UCLA UCLA Previously Published Works

Title

Cryo-EM reveals different coronin binding modes for ADP-and ADP-BeFx actin filaments

Permalink

https://escholarship.org/uc/item/6zn1t2dj

Journal

Nature Structural and Molecular Biology, 21(12)

ISSN 1545-9993

Authors

Ge, P Durer, ZAO Kudryashov, D <u>et al.</u>

Publication Date

2014-12-11

DOI

10.1038/nsmb.2907

Peer reviewed

Actin array generated by full-length coronin.

Representative cryoEM fields of full-length coronin decorated ADP-actin.

Full-length coronin bundles actin into thick bundles (left) and meshes (right). Bar: 100nm.

ADP-F-actin-coronin

ADP-BeF_x-F-actin-coronin

Supplementary Figure 2

Stereo views.

Stereo views of Figure 1, panels b and f.

Comparison of all possible docking modes of the coronin density and its model.

(a-f) The density corresponding to coronin in our ADP state structure is fitted with our homology model of coronin. Due to the pseudoseven-fold symmetry of coronin's seven-bladed propeller, there are seven possible modes of docking. The docking that we chose in our paper (a) is significantly (>5 SD) better than other possible dockings. The last possible mode (model rotated by 6/7×360°) cannot be generated, since the docking program automatically fits it towards the best model (a).

Crn1∆CC binding to wild-type and mutant yeast ADP–actins.

(a) Coomassie-stained gels of supernatant (S) and pellet (P) fractions of 1 μ M Crn1 Δ CC cosedimented with 0-30 μ M pre-polymerized wild type and mutant actins. (b) Quantification of Crn1 Δ CC binding by wild type and select mutant actins obtained for analysis of gels shown in (a). Fractions of Crn1 Δ CC bound to various F-actins was determined by densitometry and plotted versus the concentration of F-actin.

Distribution of key residues that mediate actin-coronin interaction.

Key residues that are shown in this study to be responsible for actin-coronin interaction are mapped on the surfaces of actin (**a**, **c**) and coronin (**b**, **d**). The key groups of interacting residues are colored as in Table 1, regardless of the interacting actin subunits.

Competition between coronin and Arp2/3 complex at high coronin concentration.

The pseudo-atomic model of actin-Arp2/3 complex (a) is superimposed with that of ADP-F-actin-coronin, similarly to Figure 6. (b) Relative position of coronin in the superimposed model (the actin model from the actin-Arp2/3 complex is shown to simplify the comparison). (c-d) Coronin blocks binding of Arp2/3 complex at high coronin concentrations, when Arp2/3 complex and coronin compete for actin binding (c), but allows binding of Arp2/3 complex to adjacent unoccupied actins (d) at low coronin concentrations. In all panels, actin subunits are delineated by grey transparent surfaces derived from their atomic models.

Supplementary Table 1: Corresponding actin and coronin mutations

Crn1 alleles with no detectable F-actin binding ²⁵	Crn1 residues mutated to alanine	Charged actin residues within 8A proximity	Actin mutants used in this study
Crn1-2	K10 R12	E361, D363, E364	D363A E364A
Crn1-6	R141 K142	E125, D363, E364	D363A E364A
Crn1-13	K295 D297	D80, D81, E83, K84	D80A D81A E83A K84A
Crn1-17	E320 R323	R37, R39, K50, D51, K68, D80, D81, K84	R37A R39A K50A D51A D80A D81A E83A K84A
Crn1-19	R361 R362, E364 E365	E361, D363, E364,	D363A E364A