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Abstract: Background: Suppression of thoracic bone shadows on chest X-rays (CXRs) can improve
the diagnosis of pulmonary disease. Previous approaches can be categorized as either unsupervised
physical models or supervised deep learning models. Physical models can remove the entire ribcage
and preserve the morphological lung details but are impractical due to the extremely long processing
time. Machine learning (ML) methods are computationally efficient but are limited by the available
ground truth (GT) for effective and robust training, resulting in suboptimal results. Purpose: To
improve bone shadow suppression, we propose a generalizable yet efficient workflow for CXR
rib suppression by combining physical and ML methods. Materials and Method: Our pipeline
consists of two stages: (1) pair generation with GT bone shadows eliminated by a physical model in
spatially transformed gradient fields; and (2) a fully supervised image denoising network trained on
stage-one datasets for fast rib removal from incoming CXRs. For stage two, we designed a densely
connected network called SADXNet, combined with a peak signal-to-noise ratio and a multi-scale
structure similarity index measure as the loss function to suppress the bony structures. SADXNet
organizes the spatial filters in a U shape and preserves the feature map dimension throughout the
network flow. Results: Visually, SADXNet can suppress the rib edges near the lung wall/vertebra
without compromising the vessel/abnormality conspicuity. Quantitively, it achieves an RMSE of
∼0 compared with the physical model generated GTs, during testing with one prediction in <1 s.
Downstream tasks, including lung nodule detection as well as common lung disease classification
and localization, are used to provide task-specific evaluations of our rib suppression mechanism.
We observed a 3.23% and 6.62% AUC increase, as well as 203 (1273 to 1070) and 385 (3029 to 2644)
absolute false positive decreases for lung nodule detection and common lung disease localization,
respectively. Conclusion: Through learning from image pairs generated from the physical model, the
proposed SADXNet can make a robust sub-second prediction without losing fidelity. Quantitative
outcomes from downstream validation further underpin the superiority of SADXNet and the training
ML-based rib suppression approaches from the physical model yielded dataset. The training images
and SADXNet are provided in the manuscript.

Keywords: chest X-rays; deep learning; rib suppression; computer aided diagnosis

1. Introduction

Respiratory diseases are among the major causes of morbidity and mortality globally,
and the prevalence of pulmonary diseases has steadily increased [1,2]. Timely diagnosis is
critical for effective intervention. Among all imaging tools, a chest X-ray (CXR) is the most
widely used for pre-screening thoracic anomalies [3]. Compared with CT, the downside of
a CXR is the overlapping anatomies in 2D projections. The high-contrast bony structures
are one of the major interferences in CXRs, obscuring the underlying soft tissues. Therefore,
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the suppression of bone shadows in CXRs is highly desired to improve the conspicuity of
lung tissues and, subsequently, improve diagnoses.

Recently, clinical evidence indicates that rib-removed CXRs can improve the diagnosis
of various pulmonary abnormalities [4,5]. In a post-processing setup, previous approaches
can be summarized as: (1) a dual-energy CXR that exposes the patient twice to a high
and low tube voltage for digital subtraction of the ribs [6]; (2) unsupervised physical
models [3,7]; and (3) deep learning (DL) models with supervision generated from dual-
energy (DE) CXRs or a domain-adapted digitally reconstructed radiograph (DRR) [8,9].

A dual-energy CXR exploits the energy-dependent X-ray tissue interactions in the
ribs and soft tissues and, then, performs digital subtraction to suppress the bone shadow.
The method requires a specialized instrument that is not widely available and exposes
the patients to a higher imaging dose, due to the dual exposure. Physical rib suppression
models utilize a single-energy (SE) CXR first to reconstruct the rib structures by empirically
assuming a rib pixel intensity distribution and then subtracting the rib shadows from
the original CXR. For instance, von Berg et al. proposed the transfer of the ribs into the
“ST-space”, where the contour of the rib appears as a straight line. Partial derivative
computation, smoothing, and reintegration were then performed along the rib contours
up to the centerline [7]. These highly hand-crafted rib suppression methods can preserve
the morphological detail but are not scalable for clinical use, due to the tedious manual
annotation of each rib and the case-by-case hyperparameter (HP) fine tuning that demands
an impractically long processing time, which diminishes the benefit of CXRs [4,7,10–12].

DL methods are a time efficient alternative to conventional operations, and their
performance depends on the methods and the training data quality [13]. Except for diverse
network schemes for superior representation learning, the core disparities in existing DL
approaches for CXR rib suppression are in the modality of the training images and training
pair generation. Most of the previous models were trained on either DECXR or DRR.
Specifically, since DECXR is formed by two XR exposures at distinct energy levels, it can
later be decomposed into “soft-tissue-only” and “bone-only” images [14,15]. Learning
models trained on DECXR form image pairs with unprocessed images as the input and
decomposed “soft-tissue-only” images as the ground truth (GT) [3,16]. However, DECXR-
based frameworks are limited by data scarcity [17]. Since the ribcage is separatable using
computed tomography (CT), DRR-based methods attempt to project training pairs from
the original and rib-suppressed CT [18]. Although DRRs simulate CXRs, their contrast
and resolution differ substantially regarding the physical image formation details, detector
signal processing, and post-processing [9]. The lack of paired images also hinders the
domain adaptation training from a DRR to a CXR. Insufficiently trained DL approaches
cannot learn the true mapping from raw to rib-removed CXRs. Consequently, the shadows
of the rib edges are prevalent in DL predictions [3,9], adversely affecting the efficacy of
downstream diagnostic tasks.

We contend that the answer to the rib suppression challenge lies in combining the two
existing approaches. Inefficient physical models can maximally suppress the rib structures
and preserve the lung tissue details, thus they are suitable to provide machine learning
(ML) training input as a one-time investment. With such high-quality input, efficient DL
models can be trained for wide clinical implementation.

We hereby introduce a benchmark dataset named FX-RRCXR for DL-based CXR
rib suppression. FX-RRCXR is generated from the VinDr-RibCXR dataset [19], adapting
the physical ST smoothing by von Berg et al. [7]. Next, we propose a supervised image
denoising network, SADXNet, trained on FX-RRCXR for fast rib suppression in unseen
CXRs. Lastly, we validate the impact of rib-removed CXRs in the detection of lung nodules
using the NODE21 [20] dataset, and the classification and localization of benign lung
disease using ChestX-ray14 [21] datasets. All the detection tasks are run on the Mask
R-CNN framework [22].
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2. Method

In this section, we will introduce the ST-smoothing method, FX-RRCXR dataset,
SADXNet, and downstream validation of the NODE21 and ChestX-ray14 datasets.

2.1. ST Smoothing

The ST-smoothing algorithm assumes that the pixel intensities along one continuous
contour of a rib are theoretically identical. As shown in Figure 1 S0, if the distances to the
centerline of p1 and p2 are equal, these two points are deemed to be on the same contour
and their corresponding rib intensities are equal.
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2.1.1. From Image Space to ST-Coordinate System

We explain Figure 1 S0→S1(a) here with Equations (1) and (2).

TC : (x, y) 7−→ (s, t) (1)

T−1
C : (s, t) 7−→ (x, y) (2)

ST transformation TC is a domain transformation used to generate a specific representa-
tion of a part of an image defined by the given closed cyclic contour C : γ(t), t ∈ [0, Clen) ,
γ(0) = γ(Clen). TC is defined by its inverse as follows:

T−1
C (s, t) = γ(t) + s· γ′(t)

|γ′(t)|

⊥
(3)

where γ′(t)
|γ′(t)|

⊥
is the contour norm at γ(t). Figure 2a illustrates the transformation of contour C [7].
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To reduce the computation burden, a continuous rib contour is considered as a piece-
wise linear contour (Figure 1 S0) for the discrete implementation of Equation (1). Figure 2b
illustrates the implementation, with s and t formulated as:

s = ||
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where tprev is the sum of the length of all previous edges. The pixel intensities in the ST
space are as follows:

IstC (s, t) = I(T−1
C (s, t)) (6)

(ŝ, t̂) = TC(T−1
C (s, t)) (7)

When it is assumed that a valid (s, t) always has a position (ŝ, t̂) on the other side of
the bone centerline c(t), we can obtain c(t) from:

c(t) = max
S
∀(ŝ, t̂) 6= (s, t) (8)

2.1.2. Rib Extraction via Partial Derivatives Smoothing in ST Space

The current subsection explains steps S1(a)→S2 in Figure 1.

Discrete Partial Derivative in ST Space

As shown in Equation (9), the first-order partial derivative is calculated along the s axis
in a discrete form to boost the overall computation. The definition of IdC (s, t) represents
the gradient orthogonal to the t axis of a rib, which means that any structure oriented along
axis t does not contribute to the bone gradients.

IdC (s, t) = ∂sIstC (s, t) = I(s, t)− I(s− 1, t) (9)

Smoothing, Reintegration, and Transformation Back to the XY Domain

Improved from von Berg et al. [7], Gaussian smoothing (Gkt ) along the t axis at IdC
and centerline smoothing (C) along the s axis at the reintegrated IrC are implemented. First,
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since we hypothesize that signals along the t axis of IdC are independent from the ribs. A
large Gaussian kernel kt was used to smooth out the signals from the soft tissue and leave
only the signals from the ribs in Gkt(IdC ). Note that kt is a HP. Next, after excluding the
soft tissue signal via Gkt(IdC ), we reintegrate towards the smoothed partial gradients to
recover the bone signals IrC(s, t) in the ST domain, as shown in Equation (10).

IrC (s, t) =
∫ s

s−1
Gkt(IdC (s, t)) + Gkt(IdC (s− 1, t)) (10)

Lastly, because TC has a singularity at the centerline c(t), an artificial edge was ob-
served along c(t) , as shown in Figure 1 S2, after the reintegration of IrC . Therefore, a
K-nearest neighbor (KNN) based centerline smoothing is applied along the s axis of IrC to
smooth out the artificial edge, according to Equation (11).

C(IrC (si, tj)) =

IrC (si, tj), i f
IrC (si ,tj)

IrC (si−1,tj)
> τ

∑i
m=i−k+1 IrC (sm ,tj)

k , otherwise
(11)

where τ and k are two HPs and represent the threshold for conducting the KNN average
and the number of neighbors used, respectively.

After the above steps, we transfer the rib intensity C(IrC ) from the ST back into the
image space under Equation (12) to exclude possible negative values, which are uninter-
pretable in the image space.

IboneC = max(C(IrC ), 0) (12)

2.1.3. Rib Removal and Border Blending

We focus on Figure 1 S3 here. The initial rib-suppressed CXR Iso f tC is acquired by
subtracting the IboneC from the raw CXR, as follows:

Iso f tC (x, y) = I(x, y)− IboneC (x, y) (13)

To improve the continuity between the rib boundary rb and its surrounding soft tissues,
a KNN border smoothing function is applied to rb:

r′b(x, y) =
∑k

i=1 rb,i(x, y)
k

(14)

where rb is defined under the ST space and shown in Equation (15). sb in Equation (15) and
k in Equation (14) are two HPs.

Iso f tC (s, t) in rb(s, t), i f s ≤ sb
rb(x, y) = T−1

C (rb(s, t))
(15)

Lastly, generating a complete soft tissue CXR requires iteratively repeating
Sections 2.1.1–2.1.3 for each rib in a complete ribcage.

2.2. Data Cohort
2.2.1. VinDr-RibCXR Dataset

VinDr-RibCXR is selected for creating the FX-RRCXR dataset using our modified
ST-smoothing algorithm. VinDr-RibCXR is a dataset for automatic rib segmentation and
labeling of SECXR scans. It contains 245 images with corresponding rib masks annotated
by an expert. Each CXR scan has 20 separate rib annotations in the left and right lungs,
respectively. The dataset was pre-split into training and validation sets, with 196 scans in
the training set and 49 in the validation set. We refer the readers to Nguyen et al. [19] for
more details.



Diagnostics 2023, 13, 1652 6 of 13

2.2.2. FX-RRCXR Dataset Preparation

We applied the ST-smoothing algorithm to 245 images from the VinDr-RibCXR dataset.
The HPs required by ST smoothing are tuned for individual images using the random
grid search algorithm. Excluding the process for HP searching, the ST smoothing took
40–70 min to process a rib-removed scan, depending on the number of pixels within the
ribcage. We organized the original CXRs as input and their corresponding rib-suppressed
scans as GT while preparing the image pairs and kept the same training and validation
split as the VinDr-RibCXR.

2.3. SADXNet

Since rib signals can be treated as noise superimposed on the rib-suppressed CXRs,
we proposed the design of an image-denoising network, named SADXNet, to be trained
on the FX-RRCXR dataset. Inspired by the architecture of DenseNet [23], SADXNet is
designed to be densely connected, as shown in Figure 3. For each layer in SADXNet,
the feature maps of all the preceding layers and their own feature map are fed into all
the subsequent layers. The advantage of dense connection is the better alleviation of the
vanishing-gradient problem, strengthening feature propagation, and encouraging feature
reuse [23]. The composition of SADXNet is detailed below.
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Dense connectivity. Figure 3 shows the layout of the densely connected SADXNet
schematically. Each layer can be described by Equation (16):

xl = Nl(
[

fcl (x0), fcl (x1), . . . , fcl (xl−2), xl−1
]
) (16)

where [x0, x1, . . . , xl−1] represents the channel-wise concatenation of the feature maps
produced from layer 0 to l − 1 and fcl (·) is a 1× 1 convolution (Conv) to unify the number

of feature channels of x0, . . . , xl−2. The output channel of fcl is defined by C(xl−1)
L−1 , where

C represents the number of feature channels of xl−1. The purpose of fcl (·) is to avoid the
concatenated input feature maps, Nl(·) being overly large in channel dimension exceeding
the GPU memory.

Composite function: We define Nl(·) as a composite function of three consecutive opera-
tions: batch normalization (BN), rectified linear unit (ReLU), and 3× 3 convolution (Conv).
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Pooling layers: Inspired by a pioneering study [8], we preserve the height (H) and
width (W) dimensions in the feature maps as the shape of the input images throughout the
Conv process without using down- or up-sampling layers.

Channel design: Overall, there are seven densely connected layers in the SADXNet.
The channel of the convolutional kernel for each layer is designed in an increase-to-decrease
setting to mimic the design of a fully convolutional network [24] in regard to channel
dimension, so as to strike a balance between the model complexity (kernel with more
channels) and training time (kernel with fewer channels).

Loss function: The cost function of the SADXNet is designed as a combination of the
negative peak signal-to-noise ratio, the multi-scale structure similarity index measure [25],
and the L1 deviation measurement:

L = −α·LPSNR + (1− α)·[β·LMS−SSIM + (1− β)·L1] (17)

LPSNR = log10(
MAX2

X

1/mn·∑m−1
i=0 ∑n−1

i=0

[
xij − yij

]2 ) (18)

LMS−SSIM = 1−
(2µxµy + c1)

(µ2
x + µ2

y + c1)
·

M

∏
j=1

(2σxjyj + c2)

(σ2
xj
+ σ2

yj
+ c2)

(19)

L1 =
1

mn
·

m−1

∑
i=0

n−1

∑
i=0
||xij − yij||1 (20)

where α and β in Equation (17) are HPs set to 0.75 and 0.25, X and Y are the model input
and target, MAXX is the maximum possible input value, [σxjyj , . . . , σxMyM ] of Equation (18)

set to [0.5, 1.0, 2.0, 4.0, 8.0], c1 = (k1S)2 and c2 = (k2S)2 of Equation (19) are two variables
to stabilize the division with a weak denominator having S as the dynamic range of the
pixel values (typically 2# bits per pixel − 1) and (k1, k2) as the constants, and ||·||1 denotes the
l1 norm.

Model training: SADXNet was implemented in PyTorch, and the training was performed
on a GPU cluster with 4× RTX A6000. Per the SADXNet training, we set the maximum epoch
number to 200 and observed that the model converged at around 100 epochs. The Adam
optimizer with an initial learning rate (LR) of 0.001 and a batch size of 1× 4 were applied.

Evaluation metrics: The root mean square error (RMSE) is used for evaluating the
SADXNet performance with the corresponding GT generated from ST Smoothing.

2.4. Downstream Clinical Task Validation

We quantified the benefits of rib-suppressed images with two experiments, including
lung nodule detection and a general pulmonary disease classification and localization task
based on the NODE21 [20] and ChestXRay14 [21] datasets, respectively. The details are set
out below.

Training input: We organized the input into three combinations: (1) solely raw CXRs;
(2) solely soft-tissue CXRs; and (3) mixed raw and rib-suppressed CXRs. All the rib-
suppressed images were predicted using SADXNet.

Datasets: NODE21 [20] encompasses 4882 CXR scans with the ratio of patient:
volunteer = 1134:3748. Moreover, 5524 annotations were made to these images, with a maxi-
mum of three positive annotations for each scan. ChestX-ray14 [21] is a CXR set that has been
text mined with fourteen lung diseases and bounding box annotations for 984 images in the
pre-split test set. We extracted the 984 annotated images and then randomly sampled 3× 984
healthy volunteers from the test set to construct a dataset for supervised detection training. For
both datasets, we split the training and validation sets in the ratio of 7:3 and carefully balanced
the proportion of positive and negative cases.

Detection network: Both tasks were performed in the Mask R-CNN pipeline and
implemented in PyTorch [22], training the network separately on three different types of
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input with data augmentation of random scaling, random cropping, and random Gaussian
blur, an LR of 0.001, a stochastic gradient descent optimizer, and a batch size of 2 × 4 on
the 4× RTX A6000 GPU cluster. Altogether, we ran 30,000 and 50,000 training iterations
for NODE21 [20] and ChestX-ray14 [21], respectively.

Evaluation metrics: The area under the curve (AUC), the true positive predictions
(TP), the false positive predictions (FP), and the false negative predictions (FN) are used as
evaluation metrics.

3. Results
3.1. Rib Suppression
3.1.1. ST Smoothing

Figure 4 demonstrates a patient with lung nodules in the left lung and compares the
node visibility with and without rib removal using ST smoothing. Compared to previous
rib-suppression methods with edge residuals or artifacts near the lung borders [4,9], ST
smoothing carefully avoids those two drawbacks. Additionally, ST smoothing preserved
the shape and morphological details of the lung tumors.
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Figure 4. A sample case involving ST smoothing with several lung nodules in the left lung field. The
left-hand side shows the rib-removed scan, and the right-hand side shows the original unprocessed
CXR image. Red arrows denote radiologically confirmed nodules.

3.1.2. SADXNet

Figure 5 shows two subjects predicted by SADXNet. We found that the rib-suppressed
scans predicted by SADXNet are visually indistinguishable from their corresponding GTs.
Quantitatively, SADXNet achieves a 2.32± 0.13× 10−5 test RMSE. Most notably, compared
to the time consuming ST-smoothing algorithm, SADXNet suppresses one scan in <1 s.
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Figure 5. Two sample cases from the test set illustrate the results of SADXNet rib removal. Each
row represents one patient. The columns from left to right are ordered as the first column showing
the raw CXR, the second showing the rib-suppressed image generated from ST smoothing (GT for
SADXNet training supervision), and the third showing the rib-suppressed CXRs predicted by the
trained SADXNet model.

3.2. Downstream Clinical Task Validation
3.2.1. NOD21 Detection

According to Table 1, mixing raw and rib-suppressed images in training achieved
the best detection scores than training on only a single source input. We also evaluated
the mix-trained model on raw and rib-suppressed validation sets, respectively. Both
scenarios achieved comparable performance, with slightly better outcomes for the raw
CXR. Quantitatively, training using mixed images achieved approximately a 2–3% higher
AUC, located more nodules (Figure 6 first row), and significantly reduced the FP (Figure 6
second row) than single-source images. Lastly, the performance of networks trained on a
single image type is similar, with a slightly lower FP using rib-suppressed images.

Table 1. Evaluation results from the NODE21 dataset. FN, FP, and TP show the absolute number of
predictions for a more straightforward comparison. The best performer is marked in bold.

Modality Training Input Validation
Input AUC FN FP TP

Mask R-CNN

Raw Raw 94.76% 48 1273 372
Rib suppressed Rib suppressed 95.32% 45 1193 375

Raw + Rib
suppressed

Raw 97.99% 32 1070 388
Rib suppressed 97.31% 33 1082 387

3.2.2. ChestX-ray14 Classification and Localization

As shown in Table 2, training with mixed scans achieved the best performance across
the three input combinations, resulting in around a 6–7% higher AUC than single-source
trained detectors and largely reducing the FP predictions. Single-source trained models
roughly reach similar performance, except that a model trained with rib-suppressed images
makes fewer FP classifications. Figure 6 visually confirms the quantitative results.
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Figure 6. Two sample cases from the NODE21 test set in the first two rows, and two sample cases
from the ChestX-ray14 test set in the third and fourth rows. The figure is organized into three columns:
the first column shows predictions made using the model trained with raw CXRs only, the second
column shows predictions made using the mix-trained model, and the last column shows the GTs.
Red boxes denote manually labeled bounding boxes for the disease location. Green boxes are results
of automated detection.



Diagnostics 2023, 13, 1652 11 of 13

Table 2. Evaluation results from the ChestX-ray14 dataset. FN, FP, and TP show the absolute number
of predictions for a more straightforward comparison. The best performer is marked in bold, and the
lowest result is underlined.

Modality Training Input Validation Input AUC FN FP TP

Mask R-CNN

Raw Raw 80.54% 137 3029 245
Rib suppressed Rib suppressed 81.55% 138 2909 244

Rib suppressed Raw 87.16% 116 2644 275
Rib suppressed 86.89% 124 2701 267

Moreover, since ChestX-ray14 is for multiple lung disease localization, we also present
the AUC for each disease in Table 3. Despite the varying disease-specific performance, the
improvements benefiting from mixed training are consistent with Table 2.

Table 3. The AUC scores for 14 lung diseases in the ChestX-ray14 dataset. Tr/Val represents
training/validation. The best results are marked in bold, and the lowest ones are underlined.

Disease
Input: Tr/Val

Raw/Raw ST/ST Raw + ST/Raw Raw + ST/ST

Atelectasis 79.21% 77.35% 85.27% 84.89%
Cardiomegaly 83.47% 82.03% 93.84% 92.67%

Effusion 84.98% 84.72% 91.02% 91.02%
Infiltration 69.84% 70.00% 75.21% 74.32%

Mass 77.23% 77.38% 87.83% 85.79%
Nodule 76.32% 75.37% 82.33% 81.29%

Pneumonia 73.89% 73.24% 79.43% 78.33%
Pneumothorax 82.43% 82.32% 91.37% 90.62%
Consolidation 74.57% 75.23% 82.77% 81.98%

Edema 88.14% 87.28% 95.32% 95.33%
Emphysema 90.68% 89.47% 96.21% 95.79%

Fibrosis 82.99% 83.21% 87.45% 86.76%
Pleural Thickening 73.37% 72.45% 80.34% 79.85%

Hernia 88.03% 89.21% 97.24% 96.79%

4. Discussion

Chest X-rays (CXRs) are highly accessible and cost effective for point-of-care pul-
monary disease screening. However, the interpretation of a CXR can be difficult because
structures overlap with each other in 2D projection. Specifically, tissue details can be
obscured by bright ribs in a CXR due to their higher atomic number and density. We hereby
combined physical and ML methods’ strengths to overcome their weaknesses. We first
used ST smoothing and the VinDr-RibCXR [19] dataset to create a benchmark dataset, FX-
RRCXR, with 245 paired original and rib-suppressed CXRs. We then trained a supervised
denoising network, SADXNet, achieving high-quality sub-second rib suppression. Lastly,
we evaluated the quality of the FX-RRCXR dataset and SADXNet using two downstream
tasks, including lung nodule detections using the NODE21 [20] dataset and fourteen lung
disease classifications and localization using the ChestXray14 [21] dataset.

Our contribution is thus twofold. First, we used a physical model to generate a
qualitative dataset that supports deep learning, which is released to the public as part of
the paper. Second, we trained a fully automated supervised deep network that achieved
physical model quality 1 × 104 times faster. The enormous gain in efficiency benefits
large-scale testing of rib-suppressed CXR for various clinical applications, two of which
were exemplified here, including the testing efficacy of lung nodule detection and benign
disease classification. In both end-to-end tests, our quantitative testing showed significant
improvement in diagnosis with rib suppression. To the best of our knowledge, this is
the first study to demonstrate the benefit of combining a physical method with ML in
end-to-end diagnostic testing.

The current study also demonstrated the pipeline’s robustness. Generally, distri-
butional shift poses a major challenge in clinical deployment [26]. Here, we found that
although SADXNet was trained on FX-RRCXR, it still robustly suppressed the rib structures
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on scans from NODE21 and ChestX-ray14 (see Figure 6 middle column), yielding improved
stability in clinically relevant tasks.

An interesting observation is that training a detection model on rib-suppressed CXRs
alone does not improve model performance compared to training on original scans. In
contrast, mixed training of two image sources can significantly reduce type I error while
moderately increasing sensitivity. We attribute this fact to three considerations: (1) mixed
training achieved better performance, namely a comparison in the region of interest (ROI)
with and without the rib helped the learning model; (2) there was a significant decrease in
type I error, namely assistance from the rib-removed scans makes the model more likely
to avoid misidentifying noise in the rib structures, such as edges, as an ROI; and (3) there
was a moderate reduction in type II error, namely the ribs only account for part of the
superimposing anatomy in CXRs. Rib Suppression does not reduce interference from other
anatomical and non-anatomical structures, including the heart, major vessels, mediastinum,
and attached sensors. However, the current study may provide a roadmap for reducing
additional interference for CXR-based diagnostic tasks.

5. Conclusions

We improved ST smoothing from von Berg et al. [7] and, based on that, further
introduced a paired dataset, FX-RRCXR, that serves as a benchmark for supervised DL on
CXR rib removal. Next, we proposed a denoising network, SADXNet, which learnt rib
suppression by considering the ribs as noise on the lung tissues. Lastly, we validated the
efficacy of rib suppression using two downstream tasks, including lung nodule detection
and common lung anomaly classification and localization. The experimental results from
the downstream tasks quantitatively substantiated the benefit of the FX-RRCXR dataset
and SADXNet.
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