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Accelerating Noisy VQE Optimization with
Gaussian Processes

Juliane Müller, Wim Lavrijsen, Costin Iancu, Wibe de Jong
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{JulianeMueller, WLavrijsen, cciancu, wadejong}@lbl.gov

Abstract—Hybrid variational quantum algorithms, which com-
bine a classical optimizer with evaluations on a quantum chip, are
the most promising candidates to show quantum advantage on
current noisy, intermediate-scale quantum (NISQ) devices. The
classical optimizer is required to perform well in the presence of
noise in the objective function evaluations, or else it becomes the
weakest link in the algorithm. We introduce the use of Gaussian
Processes (GP) as surrogate models to reduce the impact of noise
and to provide high quality seeds to escape local minima, whether
real or noise-induced. We build this as a framework on top of
local optimizations, for which we choose Implicit Filtering (ImFil)
in this study. ImFil is a state-of-the-art, gradient-free method,
which in comparative studies has been shown to outperform on
noisy VQE problems. The result is a new method: “GP+ImFil”.
We show that when noise is present, the GP+ImFil approach finds
results closer to the true global minimum in fewer evaluations
than standalone ImFil, and that it works particularly well for
larger dimensional problems. Using GP to seed local searches
in a multi-modal landscape shows mixed results: although it
is capable of improving on ImFil standalone, it does not do
so consistently and would only be preferred over other, more
exhaustive, multistart methods if resources are constrained.

Index Terms—quantum computing, variational algorithms,
optimizers, surrogate models, Gaussian processes, global and
local search, implicit filtering

I. INTRODUCTION AND MOTIVATION

Quantum hardware will, for the foreseeable future, consist
of devices with a relatively low number of uncorrected qubits
with limited coherence times and connectivity. The most
promising algorithms to exploit the potential of quantum
advantage are therefore those that limit circuit depth and are
by design robust against noise. Hybrid quantum-classical algo-
rithms [4], [21] such as the Variational Quantum Eigensolver
(VQE) [28], [37] and QAOA [5], [39] combine a classical
optimizer with evaluations on a quantum chip and fit both
these criteria: they allow for control over circuit depth and their
iterative nature provides a measure of robustness against noise.
The trade-off is that a large number of evaluations (tens of
thousands or more; a number that increases significantly with
noise) on the quantum chip are necessary for any interesting
applications. By their nature, hybrid quantum-classical algo-
rithms spend time on classical compute in each iteration cycle.

This work was supported by the Office of Science, Office of Advanced
Scientific Computing Research Accelerated Research for Quantum Computing
Program of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

Classical compute is still easier to scale out than quantum
hardware, so techniques that exploit the classical side to reduce
the number of needed evaluations on the quantum chip are
expected to greatly improve overall performance. In this paper,
we explore one such technique: surrogate model based global
optimization coupled with multiple targeted local searches.

Hybrid variational algorithms minimize the expectation
value of an Hamiltonian H, representing the energy E in
the system, as evaluated on the quantum chip. Finding the
minimum energy is challenging: the energy surface is for most
problems a multi-modal landscape, i.e. multiple local (and
global) optima exist; the analytic description of the energy
landscape is usually not accessible, i.e. it is black-box; and
gradient information is often not available. Approximating
gradients using finite differences requires many function evalu-
ations, does not scale with increasing problem dimensionality,
and becomes unreliable in the presence of noise. Finally, local
optimization methods, if not provided with a good initial
guess, tend to become stuck in a local optimum.

Noise present in the energy function values complicates
the optimization problem. For local optimizers, e.g. those
based on mesh or stencil refinement, such noise can lead to
incorrect sample decisions and premature convergence onto a
noise-induced local minimum. “Multistart” methods, which
initiate multiple local optimizations from different points, are
a typical approach to increase the probability of finding the
global minimum on a multi-modal landscape with many local
minima (whether real or noise-induced). However, multistart
does not guarantee to always obtain distinct local optima, i.e.
multiple optimizations may converge to the same solution and
it is unclear how many multistart local optimizations should
be carried out. An efficient global optimizer can help us
learn the underlying energy landscape and subsequently seed
informed multistart local searches by choosing start points
that have good objective function values and are sufficiently
disjoint. Our goals are to alleviate the problems of noise and
seeding, by using surrogate models to find interesting regions
in the parameter space and then restricting the local search to
the close proximity of a diverse set of starting guesses.

The main contribution of this work is the introduction of a
robust algorithm that enables us to efficiently and effectively
find good solutions of VQE in the presence of quantum



noise. We use an adaptive Gaussian process model to guide
the global optimization search for local regions of attraction
from which we start local optimizations on subdomains of the
parameter space, thus reducing the a priori requirements on
the approximate location of the optimal solution. We show the
benefits of our method on solving the Fermi-Hubbard model
and compare the efficiency of our approach to the currently
used Implicit Filtering method.

The remainder of this paper is organized as follows. In
Section II, we provide a brief review of state-of-the-art op-
timizers used in quantum hybrid optimization, elaborating on
the benefits and pitfalls of various optimization methods. We
describe our simulation of VQE in Section III and provide
the details about the surrogate model based optimizer in
Section IV. Section V contains our numerical study on six
Hubbard models of different sizes for both noise-free and
noisy instances. Finally, Section VI concludes our study and
offers future research directions.

II. RELATED WORK

A wide range of optimization algorithms have been pro-
posed for use with VQE. In [17] we implemented and ap-
plied classical optimizers, including NOMAD [18], Implicit
Filtering (ImFil) [14], SnobFit [9], and BOBYQA [30] (see
scikit-quant [33]), and found them to outperform more widely
used algorithms, such as those available from SciPy [31]. Si-
multaneous perturbation stochastic approximation (SPSA [34])
is a stochastic gradient-free optimization method that is also
commonly used because of its application to VQE in Qiskit
examples [13] and in comparisons with other optimizers [15].
In [16], a comparison between SPSA and ImFil was made and
it was shown that ImFil readily outperforms SPSA in the pres-
ence of noise, especially at scale. The authors in [15] describe
a method called individual Coupled Adaptive Number of Shots
(iCANS), which uses a stochastic gradient descent method and
adaptively decides how many measurements (“shots”) of the
energy must be used in each iteration and for computing the
partial derivatives. Nakanishi et al. [26] propose a sequential
minimal optimization method (NFT) which exploits the special
structure present in some parameterized quantum circuits
under limiting assumptions and they are able to show superior
performance compared to other methods. However, they do not
explicitly test with noise present, and our own tests showed
that noise-aware optimizers easily outperform.

In [10] and [32], the authors use Bayesian optimization
(BO) and Gaussian process models for VQE optimization
tasks. It was shown that this approach outperforms SPSA in
terms of convergence with respect to the number of shots used.
The authors do not adjust the GP kernel in order to account for
the noise in the function values, which can lead to overfitting
the model to noise and does not prevent noise-induced local
optima. The authors of [36] propose a stochastic gradient
descent (SGD) method for optimizing VQE in which they use
a Bayesian optimization approach for adjusting the step size
in each iteration of SGD. The authors test their method on
different-sized problems and show that it performs better than

iCANS, NFT, and the Adam optimizers. Sung et al. [35] use
a quadratic model in a trust region to approximate the energy
landscape and guide the optimization. This approach performs
better than SPSA and BOBYQA. In [38], a classical recurrent
neural network is used to provide a good starting guess for a
Nelder-Mead optimizer. The authors showed that the number
of objective function queries can be significantly reduced as
compared to starting Nelder-Mead from a randomly chosen
starting point. Here we take a similar approach, but using
Gaussian process (GP) surrogate models to guide the initial
global search for promising starting points for local optimizers.

Based on the available literature, combined with our own
results and testing, we find that ImFil is an excellent exemplar
of the state-of-the-art when noise is present (as is the case on
all current hardware). We will therefore use it as the baseline to
compare against1 and as the local optimizer to improve upon,
rather than more well-known, but underperforming, methods
such as L-BFGS [19] or SPSA, to get a better understanding
of the value that surrogate models can provide.

III. SIMULATION OF VQE

The VQE algorithm variationally minimizes the expectation
value of an Hamiltonian H, representing the energy E in the
system, as evaluated on the quantum chip. Mathematically, we
formulate this optimization problem as:

min
θ∈Ω

E(θ) =
〈ψ(θ)|H|ψ(θ)〉
〈ψ(θ)ψ(θ)〉

, (1)

where Ω ⊂ Rd, θ = [θ1, . . . , θd]T and d is the problem
dimension. The representation of ψ(θ) in terms of θ is called
an Ansatz and is typically determined by hardware constraints
or to ensure symmetry preservation in the problem.

We want to understand in detail under which conditions
surrogate models can improve on the classical optimization
step of VQE and we will therefore use simulations in order
to scan a larger phase space (in particular in scale and
depth) than would be possible on currently available hardware
devices. For the simulations, we employ the Hubbard Model
(see Section III-C), which is a scientifically relevant problem,
provides for multi-modal landscapes with several local min-
ima, and allows easy scaling without changing the underlying
fundamentals. It is therefore very representative of all the
typical challenges encountered in VQE problems, providing
confidence in the generality of the conclusions from our study.
All simulations are based on Qiskit [1], with noise applied
through Qiskit’s Aer simulator as applicable.

A. Noise-free simulation

VQE is a NISQ-era algorithm that will be superseded by
the quantum phase estimation [27] algorithm once fully error
corrected quantum computing for circuits of sufficient depth
has been achieved. Nevertheless, it is useful to consider the
noise-free case as a reference point.

1Code and examples to directly compare ImFil to any other optimizer or
method of interest are available from [16].



Two sources of errors remain even in the absence of noise:
sampling error, due to the nature of quantum measurement;
and approximation error, an artefact of having to map the
unitary matrix that describes the science problem onto a circuit
of gates. The former we ignore in this case, as it can be made
as small as required to achieve the desired precision with rel-
atively low resource costs: although sampling error improves
only with

√
N , with N the number of samples, single shot

wall clock time is very low compared to other latencies in
the system. The same is not true for the latter: a circuit can
approximate a unitary to arbitrary precision, but at a worst case
cost of exponential scaling. We will therefore simulate actual
mapped circuits, as opposed to unitary matrices, in Qiskit.

We opt to directly calculate the expectation value
〈ψ(θ)|H|ψ(θ)〉 from the final state to obtain the estimated
energy E, rather than simulate the necessary partial tomog-
raphy, since this is mathematically equivalent to measuring
the H components and summing them, when sampling and
measurement errors are not considered.

B. Noisy simulation

The impact of noise differs depending on which step in
the VQE algorithm (see Fig. 1) it originates. Errors in state
initialization and final base rotations are rare (these are all
single qubit gates) and can be filtered out due to their outsize
impact. State preparation errors are due to drive errors in the
portion of the circuit that represents the Ansatz. These lead
to an upward bias in the results, both in the mean and in
individual experiment results: any prepared state that is not
the global minimum will result in a higher energy estimate.
Due to the nature of quantum mechanics, any experimental
result is always calculated from a large set of samples. This
means that drive errors increase the minimum step size in
optimization parameters to result in a statistically significant
difference in outcome, in effect “blurring” the optimization
surface. Measurement errors due to misclassification bias the
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Fig. 1: Structure of the VQE algorithm

energy estimate as well, but only in the average and the
bias direction depends on the specific Hamiltonian considered:
individual experiment results can both over- and undershoot
the actual minimum energy value.

Sampling errors are bias-free and thus have the least impact
of all noise sources. We do include them in our studies, but
measurement errors are what increases the chances of the
optimizer getting trapped in a noise-induced local minimum
and are thus the most important to consider.

C. The Fermi-Hubbard Model

We will employ the Fermi-Hubbard Model [8] (HM), used
in fields such as solid-state physics to explain phase transitions
and other correlated behaviors, as an exemplar of a realistic
scientific problem where quantum computers are expected to
have an advantage over classical devices. There are several
variations of the HM, but in essence, the model describes
interacting particles on a lattice, see Fig. 2. Despite its
apparent simplicity, the known algorithms to solve the HM
scale exponentially on a classical computer, unless further
approximations are made.

Fig. 2: Basic Fermi-Hubbard Model on a 2x2 grid. U denotes
the interaction term and t is the hopping term.

With reference to Fig. 2, the model that we consider forms
a periodic grid that is varied to scale the problem size. The
grid is populated with electrons, which determines overall
symmetry and allows a (limited) control on the total number
of optimization parameters θ. By their nature, two electrons
cannot occupy the same quantum state, thus there can be at
most two per site (one spin-up, one spin-down). The model is
characterized by an interaction term U , which only contributes
if a spin-up and a spin-down electron occupy the same site;
and by a “hopping” term t, representing the kinetic energy in
the system. In this basic model, only hops to neighboring sites
are considered.

We use the generalized unitary coupled cluster Ansatz
for singles and doubles (UCCSD), as it best matches the
symmetries in the model. UCCSD results in long circuits, but
we do not optimize them to guarantee consistent interpretation
of the results when noise is added. In a practical, experimental
setting, (noise-aware) circuit optimization [2] should be used
and UCCSD responds well if the encoding is not fully global,
e.g. by using Bravyi-Kitaev. [3]

IV. SURROGATE MODEL BASED OPTIMIZATION

The VQE problem 1 is a computationally expensive black-
box optimization problem since the energy is evaluated with
a simulation (on the quantum processor or in software) and
we do not have an analytic description of the objective
function. Gradient information is unavailable, and evaluating
the objective function is time consuming. For such problems,
the goal is to query the objective function as few times as
possible during the search for optimal parameters. To this
end, surrogate models have been widely used throughout the
literature (see for example [6], [12], [23], [24]). Our surrogate
model s(θ) serves as a computationally cheap approximation
of the energy objective function: E(θ) = s(θ) + e(θ), where



e(θ) denotes the difference between the two. The surrogate
model then guides the iterative sampling decisions during the
search for the optimal solution.

A. General Surrogate Model Optimization Algorithms

Surrogate model guided optimization algorithms generally
follow the same steps. First, an initial experimental design
P = {θ1,θ2, . . . ,θn0} is created, e.g. by using Latin hyper-
cube sampling [40]. The initial design can also be augmented
with points in the search space that are known to have good
performance. The energy objective function E is evaluated
at all design points. Based on the input-output data pairs
{(θi, E(θi))}n0

i=1, a surrogate model is constructed. Generally,
different surrogate models can be used, including radial basis
functions [29], Gaussian process (GP) models [12], [20],
polynomial regression models, etc. The surrogate models are
comparatively cheap to build and evaluate, and thus an efficient
option for guiding the optimization search.

An auxiliary optimization problem is formulated and solved
over the surrogate surface to decide which point(s) in the
parameter space to evaluate with the expensive objective
function. The evaluations at the selected point(s) and the new
input-output data pair(s) are then used to update the surrogate
model and the process iterates until a stopping criterion (e.g.
a maximum number BGP of objective function evaluations)
has been reached. This process is also referred to as active
learning in the literature.

We employ GP models as surrogates because they can be
used to approximate noisy data and provide an uncertainty
estimate together with the objective function value predictions.
One disadvantage of GPs can be their computational overhead
at scale. Each time the GP is updated, an optimization sub-
problem must be solved in search of the optimal GP kernel
hyperparameters, which quickly becomes computationally de-
manding as the number of training samples grows. This is not
of immediate concern for current hardware, especially since
the number of allowable function evaluations is limited (e.g.
due the quantum processor being a shared resource, or because
of practical issues such as calibration drift). This may change,
however, with improved hardware and reduced latencies, but
wall-clock performance of GPs has already been improved for
use with large data sets through GPU acceleration [7].

B. Gaussian Process Models

In GP modeling [11], [12], [22], we assume that the
expensive function is the realization of a stochastic process
and we write the GP surrogate model sGP as:

sGP(θ) = µ+ Z(θ), (2)

where µ is the mean of the stochastic process, and Z(θ) ∼
N (0, σ2) represents the deviation from the mean. Assume we
have sampled at k points in the parameter space Ω, and have
obtained the data pairs {(θi, E(θi))}ki=1. The GP prediction
at a new point θnew is the realization of a random variable
that is distributed as N (µ, σ2). The correlation between two
random variables Z(θm) and Z(θl) depends on the chosen

kernel. For example, the correlation for a squared exponential
kernel is defined as

KSE(Z(θm), Z(θl)) = exp

− d∑
j=1

τj |θ(j)
m − θ

(j)
l |

2

 , (3)

where the length scales τj determine how quickly two points
become uncorrelated in the jth dimension and θ

(j)
m and θ

(j)
l

denote the jth component of the vectors θm and θl, respec-
tively. Maximum likelihood estimation is used to determine
parameters µ, σ2, τj , and the GP prediction at a new point
θnew is

sGP(θnew) = µ̂+ rTR−1(e− 1µ̂), (4)

where the (m, l)th element of the (k × k) covariance
matrix R is given by (3), e = [E(θ1), . . . , E(θk)]T ,
1 is a vector of 1s of appropriate dimension, r =
[KSE(Z(θnew), Z(θ1)), . . . ,KSE(Z(θnew), Z(θk))]T ,

µ̂ =
1TR−1e

1TR−11
and σ̂2 =

(e− 1µ̂)TR−1(e− 1µ̂)

k
, (5)

and thus the corresponding mean squared error follows as:

ε2(θnew) = σ̂2

(
1− rTR−1r +

(1− 1TR−1r)2

1TR−11

)
. (6)

When selecting a new sample point in each iteration, we
use the expected improvement criterion (see [12]):

EI(θ) = ε(θ)(gΦ(g)+φ(g)), with g =
Ebest − sGP(θ)

ε(θ)
, (7)

where Ebest is the best energy function value found so far,
ε(θ) =

√
ε2(θ), and Φ and φ are the normal cumulative

distribution and density function, respectively. The expected
improvement function is zero at points where E has already
been evaluated and positive everywhere else. (7) is maximized
over all θ ∈ Ω in order to select a new sample point θnew. One
drawback of this approach is that the expected improvement
function (7) is multi-modal, and thus a global optimization
algorithm is needed to find various local maxima. However,
even with a global optimizer, we cannot guarantee that the
newly chosen point θnew will be a global maximum.

The squared exponential kernel in (3) is widely used, in
particular for functions that do not contain noise, and the
resulting GP model will interpolate the training function
values. However, when noise is present, an interpolating model
will overfit the function values and interpolate the noise, which
may lead to rugged surfaces with many noise-induced local
minima (see Fig. 3, left, for an illustration). When dealing
with noisy function values, we add a white noise kernel to the
squared exponential kernel:

KWN(Z(θm), Z(θl)) =

{
σnoise, if θm = θl

0, else
, (8)

which allows us to estimate the noise level in the data. The
maximum likelihood also estimates σnoise. The addition of the
white noise kernel prevents the GP from being interpolating,



enabling us to capture the underlying global trends of the
function we are approximating and thus making optimization
easier (see Fig. 3, right). Note that for noise-free simulations,
the addition of the white kernel does not deteriorate the GP
approximation significantly.

Fig. 3: GP with squared exponential kernel fit to noisy data
(σnoise = 0.05) without (left) and with (right) the addition of
the white noise kernel.

C. From Global to Local Search
Many optimizers require an initial starting guess and then

perform a local optimization from or in the region of the
initial. There is then a strong dependence of the algorithm’s
performance on the provided starting point. The goal of the
present work is to use the GP model based optimizer to iden-
tify multiple suitable starting points for local searches. Note
that for this local search, any suitable method can be used.
We use ImFil as implemented in scikit-quant [33] as justified
in Section II. ImFil is a steepest descent method targeted at
noisy optimization problems that have bound constraints. It
uses coordinate search and approximates gradients to inform
the iterative sampling decisions.

The specific steps of our algorithm are provided below:
1) Initialization: Create a large space filling design, P =
{θ1, . . . ,θn0

} and evaluate the objective function at all
points in P: F = {E(θ1), . . . , E(θn0

)}; Set the max-
imum allowable function evaluations for the GP model
search as BGP and for the local search iterations as Bloc;
Set the maximum number of allowed local searches as
Bstart; Set the weight pattern W = {w1, . . . , wBstart−1};
Choose a kernel function for the GP.

2) Set k ← n0.
3) GP iteration: While k < BGP:

a) Build the GP: Use all input-output pairs
{(θi, E(θi))}ki=1 to build the GP.

b) Sample point selection: Maximize the expected im-
provement function (7) to select a new evaluation
point θnew.

c) Evaluate Enew = E(θnew).
d) P ← P ∪ {θnew}, F ← F ∪ {Enew}, k ← k + 1.

4) Starting point initialization: Select the best evaluated
point found so far, θbest and set Xstart = {θbest}.

5) Scale function values to [0,1]: VE(θi) = (E(θi) −
Emin)/(Emax − Emin) ∀θi ∈ P , where Emax and Emin

are the largest and smallest function values in F .

6) Set ns ← 1.
7) Starting point selection iteration: While ns < Bstart:

a) Compute distances: ∆i = ∆(θi,Xstart) =
minθ∈Xstart ‖θi − θ‖2 ∀θi ∈ P \ Xstart.

b) Scale distances to [0,1]: V∆(θi) = (∆max −
∆i)/(∆

max −∆min) ∀θi ∈ P \ Xstart, where ∆max

and ∆min are the largest and smallest distances.
c) Compute weighted scores: Vtot(θi) = wnsVE(θi)+

(1− wns)V∆(θi).
d) Select θadd ∈ arg min{Vtot(θi),θi ∈ P \ Xstart}.
e) Set Xstart ← Xstart ∪ {θadd}, ns ← ns + 1.

8) Set m← 0; ctr← 0.
9) Local search iteration: While m < Bloc and ctr < Bstart:

a) Set θstart ← Xstart[ctr].
b) Perform ImFil search from θstart in reduced bound-

ing box defined by θ
(j)
start±0.05 ; denote the acquired

sample points by Ploc, neval ← |Ploc| and the
corresponding function values by Floc.

c) P ← P ∪ Ploc; F ← F ∪ Floc; m ← m + neval;
ctr← ctr+1.

10) Return the best solution found during optimization.
Here, BGP defines the budget of expensive function eval-

uations that are allocated to the optimization with the GP.
Bloc defines the total number of function evaluations allowed
during the local search. Since a single local search does not
necessarily use up all of Bloc, we define a maximum number
of allowed local searches Bstart.

After the GP iterations have finished, we select Bstart differ-
ent points from the sample set P that we will use as seeds for
the local search. The goal is to select these points such that (1)
they have good (low) predicted function values and (2) they
are sufficiently spacely separated to minimize the risk of the
local search ending up in the same minimum. The best point
found during the GP iterations is used to initialize the set of
stating points Xstart. Then, we iteratively add a new point from
P \ Xstart to Xstart by using a score that trades off the criteria
(1) and (2). To this end, we define a weight pattern W with
elements wj ∈ [0, 1) which helps us to balance both criteria.

The final step are the multistart local searches. To focus the
local search on the vicinity of the starting guess, the search
space defined by upper and lower bounds is reduced. After
each local search, the sets containing all sample points P and
function values F are updated with the points in Ploc and
function values in Floc, respectively, that were obtained during
the local search. New local searches are started until either
the budget Bloc or the maximum number of local searches
has been reached. Eventually, the point corresponding to the
lowest function value is returned as solution.

There are three places in the algorithm where parallelization
can be exploited: (1) in the evaluation of the initial experimen-
tal design, all n0 points can be evaluated simultaneously; (2)
during the GP iterations, multiple points can be selected for
evaluation in each iteration by using different local maxima
of the expected improvement function as new sample points;
and (3) the Bstart local searches can be executed in parallel.



There are several hyperparameters that can be adjusted to
improve the performance of the algorithm. These include the
size of the initial experimental design (n0), the maximum
number of GP iterations BGP, the number of local searches
Bstart and evaluations allocated to the local search Bloc, the
weight patternW , the kernel choice for the GP, and the size for
the local search box for each ImFil run after the GP iterations.

There is a direct trade-off between n0 and BGP. The larger
n0, the better the initial GP model. However, this also means
that fewer points will be chosen during the GP iteration,
which then has fewer iterations to adapt to and hone in on
promising regions. Similarly, the total number of allowed
function evaluations must be separated into BGP and Bloc.
There is generally no clear guidance for when to stop the
GP iteration. Besides setting the upper limit BGP, one can
stop the GP iterations after a certain number of consecutively
failed improvement trials. However, there is no guarantee that
the GP did not get stuck in a local optimum if this happens,
especially not in high dimensional spaces. The number of local
searches that can be afforded depends on Bloc and how many
evaluations are needed by each local search, which will depend
on the starting guess.

V. NUMERICAL STUDY

We compare our proposed algorithm (“GP+ImFil”) to using
ImFil standalone (“ImFil”), and to a GP-only method (“GP”)
where we do not use a local search, but rather spend the
full budget on GP iterations (i.e. Bayesian optimization).
Since the optimization algorithm contains stochasticity (there
is randomness in the initial experimental design and in solving
expected improvement problems for the GP methods), we
perform three runs of each algorithm for each test problem
to get an idea of the variability of the results. We limit
each algorithm to 1000 function evaluations. For the methods
that use the GP, we use an initial experimental design with
2(d+1) points and, for the GP+ImFil method, we perform an
additional 8(d+1) evaluations during the GP iterations before
ImFil starts. In order to obtain a fair comparison with using
ImFil only, we generate the same initial experimental design
for ImFil, and then use the points in the initial design to seed
the multiple restarts of the method.

A. Test Problem Setup

We use the Hubbard Models (HMs) as described in Sec-
tion III-C with varying grid arrangements and fillings; and thus
varying numbers of parameters. Depending on the grid and the
filling used, the energy landscapes have different complexities.
In Fig. 4 we show approximations of the energy landscape
for the simplest case of a 2x1 grid, with a (1,0) and (1,1)
filling, respectively, for a run of the HM without (left images)
and with (right images) noise. We can see that measurement
noise changes the energy landscape and can make it more
difficult to optimize by introducing local optima. The contours
in the figures were created with the Gaussian process model
approximation of the energy landscapes using the combination
of squared exponential and white noise kernels.

(a) Energy landscape of the noise-free (left) and noisy (right)
Hubbard model with 2x1 grid and (1,0) filling.

(b) Energy landscape of the noise-free (left) and noisy (right)
Hubbard model with 2x1 grid and (1,1) filling.

Fig. 4: Two basic examples (a 2x1 grid, which is described by
2 parameters) of energy landscapes of a noise-free and noisy
Hubbard model. We can clearly see how the noise impacts the
shape of the energy landscapes and creates local optima.

We use six different HM examples of varying dimensional-
ity and optimization difficulty in our numerical study. Larger
grids require more qubits to simulate (2 qubits per site in
the basic encoding) and will have more optimization param-
eters, thus allowing us to study the scaling of the proposed
methods without fundamentally altering the scientific problem
considered. The number of electrons added to the model (the
“filling”) provides some level of control on the total number of
optimization parameters: electrons of the same quantum state
are indistinguishable and the filling thus determines overall
symmetry of the problem. Higher symmetry means fewer,
lower symmetry means more optimization parameters. We
consider two sets of test cases, namely a noise-free test set
where the simulated energy is a deterministic output, and a
second set where we add measurement noise σs = 0.003,
realistic after unfolding measurement data. Table I shows the
specifics of each test problem we are working with. Further
noise is introduced by restricting each evaluation to 8192
samples (the default on IBM devices).

Problem ID Grid Filling # Parameters
H1-d / H1-n 2x1 (1,0) 2
H2-d / H2-n 2x1 (1,1) 2
H3-d / H3-n 2x2 (1,1) 9
H4-d / H4-n 2x2 (2,2) 14
H5-d / H5-n 2x2 (3,3) 9
H6-d / H6-n 3x2 (1,1) 20

TABLE I: Specifics of the HM test problems investigated in
the numerical study. “d” indicates the deterministic case, and
“n” indicates the noisy case.



B. Deterministic Hubbard Model

We ran numerical experiments with the proposed algorithm
on the deterministic version of the HM. In figures 5 and 6,
we show the points sampled by the three different sampling
methods on the two-dimensional HM example H2-d. The pink
square markers in Fig. 6 indicate the samples acquired with
the GP iterations. We can see that the GP samples are well
distributed in the space, with denser sampling around the op-
timum (yellow point), indicating that the GP iterations moved
toward the optimal solution. We also see multiple clusters
of ImFil samples (green crosses), indicating the restarts of
the local search from several GP points that were chosen
as outlined in Section IV-C. Note that the green crosses
do not cover the full parameter space, but rather they are
constrained to small subdomains of the space. In this example,
we could have stopped the algorithm after the first local search
concluded (the problem is unimodal and this first search started
in the vicinity of the optimum). On the other hand, as shown in
Fig. 5 (left), when using ImFil only without the GP iterations
or restricting its search to subdomains, the samples are taken
across the whole space. There is a much larger and denser
cloud of points near the optimum (indicated by the yellow
point). When using the Bayesian optimization (Fig. 5, right),
we see that samples are collected all over the space, with
denser sampling in the vicinity of the optimum, but not as
dense as for ImFil. Although the Bayesian optimization can
guide the search towards the local optimum, it often does not
sample densely enough to reach a solution accuracy as high
as ImFil. We postulate that this is due to the multi-modality
of the expected improvement acquisition function and lower
uncertainty estimates in densely sampled regions such as the
immediate neighborhood of the best solution found.
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Fig. 5: Points sampled by the ImFil method (left) and the
Bayesian optimization method using only GP iterations with-
out ImFil search (right), for problem H2-d. The ImFil method
samples throughout the whole space, but focuses the search on
the location of the minimum. BO trades off exploration and
exploitation, thus the samples are more spread out.

Table II shows for each of our deterministic test problems
the average and standard deviation of the best energy value
found. Smaller numbers are better. We can see that the GP
iterations prior to starting ImFil (GP+ImFil) did in fact not
improve the optimization outcomes for most deterministic
problems as compared to the results obtained with ImFil. Only
for problem H6-d (the largest dimensional problem), did our
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Fig. 6: Points sampled by GP+ImFil for problem H2-d. The
GP points are acquired first, and a subset is used to start
the search with ImFil. Each ImFil search is restricted to a
smaller hyperbox of the search space to improve the local
search behavior.

proposed method find a better solution. The small dimensional
problems (H1-d and H2-d) may be too simple, and all methods
find the optimum. Also, in these examples, we restricted the
total size of the search space Ω such that only one minimum
was contained.

GP+ImFil ImFil GP
ID mean std mean std mean std

H1-d -1.0 0 -1.0 0 -1.0 0
H2-d -1.23572 0 -1.23572 0 -1.23572 4.7140e-7
H3-d -3.61760 0.00021 -3.61789 0 -3.61232 0.00222
H4-d -2.73595 0.00346 -2.74114 2.4944e-6 -2.72717 0.00252
H5-d 0.37357 0.00052 0.37292 2.1602e-6 0.38719 0.00310
H6-d -5.73215 0.00094 -5.70090 0.04845 -5.70082 0.00498

TABLE II: Best E value found for noise-free HMs. Means
and standard deviations are computed over 3 trials.

Figures 7 and 8 show progress plots of the algorithms
for two representative problems, namely H3-d and H6-d,
respectively. The progress plots show the best function value
found so far, and the goal for each graph is to go as
low as possible as quickly as possible, which indicates that
improvements are found faster. In both figures, we can see
that the graphs for GP and GP+ImFil drop off faster than
for ImFil alone. Both GP+ImFil and GP also have narrower
standard deviations than ImFil, which is illustrated with the
shaded bands. However, as can be seen from Table II, ImFil
eventually finds for all 2x2-grid problems better final solutions
than GP+ImFil. For all problems, using ImFil after the GP
iterations led to improvements over the best solution found
with the GP iterations. One reason for GP+ImFil not finding
as good solutions as ImFil may be related to the local search
box being too small and the optimum may be outside the box.
An opportunity to improve this may be the use of adaptive trust
regions that can dynamically be expanded, contracted, and
moved around depending on the performance of the sample
points collected.
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Fig. 7: Progress plot for problem H3-d. Lower is better.

0 200 400 600 800 1000
Number of function evaluations

5.5

5.0

4.5

4.0

3.5

Be
st

 fu
nc

tio
n 

va
lu

e 
fo

un
d 

so
 fa

r

3x2 grid, (1,1) filling
GP+Imfil mean
Imfil mean
GP mean
Initial design for GP
GP evaluations in GP+Imfil
GP+Imfil std
Imfil std
GP std

Fig. 8: Progress plot for problem H6-d. Lower is better.

C. Hubbard Model with Measurement Noise

In our second set of experiments, we consider the same
test problems, but we add measurement noise to the energy
objective function values. In the simulation, we apply a
misclassification remainder of 0.3%, which should be con-
sidered as representative after applying standard unfolding
techniques [25]; and we sample 8192 shots, the default on IBM
devices, for each Pauli-string component of the Hamiltonian.

Figures 9 and 10 show the samples taken by all three
algorithms for the two-dimensional example problem H2-n.
In Fig. 10, we can see that the GP-based sampling initially
explores the full space and then starts multiple local searches
with ImFil in the vicinity of the GP’s minimum. In contrast
to the deterministic case (Fig. 6), there appear to be more
local search restarts with ImFil, which is indicated by a larger
number of clusters of green crosses in Fig. 10.

We can observe a similar behavior in Fig. 9 (left), where the
samples taken by ImFil are less dense in the vicinity of the
optimum than in Fig. 5 (left) and smaller clusters of points
appear more spread out. This indicates that for the noisy
case, each ImFil run performs fewer function evaluations,
and quickly converges to local noise-induced minima. This is
illustrated in Fig. 11, where we show the raw ImFil function
values (instead of the best function value found so far) for

H3-d (left) and H3-n (right). We see clearly that the number
of ImFil restarts is lower for the deterministic case (indicated
by large jumps in the function values) than for the noisy case.
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Fig. 9: ImFil (left) and GP (right) samples acquired for
problem H2-n.

The samples of the Bayesian optimization (Fig. 9, right)
show an interesting behavior where many samples are taken
in a circular fashion around the vicinity of the optimum, and
the location of the optimum is densely sampled.

In Table III, we show the mean and standard deviation
of the best energies found with each algorithm. Unlike for
the deterministic case, the GP+ImFil method finds the best
solution for all higher-dimensional problems (9 and more
dimensions). Compared to the deterministic case, the best
solutions are also found faster (i.e. convergence is reached
faster for these problems).

GP+ImFil ImFil GP
ID mean std mean std mean std

H1-n -1.01038 0.00708 -1.00907 0.00430 -1.01359 0.00407
H2-n -1.24243 0.00285 -1.24495 0.00404 -1.23938 0.00137
H3-n -3.57227 0.00346 -3.54537 0.01703 -3.54525 0.01407
H4-n -2.70915 0.01832 -2.64677 0.06159 -2.68148 0.02624
H5-n 0.36353 0.00728 0.38615 0.01560 0.41325 0.00509
H6-n -5.59416 0.01203 -5.49337 0.01221 -5.55098 0.01702

TABLE III: Best energy value E for noisy HM simulations.
Mean and standard deviations are computed over 3 runs each.

In figures 12 and 13, we illustrate the convergence plots of
the different algorithms for problems H3-n and H6-n. Similar
to the deterministic case, GP+ImFil and GP find improvements
faster than ImFil and ImFil’s performance variability is larger.
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Fig. 10: GP+ImFil samples acquired for problem H2-n.



Fig. 11: Raw ImFil function values. The deterministic case
(left) has fewer restarts of ImFil than the noisy case (right)
for problem H3-d/n.

The Bayesian optimization method gets stuck as is evidenced
by the flat line after the first couple of improvements and the
addition of multiple ImFil searches improves the performance
as is evidenced by the GP+ImFil graphs. From the progress
plots of the higher-dimensional problems (figures 8 and 13),
we can see that GP+ImFil does not improve during the
second half of the GP iterations. This indicates that we could
have potentially found further improvements quicker, had we
stopped the GP iterations earlier. Thus, one could experiment
with a dynamic stopping criterion that exists the GP iterations
after a predefined number of failed iterative improvement
trials. However, also this predefined number is a parameter
that must be determined.
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Fig. 12: Progress plot for problem H3-n. Lower is better.

D. Effectiveness of Seeding

The GP provides seeds to multistart ImFil, increasing the
likelihood to find the true global minimum in a multi-modal
landscape. To study the effect of seeding in isolation, we
consider the deterministic case for the 2x2 sized grid configu-
rations, but now using a larger bounding box Ω spanning the
full physical space, which includes many local minima due
to symmetries. Choosing a larger space requires a different
choice of hyperparameters. In particular, the number of (initial)
GP iterations should increase proportionally, to map the larger
space to the same level of detail as the smaller problem. To
guarantee that each seeding is run to completion, we do not
restrict the local budget Bloc, but do limit their number to 5.

In Table IV we compare the results of GP+ImFil v.s. ImFil
standalone. In two of the three configurations tested, without
a good initial, ImFil got stuck in a local minimum, whereas in
all cases GP+ImFil was able to find the true global minimum.
Due to the non-deterministic behavior of GP, however, success
is not guaranteed and for two configurations, multiple runs
were necessary. The most common reason for failure is the
selection of seeds close to the overall boundary: if there is a
downward slope to follow, then the point at the boundary will
form an artificial local minimum. These solutions are easy to
flag, however, and the algorithm could reduce the weighting
in the seed selection of points originating from extrapolation
towards the boundary.

ID Best on ImFil GP+ImFil
Ansatz Result Iters Result Iters Rate

H3-d -3.62653 -3.39149 375 -3.62235 3407 100%
H4-d -2.80081 -2.09527 1015 -2.68146 5023 20%
H5-d 0.37282 0.37284 535 0.37325 2480 40%

TABLE IV: Average results obtained for the deterministic case
for a full range global search for successful searches.

The results shown are an average, but these are not all from
the same parameters (there are multiple global minima in the
full search space because of symmetry and periodicity). In
practical use, it would make sense to re-run the experiment
several times on a single good seed with parameters furthest
from the bounds, for the best final result.

A true exhaustive multistart method divides up the full
parameter search space and starts searches in each region. Such
an approach does not suffer from a limiting success rate, but at
a (much) greater resource cost. From our results it is clear that
the seeding is not as effective as such a multistart would be and
the selection of the initial guesses could be modified to find
better performance. However, since ImFil is restricted at each
seed to a boundary box that is only a small subdomain of the
original problem (here chosen to be ±0.2 in each parameter),
even for the lowest observed success rate of 20%, the resource
costs of multiple runs is still vastly lower.2

2Since ImFil standalone will stop when converged, if it does not get stuck
in a local minimum, it is still the preferred approach.
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Fig. 13: Progress plot for problem H6-n. Lower is better.



For scientific problems where the obtained minimum can
not be easily verified, the guarantee of a true multistart will
outweigh its resource cost. However, if such verification is
possible, the GP approach outperforms.

E. A Note on Computational Time

The compute time to acquire points with ImFil and the
GP differ significantly. While ImFil uses a simple coordinate
search to approximate the gradients, the GP model must
be trained on all data (which requires solving a maximum
likelihood problem), and, once trained, another optimization
problem must be solved to find the next sample point. For
the small problems with fast function evaluations, such as
H1/2, using a method that involves the GP is therefore not
recommended. As we have shown, using the GP for these
simple problems does not yield a significantly better perfor-
mance and thus ImFil may be sufficient as the sampler. On the
other hand, for problems where the computational overhead
of function evaluations is large, the GP’s overhead quickly
becomes negligible and the improvements in performance,
especially for the noisy cases motivate the use of GP.

F. Other Kernels

In Table V we show initial, exploratory results that we
obtained for the 2x2 deterministic test cases when using the
Matérn kernel in the GP+ImFil method (column 2). This kernel
type can be interpreted as a generalization of the RBF kernel,
and can better capture physical processes due to its finite
differentiability for a range of finite parameter settings. We
can see that with the Matérn kernel, the results are better than
when using the RBF+White Kernel (column 4). In Fig. 14, we
show a convergence graph for problem 2x2 with (3,3) filling.
We can see that convergence is quicker than for ImFil. For the
noisy version of the problem, the Matérn kernel did not yield
improvements. However, further investigation into this kernel
choice is needed for definite conclusions.

GP (Matérn)+ImFil ImFil GP (RBF+WK)+ImFil
ID mean std mean std mean std

H3-d -3.61789 8.165e-07 -3.61789 0 -3.61760 0.00021
H4-d -2.74113 1.203e-05 -2.74114 2.4944e-6 -2.73595 0.00346
H5-d 0.37292 8.165e-07 0.37292 2.1602e-6 0.37357 0.00094

TABLE V: Best E value for noise-free HMs with Matérn
kernel, averaged results from 3 trials.

VI. DISCUSSION, CONCLUSIONS, AND FUTURE
DIRECTIONS

We presented an optimization routine that couples a Gaus-
sian process model based global search with multiple local
Implicit Filtering searches (“GP+ImFil”) to solve the VQE
problem for the Hubbard Model. We examined two classes of
problems, namely noise-free models and models with measure-
ment and sampling noise, over a range of 2-20 optimization
parameters. Our goal was to examine if GP models with
appropriately chosen kernels to take into account the noise can
help us find optimal solutions with fewer objective evaluations
than widely-used classical optimizers such as ImFil.
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Fig. 14: Progress plot for problem H5-d, showing the perfor-
mance of GP+ImFil with Matérn kernel (blue), RFF+White
Kernel (red), and ImFil only (yellow). Lower is better.

Our results for the deterministic problems showed that in
most cases, ImFil finds better solutions than the GP+ImFil ap-
proach even though its progress toward the optimal solutions is
significantly slower. On the other hand, for the noisy problems,
GP+ImFil not only finds improvements faster but also finds
overall better solutions than ImFil. For the noisy functions,
ImFil does restart more often than in the deterministic case,
which may be due to ImFil converging quickly to noise-
induced local optima, and therefore a careful selection of
starting guesses as done in the GP+ImFil method is beneficial.
Our results indicate that for smooth unimodal surfaces such
as the deterministic problems with small bounding boxes, the
GP iterations are not advantageous. However, for very rugged
surfaces such as in the noisy case, using the smooth GP to
guide the local search helps us avoid converging to noise-
induced local minima that are far from the global optimum.

There are several potential improvements of our proposed
method that are worthwhile to study in the future. First, the
GP+ImFil method has various parameters such as the number
of GP iterations, the start point selection for ImFil, and the def-
inition of the local search box for ImFil. A more dynamic ad-
justment of these parameters in direct response to the observed
function values may lead to better optimization performance.
In particular, for search bounds, artificial minima should be
detected and stopped out; and too restrictive bounds should
be dynamically re-adjusted. Second, one could experiment
with other local search methods that were developed for noisy
problems such as SnobFit. SnobFit requires multiple starting
points as input and our GP iterations allow us to select these
points. Third, parallelism must be exploited where possible
in order to solve higher dimensional problems. This may go
hand in hand with exploiting tools such as GPyTorch [7] that
allow for faster training of Gaussian process models. Finally,
we observe that the choice and configuration of the GP kernel
matters. Thus, future work should continue the exploration of
different types of kernels, such as the Matérn kernel.
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[15] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J.

Coles. An adaptive optimizer for measurement-frugal variational al-
gorithms. Quantum, 4:263, May 2020.

[16] W. Lavrijsen, J. Müller, and E. Younis. Tutotial: Workflow for hy-
brid quantum-classical algorithm, https://github.com/scikit-quant/scikit-
quant/tree/master/tutorials. In IEEE International Conference on Quan-
tum Computing and Engineering QCE21, 2021.

[17] Wim Lavrijsen, Ana Tudor, Juliane Müller, Costin Iancu, and Wibe
de Jong. Classical optimizers for noisy intermediate-scale quantum
devices. In 2020 IEEE International Conference on Quantum Computing
and Engineering (QCE), pages 267–277, 2020.
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