate for the multiplet averaged peak, which can be
subsequently shifted by atomic spin-orbit values to obtain the experimentally observed L3/2

(L3-edge) and L1/2 (L2-edge) multiplet peaks. This strategy has been found to be effective
for L-edges of Si,P,S and Cl [321]. However, it is less appealing for heavier elements due
to the larger magnitude of the multiplet splitting (20 eV for Cu vs 1.6 eV for Cl), which
can potentially exert a direct influence in the OO process. We have nonetheless applied this
measure to compute L-edges for a few 3d metal containing species (shown in Table 4.6), to
assess this approach. It is quite apparent that the errors are much larger here (relative to Fig
4.3), with significant underestimation being the norm for all species aside for [Fe(CN)6]3+.
The results are also often quite sensitive to % HF exchange (more so than most of the species
considered till this point). Nonetheless, the worst case errors are just slightly above 1 eV,
indicating that OO-DFT with proper inclusion of spin-orbit effects and careful functional
choice has the potential to be quite accurate in predicting metal L-edges. We are presently
investigating this aspect further.

4.5 Conclusions
Overall, it is clear that the OO-DFT/X2C combination is capable of consistently delivering <
1 eV error for core-level excitation/ionization energies for third period elements and reproduce
experimental spectra fairly well. Indeed, the typical error is ∼ 0.5 eV for SCAN/SCANh,
as shown by Fig 4.3 and the RMSEs reported in Tables 4.1 and 4.2. X2C therefore extends
the applicability of OO-DFT methods to elements heavier than F, which was previously
the limit for computational core-level spectroscopy with such methods (without post-facto
application of ad-hoc relativistic corrections). OO-DFT X2C also appears to be adequate
for the K-edges of the transition metals Ti, V and Cr. However, performance degrades
starting with Mn, possibly due to lack of relativistic effects in the two-electron interaction
terms. The spin-free X2C model is also incapable of accounting for the spin-orbit splitting
observed in experimental L-edge spectra. Accounting for these effects would be critical for
extension of OO-DFT beyond the cases explored in this work. We are also attempting to
apply OO-DFT extensively to K-edge spectra of third period elements, in order to uncover
any additional limitations of the approach. Any resulting insight could also prove valuable in
training density functionals that are accurate in modeling both ground states and OO-DFT
excited states, as it is quite possible that not much further improvement in prediction quality
can be obtained from functionals trained solely for the ground state.
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Supplementary Material
Supplementary information for this work can be accessed via Ref. 397. They include addi-
tional X2C derivations, a short note on S K-edge binding energies of some species, raw data
and geometries of all species investigated in this work.
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Chapter 5

Electron-Affinity Time-Dependent
Density Functional Theory

5.1 Introduction
Recent advancements in synchrotron and ultrafast tabletop X-ray light-sources mark the
dawn of an X-ray technology renaissance. With exceptional element-specificity, X-ray spec-
troscopy has found use in probing liquid-to-metal phase transitions of ammonia [398], track-
ing charge-separation dynamics in dye-sensitized solar cells and organic light-harvesting sys-
tems [399, 400], and has revealed quantum nuclear dynamics near conical intersections [401].
Modern X-ray absorption spectroscopy (XAS) is capable of energy resolution on the order of
0.2–0.9 eV [402], which is well below the error statistics of most modern theoretical methods
that are routinely used to model XAS.

Linear-response time-dependent density functional theory (TDDFT) is by far the most
commonly used method for computing excitation energies due its accuracy and efficiency
[247, 248, 403–406]. While formally exact for excitation energies, TDDFT in practice is
approximate due to inexact ground state functionals and the ubiquitous adiabatic approxi-
mation (henceforth assumed) [92, 248, 407]. Although TDDFT achieves statistical accuracy
of ∼0.2–0.3 eV for valence excitations [408], errors increase dramatically for core excitations,
often requiring empirical shifts on the order of 10–100 eV to realign the calculated spectra
with experiment [329, 409–411]. While range-separated hybrid functionals perform better in
this regard [412, 413], specialized short-range corrected (SRC) functionals that feature a large
amount of short-range Hartree-Fock (HF) exchange to correct for differential self-interaction
error in the core have also been used instead of empirical shifting, albeit to the disregard
of broader thermochemical properties [296, 298–300, 414–417]. Apart from pure TDDFT,
semi-empirical extensions of configuration interaction that employ Kohn-Sham orbitals have
been applied with some success to core-excitations [418–420]. In some cases, particularly in
periodic systems, TDDFT and configuration-interaction methods are sidestepped in favor
of cruder approaches like the Slater transition or transition potential methods [421–429].
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Despite the myriad ways in which XAS can be calculated, in this work our focal point is
linear-response TDDFT.

One source of error in predicting core-excitations using linear-response theory is the
large orbital relaxation effect that follows from the displacement of charge out of a core
orbital [430, 431]. This can be addressed on a state-by-state basis using orbital-optimized
density functional theory (OO-DFT), which explicitly relaxes the orbitals of excited-state
configurations [238]. While OO-DFT routinely achieves a statistical accuracy of ∼0.3 eV for
core-excitations [321, 397], state-by-state optimization is far less efficient than full-spectrum
methods like TDDFT. OO-DFT also requires some a priori knowledge of the system, com-
plicating the selection of the “correct” set of bespoke determinants in systems with a high
density of states.

Orbital relaxation error is related to the fundamentally incorrect particle-hole interaction
in TDDFT descriptions of core-excited states [91, 282, 432]. This is the major source of error
in TDDFT; emerging from the fact that the virtual orbitals in DFT are optimized in the n-
electron potential, causing incomplete cancellation of the interaction of the excited electron
with itself in the (previously occupied) core orbital. For example, consider the pure particle-
hole interaction that results from exciting an electron between two molecular orbitals (MOs)
that have zero overlap. For global hybrid functionals, the only nonzero elements of the
orbital Hessians belong to the A matrix,

Aia,jb = (εa − εi)δijδab − CHF(ij|ab) (5.1)

where CHF is the coefficient of HF exchange. The Coulomb interaction (aa|ii) is included
in the orbital energy difference and only in the case of exact exchange (CHF = 1) is this
interaction properly cancelled by the third term in Eq. 5.1, leading to particle-hole attrac-
tion. Therefore with approximate density functionals, the excited electron “feels” a residual
Coulomb potential from its unexcited image rather than a proper particle-hole attraction,
causing core-excitation energies to be dramatically underestimated in approximate TDDFT.

In this work, we introduce a linear-response TDDFT formalism that effectively models
particle creation in the virtual space from an n–1-electron reference density. This way,
orbital relaxation and information about the core hole are built directly into the reference
density, completely eliminating electron-hole self-interaction error (eh-SIE) by construction.
Our method generalizes the static-exchange approximation (STEX) into a density functional
theory (DFT) framework.

Such generalizations have recently been proposed based purely on error cancellation be-
tween restricted open-shell Kohn-Sham (ROKS) theory and STEX [433], but this work aims
at a fully derivable formalism. Herein we demonstrate multifaceted benefits of an exact ap-
proach, including better overall performance, and a recovery of the Jacob’s Ladder concept
in DFT. While TDDFT is the workhorse of excited-state calculations in quantum chemistry,
we further note that the concept of adding electrons to an n–1-electron reference determi-
nant has been employed within Green’s function based GW methods [434, 435] and within
algebraic diagrammatic construction approaches [436, 437] to account for orbital relaxation
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and (in the case of GW theory) for a more appropriate description of particle-hole inter-
actions. In principle, our proposed approach recovers the same poles as the single-particle
Green’s function in the electron addition domain. However, unlike GW approaches that scale
roughly as O(N4) with a nontrivial prefactor (where N is the number of basis functions)
[438], our proposed approach has the same scaling as STEX (O[V 3], where V is the number
of unoccupied MOs), making this a far more appealing method for large systems.

5.2 Theoretical Background

5.2.1 Static-Exchange Approach for Core-Excited States

The STEX formalism has been used to improve upon core-excitation energies offered by
configuration interaction with single excitations (CIS) [91, 439, 440] for a number of years
[441, 442]. In brief, STEX involves optimizing the MOs of the n–1-electron (core-ionized)
system, followed by an electron-affinity CIS (EA-CIS) calculation to reattach the missing
electron to the virtual orbitals, thereby yielding a partially orbital-optimized core-excitation
spectrum that accounts for the strong polarization effect from creating a core hole. For a
closed-shell reference, the EA-CIS equations for singlet states take the form,

Aia,ib = E
(n−1)
HF δab + F

(n−1)
ab + (ia|ib) , (5.2)

where i is the core hole MO, E(n−1)
HF is the core-ionized reference energy, F (n−1)

ab are elements
of the virtual-virtual block of the core-ionized Fock matrix, and (ia|ib) is an exchange inte-
gral in the standard Mulliken notation. Diagonalizing A results in states that are orthogonal
to the core-ionized reference determinant, but are not orthogonal to the original n-electron
ground state. The final step of the STEX procedure involves constructing nonorthogonal
configuration interaction (NOCI) elements to project the n-electron ground state out of the
Hamiltonian prior to diagonalizing, ensuring that all excited states are strictly orthogonal
to the initial n-electron ground state determinant [443–445]. Herein, we will show that the
nonorthogonality of the excited states to the ground state can be safely ignored when calcu-
lating K-edge XAS with almost no impact on the predicted excitation energies or transition
properties, thus paving the way for a TDDFT formalism where the ambiguity of DFT-based
NOCI elements once hindered such developments.

5.2.2 EA-TDDFT: generalizing STEX to a DFT formalism

In order to generalize STEX to a TDDFT framework, we will use continuum MOs as a deriva-
tion tool. For our purposes, continuum MOs are fictitious, ultra-diffuse orbitals that do not
interact with other MOs in the system and have zero energy. They offer utility in deriva-
tions of particle-nonconserving processes by recasting particle creation/annihilation into the
language of particle-conserving excitations [446].Throughout this work, we reserve the labels
{j, k, l,. . . } to denote occupied MOs, {a, b, c,. . . } for the virtual MOs, and {p, q, r,. . . } refer



CHAPTER 5. ELECTRON-AFFINITY TIME-DEPENDENT DENSITY FUNCTIONAL
THEORY 91

to general orbitals. Specific notation is reserved for the continuum MO, designated as x, and
the core-hole MO, i.

To ameliorate orbital relaxation error, we begin with the self-consistently optimized MOs
for the core-ionized system. We are interested in a protocol that uses particle-conserving
excitations that emulate the action of the particle creation operator on our core-ionized
reference,

|Ψa
i ⟩ = â†a|Ψ0⟩ , (5.3)

where |Ψ0⟩ is the core-ionized reference determinant, and â†a is the creation operator. One
possibility that retains correlations between single excitations in the response theory that
follows is to consider two successive excitations x → i and i → a out of a modified core-
ionized reference determinant that includes a single continuum MO. Conceptually, this can
be likened to excited-state absorption where the n-electron state with the core-hole MO
reoccupied acts as the intermediate state. In operator form it can be readily shown that,

|Ψa
i ⟩ = â†aâiâ

†
i âx|Ψ0χx⟩ = â†aâiâ

†
i |Ψ0⟩ = â†a|Ψ0⟩ , (5.4)

where |Ψ0χx⟩ is the modified core-ionized reference, containing the noninteracting spin-
orbital χx. This exercise reveals that the successive particle-conserving excitations x → i
and i → a indeed reduce to particle creation in orbital a of the unmodified core-ionized
reference determinant, which itself can be viewed as the tensor product of the core-ionized
reference with the vacuum level in the space of continuum orbitals.

In order to capture this process in the language of density matrices, such that our pro-
tocol is amenable to DFT, we consider two successive linear responses. The first response
generates the n-electron density from the n–1-electron reference by exciting an electron from
a continuum MO into the core hole, and the second response yields eh-SIE-corrected excita-
tions of this (newly added) core electron into the virtual space. Throughout this derivation,
we follow the density matrix formalism starting from the Liouville-von Neumann equation
[91, 404],

i
∂P(t)

∂t
= [F(t),P(t)] . (5.5)

The first response is obtained by restricting the excitation space to the (occupied) con-
tinuum MO and the (unoccupied) core-hole to yield,

Axi,xi = F
(n−1)
ii

Bxi,xi = 0
(5.6)

Because the continuum MO does not interact with the rest of the system, all two-electron
integrals involving the continuum MO vanish to give an expression that corresponds to the
negative electron affinity in the limit of the exact functional [447]. Importantly, no orbital
rotations are encoded in this response, meaning that the (idempotent) n-electron density
can be exactly constructed with the n–1-electron MOs to linear order.
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At some time t′ > t, we apply a second time-varying electric field to the perturbed n-
electron system. By regenerating the n-electron system, we have reintroduced eh-SIE, so we
now seek to separate the response due to the presence of the core electron from the remainder
of the response to the applied field. Assuming that the n-electron density is not too far from
a stationary point, we may write the perturbed density and corresponding Fock matrices as,

P(t′) = P
(n)
0 + δPCO(t

′) + δPEF(t
′)

F(t′) = F
(n)
0 + δFCO(t

′) + δFEF(t
′)

(5.7)

where P
(n)
0 is the static part of the n-electron density, δPCO(t

′) represents the component of
the response due to the (now occupied) core MO and δPEF(t

′) indicates the response of the
n-electron system to the second electric field. Substituting Eq. 5.7 into Eq. 5.5 and keeping
the terms that are linear with respect to the perturbing field leads to,

i
∂δPCO(t

′)

∂t′
+ i

∂δPEF (t
′)

∂t′
= [F

(n)
0 , δPCO(t

′)]

+ [δFCO(t
′),P

(n)
0 ] + [F

(n)
0 , δPEF (t

′)] + [δFEF (t
′),P

(n)
0 ]

, (5.8)

which is simply the sum of two linear responses. Notably, this formalism has been used
to subtract nonstationary oscillations out of real-time TDDFT simulations of excited-state
absorption (including application to transient XAS), and we have adopted similar notation
throughout [448–452].

We use the fact that the above responses are uncoupled to correct the n-electron response
by subtracting the components that emerge due to the occupied core orbital via the difference
Fock matrix,

FCO
pq = F (n)

pq − F (n−1)
pq

= (ii|pq)− CHF(ip|iq)
+ (1− CHF)(p|V (n)

xc − V (n−1)
xc |q)

(5.9)

and its corresponding density (all n-electron quantities are constructed using the n–1-electron
MOs). This form of the Fock matrix incorporates all zeroth-order couplings between n- and
n–1-electron potentials without approximation, and the corresponding difference density is
idempotent with one electron in core MO i, permitting excitations of the form i→ a.

Subtracting the response of the core orbital density from that of the n-electron density
(see Sec. 5.2.5 for details), leads to a eh-SIE-corrected n-electron response in terms of n–1-
electron quantities

Aia,ib = F
(n−1)
ab − F

(n−1)
ii δab

+ (ia|ib) + (1− CHF)(ia|f (n−1)
xc |ib)

Bia,ib = (ia|ib) + (1− CHF)(ia|f (n−1)
xc |ib)

(5.10)
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where,

f (n−1)
xc =

∂Vxc[ρ
(n−1)]

∂ρ(n−1)
. (5.11)

Finally, we add this to the result of the initial response in Eq. 5.6 to obtain the working
equations,

Aia,ib = F
(n−1)
ab + (ia|ib) + (1− CHF)(ia|f (n−1)

xc |ib)
Bia,ib = (ia|ib) + (1− CHF)(ia|f (n−1)

xc |ib)
(5.12)

Each of the above responses comes from exact TDDFT, suggesting that with time-
dependent exchange-correlation kernels this approach could be made exact (to first order).
Of course, knowledge of the exact functional would render this formalism obsolete because
the exact functional is asymptotically correct (eh-SIE-free) and has frequency dependence
(accounting for orbital relaxation) [453]. From a utilitarian perspective, the exact functional
is not available and all practical TDDFT implementations employ the adiabatic local den-
sity approximation (ALDA). Therefore, Eq. 5.12 can be viewed as a pragmatic correction to
errors associated with the ALDA in TDDFT for XAS.

By nature of the core-ionized reference determinant and because the MOs do not relax
on addition of the electron, the orbital relaxation codified into the n–1-electron density is
retained. The second response is also eh-SIE-corrected, ensuring that there is no residual
Coulomb-like interaction between excited electron and core hole. In fact, our proposed
correction (Eq. 5.19) bears a delightful resemblance to the virtual-orbital self-interaction
definition proposed by Imamura and Nakai [454], with the added benefit that our equations
capture orbital relaxation. This immediately suggests a metric for quantifying the extent of
eh-SIE via the eigenvalues of the core-orbital response matrix (Eq. 5.21).

In the limit of the Hartree-Fock functional (CHF = 1) this metric is exactly zero, and
under the Tamm-Dancoff approximation (TDA) [258] Eq. 5.12 becomes precisely equivalent
to the EA-CIS equation (Eq. 5.2). This implies that Eq. 5.12 is a generalization of EA-CIS
to a DFT framework, so we call our approach electron-affinity TDDFT (EA-TDDFT).

In true analogy to EA-CIS, we will employ the TDA (EA-TDA) throughout this work, set-
ting the B matrix to zero in Eq. 5.12. While in some applications the modified reference state
(e.g. a core-ionized determinant) can lead to difficulties in solving the full non-Hermitian
eigenvalue problem due to orbital rotations that drive the solution towards the ground state
[455–458], we have found that such problems are not encountered in EA-TDDFT[459]. De-
spite the fact that the full EA-TDDFT equations can be readily solved, the TDA is likely an
excellent approximation within the confines of core excitations associated with K-edge XAS,
as the elements of B are quite small. For the sake of comparison, EA-TDA is also a more
direct analogue to STEX (a CIS theory), which is what we are attempting to generalize to
DFT.
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IO-TDA EA-TDA
Core Ion SCF

Compute

Solve standard
Casida equations

(yields       )

Core Ion SCF

Compute

Reattach core 
electron via

continuum MO,
shifting the

energy [Eq. 6]

Solve self-interaction
corrected Casida
equations [Eq. 10]

(yields     )

Rebuild n-electron 
Fock matrix and      ,
using core-ion MOs

Figure 5.1: Flowchart describing the conceptual protocol for (left) an IO-TDA calculation
and (right) an EA-TDA calculation, where E(n)

IO is the energy of the n-electron Fock matrix
constructed via core-ion orbitals, E(n)

0 is the SCF ground-state energy, λIO
p are the eigenvalues

of the Casida equations using the IO-TDA reference, λp are the eh-SIE corrected eigenvalues
of EA-TDA, and ωp are the core-excitation energies.

5.2.3 Shortcomings of the Ion-Orbital TDDFT Approach

Apart from EA-TDA, we also consider the more naive approach of optimizing the orbitals of
the n–1-electron system and using them directly to reconstruct the n-electron density. From
this nonstationary initial state, we perform TDDFT under the TDA using the usual Casida
formulation. In principle, this ion-orbital TDA (IO-TDA) approach incorporates orbital
relaxation into the reference but lacks the ingredients that account for eh-SIE (details in
Section 5.2.4).

It is important to note that EA-TDA differs strongly from IO-TDA in two respects.
First, the energy of the intermediate n-electron state is constructed differently between
the two methods. Whereas IO-TDA forms E(n)

IO , the energy of the n-electron Fock matrix
using the orbitals of the core-ion with the core electron reattached, EA-TDA constructs
Ẽ(n) = E(n−1) + F

(n−1)
ii . The two energies are only equivalent in the case of HF where the

Fock matrix is strictly linear in the density. Second, we emphasize that Eq. 5.10 is not
just a standard linear-response TDDFT expression, but one that encodes an exact first-
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order eh-SIE correction to the TDDFT equations. Without this correction, EA-TDA would
correct for orbital relaxation but would not correct for the (even larger) self-interaction
error in the excited state. The flowchart in Fig. 5.1 emphasizes the difference between the
eigenvalues λIO

p of IO-TDA, which corrects for orbital relaxation but not eh-SIE, and the
self-interaction corrected eigenvalues, λp, of EA-TDA. Later in this work, we investigate the
impact of orbital relaxation and eh-SIE, showing that both must be adequately compensated
for accurate results. Finally, we note that explicitly performing each step in the conceptual
protocol in Fig. 5.1 is not necessary in practice, where Eq. 5.12 can be directly constructed
and diagonalized to yield electron affinities γp such that ωp = E(n−1) + γp − E

(n)
0 .

This definition of the excitation energies is common between EA-TDA and STEX, but
unlike STEX, EA-TDA does not use a projection operator to ensure orthogonality between
the singly-excited configurations and the n-electron ground state. Nonorthogonality can have
detrimental effects on transition dipole moments (TDMs) even when energies are largely
unaffected [460], so we take it into account by using a pseudo-wavefunction ansatz (as done
in TDDFT) to compute an overlap-free TDM (see Sec. 5.2.7 for details). We justify this
approach by comparison of EA-TDA with the HF functional against STEX on a data set of
132 experimental K-edge transitions of small molecules. Our results (see Tables S1–S3 in the
SI) reveal strong agreement between EA-TDA(HF) and STEX, with a maximum difference
in transition energies of just 0.1 eV and a mean difference of 0.01 eV. The average difference
between EA-TDA(HF) and STEX oscillator strengths is ∼ 10−5, with a maximum difference
of ∼ 10−4 while the average STEX oscillator strength is 10−2. We therefore conclude that
the nonorthogonality of the final states in EA-TDA exerts a minimal influence on the details
of the spectrum.

5.2.4 Linear-Response Time-Dependent Density Functional
Theory and its Ion-Orbital Variant

The standard time-dependent density functional theory (TDDFT) orbital Hessians are used
for the “ion-orbital” TDDFT approach, albeit from a nonstationary n-electron reference state
that is constructed from the n − 1-electron molecular orbitals (MOs) of the core-ionized
system. The usual TDDFT A and B matrices take the form,

Aia,ib = E(n)δab + F
(n)
ab − ε

(n)
i δab + (ia|ib)− CHF(ii|ab) + (1− CHF)(ia|f (n)

xc |ib)
Bia,ib = (ia|ib)− CHF(ib|ai) + (1− CHF)(ib|f (n)

xc |ai)
(5.13)

where f (n)
xc is the exchange-correlation kernel, defined as,

f (n)
xc =

∂Vxc[ρ
(n)]

∂ρ(n)
, (5.14)

and where all quantities denoted with superscript (n) are computed using the n-electron
density. In the case of IO-TDDFT, these n-electron quantities are constructed from the
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n-electron density built from the unrelaxed n− 1-electron MOs of the core-ionized system:

P (n)
µν =

N∑
i

C
(n−1)
µi (C

(n−1)
νi )∗ (5.15)

5.2.5 Derivation of the n− 1-electron Response Kernel

In order to correct for the particle-hole interaction error encountered in the intermediate n-
electron state obtained after electron addition from the continuum MO, we take the response
of the applied field on the n-electron state, which yields the Casida equations for the restricted
case,

A
(n)
ia,ib = E(n)δab + F

(n)
ab − F

(n)
ii δab + 2(ia|ib)− CHF(ii|ab) + (1− CHF)(ia|f (n)

xc |ib)

B
(n)
ia,ib = 2(ia|ib)− CHF(ib|ai) + (1− CHF)(ib|f (n)

xc |ai)
(5.16)

and subtract the response of the core orbital with associated the Fock matrix elements,

FCO
pq = F (n)

pq − F (n−1)
pq = (ii|pq)− CHF(ip|iq) + (1− CHF)(p|V (n)

xc − V (n−1)
xc |q) , (5.17)

where F (i)
pq is the core electron’s contribution to the Fock matrix of the n-electron system.

This form of the Fock matrix accounts for all couplings between the core-electron components
and the remainder of the n-electron density. The associated density matrix is idempotent
and contains one electron in the core orbital, naturally constraining the excitations via the
idemptency condition such that they can only emerge from core MO i. The response for the
corresponding density matrix takes the form,

ACO
ia,ib = ECOδab + FCO

ab − FCO
ii δab +

∂FCO
ia

∂Pib

BCO
ia,ib =

∂FCO
ai

∂Pib

, (5.18)

where ECO = Ẽ(n) − E0(n − 1) (the nonstationary n-electron energy minus the stationary
n − 1-electron energy of the core ion) and the partial derivatives yield the final expression
for the core-orbital response,

ACO
ia,ib = ECOδab + FCO

ab − FCO
ii δab + (ia|ib)− CHF(ii|ab) + (1− CHF)(ia|f (n)

xc − f (n−1)
xc |ib)

BCO
ia,ib = (ia|ib) + (1− CHF)(ia|f (n)

xc − f (n−1)
xc |ib)

.

(5.19)

Finally, subtracting the core-orbital part of the response from the full n-electron response
leads to,

A
(n)
ia,ib − ACO

ia,ib = E0(n− 1)δab + F
(n−1)
ab − F

(n−1)
ii δab + (ia|ib) + (1− CHF)(ia|f (n−1)

xc |ib)

B
(n)
ia,ib −BCO

ia,ib = (ia|ib) + (1− CHF)(ia|f (n−1)
xc |ib)

.

(5.20)



CHAPTER 5. ELECTRON-AFFINITY TIME-DEPENDENT DENSITY FUNCTIONAL
THEORY 97

We note here that the energy ECO is equal to the energy of orbital i only for the exact
functional or Hartree-Fock theory, so the explicit form of this energy is never assumed.

5.2.6 Long-Range Self-Interaction Metric

Within an ion-orbital ansatz such as IO-TDA, Eq. 5.19 is suggestive of a metric that can
be used to quantify the degree of long-range self-interaction error (i.e. the degree of inexact
particle-hole interaction) in approximate density functionals. Considering only the change in
the excitation energy offered by the core-orbital correction, the total particle-hole interaction
error for TDA approximations is,

ACO
ia,ib = FCO

ab − FCO
ii δab + (ia|ib)− CHF(ii|ab) + (1− CHF)(ia|f (n)

xc − f (n−1)
xc |ib) (5.21)

In Hartree-Fock theory Eq. 5.17 implies that FCO
ii = 0 and that FCO

ab + (ia|ib)− (ii|ab) = 0,
resulting in a long-range self-interaction error of exactly zero. It also implies that IO-TDA
with the HF functional should give equivalent results to STEX if the non-orthogonality with
the n-electron ground state is not projected out of the STEX Hamiltonian. This is indeed
the case, as IO-TDA and EA-TDA produce exactly the same results if the HF functional
is used. If this metric produces a nonzero value, then the density functional approximation
being used incurs some degree of inexact particle-hole interaction and the larger the value
of the metric, the larger the long-range self-interaction error of the functional.

5.2.7 Overlap-Free Transition Dipole Moments

The EA-TDA spectrum is comprised of states, {Ψa
i }, that are not orthogonal to the ground

state reference, Φ0, which must be considered when computing transition properties. Despite
our double-linear-response formalism, we are only interested the usual transition dipole mo-
ments that are observed in one-dimensional x-ray spectroscopy. Non-orthogonality between
excited state determinants and the ground state can have severely detrimental effects on
transition moments [460], but a simple fix is to subtract the overlap-weighted ground-state
dipole moment from the transition dipole,

µ⃗ =
∑
a

Xa
i

(
⟨Φ0|µ̂|Ψa

i ⟩ − ⟨Φ0|µ̂|Φ0⟩⟨Φ0|Ψa
i ⟩
)
, (5.22)

whereXa
i are eigenvalues of the Tamm-Dancoff approximated Hermitian eigenvalue equation,

AX = ωX . (5.23)

This is equivalent to translating the center of charge of the molecule to the origin prior to
calculating the transition moments.
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5.3 Computational Details
All calculations were performed with a development version of the Q-Chem 5.4 software
package [263]. The DFT calculations use a dense quadrature with 99 radial and 590 angu-
lar grid points to evaluate the exchange-correlation potential, and scalar relativistic effects
are accounted for using a spin-free exact two-component (X2C) model [397]. Core-ionized
references were optimized using restricted open-shell orbitals and the solutions were stabi-
lized using combinations of maximum overlap method (MOM) [257, 315], square-gradient
minimization (SGM) [318], and state-targeted energy projection (STEP) [319]. We use ex-
perimental molecular geometries whenever possible and all geometries are available in the
Supporting Information.

5.4 Results and Discussion
We assess the functional dependence of EA-TDA across 15 density functionals, and while not
comprehensive we include data from local density approximation (LDA), generalized gradient
approximation (GGA), meta-GGA, hybrid GGA, and hybrid meta-GGA functionals. The
bottom panel of Fig. 5.2 indicates a clean recovery of the Jacob’s Ladder concept in DFT,
with errors decreasing with each step up through the rungs. Signed errors (Fig. 5.3) reveal
that semi-local functionals tend to underestimate excitation energies, whereas asymptoti-
cally correct functionals exhibit very little systematic error. Increasing the fraction of exact
exchange improves error statistics up to a point with root mean squared error (RMSE) de-
creasing from BLYP to B3LYP and on to B5050LYP, but too much exact exchange degrades
the results leading to higher RMSE for HFLYP than B5050LYP. Overall, asymptotically
correct functionals perform best, and among them rCAM-B3LYP performs best of all with
an RMSE of only 0.5 eV.

To understand the scope of the improvements offered by EA-TDA, we compare RMSEs of
standard TDA with EA-TDA across functionals. The top panel of Fig. 5.2 reveals that for a
given functional the average improvement offered by EA-TDA is on the order of tens of eV. In
fact, the RMSE of rCAM-B3LYP improves by roughly two orders of magnitude, from 28.4 eV
to 0.5 eV. This massive improvement is apparent in all but the SRC1 functional, which was
parameterized specifically to cancel eh-SIE in standard TDDFT. This is a testament to the
parameterization of SRC1, but the lack of improvement (or deterioration) of the results on
switching to EA-TDA also exemplifies that eh-SIE is adequately quenched in EA-TDA.

On examination of Eq. 5.12 it becomes clear that a necessary criterion for a functional to
perform well with EA-TDA is an accurate estimate of the electron affinity for each virtual
MO. This is because the dominant term is F (n−1)

ab , while the last two terms offer only small
corrections to this energy because they are dependent on the overlap of the core orbital with
the virtual MOs. Because asymptotically correct functionals perform best in the prediction
of electron affinities [461, 462], so too do they perform best with EA-TDA.

The success of EA-TDA, a theory that takes orbital relaxation and eh-SIE into account,
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Figure 5.2: Absolute error statistics for 65 experimental K-edge transitions (lowest energy
transition only). (Top) RMSE for standard TDA versus EA-TDA by functional. (Bottom)
EA-TDA absolute error statistics. Upper and lower delimiters indicate maximum and min-
imum errors, respectively. Upper and lower bounds of each box are the upper and lower
quartiles, respectively. Median absolute errors are indicated by horizontal lines and over-
lapping notches identify statistical similarities between distributions to the 95% confidence
level. Outliers are indicated by asterisks. All calculations use aug-pcseg-1 for H and Br
atoms and aug-pcX-2 otherwise.

allows us to diagnose the origins of the errors in standard TDA. Using the metric defined
in 5.21 we have immediate access to the amount of eh-SIE in standard TDA, while the
remainder of the error in TDA can be ascribed to orbital relaxation effects. In Fig. 5.4, we
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Figure 5.3: EA-TDA signed error statistics for 65 experimental K-edge transitions (lowest
energy transition only). The aug-pcseg-1 basis was used for H and Br, aug-pcX-2 for all
other atoms. A negative sign indicates an underestimation in the excitation energy. Upper
and lower delimiters indicate maximum and minimum errors, respectively. Upper and lower
bounds of each box are the upper and lower quartiles, respectively. Median absolute errors are
indicated by horizontal lines and overlapping notches identify statistical similarities between
distributions to the 95% confidence level. Outliers are indicated by asterisks.

define the total error (relaxation error plus eh-SIE) as the difference between standard TDA
and EA-TDA, Err(TDA)− Err(EA-TDA), where the errors in excitation energies ωX of a
given method X are taken to be Err(X) = ωX −ωref with ωref representing the experimental
value. Orbital relaxation contributes positive errors because without relaxation effects the
predicted excitation energies are higher, whereas eh-SIE over-stabilizes the excitation energy
due to a lack of particle-hole attraction, so its contribution is net negative.

The HF functional has zero contribution from eh-SIE because exact exchange yields
correct particle-hole attraction. Similarly, HFLYP has a near-zero contribution from eh-SIE
due to exact exchange, but it does not substantially improve upon HF in terms of orbital
relaxation. Otherwise, the lion’s share of error in most functionals comes from eh-SIE, with a
relatively consistent contribution from a lack of orbital relaxation. An interesting exception
to this rule is the SRC1 functional, which (owing to its parameterization for XAS) hosts a
nearly optimal degree of error cancellation between orbital relaxation error and eh-SIE at a
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Figure 5.4: Error contributions to standard TDA that are corrected in EA-TDA, averaged
over 65 K-edge transitions. The total (signed) error is taken to be the difference Err(TDA)−
Err(EA-TDA), which is equivalent to the sum of the bars.

respective ratio of 52 : 48. Other functionals that benefit from near-cancellation of errors are
those with a large fraction of global HF exchange such as B5050LYP and BHHLYP, which
explains their notably better performance in comparison to other functionals in the top panel
of Fig. 5.2. Overall, the largest contribution to the errors in TDA are from eh-SIE while
orbital relaxation plays a consistent, strong, but auxiliary role in defining the total error.

We repeated the statistical analysis in Fig. 5.2 for IO-TDA and standard TDA to find
the best functionals for each method. Our group has previously established SCAN as an
excellent functional for core-excitations with OO-DFT, so we forego further analysis here
[321, 397]. The method/functional combinations that yielded the lowest errors on this test
set were subjected to the more rigorous test of 132 experimental K-edge transitions of 46
molecules, ranging from 1–5 transitions per molecule. The results for IO-TDA were omitted
because the best functional for IO-TDA was HF, suggesting that DFT provides no benefit
to nonstationary TDA if eh-SIE is not properly taken into account. The results in Fig. 5.5
suggest that EA-TDA (RMSE = 0.5 eV) is almost as accurate as OO-DFT (RMSE = 0.4 eV)
across the board, outperforming the SRC1 functionals used with standard TDA (RMSE =
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Figure 5.5: Absolute error statistics for the best method/functional combinations against
132 experimental K-edge transitions. Results are broken down by Period alongside the full
data set. For TDA, SRC1-RX was used (where X = 1 or 2, depending on the period), rCAM-
B3LYP and SCAN were used for EA-TDA and OO-DFT, respectively. All calculations use
aug-pcseg-1 for H and Br and the doubly-augmented d-aug-pcX-2 basis otherwise.

1.3 eV) even though SRC1 was designed to accurately capture core-excitation energies.
EA-TDA also has excellent performance with respect to atomic size. While TDA and

OO-DFT results show a statistically significant increase in errors from Period 2 elements to
Period 3 (indicated by nonoverlapping notches in Fig. 5.5), EA-TDA results remain statis-
tically similar with an RMSE that is equivalent to that of OO-DFT (0.5 eV). Admittedly,
EA-TDA exhibits a slightly wider distribution of errors than OO-DFT, as shown by the
quartiles. Being that the entire spectrum is obtained with one single EA-TDA calcula-
tion whereas OO-DFT optimizes specific configurations, this level of comparability between
results is quite satisfactory.

The excellent comparability of EA-TDA and OO-DFT excitation energies begs the ques-
tion: do transition properties also behave similarly? To investigate this, the experimental
K-edge spectrum of ammonia is shown in Fig. 5.6 alongside calculated spectra using EA-TDA
and OO-DFT. For this system, OO-DFT predicts slightly better excitation energies, whereas
EA-TDA shows a slight (0.2 eV) blue shift. Insofar as transition strengths are concerned,
the first major peak in the OO-DFT spectrum (normalized intensity of 0.52) corresponds
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Figure 5.6: Ammonia K-edge X-ray absorption spectra for EA-TDA and OO-DFT juxta-
posed against experimental data from Ref. 463. The aug-pcX-2 and aug-pcseg-1 basis sets
were used for N and H, respectively.

to the 1s→3s transition, which is largely symmetry forbidden, leading to a small pre-edge
peak in the experiment. The amplification of this feature is an artifact of ROKS, which
allows strong singlet-triplet mixing when the initial and final states are isosymmetric [344,
464–467]. Interestingly, the errors do not seem to stem from nonorthogonality of the ROKS
states, as we account for residual nonorthogonality by subtracting the overlap-weighted nu-
clear dipole moment [460]. Instead, these errors may emerge as a direct consequence of
spurious spatial symmetry-breaking due to use of approximate functionals [468–470]. Spu-
riously large oscillator strengths occur frequently for 1s→3s transitions in ROKS spectra,
exerting a catastrophic impact on spectra containing truly dark 1s→3s transitions like the
one in trans-butadiene (Fig. 5.7). The EA-TDA spectrum is devoid of such spurious high-
intensity dark states and the overall qualitative nature of the spectrum is captured to high
fidelity in all cases.

5.5 Conclusions
Overall, we find that EA-TDA successfully ameliorates eh-SIE, providing sizable improve-
ments over TDDFT-based response theory, yielding core-excitation energies on par with
OO-DFT while avoiding the spurious high-intensity dark states that occur in the latter. We
anticipate that EA-TDA, with its low computational cost and high overall accuracy, will be
a tool of great importance in condensed-phase systems. Our group is currently assessing the
possibility of applying EA-TDA to liquid-phase XAS [459].
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Figure 5.7: trans-butadiene K-edge X-ray absorption spectra for EA-TDA and OO-DFT
juxtaposed against experimental data from Ref. 471. The third major peak (intensity of 0.6)
in the OO-DFT spectrum corresponds to an optically dark 1s→3s transition and is absent
in the EA-TDA spectrum. The aug-pcX-2 and aug-pcseg-1 basis sets were used for C and
H, respectively.

Supplementary Material
Supplementary information for this work can be accessed via Ref. 472. They include ad-
ditional derivations and plots, raw data and geometries of all species investigated in this
work.
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Chapter 6

Afterword

One never notices what has been done; one can only see what remains to be done.
Marie Curie

6.1 Overview of Published Works
This dissertation has attempted to discuss some of the modern aspects of electronic structure
theory. We have presented a brief foray into the main tools we have at our disposal to
solve both the non-relativistic electronic Hamiltonian, highlighting their advantages and
limitations. In Chapter 2, we shed light into the symmetry-breaking breaking problem in
HF theory from a fresh perspective. While it is usually discussed in the context of bond
stretching and dissociation events, we proposed that there is an analog to it when static
electric fields are applied to an atom, and that the choice of HF orbitals matters when trying
to describe strong-field ionization processes. Acknowledging the limitation of our “race-track"
of basis functions approach, we emphasize the need for better hybrid Gaussian-plane waves
basis sets and appropriate orbitals to model processes, both in the static and time-dependent
domains, involving ultra-strong electric fields.

Starting in Chapter 3, we turned our attention to analyzing the important aspects of
computational modeling of core-spectroscopy. There, we investigated the key ingredients
and approximations necessary to properly capture oscillator strengths and intensities in
the context of X-ray emission spectroscopy (XES). While the state-specific route offered by
OODFT seems appealing, the fact that each state has to be targeted individually complicates
matters. On the other hand, TDDFT is insufficient for certain systems. We tackled these two
issues by proposing a powerful, yet simple, metric that indicates where TDDFT might fail
and by developing the MBXES approach. In MBXES, only two state-specific calculations are
required (the ground-state and the core-ion state), and the intensities of the XES spectrum
can be calculated using these two sets of orbitals.

In XES we can recover information about the occupied energy levels of a system. A step
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further would be to investigate the electronic structure of the unoccupied levels, which can be
accomplished in X-ray absorption spectroscopy (XAS). This is the main motivation for the
tools we have developed in Chapters 4 and 5. In Chapter 4, we extended the applicability
of OODFT to heavier elements by incorporating scalar-relativistic effects through X2C.
Despite success in accurately describing excitation energies and spectral features of systems
containing elements of the second and third rows of the periodic table, X2C-OODFT starts
to run out of steam for the first row of transition metals. In Chapter 5, we proposed a new
framework within the linear-response approach to tackle XAS. Inspired by the findings in the
previous chapter, we devised a double response formalism that effectively creates particles
in the context of TDDFT. This method, dubbed EA-TDDFT, is as accurate as OODFT for
excitation energies of core-excited states, while having the advantage of providing all of the
excited states and the full spectrum in a single calculation. Instead of competing approaches,
OODFT and EA-TDDFT should be regarded as complementary tools for computational
XAS. They showcase the fertile ground that new developments in spectroscopy provides
to theoretical chemists. We emphasize that such synergy is of paramount importance to
advance science as a whole.

Finally, even though the previous chapters offer a summary of the main thrusts explored
in dissertation, we would like to highlight a few additional published works that encompass
important developments in modern quantum chemistry:

1. Arias-Martinez, J. E.; Cunha, L. A.; Oosterbaan, K. J.; Lee, J.; Head-Gordon, M.
“Accurate core excitation and ionization energies from a state-specific coupled-cluster
singles and doubles approach” Phys. Chem. Chem. Phys., 24, 10728–20741, 2022.

So far, we have explored computational core-spectroscopy through the lens of DFT.
However, as noted in Chapter 1, wavefunction formalisms are equally important to
modeling excited-states in general. Hence, we have developed a state-specific approach
based on coupled-cluster theory to model XAS.

2. Lee, J; Feng, X.; Cunha, L. A.; Gonthier, J. F.; Epifanovsky, E.; Head-Gordon, M.
“Approaching the basis set limit in Gaussian-orbital-based periodic calculations with
transferability: Performance of pure density functionals for simple semiconductors” J.
Chem. Phys., 155, 164102, 2021.

This dissertation has only discussed aspects of the electronic structure of molecu-
lar systems. While the condensed matter community has relied largely on simulations
using plane-waves, localized basis sets can offer certain advantages going beyond the
mean-field approach. Hence, we started developing a code that uses Gaussian-type
orbitals for extended systems, first analyzing the behavior of semiconductor gaps with
modern local and semi-local DFAs.

3. Rossomme, E.; Cunha, L. A.; Li, W.; Chen, K.; McIsaac, A. R.; Head-Gordon, T.;
Head-Gordon, M. “The Good, the Bad, and the Ugly: Pseudopotential Inconsistency

https://doi.org/10.1039/D2CP01998A 
https://doi.org/10.1039/D2CP01998A 
https://doi.org/10.1063/5.0069177
https://doi.org/10.1063/5.0069177
https://doi.org/10.1021/acs.jctc.3c00089
https://doi.org/10.1021/acs.jctc.3c00089
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Errors in Molecular Applications of Density Functional Theory” J. Chem. Theory
Comput., 19, 10, 2827-2841, 2023.

In Chapter 1, we discussed what we understand as the three pillars of modern quantum
chemistry. This dissertation has presented developments along the correlation and the
relativistic axes of Fig 1.3. However, designing better approximations to deal with the
basis set axis is necessary in an attempt to lower the computational cost of electronic
structure methods. Among them, pseudopotentials that replace certain electrons by an
effective potential in the Hamiltonian are widely used tools both in the molecular and
condensed matter communities. We have analyzed the accuracy and transferability of
pseudopotentials for different chemical processes.

6.2 Remaining Challenges
Our starting point in this journey was the Schrödinger equation and the Hamiltonian that
described the behavior of both nuclei and electrons. Exploring the separation of time-scales
between these two sets of particles allows us to focus solely on the electronic structure prob-
lem, either in its non-relativistic or relativistic form. We have discussed tools that are capable
of providing accurate energies and properties for ground-states and excited states involved
in a plethora of chemical processes, expanding our computational toolbox and allowing us
to comprehend nature all around us. Have we finally reached the point where Dirac’s quote
that opened this dissertation in Chapter 1 is no longer valid?

Once again, the perspectives of an optimistic aspiring quantum chemist prevail: there is
a lot more to explore! New theoretical models spring from novel experiments and vice-versa,
setting up the perfect cycle of discovery and innovation. It would be foolish to attempt to
provide an extensive list of the challenges yet to be solved in electronic structure or quantum
chemistry in general. Such a list is, fortunately, far too long already and, likely, will never
be comprehensive. We, however, highlight a few topics that we believe will receive growing
interest in the coming years:

1. Opening the quantum chemical toolbox to extended systems

As indicated previously, there are certain advantages of using localized basis sets
in quantum chemistry, even for systems that have been historically employed plane-
wave simulations, such as periodic systems. For instance, it is known that correlation
effects converge faster towards the complete basis limit when a localized basis is
employed [473]. Moreover, condensed matter physicists have been fascinated by the
emergence of new materials whose properties arise as a consequence, to some extent,
of correlation effects. For instance, it is argued that the mechanism of high tempera-
ture superconductivity in cuprates requires considering strong correlation effects [474],
which are beyond of the mean-field treatment in DFT, the workhorse for periodic sys-
tems. Quantum chemists have at their disposal a somewhat extensive toolbox to treat

https://doi.org/10.1021/acs.jctc.3c00089
https://doi.org/10.1021/acs.jctc.3c00089
https://doi.org/10.1021/acs.jctc.3c00089
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strong correlation [39, 40, 42, 50] (although there is always room for improvements
and new tools), hence we highlight that extending this machinery to extended system
could help interpret some of the arising new phenomena.

2. Expanding the Hamiltonian and multiscale modeling

Quantum chemists have long been interested in the behavior of electrons. Some
have dared to go beyond and also solved the nuclear Schrödinger equation, but few
have attempted to incorporate nuclear and electronic effects on equal footing [475,
476]. Even fewer have attempted to explore the consequences of including even more
particles, such as photons, in their Hamiltonian [477–479]. However, understanding the
behavior of electrons when coupled to nuclei and/or photons is of paramount impor-
tance to unravel new ways of controlling matter [480]. For instance, some mechanisms
of superconductivity are mediated through phonons, or lattice (nuclei) vibrations [481,
482]. We believe this sort of multiscale simulation, where electrons, nuclei and photons
are treated on equal footing, is one of the frontiers of quantum chemical development.

3. Combining different tools through embedding approaches

Finally, it is not enough to simply devise new computational tools. They need to
be applied to understand the properties of large systems and complex chemical and
physical processes. Including more physics in a model should not be a barrier towards
accomplishing this task. It is necessary to include these important physical effects
where they matter the most. For instance, it is argued that relativistic effects are rather
local, so schemes that explore this consequence have been proposed to efficiently model
spin-orbit coupling [130]. We believe embedding techniques [49, 483–485] could play an
important role in helping us finally solve the complex equations of molecular quantum
mechanics and understand nature around us.



109

Bibliography

(1) Ehrenfest, P. Welche Züge der Lichtquantenhypothese spielen in der Theorie der
Wärmestrahlung eine wesentliche Rolle? Ann. Phys. (Berl.) 1911, 341, 91–118.

(2) Planck, M. Ueber das Gesetz der Energieuerteilzcng im Norrnalspectrzcm. Ann. Phys.
(Berl.) 1901, 309, 553–563.

(3) Feynman, R.; Leighton, R.; Sands, M., The Feynman Lectures on Physics ; The Feyn-
man Lectures on Physics v. 1; Addison-Wesley Publishing Company: 1965.

(4) Bohr, N. I. On the constitution of atoms and molecules. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 1913, 26, 1–25.

(5) Griffiths, D. J.; Schroeter, D. F., Introduction to Quantum Mechanics, 3rd ed.; Cam-
bridge University Press: 2018.

(6) Piela, L., Ideas of quantum chemistry ; Elsevier: 2006.

(7) Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (Berl.)
1905, 4.

(8) Taylor, J. R.; Taylor, J. R., Classical mechanics ; University Science Books: 2005;
Vol. 1.

(9) Born, M.; Oppenheimer, R. Zur quantentheorie der molekeln. Ann. Phys. (Berl.)
1927, 389, 457–484.

(10) Tully, J. C. Perspective on “zur quantentheorie der molekeln”. Theor. Chem. Acc.
2000, 103, 173–176.

(11) Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 1996, 68, 985.

(12) Yarkony, D. R. Conical intersections: The new conventional wisdom. J. Phys. Chem.
A 2001, 105, 6277–6293.

(13) Worth, G. A.; Cederbaum, L. S. Beyond Born-Oppenheimer: molecular dynamics
through a conical intersection. Annu. Rev. Phys. Chem. 2004, 55, 127–158.

(14) Fermi, E. Sulla quantizzazione del gas perfetto monoatomico. Rend. Lincei 1926,
145.



BIBLIOGRAPHY 110

(15) Dirac, P. A. M. On the theory of quantum mechanics. Proc. R. Soc. A 1926, 112,
661–677.

(16) Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom
mit der Komplexstruktur der Spektren. Z. Phys. 1925, 31, 765–783.

(17) Slater, J. C. The theory of complex spectra. Phys. Rev. 1929, 34, 1293.
(18) Hammes-Schiffer, S.; Andersen, H. C. The advantages of the general Hartree–Fock

method for future computer simulation of materials. J. Chem. Phys. 1993, 99, 1901–
1913.

(19) Henderson, T. M.; Jimenez-Hoyos, C. A.; Scuseria, G. E. Magnetic structure of den-
sity matrices. J. Chem. Theory Comput. 2018, 14, 649–659.

(20) Hartree, D. R. In Math. Proc. Camb. Philos. Soc. 1928; Vol. 24, pp 89–110.
(21) Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperprob-

lems. Z. Phys. 1930, 61, 126–148.
(22) Fock, V. „Selfconsistent field “mit Austausch für Natrium. Z. Phys. 1930, 62, 795–

805.
(23) Slater, J. C. Note on Hartree’s method. Phys. Rev. 1930, 35, 210.
(24) Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory ; Dover Publications, Inc.: Mineola, New York, 1996,
pp 286–296.

(25) Helgaker, T.; Jorgensen, P.; Olsen, J., Molecular electronic-structure theory ; John
Wiley & Sons: 2013.

(26) Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den
einzelnen Elektronen eines Atoms. Physica 1934, 1, 104–113.

(27) Löwdin, P.-O. Quantum theory of many-particle systems. III. Extension of the
Hartree-Fock scheme to include degenerate systems and correlation effects. Phys.
Rev. 1955, 97, 1509.

(28) Schrödinger, E. Quantisierung als eigenwertproblem. Ann. Phys. (Berl.) 1926, 385,
437–490.

(29) Møller, C.; Plesset, M. S. Note on an approximation treatment for many-electron
systems. Phys. Rev. 1934, 46, 618.

(30) Cremer, D. Møller–Plesset perturbation theory: from small molecule methods to
methods for thousands of atoms. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1,
509–530.

(31) Lennard-Jones, J. E. Perturbation problems in quantum mechanics. Proc. R. Soc.
Lond. A 1930, 129, 598–615.

(32) Brillouin, L. Les problèmes de perturbations et les champs self-consistents. J. Phys.
Radium 1932, 3, 373–389.



BIBLIOGRAPHY 111

(33) Wigner, E. In The Collected Works of Eugene Paul Wigner, ed. by Wightman, A. S.,
Springer: 1997, pp 131–136.

(34) Wilson, S.; Hubač, I.; Mach, P.; Pittner, J.; Čársky, P. In Advanced Topics in Theo-
retical Chemical Physics, 2003, pp 71–117.

(35) Carter-Fenk, K.; Head-Gordon, M. Repartitioned Brillouin-Wigner perturbation the-
ory with a size-consistent second-order correlation energy. J. Chem. Phys. 2023, 158.

(36) Kurlancheek, W.; Head-Gordon, M. Violations of N-representability from spin-
unrestricted orbitals in Møller–Plesset perturbation theory and related double-hybrid
density functional theory. Mol. Phys. 2009, 107, 1223–1232.

(37) Shavitt, I. In Methods of electronic structure theory ; Springer: 1977, pp 189–275.

(38) Sherrill, C. D.; Schaefer III, H. F. In Advances in quantum chemistry ; Elsevier: 1999;
Vol. 34, pp 143–269.

(39) Chan, G. K.-L.; Sharma, S. The density matrix renormalization group in quantum
chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481.

(40) Evangelista, F. A. Adaptive multiconfigurational wave functions. J. Chem. Phys.
2014, 140.

(41) Holmes, A. A.; Tubman, N. M.; Umrigar, C. Heat-bath configuration interaction: An
efficient selected configuration interaction algorithm inspired by heat-bath sampling.
J. Chem. Theory Comput. 2016, 12, 3674–3680.

(42) Tubman, N. M.; Freeman, C. D.; Levine, D. S.; Hait, D.; Head-Gordon, M.; Whaley,
K. B. Modern approaches to exact diagonalization and selected configuration inter-
action with the adaptive sampling CI method. J. Chem. Theory Comput. 2020, 16,
2139–2159.

(43) Čížek, J. On the correlation problem in atomic and molecular systems. Calculation
of wavefunction components in Ursell-type expansion using quantum-field theoretical
methods. J. Chem. Phys. 1966, 45, 4256–4266.

(44) Bartlett, R. J. Many-body perturbation theory and coupled cluster theory for electron
correlation in molecules. Annu. Rev. Phys. Chem. 1981, 32, 359–401.

(45) Bartlett, R. J.; Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod.
Phys. 2007, 79, 291.

(46) Shavitt, I.; Bartlett, R. J., Many-body methods in chemistry and physics: MBPT and
coupled-cluster theory ; Cambridge university press: 2009.

(47) Bartlett, R. J.; Noga, J. The expectation value coupled-cluster method and analytical
energy derivatives. Chem. Phys. Lett. 1988, 150, 29–36.

(48) Szalay, P. G.; Nooijen, M.; Bartlett, R. J. Alternative ansätze in single reference
coupled-cluster theory. III. A critical analysis of different methods. J. Chem. Phys.
1995, 103, 281–298.



BIBLIOGRAPHY 112

(49) Lin, N.; Marianetti, C.; Millis, A. J.; Reichman, D. R. Dynamical mean-field theory
for quantum chemistry. Physical review letters 2011, 106, 096402.

(50) Freitag, L.; Reiher, M. In Quantum Chemistry and Dynamics of Excited States ; John
Wiley & Sons, Ltd: 2020; Chapter 7, pp 205–245.

(51) Thomas, L. H. In Math. Proc. Camb. Philos. Soc. 1927; Vol. 23, pp 542–548.

(52) Fermi, E. Un metodo statistico per la determinazione di alcune priorieta dell’atome.
Rend. Accad. Naz. Lincei 1927, 6, 32.

(53) Dirac, P. A. M. In Math. Proc. Camb. Philos. Soc. 1930; Vol. 26, pp 376–385.

(54) Teller, E. On the stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys.
1962, 34, 627.

(55) Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864.

(56) Levy, M. Universal variational functionals of electron densities, first-order density
matrices, and natural spin-orbitals and solution of the v-representability problem.
Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 6062–6065.

(57) Weizsäcker, C. v. Zur theorie der kernmassen. Z. Phys. 1935, 96, 431–458.

(58) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation
effects. Phys. Rev. 1965, 140, A1133.

(59) Kohn, W. Nobel Lecture: Electronic structure of matter—wave functions and density
functionals. Rev. Mod. Phys. 1999, 71, 1253.

(60) Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in com-
putational chemistry: an overview and extensive assessment of 200 density function-
als. Mol. Phys. 2017, 115, 2315–2372.

(61) Lehtola, S.; Steigemann, C.; Oliveira, M. J.; Marques, M. A. Recent developments
in libxc—A comprehensive library of functionals for density functional theory. Soft-
wareX 2018, 7, 1–5.

(62) Perdew, J. P.; Schmidt, K. In AIP Conference Proceedings, 2001; Vol. 577, pp 1–20.

(63) Pines, D. A collective description of electron interactions: IV. Electron interaction in
metals. Phys. Rev. 1953, 92, 626.

(64) Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method.
Phys. Rev. Lett. 1980, 45, 566.

(65) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation
energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980,
58, 1200–1211.

(66) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-
gas correlation energy. Phys. Rev. B 1992, 45, 13244.



BIBLIOGRAPHY 113

(67) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made
simple. Phys. Rev. Lett. 1996, 77, 3865.

(68) Becke, A. D. Density-functional exchange-energy approximation with correct asymp-
totic behavior. Phys. Rev. A 1988, 38, 3098.

(69) Grimme, S. Semiempirical GGA-type density functional constructed with a long-
range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

(70) Perdew, J. P.; Constantin, L. A. Laplacian-level density functionals for the kinetic
energy density and exchange-correlation energy. Phys. Rev. B 2007, 75, 155109.

(71) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density func-
tional ladder: Nonempirical meta–generalized gradient approximation designed for
molecules and solids. Phys. Rev. Lett. 2003, 91, 146401.

(72) Sun, J.; Ruzsinszky, A.; Perdew, J. P. Strongly Constrained and Appropriately
Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 036402.

(73) Mardirossian, N.; Head-Gordon, M. Mapping the genome of meta-generalized gra-
dient approximation density functionals: The search for B97M-V. J. Chem. Phys.
2015, 142, 074111.

(74) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz Jr, J. L. Density-functional theory for
fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett.
1982, 49, 1691.

(75) Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for
generalized-gradient-approximation exchange functionals. J. Chem. Phys. 2001, 115,
3540–3544.

(76) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A long-range-corrected
time-dependent density functional theory. J. Chem. Phys. 2004, 120, 8425–8433.

(77) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J.
Chem. Phys. 1993, 98, 5648–5652.

(78) Adamo, C.; Barone, V. Toward reliable density functional methods without ad-
justable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

(79) Mardirossian, N.; Head-Gordon, M. ω B97M-V: A combinatorially optimized, range-
separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J.
Chem. Phys. 2016, 144, 214110.

(80) Jaramillo, J.; Scuseria, G. E.; Ernzerhof, M. Local hybrid functionals. J. Chem. Phys.
2003, 118, 1068–1073.

(81) Maier, T. M.; Arbuznikov, A. V.; Kaupp, M. Local hybrid functionals: Theory, im-
plementation, and performance of an emerging new tool in quantum chemistry and
beyond. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1378.



BIBLIOGRAPHY 114

(82) Haasler, M.; Maier, T. M.; Grotjahn, R.; Gückel, S.; Arbuznikov, A. V.; Kaupp, M.
A local hybrid functional with wide applicability and good balance between (de)
localization and left–right correlation. J. Chem. Theory Comput. 2020, 16, 5645–
5657.

(83) Grimme, S. Semiempirical hybrid density functional with perturbative second-order
correlation. J. Chem. Phys. 2006, 124, 034108.

(84) Mardirossian, N.; Head-Gordon, M. Survival of the most transferable at the top of
Jacob’s ladder: Defining and testing the ω B97M (2) double hybrid density functional.
J. Chem. Phys. 2018, 148, 241736.

(85) Orenstein, J. Ultrafast spectroscopy of quantum materials. Phys. Today 2012, 65,
44–50.

(86) Maiuri, M.; Garavelli, M.; Cerullo, G. Ultrafast spectroscopy: State of the art and
open challenges. J. Am. Chem. Soc. 2019, 142, 3–15.

(87) Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G. High-efficiency perovskite
solar cells. Chem. Rev. 2020, 120, 7867–7918.

(88) Dreuw, A.; Wormit, M. The algebraic diagrammatic construction scheme for the
polarization propagator for the calculation of excited states. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 2015, 5, 82–95.

(89) Krylov, A. I. Equation-of-motion coupled-cluster methods for open-shell and elec-
tronically excited species: The hitchhiker’s guide to Fock space. Annu. Rev. Phys.
Chem. 2008, 59, 433–462.

(90) Bartlett, R. J. Coupled-cluster theory and its equation-of-motion extensions. Wiley
Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 126–138.

(91) Dreuw, A.; Head-Gordon, M. Single-reference ab initio methods for the calculation
of excited states of large molecules. Chem. Rev. 2005, 105, 4009–4037.

(92) Casida, M. E.; Huix-Rotllant, M. Progress in time-dependent density-functional the-
ory. Annu. Rev. Phys. Chem. 2012, 63, 287–323.

(93) Clune, R.; Shea, J. A.; Neuscamman, E. N5-scaling excited-state-specific perturbation
theory. J. Chem. Theory. Comput. 2020, 16, 6132–6141.

(94) Lee, J.; Small, D. W.; Head-Gordon, M. Excited states via coupled cluster theory
without equation-of-motion methods: Seeking higher roots with application to doubly
excited states and double core hole states. J. Chem. Phys. 2019, 151.

(95) Arias-Martinez, J. E.; Cunha, L. A.; Oosterbaan, K. J.; Lee, J.; Head-Gordon, M.
Accurate core excitation and ionization energies from a state-specific coupled-cluster
singles and doubles approach. Phys. Chem. Chem. Phys. 2022, 24, 20728–20741.

(96) Matuszek, A. M.; Reynisson, J. Defining known drug space using DFT. Mol. Inform.
2016, 35, 46–53.



BIBLIOGRAPHY 115

(97) Pyzer-Knapp, E. O.; Suh, C.; Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.;
Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from
organic materials discovery. Annu. Rev. Mat. Res. 2015, 45, 195–216.

(98) Hafiz, H. et al. A high-throughput data analysis and materials discovery tool for
strongly correlated materials. npj Comp. Mat. 2018, 4, 63.

(99) Pyykko, P. Relativistic effects in structural chemistry. Chem. Rev. 1988, 88, 563–
594.

(100) Pyykkö, P. Relativistic effects in chemistry: more common than you thought. Annu.
Rev. Phys. Chem. 2012, 63, 45–64.

(101) Löffelsender, S.; Schwerdtfeger, P.; Grimme, S.; Mewes, J.-M. It’s Complicated: On
Relativistic Effects and Periodic Trends in the Melting and Boiling Points of the
Group 11 Coinage Metals. J. Am. Chem. Soc. 2021, 144, 485–494.

(102) Gerlach, W.; Stern, O. Der experimentelle nachweis der richtungsquantelung im mag-
netfeld. Z. Phys. 1922, 9, 349–352.

(103) Pauli Jr, W. 1927,‘Zur Quantenmechanik des magnetischen Elektrons’. Z. Phys 1927,
43, 601.

(104) Greiner, W. et al., Relativistic quantum mechanics ; Springer: 2000; Vol. 2.

(105) Dyall, K. G.; Fægri Jr, K., Introduction to relativistic quantum chemistry ; Oxford
University Press: 2007.

(106) Reiher, M.; Wolf, A., Relativistic quantum chemistry: the fundamental theory of
molecular science; John Wiley & Sons: 2014.

(107) Liu, W. Essentials of relativistic quantum chemistry. The Journal of chemical physics
2020, 152.

(108) Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 1926,
37, 895–906.

(109) Gordon, W. Der comptoneffekt nach der schrödingerschen theorie. Z. Phys. 1926,
40, 117–133.

(110) Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. Lond. A 1928,
117, 610–624.

(111) Foldy, L. L.; Wouthuysen, S. A. On the Dirac theory of spin 1/2 particles and its
non-relativistic limit. Phys. Rev. 1950, 78, 29.

(112) Foldy, L. The electromagnetic properties of Dirac particles. Phys. Rev. 1952, 87, 688.

(113) Lamb Jr, W. E.; Retherford, R. C. Fine structure of the hydrogen atom by a mi-
crowave method. Phys. Rev. 1947, 72, 241.

(114) Bethe, H. A. The electromagnetic shift of energy levels. Phys. Rev. 1947, 72, 339.



BIBLIOGRAPHY 116

(115) Schwinger, J. Quantum electrodynamics. I. A covariant formulation. Phys. Rev. 1948,
74, 1439.

(116) Schwinger, J. On quantum-electrodynamics and the magnetic moment of the electron.
Phys. Rev. 1948, 73, 416.

(117) Tomonaga, S.-i. On a relativistically invariant formulation of the quantum theory of
wave fields. Prog. Theor. Phys. 1946, 1, 27–42.

(118) Feynman, R. P. Mathematical formulation of the quantum theory of electromagnetic
interaction. Phys. Rev. 1950, 80, 440.

(119) Craig, D. P.; Thirunamachandran, T., Molecular quantum electrodynamics: an intro-
duction to radiation-molecule interactions ; Dover Publications: 1998.

(120) Breit, G. Dirac’s equation and the spin-spin interactions of two electrons. Phys. Rev.
1932, 39, 616.

(121) Liu, J.; Cheng, L. Relativistic coupled-cluster and equation-of-motion coupled-cluster
methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1536.

(122) Bethe, H. A.; Salpeter, E. E., Quantum mechanics of one-and two-electron atoms ;
Springer Science & Business Media: 2012.

(123) Douglas, M.; Kroll, N. M. Quantum electrodynamical corrections to the fine structure
of helium. Ann. Phys. 1974, 82, 89–155.

(124) Hess, B. A. Relativistic electronic-structure calculations employing a two-component
no-pair formalism with external-field projection operators. Phys. Rev. A 1986, 33,
3742.

(125) Reiher, M. Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chem-
istry. Theo. Chem. Acc. 2006, 116, 241–252.

(126) Nakajima, T.; Hirao, K. The Douglas–Kroll–Hess Approach. Chem. Rev. 2012, 112,
385–402.

(127) Dyall, K. G. Interfacing relativistic and nonrelativistic methods. I. Normalized elimi-
nation of the small component in the modified Dirac equation. J. Chem. Phys. 1997,
106, 9618–9626.

(128) Saue, T. Relativistic Hamiltonians for Chemistry: A Primer. Chem. Phys. Chem.
2011, 12, 3077–3094.

(129) Kutzelnigg, W. Basis set expansion of the Dirac operator without variational collapse.
Int. J. Quantum Chem. 1984, 25, 107–129.

(130) Liu, J.; Cheng, L. An atomic mean-field spin-orbit approach within exact two-
component theory for a non-perturbative treatment of spin-orbit coupling. J. Chem.
Phys. 2018, 148.



BIBLIOGRAPHY 117

(131) Zhang, C.; Cheng, L. Atomic mean-field approach within exact two-component theory
based on the Dirac–Coulomb–Breit Hamiltonian. J. Phys. Chem. A 2022, 126, 4537–
4553.

(132) Cohen, M. L.; Louie, S. G., Fundamentals of condensed matter physics ; Cambridge
University Press: 2016.

(133) Andrade, X. et al. Real-space grids and the Octopus code as tools for the development
of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 2015,
17, 31371–31396.

(134) Gill, P. M. In Advances in quantum chemistry ; Elsevier: 1994; Vol. 25, pp 141–205.
(135) Wang, Z.; Aldossary, A.; Head-Gordon, M. Sparsity of the electron repulsion integral

tensor using different localized virtual orbital representations in local second-order
Møller–Plesset theory. J. Chem. Phys. 2023, 158.

(136) Lee, J.; Head-Gordon, M. Regularized orbital-optimized second-order Møller–Plesset
perturbation theory: A reliable fifth-order-scaling electron correlation model with
orbital energy dependent regularizers. J. Chem. Theory Comput. 2018, 14, 5203–
5219.

(137) Pederson, R.; Kalita, B.; Burke, K. Machine learning and density functional theory.
Nat. Rev. Phys. 2022, 4, 357–358.

(138) Eisfeld, W.; Morokuma, K. A Detailed Study on the Symmetry Breaking and its
Effect on the Potential Surface of NO 3. J. Chem. Phys. 2000, 113, 5587–5597.

(139) Sherrill, C. D.; Lee, M. S.; Head-Gordon, M. On the performance of density functional
theory for symmetry-breaking problems. Chem. Phys. Lett. 1999, 302, 425–430.

(140) Russ, N. J.; Crawford, T. D.; Tschumper, G. S. Real versus artifactual symmetry-
breaking effects in Hartree–Fock, density-functional, and coupled-cluster methods. J.
Chem. Phys. 2004, 120, 7298–7306.

(141) Dobaczewski, J.; Dudek, J.; Rohoziński, S.; Werner, T. Point symmetries in the
Hartree-Fock approach. II. Symmetry-breaking schemes. Phys. Rev. C 2000, 62,
014311.

(142) Hait, D.; Rettig, A.; Head-Gordon, M. Well-behaved versus ill-behaved density func-
tionals for single bond dissociation: Separating success from disaster functional by
functional for stretched H2. J. Chem. Phys. 2019, 150, 094115.

(143) Hait, D.; Rettig, A.; Head-Gordon, M. Beyond the Coulson–Fischer point: character-
izing single excitation CI and TDDFT for excited states in single bond dissociations.
Phys. Chem. Chem. Phys 2019, 21, 21761–21775.

(144) Lykos, P.; Pratt, G. W. Discussion on The Hartree-Fock Approximation. Rev. Mod.
Phys. 1963, 35, 496–501.

(145) Fukutome, H. Unrestricted Hartree–Fock theory and its applications to molecules
and chemical reactions. Int. J. Quantum Chem. 1981, 20, 955–1065.



BIBLIOGRAPHY 118

(146) Stuber, J. L.; Paldus, J. In Fundamental World of Quantum Chemistry, Brändas,
E. J., Kryachko, E. S., Eds.; Kluwer Academic Publishers: 2003; Vol. 1; Chapter 4,
pp 67–139.

(147) Ebata, S.; Nakatsukasa, T.; Inakura, T.; Yoshida, K.; Hashimoto, Y.; Yabana, K.
Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response
calculations. Phys. Rev. C 2010, 82, 034306.

(148) Bertsch, G.; Robledo, L. M. Symmetry restoration in Hartree-Fock-Bogoliubov based
theories. Phys. Rev. Lett. 2012, 108, 042505.

(149) Thouless, D. Stability conditions and nuclear rotations in the Hartree-Fock theory.
Nuc. Phys. 1960, 21, 225–232.

(150) Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XVIII. Constraints
and stability in Hartree–Fock theory. J. Chem. Phys. 1977, 66, 3045–3050.

(151) Coulson, P. C.; Fischer, M. I. XXXIV. Notes on the molecular orbital treatment of
the hydrogen molecule. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 1949, 40, 386–393.

(152) Čížek, J.; Paldus, J. Stability Conditions for the Solutions of the Hartree—Fock
Equations for Atomic and Molecular Systems. Application to the Pi-Electron Model
of Cyclic Polyenes. J. Chem. Phys. 1967, 47, 3976–3985.

(153) Tóth, Z.; Pulay, P. Finding symmetry breaking Hartree-Fock solutions: The case of
triplet instability. J. Chem. Phys. 2016, 145, 164102.

(154) Stück, D.; Baker, T. A.; Zimmerman, P.; Kurlancheek, W.; Head-Gordon, M. On the
nature of electron correlation in C60. J. Chem. Phys. 2011, 135, 11B608.

(155) Jiménez-Hoyos, C. A.; Rodrıguez-Guzmán, R.; Scuseria, G. E. Polyradical character
and spin frustration in fullerene molecules: An ab initio non-collinear Hartree–Fock
study. J. Phys. Chem. A 2014, 118, 9925–9940.

(156) Lee, J.; Head-Gordon, M. Distinguishing artificial and essential symmetry breaking
in a single determinant: Approach and application to the C 60, C 36, and C 20
fullerenes. Phys. Chem. Chem. Phys. 2019, 21, 4763–4778.

(157) Ivanov, M. Y.; Spanner, M.; Smirnova, O. Anatomy of strong field ionization. J. Mod.
Opt. 2005, 52, 165–184.

(158) Reiss, H. Limits on tunneling theories of strong-field ionization. Phys. Rev. Lett.
2008, 101, 043002.

(159) Tong, X.; Lin, C. Empirical formula for static field ionization rates of atoms and
molecules by lasers in the barrier-suppression regime. J. Phys. B 2005, 38, 2593.

(160) Holmegaard, L. et al. Photoelectron angular distributions from strong-field ionization
of oriented molecules. Nat. Phys. 2010, 6, 428–432.



BIBLIOGRAPHY 119

(161) Popruzhenko, S. Keldysh theory of strong field ionization: history, applications, dif-
ficulties and perspectives. J. Phys. B 2014, 47, 204001.

(162) Shvetsov-Shilovski, N. et al. Semiclassical two-step model for strong-field ionization.
Phys. Rev. A 2016, 94, 013415.

(163) Hartung, A. et al. Magnetic fields alter strong-field ionization. Nat. Phys. 2019, 15,
1222–1226.

(164) Ludwig, A.; Maurer, J.; Mayer, B.; Phillips, C.; Gallmann, L.; Keller, U. Breakdown
of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 2014, 113,
243001.

(165) Litvinyuk, I. V.; Lee, K. F.; Dooley, P. W.; Rayner, D. M.; Villeneuve, D. M.;
Corkum, P. B. Alignment-dependent strong field ionization of molecules. Phys. Rev.
Lett. 2003, 90, 233003.

(166) Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-
field ionization. Phys. Rev. Lett. 2010, 104, 213601.

(167) Schafer, K. J.; Kulander, K. C. High harmonic generation from ultrafast pump lasers.
Phys. Rev. Lett. 1997, 78, 638.

(168) Christov, I. P.; Murnane, M. M.; Kapteyn, H. C. High-harmonic generation of at-
tosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 1997, 78, 1251.

(169) Itatani, J.; Zeidler, D.; Levesque, J.; Spanner, M.; Villeneuve, D.; Corkum, P. Control-
ling high harmonic generation with molecular wave packets. Phys. Rev. Lett. 2005,
94, 123902.

(170) Ghimire, S.; Reis, D. A. High-harmonic generation from solids. Nat. Phys. 2019, 15,
10–16.

(171) Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163.

(172) Ciappina, M. F. et al. Attosecond physics at the nanoscale. Rep. Prog. Phys. 2017,
80, 054401.

(173) Scrinzi, A.; Ivanov, M. Y.; Kienberger, R.; Villeneuve, D. M. Attosecond physics. J.
Phys. B 2005, 39, R1.

(174) Drescher, M.; Krausz, F. Attosecond physics: facing the wave–particle duality. J.
Phys. B 2005, 38, S727.

(175) Stopkowicz, S.; Gauss, J.; Lange, K. K.; Tellgren, E. I.; Helgaker, T. Coupled-cluster
theory for atoms and molecules in strong magnetic fields. J. Chem. Phys. 2015, 143,
074110.

(176) Pathak, H.; Sato, T.; Ishikawa, K. L. Time-dependent optimized coupled-cluster
method for multielectron dynamics. III. A second-order many-body perturbation
approximation. J. Chem. Phys. 2020, 153, 034110.



BIBLIOGRAPHY 120

(177) Jagau, T.-C. Coupled-cluster treatment of molecular strong-field ionization. J. Chem.
Phys. 2018, 148, 204102.

(178) Jagau, T.-C. Investigating tunnel and above-barrier ionization using complex-scaled
coupled-cluster theory. J. Chem. Phys. 2016, 145, 204115.

(179) Krause, P.; Sonk, J. A.; Schlegel, H. B. Strong field ionization rates simulated with
time-dependent configuration interaction and an absorbing potential. J. Chem. Phys.
2014, 140, 174113.

(180) Krause, P.; Schlegel, H. B. Strong-field ionization rates of linear polyenes simulated
with time-dependent configuration interaction with an absorbing potential. J. Chem.
Phys. 2014, 141, 174104.

(181) Kulander, K. C. Time-dependent Hartree-Fock theory of multiphoton ionization:
Helium. Phys. Rev. A 1987, 36, 2726–2738.

(182) Kvaal, S. Ab initio quantum dynamics using coupled-cluster. J. Chem. Phys. 2012,
136, 194109.

(183) Pedersen, T. B.; Kvaal, S. Symplectic integration and physical interpretation of time-
dependent coupled-cluster theory. J. Chem. Phys. 2019, 150, 144106.

(184) Kristiansen, H. E.; Schøyen, Ø. S.; Kvaal, S.; Pedersen, T. B. Numerical stability of
time-dependent coupled-cluster methods for many-electron dynamics in intense laser
pulses. J. Chem. Phys. 2020, 152, 071102.

(185) Ben-Asher, A.; Moiseyev, N. Complex absorbing potentials for stark resonances. Int.
J. Quantum Chem. 2020, 120, e26067.

(186) Brown, J. M.; Kolesik, M. Properties of stark resonant states in exactly solvable
systems. Adv. Math. Phys. 2015, 2015.

(187) Simon, B. The definition of molecular resonance curves by the method of exterior
complex scaling. Phys. Lett. A 1979, 71, 211–214.

(188) Scrinzi, A.; Elander, N. A finite element implementation of exterior complex scaling
for the accurate determination of resonance energies. J. Chem. Phys. 1993, 98, 3866–
3875.

(189) Rescigno, T.; Baertschy, M.; Byrum, D.; McCurdy, C. Making complex scaling work
for long-range potentials. Phys. Rev. A 1997, 55, 4253.

(190) He, F.; Ruiz, C.; Becker, A. Absorbing boundaries in numerical solutions of the time-
dependent Schrödinger equation on a grid using exterior complex scaling. Phys. Rev.
A 2007, 75, 053407.

(191) Rom, N.; Engdahl, E.; Moiseyev, N. Tunneling rates in bound systems using smooth
exterior complex scaling within the framework of the finite basis set approximation.
J. Chem. Phys. 1990, 93, 3413–3419.



BIBLIOGRAPHY 121

(192) Morgan, J.; Simon, B. The calculation of molecular resonances by complex scaling.
J. Phys. B 1981, 14, L167.

(193) McCurdy, C. W.; Martın, F. Implementation of exterior complex scaling in B-splines
to solve atomic and molecular collision problems. J. Phys. B 2004, 37, 917–936.

(194) Telnov, D. A.; Sosnova, K. E.; Rozenbaum, E.; Chu, S.-I. Exterior complex scal-
ing method in time-dependent density-functional theory: Multiphoton ionization and
high-order-harmonic generation of Ar atoms. Phys. Rev. A 2013, 87, 053406.

(195) Sommerfeld, T.; Ehara, M. Complex Absorbing Potentials with Voronoi Isosurfaces
Wrapping Perfectly around Molecules. J. Chem. Theory Comput. 2015, 11, PMID:
26574253, 4627–4633.

(196) Zuev, D. et al. Complex absorbing potentials within EOM-CC family of methods:
Theory, implementation, and benchmarks. J. Chem. Phys. 2014, 141, 024102.

(197) Lefebvre, R.; Sindelka, M.; Moiseyev, N. Resonance positions and lifetimes for flexible
complex absorbing potentials. Phys. Rev. A 2005, 72, 052704.

(198) Santra, R. Why complex absorbing potentials work: A discrete-variable-representation
perspective. Phys. Rev. A 2006, 74, 034701.

(199) Vibok, A.; Balint-Kurti, G. Parametrization of complex absorbing potentials for time-
dependent quantum dynamics. J. Phys. Chem. 1992, 96, 8712–8719.

(200) Jagau, T.-C.; Zuev, D.; Bravaya, K. B.; Epifanovsky, E.; Krylov, A. I. A fresh look
at resonances and complex absorbing potentials: density matrix-based approach. J.
Phys. Chem. Lett. 2014, 5, 310–315.

(201) Santra, R.; Cederbaum, L. S. Complex absorbing potentials in the framework of
electron propagator theory. I. General formalism. J. Chem. Phys. 2002, 117, 5511–
5521.

(202) Feuerbacher, S.; Sommerfeld, T.; Santra, R.; Cederbaum, L. S. Complex absorbing
potentials in the framework of electron propagator theory. II. Application to tempo-
rary anions. J. Chem. Phys. 2003, 118, 6188–6199.

(203) Muga, J.; Palao, J.; Navarro, B.; Egusquiza, I. Complex absorbing potentials. Phys.
Rep. 2004, 395, 357–426.

(204) Manthe, U. A time-dependent discrete variable representation for (multiconfigura-
tion) Hartree methods. J. Chem. Phys. 1996, 105, 6989–6994.

(205) Sánchez, I.; Martın, F. Representation of the electronic continuum of withB-spline
basis. J. Phys. B 1997, 30, 679–692.

(206) Martın, F. Ionization and dissociation using B-splines: photoionization of the hydro-
gen molecule. J. Phys. B 1999, 32, R197–R231.

(207) Bachau, H.; Cormier, E.; Decleva, P.; Hansen, J. E.; Martın, F. Applications ofB-
splines in atomic and molecular physics. Rep. Prog. Phys. 2001, 64, 1815–1943.



BIBLIOGRAPHY 122

(208) Littlejohn, R. G.; Cargo, M.; Carrington Jr, T.; Mitchell, K. A.; Poirier, B. A general
framework for discrete variable representation basis sets. J. Chem. Phys. 2002, 116,
8691–8703.

(209) Tao, L.; McCurdy, C.; Rescigno, T. Grid-based methods for diatomic quantum
scattering problems: A finite-element discrete-variable representation in prolate
spheroidal coordinates. Phys. Rev. A 2009, 79, 012719.

(210) Yip, F. L.; McCurdy, C. W.; Rescigno, T. N. Hybrid Gaussian–discrete-variable rep-
resentation for describing molecular double-ionization events. Phys. Rev. A 2020,
101, 063404.

(211) Luppi, E.; Head-Gordon, M. Computation of high-harmonic generation spectra of
H-2 and N-2 in intense laser pulses using quantum chemistry methods and time-
dependent density functional theory. Mol. Phys. 2012, 110, 909–923.

(212) Landau, L. D.; Lifshitz, E. M. In Quantum Mechanics (Third Edition), LANDAU,
L., LIFSHITZ, E., Eds., Third Edition; Pergamon: 1977, pp 133–163.

(213) Hernández Vera, M.; Jagau, T.-C. Resolution-of-the-identity second-order Møller–Plesset
perturbation theory with complex basis functions: Benchmark calculations and ap-
plications to strong-field ionization of polyacenes. J. Chem. Phys. 2020, 152, 174103.

(214) Dunning Jr, T. H. Gaussian basis sets for use in correlated molecular calculations. I.
The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(215) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row
atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96,
6796–6806.

(216) Stewart, R. F. Small Gaussian Expansions of Slater-Type Orbitals. J. Chem. Phys.
1970, 52, 431–438.

(217) Hait, D.; Head-Gordon, M. How accurate are static polarizability predictions from
density functional theory? An assessment over 132 species at equilibrium geometry.
Phys. Chem. Chem. Phys. 2018, 20, 19800–19810.

(218) Simons, J. Resonance state lifetimes from stabilization graphs. J. Chem. Phys. 1981,
75, 2465–2467.

(219) Carlson, B. J.; Falcetta, M. F.; Slimak, S. R.; Jordan, K. D. A Fresh Look at the Role
of the Coupling of a Discrete State with a Pseudocontinuum State in the Stabilization
Method for Characterizing Metastable States. J. Phys. Chem. Lett. 2021, 12, PMID:
33481599, 1202–1206.

(220) Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem
4 program package. Mol. Phys. 2015, 113, 184–215.

(221) Fornace, M. E.; Lee, J.; Miyamoto, K.; Manby, F. R.; Miller III, T. F. Embedded
mean-field theory. J. Chem. Theory Comput. 2015, 11, 568–580.



BIBLIOGRAPHY 123

(222) Ding, F.; Manby, F. R.; Miller III, T. F. Embedded mean-field theory with block-
orthogonalized partitioning. J. Chem. Theory Comput. 2017, 13, 1605–1615.

(223) Small, D. W.; Sundstrom, E. J.; Head-Gordon, M. A simple way to test for collinearity
in spin symmetry broken wave functions: General theory and application to general-
ized Hartree Fock. J. Chem. Phys. 2015, 142, 094112.

(224) Goings, J. J.; Ding, F.; Frisch, M. J.; Li, X. Stability of the complex generalized
Hartree-Fock equations. J. Chem. Phys. 2015, 142, 154109.

(225) Jiménez-Hoyos, C. A.; Henderson, T. M.; Scuseria, G. E. Generalized Hartree–Fock
Description of Molecular Dissociation. J. Chem. Theory Comput. 2011, 7, PMID:
26605457, 2667–2674.

(226) Stetina, T. F.; Sun, S.; Williams-Young, D. B.; Li, X. Modeling magneto-Photoabsorption
using time-dependent complex generalized Hartree-Fock. ChemPhotoChem 2019, 3,
739–746.

(227) Yamaki, D.; Shigeta, Y.; Yamanaka, S.; Nagao, H.; Yamaguchi, K. Generalized spin
orbital calculations of spin-frustrated molecules. Int. J. Quantum Chem. 2001, 84,
546–551.

(228) Ostlund, N. S. Complex and Unrestricted Hartree-Fock Wavefunctions. J. Chem.
Phys. 1972, 57, 2994–2997.

(229) Small, D. W.; Sundstrom, E. J.; Head-Gordon, M. Restricted Hartree Fock using
complex-valued orbitals: A long-known but neglected tool in electronic structure
theory. J. Chem. Phys. 2015, 142, 024104.

(230) Lee, J.; Head-Gordon, M. Two single-reference approaches to singlet biradicaloid
problems: Complex, restricted orbitals and approximate spin-projection combined
with regularized orbital-optimized Møller-Plesset perturbation theory. J. Chem.
Phys. 2019, 150, 244106.

(231) Lee, J.; Bertels, L. W.; Small, D. W.; Head-Gordon, M. Kohn-Sham Density Func-
tional Theory with Complex, Spin-Restricted Orbitals: Accessing a New Class of
Densities without the Symmetry Dilemma. Phys. Rev. Lett. 2019, 123, 113001.

(232) Min, S. K.; Cho, Y.; Kim, K. S. Efficient electron dynamics with the planewave-
based real-time time-dependent density functional theory: Absorption spectra, vi-
bronic electronic spectra, and coupled electron-nucleus dynamics. J. Chem. Phys.
2011, 135, 244112.

(233) Cunha, L. A.; Lee, J.; Hait, D.; McCurdy, C. W.; Head-Gordon, M. Exploring spin
symmetry-breaking effects for static field ionization of atoms: Is there an analog to
the Coulson–Fischer point in bond dissociation? J. Chem. Phys. 2021, 155, 014309.

(234) Becke, A. D. Perspective: Fifty years of density-functional theory in chemical physics.
J. Chem. Phys. 2014, 140.



BIBLIOGRAPHY 124

(235) Jones, R. O. Density functional theory: Its origins, rise to prominence, and future.
Rev. Mod. Phys. 2015, 87, 897.

(236) Tozer, D. J.; Peach, M. J. Density functional theory and its applications. Phys. Chem.
Chem. Phys. 2014, 16, 14333–14333.

(237) Van Mourik, T.; Bühl, M.; Gaigeot, M.-P. Density functional theory across chemistry,
physics and biology, 2014.

(238) Hait, D.; Head-Gordon, M. Orbital optimized density functional theory for electronic
excited states. J. Phys. Chem. Lett. 2021, 12, 4517–4529.

(239) Shirley, E. L. Ab initio inclusion of electron-hole attraction: Application to x-ray
absorption and resonant inelastic x-ray scattering. Phys. Rev. Lett. 1998, 80, 794.

(240) Rohlfing, M.; Louie, S. G. Electron-hole excitations and optical spectra from first
principles. Phys. Rev. B 2000, 62, 4927.

(241) Cullen, J.; Krykunov, M.; Ziegler, T. The formulation of a self-consistent constricted
variational density functional theory for the description of excited states. Chem. Phys.
2011, 391, 11–18.

(242) Evangelista, F. A.; Shushkov, P.; Tully, J. C. Orthogonality constrained density func-
tional theory for electronic excited states. J. Phys. Chem. A 2013, 117, 7378–7392.

(243) Levi, G.; Ivanov, A. V.; Jónsson, H. Variational density functional calculations of
excited states via direct optimization. J. Chem. Theory Comput. 2020, 16, 6968–
6982.

(244) Ramos, P.; Pavanello, M. Low-lying excited states by constrained DFT. J. Chem.
Phys 2018, 148.

(245) Cheng, C.-L.; Wu, Q.; Van Voorhis, T. Rydberg energies using excited state density
functional theory. J. Chem. Phys 2008, 129.

(246) Roychoudhury, S.; Sanvito, S.; O’Regan, D. D. Neutral excitation density-functional
theory: an efficient and variational first-principles method for simulating neutral ex-
citations in molecules. Sci. Rep. 2020, 10, 8947.

(247) Petersilka, M. G. U. J.; Gossmann, U. J.; Gross, E. K. U. Excitation energies from
time-dependent density-functional theory. Phys. Rev. Lett. 1996, 76, 1212.

(248) Casida, M. E. In Recent Advances In Density Functional Methods: (Part I); World
Scientific: 1995, pp 155–192.

(249) Odelius, M. Molecular dynamics simulations of fine structure in oxygen K-edge x-ray
emission spectra of liquid water and ice. Phys. Rev. B 2009, 79, 144204.

(250) Guillemin, R. et al. A review of molecular effects in gas-phase KL X-ray emission. J.
Electron Spectrosc. Relat. Phenom. 2013, 188, 53–61.

(251) Roychoudhury, S. et al. Controlled experiments and optimized theory of absorption
spectra of Li metal and salts. ACS Appl. Mater. Interfaces 2021, 13, 45488–45495.



BIBLIOGRAPHY 125

(252) Pascal, T. A. et al. Finite temperature effects on the X-ray absorption spectra of
lithium compounds: First-principles interpretation of X-ray Raman measurements.
J. Chem. Phys. 2014, 140.

(253) De Groot, F. High-resolution X-ray emission and X-ray absorption spectroscopy.
Chem. Rev. 2001, 101, 1779–1808.

(254) Bergmann, U.; Glatzel, P. X-ray emission spectroscopy. Photosynth. Res. 2009, 102,
255–266.

(255) Fouda, A. A.; Besley, N. A. Improving the predictive quality of time-dependent den-
sity functional theory calculations of the X-ray emission spectroscopy of organic
molecules. J. Comput. Chem. 2020, 41, 1081–1090.

(256) Hanson-Heine, M. W.; George, M. W.; Besley, N. A. Kohn-Sham density functional
theory calculations of non-resonant and resonant x-ray emission spectroscopy. J.
Chem. Phys. 2017, 146.

(257) Gilbert, A. T.; Besley, N. A.; Gill, P. M. Self-consistent field calculations of excited
states using the maximum overlap method (MOM). J. Phys. Chem. A 2008, 112,
13164–13171.

(258) Hirata, S.; Head-Gordon, M. Time-dependent density functional theory within the
Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299.

(259) Ge, X.; Calzolari, A.; Baroni, S. Optical properties of anthocyanins in the gas phase.
Chem. Phys. Lett. 2015, 618, 24–29.

(260) Rebolini, E.; Toulouse, J. Range-separated time-dependent density-functional theory
with a frequency-dependent second-order Bethe-Salpeter correlation kernel. J. Chem.
Phys. 2016, 144.

(261) Lindle, D. W.; Cowan, P.; Jach, T.; LaVilla, R.; Deslattes, R.; Perera, R. C. Polarized
x-ray emission studies of methyl chloride and the chlorofluoromethanes. Phys. Rev.
A 1991, 43, 2353.

(262) Yumatov, V.; Okotrub, A.; Furin, G.; Salakhutdinov, N. Electronic structure of mono-
substituted benzenes and X-ray emission spectroscopy: 4. Phenol. Russ. Chem. Bull.
1997, 46, 2074–2081.

(263) Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: An overview
of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155.

(264) Woon, D. E.; Dunning Jr, T. H. Gaussian basis sets for use in correlated molecu-
lar calculations. III. The atoms aluminum through argon. The Journal of chemical
physics 1993, 98, 1358–1371.

(265) Roychoudhury, S.; Cunha, L. A.; Head-Gordon, M.; Prendergast, D. Changes in po-
larization dictate necessary approximations for modeling electronic deexcitation in-
tensity: Application to x-ray emission. Phys. Rev. B 2022, 106, 075133.



BIBLIOGRAPHY 126

(266) Liang, Y.; Vinson, J.; Pemmaraju, S.; Drisdell, W. S.; Shirley, E. L.; Prendergast,
D. Accurate x-ray spectral predictions: An advanced self-consistent-field approach
inspired by many-body perturbation theory. Phys. Rev. Lett. 2017, 118, 096402.

(267) Liang, Y.; Prendergast, D. Quantum many-body effects in x-ray spectra efficiently
computed using a basic graph algorithm. Phys. Rev. B 2018, 97, 205127.

(268) Liang, Y.; Prendergast, D. Taming convergence in the determinant approach for x-ray
excitation spectra. Phys. Rev. B 2019, 100, 075121.

(269) Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21,
395502.

(270) Hybertsen, M. S.; Louie, S. G. Electron correlation in semiconductors and insulators:
Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34, 5390.

(271) Hedin, L.; Lundqvist, S. In Solid state physics ; Elsevier: 1970; Vol. 23, pp 1–181.

(272) Lange, K. M.; Aziz, E. F. Electronic structure of ions and molecules in solution: a
view from modern soft X-ray spectroscopies. Chem. Soc. Rev. 2013, 42, 6840–6859.

(273) Mayer, R.; Lindle, D. W.; Southworth, S.; Cowan, P. Direct determination of molec-
ular orbital symmetry of H 2 S using polarized x-ray emission. Phys. Rev. A 1991,
43, 235.

(274) Nordgren, J.; Agren, H.; Werme, L.; Nordling, C.; Siegbahn, K. X-ray emission spec-
tra of NH3 and N2O. J. Phys. B 1976, 9, 295.

(275) Rubensson, J.-E.; Wassdahl, N.; Brammer, R.; Nordgren, J. Local electronic structure
in simple alcohols studied in X-ray emission. J. Electron Spectrosc. Relat. Phenom.
1988, 47, 131–145.

(276) Vu, T. V. et al. First-principles DFT computation and X-ray spectroscopy study of
the electronic band structure and optical constants of Cu2HgGeS4. Solid State Sci.
2020, 104, 106287.

(277) Mortensen, D. et al. Benchmark results and theoretical treatments for valence-to-core
x-ray emission spectroscopy in transition metal compounds. Phys. Rev. B 2017, 96,
125136.

(278) Hong, W. T.; Stoerzinger, K. A.; Moritz, B.; Devereaux, T. P.; Yang, W.; Shao-Horn,
Y. Probing LaMO3 metal and oxygen partial density of states using X-ray emission,
absorption, and photoelectron spectroscopy. J. Phys. Chem. C 2015, 119, 2063–
2072.

(279) Grad, G. B.; González, E. R.; Torres-Dıaz, J.; Bonzi, E. V. A DFT study of ZnO,
Al2O3 and SiO2; combining X-ray spectroscopy, chemical bonding and Wannier func-
tions. J. Phys. Chem. Solids 2022, 168, 110788.



BIBLIOGRAPHY 127

(280) Silva-Junior, M. R.; Schreiber, M.; Sauer, S.; Thiel, W. Benchmarks for electronically
excited states: Time-dependent density functional theory and density functional the-
ory based multireference configuration interaction. J. Chem. Phys. 2008, 129.

(281) Dreuw, A.; Fleming, G. R.; Head-Gordon, M. Charge-transfer state as a possible
signature of a zeaxanthin- chlorophyll dimer in the non-photochemical quenching
process in green plants. J. Phys. Chem. B 2003, 107, 6500–6503.

(282) Dreuw, A.; Head-Gordon, M. Failure of time-dependent density functional theory
for long-range charge-transfer excited states: the zincbacteriochlorin- bacteriochlorin
and bacteriochlorophyll- spheroidene complexes. J. Am. Chem. Soc. 2004, 126, 4007–
4016.

(283) Yuhas, B. D.; Fakra, S.; Marcus, M. A.; Yang, P. Probing the local coordination
environment for transition metal dopants in zinc oxide nanowires. Nano Lett. 2007,
7, 905–909.

(284) Pollock, C. J.; DeBeer, S. Insights into the geometric and electronic structure of tran-
sition metal centers from valence-to-core X-ray emission spectroscopy. Acc. Chem.
Res. 2015, 48, 2967–2975.

(285) Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon,
E. I. A multiplet analysis of Fe K-edge 1s→ 3d pre-edge features of iron complexes.
J. Am. Chem. Soc. 1997, 119, 6297–6314.

(286) Solomon, E. I.; Hedman, B.; Hodgson, K. O.; Dey, A.; Szilagyi, R. K. Ligand K-edge
X-ray absorption spectroscopy: covalency of ligand–metal bonds. Coord. Chem. Rev.
2005, 249, 97–129.

(287) Kubin, M. et al. Probing the oxidation state of transition metal complexes: a case
study on how charge and spin densities determine Mn L-edge X-ray absorption en-
ergies. Chem. Sci. 2018, 9, 6813–6829.

(288) Chergui, M.; Collet, E. Photoinduced structural dynamics of molecular systems
mapped by time-resolved X-ray methods. Chem. Rev. 2017, 117, 11025–11065.

(289) Bhattacherjee, A.; Leone, S. R. Ultrafast X-ray Transient Absorption Spectroscopy
of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced
Molecular Dynamics. Acc. Chem. Res. 2018, 51, 3203–3211.

(290) Kraus, P. M.; Zürch, M.; Cushing, S. K.; Neumark, D. M.; Leone, S. R. The ultrafast
X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2018, 2, 82–
94.

(291) Ochmann, M. et al. Light-induced radical formation and isomerization of an aromatic
thiol in solution followed by time-resolved x-ray absorption spectroscopy at the sulfur
K-edge. J. Am. Chem. Soc. 2017, 139, 4797–4804.



BIBLIOGRAPHY 128

(292) Bhattacherjee, A.; Pemmaraju, C. D.; Schnorr, K.; Attar, A. R.; Leone, S. R. Ultra-
fast intersystem crossing in acetylacetone via femtosecond x-ray transient absorption
at the carbon K-edge. J. Am. Chem. Soc. 2017, 139, 16576–16583.

(293) Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems.
Phys. Rev. Lett. 1984, 52, 997.

(294) Wenzel, J.; Wormit, M.; Dreuw, A. Calculating core-level excitations and x-ray
absorption spectra of medium-sized closed-shell molecules with the algebraic-
diagrammatic construction scheme for the polarization propagator. J. Comput.
Chem. 2014, 35, 1900–1915.

(295) Lopata, K.; Van Kuiken, B. E.; Khalil, M.; Govind, N. Linear-response and real-
time time-dependent density functional theory studies of core-level near-edge x-ray
absorption. J. Chem. Theo. Comput. 2012, 8, 3284–3292.

(296) Besley, N. A. Modeling of the spectroscopy of core electrons with density functional
theory. WIREs Comput. Mol. Sci. 2021, e1527.

(297) Zhang, Y.; Biggs, J. D.; Healion, D.; Govind, N.; Mukamel, S. Core and valence
excitations in resonant X-ray spectroscopy using restricted excitation window time-
dependent density functional theory. J. Chem. Phys. 2012, 137, 194306.

(298) Besley, N. A. Density functional theory based methods for the calculation of X-ray
spectroscopy. Acc. Chem. Res. 2020, 53, 1306–1315.

(299) Besley, N. A.; Peach, M. J.; Tozer, D. J. Time-dependent density functional theory
calculations of near-edge X-ray absorption fine structure with short-range corrected
functionals. Phys. Chem. Chem. Phys. 2009, 11, 10350–10358.

(300) Besley, N. A.; Asmuruf, F. A. Time-dependent density functional theory calculations
of the spectroscopy of core electrons. Physical Chemistry Chemical Physics 2010, 12,
12024–12039.

(301) Blake, A. V.; Wei, H.; Donahue, C. M.; Lee, K.; Keith, J. M.; Daly, S. R. Solid energy
calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.
J. Synchrotron Radiat. 2018, 25, 529–536.

(302) Martin-Diaconescu, V.; Kennepohl, P. Sulfur K-edge XAS as a probe of sulfur-
centered radical intermediates. J. Am. Chem. Soc. 2007, 129, 3034–3035.

(303) Minasian, S. G. et al. Determining relative f and d orbital contributions to M–Cl
covalency in MCl62– (M= Ti, Zr, Hf, U) and UOCl5–using Cl K-edge X-ray absorption
spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 2012,
134, 5586–5597.

(304) DeBeer George, S.; Petrenko, T.; Neese, F. Prediction of iron K-edge absorption
spectra using time-dependent density functional theory. J. Phys. Chem. A 2008,
112, 12936–12943.



BIBLIOGRAPHY 129

(305) Attar, A. R. et al. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening
reaction. Science 2017, 356, 54–59.

(306) Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-cluster method. A
systematic biorthogonal approach to molecular excitation energies, transition prob-
abilities, and excited state properties. J. Chem. Phys. 1993, 98, 7029–7039.

(307) Coriani, S.; Koch, H. Communication: X-ray absorption spectra and core-ionization
potentials within a core-valence separated coupled cluster framework. J. Chem. Phys.
2015, 143, 181103.

(308) Peng, B.; Lestrange, P. J.; Goings, J. J.; Caricato, M.; Li, X. Energy-specific equation-
of-motion coupled-cluster methods for high-energy excited states: Application to K-
edge X-ray absorption spectroscopy. J. Chem. Theo. Comput. 2015, 11, 4146–4153.

(309) Frati, F. et al. Coupled cluster study of the x-ray absorption spectra of formaldehyde
derivatives at the oxygen, carbon, and fluorine K-edges. J. Chem. Phys. 2019, 151,
064107.

(310) Vidal, M. L.; Feng, X.; Epifanovsky, E.; Krylov, A. I.; Coriani, S. New and effi-
cient equation-of-motion coupled-cluster framework for core-excited and core-ionized
states. J. Chem. Theory Comput. 2019, 15, 3117–3133.

(311) Carbone, J. P.; Cheng, L.; Myhre, R. H.; Matthews, D.; Koch, H.; Coriani, S. An
analysis of the performance of coupled cluster methods for K-edge core excitations
and ionizations using standard basis sets. Adv. Quantum Chem. 2019, 79, 241–261.

(312) Besley, N. A.; Gilbert, A. T.; Gill, P. M. W. Self-consistent-field calculations of core
excited states. J. Chem. Phys. 2009, 130, 124308.

(313) Derricotte, W. D.; Evangelista, F. A. Simulation of X-ray absorption spectra with
orthogonality constrained density functional theory. Phys. Chem. Chem. Phys. 2015,
17, 14360–14374.

(314) Zheng, X.; Liu, J.; Doumy, G.; Young, L.; Cheng, L. Hetero-site Double Core Ion-
ization Energies with Sub-electronvolt Accuracy from Delta-Coupled-Cluster Calcu-
lations. J. Phys. Chem. A 2020, 124, 4413–4426.

(315) Barca, G. M.; Gilbert, A. T.; Gill, P. M. W. Simple Models for Difficult Electronic
Excitations. J. Chem. Theory Comput. 2018, 14, 1501–1509.

(316) Shea, J. A.; Gwin, E.; Neuscamman, E. A generalized variational principle with
applications to excited state mean field theory. J. Chem. Theory Comput. 2020, 16,
1526–1540.

(317) Ye, H.-Z.; Welborn, M.; Ricke, N. D.; Van Voorhis, T. σ-SCF: A direct energy-
targeting method to mean-field excited states. J. Chem. Phys. 2017, 147, 214104.

(318) Hait, D.; Head-Gordon, M. Excited state orbital optimization via minimizing the
square of the gradient: General approach and application to singly and doubly excited
states via density functional theory. J. Chem. Theory Comput. 2020, 16, 1699–1710.



BIBLIOGRAPHY 130

(319) Carter-Fenk, K.; Herbert, J. M. State-Targeted Energy Projection: A Simple and Ro-
bust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions.
J. Chem. Theory Comput. 2020, 16, 5067–5082.

(320) Grofe, A. et al. Generalization of Block-Localized Wave Function for Constrained
Optimization of Excited Determinants. J. Chem. Theory Comput. 2020, 17, 277–
289.

(321) Hait, D.; Head-Gordon, M. Highly Accurate Prediction of Core Spectra of Molecules
at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Re-
stricted Open-Shell Kohn–Sham Approach. J. Phys. Chem. Lett. 2020, 11, 775–786.

(322) Hait, D.; Haugen, E. A.; Yang, Z.; Oosterbaan, K. J.; Leone, S. R.; Head-Gordon, M.
Accurate prediction of core-level spectra of radicals at density functional theory cost
via square gradient minimization and recoupling of mixed configurations. J. Chem.
Phys. 2020, 153, 134108.

(323) Garner, S. M.; Neuscamman, E. Core excitations with excited state mean field and
perturbation theory. J. Chem. Phys. 2020, 153, 154102.

(324) Zhao, R. et al. Dynamic-then-static approach for core excitations of open-shell
molecules. J. Phys. Chem. Lett. 2021, 12, 7409–7417.

(325) Kahk, J. M.; Michelitsch, G. S.; Maurer, R. J.; Reuter, K.; Lischner, J. Core Elec-
tron Binding Energies in Solids from Periodic All-Electron ∆-Self-Consistent-Field
Calculations. J. Phys. Chem. Lett. 2021, 12, PMID: 34549969, 9353–9359.

(326) Kahk, J. M.; Lischner, J. Accurate absolute core-electron binding energies of
molecules, solids, and surfaces from first-principles calculations. Phys. Rev. Ma-
terials 2019, 3, 100801.

(327) Takahashi, O. Relativistic corrections for single- and double-core excitation at the
K-and L-edges from Li to Kr. Comput. Theor. Chem. 2017, 1102, 80–86.

(328) Norman, P.; Dreuw, A. Simulating X-ray spectroscopies and calculating core-excited
states of molecules. Chem. Rev. 2018, 118, 7208–7248.

(329) Bussy, A.; Hutter, J. Efficient and low-scaling linear-response time-dependent density
functional theory implementation for core-level spectroscopy of large and periodic
systems. Phys. Chem. Chem. Phys. 2021, 23, 4736–4746.

(330) Repisky, M. et al. Excitation energies from real-time propagation of the four-
component Dirac–Kohn–Sham equation. J. Chem. Theory Comput. 2015, 11, 980–
991.

(331) Halbert, L.; Vidal, M. L.; Shee, A.; Coriani, S.; Severo Pereira Gomes, A. Relativistic
EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-
Component Dirac–Coulomb (- Gaunt) Hamiltonian. J. Chem. Theory Comput. 2021,
17, 3583–3598.



BIBLIOGRAPHY 131

(332) Kutzelnigg, W.; Liu, W. Quasirelativistic theory equivalent to fully relativistic theory.
J. Chem. Phys. 2005, 123, 241102.

(333) Jensen, H. J. A. In The Conference Talk, REHE, 2005.

(334) Ilias, M.; Saue, T. An Infinite-Order Relativistic Hamiltonian by a Simple One-Step
Transformation. J. Chem. Phys. 2007, 126, 064102.

(335) Liu, W.; Peng, D. Exact Two-component Hamiltonians Revisited. J. Chem. Phys.
2009, 131, 031104.

(336) Li, Z.; Xiao, Y.; Liu, W. On the spin separation of algebraic two-component rela-
tivistic Hamiltonians. J. Chem. Phys. 2012, 137, 154114.

(337) Cheng, L.; Gauss, J. Analytic energy gradients for the spin-free exact two-component
theory using an exact block diagonalization for the one-electron Dirac Hamiltonian.
J. Chem. Phys. 2011, 135, 084114.

(338) Verma, P.; Derricotte, W. D.; Evangelista, F. A. Predicting near edge X-ray absorp-
tion spectra with the spin-free exact-two-component Hamiltonian and orthogonality
constrained density functional theory. J. Chem. Theory Comput. 2016, 12, 144–156.

(339) Bagus, P. S. Self-consistent-field wave functions for hole states of some Ne-like and
Ar-like ions. Phys. Rev. 1965, 139, A619.

(340) Ziegler, T.; Rauk, A.; Baerends, E. J. On the calculation of multiplet energies by the
Hartree-Fock-Slater method. Theor. Chim. Acta. 1977, 43, 261–271.

(341) Niskanen, J.; Norman, P.; Aksela, H.; Ågren, H. Relativistic contributions to single
and double core electron ionization energies of noble gases. J. Chem. Phys. 2011,
135, 054310.

(342) Zheng, X.; Cheng, L. Performance of Delta-Coupled-Cluster Methods for Calculations
of Core-Ionization Energies of First-Row Elements. J. Chem. Theory Comput. 2019,
15, 4945–4955.

(343) Frank, I.; Hutter, J.; Marx, D.; Parrinello, M. Molecular dynamics in low-spin excited
states. J. Chem. Phys. 1998, 108, 4060–4069.

(344) Kowalczyk, T.; Tsuchimochi, T.; Chen, P.-T.; Top, L.; Van Voorhis, T. Excitation
energies and Stokes shifts from a restricted open-shell Kohn-Sham approach. J. Chem.
Phys. 2013, 138, 164101.

(345) Hait, D.; Head-Gordon, M. Delocalization errors in density functional theory are
essentially quadratic in fractional occupation number. J. Phys. Chem. Lett. 2018, 9,
6280–6288.

(346) Johnson III, R. D. NIST Computational Chemistry Comparison and Benchmark
Database, NIST Standard Reference Database Number 101, Release 18. October
2016. http://cccbdb.nist.gov/ 2015.



BIBLIOGRAPHY 132

(347) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge structural
database. Acta Crystallogr. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171–179.

(348) McGinnety, J. A. Cesium tetrachlorocuprate. Structure, crystal forces, and charge
distribution. J. Am. Chem. Soc. 1972, 94, 8406–8413.

(349) Franck, J.; Dymond, E. Elementary processes of photochemical reactions. Trans. Far.
Soc. 1926, 21, 536–542.

(350) Condon, E. A theory of intensity distribution in band systems. Phys. Rev. 1926, 28,
1182.

(351) Ågren, H.; Nordgren, J.; Selander, L.; Nordling, C.; Siegbahn, K. Multiplet structure
in the high-resolution x-ray emission spectrum of neon. J. Electron Spectrosc. Relat.
Phenom. 1978, 14, 27–39.

(352) Banna, M.; Wallbank, B.; Frost, D.; McDowell, C.; Perera, J. Free atom core binding
energies from X-ray photoelectron spectroscopy. II. Na, K, Rb, Cs, and Mg. J. Chem.
Phys. 1978, 68, 5459–5466.

(353) Bodeur, S.; Millié, P.; Nenner, I. Single-and multiple-electron effects in the Si 1s
photoabsorption spectra of SiX4 (X= H, D, F, Cl, Br, CH3, C2H5, OCH3, OC2H5)
molecules: Experiment and theory. Phys. Rev. A 1990, 41, 252.

(354) Sodhi, R. N.; Cavell, R. G. KLL Auger and core-level (1s and 2p) photoelectron shifts
in a series of gaseous phosphorus compounds. J. Electron Spectrosc. Relat. Phenom.
1983, 32, 283–312.

(355) Keski-Rahkonen, O.; Krause, M. Energies and chemical shifts of the sulphur 1s level
and the KL2L3 (1D2) Auger line in H2S, SO2 and SF6. J. Electron Spectrosc. Relat.
Phenom. 1976, 9, 371–380.

(356) Perera, R. C.; LaVilla, R. E. Molecular x-ray spectra: S-K β emission and K absorp-
tion spectra of SCO and CS2. J. Chem. Phys. 1984, 81, 3375–3382.

(357) Sodhi, R. N.; Cavell, R. G. KLL auger and core level (1s and 2p) photoelectron shifts
in a series of gaseous sulfur compounds. J. Electron Spectrosc. Relat. Phenom. 1986,
41, 1–24.

(358) Bodeur, S.; Maréchal, J.; Reynaud, C.; Bazin, D.; Nenner, I. Chlorine K shell pho-
toabsorption spectra of gas phase HCl and Cl2 molecules. Zeitschrift für Physik D
Atoms, Molecules and Clusters 1990, 17, 291–298.

(359) Reynaud, C. et al. Electronic properties of the SF5Cl molecule: a comparison with
SF6. I. Photoabsorption spectra near the sulphur K and chlorine K edges. Chem.
Phys. 1992, 166, 411–424.

(360) Breinig, M.; Chen, M. H.; Ice, G. E.; Parente, F.; Crasemann, B.; Brown, G. S. Atomic
inner-shell level energies determined by absorption spectrometry with synchrotron
radiation. Phys. Rev. A 1980, 22, 520.



BIBLIOGRAPHY 133

(361) Ambroise, M. A.; Jensen, F. Probing Basis Set Requirements for Calculating Core
Ionization and Core Excitation Spectroscopy by the ∆ Self-Consistent-Field Ap-
proach. J. Chem. Theory Comput. 2018, 15, 325–337.

(362) Jensen, F. Unifying general and segmented contracted basis sets. Segmented polar-
ization consistent basis sets. J. Chem. Theory Comput. 2014, 10, 1074–1085.

(363) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation
of vibrational absorption and circular dichroism spectra using density functional force
fields. J. Phys. Chem. 1994, 98, 11623–11627.

(364) Chan, B. Assessment and development of DFT with the expanded CUAGAU-2 set
of group-11 cluster systems. Int. J. Quantum Chem. 2021, 121, e26453.

(365) Hui, K.; Chai, J.-D. SCAN-based hybrid and double-hybrid density functionals from
models without fitted parameters. J. Chem. Phys. 2016, 144, 044114.

(366) Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. J.
Chem. Phys. 1993, 98, 1372–1377.

(367) Cavell, R. G.; Jürgensen, A. Chemical shifts in P-1s photoabsorption spectra of
gaseous phosphorus compounds. J. Electron Spectrosc. Relat. Phenom. 1999, 101,
125–129.

(368) Reynaud, C. et al. Double-core ionization and excitation above the sulphur K-edge
in H2S, SO2 and SF6. J. Phys. B: Atomic, Molecular and Optical Physics 1996, 29,
5403.

(369) Bodeur, S.; Hitchcock, A. Inner-and valence-shell excitation of SF4 studied by pho-
toabsorption and electron energy loss spectroscopy. Chem. Phys. 1987, 111, 467–
479.

(370) Woon, D. E.; Dunning Jr, T. H. Gaussian basis sets for use in correlated molecular
calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys. 1995,
103, 4572–4585.

(371) Mennucci, B. Polarizable continuum model. Wiley Interdiscip. Rev. Comput. Mol.
Sci. 2012, 2, 386–404.

(372) Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the
polarizable continuum model: Theoretical background and applications to isotropic
and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041.

(373) Kunze, L.; Hansen, A.; Grimme, S.; Mewes, J.-M. PCM-ROKS for the Description
of Charge-Transfer States in Solution: Singlet–Triplet Gaps with Chemical Accu-
racy from Open-Shell Kohn–Sham Reaction-Field Calculations. J. Phys. Chem. Lett.
2021, 12, 8470–8480.

(374) Sutherland, D.; Kasrai, M.; Bancroft, G.; Liu, Z.; Tan, K. Si L-and K-edge x-ray-
absorption near-edge spectroscopy of gas-phase Si(CH3)x (OCH3)4–x : Models for
solid-state analogs. Phys. Rev. B 1993, 48, 14989.



BIBLIOGRAPHY 134

(375) Engemann, C. et al. Experimental and theoretical investigations of the X-ray absorp-
tion near edge spectra (XANES) of P4O6 and P4O6X (X = O, S, Se). Chem. Phys.
1997, 221, 189–198.

(376) Ibuki, T. et al. Total photoabsorption cross-sections of CF3SF5 in the C, F and S
K-shell regions. Chem. Phys. Lett. 2004, 392, 303–308.

(377) Ochmann, M. et al. UV-photochemistry of the disulfide bond: Evolution of early
photoproducts from picosecond X-ray absorption spectroscopy at the sulfur K-Edge.
J. Am. Chem. Soc. 2018, 140, 6554–6561.

(378) DeBeer George, S.; Brant, P.; Solomon, E. I. Metal and ligand K-Edge XAS of organ-
otitanium complexes: Metal 4p and 3d contributions to pre-edge intensity and their
contributions to bonding. J. Am. Chem. Soc. 2005, 127, 667–674.

(379) McKeown, D. A.; Gan, H.; Pegg, I. L.; Stolte, W. C.; Demchenko, I. X-ray absorption
studies of chlorine valence and local environments in borosilicate waste glasses. J.
Nuc. Mat. 2011, 408, 236–245.

(380) Shadle, S. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Ligand K-edge X-ray
absorption spectroscopic studies: metal-ligand covalency in a series of transition metal
tetrachlorides. J. Am. Chem. Soc. 1995, 117, 2259–2272.

(381) Thom, A. J.; Head-Gordon, M. Hartree–Fock solutions as a quasidiabatic basis for
nonorthogonal configuration interaction. J. Chem. Phys. 2009, 131, 124113.

(382) List, N. H.; Melin, T. R. L.; van Horn, M.; Saue, T. Beyond the electric-dipole ap-
proximation in simulations of x-ray absorption spectroscopy: Lessons from relativistic
theory. J. Chem. Phys. 2020, 152, 184110.

(383) Rees, J. A. et al. Experimental and theoretical correlations between vanadium K-edge
X-ray absorption and Kβ emission spectra. J. Bio. Inor. Chem. 2016, 21, 793–805.

(384) Farges, F. Chromium speciation in oxide-type compounds: application to minerals,
gems, aqueous solutions and silicate glasses. Phys. Chem. Minerals 2009, 36, 463–
481.

(385) Hall, E. R.; Pollock, C. J.; Bendix, J.; Collins, T. J.; Glatzel, P.; DeBeer, S. Valence-
to-core-detected X-ray absorption spectroscopy: Targeting ligand selectivity. J. Am.
Chem. Soc. 2014, 136, 10076–10084.

(386) Lancaster, K. M.; Finkelstein, K. D.; DeBeer, S. Kβ X-ray emission spectroscopy of-
fers unique chemical bonding insights: revisiting the electronic structure of ferrocene.
Inorg. Chem. 2011, 50, 6767–6774.

(387) Liu, W.; Borg, S. J.; Testemale, D.; Etschmann, B.; Hazemann, J.-L.; Brugger, J. Spe-
ciation and thermodynamic properties for cobalt chloride complexes in hydrothermal
fluids at 35–440 C and 600 bar: an in-situ XAS study. Geochim. Cosmochim. Acta .
2011, 75, 1227–1248.



BIBLIOGRAPHY 135

(388) DiMucci, I. M. et al. The myth of d8 copper (III). J. Ame. Chem. Soc. 2019, 141,
18508–18520.

(389) Balabanov, N. B.; Peterson, K. A. Systematically convergent basis sets for transition
metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J.
Chem. Phys. 2005, 123, 064107.

(390) Yamamoto, T. Assignment of pre-edge peaks in K-edge x-ray absorption spectra of
3d transition metal compounds: electric dipole or quadrupole? X-Ray Spectrometry:
An International Journal 2008, 37, 572–584.

(391) Southworth, S. H. et al. Observing pre-edge K-shell resonances in Kr, Xe, and XeF2.
Phys. Rev. A 2019, 100, 022507.

(392) Kozioł, K.; Aucar, G. A. QED effects on individual atomic orbital energies. J. Chem.
Phys. 2018, 148, 134101.

(393) Wen, A.; Hitchcock, A. Inner shell spectroscopy of (η5-C5H5)2TiCl2,(η5-C5H5) TiCl3,
and TiCl4. Can. J. Chem. 1993, 71, 1632–1644.

(394) Mitzner, R. et al. L-edge x-ray absorption spectroscopy of dilute systems relevant
to metalloproteins using an x-ray free-electron laser. J. Phys. Chem. Lett. 2013, 4,
3641–3647.

(395) Hocking, R. K.; Wasinger, E. C.; de Groot, F. M.; Hodgson, K. O.; Hedman, B.;
Solomon, E. I. Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]: a direct
probe of back-bonding. J. Am. Chem. Soc. 2006, 128, 10442–10451.

(396) Wen, A.; Rühl, E.; Hitchcock, A. Inner-shell excitation of organoiron compounds by
electron impact. Organometallics 1992, 11, 2559–2569.

(397) Cunha, L. A.; Hait, D.; Kang, R.; Mao, Y.; Head-Gordon, M. Relativistic Orbital-
Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. The
Journal of Physical Chemistry Letters 2022, 13, PMID: 35412838, 3438–3449.

(398) Buttersack, T. et al. Photoelectron spectra of alkali metal–ammonia microjets: From
blue electrolyte to bronze metal. Science 2020, 368, 1086–1091.

(399) Gessner, O.; Gühr, M. Monitoring Ultrafast Chemical Dynamics by Time-Domain
X-ray Photo- and Auger-Electron Spectroscopy. Acc. Chem. Res. 2016, 49, 138–145.

(400) Roth, F. et al. Direct observation of charge separation in an organic light harvesting
system by femtosecond time-resolved XPS. Nat. Commun. 2021, 12, 1196.

(401) Katayama, T. et al. Tracking multiple components of a nuclear wavepacket in pho-
toexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nat.
Commun. 2019, 10, 3606.

(402) Zimmermann, P. et al. Modern X-ray spectroscopy: XAS and XES in the laboratory.
Coord. Chem. Rev. 2020, 423, 213466.



BIBLIOGRAPHY 136

(403) Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adia-
batic approximation of time dependent density functional theory. Chem. Phys. Lett.
1996, 256, 454–464.

(404) Furche, F. On the density matrix based approach to time-dependent density func-
tional response theory. J. Chem. Phys. 2001, 114, 5982–5992.

(405) Marques, M. A. L.; Gross, E. K. U. Time-dependent density functional theory. Annu.
Rev. Phys. Chem. 2004, 55, 427–455.

(406) Fundamentals of Time-Dependent Density Functional Theory ; Marques, M. A. L.,
Maitra, N. T., Nogueira, F. M. S., Gross, E. K. U., Rubio, A., Eds.; Lecture Notes
in Physics, Vol. 837; Springer: New York, 2012.

(407) Burke, K.; Werschnik, J.; Gross, E. K. U. Time-dependent density functional theory:
Past, present, and future. J. Chem. Phys. 2005, 123, 062206:1–9.

(408) Laurent, A. D.; Jacquemin, D. TD-DFT benchmarks: A review. Int. J. Quantum
Chem. 2013, 113, 2019–2039.

(409) Lestrange, P. J.; Nguyen, P. D.; Li, X. Calibration of energy-specific TDDFT for
modeling K-edge XAS spectra of light elements. J. Chem. Theory Comput. 2015,
11, 2994–2999.

(410) Chantzis, A.; Kowalska, J. K.; Maganas, D.; DeBeer, S.; Neese, F. Ab initio wave
function-based determination of element specific shifts for the efficient calculation
of x-ray absorption spectra of main group elements and first row transition metals.
J. Chem. Theory Comput. 2018, 14, 3686–3702.

(411) Bussy, A.; Hutter, J. First-principles correction scheme for linear-response time-
dependent density functional theory calculations of core electronic states. J. Chem.
Phys. 2021, 155, 034108:1–10.

(412) do Couto, P. C.; Hollas, D.; Slavıček, P. On the performance of optimally tuned
range-separated hybrid functionals for x-ray absorption modeling. J. Chem. Theory
Comput. 2015, 11, 3234–3244.

(413) Fransson, T.; Brumboiu, I. E.; Vidal, M. L.; Norman, P.; Coriani, S.; Dreuw, A.
XABOOM: An x-ray absorption benchmark of organic molecules based on carbon,
nitrogen, and oxygen 1s → π∗ transitions. J. Chem. Theory Comput. 2021, 17, 1618–
1637.

(414) Song, J.-W.; Watson, M. A.; Nakata, A.; Hirao, K. Core-excitation energy calcu-
lations with a long-range corrected hybrid exchange-correlation functional includ-
ing a short-range Gaussian attenuation (LCgau-BOP). J. Chem. Phys. 2008, 129,
184113:1–9.

(415) Song, J.-W.; Watson, M. A.; Hirao, K. An improved long-range corrected hybrid
functional with vanishing Hartree–Fock exchange at zero interelectronic distance
(LC2gau-BOP). J. Chem. Phys. 2009, 131, 144108:1–9.



BIBLIOGRAPHY 137

(416) Capano, G. et al. The role of Hartree–Fock exchange in the simulation of x-ray
absorption spectra: A study of photoexcited [Fe(bpy)3]2+. Chem. Phys. Lett. 2013,
580, 179–184.

(417) Besley, N. A. Fast time-dependent density functional theory calculations of the x-
ray absorption spectroscopy of large systems. J. Chem. Theory Comput. 2016, 12,
5018–5025.

(418) Roemelt, M.; Maganas, D.; DeBeer, S.; Neese, F. A combined DFT and restricted
open-shell configuration interaction method including spin-orbit coupling: Applica-
tion to transition metal L-edge x-ray absorption spectroscopy. J. Chem. Phys. 2013,
138, 204101:1–22.

(419) Maganas, D. et al. First principles calculations of the structure and V L-edge x-ray
absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and
spin–orbit coupled configuration interaction approaches. Phys. Chem. Chem. Phys.
2013, 15, 7260–7276.

(420) Seidu, I.; Neville, S. P.; Kleinschmidt, M.; Heil, A.; Marian, C. M.; Schuurman, M. S.
The simulation of X-ray absorption spectra from ground and excited electronic states
using core-valence separated DFT/MRCI. J. Chem. Phys. 2019, 151, 144104.

(421) Slater, J. C.; Wood, J. H. Statistical exchange and the total energy of a crystal.
Int. J. Quantum Chem. 1971, 5, 3–34.

(422) Slater, J. C. Statistical exchange-correlation in the self-consistent field. Adv. Quantum
Chem. 1972, 6, 1–92.

(423) Stener, M.; Lisini, A.; Decleva, P. Density functional calculations of excitation ener-
gies and oscillator strengths for C1s → π∗ and O1s → π∗ excitations and ionization
potentials in carbonyl containing molecules. Chem. Phys. 1995, 191, 141–154.

(424) Triguero, L.; Pettersson, L. G. M.; Ågren, H. Calculations of near-edge x-ray-
absorption spectra of gas-phase and chemisorbed molecules by means of density-
functional and transition-potential theory. Phys. Rev. B 1998, 58, 8097–8110.

(425) Triguero, L.; Pettersson, L. G. M.; Ågren, H. Calculations of x-ray emission spectra
of molecules and surface adsorbates by means of density functional theory. J. Phys.
Chem. A 1998, 102, 10599–10607.

(426) Cavalleri, M.; Odelius, M.; Nordlund, D.; Nilsson, A.; Pettersson, L. G. M. Half or
full core hole in density functional theory x-ray absorption spectrum calculations of
water? Phys. Chem. Chem. Phys. 2005, 7, 2854–2858.

(427) Leetmaa, M.; Ljungberg, M. P.; Lyubartsev, A.; Nilsson, A.; Pettersson, L. G. M.
Theoretical approximations to x-ray absorption spectroscopy of liquid water and ice.
J. Electron Spectrosc. 2010, 177, 135–157.



BIBLIOGRAPHY 138

(428) Fransson, T.; Zhotobriukh, I.; Coriani, S.; Wikfeldt, K. T.; Norman, P.; Pettersson,
L. G. M. Requirements of first-principles calculations of x-ray absorption spectra of
liquid water. Phys. Chem. Chem. Phys. 2016, 18, 566–583.

(429) Michelitsch, G. S.; Reuter, K. Efficient simulation of near-edge x-ray absorption
fine structure (NEXAFS) in density-functional theory: Comparison of core-level con-
straining approaches. J. Chem. Phys. 2019, 150, 074104.

(430) Jana, D.; Bandyopadhyay, B.; Mukherjee, D. Development and applications of a
relaxation-inducing cluster expansion theory for treating strong relaxation and dif-
ferential correlation effects. Theor. Chem. Acc. 1999, 102, 317–327.

(431) Rankine, C. D.; Penfold, T. J. Progress in the theory of x-ray spectroscopy: From
quantum chemistry to machine learning and ultrafast dynamics. J. Phys. Chem. A
2021, 125, 4276–4293.

(432) Maitra, N. T. Undoing static correlation: Long-range charge transfer in time-
dependent density-functional theory. J. Chem. Phys. 2005, 122, 234104:1–6.

(433) Hait, D.; Oosterbaan, K. J.; Carter-Fenk, K.; Head-Gordon, M. Computing X-ray
absorption spectra from linear-response particles atop optimized holes. J. Chem.
Phys. 2022, 156, 201104:1–9.

(434) Duchemin, I.; Deutsch, T.; Blase, X. Short-Range to Long-Range Charge-Transfer
Excitations in the Zincbacteriochlorin-Bacteriochlorin Complex: A Bethe-Salpeter
Study. Phys. Rev. Lett. 2012, 109, 167801:1–6.

(435) Jin, Y.; Yang, W. Excitation energies from single-particle Green’s function with the
GW approximation. J. Phys. Chem. A 2019, 123, 3199–3204.

(436) Fransson, T.; Dreuw, A. Simulating x-ray emission spectroscopy with algebraic dia-
grammatic construction schemes for the polarization propagator. J. Chem. Theory
Comput. 2019, 15, 546–556.

(437) Dreuw, A.; Fransson, T. Using core-hole reference states for calculating X-ray pho-
toelectron and emission spectra. Phys. Chem. Chem. Phys. 2022, 24, 11259–11267.

(438) Wilhelm, J.; Seewald, P.; Golze, D. Low-scaling GW with benchmark accuracy and
application to phosphorene nanosheets. J. Chem. Theory Comput. 2021, 17, 1662–
1677.

(439) Bene, J. E. D.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods.
X. Molecular Orbital Studies of Excited States with Minimal and Extended Basis
Sets. J. Chem. Phys. 1971, 55, 2236–2241.

(440) Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Toward a systematic
molecular orbital theory for excited states. J. Phys. Chem. 1992, 96, 135–149.

(441) Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G. M. Direct, atomic orbital,
static exchange calculations of photoabsorption spectra of large molecules and clus-
ters. Chem. Phys. Lett. 1994, 222, 75–81.



BIBLIOGRAPHY 139

(442) Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G. Direct SCF direct static-
exchange calculations of electronic spectra. Theo. Chem. Acc. 1997, 97, 14–40.

(443) Oosterbaan, K. J.; White, A. F.; Head-Gordon, M. Non-orthogonal configuration in-
teraction with single substitutions for the calculation of core-excited states. J. Chem.
Phys. 2018, 149, 044116.

(444) Oosterbaan, K. J.; White, A. F.; Head-Gordon, M. Non-orthogonal configuration
interaction with single substitutions for core-excited states: An extension to doublet
radicals. J. Chem. Theory Comput.

(445) Oosterbaan, K. J.; White, A. F.; Hait, D.; Head-Gordon, M. Generalized single ex-
citation configuration interaction: An investigation into the impact of the inclussion
of non-orthogonality on the calculation of core-excited states. Phys. Chem. Chem.
Phys. 2020, 22, 8182–8192.

(446) Liu, J.; Hättig, C.; Höfener, S. Analytical nuclear gradients for electron-attached
and electron-detached states for the second-order algebraic diagrammatic construc-
tion scheme combined with frozen-density embedding. J. Chem. Phys. 2020, 152,
174109:1–15.

(447) Tsudeda, T.; Song, J.-W.; Suzuki, S.; Hirao, K. On Koopmans’ theorem in density
functional theory. J. Chem. Phys. 2010, 133, 174101:1–9.

(448) Fischer, S. A.; Cramer, C. J.; Govind, N. Excited state absorption from real-time
time-dependent density functional theory. J. Chem. Theory Comput. 2015, 11, 4294–
4303.

(449) Bowman, D. N.; Asher, J. C.; Fischer, S. A.; Cramer, C. J.; Govind, N. Excited-
state absorption in tetrapyridy. porphyrins: Comparing real-time and quadratic-
response time-dependent density functional theory. Phys. Chem. Chem. Phys. 2017,
19, 27452–27462.

(450) Cavaletto, S. M.; Nascimento, D. R.; Zhang, Y.; Govind, N.; Mukamel, S. Reso-
nant stimulated x-ray Raman spectroscopy of mixed-valence manganese complexes.
J. Phys. Chem. Lett. 2021, 12, 5925–5931.

(451) Liekhus-Schmaltz, C. E. et al. Ultrafast x-ray pump x-ray probe transient absorption
spectroscopy: A computational study and proposed experiment probing core–valence
electronic correlations in solvated complexes. J. Chem. Phys. 2021, 154, 214107:1–9.

(452) Loe, C. M.; Liekhus-Schmaltz, C.; Govind, N.; Khalil, M. Spectral signatures of
ultrafast excited-state intramolecular proton transfer from computational multi-edge
transient x-ray absorption spectroscopy. J. Phys. Chem. Lett. 2021, 12, 9840–9847.

(453) Maitra, N. T. Charge transfer in time-dependent density functional theory. Journal
of Physics: Condensed Matter 2017, 29, 423001.

(454) Imamura, Y.; Nakai, H. Analysis of self-interaction correction for describing core
excited states. Int. J. Quantum Chem. 2007, 107, 23–29.



BIBLIOGRAPHY 140

(455) Goscinski, O.; Weiner, B. The Role of Algebraic Formulations of Approximate Green’s
Functions for Systems With a Finite Number of Electrons. Phys. Scr. 1980, 21, 385.

(456) Weiner, B.; Goscinski, O. Self-consistent approximation to the polarization propaga-
tor. Int. J. Quantum Chem. 1980, 18, 1109–1131.

(457) Prasad, M. D.; Pal, S.; Mukherjee, D. Some aspects of self-consistent propagator
theories. Phys. Rev. A 1985, 31, 1287–1298.

(458) Datta, B.; Mukhopadhyay, D.; Mukherjee, D. Consistent propagator theory based
on the extended coupled-cluster parametrization of the ground state. Phys. Rev. A
1993, 47, 3632–3648.

(459) Carter-Fenk, K.; Head-Gordon, M. On the choice of reference orbitals for linear-
response calculations of solution-phase K-edge X-ray absorption spectra. pccp 2022,
24, 26170–26179.

(460) Bourne Worster, S.; Feighan, O.; Manby, F. R. Reliable transition properties from
excited-state mean-field calculations. J. Chem. Phys. 2021, 154, 124106.

(461) Anderson, L. N.; Oviedo, M. B.; Wong, B. M. Accurate electron affinities and orbital
energies of anions from a nonempirically tuned range-separated density functional
theory approach. J. Chem. Theory Comput. 2017, 13, 1656–1666.

(462) Zhou, B.; Hu, Z.; Jiang, Y.; He, X.; Sun, Z.; Sun, H. Benchmark study of ionization
potentials and electron affinities of armchair single-walled carbon nanotubes using
density functional theory. J. Phys.: Condens. Matter 2018, 30, 215501.

(463) Schirmer, J. et al. K-shell excitation of the water, ammonia, and methane molecules
using high-resolution photoabsorption spectroscopy. Phys. Rev. A 1993, 47, 1136.

(464) Grimm, S.; Nonnenberg, C.; Frank, I. Restricted open-shell Kohn–Sham theory for
π–π transitions: I. Polyenes, cyanines, and protonated imines. J. Chem. Phys. 2003,
119, 11574–11584.

(465) Billeter, S. R.; Egli, D. Calculation of nonadiabatic couplings with restricted open-
shell Kohn-Sham density-functional theory. J. Chem. Phys. 2006, 125, 224103:1–
18.

(466) Filatov, M.; Shaik, S. Application of spin-restricted open-shell Kohn–Sham method
to atomic and molecular multiplet states. J. Chem. Phys. 1999, 110, 116–125.

(467) Friedrichs, J.; Damianos, K.; Frank, I. Solving restricted open-shell equations in ex-
cited state molecular dynamics simulations. Chem. Phys. 2008, 347, 17–24.

(468) Von Barth, U. Local-density theory of multiplet structure. Phys. Rev. A 1979, 20,
1693–1703.

(469) Görling, A. Symmetry in density-functional theory. Phys. Rev. A 1993, 47, 2783–
2799.



BIBLIOGRAPHY 141

(470) Levy, M.; Nagy, Á. Variational Density-Functional Theory for an Individual Excited
State. Phys. Rev. Lett. 1999, 83, 4361–4364.

(471) Sodhi, R.; Brion, C. High resolution carbon 1s and valence shell electronic excitation
spectra of trans-1,3-butadiene and allene studied by electron energy loss spectroscopy.
J. Electron Spectrosc. Relat. Phenom. 1985, 37, 1–21.

(472) Carter-Fenk, K.; Cunha, L. A.; Arias-Martinez, J. E.; Head-Gordon, M. Electron-
Affinity Time-Dependent Density Functional Theory: Formalism and Applications
to Core-Excited States. J. Phys. Chem. Lett. 2022, 13, PMID: 36215404, 9664–9672.

(473) Ye, H.-Z.; Berkelbach, T. C. Correlation-consistent Gaussian basis sets for solids
made simple. J. Chem. Theory Comput. 2022, 18, 1595–1606.

(474) Cui, Z.-H. et al. Ab initio quantum many-body description of superconducting trends
in the cuprates. arXiv preprint arXiv:2306.16561 2023.

(475) Hammes-Schiffer, S. Exploring proton-coupled electron transfer at multiple scales.
Nat. Comp. Sci. 2023, 3, 291–300.

(476) Hammes-Schiffer, S. Nuclear–electronic orbital methods: Foundations and prospects.
J. Chem. Phys. 2021, 155.

(477) Ruggenthaler, M.; Flick, J.; Pellegrini, C.; Appel, H.; Tokatly, I. V.; Rubio, A.
Quantum-electrodynamical density-functional theory: Bridging quantum optics and
electronic-structure theory. Phys. Rev. A 2014, 90, 012508.

(478) Hoffmann, N. M.; Appel, H.; Rubio, A.; Maitra, N. T. Light-matter interactions via
the exact factorization approach. Eur. Phys. J. B 2018, 91, 1–14.

(479) Haugland, T. S.; Ronca, E.; Kjønstad, E. F.; Rubio, A.; Koch, H. Coupled cluster
theory for molecular polaritons: Changing ground and excited states. Phys. Rev. X
2020, 10, 041043.

(480) Ruggenthaler, M.; Tancogne-Dejean, N.; Flick, J.; Appel, H.; Rubio, A. From a
quantum-electrodynamical light–matter description to novel spectroscopies. Nat.
Rev. Chem. 2018, 2, 1–16.

(481) Bohm, D.; Pines, D. A collective description of electron interactions: III. Coulomb
interactions in a degenerate electron gas. Phys. Rev. 1953, 92, 609.

(482) Bardeen, J.; Pines, D. Electron-phonon interaction in metals. Phys. Rev. 1955, 99,
1140.

(483) Wouters, S.; Jiménez-Hoyos, C. A.; Sun, Q.; Chan, G. K.-L. A practical guide to
density matrix embedding theory in quantum chemistry. J. Chem. Theory Comput.
2016, 12, 2706–2719.

(484) Lacombe, L.; Maitra, N. T. Embedding via the exact factorization approach. Phys.
Rev. Lett. 2020, 124, 206401.



BIBLIOGRAPHY 142

(485) Sheng, N.; Vorwerk, C.; Govoni, M.; Galli, G. Green’s function formulation of quan-
tum defect embedding theory. J. Chem. Theory Comput. 2022, 18, 3512–3522.


	Contents
	Introduction
	Overview of Non-Relativistic Quantum Chemistry
	The Born-Oppenheimer Approximation
	Hydrogen-like Atoms
	Hartree-Fock theory: a bridge between hydrogen-like systems and multi-electronic molecules
	The Slater Determinant as a Trial Wavefunction
	On the Choice of Orbitals
	Variational Principle and the Hartree-Fock Method
	Mean-Field Hamiltonian and Correlation Energy

	Climbing up the Wavefunction Mountain of Correlated Methods
	Møller-Plesset Perturbation Theory
	Configuration Interaction: adding more Slater determinants to the wavefunction
	Exponential Ansatz of the Wavefunction and Coupled-Cluster Theory

	DFT and the Central Role of the Electronic Density
	Hohenberg-Kohn Theorems as the Foundation of DFT
	Orbitals to the Rescue: the Kohn-Sham Framework for DFT
	KS-DFT Alphabet's Soup: Surveying Modern Density Functional Approximations

	What about excited states?

	Not so fast! A Brief Overview of Relativistic Quantum Mechanics
	Particles and Antiparticles: an introduction to the Dirac Equation
	The Fine Structure Hamiltonian for Hydrogen-like Systems
	Quantum Chemistry and Relativity

	The Three Pillars of Modern Quantum Chemistry
	Outline

	Exploring Spin Symmetry-Breaking Effects for Static Field Ionization of Atoms
	Introduction
	Static Field Ionization in a Finite Basis
	Field Ionization of He
	Hartree-Fock (HF) Minimum Basis Model
	Wavefunction Methods in a Larger Basis

	Field Ionization of a neon atom
	Conclusions and Outlook

	Changes in Polarization Dictate Necessary Approximations for Modeling Oscillator Strengths
	Introduction
	Non-resonant X-ray emission formalism
	XES within adiabatic linear response
	XES within the Orbital-constrained Approach
	General Framework
	Orbital-optimized DFT
	The MBXES approach
	Single-particle approximations
	Projected Ground State
	Ground State
	Relation between MfMBXES and MfGS

	Auxilliary orbitals
	Extension to valence de-excitations

	Conclusions

	Relativistic Orbital Optimized Density Functional Theory for Accurate Core-Level Spectroscopy
	Introduction
	Brief overview of theory
	Computational methods
	Results and Discussion
	Conclusions

	Electron-Affinity Time-Dependent Density Functional Theory
	Introduction
	Theoretical Background
	Static-Exchange Approach for Core-Excited States
	EA-TDDFT: generalizing STEX to a DFT formalism
	Shortcomings of the Ion-Orbital TDDFT Approach
	Linear-Response Time-Dependent Density Functional Theory and its Ion-Orbital Variant
	Derivation of the n-1-electron Response Kernel
	Long-Range Self-Interaction Metric
	Overlap-Free Transition Dipole Moments

	Computational Details
	Results and Discussion
	Conclusions

	Afterword
	Overview of Published Works
	Remaining Challenges

	Bibliography



