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Abstract

Manufacturing and environmental variability lead to timing er-
rors in computing systems that are typically corrected by error de-
tection and correction mechanisms at the circuit level. The cost and
speed of recovery can be improved by memoization-based optimiza-
tion methods that exploit spatial or temporal parallelisms in suitable
computing fabrics such as general-purpose graphics processing units
(GPGPUs). We propose here a temporal memoization technique for
use in floating-point units (FPUs) in GPGPUs that uses value locality
inside data-parallel programs. The technique recalls (memorizes) the
context of error-free execution of an instruction on a FPU. Therefore,
it avoids redundant execution and saves energy for FPU. To enable
scalable and independent recovery, a single-cycle lookup table (LUT)
is tightly coupled to every FPU to maintain contexts of recent error-
free executions. The LUT reuses these memorized contexts to exactly,
or approximately, correct errant FP instructions based on application
needs. In real-world applications, the temporal memoization tech-
nique achieves an average energy saving of 13%–25% for a wide range
of timing error rates (0%–4%) and outperforms recent advances in re-
silient architectures. This technique also enhances robustness in the
voltage overscaling regime and achieves relative average energy saving
of 44% with 11% voltage overscaling.
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1 Introduction

The scaling of physical dimensions in semiconductor circuits opens the way
to an astonishing over 7 billion transistors on a 28nm process which gives
a grand total of 2,880 CUDA cores in recent GPGPU chips [1]. It is also
leading to ever-increasing parametric variations across process, voltage and
temperature (PVT) [2]. As designers build circuits operating near-threshold
[3] in order to save power, and use voltage overscaling [4] to reach performance
targets, the effect of PVT variations are exacerbated.

The most common effect of variation is violation of timing specifications
that cause circuit-level timing errors. IC designers commonly use conserva-
tive guardbands for the operating frequency or voltage to ensure error-free
operation for the worst-case variations. These guardbands have been steadily
increasing, thus leaving untapped performance and other costs of overdesign
[5]. An alternative to overdesign is to make a design resilient to errors and
variations. In this paper, we specifically focus on ‘Design for Resiliency’
(DFR) against timing errors.

Low-voltage DFR applies to both logic and memory blocks. For memory,
8T SRAM arrays utilize a tunable replica bits therefore enables reduction of
the minimum operating voltage [7]. Similarly, in non-volatile memory area,
resistive RAM (ReRAM/memristor) is a promising candidate at low power
supply voltage [8]. For logic, error-detection sequential (EDS) [6] circuit sen-
sors have been employed to reduce guardbanding in the designed circuits.
A common strategy is to detect variability-induced delays by sampling and
comparing signals near the clock edge to detect timing errors. The timing
errors are corrected by replaying the errant operation with a larger guard-
band through various adaptation techniques. For instance, a resilient 45nm
integer-scalar core [9] places EDS circuits in the critical paths of the pipeline
stages. Once a timing error is detected during instruction execution, the
core prevents the errant instruction from corrupting the architectural state
and an error control unit (ECU) initially flushes the pipeline to resolve any
complex bypass register issues. To ensure scalable error recovery, the ECU
supports two separate techniques: instruction replay at half frequency, and
multiple-issue instruction replay at the same frequency. These techniques im-
pose energy overhead and latency penalty of up to 28 extra recovery cycles
per error for the resilient 7-stage integer pipeline [9].

As energy becomes the dominant design metric, aggressive voltage scal-
ing [4] and near-threshold operations [3] increase the rate of timing errors
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and correspondingly the costs (in energy, performance) of these recovery
mechanisms. This cost is exacerbated in FP single-instruction multiple-data
(SIMD) pipelined architectures where the pipeline dimensions are expanded
both vertically (with wider parallel lanes) and horizontally (with deeper
stages). The horizontally expanded deeper pipelines induce higher pipeline
latency and higher cost of recovery through flushing and replaying the errant
instruction. The FP pipelines consume higher energy-per-instruction than
their integer counterparts and typically have high latency for instance over
100 cycles [10] to execute on a GPGPU. Effectively, these energy-hungry high-
latency pipelines are prone to inefficiencies under timing errors. Similarly,
in vertically expanded pipelines, there is a significant performance drop in a
10-lane SIMD architecture as single-stage-error probabilities increase [11]. In
the lock-step execution, any error within any of the lanes will cause a global
stall and force recovery of the entire SIMD pipeline.

Thus, in FP SIMD pipelines the error rate is multiplied by the wider
width while the number of recovery cycles per error increases at least linearly
with the pipeline length. This makes the cost of recovery per single error
quadratically more expensive relative to scalar functional units. At the same
time, parallel execution in the GPGPU architectures – described in Section 3–
provides an important ability to reuse computation and reduce the cost of
recovery from timing errors. This paper, exploits this opportunity to make
three main contributions:

1. We have earlier proposed a temporal memoization technique for energy-
efficient execution in GPGPUs [21]. We observe that the entropy of
data-level parallelism is low due to high locality of values. The tem-
poral memoization of recent error-free executions exploits this inherent
value locality. We show that the memorized information can be used
to reduce the energy of a FPU by returning the pre-stored result that
avoids redundant execution, and further reduces the conventional re-
covery costs in the presence of a timing error. the memorized infor-
mation can be utilized exactly or approximately depending upon the
application needs.

2. We closely integrate a lightweight single-cycle LUT to the FPU to sup-
port instruction-level memoization. The design enables a scalable and
independent recovery of individual FPUs. Section 4 covers these de-
tails.
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3. We demonstrate the effectiveness of our technique on the Evergreen
GPGPU architecture for error-tolerant image processing applications
as well as error-intolerant general-purpose applications selected from
AMD APP SDK v2.5 [23]. Multi2Sim [25], a cycle-accurate CPU-GPU
simulation framework, is modified to collect the statistics for comput-
ing the temporal value locality out of 27 single precision floating-point
instructions. The modified simulator code is available for downloading
at [28]. Our experimental results in Section 5 show an average energy
saving of 13% in case of an error-free execution environment (0% tim-
ing error); it further reaches to an average energy saving of 25% in the
presence of 4% timing error rate thanks for improving recovery cost on
the errant instructions. This technique also enhances robustness in the
voltage overscaling scenario, up to an average energy saving of 44%.

2 Related Work

Sodani and Sohi [12] introduced the concept of instruction reuse from the
observation that many instructions can be skipped if another instance has
already been executed using the same input values. The instruction reuse
enables memorization of the outcome of an instruction in hardware tables,
therefore a processor can reuse it temporally if the processor performs the
same instruction with the same input values within a limited period of time
before the entry is overwritten. This temporal memorization technique is
fundamentally limited by the latency and the low hit rate of the tables. To
improve the hit rates, recent reuse techniques [13, 14] seek to improve as-
sociation of the entries of the table with similar inputs to the same output.
These tolerant techniques rely upon the tolerance in the output precision of
multimedia algorithms to achieve high reuse rates, and work at the granu-
larity of the FP instruction [14], or a region of FP instructions [13]. A load
value prediction technique also exploits the value locality to predict the reg-
ister file values being loaded from memory based on previously-seen values
[15]. These techniques have been devised for single-core architectures with-
out exploring their potential in combating timing errors in data-level parallel
architectures.

Beyond instruction-level reuse, various techniques have been proposed to
mitigate the variation-induced timing errors, including adaptive management
of guardbanding through ‘predict-and-prevent’ mechanisms [16, 17, 22, 18,
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19], and ‘detect-then-correct’ mechanisms [6, 7, 9, 11]. A brief review of the
main concepts and their embodiments follows.

Predict-and-prevent techniques try to avoid timing errors while reducing
guardbands, for instance for individual instructions [16]. The instruction
program counter of an out-of-order pipeline is used for an early prediction
of an upcoming timing violation by searching in a large predictor table [22].
At higher levels, a procedure hopping technique is proposed to avoid voltage
droops [17]. In the context of the GPGPU architecture, hierarchically fo-
cused guardbanding [18] has been proposed earlier at two levels: fine-grained
instruction-level and coarse-grained kernel-level. Rahimi et al. [19] propose a
compiler technique that periodically regenerates healthy codes that reduces
the aging-induced performance degradation of the GPGPUs. The predictive
techniques cannot eliminate the entire guardbanding to work efficiently at
the edge of failure specially so with frequent timing errors in the voltage
overscaling and near-threshold regimes.

Detect-then-correct technique for SIMD architectures decouples the lanes
through private queues that prevent error events in any single lane from
stalling all other lanes [11]. This enables each lane to recover from errors in-
dependently. The decoupling queues cause slip between lanes which requires
additional architectural mechanisms to ensure correct execution. Further,
the decouple queue relies on the recovery based on the global clock-gating
which involves stalling the entire lane. This causes one cycle recovery penalty
over a two-stage execution unit [11]. However, propagating a global stall sig-
nal over a deep GPGPU pipeline [10] is expensive. A spatial memoization

[20] technique also broadcasts output result of an error-free instruction across
all error-prone lanes, tightens its scalability. Hence, the cost of scalable re-
covery (e.g., [9]) per single timing error on these architectures is high limiting
their utility to low error rate circumstances. Our present work enhances the
scope of ‘detect-then-correct’ approaches in a GPGPU context thanks to an
ultra-low cost recovery through memoization, thus offering both scalability
and low-cost self-resiliency in the face of high timing error rates.

3 GPGPU Architecture

We focus on the Evergreen family of AMD GPGPUs (a.k.a. Radeon HD
5000 series), that targets general-purpose data-intensive applications. The
Radeon HD 5870 GPGPU consists of 20 compute units, a global front-end
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categories: ALU clause, TEX clause, and control-flow instructions. The
control-flow instructions triggering ALU clauses will be placed in the input
queue at the ALU engine. There is only one wavefront associated with the
ALU engine. After fetch and decode stages, the source operands for each
instruction are read that can come from the register file or local memory. For
higher throughput, buffers are attached to SCs to read the registers ahead
of time. The core stage of a GPGPU is the execute stage, where arithmetic
instructions are carried out in each SC. When the source operands for all
work-items in the wavefront are ready, the execution stage starts to issue the
operations into the SCs. Finally, the result of the computation is written
back to the destination operands.

4 Temporal Memoization

We briefly describe how value locality can increase the resiliency of the
GPGPUs followed by a description of the proposed temporal memorization
technique. We divide all applications into two classes: error-tolerant image
processing applications and error-intolerant general-purpose applications se-
lected from AMD APP SDK v2.5 [23]. For error-tolerant applications, we
have examined two image processing filters: Sobel and Gaussian. The error-
tolerant applications exhibit enhanced error resilience at the application-level
when multiple valid output values are permitted, in effect, creating a relation
from input values to (multiple) output values. Instead of a single number,
the output value is associated with a quality metric that may be within the
constraints of application-specific fidelity metrics such as peak signal-to-noise
ratio (PSNR) [24]. Therefore, if execution is not 100% numerically correct,
the application can still appear to execute correctly from the users perspec-
tive [13, 14, 24].

In case of error-intolerant applications that do not have such inherent
algorithmic tolerance, even a single bit error could result in unacceptable
program execution. In this class, we have examined five applications: Black-
Scholes and Binomial models for European-style options in financial engi-
neering; one-dimension Haar wavelet transform; fast Walsh transform; and
Eigenvalues of a symmetric matrix.
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4.1 FP Instruction-Level Memoization

We focus on the individual FPUs to observe the dispersion of the input
operands at the finest granularity. To expose the value locality for each FPU
operations, we consider a private FIFO for every individual FPU. These FI-
FOs have a small depth and keep the distinct sets of the input operands in
the order of instruction arrivals. The FIFO matches a set of incoming input
operands and the current content of entries of FIFO using a matching con-
straint. Since the applications exhibit varying degrees of tolerance to errors,
we consider a matching constraint to limit the absolute numerical difference
between the incoming input operands and the matched stored operands in
the FIFO, as shown in Equation 1.

∃i | input operands− FIFO[i] |≤ threshold (1)

By choosing different threshold values two matching constraints can be ap-
plied: (i) Exact matching constraint by setting threshold=0 that enforces
zero numerical difference, i.e., full bit-by-bit matching of the input operands
of the FPU with the FIFO’s entries. This constraint is applicable for the
error-intolerant applications. (ii) Approximate matching constraint by set-
ting threshold > 0 that relaxes the criteria of the exact matching during
comparison of the operands by accepting some degree of numerical difference.
Setting threshold value in the range of [1, 0) allow mismatches in the less
significant bits of the fraction parts. For our image processing filters it is
required to set threshold value such that to guarantee the PSNR of greater
than 30dB – this is generally considered acceptable from users perspective
in image processing applications.

Images in Figure 2 are the outputs of Sobel filter with different threshold
values of 0, 0.2, 0.4, 0.6, 1.0. As shown, the threshold=0 results in the ex-
act matching without any quality degradation (PSNR=∞). Increasing the
threshold value leads to higher numerical error acceptance that decreases
the PSNR: threshold=0.4 causes PSNR of 40dB, while threshold=1.0 low-
ers PSNR to 30dB. Images in Figure 3 are the outputs of Gaussian filter with
the same threshold range. The threshold=0 guarantees the absence of any
numerical error therefore does not degrade the quality. By increasing the
threshold value the PNSR decreases. The threshold=0.8 causes PSNR of
30dB which is acceptable from users perspective. However, further increasing
of threshold produces unacceptable quality.

The same experiments are repeated with a different input image (book)
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(a) (∞, 0) (b) (49dB, 0.2) (c) (40dB, 0.4)

(d) (33dB, 0.6) (e) (32dB, 0.8) (f) (30dB, 1.0)

Figure 2: Each image shows a pair of the PSNR and the desired threshold

of approximation for Sobel filter with face as the input image.

for both filters in Figure 4 and Figure 5. As shown, for this input image both
Sobel and Gaussian filters experience a cutoff threshold value of 0.2, as the
threshold=0.4 produces PSNR of less than 30dB.

We assess the overall hit rate of applications when the FPUs utilizing
FIFOs with various FIFO length of 2, 4, 8, 16, 32, and 64 entries. Increasing
the FIFO size with 2 entries by a factor of 2×, 4×, 8×, 16×, and 32× led
to 2%, 4%, 8%, 12%, and 17% higher hit rates. The hit rate increases less
than 20% when the size of FIFOs is increased from 2 to 64. Therefore, we
have used the FIFOs with 2 entries for our proposed temporal memoization
technique, and we evaluate its energy saving in Section 5.

We also measure the overall hit rate of the FIFOs for different types of
the FPUs. Figure 6 shows the hit rates for five types of the FPUs when
executing Sobel filter with two different input images. As shown, the hit rate
depends on the FPU operations. The SQRT displays the highest hit rate for

11



(a) (∞, 0) (b) (46dB, 0.2) (c) (38dB, 0.4)

(d) (34dB, 0.6) (e) (30dB, 0.8) (f) (28dB, 1.0)

Figure 3: Each image shows a pair of the PSNR and the desired threshold

of approximation for Gaussian filter with face as the input image.
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(a) (∞, 0) (b) (31dB, 0.2) (c) (25dB, 0.4)

(d) (22dB, 0.6) (e) (20dB, 0.8) (f) (19dB, 1.0)

Figure 4: Each image shows a pair of the PSNR and the desired threshold

of approximation for Sobel filter with book as the input image.
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(a) (∞, 0) (b) (42dB, 0.2) (c) (25dB, 0.4)

(d) (21dB, 0.6) (e) (18dB, 0.8) (f) (18dB, 1.0)

Figure 5: Each image shows a pair of the PSNR and the desired threshold

of approximation for Gaussian filter with book as the input image.
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Table 1: Kernels with selected input parameters and threshold.
Kernel Input parameter threshold

Sobel face (1536×1536) 1.0
Gaussian face (1536×1536) 0.8
Haar 1024 0.046
BinomialOption 20 0.000025
BlackScholes 20 0.000025
FWT 1000000 0.0
EigenValue 1000×1000 0.0

small FIFOs.
Table 1 shows the full set of kernels with the input parameters and the

selected threshold of approximation. For Gaussian and Sobel filters, as
the error-tolerant kernels, we use relatively large threshold values. These
threshold values allow up to 1.0 (for Sobel) or 0.8 (for Gaussian) absolute
numerical error during the operator matching, while providing the accept-
able PSNR of greater than 30dB for the input image. Due to the absence
of proper fidelity metric and domain expert knowledge for the rest of ap-
plications, we consider them as the error-intolerant kernels that need full
numerical correctness. However, during our experiments we informed that
three more kernels (Haar, BinomialOption, and BlackScholes) are able to
tolerate small numerical errors. Setting the threshold=0.046 for Harr and
threshold=0.000025 for BinomialOption/BlackScholes produces the output
values that are accepted by the test program executed in the host code1. For
FWT and EigenValue, we set the exact matching (threshold=0.0) that en-
forces full bit-by-bit matching of the operands.

Figure 8 shows the hit rate of the FIFOs for various FPUs during execu-
tion of the kernels with the input parameters and the threshold values listed
in Table 1. It also shows the weighted average hit rate of the activated FPUs.
Among all the FPUs, the SQRT and the FP-to-INT exhibit the highest hit
rate of 97% across the kernels. The ADD, MUL, RECIP, MULADD show the
maximum hit rate of 94%. Among the error-intolerant kernels, EigenValue
shows an average hit rate of 94% across seven activated FPUs.

1The output values of the kernels are compared against the output values computed
by the host code and the test program results in passed.
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Figure 8: Hit rate of the FIFOs for activated FPUs during kernel execution
with parameters listed in Table 1.

4.2 Resilient Architecture Utilizing Temporal Memo-

ization

We now describe the design of a resilient GPGPU architecture that utilizes
the temporal memoization technique. In Evergreen GPGPUs, every FPU
has four execution stages and a throughput of one instruction per cycle.
We instrument every FPU pipeline with the error detection and correction
mechanisms proposed in [6, 9]. Essentially, every stage uses EDS circuit
sensors to detect the timing errors by propagating an error signal toward
the end of pipeline that finally reaches to the ECU, the error control unit.
The ECU triggers the recovery mechanism through flushing, and issuing the
errant instruction multiple times [9]. This forms the baseline ‘detect-then-
correct’ mechanism shown as the white components in Figure 9.

To exploit the value locality, we tightly couple the FPU pipeline with
our proposed temporal memoization module (shown as the gray components
in Figure 9). This module has essentially a single-cycle LUT, and a set of
flip-flops and buffers to propagate signals through the pipeline. The LUT
is shown in the bottom part of Figure 9 and is composed of two parts: (i)
a FIFO with two entries; (ii) a set of combinational comparators. In ev-
ery entry, the FIFO maintains a set of input operands (e.g., in Figure 9,
two inputs) and the computed result provided by the output of the FPU in
the last stage (QS). The parallel combinational comparators implement the
two matching constraints, and are programmable through a 32-bit memory-
mapped register as a masking vector. They concurrently make either a full
or partial comparison of the input operands with the stored operands in
each entry based on the masking vector. The LUT works in parallel with
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the first stage of the FPU. Therefore, for every set of input operands, the
LUT searches the FIFO to find a match between the input operands and the
operand values stored in the entries (i.e., whether the matching constraint
in Equation 1 is satisfied or not). A match directly results in reuse of re-
sults computed earlier; therefore avoiding redundant execution and saving
power, i.e., when {Hit, Error}={1,1/0}. Furthermore, this affords the tem-
poral memoization module an opportunity to correct an errant instruction
with zero cycle penalty.

The matching constraints are programmable and also allow commutativ-
ity of the operands where applicable. The FIFO maintains a limited number
of recent distinct sets. Therefore, if a set of incoming input operands does
not satisfy either matching constraints, the FIFO will be updated by cleaning
its last entry and inserting the new incoming operands accordingly.

To enable reuse, the LUT propagates a hit signal alongside with the
previously-computed result (QL) toward the end of pipeline. The LUT raises
the hit signal that squashes the remaining stages of the FPU to avoid the
redundant computation by clock-gating; the clock-gating signal is forwarded
to the rest of stages, cycle by cycle. The stored result is also propagated
toward the end of pipeline for the reuse purpose. The hit signal selects
the propagated output of the LUT (QL) as the output of the FPU; it also
disables the propagation of timing error signal (if any) to the ECU, thus
avoids the costly recovery. Therefore, each hit event reduces energy by locally
retrieving the result from the LUT, rather than doing full re-execution by
the FPU. In case of a LUT miss, the FIFO is updated to maintain the
last recently computed values. It is implemented through a write enable
signal (Wen) that ensures there is no timing error during execution of all
the stages of the FPU for computing QS. Finally, if a simultaneous timing
error and miss occurred, the error signal will be propagated to the ECU
that triggers the baseline recovery. Table 2 summarizes these four states.
Each application has full control over the temporal memoization module as a
programmable module through the memory-mapped registers. To determine
the matching constraints, the application can set the 32-bit memory-mapped
register of the masking vector accordingly. The error-tolerant applications
can set the masking vector according to the threshold value to ignore the
differences of the operands in the less significant bits of the fraction part.
With the approximate matching constraint, the pair of instructions with two
different input operands will have the same output. On the other hand,
the exact matching constraint enables the reuse of the previously-computed
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Table 2: Timing error handling with temporal memoization module.
Hit Error Action QPipe

0 0 Normal execution + LUT update QS

0 1 Triggering baseline recovery (ECU) QS

1 0 LUT output reuse + FPU clock-gating QL

1 1 LUT output reuse + FPU clock-gating + masking error QL

results stored in the LUT while maintaining the full precision for the error-
intolerant applications. Moreover, if an application lacks value locality, it
can disable the entire memoization module by power-gating thus avoid any
power penalty. Further, compiler-directed analysis techniques or domain
experts with some application knowledge can also store pre-computed values
in the LUT to use the most probable or critical results.

5 Experimental Results

Our methodology uses the AMD Evergreen GPGPUs, but can be applied to
other GPGPU architectures as well. Multi2Sim [25], a cycle-accurate CPU-
GPU simulation framework, is modified to collect the statistics for computing
the temporal value locality out of 27 single precision floating-point instruc-
tions. The modified simulator code is available for downloading at [28]. The
naive binaries of AMD APP SDK v2.5 [23] kernels are run on the simulator;
the input values for the kernels are generated by the default OpenCL host
program based on the parameters listed in Table 1. We analyzed the effec-
tiveness of proposed technique in the presence of timing errors and voltage
overscaling on TSMC 45-nm ASIC flow.

5.1 Implementation of Temporal Memoization Module

To keep the focus on the energy-hungry high-latency FP pipelines, we as-
sume that the memory blocks are resilient, for instance by utilizing the
tunable replica bits [7]. Since the fetch and decode stages display a low
criticality [16], we focus on the execution stage consisting of six frequently
exercised functional units: ADD, MUL, SQRT, RECIP, MULADD, FP2INT.
On Evergreen, every ALU functional unit has a latency of four cycles and a
throughput of one instruction per cycle [27]. Therefore, VHDL codes of the
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Figure 10: Energy saving of the proposed temporal memoization architec-
ture while experiencing a range of timing error rates– considering energy
consumption of ADD, MUL, SQRT, RECIP, MULADD, FP2INT.

FPUs are generated and optimized using FloPoCo [26] – an arithmetic syn-
thesizable FP core generator. To achieve a balanced clock frequency across
the FP pipelines, the RECIP has a latency of 16 cycles, while the rest of the
FPU have four cycles latency.

The temporal memoization module for each FPU operations is described
in Verilog synthesizable RTL. To integrate the resilient architecture, the
memoization modules are integrated into the FPUs pipelines with the base-
line recovery mechanism. This baseline recovery mechanism costs 12 cycles
per error. Finally, the entire design is synthesized and mapped using the
TSMC 45nm technology library. The front-end flow with multi VTH cells
has been performed using Synopsys Design Compiler with the topographi-
cal features, while Synopsys IC Compiler has been used for the back-end.
The design has been optimized for timing a signoff frequency of 1GHz at
(SS/0.81V/125◦C), and then optimized for power using high VTH cells. The
memoization module does not limit the clock frequency as it has a positive
slack of 14% of the clock period.

5.2 Energy Saving

We compare the energy saving for a range of timing error rates [0%, 4%] on
the execution state of the six frequently exercised FPUs. Our implementation
excludes the fact that the temporal memoization module may produce an
erroneous result, because the module has a positive slack of 14% of the clock
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Figure 11: Total energy consumption of the proposed temporal memoiza-
tion architecture in comparison with the baseline architecture under voltage
overscaling– considering energy consumption of ADD, MUL, SQRT, RECIP,
MULADD, FP2INT.

period. Therefore it is unlikely to face any timing errors. When there are no
timing errors (0%), the proposed architecture has an average energy saving
of 13% compared to the baseline architecture for all the applications. This
scenario is similar to the value prediction techniques as proposed in [15],
that is extended to GPGPU architectures. Moreover, as shown in Fig 10,
the temporal memoization technique has a great potential of energy saving
in the high error rate circumstances. On average 13%, 17%, 20%, 23%,
25% lower total energy is achieved compared to the baseline at the error
rates of 0%, 1%, 2%, 3%, 4%. This is accomplished through the efficient
memoization-based timing error recovery that does not impose any latency
penalty as opposed to the baseline recovery.

5.3 Memoization-Based Voltage Overscaling

We also compare energy saving of the proposed architecture with a baseline
architecture that also utilizes recent resilient techniques [11, 9]. For the base-
line architecture, we consider the decoupling queues technique [11] with the
error detection of EDS, and the baseline recovery mechanism of the multiple-
issue instruction replay [9] adapted for the FPUs to support scalability. Our
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proposed temporal memoization architecture superposes the temporal mem-
oization modules on the baseline architecture. In our experiments the EDS,
the ECU and the temporal memoization modules are always ON; applica-
tions have only control on selecting either approximate or exact matching
constraint.

We assess the efficacy of the proposed architecture in the voltage overscal-
ing regime, while maintaining the constant clock frequency. We scale down
the voltage of the FPUs in the range of 0.9V–0.8V. To ensure always correct
functionality of the temporal memoization module, we maintain its operat-
ing voltage at the fixed nominal 0.9V. Voltage scaling feature of Synopsys
PrimeTime is employed to analyze the delay and power variations under
the voltage overscaling. Then, the voltage overscaling-induced delay is back
annotated to the post-layout simulation which is coupled with Multi2Sim
simulator to quantify the timing error rate. The baseline architecture trig-
gers the recovery mechanism when any voltage overscaling-induced timing
error occurs, while our proposed architecture does it in case of simultaneous
events of the miss and the error.

Figure 11 illustrates the energy consumption of the two architectures
at different voltage overscaling points for six applications. The proposed
memoization architecture exhibits a great potential of survival in the voltage
overscaling: (i) For all the applications, the proposed architecture achieves
13% average energy saving at the nominal voltage of 0.9V. At this operating
voltage there is no timing error which is similar to the value prediction. (ii)
Scaling down the voltage to 0.84V, reduces the gain of our energy saving
to 11% since the FPUs of the baseline are nicely reduced their total power
as consequence of negligible error rate, while we cannot proportionally scale
down the power of the temporal memoization modules. (iii) Beyond 0.84V,
our technique surpasses the baseline architecture due to the abrupt increasing
of the error rate and therefore frequent recoveries. At voltage of 0.8V, the
proposed technique reaches an average energy saving of 44%.

6 Conclusion

We exploit value locality in improving timing error correction in GPGPUs.
A fast lightweight temporal memoization module independently stores re-
cent error-free executions of a FPU which is sufficient enough to temporarily
protect individual FPUs against timing errors. To efficiently reuse computa-
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tions, the technique supports both exact and approximate error corrections
for error-intolerant general-purpose and error-tolerant image processing ap-
plications, respectively. These real-world applications exhibit a low entropy
due to the high contextual information. This avoids costly recovery, therefore
improves the energy efficiency and reduces the total energy by average sav-
ings of 13% (for 0% timing error rate) to 25% (for 4% timing error rate). This
technique also surpasses the baseline architecture by enhancing robustness
and energy saving in the voltage overscaling regime.
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