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ABSTRACT OF THE DISSERTATION

Learning to Adapt Across Distribution and User Constraint Shifts for Static and Dynamic
Tasks

by

Dripta Sankar Raychaudhuri

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2023
Dr. Amit K. Roy-Chowdhury, Chairperson

Deep neural networks have demonstrated remarkable efficacy across a wide range

of tasks, yet they face a significant limitation in their ability to adapt to distributional

shifts. In contrast, humans possess inherent adaptability, effortlessly adjusting to changes

in data distributions and modifying task strategies to accommodate environmental varia-

tions. To fully harness the potential of deep learning models and enhance their practical

applicability, it is crucial to impart robustness to distributional shifts. This dissertation

addresses this need by presenting algorithms to empower deep learning models with the

capacity to seamlessly navigate diverse forms of distributional shifts.

The dissertation encompasses four significant contributions. First, we explore the

adaptation of a person re-identification model trained on labeled data from a single camera

to other cameras in the network using only unlabeled data. By optimizing temporal consis-

tency across frames in unlabeled videos, the model acquires generalizable representations.

Second, we address the adaptation of 2D human pose estimation models to different imag-

ing conditions, achieving adaptation through pre-trained models and unlabeled data from

viii



the target domain. Leveraging a pre-built human pose prior that captures plausible human

poses, labeled data becomes unnecessary for the adaptation process.

Expanding the concept of adaptation beyond static tasks, we proceed to tackle se-

quential decision-making problems. It demonstrates how imitation learning can be executed

when expert demonstrations originate from domains with distinct morphologies compared

to the learning agent. By utilizing cyclic state transformation consistency and value function

consistency, a transformation function is learned to render demonstrations comprehensible

to the agent.

Finally, we shift focus towards adapting to user constraints, a critical aspect of deep

learning model adaptability. It addresses the challenge of adapting multi-task models to

changing user preferences by introducing a hypernetwork controller capable of dynamically

modifying model architecture and weights without necessitating re-training.

By bridging the gap between human adaptability and the limitations of current

models, this dissertation paves the way for deep learning to become more versatile and

applicable in real-world scenarios, unlocking its full potential across various domains.
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Chapter 1

Introduction

Deep neural networks have demonstrated remarkable proficiency across various

tasks. However, they often struggle to effectively adapt to distributional shifts, as high-

lighted by several studies [163, 84, 11]. In contrast, humans exhibit robustness in dynam-

ically adjusting to changing data distributions and modifying their approach to accommo-

date environmental variations. Given the growing deployment of deep models in real-world

systems, including autonomous cars and video surveillance, it becomes imperative to imbue

these models with the ability to handle distributional shifts of any kind gracefully. This

enhancement ensures their practical applicability and reliable performance in dynamic and

unpredictable scenarios.

Motivated by the challenges posed by distributional shifts, this dissertation focuses

on the development of novel algorithms aimed at enhancing the adaptability of machine

learning models. The scope of these algorithms encompasses a wide range of scenarios,

including camera viewpoint changes, variations in imaging conditions, morphological trans-
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formations of embodied agents, and dynamic fluctuations in computational resources. Our

objective is to enable models to adapt to such shifts with minimal reliance on supervision

seamlessly. By achieving this, we aim to extend the potential applicability of state-of-the-art

deep learning models, rendering them suitable for use cases that require data efficiency and

rapid adaptation. Examples of such applications include disaster scenarios, personalized

guides for individuals with disabilities, and surveillance systems.

In Chapter 2, we focus on the problem of one-shot video person re-identification.

Traditional supervised approaches in this field heavily rely on labor-intensive identity label-

ing of tracklets, limiting scalability. To address this limitation, we propose an innovative

solution that reduces the annotation requirements to tracklets from a single camera. By

leveraging a pseudo-labeling framework in conjunction with curriculum learning and self-

supervision, we tackle the data distribution shift between cameras. Our approach enables

the re-identification model to adapt to different cameras despite the absence of explicit

labels. Remarkably, even with minimal supervision, our adaptation achieves performance

that is comparable to supervised methods.

In Chapter 3, we focus on the problem of adapting 2D human pose estimation

models to different imaging conditions. Domain adaptation methods for 2D human pose es-

timation typically require continuous access to the source data during adaptation, which can

be challenging due to privacy, memory, or computational constraints. To address this limi-

tation, we focus on the task of source-free domain adaptation for pose estimation, where a

source model must adapt to a new target domain using only unlabeled target data. Although

recent advances have introduced source-free methods for classification tasks, extending them
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to the regression task of pose estimation is non-trivial. We propose a pseudo-labeling ap-

proach that builds on the popular Mean Teacher framework to compensate for the distri-

bution shift. We leverage prediction-level and feature-level consistency between a student

and teacher model against certain image transformations. In the absence of source data,

our framework utilizes a human pose prior that regularizes the adaptation process by di-

recting the model to generate more accurate and anatomically plausible pose pseudo-labels.

Our framework can deliver significant performance gains compared to applying the source

model directly to the target data. In fact, our approach achieves comparable performance

to recent state-of-the-art methods that use source data for adaptation.

In Chapter 3, we address the challenge of adapting 2D human pose estimation

models to different imaging conditions. Traditional domain adaptation methods for this

task require continuous access to the source data during adaptation, which can be prob-

lematic due to privacy, memory, or computational constraints. To overcome this limitation,

we propose a source-free domain adaptation approach for pose estimation. Although recent

advances have introduced source-free methods for classification tasks, extending them to

the regression task of pose estimation is non-trivial. Our approach builds upon the Mean

Teacher framework and utilizes pseudo-labeling to handle the distribution shift. By en-

forcing prediction-level and feature-level consistency between a student and teacher model

under specific image transformations, we compensate for the domain shift. Additionally,

in the absence of source data, we incorporate a human pose prior to guide the adaptation

process and generate more accurate and anatomically plausible pose pseudo-labels. Our

framework demonstrates significant performance improvements compared to directly ap-
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plying the source model to the target data. In fact, it achieves comparable performance to

recent state-of-the-art methods that leverage source data for adaptation.

In Chapter 4, we tackle the challenging problem of domain adaptation in the

context of imitation learning. Drawing inspiration from the remarkable ability of humans to

learn new behaviors by observing others, we seek to endow autonomous agents with similar

capabilities. Humans can effortlessly imitate expert behavior, even when there are variations

in viewpoints, morphologies, or dynamics between the observer and the expert. However,

existing imitation learning algorithms often rely on demonstrations from the same domain,

which imposes unrealistic constraints and limits their practical applicability. We study how

to imitate locomotion tasks when such discrepancies exist between the expert and agent.

Importantly, in contrast to prior works, we use unpaired and unaligned demonstrations

on simple tasks across domains to learn a robust correspondence across the domains. To

accomplish this, we utilize a cycle-consistency constraint on both the state space and a

domain-agnostic latent space. In addition, we enforce consistency on the temporal position

of states via a normalized position estimator function, to align the trajectories across the

two domains. The learned correspondence is used to transfer task knowledge to unseen

tasks. Furthermore, our algorithm can proficiently imitate tasks without requiring access

to either expert action information or additional reinforcement learning.

In Chapter 5, we explore the design of controllable networks for multi-task learning

(MTL) that can dynamically adapt to two types of user requirements: task preference and

compute budget. The naive approach of creating and training MTL architectures for all

possible variations of user requirements is highly inefficient, resulting in exorbitant design
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and deployment costs. Thus, there is a pressing need for flexible MTL architectures that can

facilitate test-time adaptation to trade-offs based on relative task importance and resource

allocation. We propose an expressive tree-structured dynamic multi-task network that can

adapt its architecture and weights during inference in accordance with user preferences. To

effect these architectural changes, we introduce a controller (comprised of hypernetworks)

which is trained using meta-learning by exploiting task affinity and a new branching regu-

larized loss. Achieving performance comparable to recent MTL architecture search methods

under uniform task preference, our framework can further approximate efficient architec-

tures for non-uniform preferences with provisions for reducing network size depending on

computational constraints.

Finally, in Chapter 6 we summarize the findings of this thesis and discuss possible

extensions and future avenues for further research.
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Chapter 2

One-shot Person Re-identification

2.1 Introduction

Person re-identification (re-ID) aims to solve the challenging problem of match-

ing identities across non-overlapping views in a multi-camera system. The surge of deep

neural networks in computer vision [94, 155] has been reflected in person re-ID as well,

with impressive results over a wide variety of datasets [199, 27]. However, this improved

performance has predominantly been achieved through supervised learning, facilitated by

the availability of large amounts of annotated data. However, acquiring identity labels for a

large set of unlabeled tracklets across different cameras is an extremely time-consuming and

cumbersome task. Consequently, methods that can ameliorate this annotation problem and

work with limited supervision, such as unsupervised learning or semi-supervised learning

techniques, are of primary importance in the context of person re-ID.

In this chapter, we focus on the semi-supervised task in video person re-ID, specif-

ically, the one-shot setting, where only one tracklet per identity is labeled. The primary
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objective of the learning process is to leverage this limited labeled set, derived from a single

camera, in conjunction with a more extensive unlabeled set of tracklets from the rest of

the camera network to derive a robust re-identification (re-ID) model. The key challenge

involved with the one-shot task is figuring out the inter-relationships which exist amongst

the labeled and unlabeled instances across the different camera viewpoints. State-of-the-art

one-shot methods try to address this by estimating the labels of the unlabeled tracklets

(pseudo-labels) and then utilizing a supervised learning strategy. Some works employ a

static sampling strategy [211, 114], where pseudo-labels with a confidence score above a

pre-defined threshold are selected for supervised learning. More recent works [205, 204]

make use of a progressive sampling strategy, where a subset of the pseudo-labeled samples

is selected with the size of the subset expanding with each iteration. This prevents an influx

of noisy pseudo-labels, and thus, averts the situation of confirmation bias [10]. However,

in an effort to control the number of noisy pseudo-labels, most of these methods discard a

significant portion of the unlabeled set at each learning iteration; thus, the information in

the unlabeled set is not maximally utilized for training the model. Due to this inefficient

usage of the unlabeled set and the limited number of labeled instances, propagating beliefs

directly from the labeled to the unlabeled set is insufficient to fully capture the relationships

which exist amongst instances of the unlabeled set.

To resolve this issue of inefficient usage of the unlabeled data, we draw inspira-

tion from the field of self-supervised visual representation learning [91]. We propose using

temporal coherence [143, 130, 126] as a form of self-supervision to maximally utilize the un-

labeled data and learn discriminative person-specific representations. Temporal coherence
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Figure 2.1: A schematic illustration of the proposed framework. Our method makes
use of both labeled and unlabeled tracklets at every iteration of model training. The first
step involves learning the parameters of the deep model by using temporal consistency as
self-supervision and, additionally, softmax loss on the minimal set of annotated tracklets.
Next, this model is used to predict pseudo-labels on a few confident samples. These two
steps alternate, one after the other, until the entire unlabeled set has been incorporated in
terms of pseudo-labels.

is motivated by the fact that features corresponding to a person in a tracklet should be

focused on the discriminative aspects related to the person, such as clothing and gait, and

ignore background nuances such as illumination and occlusion (see Fig. 2.2). This natu-

rally suggests that features should be temporally consistent across the entire duration of the

tracklet as the person in a tracklet remains constant. Thus, we propose a new framework,

Temporally Consistent Progressive Learning (TCPL), which unifies this notion of temporal

coherence with a progressive pseudo-labeling strategy [205]. An overview of our framework

is presented in Fig. 2.1.

We propose two novel losses to learn such temporally consistent features: Intra-

sequence temporal consistency loss and the Inter-sequence temporal consistency loss. Both of

these losses apply consistency regularization on the temporal dimension of a tracklet. While

the first loss employs a local level of consistency by operating on one specific tracklet, the
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second loss extends it to a global level of consistency by applying temporal consistency both

within and across tracklets.

Using such self-supervised losses, our framework can use the unlabeled data at

each iteration of learning, allowing maximal information to be extracted from it. Addition-

ally, by exploiting two levels of consistency, as explained above, TCPL can better model

the relationships amongst the unlabeled instances without being limited by the number of

labeled instances. Thus, our framework addresses both the drawbacks associated with the

current crop of methods and achieves state-of-the-art performance in the one-shot person

re-ID task.

Main contributions. To summarize, our primary contributions are as follows:

• We introduce a new framework, Temporally Consistent Progressive Learning, which

unifies self-supervision and pseudo-labeling to maximally utilize the labeled and un-

labeled data efficiently for one-shot video person re-ID.

• We introduce two novel self-supervised losses, the Intra-sequence temporal consis-

tency loss and the Inter-sequence temporal consistency loss, to implement temporal

consistency and empirically demonstrate their benefits in learning richer and more

discriminative feature representations.

• We demonstrate that this intelligent use of the unlabeled data through self-supervision,

unlike previous pseudo-labeling methods, leads to significantly better label estimation

and superior results on the one-shot video re-ID task, outperforming the state-of-the-

art one-shot methods on the MARS and DukeMTMC-VideoReID datasets.
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2.2 Related Works

The majority of the literature in person re-ID has focused on supervised learning

on labeled images/tracklets of persons [230, 227, 25, 208]. While these techniques achieve

excellent results on many datasets, they require a substantial amount of annotations. The

need to alleviate this excessive need for labeled data has led to research into unsupervised

[214, 215, 106, 28] and semi-supervised [205, 204, 37] methods. We provide a review of

the relevant developments in these fields. In addition, our work draws inspiration from the

ideas explored in the domain of self-supervision.

Unsupervised person re-ID. Recent unsupervised methods [214, 215, 106, 28] mostly

use some form of deep clustering. The authors in [99] utilize a camera aware loss by defining

nearest neighbors across cameras as being similar. In [106], an agglomerative clustering

scheme is introduced, alternating between the learning of features and clustering using the

learned features. However, these methods still lag behind supervised methods by quite some

distance. Another line of research utilizes auxiliary datasets, which are completely labeled,

for initializing a re-ID model and then using unsupervised domain adaptation techniques

on the unsupervised target dataset.

Semi-supervised & one-shot person re-ID. The unsatisfactory performance of purely

unsupervised methods [214, 215, 106, 28] has given rise to semi-supervised and one-shot

methods in re-ID. Some of the major ideas utilized in these methods include dictionary

learning [112], graph matching [62], and metric learning [12]. More recently, new methods

in this setting try to estimate the labels of the unlabeled tracklets (pseudo-labels) with
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respect to the labeled tracklets and then utilize a supervised learning strategy. The authors

of [211] use a dynamic graph matching strategy that iteratively updates the image graph and

the label estimation to learn a better feature space with intermediate estimated labels. A

stepwise metric learning approach to the problem is proposed in [114]. Both these methods

employ a static sampling strategy, where pseudo-labels with a confidence score above a

pre-defined threshold are selected at each step - this leads to a lot of noisy labels being

incorporated and hinders the learning process due to due to confirmation bias [10]. In order

to contain the noise, the authors of [205, 204] approach the problem from a progressive

pseudo-label selection strategy, where the subset of the pseudo-labeled samples selected

gradually increase with iterations. While this prevented the influx of noisy pseudo-labels,

a significant portion of the unlabeled set is discarded at each step and thus, the unlabeled

set is used inefficiently. We address this issue by using self-supervision.

Self-supervised learning. Self-supervised learning utilizes pretext tasks, formulated us-

ing only unsupervised data. A pretext task is designed in such a way that solving it requires

the model to learn useful visual features. These tasks can involve predicting the angle of

rotation applied to an image [55] or predicting a permutation of multiple randomly sampled

and permuted patches [137]. Some techniques go beyond solving such auxiliary classifica-

tion tasks and enforce constraints on the representation space. A prominent example is the

exemplar loss from [39]. Our method belongs to this latter category of self-supervision and

imposes temporal consistency on tracklet features.
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2.3 Temporal Consistency Progressive Learning

In this section, we present our framework, Temporal Consistency Progressive

Learning (TCPL), for solving the task of one-shot video person re-ID. First, we provide

a background on the current progressive pseudo-labeling methods and discuss their short-

comings. Thereafter, we turn to our proposed temporal consistency losses and describe

their workings, before presenting our integrated framework. Before going into the details

of our framework, let us define the notations and problem statement formally.

Problem statement. Consider that we have a training set of m tracklets, D = {Xi}mi=1,

which are acquired from a camera network. One-shot re-ID assumes that there exists a

set Dl ⊂ D, which contains a singular labeled tracklet for each identity. Thus, Dl =

{(Xi, yi)}ml
i=1, where yi ∈ {0, 1}ml such that yi is 1 only at dimension i and 0 otherwise,

and ml denotes the number of distinct identities. The rest of the tracklets, Du = D−Dl =

{Xi}mu
i=1 do not possess annotations. Our goal is to learn a discriminative person re-ID model

fθ(·) utilizing both Dl and Du. During inference, fθ(·) is used to embed both the probe X q

and gallery tracklets {X g
i }

mg

i=1 into a common space and then rank all the gallery tracklets

by evaluating their degree of correspondence to the probe via some metric. What makes

this challenging, even more so than the semi-supervised task, is the fact that ml ≪ mu and

each identity has only a single labeled tracklet.

2.3.1 Progressive Pseudo-labeling and its drawbacks

The progressive pseudo-labeling paradigm is an enhancement over the original

pseudo-labeling framework [96] where one imputes approximate classes on unlabeled data
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by making predictions from a model trained only on labeled data. The learning process

involves the following two steps for each step of learning: (1) train the model via supervised

learning on the labeled data and the pseudo-labeled data; (2) select a few reliable pseudo-

labeled candidates from unlabeled data according to a prediction reliability criterion.

In [205], the authors gradually select larger sets of pseudo-labeled data to be

incorporated into the supervised learning process via a dissimilarity criterion. Pseudo labels

are assigned to the unlabeled candidates by the identity labels of their nearest labeled

neighbors in the embedding space. The distance to the corresponding labeled neighbor

is designated as the dissimilarity cost, which is used as the measure of reliability for the

pseudo label. However, as a result of the strict selection criterion, this does not use the

unlabeled set efficiently - discarding a significant amount of unlabeled data at each step of

pseudo labeling.

To improve the efficiency, the authors in [204] propose to set up a memory bank to

store the instance features vi = fθ(Xi) calculated in the previous step. Then the probability

of sample Xj being recognized as the i-th instance can be written as,

P (i|Xj) =
exp (vTi fθ(Xj)/τ)∑
k exp (v

T
k fθ(Xj)/τ)

(2.1)

where τ is the temperature parameter controlling the softness of the distribution. Mini-

mizing the negative log-likelihood of
∑

i P (i|Xj), which they call the exclusive loss, pulls

each instance Xi towards its corresponding memorized vector vi and repels the memorized

vectors of other instances. Due to efficiency issues, the memorized feature vi corresponding

to instance Xi is only updated in the iteration which takes Xi as input [212]. In other

words, the memorized feature vi is only updated once per epoch. However, the network it-
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self is updated in each iteration, rendering the memory bank scheme inefficient. In addition,

the exclusive loss looks at the global data distribution, similar to the softmax loss, forcing

embeddings corresponding to different identities to stay apart for encouraging inter-class

separability. The local data distribution or the intra-class similarity, is left unaddressed and

thus, the improvement over softmax is negligible.

In the next section, we present how temporal coherence can be employed to amend

these drawbacks.

2.3.2 Temporal Coherence as Self-supervision

In the previous section, we discussed the two fundamental problems plaguing the

current crop of progressive pseudo-labeling methods: (1) inefficient usage of the unlabeled

set, (2) focusing strictly on the global data distribution. To ameliorate these drawbacks,

we propose to use temporal coherence as a form of self-supervision. Consistency across

the frames in a tracklet encourages the model to focus on the local distribution of the

data and learn features which incorporate the specific attributes of the individual in the

tracklet and ignore spurious artifacts such as background and lighting variation. This also

provides a straightforward approach towards utilizing the entire unlabeled set, irrespective

of whether some specific unlabeled instance is assigned a confident pseudo-label. In the

following sections, we present two novel losses: Intra-sequence temporal consistency and

Inter-sequence temporal consistency, which implement this notion of temporal consistency

and show how to integrate them into a self-learning framework towards solving the one-shot

video re-ID task.
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Intra-sequence temporal consistency

The intra-sequence temporal consistency loss is based on the idea of video temporal

coherence [143, 130, 126]. While the previous works focus on learning the temporal order

by considering individual frames, we use consistency as a tool for the learnt features to

implicitly ignore background nuances and focus on the actual person attributes. We do this

by sampling non-overlapping mini-tracklets from a tracklet and enforce the embeddings

corresponding to these mini-tracklets to come closer via a contrastive loss.

Given a tracklet X consisting of frames {x1, · · · , xn}, intra-sequence consistency

involves creating two mini-tracklets X a and X p by sampling two mutually exclusive sets of

frames from the original tracklet X . This is done by the function ΦT(X ), which first divides

the X into a set of mini-tracklets, each of size ρ · |X | and then samples from it as follows,

X a,X p = ΦT(X ) (2.2)

More specifically, ΦT(X ) samples from the set {X 1,X 2, · · · ,X 1/ρ} uniformly without re-

placement. Here, ρ is a hyper-parameter that controls the size of each mini-tracklet with

respect to the size of the tracklet |X |. This ensures that X a ∩ X p = ∅, and consequently,

these tracklets are temporally incoherent. For all our experiments, ρ is set to 0.2. After

obtaining these tracklets the loss forces their respective representations to be consistent

temporally with one another as follows,

Lintra = ∥fθ(X a)− fθ(X p))∥2. (2.3)

This definition of the intra-sequence temporal consistency can be interpreted as a from of

consistency regularization [128, 180, 139], which measures discrepancy between predictions
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made on perturbed unlabeled data points, i.e.,

Lcons = d (p(y|x), p(y|x̂)) (2.4)

where d(·, ·) is a divergence measure and x̂ = x + δ. Such regularization focuses on the

local data distribution, and implicitly pushes the decision boundary away from high-density

parts of the unlabeled data to enhance intra-class similarity in accordance to the cluster

assumption [24]. In our formulation, the two mini-tracklets are temporally perturbed versions

of each other in terms of background, i.e., x = X a, x̂ = X p and δ indicates perturbations in

time - the consistency is applied on features, instead of distributions, and across time.

Inter-sequence temporal consistency

The intra-sequence temporal consistency loss focuses solely on the intra-class simi-

larity. To learn a discriminative person re-ID model, the learning process also has to account

for the global distribution of the data or the inter-class separability. The triplet loss [66]

has been widely used in the re-identification and retrieval literature for its ability to encode

such global information.

The triplet loss ensures that, given an anchor point X a, the feature of a positive

point X p belonging to the same class (person) ya is closer to the feature of the anchor

than that of a negative point X n belonging to another class yn, by at least a margin α.

However, directly using the triplet loss is not possible in our scenario as it uses identity label

information and thus, its effectiveness will depend heavily on the quality of label estimation.

Therefore, we propose the inter-sequence temporal consistency loss, which induces a global

level of consistency similar to the standard triplet formulation without access to labels.
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Specifically, given a tracklet X , we sample two temporally incoherent mini-tracklets

in the same manner as mentioned in the previous section. Without loss of generality, we

treat one as the anchor X a, and the other one as the positive point X p, which contains

the same identity, but temporally perturbed. For the negative instance, we obtain it from

the batch nearest neighbors of X a. This is done by creating the corresponding ranking list

of tracklets in the batch B, excluding X and sampling a tracklet X n uniformly within the

range of ranks [r, 2r] as follows:

X n = Ψ(N[r,2r](X )) (2.5)

where Ψ(·) denotes sampling from a set of elements uniformly. N[r,2r](X ) indicates the

nearest neighbors of X in the batch (up to a total of B neighbors) which are ranked in the

range [r, 2r]. Using this range of ranks we filter out the possible positive samples and the

easy negative samples, which are very low in the ranking list and potentially contribute to

zero gradient. This strategy allows us to choose potential hard negatives which have been

shown to give best performance [66]. The value of r is set to 3 and α to 0.3, for all our

experiments.

Thus, the inter-sequence temporal consistency loss can be formulated as,

Linter = max {0, ∥fθ(X a)− fθ(X p)∥2 − ∥fθ(X a)− fθ(X n)∥2 + α} (2.6)

A pictorial representation of the loss formulation is presented in Fig. 2.2.

2.3.3 Optimization

TCPL integrates self-supervision with pseudo-labeling to learn the person re-ID

model. Temporal coherence is used to enhance the feature learning process in the form
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Figure 2.2: An illustration of the inter-sequence temporal consistency criterion.
Firstly, we sample temporally incoherent mini-tracklets using ΦT to serve as the anchor
and positive sample. Note the temporal perturbations in these mini-tracklets, manifested
in the form changing background. Next, Ψ is used to obtain the negative sample from the
batch nearest neighbors of the anchor, using a ranking based criterion. Using these, we
formulate the triplet loss to enforce consistency such that fθ(·) learns features which focus
on the discriminative aspects related to the person in the tracklet and ignore the background
nuances.

of multi-task learning. Training of this framework alternates between two key steps: (1)

Representation learning, (2) Assignment of pseudo-labels.

Representation learning. In order to learn the weights of the embedding function fθ(·),

we jointly optimize the following loss function,

L =
∑

(X ,y)∈Dl

Ll(X , y) +
∑

(X ,ŷ)∈Dp

Ll(X , ŷ) + λ

(∑

X∈D

Lintra(X ) +
∑

X∈D

Linter(X )

)
(2.7)

where Ll is a standard cross-entropy classification loss applied on all labeled and selected

pseudo-labeled tracklets in the dataset. The supervised loss Ll is optimized by appending
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a classifier gW (·) on top of the feature extractor fθ(·) as

Z = gW (fθ(X )) =W T fθ(X ) + b (2.8)

Ll = −log

(
ey

TZ
∑

j e
Zj

)
, (2.9)

where fθ(X ) ∈ Rd×1, W ∈ Rd×ml and b ∈ Rml×1. The value of d represents the feature

dimension and is equal to 2048 in our experiments. The labeled set and pseudo-labeled set

are denoted by Dl and Dp respectively, with ŷ denoting the pseudo-labels, while D refers

to the entire set of tracklets. Note that, Dl ⊂ D and Dp ⊂ D, such that Dp ∩ Dl = ∅. The

hyper-parameter λ is a non-negative scalar that controls the weight of temporal consistency

in the joint loss function.

Assignment of pseudo-labels. Following [205], we use the nearest neighbor in the em-

bedding space to assign pseudo-labels - each unlabeled tracklet is assigned a pseudo-label by

transferring the label of its nearest labeled neighbor in the embedding space. For Xj ∈ Du,

i = arg min
Xk∈Dl

∥fθ(Xj)− fθ(Xk)∥2, (2.10)

ŷj = yi (2.11)

After assignment of the pseudo-labels, a confidence criterion is used to choose the most

reliable predictions to be used in optimizing Ll for the next step. Instead of a static

threshold, a total of nt samples are selected at step t by choosing the top nt unlabeled

samples with smallest distance to their corresponding labeled nearest neighbour and added

to Dp. A smaller value of the distance implies a more confident pseudo-label prediction.

The value of nt is incremented gradually with t, depending on an enlarging factor

p ∈ (0, 1) [205] where, nt = nt−1 + pnu. Thus, the learning process continues for a total of
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(⌊1/p⌋+ 1) steps - until the entire unlabeled set has been assigned confident pseudo-labels.

The parameter p controls the trade-off between label estimation accuracy and training time

- a smaller value of p leads to better label estimation at the cost of higher training time.

2.4 Experiments

We evaluate our proposed method on two popular video person re-ID benchmarks,

namely, MARS [225] and DukeMTMC-VideoReID [156]. MARS is the largest video re-ID

dataset containing 17, 503 tracklets for 1, 261 identities and 3, 248 distractor tracklets, which

are captured by six cameras. The DukeMTMC-VideoReID dataset is captured using 8

cameras and contains 2, 196 tracklets for training and 2, 636 tracklets for testing. Standard

splits are used along with distractors.

2.4.1 Experimental Details

Evaluation metrics. Given a probe tracklet, we calculate the Euclidean distance with

respect to all the gallery tracklets, and sort the distances to obtain the final ranking list.

We utilize the Cumulative Matching Characteristics (CMC) and mean Average Precision

(mAP) as the performance evaluation measures. We report the Rank-1, Rank-5, Rank-20

scores to represent the CMC curve.

Initial data selection. To initialize the labeled and unlabeled sets, we follow the protocol

outlined in [205]. For each identity, a tracklet is chosen randomly in camera 1. If camera 1

does not record an identity, a tracklet in the next available camera is chosen to ensure each

identity has one tracklet for initialization.
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Implementation details. For our model, we use a ResNet-50 [65] pre-trained on Ima-

geNet [35] - the last classification layer is removed and a fully-connected layer with batch

normalization [75] and a classification layer is added at the end of the model. We adopt

stochastic gradient descent (SGD) with momentum 0.5 and weight decay 0.0005 to optimize

the parameters for 70 epochs, with batch size 16 in each iteration. We set λ = 1 in Eqn.

2.7 for the DukeMTMC-VideoReID dataset and λ = 0.8 for the MARS dataset (due to the

huge disparity in the number of labeled and unlabeled tracklets as a result of fragmentation

in MARS). The learning rate is initialized to 0.1. In the last 15 epochs, to stabilize the

model training and prevent overfitting, we change the learning rate to 0.01 and set λ = 0.

2.4.2 Comparison with Baselines

One-shot re-ID methods in the literature can be broadly divided into two classes:

(1) DGM [211] and Stepwise Metric [114] use the entire pseudo-labeled data at each step

of learning and in the process incorporate a lot of noisy labels, (2) EUG [205] and One-

Example Progressive Learning [204] employ progressive sampling. TCPL outperforms all

of these by learning an embedding which is temporally consistent. We also consider two

baselines: Baseline (one-shot), which utilizes only the one-shot data for training, and Base-

line(supervised), which assumes all the tracklets in the training set are labeled; these are

trained in a supervised manner using only the cross-entropy loss. We also compare against

state-of-the-art unsupervised methods which report results on video re-ID datasets: BUC

[106], UTAL [99] and DAL [28].

We present the results for different instantiations of our framework in Table 2.1:

one which uses both the losses (TCPL -full) and two others corresponding to the usage of
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the losses individually (TCPL -Lintra, TCPL -Linter). For TCPL, EUG [205] and One-Shot

Progressive [204], we set the enlarging parameter p to 0.05.The consistency losses lead to

consistent gains in both rank-1 accuracy and mAP over both EUG [205] and One-Shot

Progressive Learning [204] in both the datasets.

2.4.3 Analysis

Analysis over enlarging factor p. The selection of the enlarging factor p plays an

important role in progressive sampling methods. Decreasing the value of p generally leads

to fewer label estimation errors due to careful data selection, at the cost of a very slow

learning process (See Fig. 2.3).

The performance of our method as p varies is shown in Table 2.2. Unlike base-

line methods, which suffer drastic drops in performance as p is increased, our framework

limits label estimation errors via consistency losses. Notably, TCPL at p = 0.20 is able

to outperform both EUG and One-Shot Progressive Learning at p = 0.05 on DukeMTMC-

VideoReID. This translates to a 4× speedup of learning without sacrificing performance.

On MARS, at p = 0.10, TCPL is able to achieve a Rank-1 accuracy of 61.8%. This is
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Figure 2.3: Comparison with different values of enlarging factor on MARS. Figures
(a) and (b) represent the Rank-1 accuracy and mAP using TCPL with Linter. Figures (c)
and (d) represent the Rank-1 accuracy and mAP using TCPL with Lintra.
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only 1% behind One-Shot Progressive Learning with p = 0.05 and suggests a 2× speedup

with only a negligible drop in performance. All of these indicate that TCPL is robust to

appending pseudo-labeled data more aggressively and thus, can save time.
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Figure 2.4: Performance of TCPL by varying access to the unlabeled set. (a)
presents the Rank-1 acc. and (b) the mAP on DukeMTMC-VideoReID. Temporal consis-
tency performs better than [205, 204] without using the entire unlabeled data, and improves
even further when the unlabeled data is used. This demonstrates two things: (1) using the
unlabeled data efficiently is important, (2) self-supervision can learn highly discriminative
features. (L/UL denotes the labeled/unlabeled set.)

Importance of maximally using the unlabeled data. The ability to extract maximal

information from the unlabeled data is at the core of TCPL. We demonstrate this in Fig.

2.4 by evaluating the losses on DukeMTMC-VideoReID with and without access to entire

unlabeled data at each step of learning.

The results confirm the two aspects of our hypothesis. Firstly, utilizing the entire

unlabeled set at every step of learning improves performance. Secondly, self-supervision -

even without access to the entire unlabeled set - learns better features and improves re-

ID performance. TCPL, with access to only the labeled data, outperforms [204] which

accesses the entirety of the unlabeled set. This is a direct consequence of the ability of
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Figure 2.5: Importance of temporal consistency. (a) presents variations in Rank-1
accuracy on DukeMTMC-VideoReID by changing weights on temporal losses. Higher λ
represents more weight on the temporal losses. (b) presents the variations in mAP.

self-supervision to learn better features via consistency regularization, within and across

camera views.

Weight on the loss function. In our framework, we jointly optimize two types of losses

- the cross-entropy loss and the temporal coherence losses (Lintra,Linter), as defined in Eqn.

2.7, to learn the weights θ of the feature embedding fθ(·). We investigate the contribu-

tions of the temporal losses to the re-identification performance. In order to do that, we

performed experiments with different values of λ (higher value indicates larger weight on

the temporal losses) and present the results on the DukeMTMC-VideoReID dataset in Fig.

2.5. In general, increasing the weight improves performance, indicating the efficacy of self-

supervision. As may be observed from the plot, the proposed method performs best with

λ = 1.

Analysis over pseudo-label estimation. As a consequence of more discriminative fea-

ture learning using local consistency, TCPL is able to generate high-quality labels for the

unlabeled set. At p = 0.20 and p = 0.10, TCPL is able to achieve 8.2% and 4.0% improve-
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Figure 2.6: Pseudo-label estimation. Accuracy of pseudo-labels as enlarging factor p is
varied, on MARS [(a), (b)] and DukeMTMC-VideoReID [(c), (d)]

ment in label estimation respectively, on DukeMTMC-VideoReID, compared to EUG. On

MARS, the improvement in estimation is 5.0% and 3.8% respectively. A visual represen-

tation of the improved pseudo-label estimation can be found in Fig. 2.6.
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Table 2.1: Comparison of TCPL with state-of-the-art one-shot and unsupervised methods
on the MARS and DukeMTMC-VideoReID datasets. (Sup./Unsup. refers to supervised
and unsupervised methods respectively.)

Method Setting
MARS Duke

R-1 R-5 mAP R-1 R-5 mAP

Baseline: upper bound Sup. 80.8 92.1 67.4 83.6 94.6 78.3

TCPL -full (Ours) 1-shot 65.2 77.5 43.6 76.8 87.8 67.9

TCPL -Lintra (Ours) 1-shot 63.3 75.2 42.9 76.2 87.6 67.7

TCPL -Linter (Ours) 1-shot 64.9 77.5 43.1 74.4 86.6 66.5

One-Shot Prog. [204] 1-shot 62.8 75.2 42.6 72.9 84.3 63.3

EUG [205] 1-shot 62.7 72.9 42.5 72.8 84.2 63.2

Stepwise Metric [114] 1-shot 41.2 55.6 19.7 56.3 70.4 46.8

DGM+IDE [211] 1-shot 36.8 54.0 16.9 42.4 57.9 33.6

Baseline: lower bound 1-shot 36.2 50.2 15.5 39.6 56.8 33.3

BUC [106] Unsup. 61.1 75.1 38.0 69.2 81.1 61.9

UTAL [99] Unsup. 49.9 66.4 35.2 - - -

DAL [28] Unsup. 46.8 63.9 21.4 - - -
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Table 2.2: Variation in one-shot performance results for different scales of the enlarging
parameter p. The best and second best results are in red/blue respectively.

p Method
Duke MARS

R-1 R-5 R-20 mAP R-1 R-5 R-20 mAP

0.20

EUG [205] 68.9 81.1 89.4 59.5 48.7 63.4 72.6 26.6

One-Shot Prog. [204] 69.1 81.2 89.6 59.6 49.6 64.5 74.4 27.2

TCPL -Lintra 74.4 85.8 91.6 65.4 52.5 65.6 73.9 31.6

TCPL -Linter 69.4 81.6 88.5 60.5 53.6 66.2 74.9 30.6

0.10

EUG [205] 70.8 83.6 89.6 61.8 57.6 69.6 78.1 34.7

One-Shot Prog. [204] 71.0 83.8 90.3 61.9 57.9 70.3 79.3 34.9

TCPL -Lintra 74.8 87.3 92.0 66.7 59.7 72.0 79.3 39.3

TCPL -Linter 74.9 86.5 92.0 67.2 61.8 74.7 81.5 39.5

0.05

EUG [205] 72.8 84.2 91.5 63.2 62.7 72.9 82.6 42.5

One-Shot Prog. [204] 72.9 84.3 91.4 63.3 62.8 75.2 83.8 42.6

TCPL -Lintra 76.2 87.6 92.9 67.7 63.3 75.2 82.4 42.9

TCPL -Linter 74.4 86.6 92.2 66.5 64.9 77.5 84.1 43.1

27



2.5 Conclusion

We introduce a new framework, Temporally Consistent Progressive Learning,

which uses self-supervision via temporal coherence, in conjunction with one-shot labels, to

learn a person re-ID model. Two novel temporal consistency losses, intra-sequence tempo-

ral consistency, and inter-sequence temporal consistency, are at the core of this framework.

These losses enable the learning of richer and more discriminative representations. Our ap-

proach demonstrates the importance of using the unlabeled data efficiently and intelligently,

an aspect of one-shot re-ID ignored by most previous works. Experiments on two challeng-

ing datasets establish our method as the state-of-the-art in the one-shot video person re-ID

task.
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Chapter 3

Source-free Adaptation for Pose

Estimation

3.1 Introduction

Human pose estimation is a fundamental task in computer vision that involves

determining the precise locations of keypoints, such as joints, on a human body in an

image or video [178]. The growing need for pose estimation in various applications such

as action recognition [209], human-computer interaction [108], and video surveillance [100]

has driven the rapid development of highly accurate deep learning techniques. However,

the challenge of obtaining large annotated datasets for training, compounded with the

susceptibility to a performance decline in the face of data distribution shifts still poses

limitations for current pose estimation models. To overcome these limitations, recent studies

have focused on unsupervised domain adaptation (UDA) of pose estimators [79, 86]. UDA
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Labeled source dataset Source model

Train parametric prior 
on set of plausible poses

Adaptation

Unlabeled target dataset

Prior drives adaptation in 
absence of source images  

Pose co-ordinates Images

Auxiliary pose dataset

Figure 3.1: Problem setup. Previous UDA methods for pose estimation in the literature
rely on a labeled source dataset while adapting to an unlabeled target dataset. However,
privacy concerns surrounding the use of personally identifiable information in these labeled
datasets, as well as the significant storage and computational requirements, can limit access
to such data. Hence, our work focuses on source-free UDA of pose estimation models.

allows for transferring a pose estimation model trained on a source domain, where labeled

data is available, to a target domain where labeled data is unavailable. Despite improved

and robust pose estimation, the requirement of simultaneous access to both source and

target domains during adaptation hinders real-world implementation. For instance, the

labeled source data may not be accessible post-deployment due to privacy or proprietary

issues. This is particularly relevant for human pose datasets, which contain personally

identifiable information (PII) [170]. Furthermore, adaptation using the entire source data

might be infeasible due to both memory and computational constraints. In light of these

issues, we focus on source-free UDA of human pose estimation models in this chapter.
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Concretely, our objective is to adapt a 2D human pose estimation model to a new

target domain utilizing only its trained parameters and unlabeled target data. This poses a

major challenge as the absence of source data for regularization can cause catastrophic for-

getting. While recent advances have introduced methods to tackle this issue in classification

tasks [103, 4, 142], extending them to the regression task of pose estimation is non-trivial.

To address this challenge, we introduce Prior-guided Self-training (POST), a self-training

regression framework that employs a human pose prior to effectively guide the adaptation

in the absence of source data. An overview of our problem setup is shown in Figure 3.1.

Our approach builds on the Mean Teacher [180] framework, which uses consistency

in the prediction space of a student and teacher model to produce trustworthy pseudo-labels

and learn from the unlabeled target domain. To achieve this, we create two augmented views

of each target image, varying in scale, spatial context, and color statistics. Aligned pose

predictions from both models in both views are then obtained, and consistency between the

predictions across the different views is encouraged to facilitate prediction space adaptation.

However, our empirical results show that relying solely on consistency in the output space

is insufficient when supervision from the source data is lacking. To address this, we also

introduce feature space adaptation, which aims to encourage consistency across features

extracted from the two separate views. We adopt the Barlow Twins [220] approach to

accomplish this. Specifically, we seek to make the cross-correlation matrix calculated from

a pair of feature embeddings as close to the identity matrix as possible.

In addition to the adaptation across both outputs and features, we employ a

human pose prior that models the full manifold of plausible poses in some high-dimensional
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pose space to refine possible noisy pseudo-labels that may arise during self-training. The

plausible poses are represented as points on the manifold surface, with zero distance from it,

while non-plausible poses are located outside the surface, with a non-zero distance from it.

This manifold is learned using a high-dimensional neural field, similar to Pose-NDF [182].

The pose prior acts as a strong regularizer, directing the model to generate more accurate

pose pseudo-labels on the target data and leading to improved adaptation. The learning

of this prior requires an auxiliary dataset of plausible human poses, but this does not

compromise the privacy aspect of our framework as the prior does not make use of RGB

images. In addition, it is worth noting that the prior can be trained offline, separately from

the adaptation process. This not only saves computational resources but also reduces the

amount of storage required. Compared to storing entire images, it is much more efficient to

store pose coordinates, which requires approximately 3000× less memory.

Main contributions. To summarize, our primary contributions are as follows:

• We address the problem of adapting a human pose estimation model to a target

domain consisting of unlabeled data, without access to the source dataset. This

ameliorates the privacy concern associated with the current UDA pose estimation

methods.

• We introduce Prior-guided Self-training (POST), a simple source-free unsupervised

adaptation algorithm. POST leverages both prediction-level and feature-level consis-

tency, in addition to a human pose prior, to drive self-training for improved adaptation

to the target domain.
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• We evaluate our method qualitatively and quantitatively on three challenging domain

adaptive scenarios, demonstrating that it achieves comparable performance to existing

UDA methods that have access to the source data.

3.2 Related Works

Pose Estimation. 2D human pose estimation aims to locate human anatomical key-

points, such as the elbow and knee. Prior works can be categorized into two primary

frameworks: the top-down framework and the bottom-up framework. Top-down meth-

ods [44, 64, 202, 136, 207, 29, 178] first detect each person from the image and then perform

single-person pose estimation on each bounding box independently. On the other hand,

bottom-up methods [145, 74, 21, 92, 32, 54, 80] predict keypoints of each person directly

in an end-to-end manner. Typical bottom-up methods consist of two steps: predicting

keypoint heatmaps and grouping the detected keypoints into separate poses. In this work,

we focus on the bottom-up framework for efficiency purposes and adopt the Simple Base-

line [207] architecture following [86] to ensure fair comparisons with prior domain adaptation

algorithms.

Unsupervised Domain Adaptation. UDA methods have been extensively applied to

a broad range of computer vision tasks, including image classification [190], semantic seg-

mentation [189], object detection [72], and reinforcement learning [152] to tackle the issue

of data distribution shift. Most approaches aim to align the source and target data dis-

tributions through techniques such as maximum mean discrepancy [116] and adversarial

learning [50, 190]. Another line of research utilizes image translation methods to perform
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adaptation by transforming the source images into the target domain [70, 187]. More re-

cently, there has been a surge of interest in adaptation using only a pre-trained source

model due to privacy and memory storage concerns related to the source data. These in-

clude techniques such as information maximization [103, 4], pseudo-labeling [213, 95] and

self-supervision [206]. Compared to other tasks, domain adaptation for regression tasks,

such as pose estimation, remains relatively unexplored.

Domain Adaptive Pose Estimation. UDA methods for pose estimation have explored

various techniques for overcoming the domain gap, including adversarial feature alignment

and pseudo-labeling. RegDA [79] estimates the domain discrepancy by evaluating false

predictions on the target domain and minimizes it. Mu et al. [132] proposed consistency

regularization with respect to transformations and temporal consistency learning within a

video. Li et al. [98] proposed a refinement module and a self-feedback loop to obtain reliable

pseudo-labels. Recently, Kim et al. [86] introduced a unified framework for both human and

animal keypoint detection, which aligns representations using input-level and output-level

cues. Typically, these methods require access to the source data, which may raise data

privacy, memory and computation concerns. In contrast, our method addresses the domain

adaptation problem in a source-free setting.

3.3 Prior-guided Self-training

Our work investigates source-free domain adaptation for 2D human pose estima-

tion. In the pose estimation task, given an input image x ∈ RH×W×3, the goal is to predict

the corresponding y ∈ RK×2 representing the 2D coordinates of K keypoints using a pose
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Figure 3.2: Overview of framework. Our approach builds on the Mean Teacher frame-
work and performs adaptation both in the pose prediction space using Lout, and the feature
space using Lfeat. This is supplemented by a human pose prior g that scores the predicted
pseudo-labels in terms of plausibility. These scores are used to regularize the adaptation
process in the absence of labeled source data via Lprior. The student model fstu is trained
by the combination of the three losses, while the teacher model ftea is updated with the
exponential moving average (EMA) of the weights of the student model.

regression model f . In this paper, we assume access to a pre-trained model, denoted by

fS , as well as N unlabeled images D = {xi}Ni=1 from a target domain T . Our goal is to

adapt the source model to the target such that it performs better on images drawn from

the target distribution than when directly using the source model on the target images.

Overview. In the absence of source data, we propose to use self-training to adapt the

source pose estimation model to the target domain. However, self-training methods are

prone to error accumulation, particularly when labeled data is absent to act as regular-

ization. Hence, we introduce POST, an enhanced self-training strategy that employs three

essential ideas to prevent such errors:
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1. A weight-averaged teacher model is used to generate the pseudo-labels for self-training.

This ensures better retention of the source knowledge within the teacher model by

reducing the effect of updating the weights via noisy pseudo-labels (Section 3.3.1).

2. In addition to adaptation over the output space via pseudo-labels, the model is

adapted in the feature space as well. For each target image, two aligned predictive

views are generated via data augmentation, and consistency across features extracted

from the two separate views is encouraged via a contrastive learning strategy (Sec-

tion 3.3.1).

3. A human pose prior is used to regularize the overall adaptation by directing the

model to generate more accurate and anatomically plausible pose pseudo-labels (Sec-

tion 3.3.2).

An overview of our framework is presented in Figure 3.2.

3.3.1 Self-training via Mean Teacher

Motivated by research suggesting that weight-averaged models over training steps

tend to perform better than the final model [86, 98], we utilize the Mean Teacher frame-

work [180] to generate pseudo-labels for self-training. The framework involves creating two

identical models, a teacher model ftea and a student model fstu, both of which are initial-

ized with the pre-trained network fS at time step t = 0. At each subsequent time step t,

the student model parameters θ are updated by backpropagating the supervisory signals

provided by the teacher model. The parameters of the teacher model θ̃ are updated via an
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exponential moving average (EMA) of the student model parameters.

θ̃t = αθ̃t−1 + (1− α)θt, (3.1)

where α denotes the smoothing coefficient which is set to 0.999 by default. The EMA update

prevents the teacher model from overfitting to noisy pseudo-labels during the initial rounds

of self-training, thereby, preserving the source knowledge. This is especially advantageous

in our scenario where source data is unavailable to regularize the adaptation.

In the following sections, we demonstrate how to adapt fstu using supervisory

signals from ftea on both the feature space and the pose prediction space.

Prediction space adaptation

At each time step t, we apply two different data augmentations, A1 and A2, to a

target image x to generate two views. We then obtain the keypoint heatmap corresponding

to the first transformed image h̃t = f ttea(A1(x)). Here h̃t ∈ RK×H′×W ′
denotes the spatial

likelihood of the K different keypoints on each channel. The pseudo-label from the teacher

model is generated by obtaining the coordinates which produce the maximum activations

ŷt = argmaxuh̃
t
[:,u].

To reduce the influence of erroneous pseudo-labels in our training process, we

utilize a confidence threshold to discard potentially unreliable labels. Specifically, we only

retain the keypoint activations with the top p% maximum values among all activations and

discard the rest. We set the threshold τ accordingly to reflect this.

Following prior work on supervised pose estimation, we first convert the pseudo-

labels to normalized Gaussian heatmaps [184] and then use the mean squared error (MSE)
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loss to update the student model over batches of target images sampled from D:

Lout =
1

|B|
∑

x∈B

K∑

k=1

1
(
ĥtk ≥ τ

)
∥Ã1(ĥ

t
k)− Ã2(h

t
k)∥2. (3.2)

We denote the inverse functions of the chosen augmentations A1 and A2 as Ã1 and Ã2, re-

spectively. The heatmap predicted by the student model for the k-th keypoint is represented

by htk = f tstu(A2(x))
k, while the heatmap generated from the pseudo-labels predicted by the

teacher model is represented by ĥtk = L(ŷt)k. Here, L(·) represents the heatmap generating

function and B denotes a batch of target images.

Feature space adaptation

Pose estimation models primarily rely on a high-to-low-resolution feature encoder

to generate low-resolution representations, which are then used to recover high-resolution

pose heatmaps [207]. Since the upsampling process is inherently noisy, providing interme-

diate supervision to explicitly adapt the features, in addition to adapting the output pose

keypoints as shown in the previous section, can be beneficial [136]. While previous work

has demonstrated the benefits of joint adaptation across the output and feature space via

adversarial learning in tasks such as semantic segmentation [188], this has been exclusively

focused on scenarios where source data is available. Here, we propose an alternative way to

accomplish feature space adaptation in the absence of source data via contrastive learning.

We begin by creating two different views of each target image x using a pair

of sampled augmentations A1 and A2, as previously shown. Next, considering the pose

estimation model as a composition of a feature encoder and an output regressor, i.e., f =

Dec ◦ Enc, we extract the augmentation reversed feature maps from the teacher model
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z̃ = Ã1(Enctea(A1(x))) and the student model z = Ã2(Encstu(A2(x))). We extract pairs

of features for every image in a batch, pool them along the spatial dimensions, and then

normalize them along the batch dimension to ensure that each covariate has a mean of 0

over the batch. For simplicity, we overload z, z̃ to represent the normalized features, and

drop the time index t.

We utilize feature-level consistency between the different views in order to accom-

plish feature space adaptation. This is achieved via a contrastive learning strategy which

encourages the cross-correlation matrix between the outputs of the two networks to be as

close to the identity matrix as possible [220],

Lfeat =
∑

i

(1− Cii)
2 + γ

∑

i

∑

j ̸=i
Cij

2. (3.3)

We define γ as a positive constant that balances the importance of the first and second

terms of the loss function. C represents the cross-correlation matrix computed between the

outputs of the student and teacher networks along the batch dimension:

Cij =

∑|B|
b=1 z̃b,izb,j√∑|B|

b=1 (z̃b,i)
2
√∑|B|

b=1 (zb,j)
2
. (3.4)

Here, b represents the batch index, while i and j index the feature dimensions of the

networks’ outputs. We set γ = 5e− 3 following [220].

The first term of Lfeat encourages the consistency of pose features within the same

image by equating the diagonal elements of the cross-correlation matrix to 1, effectively

reversing the effects of augmentations. In contrast, the second term aims to decorrelate the

different feature dimensions of the embedding by forcing the off-diagonal elements of the

cross-correlation matrix to 0.
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3.3.2 Regularization via Pose Prior

Enhancing the performance of the pose estimation model on the target domain

through joint adaptation over the output and feature space is undoubtedly valuable. How-

ever, this approach has its limitations, as it relies solely on general domain adaptation

principles and overlooks the rich structural priors associated with human poses. To address

this issue, we propose incorporating a parametric human pose prior to better adapt the

pose estimation model to the target domain.

2D Human pose prior

Building upon the work of [182], we propose a human pose prior modeled as a

manifold consisting of plausible 2D poses. To represent the 2D poses while ignoring aspects

such as size and scale, we use a set of 2D orientation vectors that connect pairs of joints in

the human skeleton, denoted by G = {θ = (θ1, . . . , θL) | θl ∈ R2, ∥θl∥2 = 1 ∀l ∈ [L]}. We

assume that plausible 2D human poses lie on a manifold embedded in this pose space G.

We use a function g : G −→ R+, which maps a pose to a non-negative scalar, to represent

the manifold of plausible poses as the zero-level set:

P = {θ ∈ G | g(θ) = 0}, (3.5)

where g represents the unsigned distance to the manifold. We construct this distance

function by first encoding the pose using a hierarchical network genc that encodes the human

pose based on its anatomical structure [124], and subsequently, use gdec to predict the

distance based on the pose representation.
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Specifically, for a given pose θ, we encode it as follows,

v1 = g1enc(θ1), vl = glenc(θl,vΩ(l)), l ∈ {2, . . . , L}. (3.6)

Here, Ω(l) is a function that maps the index of each orientation vector to its parent ori-

entation vector in the kinematic chain of the human skeleton. We obtain the overall pose

encoding as p = [v1| . . . |vL] by concatenating all the individual orientation encodings. This

pose encoding is then processed by gdec : Rd.L −→ R+, which predicts the unsigned distance

for the given pose representation p. A lower distance value for a pose implies that the

configuration of joints is more likely to be a plausible human pose.

Pose prior training

To train the parametric prior g, we rely on an auxiliary dataset of M human

poses DA = {θi}NA
i=1, where θi = (θi1, . . . , θ

i
L). Importantly, these poses are not associated

with their corresponding RGB images, which preserves the privacy aspect of the method.

Additionally, storing only the pose coordinates instead of entire images makes data storage

much more efficient and feasible.

We adopt a supervised approach to train g to predict the L2 distance to the

plausible pose manifold for a given pose. To achieve this, we construct a dataset D̃ =

{(θi, di)}Mi=1, consisting of pose and distance pairs, from DA. As the poses from DA lie on

the desired manifold, we assign d = 0 to all poses in the dataset. To diversify our training

samples, we randomly generate negative samples with distance d > 0 by perturbing the

poses from DA with noise.
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We train the network with the standard L1 loss,

Ldist =
∑

(θ,d)∈D̃

∥g(θ)− d∥1. (3.7)

More details on the training process of the prior are provided in the experiments.

Adaptation using pose prior

We leverage the trained pose prior g to regularize the adaptation process by in-

centivizing the pose estimator to generate pseudo-labels that resemble plausible human

poses.

Given the heatmaps {htk}Kk=1 generated for each keypoint by the student model

f tstu for a target image x, we calculate the corresponding orientation vectors in a differen-

tiable manner to evaluate the plausibility of the predicted pose using the prior. First, we

renormalize each heatmap to a probability distribution via spatial softmax and condense it

to a point by computing the spatial expected value of the latter. For computational effi-

ciency, we carry this out in a separable manner along the two spatial dimensions. Namely,

assuming u = (u1, u2) to be the two components of each pixel coordinate, we set

uki =

∑
ui
uie

htk(ui)

∑
ui
eh

t
k(ui)

, htk(ui) =
∑

uj

htk(u1, u2), (3.8)

where i = 1, 2 and j = 2, 1 respectively. Next, we use the pose coordinates to determine

the orientation vectors between pairs of connected keypoints. Specifically, for every pair

(a, b) of connected keypoints in the human skeleton (denoted by the set E), we calculate

the unit vector θ in the direction from ua to ub, where ua and ub are the estimated softmax
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coordinates of keypoints a and b, respectively, i.e.,

θ =
ua − ub

∥ua − ub∥2
, ∀(a, b) ∈ E . (3.9)

Finally, we use the prior as a regularization term to minimize the distance of the current

pose from our learned manifold,

Lprior =
1

|B|
∑

x∈B
g(T (f tstu(x))), (3.10)

where T (·) converts the predicted heatmaps to the orientation vector format required as

input by the prior.

3.3.3 Overall Adaptation

The final training objective for the student model fstu can be expressed as:

min
fstu

Lout + λ1Lfeat + λ2Lprior. (3.11)

Here, λ1 and λ2 are hyper-parameters that control the influence of feature space adaptation

and prior regularization, respectively. The teacher model ftea is updated asynchronously

by computing an exponential moving average of the student model weights as shown in

Equation 3.1.

3.4 Experiments

In this section, we demonstrate POST’s ability to adapt a 2D human pose estima-

tion model to a target domain using only unlabeled data from that domain. We conduct

experiments on three domain adaptive scenarios and compare with state-of-the-art domain
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adaptation baselines that utilize source data during adaptation. We also conduct exten-

sive analysis to analyze the contribution and interaction between each component in our

framework.

3.4.1 Datasets

SURREAL: SURREAL [194] is a large-scale dataset of synthetically generated images

of people rendered from 3D sequences of human motion capture data against indoor back-

grounds. It contains over 6 million frames, making it one of the largest and most diverse

datasets of its kind.

Human3.6M: Human3.6M [76] is a real-world video dataset captured in indoor envi-

ronments, comprising 3.6 million frames. The dataset features human subjects performing

various actions. In order to reduce redundancy and computational complexity, we down-

sampled the videos from 50fps to 10fps as per the approach proposed in [79]. For training,

we follow the standard protocol proposed in [86] and use 5 subjects (S1, S5, S6, S7, S8),

while the remaining 2 subjects (S9, S11) are reserved for testing.

LSP: Leeds Sports Pose (LSP) [82] is a real-world dataset that contains 2,000 images with

annotated human body joint locations collected from sports activities. The images in LSP

are captured in the wild, featuring a wide variety of human poses that are often challenging

to detect.

BRIAR: BRIAR [33] is a cutting-edge biometric dataset featuring a large-scale collection

of videos of human subjects captured in extremely challenging conditions. The videos are
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recorded at varying distances, i.e., close range, 100m, 200m, 400m, 500m, and unmanned

aerial vehicles (UAV), with each video lasting around 90 seconds. We randomly sample 20

frames from each sequence for each of the 158 subjects for our experiments.

3.4.2 Experiment Protocols

Pose estimation model. We adopt the Simple Baseline [207] as our pose estimation

model, with the ResNet-101 [65] as the backbone. To train the model, we use the Adam

optimizer [89] with a base learning rate of 1e − 4, scheduled to decrease to 1e − 5 after

5 epochs and to 1e − 6 after 20 epochs. The model is trained for 30 epochs. We use a

batch size of 32 and run 500 iterations per epoch. To threshold the model predictions, we

set the confidence thresholding ratio p to 0.5. To augment the images during training, we

follow [86] and use rotation, translation, shear, and Gaussian blur. The hyper-parameters

λ1 and λ2 are set to 1e− 3 and 1e− 6, respectively.

Pose prior. The training of the parametric prior follows a multi-stage approach that in-

volves using different types of training samples. Initially, we use a combination of manifold

poses θm and non-manifold poses θnm with a considerable distance from the desired man-

ifold. Over the course of training, we gradually increase the number of non-manifold poses

θnm with a small distance from the manifold. This enables our model to first learn a smooth

surface and then gradually incorporate finer details as training progresses. We create these

non-manifold poses θnm by injecting noise into the manifold poses θm obtained from the

auxiliary dataset. Specifically, we sample directional noise from the Von-Mises distribution

[53] and add it to the manifold poses in order to obtain the implausible poses.
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The architecture for the encoder genc consists of a 2-layer MLP with an output

feature size of d = 6 for each orientation vector, similar to [124]. The distance field network

gdec is implemented as a 5-layer MLP. Given its large size and diverse poses, we train the

prior for our primary experiments using the SURREAL dataset.

3.4.3 Comparison with Baselines

Baselines. We evaluate the performance of our proposed method against several state-

of-the-art domain adaptive frameworks. This includes adversarial learning-based feature

alignment methods, such as DAN [116], DD [224], and RegDA[79]. Additionally, we consider

approaches based on pseudo-labeling, namely CCSSL[132], and UDAPE [86]. It is worth

noting that all these methods employ the source data during the adaptation process. To

establish a comprehensive performance baseline, we report the results of two additional

baselines: Oracle and Source only. The Oracle baseline represents the upper bound of the

model’s performance, achieved by training the model jointly with target 2D annotations.

On the other hand, Source only represents the model’s performance when it is directly

applied to the target domain without any adaptation.

Metrics. We adopt the evaluation metric of Percentage of Correct Keypoint (PCK) for

all experiments and report PCK@0.05 that measures the ratio of correct prediction within

a range of 5% with respect to the image size.
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Table 3.1: PCK@0.05 on SURREAL → LSP. (Best value is in red color, while the
second best value is in blue color.)

Method SF Sld. Elb. Wrist Hip Knee Ankle Avg.

Source only - 51.5 65.0 62.9 68.0 68.7 67.4 63.9

Oracle - - - - - - - -

DAN ✗ 52.2 62.9 58.9 71.0 68.1 65.1 63.0

DD ✗ 28.4 65.9 56.8 75.0 74.3 73.9 62.4

RegDA ✗ 62.7 76.7 71.1 81.0 80.3 75.3 74.6

CCSSL ✗ 36.8 66.3 63.9 59.6 67.3 70.4 60.7

UDAPE ✗ 69.2 84.9 83.3 85.5 84.7 84.3 82.0

POST ✓ 66.5 83.9 81.0 84.6 83.1 82.6 80.3

3.4.4 Results

Quantitative results. We evaluate POST in two adaptation scenarios: SURREAL→LSP

and SURREAL→Human3.6M, and report the quantitative results in Table 3.1 and Ta-

ble 3.2, respectively. Specifically, we report the PCK@0.05 on 16 keypoints of the human

body, including shoulders (sld.), elbows (elb.), wrists, hips, knees, and ankles. Our method

achieves comparable results to many recent approaches that leverage source data for adap-

tation. Among these methods, UDAPE [86] achieves the highest performance on both

cases, with our framework achieving a close second and only 2 percentage points behind
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Table 3.2: PCK@0.05 on SURREAL → Human3.6M.

Method SF Sld. Elb. Wrist Hip Knee Ankle Avg.

Source only - 69.4 75.4 66.4 37.9 77.3 77.7 67.3

Oracle - 95.3 91.8 86.9 95.6 94.1 93.6 92.9

DAN ✗ 68.1 77.5 62.3 30.4 78.4 79.4 66.0

DD ✗ 71.6 83.3 75.1 42.1 76.2 76.1 70.7

RegDA ✗ 73.3 86.4 72.8 54.8 82.0 84.4 75.6

CCSSL ✗ 44.3 68.5 55.2 22.2 62.3 57.8 51.7

UDAPE ✗ 78.1 89.6 81.1 52.6 85.3 87.1 79.0

POST ✓ 81.3 88.5 77.4 46.1 83.4 83.4 76.7

on average. Notably, we outperform every other method, including the recently proposed

RegDA [79] approach, by a significant margin of up to 5.7 percentage points. It is worth

noting that not only do these methods require source data, but also involve additional mod-

els such as discriminators or style transfer modules, and unstable adversarial training. In

contrast, our framework is lightweight, only involves pseudo-label training, and utilizes a

simple prior model that can be trained offline.
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Figure 3.3: Qualitative results on SURREAL → Human3.6M. We demonstrate sam-
ple results on the Human3.6M dataset. For each row, the leftmost shows the Source only
prediction, the middle one shows the UDAPE [86] prediction, and the rightmost shows the
prediction made POST.

Qualitative results. In addition to quantitative results, we also present qualitative re-

sults on SURREAL→Human3.6M in Figure 3.3. Also, we present only visual results on the

SURREAL→BRIAR adaptation scenario since pose annotations are absent in the BRIAR

dataset. Figure 3.4 displays the predicted human poses on images taken from six different

imaging ranges in the BRIAR dataset. While using the source model directly produces

completely inaccurate poses, POST can accurately localize the keypoint locations, even in

the presence of occlusions and atmospheric turbulence. Our approach can also accurately

reconstruct poses even when the human is imaged from an elevated perspective, resulting in

a high camera angle (Figure 3.4.f). Notably, our approach achieves this without using any

source data for adaptation. Our results are comparable to those produced by UDAPE [86],

which utilizes source data for adaptation.
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a) 100m

b) 200m

c) 400m

d) 500m

e) close range

f) uav

Figure 3.4: Qualitative results on SURREAL → BRIAR. We demonstrate sample
results on the BRIAR dataset at all ranges. For each range, we display three images: the
leftmost shows the Source only prediction, the middle one shows the UDAPE [86] prediction,
and the rightmost shows the prediction made by our framework. Although our approach
does not use any source data for adaptation, it is able to match the predictions produced
by UDAPE, which uses source data.
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Table 3.3: Effect of auxiliary dataset. We evaluate the effect of the auxiliary dataset
on downstream adaptation tasks.

SURREAL→Human3.6M

Aux. dataset Sld. Elb. Wrist Hip Knee Ankle Avg.

SURREAL 81.3 88.5 77.4 46.1 83.4 83.4 76.7

Human3.6M 80.9 88.0 77.2 45.0 83.1 82.8 76.2

SURREAL→LSP

Aux. dataset Sld. Elb. Wrist Hip Knee Ankle Avg.

SURREAL 66.5 83.9 81.0 84.6 83.1 82.6 80.3

Human3.6M 66.1 83.6 80.7 84.4 83.1 82.5 80.1

3.4.5 Ablation Studies

Effect of auxiliary dataset. We conduct experiments to evaluate the impact of the

choice of the auxiliary dataset (used to train the prior) on downstream adaptation. The

results are presented in Table 3.3. Our findings indicate that POST is robust to the choice

of the auxiliary dataset, with performance differences of ∼ 0.5 percentage points.

Effect of loss terms. We conduct an experiment to evaluate the performance of each

component of our framework. The results on the SURREAL→Human3.6M adaptation

scenario are presented in Table 3.4. Our findings indicate that in addition to prediction
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Table 3.4: Effect of each loss term. We evaluate the contribution of each loss term on
SURREAL→Human3.6M.

Lout Lfeat Lprior Sld. Elb. Wrist Hip Knee Ankle Avg.

✗ ✗ ✗ 69.4 75.4 66.4 37.9 77.3 77.7 67.3

✓ ✗ ✗ 77.9 86.7 73.7 38.8 83.0 84.3 74.1

✓ ✓ ✗ 81.7 87.1 75.2 44.3 82.3 82.2 75.5

✓ ✓ ✓ 81.3 88.5 77.4 46.1 83.4 83.4 76.7

Table 3.5: Effect of τ . We evaluate adaptation performance on SURREAL→Human3.6M
as τ is varied.

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

76.4 76.5 76.7 75.3 73.8

space adaptation, feature space adaptation also plays a crucial role in enabling effective

unsupervised learning from pseudo-labels. Moreover, we observed that the human pose

prior brings additional improvements, thus validating our hypothesis that noisy pose pseudo-

labels can be refined implicitly by a prior in the absence of source data. Overall, our results

demonstrate the effectiveness of our framework and the importance of each of its components

in achieving state-of-the-art performance.

Effect of thresholding. We analyze the impact of the pseudo-label threshold τ on the

adaptation performance in Table 3.5. The results on SURREAL→Human3.6M reveal that

as we increase this ratio, the performance gradually decreases. This can be attributed
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(a) Human3.6M → SURREAL

(b) SURREAL → Human3.6M

Figure 3.5: Cross-dataset prior transfer. We plot the histogram of scores predicted by
the prior. The prior is able to clearly demarcate plausible poses from implausible poses
across datasets.

to the fact that higher thresholding ratios tend to include lower confident predictions as

pseudo-labels, which can negatively impact adaptation.

Cross-dataset performance of prior. We evaluate the ability of the learned prior to

handle distribution shift separately from the adaptation performance. Specifically, we assess

the robustness of the prior by computing pose scores across datasets, and the results are

presented in Figure 3.5. The plot demonstrates that our prior is effective in scoring plausible

(real) poses with low scores and scoring implausible poses with higher scores. Note that the
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bell curve shape of the noisy pose scores is due to the Von-Mises noise added to create the

noisy poses.

3.5 Conclusion

We address the problem of adapting a pre-trained 2D human pose estimator to

a new target domain with unlabeled target data. To this end, we propose a self-training

algorithm, POST, that leverages a Mean Teacher framework to enforce both prediction-level

and feature-level consistency between a pair of student and teacher models. Our approach

incorporates a human pose prior that captures the manifold of possible poses in a high-

dimensional space, which helps to refine noisy pseudo-labels generated during self-training.

We evaluate our method on three challenging adaptation scenarios and show that it achieves

competitive performance compared to existing UDA methods that have access to source

data.
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Chapter 4

Domain Adaptive Imitation

Learning

4.1 Introduction

Humans possess the innate ability to quickly pick up a new behavior by simply

observing others performing the same skill. Not only are we able to learn from demonstra-

tions coming from a third-person point of view, but we are also capable of imitation from

experts who are morphologically different or have different embodiments - as evidenced by

a child imitating an adult with different bio-mechanics [83]. Previous works in neuroscience

[157, 122] have attributed this to the human capacity of learning structure preserving do-

main correspondences via an invariant feature space [192], which allows us to reconstruct

the observed behavior in the self-domain. While imitation learning algorithms [68, 159] are

successful, to some extent, in endowing autonomous agents with this ability to imitate ex-
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pert behavior, they impose the somewhat unrealistic requirement that the demonstrations

must come from the same domain, whether that be first-person viewpoint, same morphol-

ogy or similar dynamics. The question then arises: can we perform imitation learning which

can overcome all such domain discrepancies?

Prior work on bridging domain disparities in imitation learning has focused on each

of these differences in isolation: morphology [60], dynamics [49] and viewpoint mismatch

[175, 172, 113]. These works [60, 113, 172] utilize paired, time-aligned demonstrations from

both domains, on a set of proxy tasks, to first build a correspondence map across the

domains and then perform an extra reinforcement learning (RL) step for learning the final

policy on the given task. This limits their applicability since paired demonstrations are

rarely available and RL procedures are expensive.

Recently, [88] proposed a general framework that can perform imitation across

a wide array of such discrepancies from unpaired, unaligned demonstrations. However,

they require expert actions, such as the exact kinematic forces, in order to learn a domain

correspondence and assume the availability of an expert policy which is utilized in an in-

teractive learning setting. This is distinctly different from how humans imitate: we are

capable of learning behaviors solely from observations/states, without access to underlying

actions. Furthermore, continuously querying the expert might be onerous in several situa-

tions. Thus, we require a mechanism for learning policies from observation alone, where the

expert demonstrations can originate in a domain that is different from the agent domain

and access to the expert is limited. We define this setting as Cross Domain Imitation from

Observation (xDIO).
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Figure 4.1: Problem setup. Cross-domain Imitation from Observation (xDIO) entails
learning from experts who are different from the agent. Here, the expert is a 4-legged
Ant, while the agent is a HalfCheetah. We learn a domain transformation function from
unpaired, unaligned, state-only trajectories from a set of proxy tasks and utilize it to imitate
the expert on the given inference task.

In this chapter, we propose a novel framework to tackle the xDIO problem, encom-

passing morphological, viewpoint, and dynamics mismatch. We follow a two-step approach

(see Fig. 4.1), where we first learn a transformation across the domains using the proxy

tasks [60], followed by a transfer process and subsequent learning of the policy. Importantly,

in contrast to previous work, we use unpaired and unaligned trajectories containing only

states on the expert domain trajectories, to learn this transformation. Additionally, we

do not assume any access to the expert policy or the expert domain except for the given

demonstrations. To learn the state correspondences, we jointly minimize the divergence be-

tween the transition distributions in the state space as well as in the latent space between

the expert and the agent proxy task trajectories, while learning to translate between the

two domains with the unpaired data via cycle-consistency [231]. However, solely learning
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with such state cycle consistency may only result in local alignment, and lead to difficul-

ties in optimizing for complex environments. Thus, to impose global alignment, we enforce

additional consistency on the temporal position of states across the two domains. This en-

sures that when a state is mapped from one domain to the other, the degree of completion

associated with being in that state remains unchanged. Having learned this mapping on

the proxy tasks, we transfer demonstrations for a new inference task from the expert to the

agent domain, which are subsequently utilized to learn a policy via imitation.

Experiments on a wide array of domains encompassing dynamics, morphological

and viewpoint mismatch, demonstrate the feasibility of learning domain correspondences

from unpaired and unaligned state-only demonstrations.

Main contributions. To summarize, our primary contributions are as follows:

• We propose an algorithm for cross-domain imitation learning by learning transforma-

tions across domains, modeled as Markov Decision Processes (MDP), from unpaired,

unaligned, state-only demonstrations, thereby ameliorating the need for costly paired,

aligned data.

• Unlike previous work, neither do we utilize any costly RL procedure, nor do we require

interactive querying of an expert policy.

• We adopt multiple tasks in the MuJoCo physics engine [183], and show that our

framework can find correspondences and align two domains across different viewpoints,

dynamics, and morphologies.

58



4.2 Related Works

Imitation Learning. Imitation learning [167] uses a set of expert demonstrations to

learn a policy that successfully mimics the expert. A common approach is behavioral

cloning (BC) [146, 15], which amounts to learning to mimic the expert demonstrations via

supervised learning. Inverse reinforcement learning (IRL) is another approach, where one

seeks to learn a reward function that explains the demonstrated actions [68, 3, 232]. Recent

works [185, 210, 144] extend imitation learning to state-only demonstrations, where expert

actions are not observed - this opens up the possibility of using imitation in robotics and

learning from weak-supervision sources such as videos. Unlike these approaches, our work

tackles the problem of imitation from state-only demonstrations coming from a different

domain.

Domain Transfer in Reinforcement Learning. Transfer in the reinforcement learning

setting has been attempted by a wide array of works [181]. [9] manually define a common

state space between MDPs and use it to learn a mapping between states. Unsupervised

manifold alignment is used in [7] to learn a linear map between states with similar local

geometric properties. However, they assume the existence of hand-crafted features along

with a distance metric between them, which limits their applicability. Recent works in

transfer learning across mismatches in embodiment [60] and viewpoint [113, 172], obtain

state correspondences from a proxy task set comprising paired, time-aligned demonstrations

and use them to learn a state map or a state encoder to a domain invariant feature space.

[88] proposed a framework that can learn a map across domains from unpaired, unaligned
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Table 4.1: Comparison to prior work using attributes demonstrated in the paper. xDIO

satisfies all the criteria desired in a holistic domain adaptive imitation framework.

Method Unpaired trajectories Only states No online expert No RL

IF [60] ✗ ✓ ✓ ✗

DAIL [88] ✓ ✗ ✗ ✓

Ours ✓ ✓ ✓ ✓

demonstrations. However, they require expert actions to train the framework, along with

access to an online expert. Furthermore, most of these approaches [60, 113] utilize an RL

step which incurs additional computational cost. In contrast to these methods, our approach

learns an MDP structure-preserving state map from unpaired, unaligned demonstrations

without requiring access to expert actions, additional RL, or online experts. Viewpoint

agnostic imitation has also been tackled in [175], where a combination of adversarial learning

[68] and domain confusion [191] is used to learn a policy without a proxy set. However, it

fails to account for large variations in viewpoint, in addition to sub-optimal trajectories from

the expert domain. From a theoretical perspective, our approach aligns with the objective

of MDP homomorphisms [151]. Similar ideas are explored in learning the MDP similarity

metric via bisimulation [45] and Boltzmann machine reconstruction error [8]. However,

these works find homomorphisms within an MDP and do not provide ways to discover

homomorphisms across MDPs.

Cycle-consistency. Our work draws inspiration from the literature on cycle-consistency

[231, 69, 174]. CycleGAN [231] introduced cycle-consistency to learn bidirectional transfor-
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mations between domains via Generative Adversarial Networks [56] for unpaired image-to-

image translation. This was extended to domain adaptation in [69]. Similar techniques are

applied in sim-to-real transfer [67, 48]. Recently, [149] propose RL-CycleGAN to perform

sim-to-real transfer by adding extra supervision from the Q-value function. Unlike these

works, which are restricted to visual alignments, we propose to learn alignments across

differing dynamics/morphology.

4.3 Problem Setting

Before formally defining the xDIO problem, we first lay the groundwork in terms

of notation. Following [88], we define a domain as a tuple (S,A,P,P0), where S denotes

the state space, A is the action space, P is the dynamics or transition function, and P0 is

the initial distribution over the states. Given an action a ∈ A, the next state is governed

by the transition dynamics as s′ ∼ P(s′|s, a). An infinite horizon Markov Decision Process

(MDP) is defined subsequently by including a reward function r : S × A → R, and a

discount factor γ ∈ [0, 1] to the domain tuple. Thus, while the domain typifies only the

agent morphology and the dynamics, augmenting the domain with a reward and discount

factor describes an MDP for a particular task. We define an MDP in some domain x for a

task T as MT
x =

(
Sx,Ax,Px, rTx , γTx ,P0x

)
. A policy is a map πTx : Sx → B(Ax), where B

is the set of all probability measures on Ax. A trajectory corresponding to the task T in

domain x is a sequence of states ηMT
x
= {s0x, s1x, . . . , s

Hη
x }, where Hη denotes the length of

the trajectory. We denote DMT
x
= {ηiMT

x
}Ni=1 to be a set of such trajectories. In our work,

we consider two domains: expert and agent, indicated by MT
E and MT

A respectively.
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The objective of xDIO is to learn an optimal policy πTA in the agent domain,

given state-only demonstrations DMT
E

in the expert domain. In this paper, we propose

to first learn a transformation ψ : SE → SA between the domains and then leverage ψ

to imitate from the expert demonstrations. Following prior work [60, 113, 88], we assume

access to a dataset consisting of expert-agent trajectories for M different proxy tasks: D =

{(D
M

Tj
E

,D
M

Tj
A

)}Mj=1. Proxy tasks encompass simple primitive skills in both domains and

are different from the inference task T , for which we wish to learn the policy.

We relax certain assumptions made in previous work, which are critical for real-

world applications. Firstly, the trajectories derived from proxy tasks are not paired, i.e.,

time-aligned trajectories do not exist in D. This is crucial in real-world cases, as the tasks

may not be executed at the same rate in different domains. Secondly, expert actions are

not observed: such actions are difficult to obtain in various scenarios such as videos of

humans performing some task. Finally, we train in an offline fashion and do not require any

expert policy for interactive querying, to guide the learning process, beyond the provided

demonstrations.

Once the domain transformation function ψ is learned, we use it to translate the

expert domain trajectories DMT
E
, for the inference task T , to the agent domain to obtain

D̂MT
A
. An inverse dynamics model IA : SA × SA → AA is then learned to augment these

translated trajectories with actions, similar to [185]. These are subsequently used to learn

the policy πTA via imitation learning.
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4.4 Cross-domain Imitation from Observation

A crucial characteristic of a good domain transformation ψ lies in MDP dynamics

preservation. In our framework, we enforce this from both the local and global perspectives.

For local alignment, we aim to ensure that optimal state transitions in MT
E map to optimal

transitions in MT
A. Our proposed method achieves this local alignment by matching the

state-transition distributions defined for the true and transferred trajectories on the proxy

tasks in an adversarial manner while maintaining cycle-consistency. A latent space is learned

via a mutual information objective to only preserve task-specific information. On the other

hand, a learned temporal position function aims to enforce consistency on the temporal

position of the states across the two domains to ensure global alignment. In the following

parts, we define each of these components in more detail.

4.4.1 Local Alignment via Distribution Matching

State cycle-consistency. We seek to map optimal transitions in the expert domain

to the agent domain, and propose to learn domain transformation ψ such that the state

transition distribution is matched over the trajectories derived from the proxy tasks. We

utilize adversarial training to accomplish this. Given unpaired samples {(stE , st+1
E )} ∈ D

M
Tj
E

and {(stA, st+1
A )} ∈ D

M
Tj
A

drawn from the jth proxy task, the function ψ is learned in an

adversarial manner with a discriminator Dj
A, where ψ tries to map (stE , s

t+1
E ) onto the

distribution of (stA, s
t+1
A ), while Dj

A tries to distinguish translated samples
(
ψ(stE), ψ(s

t+1
E )

)
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against real samples (stA, s
t+1
A ):

min
ψ

max
Dj

A

Ljadv = E(stA,s
t+1
A )∼D

M
Tj
A

[
logDj

A(s
t
A, s

t+1
A )

]

+E(stE ,s
t+1
E )∼D

M
Tj
E

[
log(1−Dj

A(ψ(s
t
E), ψ(s

t+1
E )))

]
(4.1)

Solely optimizing this adversarial loss can lead to the model mapping the same set

of states to any random permutation of states in the agent domain, where any of the learned

mappings can induce an output distribution that matches the agent state transition distri-

bution. Following [231], we introduce cycle consistency as a means to control this undesired

effect. We learn another state map in the opposite direction ϕ : SA → SE by optimizing

an adversarial loss, minϕmax
Dj

E
Ljadv, with a discriminator Dj

E . Cycle consistency is then

imposed as:

min
ψ,ϕ

Ljcyc = EsE∼D
M

Tj
E

[
∥ϕ ◦ ψ(sE)− sE∥22

]
+ EsA∼D

M
Tj
A

[
∥ψ ◦ ϕ(sA)− sA∥22

]
(4.2)

Domain invariant latent space. To incentivize ψ, ϕ to generalize beyond proxy tasks,

we use an encoder-decoder structure for the transformation function ψ. Concretely, ψ =

DE ◦ EE , where EE : SE → Z represents an encoder which maps a state in the expert

domain to a domain agnostic latent space Z, while DE : Z → SA represents the decoding

function. ϕ = DA ◦ EA is defined similarly via the same latent space Z. Prior work [60] has

explored learning such invariant spaces, but use paired data from both domains, which is a

very strong and often unrealistic assumption, as explained above. Inspired from work based

on information theoretic objectives [43, 197], we learn the latent space by minimizing the

mutual information between the domain and the latent transitions:

min
EE ,EA

I
(
d; (zt, zt+1)

)
(4.3)
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where (zt, zt+1) denotes an encoded transition from either of the domains. Minimizing the

mutual information between the domain (∆ = {E,A}) and the encoded latent transition for

the same proxy task will result in a latent space that encodes the task-specific information

and filters out the domain-specific nuances.

Note that we can decompose the mutual information term as I
(
∆; (zt, zt+1)

)
=

H(∆) − H(∆|(zt, zt+1)), where H(·) denotes the entropy. Thus, our objective in Equa-

tion 4.3 reduces to just maximizing the conditional entropy H(∆|(zt, zt+1)). Due to the

intractability of this expression [6, 147], we optimize the following variational lower bound

instead,

Ed∼∆,(std,s
t+1
d )∼D

M
Tj
d

[
− log qj

(
d|(zt, zt+1)

)]
, (4.4)

where qj denotes a variational distribution that approximates the true posterior.

Here, qj is parameterized as a discriminator which outputs the probability that

the generated transition comes from domain d for the jth proxy task. Maximizing this

objective over the encoder parameters ensures that the discriminator is maximally confused

and the latent transitions for the task, coming from both domains, are well aligned. The

overall objective is as follows:

min
qj

max
EE ,EA

LMI = Ed∼∆,(std,s
t+1
d )∼D

M
Tj
d

[
− log qj

(
d|
(
zt, zt+1

))]
(4.5)

Additionally, we enforce consistency in the latent embedding to further constrain the learned

mapping:

min
ψ,ϕ

Ljz = EsE∼D
M

Tj
E

[
∥EA ◦ ψ(sE)− EE(sE)∥22

]
+ EsA∼D

M
Tj
A

[
∥EE ◦ ϕ(sA)− EA(sA)∥22

]

(4.6)
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<latexit sha1_base64="FHod91URYwqVqmABzs0raPaelZA=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRJRdFlw48JFBfuANobJ7aQdO5mEmYkQQvwVNy4UceuHuPNvnLRZaOuBgcM593LPHD9mVCrb/jYqK6tr6xvVzdrW9s7unrl/0JVRIoB0IGKR6PtYEkY56SiqGOnHguDQZ6TnT68Kv/dIhKQRv1NpTNwQjzkNKGClJc+sD0OsJoBZdpPfP3gZpJB7ZsNu2jNYy8QpSQOVaHvm13AUQRISroBhKQeOHSs3w0JRYCSvDRNJYgxTPCYDTTkOiXSzWfjcOtbKyAoioR9X1kz9vZHhUMo09PVkEVUueoX4nzdIVHDpZpTHiSIc5oeChFkqsoomrBEVBBRLNcEgqM5qwQQLDEr3VdMlOItfXibd06Zz3rRvzxotu6yjig7RETpBDrpALXSN2qiDAKXoGb2iN+PJeDHejY/5aMUod+roD4zPH2calTM=</latexit>

Lj
cyc

<latexit sha1_base64="JcJJBv8C5/x42NTZ21B6DTtMZb8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbN0dxN2N0IJ/QtePCji1T/kzX/jJs1BWx8MPN6bYWZekHCmjet+O5W19Y3Nrep2bWd3b/+gfnjU1XGqCO2QmMeqH2BNOZO0Y5jhtJ8oikXAaS+Y3uV+74kqzWL5aGYJ9QWeSBYygk0uDZOIjeoNt+kWQKvEK0kDSrRH9a/hOCapoNIQjrUeeG5i/Awrwwin89ow1TTBZIondGCpxIJqPytunaMzq4xRGCtb0qBC/T2RYaH1TAS2U2AT6WUvF//zBqkJb/yMySQ1VJLFojDlyMQofxyNmaLE8JklmChmb0UkwgoTY+Op2RC85ZdXSfei6V013YfLRuu2jKMKJ3AK5+DBNbTgHtrQAQIRPMMrvDnCeXHenY9Fa8UpZ47hD5zPHxTajkM=</latexit>

�

<latexit sha1_base64="sNVGIs9M+ZCLY64ntLx1ZV115RU=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoQcKuKHoMiOAxgnlAsoTZySQZMju7zvQKcclPePGgiFd/x5t/4yTZgyYWNBRV3XR3BbEUBl3328ktLa+sruXXCxubW9s7xd29uokSzXiNRTLSzYAaLoXiNRQoeTPWnIaB5I1geD3xG49cGxGpexzF3A9pX4meYBSt1Hzq3JzaOu4US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346vXdMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHtXfipUnCBXbLaol0iCEZk8T7pCc4ZyZAllWthbCRtQTRnaiAo2BG/+5UVSPyt7F2X37rxUcbM48nAAh3ACHlxCBW6hCjVgIOEZXuHNeXBenHfnY9aac7KZffgD5/MHGbiPSw==</latexit>

zE , z0E

<latexit sha1_base64="p3AzDk4Vdblr3QkgEAIj+Yrp5UQ=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoQcKuKHqMePEYwTwgWcLsZJIMmZ1dZ3qFuOQnvHhQxKu/482/cZLsQRMLGoqqbrq7glgKg6777eSWlldW1/LrhY3Nre2d4u5e3USJZrzGIhnpZkANl0LxGgqUvBlrTsNA8kYwvJn4jUeujYjUPY5i7oe0r0RPMIpWaj51rk9tHXeKJbfsTkEWiZeREmSodopf7W7EkpArZJIa0/LcGP2UahRM8nGhnRgeUzakfd6yVNGQGz+d3jsmR1bpkl6kbSkkU/X3REpDY0ZhYDtDigMz703E/7xWgr0rPxUqTpArNlvUSyTBiEyeJ12hOUM5soQyLeythA2opgxtRAUbgjf/8iKpn5W9i7J7d16quFkceTiAQzgBDy6hArdQhRowkPAMr/DmPDgvzrvzMWvNOdnMPvyB8/kDDYCPQw==</latexit>

zA, z0A

<latexit sha1_base64="1nTRVMGjhLb6DARA1aZLscFs96M=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNRo9ELx4xyiOBlcwODYzMzq4zsyZkwyd48aAxXv0ib/6NA+xBwUo6qVR1p7sriAXXxnW/ndzS8srqWn69sLG5tb1T3N2r6yhRDGssEpFqBlSj4BJrhhuBzVghDQOBjWB4NfEbT6g0j+SdGcXoh7QveY8zaqx0+3j/0CmW3LI7BVkkXkZKkKHaKX61uxFLQpSGCap1y3Nj46dUGc4EjgvtRGNM2ZD2sWWppCFqP52eOiZHVumSXqRsSUOm6u+JlIZaj8LAdobUDPS8NxH/81qJ6V34KZdxYlCy2aJeIoiJyORv0uUKmREjSyhT3N5K2IAqyoxNp2BD8OZfXiT1k7J3VnZvTkuVyyyOPBzAIRyDB+dQgWuoQg0Y9OEZXuHNEc6L8+58zFpzTjazD3/gfP4AVzeN1Q==</latexit>

qj
<latexit sha1_base64="ajS+WYtlrow18jQS7JbzPOapbtU=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiSi6LLgRkGhgn1AG8NkOmnHTiZhZiKWkF9x40IRt/6IO//GSZuFth4YOJxzL/fM8WNGpbLtb6O0tLyyulZer2xsbm3vmLvVtowSgUkLRywSXR9JwignLUUVI91YEBT6jHT88UXudx6JkDTid2oSEzdEQ04DipHSkmdW+yFSI4xYep156c1Vdv/gmTW7bk9hLRKnIDUo0PTMr/4gwklIuMIMSdlz7Fi5KRKKYkaySj+RJEZ4jIakpylHIZFuOs2eWYdaGVhBJPTjypqqvzdSFEo5CX09mSeV814u/uf1EhWcuynlcaIIx7NDQcIsFVl5EdaACoIVm2iCsKA6q4VHSCCsdF0VXYIz/+VF0j6uO6d1+/ak1rCLOsqwDwdwBA6cQQMuoQktwPAEz/AKb0ZmvBjvxsdstGQUO3vwB8bnDzn9lIA=</latexit>

Lj
MI

<latexit sha1_base64="vsstUUuewUr8D5d5c8yX4IqTE7g=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LIoBZcV7AOaUCbTSTt08mDmRiihv+HGhSJu/Rl3/o2TNgttPTBwOOde7pnjJ1JotO1vq7S2vrG5Vd6u7Ozu7R9UD486Ok4V420Wy1j1fKq5FBFvo0DJe4niNPQl7/qTu9zvPnGlRRw94jThXkhHkQgEo2gk1w0pjhGz5mzQHFRrdt2eg6wSpyA1KNAaVL/cYczSkEfIJNW679gJehlVKJjks4qbap5QNqEj3jc0oiHXXjbPPCNnRhmSIFbmRUjm6u+NjIZaT0PfTOYZ9bKXi/95/RSDGy8TUZIij9jiUJBKgjHJCyBDoThDOTWEMiVMVsLGVFGGpqaKKcFZ/vIq6VzUnau6/XBZa9wWdZThBE7hHBy4hgbcQwvawCCBZ3iFNyu1Xqx362MxWrKKnWP4A+vzBy1PkcU=</latexit>

EE
<latexit sha1_base64="rjcoFDKzD/BKts+0EL5oAm7ijUE=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFl8gMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLK6tr6RnmzsrW9s7tX3T9o6zhVlLVoLGLVDYhmgkvWQo6CdRPFSBQI1gnGN7nfeWJK81g+4iRhfkSGkoecEjSS50UER4jZ7bR/16/WnLozg71M3ILUoECzX/3yBjFNIyaRCqJ1z3US9DOikFPBphUv1SwhdEyGrGeoJBHTfjbLPLVPjDKww1iZJ9Geqb83MhJpPYkCM5ln1IteLv7n9VIMr/yMyyRFJun8UJgKG2M7L8AecMUoiokhhCpustp0RBShaGqqmBLcxS8vk/ZZ3b2oOw/ntcZ1UUcZjuAYTsGFS2jAPTShBRQSeIZXeLNS68V6tz7moyWr2DmEP7A+fwAryJHE</latexit>

DE

<latexit sha1_base64="2wEoK9gv2v/+RHPcRgw812G5Xgk=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkfC5cV7AOaUCbTSTt0MgkzN0IJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cIBFco+N8W6WV1bX1jfJmZWt7Z3evun/Q1nGqKGvRWMSqGxDNBJeshRwF6yaKkSgQrBOMb3O/88SU5rF8xEnC/IgMJQ85JWgkz4sIjhCzu2n/ul+tOXVnBnuZuAWpQYFmv/rlDWKaRkwiFUTrnusk6GdEIaeCTSteqllC6JgMWc9QSSKm/WyWeWqfGGVgh7EyT6I9U39vZCTSehIFZjLPqBe9XPzP66UYXvkZl0mKTNL5oTAVNsZ2XoA94IpRFBNDCFXcZLXpiChC0dRUMSW4i19eJu2zuntRdx7Oa42boo4yHMExnIILl9CAe2hCCygk8Ayv8Gal1ov1bn3MR0tWsXMIf2B9/gAluJHA</latexit>

DA
<latexit sha1_base64="kjy37Jex/W3R6OYWPHWhqJz36iM=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkVwWUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmlldW19o7xZ2dre2d2r7h+0dZwqylo0FrHqBkQzwSVrIUfBuoliJAoE6wTj29zvPDGleSwfcZIwPyJDyUNOCRrJ8yKCI8Tsbtq/7ldrTt2ZwV4mbkFqUKDZr355g5imEZNIBdG65zoJ+hlRyKlg04qXapYQOiZD1jNUkohpP5tlntonRhnYYazMk2jP1N8bGYm0nkSBmcwz6kUvF//zeimGV37GZZIik3R+KEyFjbGdF2APuGIUxcQQQhU3WW06IopQNDVVTAnu4peXSfus7l7UnYfzWuOmqKMMR3AMp+DCJTTgHprQAgoJPMMrvFmp9WK9Wx/z0ZJV7BzCH1ifPyc/kcE=</latexit>

EA

<latexit sha1_base64="vsstUUuewUr8D5d5c8yX4IqTE7g=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LIoBZcV7AOaUCbTSTt08mDmRiihv+HGhSJu/Rl3/o2TNgttPTBwOOde7pnjJ1JotO1vq7S2vrG5Vd6u7Ozu7R9UD486Ok4V420Wy1j1fKq5FBFvo0DJe4niNPQl7/qTu9zvPnGlRRw94jThXkhHkQgEo2gk1w0pjhGz5mzQHFRrdt2eg6wSpyA1KNAaVL/cYczSkEfIJNW679gJehlVKJjks4qbap5QNqEj3jc0oiHXXjbPPCNnRhmSIFbmRUjm6u+NjIZaT0PfTOYZ9bKXi/95/RSDGy8TUZIij9jiUJBKgjHJCyBDoThDOTWEMiVMVsLGVFGGpqaKKcFZ/vIq6VzUnau6/XBZa9wWdZThBE7hHBy4hgbcQwvawCCBZ3iFNyu1Xqx362MxWrKKnWP4A+vzBy1PkcU=</latexit>

EE
<latexit sha1_base64="rjcoFDKzD/BKts+0EL5oAm7ijUE=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFl8gMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLK6tr6RnmzsrW9s7tX3T9o6zhVlLVoLGLVDYhmgkvWQo6CdRPFSBQI1gnGN7nfeWJK81g+4iRhfkSGkoecEjSS50UER4jZ7bR/16/WnLozg71M3ILUoECzX/3yBjFNIyaRCqJ1z3US9DOikFPBphUv1SwhdEyGrGeoJBHTfjbLPLVPjDKww1iZJ9Geqb83MhJpPYkCM5ln1IteLv7n9VIMr/yMyyRFJun8UJgKG2M7L8AecMUoiokhhCpustp0RBShaGqqmBLcxS8vk/ZZ3b2oOw/ntcZ1UUcZjuAYTsGFS2jAPTShBRQSeIZXeLNS68V6tz7moyWr2DmEP7A+fwAryJHE</latexit>

DE

<latexit sha1_base64="2wEoK9gv2v/+RHPcRgw812G5Xgk=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkfC5cV7AOaUCbTSTt0MgkzN0IJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cIBFco+N8W6WV1bX1jfJmZWt7Z3evun/Q1nGqKGvRWMSqGxDNBJeshRwF6yaKkSgQrBOMb3O/88SU5rF8xEnC/IgMJQ85JWgkz4sIjhCzu2n/ul+tOXVnBnuZuAWpQYFmv/rlDWKaRkwiFUTrnusk6GdEIaeCTSteqllC6JgMWc9QSSKm/WyWeWqfGGVgh7EyT6I9U39vZCTSehIFZjLPqBe9XPzP66UYXvkZl0mKTNL5oTAVNsZ2XoA94IpRFBNDCFXcZLXpiChC0dRUMSW4i19eJu2zuntRdx7Oa42boo4yHMExnIILl9CAe2hCCygk8Ayv8Gal1ov1bn3MR0tWsXMIf2B9/gAluJHA</latexit>

DA
<latexit sha1_base64="kjy37Jex/W3R6OYWPHWhqJz36iM=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkVwWUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmlldW19o7xZ2dre2d2r7h+0dZwqylo0FrHqBkQzwSVrIUfBuoliJAoE6wTj29zvPDGleSwfcZIwPyJDyUNOCRrJ8yKCI8Tsbtq/7ldrTt2ZwV4mbkFqUKDZr355g5imEZNIBdG65zoJ+hlRyKlg04qXapYQOiZD1jNUkohpP5tlntonRhnYYazMk2jP1N8bGYm0nkSBmcwz6kUvF//zeimGV37GZZIik3R+KEyFjbGdF2APuGIUxcQQQhU3WW06IopQNDVVTAnu4peXSfus7l7UnYfzWuOmqKMMR3AMp+DCJTTgHprQAgoJPMMrvFmp9WK9Wx/z0ZJV7BzCH1ifPyc/kcE=</latexit>

EA

<latexit sha1_base64="cJQL6hMgB0xSSdprxvKh2t2svSA="></latexit>sE

<latexit sha1_base64="N+5CjDksqHHabLetFVeYgDX8XUY=">AAAB/3icbVBNS8NAFHypX7V+RQUvXoJF8FQSUfRY8OLBQwVbC00Im+2mXbrZhN2NEGIO/hUvHhTx6t/w5r9x0+agrQMLw8x7vNkJEkalsu1vo7a0vLK6Vl9vbGxube+Yu3s9GacCky6OWSz6AZKEUU66iipG+okgKAoYuQ8mV6V//0CEpDG/U1lCvAiNOA0pRkpLvnngRkiNMWL5TeHnOMOuT3lY+GbTbtlTWIvEqUgTKnR888sdxjiNCFeYISkHjp0oL0dCUcxI0XBTSRKEJ2hEBppyFBHp5dP8hXWslaEVxkI/rqyp+nsjR5GUWRToyTKtnPdK8T9vkKrw0sspT1JFOJ4dClNmqdgqy7CGVBCsWKYJwoLqrBYeI4Gw0pU1dAnO/JcXSe+05Zy37NuzZtuu6qjDIRzBCThwAW24hg50AcMjPMMrvBlPxovxbnzMRmtGtbMPf2B8/gC8FZaB</latexit>Lcyc inf

<latexit sha1_base64="kPI15xLDd9A4+8ezNzlHcjnjPEQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WNBBI8V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG11O/9ci1EbF6wHHC/YgOlAgFo2il+6feTa9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZqRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0SjYEb/HlZdI8q3oXVffuvFJz8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMo9I2o</latexit>zE

<latexit sha1_base64="kTslFsjM6cwqi6qEdgpLMPBBQTY=">AAACPXicbVBJSwMxGM3Urdat6tFLsBQ8lDIjih6LWuhFqNANOtMhk6ZtbGYhyQhlmD/mxf/gzZsXD4p49WqmHVxaP0h43/v25wSMCqnrT1pmaXlldS27ntvY3Nreye/utYQfckya2Gc+7zhIEEY90pRUMtIJOEGuw0jbGV8m8fYd4YL6XkNOAmK5aOjRAcVIKsrON4pmJOxqTy8lv1Ey+74UUxzVYjOGpqAuNF0kRxix6Cq2o2/nOrarce/Hb8T2bZwzA0HtfEEv61ODi8BIQQGkVrfzj2ouDl3iScyQEF1DD6QVIS4pZkQ1DQUJEB6jIekq6CGXCCuaXh/DomL6cOBz9TwJp+zvigi5QkxcR2Umq4r5WEL+F+uGcnBuRdQLQkk8PBs0CBmUPkykhH3KCZZsogDCnKpdIR4hjrBUgueUCMb8yYugdVw2Tsv6zUmhcpHKkQUH4BAcAQOcgQqogTpoAgzuwTN4BW/ag/aivWsfs9SMltbsgz+mfX4BhR2vhg==</latexit>

 

<latexit sha1_base64="pKwhhJO7MGz+25jwYhMZmlJ6ET4=">AAAB/HicbVC7TsMwFHV4lvIKdGSxqJCYqgSBYKxgYWAoEn1IbYgc12lNHTuyHaQoCr/CwgBCrHwIG3+D02aAliNZOjrnXt3jE8SMKu0439bS8srq2nplo7q5tb2za+/td5RIJCZtLJiQvQApwignbU01I71YEhQFjHSDyVXhdx+JVFTwO53GxIvQiNOQYqSN5Nu1QYT0GCOW3eT3D34WC5X7dt1pOFPAReKWpA5KtHz7azAUOIkI15ghpfquE2svQ1JTzEheHSSKxAhP0Ij0DeUoIsrLpuFzeGSUIQyFNI9rOFV/b2QoUiqNAjNZRFXzXiH+5/UTHV54GeVxognHs0NhwqAWsGgCDqkkWLPUEIQlNVkhHiOJsDZ9VU0J7vyXF0nnpOGeNZzb03rzsqyjAg7AITgGLjgHTXANWqANMEjBM3gFb9aT9WK9Wx+z0SWr3KmBP7A+fwCJc5VY</latexit>

Lj
pos

<latexit sha1_base64="H16+7dP3VSIqg1uBAzCZFY3wTrY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWFRITFWCQDBWsDAwFIk+pDZEjuu2po4T2Q5SG/VLWBhAiJVPYeNvcNoM0HIkS0fn3Kt7fIKYM6Ud59sqrKyurW8UN0tb2zu7ZXtvv6miRBLaIBGPZDvAinImaEMzzWk7lhSHAaetYHSd+a0nKhWLxL0ex9QL8UCwPiNYG8m3y90Q6yHBPL2dPjz6E9+uOFVnBrRM3JxUIEfdt7+6vYgkIRWacKxUx3Vi7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tJZ8Ck6NkoP9SNpntBopv7eSHGo1DgMzGQWUy16mfif10l0/9JLmYgTTQWZH+onHOkIZS2gHpOUaD42BBPJTFZEhlhiok1XJVOCu/jlZdI8rbrnVefurFK7yusowiEcwQm4cAE1uIE6NIBAAs/wCm/WxHqx3q2P+WjByncO4A+szx8abZNg</latexit>

Lj
z

<latexit sha1_base64="sjMvicOV04mA5ToP8VPo8H3dJA0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokoeiyK4LGCaQttLJvtpl272YTdiVBCf4MXD4p49Qd589+4/Tho64OBx3szzMwLUykMuu63s7S8srq2Xtgobm5t7+yW9vbrJsk04z5LZKKbITVcCsV9FCh5M9WcxqHkjXBwPfYbT1wbkah7HKY8iGlPiUgwilbya52bh8dOqexW3AnIIvFmpAwz1Dqlr3Y3YVnMFTJJjWl5bopBTjUKJvmo2M4MTykb0B5vWapozE2QT44dkWOrdEmUaFsKyUT9PZHT2JhhHNrOmGLfzHtj8T+vlWF0GeRCpRlyxaaLokwSTMj4c9IVmjOUQ0so08LeSlifasrQ5lO0IXjzLy+S+mnFO6+4d2fl6tUsjgIcwhGcgAcXUIVbqIEPDAQ8wyu8Ocp5cd6dj2nrkjObOYA/cD5/AGmpjmw=</latexit>

P j
E

<latexit sha1_base64="pzQakOip7OteezJHuWk1qPDF5Ls=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeqx68VjBtIU2ls12067dbMLuRCihv8GLB0W8+oO8+W/cfhy09cHA470ZZuaFqRQGXffbWVpeWV1bL2wUN7e2d3ZLe/t1k2SacZ8lMtHNkBouheI+CpS8mWpO41DyRji4GfuNJ66NSNQ9DlMexLSnRCQYRSv5tc7Vw2OnVHYr7gRkkXgzUoYZap3SV7ubsCzmCpmkxrQ8N8UgpxoFk3xUbGeGp5QNaI+3LFU05ibIJ8eOyLFVuiRKtC2FZKL+nshpbMwwDm1nTLFv5r2x+J/XyjC6DHKh0gy5YtNFUSYJJmT8OekKzRnKoSWUaWFvJaxPNWVo8ynaELz5lxdJ/bTinVfcu7Ny9XoWRwEO4QhOwIMLqMIt1MAHBgKe4RXeHOW8OO/Ox7R1yZnNHMAfOJ8/Y5GOaA==</latexit>

P j
A
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Pz

Inference task adaptationLocal and global alignment via proxy tasks

Figure 4.2: Overview of framework. We perform local alignment via state-transition
distribution matching and cycle-consistency in the state space using Ljadv and Ljcyc, as

well as in a learnt latent space using Ljz and LjMI(only proxy task is j shown here). The
inverse cycle from agent to expert is omitted here for clarity. Global alignment is performed
via consistency on the temporal position of states across the two domains, using the pre-
trained position estimators P jA, P

j
E in Ljpos. Further improvement is obtained via inference

task adaptation using Ljpos inf and Ljcyc inf - this prevents overfitting to the proxy tasks and

makes the learned transformation more robust and well-conditioned to the target data.

4.4.2 Global Alignment via Temporal Position Preservation

Solely learning with state cycle-consistency may result only in local alignment: an

optimal state pair in the expert domain may get mapped to an optimal transition in the

agent domain while violating task semantics (transitions from the beginning of a task get

mapped to terminal ones), and then back without breaking cycle-consistency. In order to

constrain the mapping to maintain temporal semantics for a task, we enforce additional

consistency on the temporal position of states across the two domains.

We encode the temporal position of a state by computing a normalized score of

proximity to the terminal state in the trajectory. Each state is assigned a value of 1 if they

are terminating goal states and 0 otherwise. These discrete values are then exponentially
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weighted by a discount factor γ ∈ (0, 1) to obtain a continuous estimate of the state temporal

position. Using these temporal encodings, we pre-train temporal position estimators P jE , P
j
A

in a supervised fashion by optimizing a squared error loss as follows:

min
P j
E

Eη∼D
M

Tj
E

Hη∑

t=1

(
P jE(s

t
E)− γHη−t

)2

(4.7)

P jA is learned in a similar fashion by optimizing Equation 4.7 with respect to the agent

trajectories. These estimators are subsequently used to enforce temporal preservation as:

min
ψ,ϕ

Ljpos = EsE∼D
M

Tj
E

[
∥P jA ◦ ψ(sE)− P jE(sE)∥22

]
+ EsA∼D

M
Tj
A

[
∥P jE ◦ ϕ(sA)− P jA(sA)∥22

]
.

(4.8)

Our temporal position estimators may be interpreted as state value functions: trajectories

are from a greedy optimal policy with reward 1 for terminal states, and 0 otherwise.

4.4.3 Inference Task Adaptation

As discussed in Section 4.3, we are provided with the state-only trajectories DMT
E

on solely the expert domain for the inference task T . We propose to use these trajecto-

ries during the learning process as additional regularization, referred to as inference task

adaptation. First, we enforce cycle consistency on the states:

min
ψ,ϕ

Lcyc inf = EsE∼DMT
E

[
∥ϕ ◦ ψ(sE)− sE∥22

]
. (4.9)

In addition, we also enforce temporal preservation in the latent space. Concretely, we

first train a position estimator P T
E by optimizing Equation 4.7 on the given trajectories as

discussed in Section 4.4.2. We use the trained position estimator, along with a latent space
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position predictor Pz to enforce temporal preservation by:

min
EE ,Pz

Lpos inf = EsE∼DMT
E

[
∥Pz ◦ EE(sE)− P T

E (sE)∥22
]
. (4.10)

4.4.4 Optimization

Given the alignment dataset D containing trajectories from theM proxy tasks, we

first pre-train the temporal position estimators {(P jE , P
j
A)}Mj=1 using Equation 4.7. This is

followed by adversarial training of the state maps ψ, ϕ, where we use separate discriminators

on the state space and latent space for each proxy task. The full objective is then:

min
ψ,ϕ

max
{Dj

E},{Dj
A},{qj}

L =
M∑

j=1

[
λ1

(
Ljadv(D

j
A) + Ljadv(D

j
E)

)

+ λ2

(
Ljcyc + Ljz

)
+ λ3Ljpos − λ4LjMI

]

+ λ5

(
Lcyc inf + Lpos inf

)
, (4.11)

where {λi}5i=1 denote hyper-parameters which control the contribution of each loss term. A

pictorial description of the overall framework is shown in Figure 3.2.

4.4.5 Imitation from Observation

We use the learned ψ to map the states in the inference task expert demonstrations

DMT
E
to the agent domain. Given the set of transferred state-only demonstrations D̂MT

A
, we

can use any imitation from observation algorithm to learn the final policy. In this work, we

follow the Behavioral Cloning from Observation (BCO) approach proposed in [185]. BCO

entails learning an inverse dynamics model IA : SA × SA → AA to infer missing action

information. First, we collect a dataset of state-action triplets P = {(stA, atA, st+1
A )} by
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random exploration. The inverse model is subsequently estimated by Maximum Likelihood

Estimation (MLE) of the observed transitions in P. Assuming a Gaussian distribution over

actions, this reduces to minimizing an ℓ2 loss as follows,

min
IA

∑

(stA,a
t
A,s

t+1
A )∈P

∥atA − IA(stA, st+1
A )∥22 (4.12)

Next, the learnt inverse model is used to augment D̂MT
A
with agent specific actions. Finally,

these action-augmented trajectories are used to learn the final policy πTA via behavioral

cloning. Note that our correspondence learning framework is agnostic to the imitation from

observation algorithm used for learning the agent policy. The pseudo-code for training our

framework is presented in Algorithm 1.
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Algorithm 1 Learn domain transformation ψ

Input: Proxy task set
{
(D

M
Tj
E

,D
M

Tj
A

)

}M

j=1

, inference task trajectories DMT
E

while not done do

for j = 1, . . . ,M do //Global and local alignment

Sample (sE , s
′
E) ∼ DMTi

E

, (sA, s
′
A) ∼ DMTi

A

and store in buffers Bj
E , B

j
A

for i = 1, . . . , N do

Sample mini-batch i from Bj
E , B

j
A

Update Dj
E , D

j
A by maximizing Liadv(D

j
E) and Ljadv(D

j
E) respectively

Update qj by minimizing LjMI

Update ψ, ϕ by minimizing λ1

(
Ljadv(D

j
A) + Ljadv(D

j
E)
)
+λ2

(
Ljcyc + Ljz

)
+λ3Ljpos−

λ4LjMI

end for

end for

Sample (sE , s
′
E) ∼ DMT

E
and store in buffers BM+1

E //Inference task adaptation

for i = 1, . . . , N do

Sample mini-batch i from BM+1
E

Update Vz by minimizing Lpos inf

Update ψ, ϕ by minimizing Lcyc inf + Lpos inf

end for

end while
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4.5 Experiments

In this section, we analyze the efficacy of our proposed method on the xDIO task.

We adopt MuJoCo [183] as the experimental test bed and evaluate on several cross-domain

tasks, along with a thorough ablation study of different modules in our overall framework.

M-A2C M-A2A M-R2R

Ex
pe

rt
A
ge
nt

Figure 4.3: Cross-domain tasks. Different morphologically mismatched tasks used in our
experiments.

4.5.1 Tasks

We use a total of 7 environments derived from the OpenAI Gym [18]: 2-link

Reacher, 3-link Reacher, Friction-modified 2-link Reacher, Third-person 2-link Reacher, 4-

legged Ant, 6-legged Ant, and HalfCheetah. We use the joint-level state-action space for all

environments. These are used to construct six cross-domain tasks:

• Dynamics-Reacher2Reacher (D-R2R): Agent domain is the 2-link Reacher and

the expert domain is the Friction-modified 2-link Reacher, created by doubling the

friction co-efficient of the former. The proxy tasks are reaching for M goals and the
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inference tasks are reaching for 4 new goals, placed maximally far away from the proxy

goals.

• Viewpoint-Reacher2Reacher (V-R2R): Agent domain is the 2-link Reacher and

expert domain is Third-person 2-link Reacher that has a “third person” view state

space with a 180◦ planar offset. Tasks are the same as D-R2R.

• Viewpoint-Reacher2Writer (V-R2W): Agent domain is the 2-link Reacher and

the expert domain is Third-person 2-link Reacher. The proxy tasks are the same as

D-R2R and the inference task is tracing a letter on a plane as fast as possible [88].

The inference task differs from the proxy tasks in two key aspects: the end effector

must draw a straight line from the letter’s vertex to vertex and not slow down at the

vertices.

• Morphology-Reacher2Reacher (M-R2R): Agent domain is the 2-link Reacher,

while the expert domain is the 3-link Reacher. Otherwise same as D-R2R.

• Morphology-Ant2Ant (M-A2A): Agent domain is the 4-legged Ant, while the

expert domain is the 6-legged Ant. Otherwise same as D-R2R.

• Morphology-Ant2Cheetah (M-A2C): Agent domain is the HalfCheetah, while

the expert domain is the 4-legged Ant. Otherwise same as D-R2R.

4.5.2 Environment details

The various reacher environments used in the tasks are extended from the “Reacher-

v2” OpenAI Gym [18] environment. A k link reacher has a state vector of the form
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Figure 4.4: Goals in reaching experiments. A visualization of the goal locations used
in our reacher experiments. The top four goals constitute the set of proxy tasks and the
bottom four serve as inference goals.

(ω1, . . . , ωk, ω̇1, . . . , ω̇k, xg, yg), where ωi and ω̇i are the joint angle and angular velocity

of the ith joint, and (xg, yg) is the position of the goal. The action vector has the form

(τ1, . . . , τk), where τi is the torque applied to the ith joint. The state map acts only on the

non-goal dimensions. Following [88], proxy goals are placed near the wall of the arena and

the target tasks are reaching for 4 new goals near the corner of the arena. The new goals

are placed as far as possible from the proxy goals within the bounds of the arena. Figure

4.4 depicts the location of the goals.

For the V-R2W task, the proxy tasks are the same as the ones discussed previously,

while the target task is tracing the letter C (shown in Figure 4.6) as fast as possible. The

goal location in the writing task represents the next vertex of the letter to trace. Once the

first vertex is reached, the goal coordinates are updated to be the next vertex coordinates.
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Figure 4.5: Goals in locomotion experiments. A visualization of the tasks used in our
ant and cheetah experiments. The top four constitute the set of proxy tasks and the bottom
four serve as inference tasks.

The reward function is defined as follows:

Rwrite(s) =





100, if state s corresponds to reaching a vertex

−1, otherwise

Thus the agent must perform a sequential reaching task and accomplish it as fast as possible.

The key difference with a normal reaching task is that the reacher must not slow down at

each vertex and plan its path accordingly in order to minimize drastic direction changes.

The two ant environments and the cheetah environment are derived from the

“Ant-v2” and “HalfCheetah-v2” environments respectively. A k-legged Ant has a state vec-

tor of the form (cx, cy, cz, q0, . . . , q3, ω1, . . . , ω2k, ċx, ċy, ċz, q̇1, q̇2, q̇3, ω̇1, . . . , ω̇2k, xg, yg), where

(cx, cy, cz) denotes the torso 3D co-ordinates, (q0, . . . , q3) denotes the torso orientation quar-

ternion, (ċx, ċy, ċz) denotes the torso 3D velocity and (q̇1, q̇2, q̇3) denotes the torso angular

velocity. The rest are the same as the reacher, with 2 hinge joints per leg. The action vector

has the form (τ1, . . . , τ2k), where τi is the torque applied to the ith joint. For the cheetah, the
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Figure 4.6: V-R2W inference task. The sequence of goals needs to be reached as quickly
as possible.

state vector is of the form (rx, ry, rz, ω1, . . . , ω6, ṙx, ṙy, ṙz, ω̇1, . . . , ω̇6, xg, yg) where (rx, ry, rz)

denotes the root 3D co-ordinates and (ṙx, ṙy, ṙz) are the corresponding velocities; rest are

the same as the reacher for the 6 hinge joints (3 for each leg). The action vector has the

form (τ1, . . . , τ6), where τi is the torque applied to the ith joint. For all these environments,

the task is to reach the center of a circle of radius 5m with the agent being initialized on a

2◦ arc of the circle. Different initializations define the different tasks as shown in Fig. 4.5.

4.5.3 Implementation Details

The state maps {ψ, ϕ} are neural networks, with hidden layers of size [128, 64]

(both encoder and decoder), on the Reacher experiments and [512, 256] for the others. The

state space discriminators {Dj
A, D

j
E}Mj=1 and latent space discriminators {qj}Mj=1 comprises

hidden layers of size [128, 128] for the Reacher experiments and [512, 256, 128] for the rest.

All discriminators use spectral normalization [127] and additionally, replace the negative log-

likelihood objective in Ladv by a least-squares loss [121]. This loss has been shown to be more
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stable during training. Temporal position estimators {P jA, P
j
E}Mj=1 consist of hidden layers

of size [200, 128]. Latent space position estimator Vz, for the inference task adaptation,

contains hidden layers of size [64, 64]. The fitted policy πTA and the inverse dynamics

model IA have hidden layers of size [64, 64] and [100, 100] respectively. For CycleGAN,

we use the same architecture as the state map in our framework. For IF, we use hidden

layers with [128, 64] units and leaky ReLU non-linearities to parameterize the encoders

and decoders. We use Adam optimizer with default decay rates and learning rate 1e-4

for training. With regards to the hyperparameters in Eqn. 10, we set them as For our

experiments, λ1 = 2, λ2 = λ3 = λ4 = λ5 = 1. Finally, for CCA, the embedding dimension

is the minimum state dimension between the expert and self domains. We train all our

models on a single Titan XP GPU using PyTorch.

4.5.4 Baselines

We compare our framework to other methods which are able to learn state corre-

spondences from unpaired and unaligned demonstrations without access to expert actions -

Canonical Correlation Analysis [71], Invariant Features [60] and CycleGAN [231]. Canoni-

cal Correlation Analysis (CCA) [71] finds invertible linear transformations to a space where

domain data are maximally correlated when given unpaired, unaligned demonstrations. In-

variant Features (IF) learns state maps via a domain agnostic space from paired and aligned

demonstrations - we use Dynamic Time Warping [133] on the learned latent space to com-

pute the pairings from the unpaired data. CycleGAN learns the state correspondence via

adversarial learning with an additional cycle consistency on state reconstruction. For all the

baselines, we follow a similar procedure towards learning the final policy - the correspon-
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Table 4.2: Cross-domain imitation performance of the policy learned on transferred tra-
jectories for inference tasks. All rewards are normalized by expert performance on the
corresponding tasks.

Method V-R2R V-R2W D-R2R M-R2R M-A2A M-A2C

IF 0.32± 0.10 0.57± 0.20 0.48± 0.30 0.61± 0.23 0.09± 0.08 0.00± 0.00

CCA 0.16± 0.27 0.86± 0.30 0.47± 0.20 0.16± 0.13 0.30± 0.30 0.75± 0.50

CycleGAN 0.17± 0.10 0.72± 0.16 0.13± 0.02 0.12± 0.06 0.22± 0.20 0.80± 0.28

Ours 0.95± 0.03 0.93± 0.01 0.99± 0.02 0.96± 0.07 0.78± 0.08 1.00± 0.00
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Figure 4.7: Trajectory length distributions of the proxy tasks used for M-A2C.

dence is learned through the proxy tasks and then is used to transfer trajectories for policy

training via BCO. Reported results are averaged across 10 runs. Experts on Reacher tasks

are trained using PPO [169], while those for Ant/Cheetah are trained using A3C [129].

4.5.5 Cross-domain Imitation Performance

We compare imitation policies learned by our framework against those learned

using baselines in Table 4.2. As may be observed, the proposed method achieves near-
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Figure 4.8: Adaptation complexity. Performance of learned policy as the number of
cross-domain demonstrations is varied. Our framework consistently performs better than
baselines and achieves results close to Self-demo.

expert performance across all the cross-domain tasks encompassing viewpoint, dynamics,

and morphological mismatch. On the other hand, baselines consistently fail to generalize

across the same tasks. There are two key reasons which can be hypothesized for this poor

performance. Firstly, IF requires time-aligned trajectories, and the alignment when done

by algorithms like DTW, rather than human intervention, may not be good enough given

that our experiments involve diverse starting states, up to 1.5× differences in demonstration

lengths (shown in Figure 4.7), and varying task execution rates. Secondly, baselines that

learn from unpaired data (CCA and CycleGAN), also fail due to the lack of a mechanism

to preserve MDP task characteristics, which is taken care of in our method via temporal

order preservation and domain alignment. Figure 4.10 illustrates the learned state-maps for

some of the cross-domain tasks. The proposed framework translates the expert states in a

manner that preserves task semantics.
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Figure 4.9: Alignment Complexity. Performance of learned policy as the number of
proxy tasks is varied. Notably, even with a reduced number of proxy tasks, our method
outperforms the baselines in most cases.

Varying the number of demonstrations. Given an adequate set of proxy tasks, we

experiment by varying the number of cross-domain demonstrations required for training

the policy on the inference task. To serve as an upper-bound on performance, we imitate

agent domain demonstrations, drawn from an expert, on the inference task and denote this

as the Self-demo baseline. As shown in Figure 4.8, our framework produces transferred

demonstrations of equal effectiveness to the self-demonstrations. This clearly demonstrates

the effectiveness of our framework.

Varying the number of proxy tasks. The number of proxy tasks plays a vital role in

learning the correspondence across the domains. We perform experiments by varying the

number of proxy tasks in the alignment set needed to learn the state map for imitation,

given sufficient cross-domain demonstrations for the inference tasks. The results are shown

in Figure 4.9. In general, more proxy tasks equate to better domain alignment as the
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Figure 4.10: Visualization of the state maps learned by our framework and the baselines on
the M-R2R task. Our framework is able to map the end effector in a manner that preserves
task semantics.

solution space over possible state maps is constrained, and the learned mapping generalizes

better to the inference tasks.

4.5.6 Ablation Study

We perform a set of ablation studies by removing each piece of the framework,

demonstrating the importance of including each component. The results are shown in

Table 4.3. We begin by excluding inference task adaptation. This leads to a small drop

in performance across all tasks, reinforcing the need for adapting on the inference task

to incorporate the new state distribution introduced by the inference task. Notably, even

without adaptation, the performance in almost all the tasks exceeds those of the baselines.
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Table 4.3: Ablation study on each module’s contribution to final policy performance.

Method V-R2R V-R2W D-R2R M-R2R M-A2A M-A2C

Ours 0.95± 0.05 0.93± 0.00 0.99± 0.02 0.96± 0.07 0.78± 0.08 1.00± 0.00

- w/o Inference Adaptation 0.81± 0.11 0.88± 0.03 0.74± 0.22 0.78± 0.11 0.46± 0.12 0.78± 0.23

- w/o LMI 0.60± 0.30 0.92± 0.03 0.76± 0.30 0.67± 0.34 0.28± 0.20 0.80± 0.21

- w/o Temporal Preservation 0.64± 0.31 0.84± 0.00 0.70± 0.32 0.72± 0.32 0.36± 0.50 0.43± 0.50

Removing the mutual information objective leads to a similar drop in performance across all

tasks. Excluding temporal position preservation also reduces performance – demonstrating

the significance of preserving task semantics via global alignment, which cycle consistency

alone fails to ensure.

4.6 Conclusion

We present a novel framework to tackle the xDIO task by learning a state-map

across domains using both local and global alignment. Local alignment is performed via

transition distribution matching and cycle-consistency in both the state and latent space,

while global alignment is enforced via the idea of temporal position preservation. While

previous approaches rely on paired data and expert actions, we provide a general frame-

work that can learn the mapping from unpaired, unaligned demonstrations without expert

actions. We demonstrate the efficacy of our approach on multiple cross-domain tasks en-

compassing dynamics, viewpoint and morphological mismatch. Our future work will con-

centrate on extending our method for learning correspondence using random trajectories,

thus mitigating the need for proxy tasks.
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Chapter 5

Controllable Multi-task Learning

5.1 Introduction

Multi-task learning [22, 160] (MTL) solves multiple tasks using a single model,

with the potential advantages of fast inference and improved generalization by sharing

representations across related tasks. However, in practice, simultaneously optimizing all

tasks is difficult due to task conflicts and limited model capacity [219]. Consequently, a

trade-off between the competing tasks has to be found, necessitating precise balancing of

the different task losses during optimization.

In many applications, the desired trade-off can change over time, requiring a new

model to be retrained from scratch. To overcome this lack of flexibility, recent methods

propose dynamic networks for multi-task learning [135, 104]. These frameworks enable a

single multi-task model to learn the entire trade-off curve and allow users to control the

desired trade-off during inference via task preferences denoting the relative task importance.

These conventional dynamic approaches for MTL assume a fixed model architecture, with
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Figure 5.1: Problem setup. Our goal is to enable users to control resource allocation
dynamically among multiple tasks at inference time. Conventional dynamic networks for
MTL (PHN [135]) achieve this in terms of weight changes within a fixed model (color
gradients indicate the proportion of weights allocated for each task). In contrast, we perform
resource allocation in terms of both architecture and weights. This enables us to control
total compute cost in addition to task preference. The dashed circle represents the maximum
compute budget, while the filled circle represents the desired budget. The portion of colors
represents the user-defined task importance.

all but the last prediction layers shared, and control trade-offs by changing the weights of

this model. While such hard-parameter sharing is helpful in saving resources, the perfor-

mance is inevitably lower than single-task baselines when task conflicts exist due to the

over-sharing of parameters between tasks [160]. Furthermore, the fixed architecture suffers

from a lack of flexibility, leading to a constant compute cost irrespective of the given task

preference or compute budget changes. In many applications where the budget can change

over time, these approaches may fail to take advantage of the increased resources in order
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to improve performance or accordingly lower the compute cost in order to satisfy stricter

budget requirements.

To address the aforementioned issue and strike a balance between flexibility and

performance, we propose a more expressive tree-structured [57] dynamic multi-task net-

work which can adapt its architecture in addition to its weights at test-time, as illustrated

in Figure 5.1. Specifically, we design a controller using two hypernetworks [61] that pre-

dict architectures and weights, respectively, given a user preference that specifies test-time

trade-offs of relative task importance and resource availability. This increases flexibility by

changing branching locations to re-allocate resources over tasks to match user-preferred task

importance and enhance or compromise task accuracy given computation budget require-

ments at any given moment. However, this comes at the cost of an increase in complexity:

1) generalizing architecture prediction to unseen preferences, and 2) performing dynamic

weight changes on potentially thousands of different models.

To tackle these challenges, we develop a two-stage training scheme that starts

from an N -stream network, termed the anchor net, which is initialized using weights from

N pre-trained single-task models. This guides the architecture search as a prior that is

preference-agnostic yet captures inter-task relations. In the first stage, we exploit inter-

task relations derived from the anchor net to train the first hypernetwork that predicts

connections between the different streams. We introduce a branching regularized loss that

encourages more resource allocation for dominant tasks while reducing the network cost

from the less preferred ones. The predicted architectures contain edges that have not been

observed during the anchor net initialization. These are denoted as cross-task edges since

84



they connect nodes that belong to different streams. In the second stage, to improve the

performance of the predicted architectures with cross-task edges, we train a secondary hy-

pernetwork for cross-task adaptation via modulation of the normalization parameters. Our

framework is evaluated on three MTL datasets (PASCAL-Context, NYU-v2, and CIFAR-

100) in terms of task performance, computational cost, and controllability (for both task

importance and computational cost). Achieving performance comparable to state-of-the-art

MTL architecture search methods under uniform task preference, our controller can further

approximate efficient architectures for non-uniform preferences with provisions for reducing

network size depending on computational constraints.

Main contributions. To summarize, our primary contributions are as follows:

• A controllable multi-task framework which allows users to assign task preference

and the trade-off between task performance and network capacity via architectural

changes.

• A controller, composed of two hypernetworks, to provide dynamic network structure

and adapted network weights.

• A new joint learning objective including task-related losses and network complexity

regularization to achieve the user-defined trade-offs.

• Experiments on several MTL benchmarks (PASCAL-Context [131], NYU-v2 [173],

CIFAR-100 [93]) demonstrate the efficacy of our framework.
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5.2 Related Work

Multi-Task Learning. Multi-task learning seeks to learn a single model to simultane-

ously solve a variety of learning tasks by sharing information among the tasks [22]. In the

context of deep learning, current works focus mostly on designing novel network architec-

tures and constructing efficient shared representation among tasks [160, 223]. Typically,

these works can be grouped into two classes - hard-parameter sharing and soft-parameter

sharing. In the soft sharing setting [125, 52, 161], each task has its own set of backbone

parameters with some sort of regularization mechanisms to enforce the distance between

weights of the model to be close. In contrast, the hard sharing setting entails all the

tasks sharing the same set of backbone parameters, with branches towards the outputs

[116, 90, 85]. More recent works have attempted to learn the optimal architectures via dif-

ferentiable architecture search [57, 19, 179]. The overwhelming majority of these approaches

are trained using a simple weighted sum of the individual task losses, where a proper set

of weights is commonly selected using grid search or using techniques such as gradient bal-

ancing [30]. Other approaches [171, 105, 119] attempt to model multi-task learning as a

multi-objective optimization problem and find Pareto stationary solutions among different

tasks. Recently, optimization methods have also been proposed to manipulate gradients

in order to avoid conflicts across tasks [31, 216]. None of these methods are suitable for

dynamically modeling performance trade-offs, which is the focus of our work.

Hypernetworks. A hypernetwork is used to learn context-dependent parameters for a

dynamic network [61, 168], thus, obtaining multiple customizable models using a single
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network. Such hypernetworks have been successfully applied in different scenarios, e.g.,

recurrent networks [61], 3D point cloud prediction [107], video frame prediction [78], neural

architecture search [17] and reinforcement learning [150, 166]. Recent works [135, 104]

propose using hypernetworks to model the Pareto front of competing multi-task objectives.

Our approach is closely related to these works, however, these methods focus on generating

weights for a fixed, handcrafted architecture, while we use hypernetworks to model the

trade-offs in multi-task learning by varying the architecture. This allows us to take dynamic

resource allocation into account, an aspect largely ignored in previous works.

Dynamic Networks. Dynamic neural networks, as opposed to usual static models, can

adapt their structures during inference, leading to notable improvements in performance

and computational efficiency [63]. Previous works focus on adjusting the network depth

[195, 16, 201, 73], width [218, 97], or performing dynamic routing within a fixed supernet

that includes multiple possible paths [110, 101, 138]. Dynamic depth is realized by either

early exiting, i.e., allowing “easy” samples to be processed at shallow layers without exe-

cuting the deeper layers [16, 73], or layer skipping, i.e., selectively skipping intermediate

network layers conditioned on each sample [195, 201]. Dynamic width is an alternative to

the dynamic depth where instead of layers, filters are selectively pruned conditioned on the

input [218, 97]. Dynamic routing can be implemented by learning controllers to selectively

execute one of the multiple candidate modules at each layer [110, 138]. Due to the non-

differentiable nature of the discrete choices, reinforcement learning is employed to learn

these controllers. In [101], the routing modules utilize a differentiable activation function

that conditionally outputs zero values, facilitating the end-to-end training of routing de-
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cisions. Recent works have also proposed learning dynamic weights for modeling different

hyperparameter configurations [38] and domain adaptation [198]. In contrast to most of

the existing works which intrinsically adapt network structures as a function of input, our

method enables explicit control of the total computational cost as well as the task trade-offs.

Weight Sharing Neural Architecture Search. Weight sharing has evolved as a power-

ful tool to amortize computational cost across models for neural architecture search (NAS).

These methods integrate the whole search space of architectures into a weight-sharing su-

pernet and optimize network architectures by pursuing the best-performing sub-networks.

Joint optimization methods [109, 203, 20] optimize the weights of the supernet and a dif-

ferentiable routing policy simultaneously. In contrast, one-shot methods [14, 17, 5, 59]

disentangle the training into two steps: first, the weights of the supernet are trained, after

which the agent is trained with the fixed supernet. We utilize such a weight-sharing strategy

in our framework for dynamic resource allocation.

5.3 Controllable Dynamic Multi-Task Architectures

Given a set of N tasks T = {T1, T2, . . . , TN}, conventional multi-task learning

seeks to minimize a weighted sum of task-specific losses: Ltask(r) =
∑

i riLi, where each

Li represents the loss associated with task Ti, and r denotes a task preference vector. This

vector signifies the desired performance trade-off across the different tasks, with larger values

of ri denoting higher importance to task Ti. Here r ∈ SN , where SN = {r ∈ RN |∑i ri =

1, ri ≥ 0} represents the N -dimensional simplex [160]. We seek to approximate the trade-

off curve defined by different values of r using tree-structured sub-networks [57] within a
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Figure 5.2: Overview of framework. We initialize our framework using an anchor net
which consists of single-task networks. During training, we first train the edge hypernet h(ϕ)
using sampled preferences (r, c) to optimize the task loss and a branching regularizer, for
preference-aware branching. Next, we optimize the weight hypernet h̄(ϕ̄) in a similar fashion
by minimizing only the task loss. At inference, the hypernets jointly predict architecture
and weights according to user preferences.

single multi-task model, given a total computational budget defined by a resource preference

variable c ∈ [0, 1], where larger c denotes more frugal resource usage. This is formulated as a

minimization of the expected value of the task loss over the user preference distribution, with

regularization Ω to control resource usage, i.e., E(r,c)∼P(r,c)
Ltask(r) + Ω(r, c). Optimizing

this directly is equivalent to solving NAS [109] for every possible (r, c) simultaneously.

Thus, instead of solving directly, we cast it as a search to find tree sub-structures and the

corresponding modulation of features for every (r, c), within an N -stream anchor network

with fixed weights.

Our framework consists of two hypernets (h and h̄) [61] and an anchor net F,

as shown in Figure 5.2. At test-time, given an input preference, we utilize the network

connections and adapted weights predicted by the hypernets to modulate F, to obtain the

final model. We propose a two-stage training scheme to train the framework. First, we

initialize a preference agnostic anchor net, which provides the anchor weights at test time

89



(Section 5.3.1). Based on this anchor net, the tree-structured architecture search space is

then defined (Section 5.3.2). Next, we train the edge hypernet using prior task relations

obtained from the anchor net by optimizing a novel branching regularized loss function

derived by inducing a dichotomy over the tasks (Section 5.3.3). Finally, we train a weight

hypernet, keeping the anchor net and edge hypernet fixed, to modulate the anchor net

weights (Section 5.3.3).

5.3.1 Anchor Network

We introduce an anchor net F as an alternative approach to model weight gener-

ation in dynamic networks for MTL [135, 104]. Previous methods adopt chunking [61] to

mitigate the large computation and memory required for generating entire network weights

at the expense of limiting the hypernet capacity. The anchor net, consisting of N -stream

backbones trained for N individual tasks (Figure 3.2), overcomes this bottleneck by pro-

viding the weights in the tree structures predicted by the edge hypernet. Our choice of the

anchor net is motivated by the need for initialization that reflects inter-task relations and

is based on observations from [193], where branching in tree-structured MTL networks is

shown to be contingent on how similar task features are at any layer. It can also be inter-

preted as a supernet used in one-shot NAS approaches [14], which is capable of emulating

any architecture in the search space. Subsequently, the base weights of the anchor net are

further modulated via the weight hypernet to address the cross-task connections unseen in

the anchor net (Section 5.3.3).
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(l + 1, 2)

Figure 5.3: Branching block. Illustration of the parent sampling operation in Section
5.3.2. Nodes in layer l are sampled in accordance to a categorical distribution defined by

αlj

(∑
i α

l
j(i) = 1

)
for each node (l + 1, j) in layer l + 1.

5.3.2 Architecture Search Space

We utilize a tree-structured network topology which has been shown to be highly

effective for multi-task learning in [57]. It shares common low-level features over tasks while

extracting task-specific ones in the higher layers, enabling control of the trade-off between

tasks by changing branching locations conditioned on the desired preference (r, c). The

search space is represented as a directed acyclic graph (DAG), where vertices in the graph

represent different operations and edges denote the data flow through the network. Figure

5.3 shows a block of such a graph, containing N parent and child nodes. In this work, we

realize a tree-structure by stacking such blocks sequentially and allowing a child node to

sample a path from the candidate paths between itself and all its parent nodes. Concretely,
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we formulate the stochastic branching operation at layer l as

xl+1
j = dj · Y l, dj ∼ pαl

j
, (5.1)

where xl+1
j denotes the input to the j-th node in layer l+1, dj is a one-hot vector indicating

the parent node sampled from the categorical distribution parameterized by αlj and, Y l =

[yl1, . . . , y
l
N ] concatenates outputs from all parent nodes at layer l. Note that selecting a

parent from every node determines a unique tree structure. This suggests learning α =

{αlj}0≤j≤N,0≤l<L, conditioned on a preference (r, c), in a manner which satisfies the desired

task trade-offs. Here, L denotes the total number of layers.

5.3.3 Preference Conditioned Hypernetworks

We use two hypernets [61] to construct our controller for architectural changes.

The edge hypernet h, parameterized by ϕ, predicts the branching parameters α̂ = h(r, c;ϕ)

within the anchor net. Subsequently, the weight hypernet h̄, parameterized by ϕ̄, predicts

the normalization parameters {β̂, γ̂} = h̄(r, c; ϕ̄) to adapt the predicted network.

Optimizing the task loss Ltask only takes into account the individual task perfor-

mances without considering computational cost. Consequently, we introduce a branching

regularizer Ω(r, c, α̂) to encourage node sharing (or branching) based on the preference.

This regularizer contains two terms, the active loss, which encourages limited sharing of

features among the high preference tasks, and the inactive loss, which aims to reduce re-

source utilization for the less important ones. In particular, the active loss is additionally

weighted by the cost preference c to enable the control of total computational cost. For-

mally, our objective is formulated as to find the controller (ϕ and ϕ̄) that minimizes the
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expectation of the branching regularized task loss over the distribution of user preferences

P(r,c):

min
ϕ,ϕ̄

E(r,c)∼P(r,c)

[
Ltask(r, α̂, β̂, γ̂) + Ω(r, c, α̂)

]
, (5.2)

We disentangle the training of the hypernetworks for stability – the edge hypernet

is trained first, followed by the weight hypernet. At test time, when a preference (r, c)

is presented to the controller, the maximum likelihood architecture corresponding to the

supplied preference is first sampled from the branching distribution parameterized by the

predictions of h. The weights of this tree-structure are then inherited from the anchor net,

supplemented via adapted normalization parameters predicted by h̄.

Regularizing the Edge Hypernet

We illustrate the idea of branching regularization in Figure 5.4: tasks with higher

preferences should have a greater influence on the branching structure while tasks with

smaller preferences may be de-emphasized by encouraging them to follow existing branch-

ing choices. Specifically, we define two losses, active and inactive losses, based on the task

division into two groups, active tasks A = {Ti | ri ≥ τ, ∀i ∈ [N ]}, and inactive tasks

I = {Ti | ri < τ, ∀i ∈ [N ]} with some threshold τ . Although individual tasks are already

weighted by r in task loss Ltask, this explicit emphasizing of certain tasks over others was

found to be crucial to induce better controllability, as shown in Section 5.4.7.

Active loss. The active loss Lactive encourages nodes in the anchor net, corresponding to

the active tasks, to be shared in order to avoid the whole network being split up by tasks
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with little knowledge shared among them. Specifically, we encourage any pair of nodes that

are likely to be sampled in the final architecture (P ) and are from two similar tasks (A) to

take the same parent node. Formally, we define Lactive as,

Lactive =

L∑

l=1

∑

i,j∈A
i ̸=j

L− l

L
·A(i, j) · P (l, i, j) · ∥νli − νlj∥2, (5.3)

where P (l, i, j) = Puse(l, i) · Puse(l, j). Puse(l, i) = 1−∏k{1− Puse(l+ 1, k) · νlk(i)} denotes

the probability that the nodes i in layer l are used in the sampled tree structure. A(i, j)

captures the task affinity between tasks Ti and Tj , where we adopt Representational Simi-

larity Analysis (RSA) [40] to compute the affinity. The factor L−l
L encourages more sharing

of nodes that contain low-level features.

We use the Gumbel-Softmax reparameterization trick [77] to obtain the samples

νli from the predicted logits α̂,

νli(k) =
exp

(
(logαli(k) +Gli(k))/ζ

)
∑N

m=1 exp
(
(logαli(m) +Gli(m))/ζ

) . (5.4)

Here, Gli = − log(− logU li ) is a standard Gumbel distribution with U li sampled i.i.d. from

the uniform distribution Unif(0, 1), and ζ denotes the temperature of the softmax.

Inactive loss. The inactive tasks should have minimal effect in terms of branching. In-

active loss, Linactive, encourages these tasks to mimic the most closely related branching

pattern,

Linactive =
L∑

l=1

∑

j∈I
min
i∈A

∥νli − νlj∥2. (5.5)

This ensures that the network branching is controlled by the active tasks, with the inactive

tasks sharing nodes with the active tasks.
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Figure 5.4: Branching loss. Illustration of the branching regularization, consisting of ac-
tive and inactive losses. The active loss encourages limited sharing between high-importance
tasks, while the inactive loss tries to limit branching for less preferred tasks as much as
possible.

Thus, the branching regularizer is defined as follows,

Ω(r, c, α̂) = c · λALactive + λILinactive, (5.6)

where λA, λI are hyperparameters to determine the weighting of the losses. Typically, we

set λA = 1 and λI = 0.1. Here, the active loss is additionally weighted by the resource

preference c, so that larger c encourages more feature sharing to reduce total computational

cost.

Cross-task Adaptation

The architecture sampled by the edge hypernet h contains edges that have not been

observed during the anchor net training. These are denoted as cross-task edges since they

connect nodes that belong to different streams in F. Consequently, the performance of the

sampled network is sub-optimal. To rectify this issue, we propose to modulate the weights of
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the anchor net to adaptively update the unseen edges using an additional weight hypernet h̄.

Inspired from the prior works [198, 118] that estimate normalization statistics and optimize

channel-wise affine transformations, we modulate only the normalization parameters using

a hypernetwork. Concretely, we modulate the original batch normalization operation at

layer l, BNli(x
l
i) = γli

xli−µli
σl
i

+ βli, to BNli(x
l
i) = (γli +∆γl

i)
xli−µli
σl
i

+ (βli +∆βl
i) by predicting

the perturbations to the parameters: {∆βli,∆γli}0≤i≤N,0≤l<L = h̄(r, c; θ), where γli and β
l
i

are the original affine parameters, and µli and σli denote the batch statistics of the node

input xli. This modulation primarily affects the preferences with two or more dominant

tasks, where cross-task connections occur.

5.4 Experiments

In this section, we demonstrate the ability of our framework to dynamically search

for efficient architectures for multi-task learning. We show that our framework achieves

flexibility between two extremes of the accuracy-efficiency trade-off, allowing better control

within a single model. Extensive experiments indicate that the predicted network structures

match well with the input preferences, in terms of both resource usage and task performance.

5.4.1 Evaluation Criteria

Uniformity. To measure controllability with respect to task preferences, we utilize uni-

formity [119] which quantifies how well the vector of task losses L = [L1, . . . ,LN ] is aligned

with the given preference. Specifically, for the loss vector L corresponding to the archi-

tecture for task preference r, uniformity is defined as µr = 1 − DKL(L̂ ∥ 1/N), where
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Figure 5.5: This figure illustrates hypervolume calculation in 2-D. The shaded area repre-
sents the hypervolume obtained by the point set comprising the red points, with respect to
the reference green point p.

L̂(j) =
rjLj∑
i riLi

. This arises from the fact that, ideally, rj ∝ 1/Lj , which in turn implies

r1L1 = r2L2 · · · = rNLN .

Hypervolume. Using the trained controller, we are able to approximate the trade-off

curve among the different tasks in the loss space. To evaluate the quality of this curve

we utilize hypervolume (HV) [233] – a popular metric in the multi-objective optimization

literature to compare different sets of solutions approximating the Pareto front [47]. It

measures the volume in the loss space of points dominated by a solution in the evaluated set.

Since this volume is unbounded, hypervolume measures the volume in a rectangle defined

by the solutions and a selected reference point. Specifically, given a point set S ⊂ RN and

a reference point p ∈ RN in the loss space, the hypervolume of the set S is defined as the

size of the region dominated by S and bounded above by p,

HV(S) = λ
(
{a ∈ RN |∃b ∈ S : b ⪯ a and b ⪯ p}

)
, (5.7)

where λ is the Lebesgue measure. Figure 5.5 shows an example in two dimensions.
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Computational Resource. We measure the computational cost using the memory of

the activated nodes in the anchor net and the GFLOPs, which approximates the time spent

in the forward pass. We also report the computational cost of the hypernets to take into

account their overheads.

5.4.2 Datasets

We evaluate the performance of our approach using three multi-task datasets,

namely PASCAL-Context [131] andNYU-v2 [173], andCIFAR-100 [93]. The PASCAL-

Context dataset is used for joint semantic segmentation, human parts segmentation, and

saliency estimation, as well as these three tasks together with surface normal estimation,

and edge detection as in [19]. The NYU-v2 dataset comprises images of indoor scenes, fully

labeled for semantic segmentation, depth estimation, and surface normal estimation. For

CIFAR-100, we split the dataset into 20 five-way classification tasks [158].

5.4.3 Baselines

We compare our framework with both static and dynamic networks. Static net-

works include Single-task networks, where we train each task separately using a task-

specific backbone, and Multi-task networks, in which all tasks share the backbone but

have separate task-specific heads at the end. These multi-task networks are trained sep-

arately for different preferences and thus, training time scales linearly with the number

of preferences. We use this to contrast the training time of our framework. The single-

task networks demonstrate the anchor net performance. We also compare our architectures

with two multi-task NAS methods, LTB [101] and BMTAS [19], which use the same tree-
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structured search space to perform NAS, but are static. The dynamic networks include

Pareto Hypernetworks (PHN) [135], which predicts only the weights of a shared backbone

network conditioned on a task preference vector using hypernetworks, and PHN-BN, a

variation of PHN which predicts only the normalization parameters similar to our weight

hypernet.

5.4.4 Implementation Details

Hypernet architecture. The edge hypernet is constructed using an MLP with two hid-

den layers (dimension 100) and L linear heads, (dimension N ×N) which output the flat-

tened branching distribution parameters at each layer. For the weight hypernet, we use

a similar MLP with three hidden layers (dimension 100) and generate the normalization

parameters using linear heads. In both cases we use learnable embeddings for each task (ei)

and the cost (ec). Given the user preference (r, c), the preference embedding is calculated

as p =
∑

i riei + cec. This embedding p is then used as input the MLP. The preference di-

mension is set to 32 in all experiments. PHN-BN and PHN [135] use a similar architecture

to the weight hypernet, with PHN employing an additional chunking [61] embedding for

scalability.

Task loss scaling. Due to the different scales of the various task losses, we first weight

the loss terms with a factor wi before applying linear scalarization with respect to r. This

ensures that the relative task importance is not skewed by the different loss scales. Thus,

Ltask(r) =
∑

i riwiLi.
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Anchor net architecture. The anchor net comprises N single-task networks, with each

stream corresponding to a particular task. For experiments on dense prediction tasks, we

use the DeepLabv3+ architecture [26] for each task. The MobileNetV2 [165] backbone is

used for experiments on PASCAL-Context [131], while the ResNet-34 [65] backbone is used

for experiments on NYU-v2 [173]. For CIFAR-100 [93] experiments we use the ResNet-9 1

architecture with linear task heads.

Hyperparameters. For experiments on CIFAR-100 we use λA = 0.2 and λI = 0.02. For

the rest, we use λA = 1 and λI = 0.1. The task scaling weights are given below:

1. NYU-v2:

• Semantic segmentation: 1

• Surface normals: 10

• Depth: 3

2. PASCAL-Context:

• Semantic segmentation: 1

• Human parts segmentation: 2

• Saliency: 5

• Surface normals: 10

• Edge: 50

For CIFAR-100, all tasks are equally weighted.

1https://github.com/davidcpage/cifar10-fast
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Table 5.1: Varying parameterization of Dirichlet distribution. Impact on hypervol-
ume on PASCAL-Context (3 tasks) as the parameterization of the Dirichlet distribution is
varied for preference sampling.

η 0.1 0.2 0.5 1.0

c=0.0 4.20 4.26 4.26 4.26

c=1.0 4.18 4.25 4.25 4.21

The threshold τ is set to 0.02 for CIFAR-100, 0.2 for NYU-v2 and PASCAL-

Context (3 task), and 0.1 for PASCAL-Context (5 task).

Training. Hypernetworks are trained using Adam for 30K steps with a learning rate of

1e−3, reduced by a factor of 0.3 every 14K steps. Temperature ζ is initialized to 5 and is

decayed by 0.97 every 300 steps. Single-task networks for dense-prediction tasks are trained

in accordance to [19]. For CIFAR, we use Adam with a learning rate of 1e−3 and weight

decay of 1e−5 for 75 epochs.

Preference sampling. During training we sample preferences (r, c) from the distribution

P(r,c) = PrPc, where Pr is defined as a Dirichlet distribution of order N with parameter

η = [η1, η2, . . . , ηN ] (ηi > 0) and Pc is defined as a standard uniform distribution Unif(0, 1).

Following [135], we set η = (0.2, 0.2, . . . , 0.2) for all our experiments. As shown in Table 5.1,

varying this parameter on PASCAL-Context (3 tasks) does not have any significant impact

on the hypervolume.
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ConventionalOurs

Figure 5.6: Resource usage on NYU-v2. We visualize resource usage by plotting the
proportion of parameters active in the anchor net versus the task preference. The three ver-
tices represent the task preferences with non-zero importance to only one task, while areas
in the middle correspond to more dense preferences. As c increases, the predicted networks
grow progressively smaller in the dense regions. On the other hand, conventional dynamic
networks for MTL always have a constant resource usage (T1:semantic seg., T2:surface nor-
mal, T3:depth).

5.4.5 Comparison with Baselines

Controllable resource usage. We visualize the variation in computational cost with

respect to different task and resource usage preferences in Figure 5.6. We adopt the ratio

of the size of the predicted architecture to the size of the total anchor net as the criterion

for evaluating computational cost. Compared to conventional dynamic networks that only

adjust weights with a fixed computational cost (right), our framework (left) enables control

over the total cost via a cost preference c. Resource usage peaks at the center of the contour,

when more tasks are active, and falls down gradually as we move towards the corners, where

task preferences are heavily skewed. Furthermore, the average resource usage decreases as

c is increased, indicating the ability of the controller to incorporate resource constraints.
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Multi-task performance. We demonstrate the overall multi-task performance in Ta-

bles 5.2-5.5 on four different settings (PASCAL-Context 5-task, PASCAL-Context 3-task,

NYU-v2 3-task, CIFAR-100 20-task). In all cases, we report hypervolume (reference point

mentioned below heading) and uniformity averaged across 20 task preference vectors r,

sampled uniformly from SN . Inference network cost is calculated similarly over 1000 pref-

erence vectors. These are shown for two choices of c ∈ {0, 1} to highlight the two extreme

cases of resource usage.

Our framework achieves higher values in both hypervolume and uniformity com-

pared to the existing dynamic models (PHN and PHN-BN) in all four settings. While

the high hypervolume reinforces the efficacy of tree-structured models in solving multi-task

problems, the uniformity values consolidate architectural change as an effective approach

towards modeling task trade-offs. This is accompanied by increased average computational

cost, indicated by inference parameter count. As discussed above, this is due to the flexible

architecture over preferences, where actual cost will differ for each preference, e.g., reaching

the cost of PHN-BN for extremely skewed preferences (Figure 5.6). Compared to Single-

Task, the proposed controller is able to find effective architectures (as indicated by the

hypervolume) which perform nearly at par with a smaller memory footprint (as indicated

by the average inference network parameter count). Notably, in the NYU-v2 3-task and

CIFAR-100 settings, the ability to find effective architectures enables the model to out-

perform single-task networks, demonstrating the benefit of sharing features among related

tasks via architectural change. In addition, our framework enjoys flexibility between two

extreme cases, i.e., Single-Task (highest accuracy with lowest inference efficiency) and dy-
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Table 5.2: Evaluation on PASCAL-Context (5 tasks).

Method HV.↑ [3, 3, . . . , 3] Unif.↑
Inference

Params.↓
GFLOPs↓

Control

Params.

Single-Task 81.56 - 9.84M 16.17 -

PHN 42.61 0.72 2.15M 6.28 21.50M

PHN-BN 72.27 0.69 2.15M 6.28 3.63M

Ours w/o adaptation, c=0.0 47.73 0.84 3.34M 7.21 0.06M

Ours w/o adaptation, c=1.0 30.91 0.86 2.75M 6.81 0.06M

Ours, c=0.0 75.52 0.76 3.34M 7.21 15.32M

Ours, c=1.0 73.20 0.79 2.75M 6.81 15.32M

namic models with a shared backbone (lowest accuracy with highest inference efficiency),

spanning a range of trade-offs for different c values. The range of HV is larger when task-

specific features are useful, compared to when the compact architecture already achieves

higher HV than the Single-Task (Tables 5.4,5.5). “Control Params.” is the cost of the

hypernets. Note that this overhead will materialize only when the preference changes and

does not have any effect on the task inference time.

Effect of cross-task adaptation In Tables 5.2-5.5, “Ours w/o adaptation” denotes the

model without weight hypernet. As indicated by larger HVs, cross-task adaptation improves

the performance without affecting the inference time. A trend that persists across all the

settings is the slight drop in uniformity that accompanies the adapted models in comparison

to the unadapted ones. This is due to the propensity of the weight hypernet to improve

task performance as much as possible while keeping the preferences intact. This leads to

improved performance even in low-priority tasks at the expense of lower uniformity. Note
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Table 5.3: Evaluation on PASCAL-Context (3 tasks).

Method HV.↑ [3, 3, 3] Unif.↑
Inference

Params.↓
GFLOPs↓

Control

Params.

Single-Task 4.31 - 5.91M 9.75 -

PHN 1.97 0.74 2.06M 4.81 21.10M

PHN-BN 3.92 0.79 2.06M 4.81 3.32M

Ours w/o adaptation, c=0.0 3.56 0.92 3.15M 5.52 0.03M

Ours w/o adaptation, c=1.0 3.35 0.91 2.86M 5.07 0.03M

Ours, c=0.0 4.26 0.82 3.15M 5.52 9.25M

Ours, c=1.0 4.25 0.82 2.86M 5.07 9.25M

Table 5.4: Evaluation on NYU-v2.

Method HV.↑ [4, 4, 4] Unif.↑
Inference

Params.↓
GFLOPs↓

Control

Params.

Single-Task 12.83 - 64.47M 58.78 -

PHN 2.36 0.75 21.59M 21.02 21.04M

PHN-BN 11.72 0.73 21.59M 21.02 2.23M

Ours w/o adaptation, c=0.0 12.42 0.82 41.06M 29.04 0.03M

Ours w/o adaptation, c=1.0 9.53 0.84 34.68M 25.98 0.03M

Ours, c=0.0 13.43 0.76 41.06M 29.04 5.72M

Ours, c=1.0 13.08 0.78 34.68M 25.98 5.72M

that our primary factor of controllability is through architectural changes which remains

unaffected by the weight hypernet.

Training efficiency. In contrast to dynamic networks, static multi-task networks require

multiple models to be trained, corresponding to different task preferences, to approximate
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Table 5.5: Evaluation on CIFAR-100.

Method HV.↑ [1, 1, . . . , 1] Unif.↑
Inference

Params.↓
GFLOPs↓

Control

Params.

Single-Task 0.009 - 36.18M 348.79 -

PHN 0.002 0.54 16.35M 73.13 11.03M

PHN-BN 0.007 0.49 16.35M 73.13 0.31M

Ours w/o adaptation, c=0.0 0.003 0.58 31.86M 174.36 0.34M

Ours w/o adaptation, c=1.0 0.001 0.53 31.37M 129.23 0.34M

Ours, c=0.0 0.010 0.54 31.86M 174.36 3.10M

Ours, c=1.0 0.009 0.49 31.37M 129.23 3.10M

the trade-off curve. As a result, these methods have a clear trade-off between their perfor-

mance and their training time. To analyze this trade-off, we plot hypervolume vs. training

time for our framework when compared to training multiple static models in Figure 5.7. We

trained 20 multi-task models with different preferences sampled uniformly, and at the infer-

ence time, we selected subsets of various sizes and computed their hypervolume. The shaded

area in Figure 5.7 reflects the variance over different selections of task preference subsets.

This empirically shows that our approach requires a shorter training time to achieve similar

hypervolume compared to static multi-task networks.

5.4.6 Analysis

Architecture evaluation. We study the effectiveness of the architectures predicted by

the edge hypernet by comparing them with those predicted by LTB [57] and BMTAS [19].

We choose the architecture predicted for a uniform task preference and, similar to LTB,
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Figure 5.7: Comparison with preference-specific multi-task networks. For static
multi-task models, each value is computed by evaluating a subset of preferences, with the
shaded area marking the variance across selected subsets. Our framework achieves high
hypervolume significantly faster with a single model.

we retrain it for a fair comparison. We evaluate the performance in terms of the relative

drop in performance across tasks and the number of parameters with respect to the single-

task baseline. Despite not being directly trained for NAS, our framework is able to output

architectures that perform at par with LTB (Table 5.6).

Task controllability. In Figure 5.8 we visualize the task controllability for our frame-

work by plotting the test loss at different values of task preference for that specific task,

marginalized over preference values of the other tasks. As expected, increasing the prefer-

ence for a task gradually leads to a decrease in the loss value. Furthermore, increasing c

leads to higher loss values due to smaller predicted architectures. The effect of the weight

hypernet is also evident, as shown by the lower loss values obtained on using it on top of

the edge hypernet (w/o adaptation).
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Table 5.6: Architecture evaluation on PASCAL-Context (3 tasks). We report the
mean intersection over union for T1 : Semantic seg., T2 : Parts seg., and T3 : Saliency. The
presence of † indicates that we train the networks initialized from ImageNet weights, while
its absence indicates training from anchor net weights.

Method T1 ↑ T2 ↑ T3 ↑ Avg ∆T(%) ↑ # Params (%) ↓

Single-Task 64.11 58.41 65.17 - -

LTB 61.84 59.41 64.18 -1.12 -35.0

BMTAS 62.79 58.41 64.74 -0.93 -48.9

Ours, c=0.0 63.60 59.41 64.94 +0.18 -35.2

Ours†, c=0.0 62.34 58.60 65.17 -0.81 -35.2

Ours, c=1.0 63.12 58.93 64.93 -0.34 -40.8

Ours†, c=1.0 61.91 58.71 65.01 -1.05 -40.8

Architecture Evaluation Figure 5.9 illustrates the architectures predicted by the edge

hypernet for uniform task preference on the NYU-v2 3-task setting. As we increase c, the

model size decreases via increased sharing of the low-level features. We also visualize the

architectures for skewed preferences in Figure 5.10. This leads to architectures that are pre-

dominantly a single-stream network, with the selected stream corresponding to the primary

task. In all cases, Task 1 denotes semantic segmentation, Task 2 denotes surface normals

estimation, and Task 3 denotes depth estimation. We choose the architecture predicted for

a uniform task preference and, similar to LTB, we retrain it for a fair comparison.
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Figure 5.8: Marginal evaluation of tasks on NYU-v2

5.4.7 Ablation Study

Impact of inactive loss. Removing Linact leads to a loss of controllability with the edge

hypernet predominantly predicting the full original anchor net, with minimal branching,

leading to high resource usage and poor uniformity (Table 5.7).

Impact of weighting factors. Removing the two branching weights, L−l
L and A, in

the active loss, we make three key observations in Table 5.7: 1) average resource usage

increases, 2) uniformity drops due to poor alignment between architectures and preferences,

with larger architectures incorrectly predicted for skewed preferences, which ideally require

fewer resources, 3) hypervolume remains almost constant across different c indicating poor

cost control.
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Figure 5.10: Predicted architectures on NYU-v2 for preferences focusing on a
single task.

Analysis of task threshold. We compare the effect of varying the threshold τ in Fig-

ure 5.11. Increasing the value beyond 1/N (∼ 0.3) leads to a loss of controllability as

indicated by the constant hypervolume across different values of c. This is due to the in-

ability to account for uniform preferences. On the other hand, choosing values below this

threshold leads to comparable performance.

Task classification. We analyze the importance of the induced task dichotomy by con-

sidering all tasks as active. This leads to: 1) high overall resource usage, and 2) poor

controllability, especially at low values of c, as shown in Table 5.7.
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Table 5.7: Ablation study on NYU-v2

Method
HV.↑ Unif.↑ #Inference Params↓

c = 0.0 c = 1.0 c = 0.0 c = 1.0 c = 0.0 c = 1.0

Ours 13.43 13.08 0.76 0.78 41.06M 34.68M

no Linactive 12.81 12.73 0.49 0.51 61.75M 54.78M

no layer weighting 12.69 12.21 0.51 0.53 46.21M 41.33M

no task affinity A 12.53 12.35 0.51 0.52 45.73M 42.55M

no task dichotomy 12.57 11.20 0.60 0.63 56.73M 45.17M
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Figure 5.11: Varying thresholds on NYU-v2

5.5 Conclusion

We present a new framework for dynamic resource allocation in multi-task net-

works. We design a controller using hypernets to dynamically predict both network ar-

chitecture and weights to match user-defined task trade-offs and resource constraints. In

contrast to current dynamic MTL methods which work with a fixed model, our formulation

allows flexibility in controlling the total compute cost and matches the task preference bet-
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ter. We show the effectiveness of our approach on four multi-task settings, attaining diverse

and efficient architectures across a wide range of preferences.
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Chapter 6

Conclusions

In this dissertation, we introduce a series of methods that enable the adaptation

of deep learning models to diverse distributional shifts. These shifts encompass a range of

scenarios, including changes in camera viewpoints, variations in imaging conditions, mor-

phological changes of embodied agents, and dynamic computational resource variations.

Our methods aim to achieve this adaptation with minimal supervision, ensuring the models

can effectively generalize to new and challenging conditions quickly.

In Chapters 2 and 3, we delve into the challenge of data distribution shift in two

specific tasks: person re-identification and 2D pose estimation. To address this challenge,

we leverage the inherent structures present in these tasks, such as temporal continuity across

video clips and the anatomical plausibility of human poses. By utilizing these underlying

structures, we propose pseudo-labeling frameworks that effectively tackle the adaptation

problem when dealing with diverse cameras and varying imaging conditions.

In Chapter 4, we explore adaptation within the context of imitation learning.
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Specifically, we address the challenge of training an agent using expert demonstrations

from a domain that has a different state and action spaces compared to the learning agent.

To overcome this discrepancy, we propose a method that utilizes cyclic state transformation

consistency and value function consistency to learn a transformation function between the

domains. Using this function, we enable the agent to understand and effectively utilize the

demonstrations, despite the morphological differences.

Finally, in Chapter 5, we focus on the online adaptation of models to user pref-

erences. We introduce a method that enables the training of dynamic multi-task models,

empowering users to customize the compute budget and relative importance of task perfor-

mances post-deployment, without necessitating retraining. To achieve this, we propose a

tree-structured multi-task network with an additional hypernetwork controller. This con-

troller is trained using meta-learning, leveraging pairwise task relationships to generate

architectures that meet user constraints while ensuring high-quality performance.

While the methods presented in this thesis provide valuable insights into adapta-

tion techniques, they represent only a fraction of the potential problems in this field. It is

essential to acknowledge that there is still much to explore and discover. In conclusion, we

briefly outline several logical extensions of this work that can pave the way for future re-

search in adaptive learning models. These extensions hold promise for further advancements

in the field and offer potential directions for future investigations.

Vision-language Models for Domain Adaptation In-the-wild. In Chapter 3, we

present an approach for adapting a pose estimation model to previously unseen imaging

conditions. Our method is based on the assumption that the pseudo-labels generated by
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the pre-trained model, which are further refined using a human pose prior, are of reasonably

good quality. However, our experimental findings shed light on a crucial challenge — real-

world data often exhibits occlusions, which noticeably undermine the accuracy of these

pseudo-labels. To address this challenge, an exciting avenue for future research lies in

harnessing the zero-shot capabilities of vision-language models [148]. These models have

shown remarkable capabilities in understanding complex visual scenes. Using these models,

we can potentially refine and enhance the pseudo-labels, ultimately bolstering their efficacy

for adapting the pose estimation model. While our current discussion focuses on 2D pose

estimation, this line of investigation holds immense promise in improving the robustness and

accuracy of a wide range of tasks such as 3D body shape estimation, semantic segmentation,

and anomaly detection.

Imitation from Noisy Trajectories. We tackle the problem of cross-domain imitation

learning in Chapter 4. To do so, we require access to proxy tasks where both the expert and

the agent act optimally in their respective domains. Under some structural assumptions, the

learned map enables the transformation of a trajectory in the expert domain into the agent

domain while preserving optimality. Although this relaxes the typical setting of imitation

learning, requiring proxy tasks limits practical applicability. Thus, it would be interesting

to explore alternative ideas that can relax this assumption and accommodate sub-optimal

and noisy trajectories across both domains. This would broaden the scope of cross-domain

imitation learning and enable its practical use in more diverse and challenging environments.

115



Private Domain Adaptation. In the domain adaptation landscape, a critical aspect

that often goes overlooked is the privacy of target domain data. Although source-free

methods like the one we introduce in Chapter 3 exist, they primarily concentrate on safe-

guarding the privacy of the source domain data. However, a key problem in a variety of

applications is that of domain adaptation from a public source domain to a target domain

containing unlabeled data subject to privacy constraints. To tackle this challenge, it is an

interesting direction to harness the recent advancements in differentially private machine

learning [2]. Differential privacy [41] has become the gold standard for privacy-preserving

data analysis, providing formal privacy guarantees and demonstrating desirable algorithmic

properties. Despite the remarkable progress made in the field of differentially private ma-

chine learning, the problem of differentially private domain adaptation remains relatively

unexplored.

116



Bibliography

[1] cifar10-fast. https://github.com/davidcpage/cifar10-fast. Accessed: 2022-01-
27.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications security, pages 308–
318, 2016.

[3] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first International Conference on Machine
learning, page 1, 2004.

[4] Sk Miraj Ahmed, Dripta S Raychaudhuri, Sujoy Paul, Samet Oymak, and Amit K
Roy-Chowdhury. Unsupervised multi-source domain adaptation without access to
source data. In CVPR, 2021.

[5] Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari, Kento Uchida, Shota Saito,
and Kouhei Nishida. Adaptive stochastic natural gradient method for one-shot neural
architecture search. In International Conference on Machine Learning, pages 171–180.
PMLR, 2019.

[6] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep varia-
tional information bottleneck. arXiv preprint arXiv:1612.00410, 2016.

[7] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Unsupervised
cross-domain transfer in policy gradient reinforcement learning via manifold align-
ment. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015.

[8] Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu,
Kurt Driessens, Gerhard Weiss, and Karl Tuyls. An automated measure of mdp
similarity for transfer in reinforcement learning. 2014.

[9] Haitham Bou Ammar and Matthew E Taylor. Reinforcement learning transfer via
common subspaces. In International Workshop on Adaptive and Learning Agents,
pages 21–36. Springer, 2011.

117



[10] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuin-
ness. Pseudo-labeling and confirmation bias in deep semi-supervised learning. arXiv
preprint arXiv:1908.02983, 2019.

[11] Haoyue Bai, Fengwei Zhou, Lanqing Hong, Nanyang Ye, S-H Gary Chan, and Zhenguo
Li. Nas-ood: Neural architecture search for out-of-distribution generalization. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
8320–8329, 2021.

[12] Slawomir Bak and Peter Carr. One-shot metric learning for person re-identification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2990–2999, 2017.

[13] Aayush Bansal, Shugao Ma, Deva Ramanan, and Yaser Sheikh. Recycle-gan: Unsu-
pervised video retargeting. In Proceedings of the European conference on computer
vision (ECCV), pages 119–135, 2018.

[14] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. Understanding and simplifying one-shot architecture search. In International
Conference on Machine Learning, pages 550–559. PMLR, 2018.

[15] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[16] Tolga Bolukbasi, JosephWang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural
networks for efficient inference. In International Conference on Machine Learning,
pages 527–536. PMLR, 2017.

[17] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot
model architecture search through hypernetworks. arXiv preprint arXiv:1708.05344,
2017.

[18] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[19] David Bruggemann, Menelaos Kanakis, Stamatios Georgoulis, and Luc Van Gool.
Automated search for resource-efficient branched multi-task networks. arXiv preprint
arXiv:2008.10292, 2020.

[20] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search
on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[21] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose:
realtime multi-person 2d pose estimation using part affinity fields. IEEE transactions
on Pattern Analysis and Machine Intelligence, 43(1):172–186, 2019.

118



[22] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[23] Woong-Gi Chang, Tackgeun You, Seonguk Seo, Suha Kwak, and Bohyung Han.
Domain-specific batch normalization for unsupervised domain adaptation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019.

[24] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning.
IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

[25] Dapeng Chen, Hongsheng Li, Tong Xiao, Shuai Yi, and Xiaogang Wang. Video per-
son re-identification with competitive snippet-similarity aggregation and co-attentive
snippet embedding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1169–1178, 2018.

[26] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In Proceedings of the European Conference on Computer Vision, pages
801–818, 2018.

[27] Tianlong Chen, Shaojin Ding, Jingyi Xie, Ye Yuan, Wuyang Chen, Yang Yang, Zhou
Ren, and Zhangyang Wang. Abd-net: Attentive but diverse person re-identification.
In Proceedings of the IEEE International Conference on Computer Vision, pages
8351–8361, 2019.

[28] Yanbei Chen, Xiatian Zhu, and Shaogang Gong. Deep association learning for unsu-
pervised video person re-identification. In Proceedings of the British Machine Vision
Conference, 2018.

[29] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun.
Cascaded pyramid network for multi-person pose estimation. In CVPR, 2018.

[30] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask networks. In
International Conference on Machine Learning, pages 794–803. PMLR, 2018.

[31] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yun-
ing Chai, and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models
with gradient sign dropout. In Advances in Neural Information Processing Systems,
2020.

[32] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S Huang, and Lei
Zhang. Higherhrnet: Scale-aware representation learning for bottom-up human pose
estimation. In CVPR, 2020.

[33] David Cornett, Joel Brogan, Nell Barber, Deniz Aykac, Seth Baird, Nicholas Burch-
field, Carl Dukes, Andrew Duncan, Regina Ferrell, Jim Goddard, Gavin Jager,
Matthew Larson, Bart Murphy, Christi Johnson, Ian Shelley, Nisha Srinivas, Brandon

119



Stockwell, Leanne Thompson, Matthew Yohe, Robert Zhang, Scott Dolvin, Hector J.
Santos-Villalobos, and David S. Bolme. Expanding accurate person recognition to
new altitudes and ranges: The briar dataset. In WACV Workshops, 2023.

[34] Timo M Deist, Monika Grewal, Frank JWM Dankers, Tanja Alderliesten, and Pe-
ter AN Bosman. Multi-objective learning to predict pareto fronts using hypervolume
maximization. arXiv preprint arXiv:2102.04523, 2021.

[35] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

[36] Weijian Deng, Liang Zheng, Qixiang Ye, Yi Yang, and Jianbin Jiao. Similarity-
preserving image-image domain adaptation for person re-identification. arXiv preprint
arXiv:1811.10551, 2018.

[37] Guodong Ding, Shanshan Zhang, Salman Khan, Zhenmin Tang, Jian Zhang, and
Fatih Porikli. Feature affinity based pseudo labeling for semi-supervised person re-
identification. IEEE Transactions on Multimedia, 2019.

[38] Alexey Dosovitskiy and Josip Djolonga. You only train once: Loss-conditional training
of deep networks. In International Conference on Learning Representations, 2019.

[39] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox.
Discriminative unsupervised feature learning with convolutional neural networks. In
Advances in Neural Information Processing Systems, pages 766–774, 2014.

[40] Kshitij Dwivedi and Gemma Roig. Representation similarity analysis for efficient
task taxonomy & transfer learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12387–12396, 2019.

[41] Cynthia Dwork. Differential privacy. In Automata, Languages and Programming: 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,
Part II 33, pages 1–12. Springer, 2006.

[42] Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating
latent policies from observation. In International Conference on Machine Learning,
pages 1755–1763. PMLR, 2019.

[43] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is all you need: Learning skills without a reward function. arXiv preprint
arXiv:1802.06070, 2018.

[44] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. Rmpe: Regional multi-person
pose estimation. In ICCV, 2017.

[45] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for con-
tinuous markov decision processes. SIAM Journal on Computing, 40(6):1662–1714,
2011.

120



[46] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-
shot visual imitation learning via meta-learning. In Conference on Robot Learning,
pages 357–368. PMLR, 2017.

[47] Mark Fleischer. The measure of pareto optima applications to multi-objective meta-
heuristics. In International Conference on Evolutionary Multi-Criterion Optimization,
pages 519–533. Springer, 2003.

[48] Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement learn-
ing tasks via image-to-image translation. In International Conference on Machine
Learning, pages 2063–2072. PMLR, 2019.

[49] Tanmay Gangwani and Jian Peng. State-only imitation with transition dynamics
mismatch. In International Conference on Learning Representations, 2019.

[50] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. In JMLR, 2016.

[51] Jiyang Gao and Ram Nevatia. Revisiting temporal modeling for video-based person
reid. arXiv preprint arXiv:1805.02104, 2018.

[52] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise
feature fusing in multi-task cnns by neural discriminative dimensionality reduction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 3205–3214, 2019.

[53] Riccardo Gatto and Sreenivasa Rao Jammalamadaka. The generalized von mises
distribution. Statistical Methodology, 4(3):341–353, 2007.

[54] Zigang Geng, Ke Sun, Bin Xiao, Zhaoxiang Zhang, and Jingdong Wang. Bottom-
up human pose estimation via disentangled keypoint regression. arXiv preprint
arXiv:2104.02300, 2021.

[55] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[56] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-
vances in neural information processing systems, 27:2672–2680, 2014.

[57] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task
learning. In International Conference on Machine Learning, 2020.

[58] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and
Rogerio Feris. Spottune: transfer learning through adaptive fine-tuning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4805–4814, 2019.

121



[59] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,
and Jian Sun. Single path one-shot neural architecture search with uniform sam-
pling. In Proceedings of the European Conference on Computer Vision, pages 544–560.
Springer, 2020.

[60] Abhishek Gupta, Coline Devin, Yuxuan Liu, Pieter Abbeel, and Sergey Levine. Learn-
ing invariant feature spaces to transfer skills with reinforcement learning. In Interna-
tional Conference on Learning Representations. OpenReview.net, 2017.

[61] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint
arXiv:1609.09106, 2016.

[62] Seyed Hamid Rezatofighi, Anton Milan, Zhen Zhang, Qinfeng Shi, Anthony Dick, and
Ian Reid. Joint probabilistic matching using m-best solutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 136–145, 2016.

[63] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.
Dynamic neural networks: A survey. arXiv preprint arXiv:2102.04906, 2021.

[64] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
ICCV, 2017.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[66] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss
for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

[67] Daniel Ho, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi Khansari, and Yunfei Bai.
Retinagan: An object-aware approach to sim-to-real transfer. arXiv preprint
arXiv:2011.03148, 2020.

[68] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Ad-
vances in neural information processing systems, pages 4565–4573, 2016.

[69] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adap-
tation. In International conference on machine learning, pages 1989–1998. PMLR,
2018.

[70] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei A. Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain
adaptation. In ICML, 2018.

[71] Harold Hotelling. Relations between two sets of variates. In Breakthroughs in statistics,
pages 162–190. Springer, 1992.

122



[72] Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Ma-
neesh Singh, and Ming-Hsuan Yang. Progressive domain adaptation for object detec-
tion. In WACV, 2020.

[73] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and
Kilian Q Weinberger. Multi-scale dense networks for resource efficient image classifi-
cation. arXiv preprint arXiv:1703.09844, 2017.

[74] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and
Bernt Schiele. Deepercut: A deeper, stronger, and faster multi-person pose estimation
model. In ECCV, 2016.

[75] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[76] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m:
Large scale datasets and predictive methods for 3d human sensing in natural environ-
ments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7):1325–
1339, 2013.

[77] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

[78] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter
networks. Advances in Neural Information Processing Systems, 29:667–675, 2016.

[79] Junguang Jiang, Yifei Ji, Ximei Wang, Yufeng Liu, Jianmin Wang, and Mingsheng
Long. Regressive domain adaptation for unsupervised keypoint detection. In CVPR,
2021.

[80] Sheng Jin, Wentao Liu, Enze Xie, Wenhai Wang, Chen Qian, Wanli Ouyang, and Ping
Luo. Differentiable hierarchical graph grouping for multi-person pose estimation. In
ECCV, 2020.
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