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Abstract

Design and Management of Networked Energy and Logistics Systems

by

Wei Qi

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

Key to a sustainable future is the transformative human use of energy and transportation–
from a fossil-fuel dominant to a renewables-mixed portfolio of energy production, from
a supply-follow-demand to a demand-responsive pattern of power consumption, and from
capacity-oriented to usage-based allocation of logistics mobility. Motivated by these trends,
my dissertation presents three essays to address the challenges that governments and busi-
nesses worldwide face in, respectively, 1) planning infrastructure for wind energy production,
2) designing coordination strategies for large-scale charging of plug-in electric vehicles, and
3) evaluating the economic and environmental viability of using shared mobility for retail
e-commerce. Two common threads underlying my dissertation research are 1) strategic
decision-making with insights into the operational level and 2) network optimization that
takes into account the interdependencies both within and out of system boundaries. Solving
these network optimization problems invokes the techniques of mixed-integer conic program-
ming, decomposition algorithms, and continuous approximation modeling. Specifically, the
three essays are organized as three chapters of the dissertation:

Chapter 1 studies the problem of jointly planning energy storage (ES) and transmission
for wind energy generation. Regions with abundant wind resources usually have no ready
access to the existing electric grid. However, building transmission lines that instantaneously
deliver all geographically distributed wind energy can be costly. Energy storage systems can
help reduce the cost of bridging wind farms and grids, and can mitigate the intermittency of
wind outputs. We propose models of transmission network planning with colocation of ES
systems. Our models determine the sizes and sites of ES systems as well as the associated
topology and capacity of the transmission network under the feed-in-tariff policy instrument.
We first formulate a location model as a mixed-integer second-order-conic program to solve
for the ES-transmission network design with uncapacitated storage. Then we propose a
method to choose ES sizes by deriving a closed-form upper bound. The major insight is
that, in most cases, using even small-sized ES systems can significantly reduce the total
expected cost, but their marginal values diminish faster than those of the transmission lines
as their capacities expand. Despite uncertainties in climate, technologies, and construction
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costs, the cost-efficient infrastructure layout is remarkably robust. We also identify the major
bottleneck cost factors for different forms of ES technologies.

Chapter 2 presents a hierarchical optimal control framework to coordinate the charg-
ing of plug-in electric vehicles in multifamily dwellings. A particular scenario is considered
where distributed urban residential communities access electric power supplies through a
common primary distribution transformer. We first formulate a centralized finite-horizon
control problem. The proposed multistage mixed integer program seeks to maximize the
total utility of the charging service provider while satisfying customers’ charge demands and
transformer capacity constraints. By exploiting the structure of the centralized model, we de-
compose the centralized problem with respect to each parking deck, based on the Lagrangian
relaxation method; we design an effective heuristic method to find feasible solutions to speed
up convergence. Case studies on operations of five parking decks following different charg-
ing strategies are carried out. Simulation results demonstrate that the proposed distributed
hierarchical charging strategy outperforms the centralized charging strategy from the per-
spective of computational requirements. System reliability and customer privacy protection
are also discussed.

Chapter 3 studies an integrated logistics system with shared mobility for retail e-commerce.
Two socioeconomic transformations, namely, the booms in sharing economy and retail e-
commerce, lead to the prospect where shared mobility of passenger cars prevails throughout
urban areas for home delivery services. Local governments and logistics services providers
are in need of evaluating the potentially substantial impacts of this mode shift, given their
societal and environmental concerns and economic objectives. We addresses this need by
providing a logistics planning framework: 1) Part one presents logistics planning models.
These models characterize optimal routes of short-haul trucks and passenger cars, and gen-
erate the optimal density of service zones within which passenger vehicles pick up goods and
fulfill the last-mile delivery. 2) Part two, based on empirical estimates, analyzes operating
costs and greenhouse gas emissions implications of this sharing logistics paradigm. The find-
ings suggest that a transition to this paradigm has the potential for creating considerable
economic and environmental benefits, although immediate savings are not as achievable as
one may conjecture. If being in this paradigm, even exclusively minimizing operating costs
does not significantly increase emissions relative to the minimum level of emissions. A non-
linear payment scheme can be used to efficiently induce shared mobility into passenger car
home delivery services.
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Chapter 1

Joint Planning of Wind Energy
Storage and Transmission

1.1 Introduction

Renewable energy, such as wind energy, is the key to a sustainable energy future. Drivers
for the renewables include alleviated dependence on fossil-fuel power and nuclear power,
reduced environmental hazards and prospective cheaper energy production ([30]). Govern-
ments around the world have widely released targets to push the adoption of renewable
energy. For example, a collaborative effort has been made to explore a scenario in which
wind provides 20% of U.S. electricity by 2030 ([27]); China plans its non-fuel energy to ac-
count for 15% of its total consumption by 2020 and has led the expansion of wind power
capacity ([77]). In the mean time, leading companies in the IT sector, such as Apple, Google
and Facebook, are taking significant steps to power their data centers with an increasing
percent of renewable energy ([43]).

Nonetheless, wind energy infrastructure planners are facing major challenges when they
are trying to meet these ambitious goals. Firstly, wind resources are geographically dis-
tributed. In the initial phase when multiple wind farms are approved to be built, the
planners need to carefully design the transmission network that is usually more complex
than one single line. Secondly, most of the high-quality wind resources in North America
and Asia are not near major load centers and cannot be directly integrated into the existing
transmission network ([26]; [32]; [33]; [42]). As a result, dedicated long-distance transmission
lines have to be built to deliver electricity from remote wind farms. Thirdly, the intermittent
nature of wind necessitates high-capacity but lightly-loaded transmission lines, which oth-
erwise would result in significant generation curtailment. For example, Southern California
Edison reported curtailed wind energy generation of about 15MW for 6-8% of the time as
of 2010 due to transmission constraints ([78]).

We try to address these challenges by proposing models of transmission network planning
with colocation of energy storage (ES) systems. The primary function of an ES system is to
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decrease the variability of wind energy generation by absorbing/discharging electricity when
wind power output mismatches the rated transmission capacity or power demand. The
extensive value of colocating ES with wind energy generation has been reported in [29] and
[36]. In this chapter, our goal is to develop models and solution methods to determine sizes
and sites of ES systems as well as the associated topology and capacity of the transmission
network. As a result, wind energy from these geographically distributed wind farms can be
effectively tapped with minimum infrastructure investment cost and energy loss. In doing
so, we also try to understand how to best exploit the value of using ES for future renewable
energy production.

Our model and analysis are based on the following problem settings: a set of sites in
a region with abundant wind resources have been selected as wind farms. These sites are
located in desolated areas that have no ready access to main transmission infrastructure (see
[92] for practical considerations in siting wind farms). A planner of the local government or
a utility company is to design a network of energy storage systems and transmission lines
(hereafter referred to as ES-transmission network) to connect the wind farms to a single
load center (e.g., a town) or a substation of the region; or, an IT company aims to power
its 120MW data center with 100 percent wind energy. We consider the network topology to
be radial. That is, wind outputs from different farms are first transmitted to junction sites
with or without ES, and then the pooled power at each junction site flows to the load center.
The radial transmission network is widely adopted in practice to tap remote wind resources,
such as in southern California and Atlantic offshore zones ([18] and [7]).

In addition, we assume that the region implements feed-in-tariffs (FIT) policy, which
guarantees a long-term contract for renewable power producers to sell their electricity at a
fixed price ([67]). As a result, wind farms have no price arbitrage incentive and it is optimal
to deliver as much energy as transmission capacities permit. Among the existing policy
mechanisms, FIT is particularly effective to foster initial adoption of renewable energy and
fits well with the practice in most of the world’s major electricity markets, where governments
enforce the purchase price of electricity to be higher than its energy production cost or
subsidize wind energy generation utilities to attract them to enter the market ([4] and [77]).

Our first model considers the case where ES systems are assumed to have sufficient
energy capacity to accommodate intermittent surplus wind output. We first derive two
optimal transmission line capacities as functions of wind characteristics for a single wind
farm with and without ES being coupled, respectively. Then we use these optimal quantities
to formulate a model to design an ES-transmission network. The model is in the form
of a mixed-integer second-order-conic program (MISOCP), which can be efficiently solved
by commercial software. Our second model considers the sizing problem of ES. We derive
a closed-form upper bound of the expected energy overflow due to the capacity limit, as
a function of ES and transmission capacities. In the above models, following one similar
assumption of [54], we approximate the hourly and daily wind output by uniform distribution.
The numerical experiments suggest that the approximation error is small. Combining these
models, the infrastructure planner obtains both lower and upper bounds of the expected
minimum capital and operational cost of the network. The gap between the two bounds is
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reasonably small.
The contributions of this work are as follows: (1) To the best of our knowledge, this work

is the first attempt to provide infrastructure planners with models and solution approaches
to jointly plan the sites and the sizes of ES systems and transmission lines for distributed
wind resources. (2) We develop quantitative models and managerial insights to help planners
understand the value and cost of using ES. We analyze the dual effects of using ES, that is,
saving transmission capacity by reducing output variability versus incurring energy loss due
to friction and overflow (as an in-depth quantitative extension to the discussion in [26]). We
find that, in most cases, using even small-sized ES systems can significantly reduce the total
expected cost, but their marginal values diminish faster than those of the transmission lines
as their capacities expand. We also identify the bottleneck cost factors for different forms
of ES technologies. For example, for compressed air storage systems, it is more beneficial to
improve their energy conversion efficiency than to reduce their per-unit capacity cost. These
insights can be used to make long-term investment decisions as technology advancements
bring down ES cost. (3) Another finding is that the layout of the ES-transmission network
that we obtain is robust against uncertainties such as FIT rates adjustments, technology
advancements, climate changes and construction material cost fluctuations. Hence, planners
can determine the infrastructure layout long before these uncertainties are resolved, without
worrying about costly reconfiguration of the network. (4) We also incorporate major wind
characteristics into infrastructure planning. In particular, our models capture the nature of
wind energy such as hourly and daily intermittence, spatial correlation and the variability
pooling effect, which are all important factors but have not been well considered in the
literature.

The remainder of this chapter is organized as follows. Section 1.2 reviews the related
literature. Section 1.3 introduces notation and basic settings of our models. Section 1.4
presents the infrastructure planning model with uncapacitated ES systems. Section 1.5
derives an upper bound of the size of an ES system and incorporates it into the planning
procedure. Section 1.6 demonstrates our computational results and presents managerial
insights into technology impact and layout robustness. Finally, Section 1.7 concludes the
chapter. In addition, numerical and theoretical analysis of model inaccuracy, additional
structural properties, proposition proofs and numerical experiment settings are available in
Appendix A.

1.2 Literature Review

There has only been a very limited number of studies that are related to the important
problem of deploying ES systems for wind power delivery in the literature of transmission
expansion planning (see [57] and [48] for comprehensive reviews, [93] for recent progress on
conic approximations to alternative current (AC) transmission system planning, and [68]
and [8] for some recent studies that incorporate wind resources). The closest to ours are
[74] and [102], both of which formulate deterministic mixed-integer linear programs to plan
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Figure 1.1: A radial ES-transmission network with economic (dashed) and ES-free (solid)
lines.

ES systems in an existing power grid, without wind resources being considered. In addition,
[26] study how ES saves transmission cost when it is located close to wind farms. However,
none of these studies address issues such as determining ES/transmission capacities while
capturing wind characteristics, which are the contributions of our work from a supply chain
design perspective.

Our infrastructure planning model for wind energy generation is reminiscent of the
location-inventory model proposed by [84], though they are different on some fundamen-
tal aspects. Compared to warehouses in a distribution network, the ES systems incur fixed
upfront cost, variable capacity cost and nonlinear cost due to charge/discharge friction loss
and overflow loss of energy. Meanwhile, whereas the retailers to be assigned to the warehouses
face random custom demands, the wind farms in our problem setting are to be assigned to
ES-coupled or ES-free junction sites and face intermittent wind energy outputs. For the
solution approach, we formulate our planning problem in the form of a computationally-
tractable second-order conic program. For more applications of conic formulations, please
refer to [6] for solving the location-inventory problem and its various extensions, [64] for
planning battery-swapping stations of electric vehicles, and [70] for portfolio optimization.

1.3 Model Settings

We consider a radial ES-transmission network as illustrated in Figure 1.1. A given set of
geographically distributed wind farms are approved to be built. Each of these farms is to
generate and deliver electrical power to a junction site. Then the power pooled at each
junction site flows to a given common load center (or substation). Our objective is to jointly
determine a) the assignment of the wind farms to the junction sites; b) whether to install an
ES system at a selected junction site; c) energy capacities of the ES systems; and d) power
capacities of the transmission lines.
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We are interested in how the total expected cost relates to ES and transmission capacities
as well as wind intermittence. Specifically, this cost breaks down to two parts:

(1) The building cost of ES (transmission), which consists of a fixed installation cost and
a variable cost proportional to the ES (transmission) capacity. The fixed and the variable
cost components of transmission are assumed to be both proportional to the length of the
line.

(2) And the energy loss, which is incurred as (i) friction loss, owing to non-perfect
roundtrip conversion efficiency when electricity is charged into and discharged from an ES
system, (ii) overflow loss, when both an ES system and its downstream transmission line hit
their maximum capacities and the surplus wind energy can be neither stored nor transmitted,
or (iii) curtailment loss, when ES is absent and instantaneous wind power output that exceeds
the downstream transmission line capacity has to be abandoned.

As for the choices of transmission capacity, we consider two types of transmission lines.
First, between ES-equipped junction sites and the load center, we choose economic lines.
An economic line and its associated ES system are complementary in reducing energy loss
and their capacities need to be jointly optimized. Second, ES-free lines are built between
the wind farms and the junction sites and from ES-free junction sites to the load center.
A properly sized ES-free line strikes the balance between saving transmission building cost
and reducing curtailment loss. In both cases, given the FIT instrument, wind farms have no
price arbitrage incentive. It is optimal to deliver as much generated and stored energy as
transmission line capacities permit.

1.4 Model with Uncapacitated Storage

In this section, we first derive an optimal transmission line capacity for a single wind farm
colocated with an uncapacitated ES system. Then we derive an optimal transmission ca-
pacity of an ES-free line. These results then lead to an ES-transmission planning problem
formulation for multiple distributed wind farms with uncapacitated ES systems. In Section
1.5 we will show that this uncapacitated case provides a reasonable approximation to the
case with capacity limts. Table 1.1 summarizes the notation for the case of a single wind
farm. Parameters and functions are denoted by lowercase letters, random variables by bold
lowercase letters, matrices by uppercase Greek letters and decision variables by uppercase
English letters.

A Single Wind Farm with ES

Consider a basic scenario: a single wind farm is coupled with an ES system and delivers
electricity through a capacitated transmission line. In this case, it is optimal to colocate
the ES system with the wind farm to avoid the cost of building ES-free transmission line
between them.
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Table 1.1: Summary of notation.

Systems Parameters
α, β Charge and discharge efficiency of ES systems, respectively.
δ Length (in years) of each time interval. We assume δ = 1hr = 1

24×365
yr hereafter.

wt, wt Random variable and its realization of the energy that a wind farm captures
during interval [t− 1, t), respectively, where t ∈ N is the index of the intervals of
length δ.

lt Loss of energy during [t− 1, t).
fw(·) Probability density function of wt.
µ, ε Mean and interval length of the approximated uniform distribution of wt,

respectively.
l Length of a transmission line.
Price and Costs
p Fixed contracted electricity selling price.
r Annualized per-kWh building cost of ES capacity.
a Annualized building cost of a transmission line per kW per mile.
q = al Annualized building cost of a transmission line per kW.
θ, η Dimensionless capacity cost indices of an economic line and an ES-free line,

respectively.
Decision Variable
C Maximum electrical energy that can be transmitted over a period of δ by a

transmission line. C is also in the unit of power (kW) when δ = 1hr = 1
24×365

yr.

Intuitively, as the transmission line capacity increases and/or the installed ES capacity
increases, the building cost increases while the energy loss decreases. To quantify this trade-
off, we first assume that r = 0 and the ES system is large enough to incur no overflow loss
almost surely. The energy loss lt during [t− 1, t) thus consists only of the friction loss:

lt =

{
(wt − C)(1− αβ), if wt − C > 0;
0, otherwise.

(1.1)

At times when the wind output power exceeds the transmission line capacity, the surplus
energy (wt − C) is charged into and at some future time discharged from the ES system,
incurring a friction loss of (wt−C)(1−αβ). Otherwise, all the generated wind energy can be
directly delivered. We follow the approach in [54] to assume that wt is uniformly distributed:
wt ∼ uniform(µ− ε

2
, µ+ ε

2
). We obtain the mean µ and the interval length ε by matching the

mean and the variance of the real wind outputs. Two reasons lead to our choice of uniform
distributions over others (such as normal distributions) to approximate wind outputs. First,
the uniform distribution is mathematically tractable, enabling us to derive closed-form results
that are key not only to the efficient planning problem formulation, but also to the managerial
insights into ES value and model suboptimality. Second, the uniform distribution, with its
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bounded support, is effective in characterizing wind curtailment, which results from wind
turbine operations and capacitated transmission lines. This approximation is further justified
by the numerical experiments later in this section and in Section A.1. Note that the wind
output process {wt} can be auto-correlated and non-stationary. When C ≥ µ − ε

2
, the

expected energy loss in [t− 1, t) is given by:

E[lt] =
∫ µ+ε/2

C
(wt − C)(1− αβ)1

ε
dwt

= 1−αβ
2ε

(µ+ ε
2
− C)2.

(1.2)

Although in practice transmission capacity C can only be chosen from a finite set of
discrete values, we assume C is continuous-valued for model tractability, because the discrete
set of candidate capacities is considerably flexible, with various line specifications available.
In addition, we assume that the variable transmission capital cost is linear in C. This
linear approximation is present and justified in early literature of transmission expansion
planning (e.g., [53] and [55]). Recent empirical evaluation ([65] and [66]) also suggests that
transmission capital cost exhibits a significant linear relation with transmission capacity in
a wide range. With these two assumptions, the expected annual variable cost due to friction
loss and capital investment can be expressed as a quadratic function of C:

v1(C) = pE[lt]
δ

+ qC

= p1−αβ
2εδ

(µ+ ε
2
− C)2 + qC.

(1.3)

It can be verified that C = (µ + ε
2
) − εδq

p(1−αβ)
minimizes (1.3). We make an additional

assumption that transmission line capacity should be greater than or equal to the average
wind output power; otherwise there is no steady state distribution of the storage level. Hence,
the economic transmission capacity which minimizes the expected annual variable cost v1 is
given by:

C∗ = arg min
C>=µ

v1(C)

= max{µ, (µ+ ε
2
)− εδq

p(1−αβ)
}

=

{
µ+ (1

2
− θ)ε, if θ < 1/2;

µ, otherwise,

where θ = δq
p(1−αβ)

.

(1.4)

The dimensionless number θ captures the cost associated with building transmission
capacity. For example, if q is large due to long transmission distance or high unit capacity
cost, or if the ES conversion is very efficient such that αβ is close to 1, then θ tends to be
large, indicating that building extra transmission capacity is cost-ineffective. When θ ≥ 1

2
,

it is favorable to construct a line that transmits at most average wind power. It is important
to notice that θ is independent from the wind characteristics. When planning the entire ES-
transmission network, this invariance helps pre-determine which segment of the following
non-smooth cost expression (1.5) to use in formulating the network design problem, before
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we know the assignment of the wind farms to the junction sites. Substituting (1.4) into (1.3)
yields the optimal annual variable cost:

v∗1(C∗) =

{
qµ+ q(1

2
− 1

2
θ)ε, if θ < 1

2
;

qµ+ p(1−αβ)
8δ

ε, otherwise.
(1.5)

A Single Wind Farm without ES

We next look into another basic scenario where a single wind farm is connected with a
transmission line without ES being colocated. In this case, the optimal transmission capacity
can be directly expressed as the optimal quantile in the classic newsvendor model with
stockout cost (p − qδ) and inventory holding cost qδ. An explicit derivation resembles the
steps in the case with ES. Specifically, the curtailment loss during [t− 1, t) is given by:

lt =

{
(wt − C), if wt − C > 0;
0, otherwise.

(1.6)

Applying uniform distribution approximation again, when C ≥ µ − ε
2
, the expected

curtailment loss is given by:

E[lt] =
∫ µ+ε/2

C
(wt − C)1

ε
dwt

= 1
2ε

(µ+ ε
2
− C)2.

(1.7)

The expected annual variable cost due to curtailment loss and transmission capacity
investment as a function of C becomes:

v2(C) = pE[lt]
δ

+ qC
= p

2εδ
(µ+ ε

2
− C)2 + qC

= p
2εδ
C2 + (− p

εδ
(µ+ ε

2
) + q)C + p

2εδ
(µ+ ε

2
)2.

(1.8)

The cost-minimizing ES-free line capacity is thus given by:

C∗ =

{
arg min v2(C), if η < 1;
0, otherwise;

=

{
µ+ (1

2
− η)ε, if η < 1;

0, otherwise,

where η = δq
p
.

(1.9)

Similar to θ for an economic line, η is the dimensionless capacity cost index for an ES-free
line, independent from wind characteristics. Larger η indicates higher level of line capacity
restriction. When η ≥ 1, building transmission capacity is no longer profitable even when
the line is fully loaded all the time, so we opt not to build the line and forgo all the wind
energy. The associated optimal annual cost is:

v∗2(C∗) =

{
qµ+ q(1

2
− 1

2
η)ε, if θ < 1;

pµ
δ
, otherwise.

(1.10)
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.

A Numerical Example

The following simple numerical example illustrates how the variable cost and the approx-
imation error of wind output vary with respect to the transmission distance. Consider
distance l ranging from 0− 200 miles and set p = $0.08/kWh (which is projected to be the
levelized electricity cost for new wind plants in 2020, estimated by [30]), αβ = 0.72 and
a = $1/kW-mile.

Figure 1.2 (a) and (b) are the area plots of the total variable cost with and without ES
being colocated, respectively. We use wind output data of a modeled site from [73] (The
site ID is 24648). In Figure 1.2 (a), the total variable cost generated using these data with
the transmission capacity C∗ prescribed by (1.4) is shown as the sum of the friction cost
and the transmission capacity cost. When l < 98 miles, the transmission capacity cost
increases in transmission distance l yet with a decreasing rate of change, as C∗ decreases
to partly offset the increased capacity cost, which in turn incurs more charge/discharge
friction. When l ≥ 98 miles, C∗ = µ, and hence the friction cost reaches standstill and the
transmission capacity cost increases linearly in l. In Figure 1.2 (b), the total variable cost
with C∗ prescribed by (1.9) is shown as the sum of the curtailment cost and the transmission
capacity cost. Similarly, longer transmission distance results in smaller transmission capacity
and thus higher curtailment cost.

Figure 1.2 also suggests that the error of approximating the wind output using uniform
distribution is reasonably small. We first use line search on the same data set to find the
actual optimal transmission capacity and the corresponding cost. This cost, as represented
by the dashed line in each plot, is close to the cost with transmission capacity C∗. In the
ES-coupled (ES-free) case, the average relative gap is 3.01% (7.02%) for l ≤ 50 miles and
0.22% (1.09%) for l > 50 miles. Then we use simulated data from a uniform distribution
that matches the first and the second moments of the raw data. Again, the approximated
total variable cost (the line with triangles) is close to the real cost, with about a 2.5%
(5%) relative gap in the ES-coupled (ES-free) case. It can be verified that the bias of the
cost approximation is eliminated when C = µ regardless of the real distribution of the wind
output. These facts enable us to incorporate the cost terms (1.5) and (1.10) into the planning
model for multiple wind farms, which we elaborate in the remainder of this section.

Multiple Farms

We next develop the planning model for multiple wind farms. Obviously, building ES systems
at all the sites of the wind farms can be cost-inefficient. We instead try to economically select
power junction sites (which can also be some wind farms) to aggregate wind outputs with
or without ES systems being colocated.

Additional notation used for the scenario of multiple wind farms is summarized in Table
1.2. Wherever it is necessary, we add subscripts to symbols to indicate location. For instance,
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Figure 1.2: Variable costs of a single farm (a) with and (b) without ES.

qij and qj refer to capacity per unit costs of building transmission lines from wind farm i to
junction site j, and from junction site j to the load center, respectively.

We assume that ES-free lines are built between wind farms and junction sites and between
ES-free junction sites and the load center, with line capacities given by (1.9). We follow the
same logic as in the single-farm scenario to use a uniform distribution to approximate the
probability distribution of the curtailed wind power wt,ij, which is from farm i and faced by
site j. When ηij < 1, this uniform distribution has mean and interval length expressed as
follows (The derivation is available in Section A.1 ):

µij = µi −
1

2
εiη

2
ij, (1.11a)

εij =
√

(1− ηij)3(1 + 3ηij)εi. (1.11b)
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Table 1.2: Summary of additional notation.

Sets
I Set of wind farms, indexed by i ∈ I.
J Set of candidate junction sites pooling wind outputs, indexed by j ∈ J .
Systems Parameters
Σj Covariance matrix of wind outputs from the wind farms in I, aggregated at site j.
ρikj Correlation coefficient of the outputs at site j from i, k ∈ I, aggregated at site j.
Costs
hj Annualized fixed upfront cost to build an ES system at junction site j ∈ J .
gij, gj Annualized fixed construction cost of the transmission line from wind farm i ∈ I

to site j ∈ J and from site j to the load center (or a substation), respectively.
Decision Variables
Xj 1 if an ES system is built on site j ∈ J , 0 otherwise.
Vj 1 if site j ∈ J is selected as a junction site with no ES system, 0 otherwise.
Yij 1 if wind farm i ∈ I is assigned to junction site j with an ES system, 0 otherwise.
Yj vector (Y1j, Y2j, ..., Y|I|j)

T .
Zij 1 if wind farm i ∈ I is assigned to site j ∈ J without an ES system, 0 otherwise.
Zj vector (Z1j, Z2j, ..., Z|I|j)

T .

Ej,Êj Interval length of the approximated uniform distribution of the pooled wind
output faced by junction site j with and without an ES system, respectively.

Spatial correlation of wind speed and power has been extensively reported and used in
wind forecast ([2]); therefore, it should be explicitly modeled. Each selected junction site
j faces pooled and correlated wind outputs from a subset of wind farms. Again, we apply
uniform distribution approximation to this pooled wind output, i.e., wt,j ∼ Unif(µj− εj

2
, µj+

εj
2

). Let Σj be the covariance matrix of wind outputs from the wind farms in I and aggregated
at junction site j. Each entry Σikj = εijρikjεkj, where ρikj is the correlation coefficient of the
curtailed wind outputs from i and k at site j. Matching the first and the second moments
of wt,j, we obtain:

µj =
∑
i∈I

Yijµij, (1.12a)

ε2j =
∑
i∈I

ε2ijYij +
∑

i,k∈I,i<k

2ρikjεijεkjYijYkj = Y T
j ΣjYj. (1.12b)

Similarly, ε2j and µj for site j having no ES system can be expressed by (1.12) with Y
being replaced with Z. Note that it suffices to only know historical statistics of wind at
individual farms as well as transmission per unit cost in order to compute the values of
{ηij, µij, εij, ρikj},∀i, k ∈ I, j ∈ J .

For the lines between ES-equipped junction sites and the load center, the economic trans-
mission capacity is given by (1.4). As discussed previously, by computing the dimensionless



CHAPTER 1. PLANNING WIND ENERGY STORAGE AND TRANSMISSION 12

number θj we can pre-determine which segment of the non-smooth cost in (1.5) to be in-
corporated into our planning model before knowing the assignment of the wind farms. The
candidate junction sites are thus categorized into the following two subsets based on θj:{

J1 = {j ∈ J |θj < 1
2
};

J2 = J \ J1.

With the above curtailment and pooling considerations as well as transmission capacity
choices, the ES-transmission planning model is formulated as follows.

minimize v3(X, V, Y, Z,E, Ê) =
∑
j∈J

[hjXj +
∑
i∈I

gij(Yij + Zij) + gj(Xj + Vj)]

+
∑
j∈J

∑
i∈I

[qijµi + qij(
1

2
− 1

2
ηij)εi](Yij + Zij)

+
∑
j∈J

[qj(
∑
i∈I

µijZij + qj(
1

2
− 1

2
ηj)Êj)]

+
∑
j∈J1

[qj
∑
i∈I

µiYij + qj(
1

2
− 1

2
θj)Ej] +

∑
j∈J2

[qj
∑
i∈I

µiYij +
p(1− αβ)

8δ
Ej] (1.13a)

subject to
√
Y T
j ΣjYj ≤ Ej ∀j ∈ J (1.13b)√
ZT
j ΣjZj ≤ Êj ∀j ∈ J (1.13c)∑

j∈J

(Yij + Zij) = 1 ∀i ∈ I (1.13d)

Xj + Vj ≤ 1 ∀j ∈ J (1.13e)

Yij ≤ Xj ∀i ∈ I,∀j ∈ J (1.13f)

Zij ≤ Vj ∀i ∈ I,∀j ∈ J (1.13g)

Yij = 0, Zij = 0 ∀(i, j) ∈ {(i, j)|ηij ≥ 1} (1.13h)

Xj = 0, Vj = 0 ∀j ∈ {j|ηj ≥ 1} (1.13i)

Ej, Êj ≥ 0 ∀j ∈ J (1.13j)

Xj, Vj, Yij, Zij ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (1.13k)

In the above formulation, the objective (1.13a) is to minimize the total expected annual
building and operating cost of the ES-transmission network for the given set of wind farms.
The three terms in the first bracket are the fixed construction cost of ES systems, the fixed
cost of transmission lines from the wind farms to the junction sites, and the fixed cost of
transmission lines from the junction sites to the load center, respectively. The terms in
the second and the third brackets are the variable costs of the ES-free transmission lines
from the wind farms to the junction sites and from ES-free junction sites to the load center,
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respectively, according to (1.10). The uniform distribution parameter εj for junction site j

with (without) an ES system is denoted by variable Ej (Êj). The terms in the fourth and the
fifth brackets are the variable costs of the economic lines from the two θ-categorized subsets
of ES-equipped junction sites, J1 and J2, to the load center, with different cost expressions
given by (1.5).

Constraints (1.13b) and (1.13c) define Ej and Êj, respectively, based on equation (1.12b).
Constraints (1.13d) ensure that each wind farm in set I is assigned to one and only one
junction site in set J . Constraints (1.13e) suggest that each candidate junction site can
only get one of the three outcomes: to be selected and equipped with an ES system, to
be selected without ES or not to be selected. Constraints (1.13f) and (1.13g) require that
a wind farm can only be assigned to a junction site that is selected. Constraints (1.13h)
and (1.13i) exclude the potential assignment and junction site selection that would result in
unprofitable transmission investment, as discussed in Section A.1.

The above planning model is formulated as an MISOCP. The right-hand side of con-
straints (1.13b) and (1.13c) can be converted to the standard two-norm form as ‖ Σ̃jYj ‖2≤
Ej and ‖ Σ̃jZj ‖2≤ Êj, respectively, ∀j ∈ J , where Σ̃T

j Σ̃j = Σj since Σj is positive definite.
Meanwhile, the objective function and all the other constraints are linear in the decision
variables. Recent years commercial software such as CPLEX have launched standard solvers
for MISOCP. We will show that this planning model can be efficiently solved in a case of
practical scale in Section 1.6. Please refer to [14] and [3] for comprehensive review of convex
conic programs and MISOCP.

The above modeling process introduces two sources of inaccuracy. First, we apply uniform
distribution approximations to wind outputs. As discussed in the numerical example in
Section A.1, this approximation at wind farms affects the sizing of the transmission lines
that are upstream of the junction sites. Then we apply similar approximations to the wind
outputs that are curtailed by the upstream ES-free lines and that are aggregated at the
junction sites. These approximations affect the sizing of the transmission lines that are
downstream of the junction sites. Second, planning model (1.13) tends to underestimate the
transmission cost and thus oversize the lines. This is because the capacities of transmission
lines upstream of the junction sites are evaluated based on (1.9), which overlooks transmission
lines downstream of the junction sites.

However, we find that the model inaccuracy is well-contained in practical settings, as
briefly summarized in Table 1.3 for the cases with and without ES being colocated. In
Section A.1, each of those components of inaccuracy as well as the overall inaccuracy is
quantified numerically and/or theoretically with detailed discussion. The theoretical studies
also identify two more structural properties, namely the curtailment-independence of down-
stream transmission capacity and the decomposition of the joint optimization of upstream
and downstream transmission capacities.

Planning model (1.13) can be extended in several ways to account for different investment
considerations, such as maximum covering of wind farms. We omit such discussion for
brevity, since those extensions are structurally similar.
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Table 1.3: Overall model inaccuracy.

ES-Free ES-Coupled
Mean 8.25% 6.42%

Maximum 17.6% 14.8%

Table 1.4: Summary of additional notation.

Systems Parameters
δb Length (in hours) of each time interval of independent bulk wind energy process.
wb,τ Random variable of the bulk energy a wind farm captures during interval.

[τ − 1, τ), where τ ∈ N is the index of the intervals of length δb.
µb, εb Mean and interval length of the approximated uniform distribution of wb,τ ,

respectively.
sτ Storage level of an ES system at the end of interval τ .
fs(·) Probability density function of sτ .
oτ Energy overflow loss during interval τ .
Decision Variable
S Maximum amount of potential energy that can be stored in an ES system.

1.5 Capacitated Storage

In this section, we relax the assumption of uncapacitated ES and explicitly characterize
the dependence of the energy overflow cost on ES and transmission capacities. Since the
fluctuation of storage level is complicated and cannot be quantified in closed form, we instead
derive a conservative estimate of the storage level distribution and then an upper bound for
the optimal ES capacity. Moreover, we show in Sections 1.6 and A.3 that this upper bound
results in near-optimal expected total cost. The additional notation is summarized in Table
1.4.

Upper Bound of Energy Overflow

We choose relatively long periods (e.g. 1 day) with indices denoted as τ = 1, 2, ... and interval
length as δb. In this way, the bulk wind output process, {wb,τ}, is much less auto-correlated
than the hourly process, due to diurnal cycles of wind speed ([94]). We further assume that
{wb,τ} is an independent and identical process. Such simplification causes underestimation
of inter-period energy overflow loss when the storage level is nearly full. On the other hand,
we implicitly assume that the wind output power within each interval τ is of constant value
wb,τ

δb
. Consequently, intra-period energy overflow is overestimated, in that, in the long run,

those real sample paths of wind output that are not constant but amount to the same bulk
energy wb,τ within an interval result in more friction loss and thus less occurrences of sτ
hitting S. These counteracting inaccuracies are further discussed later in the section and
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Section A.3.
We use sτ to denote the storage level at the end of each interval τ , while assuming that

the base storage capacity that accommodates periodic variation of storage level within each
interval has already been captured by the fixed cost h. Our goal is to derive an economic
storage capacity S in addition to the base capacity by obtaining the expected energy overflow
as a function of S. As the first step, the transition of sτ is modeled as follows ([54]):

sτ+1 =
S, if sτ + α(wb,τ+1 − Cδb) ≥ S;
sτ + α(wb,τ+1 − Cδb), if wb,τ+1 − Cδb > 0, sτ + α(wb,τ+1 − Cδb) < S;
sτ − 1

β
(Cδb −wb,τ+1), if wb,τ+1 ≤ Cδb < βsτ + wb,τ+1;

0, if Cδb ≥ βsτ + wb,τ+1.

(1.14)

The four segments of the above piecewise linear function represent the four states of the
storage level, respectively: fully charged, being charged, being discharged and out of charge.

Deriving a closed-form expression of the probability density function fs(·) for sτ is math-
ematically challenging, and hence we construct an approximation of fs(·). We first make
two assumptions: (1) The storage capacity S is large enough such that the probability of
storage level switching from zero state to full state (or the other way around) within one
interval is negligible. In fact, suppose that the ES capacity is small such that the above
assumption is violated. Then the additional cost due to ES capacity and energy overflow
becomes very small and dominated by the cost of transmission capacity. We will further
examine this assumption in the numerical studies in Section A.3. (2) We also assume that
fs(s) is decreasing in s in the open interval (0, S) when Cδb is greater than or equal to the
mean of wb,τ . This assumption is realistic, since at certain storage levels sτ , the probability
of charge is greater than or equal to the probability of discharge. Also notice that, due to
friction loss, any difference ∆S = |Cδb −wb,τ | results in smaller magnitude of increase in sτ
when Cδb > wb,τ than the magnitude of decrease in sτ when Cδb < wb,τ (see more detailed
justification of this assumption in the proof of Proposition 1 in Section A.2). Then we obtain
the following proposition:

Proposition 1. Assume Cδb ≥ E[wb,τ ], and suppose f̃s(s) is an approximation of fs(s) such
that f̃s(s) is constant in the open interval (0, S). Then

(i) P̃(sτ = S) ≥ P(sτ = S);
(ii) Ẽ[oτ ] ≥ E[oτ ],

where P̃(·) and Ẽ[·] denote probability and expectation with respect to f̃s, respectively.

Proposition 1 (ii) establishes a sufficient condition to obtain an upper bound for the
expected energy overflow E[oτ ]. All proofs are given in Section A.2. Intuitively, when
Cδb ≥ E[wb,τ ], the probability of an ES system being discharged is greater than or equal to
its probability of being charged. As a result, fs(s) is decreasing in the open interval (0, S)
and it can be shown that f̃s(s) is greater than or equal to fs(s) when s is close to S. We
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also know that the expected overflow is non-decreasing in storage level once it is given. It
thus can be shown that the approximated unconditioned overflow Ẽ[oτ ] is an upper bound
for the real value.

To further obtain a closed-form upper bound for E[oτ ], we again approximate wb,τ by
uniform distribution with mean µb and interval length εb, matching the first and the second
moments of the real distribution of wb,τ . The closed-form expression of f̃s(s) is given by the
following Proposition:

Proposition 2. Assume wb,τ ∼ unif(µb − εb
2
, µb + εb

2
). Let A =

(Cδb−µb+
εb
2

)2

2β(µb+
εb
2
−Cδb)

and B =

α(µb+
εb
2
−Cδb)2

2(Cδb−µb+
εb
2

)
. Then

(i) For s ∈ (0, S), f̃s(s) ≡ f cs = 1
A+S+B

;

(ii) P̃(sτ = 0) = A
A+S+B

;

(iii) P̃(sτ = S) = B
A+S+B

.

Proposition 2 provides an analytical probability model for the distribution of storage level
sτ . Though it tends to overestimate the probability that sτ is close or equal to S, the model
does capture the dependence of the storage level distribution on system parameters such
as conversion efficiency and capacities of transmission and ES. In particular, Proposition 2
results in a simple analytical upper bound for the expected energy overflow, as stated in the
following proposition:

Proposition 3. Assume wb,τ ∼ unif(µb − εb
2
, µb + εb

2
). Then the expected energy overflow of

each interval of length δb is bounded from above by 5α
24S

(µb + εb
2
− Cδb)2. The derivatives of

this upper bound are − 5α
24S2 (µb + εb

2
−Cδb)2 with respect to S and −5αδb

12S
(µb + εb

2
−Cδb)2 with

respect to C.

An insight from Proposition 3 is that the upper bound of the expected overflow is more
sensitive to C than to S. The marginal benefit in terms of overflow prevention shrinks
quadratically in S. Therefore, transmission lines should be the dominant means over ES to
reduce overflow. With the aid of Proposition 3, we next estimate ES capacity for a single
and for multiple wind farms.

A Single Wind Farm

Our goal is to find the economic trade-offs between transmission and ES capacities to mini-
mize the total variable cost for a single wind farm. In particular, the variable ES cost consists
of energy overflow loss and capacity cost. Following Proposition 3, an estimate of the annual
variable ES cost, denoted by v4, is as follows:

v4(C, S) = 5pα
24δδbS

(µb + εb
2
− Cδb)2 + rS. (1.15)
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Table 1.5: Economic ES-transmission capacities and total variable costs.

Condition C∗ S∗ v∗5
µb+

εb
2

δb
< µ+ ε(1

2 − θ) µ+ ε(1
2 − θ) 0 qµ+ εq(1

2 −
1
2θ)

µb+
εb
2

δb
∈ [µ+ ε(1

2 − θ),
µb+

εb
2

δb
0 q(µ+ εb

2δb
)

µ+ ε(1
2 − θ̂)) + p1−αβ

8εδ (ε− εb
δb

)2

µb+
εb
2

δb
≥ µ+ ε(1

2 − θ̂) > µ µ+ ε(1
2 − θ̂)

√
5pα

24rδδb
( εb2 − εδb(

1
2 − θ̂)) qµ+ εq̂(1

2 −
1
2 θ̂) +

√
5prα
6δδb

εb
2

µ+ ε(1
2 − θ̂) ≤ µ µ

√
5pα

6rδδb
( εb4 ) qµ+ εp(1−αβ)

8δ +
√

5prα
6δδb

εb
2

(i.e., θ̂ ≥ 1
2 )

Minimizing the two terms on the right-hand side of (1.15) yields the upper bounds for
economic storage capacity and the associated ES variable cost, both as functions of trans-
mission capacity:

S∗(C) =
√

5pα
24rδδb

(µb + εb
2
− Cδb), (1.16)

v∗4(C) =
√

5prα
6δδb

(µb + εb
2
− Cδb). (1.17)

Note that (1.16) and (1.17) are valid only if Cδb ∈ (µb, µb + εb
2

). When Cδb ≥ µb + εb
2

, the
transmission line is always able to deliver at least all the energy that are produced within
the current interval by the end of the interval; as a result, no overflow occurs and v∗4(C) = 0.
Based on (1.3), (1.17) and the above discussion, the total variable cost is given by:

v5(C) = v1(C) + v∗4(C)

=

 p1−αβ
2εδ

(µ+ ε
2
− C)2 + qC +

√
5prα
6δδb

(µb + εb
2
− Cδb), if C ∈ [µb

δb
,
µb+

εb
2

δb
);

p1−αβ
2εδ

(µ+ ε
2
− C)2 + qC, if C ∈ [

µb+
εb
2

δb
, µ+ ε

2
].

(1.18)

In (1.18), µb
δb

= µ and the economic value of C is within [µ, µ + ε
2
]. In addition, we

assume
µb+

εb
2

δb
< µ+ ε

2
, since wb,τ aggregates hourly wind output wt and is thus less variable.

Function v5(C) is convex in C since it is the point-wise maximum of two convex quadratic
functions of C. Therefore, the analytical expression of the economic transmission capacity
C∗ that minimizes (1.18), as well as the associated ES capacity S∗ (from (1.16)) and the total
variable cost v∗5, can be obtained as summarized in Table 1.5 (In the table, recall θ = δq

p(1−αβ)
,

and let q̂ = q −
√

5pαrδb
6δ

and θ̂ = δq̂
p(1−αβ)

). These quantities can be viewed as generalization

from (1.4) and (1.5), with ES capacity cost and overflow being considered.
In practice, the actual optimal cost may be greater than its theoretical upper bound v∗5

due to two sources of model inaccuracy - the uniform distribution approximation and the
neglect of auto-correlation of the bulk wind output process. As for the latter, the resulting
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Table 1.6: Average cost gaps between the upper and the lower bounds, between the upper
bound and the optimal value, and between the upper bound and the cost in the ES-free
scenario.

Distance (mile) UB - LB |UB - Opt.| ES-Free - UB
200 23.6% 6.6% 89.7%
120 20.2% 5.17% 81.5%
50 3.09% 6.78% 31.8%

underestimation of inter-period overflow loss may overly compensate the overestimation of
intra-period overflow loss and ES capacity. Hence, v∗5 is closer to the actual optimal cost
than theoretically expected. In addition, Section A.3 presents detailed numerical studies on
tightness and accuracy of the upper bound model. The studies verify that the cost gaps are
bounded and v∗5 is not violated in most cases. Also, as an estimate to the actual optimal
cost, v∗5 is more accurate than the cost lower bound developed in Section 1.4, as shown in
Table 1.6. The table also shows that ES can potentially significantly bring down the cost of
otherwise building an ES-free line.

Multiple Wind Farms

We next use the results in the preceding single-farm case to plan an ES-transmission network
for multiple wind farms. However, these results can not be directly incorporated into the
planning model. Unlike in the scenario of uncapacitated ES where we can pre-determine
which segment of the non-smooth cost expression (1.5) to use in formulating planning model
(1.13), the segmentation of v∗5 depends not only on wind-independent parameter θ, but also
on wind characteristics (µ, ε, µd, εd), which are not available for a candidate junction site
before the assignment of the wind farms to the junction site is known. We hence resort to a
heuristic outlined as follows:

1. For given sets of wind farms and candidate junction sites, solve planning model (1.13),
which assumes uncapacitated ES. The model outputs an assignment of the wind farms
to the junction sites as well as the associated transmission capacities.

2. For each junction site j that is selected to build ES on, compute the expected variable
cost v∗5,j using Table 1.5. If v∗5,j + hj < qjµj + qj(

1
2
− 1

2
ηj)εj, then building ES on site

j is still economical, and we choose capacities of ES and transmission line from site j
to the load center according to Table 1.5. Otherwise, we opt for an ES-free line with
capacity given by (1.9).

Then we summarize the models developed in this chapter in the following proposition:

Proposition 4. The optimal cost of the ES-transmission network is bounded from below by
the optimal objective value of planning model (1.13), and bounded from above by the total
cost given by the above outlined heuristic.
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Table 1.7: Costs and computational times of the ES-transmission networks.

Wind Farms Candidate Sites LB Cost ($) UB Cost ($) Cost Gap Time (sec)
6 12 1.9556× 108 2.1136× 108 8.08% 0.6080
12 18 3.9703× 108 4.2268× 108 6.46% 1.0264
18 28 6.2031× 108 6.7153× 108 8.26% 2.0009
24 28 8.6438× 109 9.4643× 109 9.49% 2.5876

The Value of ES

All the above analysis suggests an important insight to the planners: even small ES saves
big, but the marginal value of ES diminishes fast. Compared with the ES-free scenario,
the combination of an economic line and an ES system has dual effects. The positive effect
is that part of the investment in transmission capacity can be salvaged by the ES system,
which accommodates short-period fluctuations of the wind output; the negative effect is the
incurred energy loss due to friction and overflow. However, these dual effects respond to the
size of the ES system differently. A relatively small capacity of ES should be adequate to
achieve the positive effect. In contrast, additional ES capacity has much diminished value
because it does not help reduce friction loss and is mainly used to hedge overflow. Moreover,
Proposition 3 has suggested that the marginal benefit in terms of overflow prevention shrinks
quadratically in S. As a result, building even more ES capacity would be less cost-efficient
than increasing transmission capacity.

1.6 Computational Results and Insights

A Case Study

This section presents numerical studies to demonstrate the effectiveness of the proposed
planning procedure and insights concerning technology impact and layout robustness.

Our first set of experiments generate ES-transmission network designs for potential wind
farms near Billings, Montana. We solve planning model (1.13) to obtain network layouts as
well as lower-bound total costs. Then the heuristic in Section 1.5 is applied to output upper-
bound total costs as well as the associated transmission and ES capacities. The detailed
settings of the experiments are described in Section A.4. The experiments are repeated with
different numbers of potential wind farms to be covered. Table 1.7 shows the costs and
computational times of solving model (1.13). A network layout for the 24 wind farms is
depicted in Figure 1.3 (a). The correlation between wind outputs from those farms is shown
in Figure 1.3 (b).

Table 1.7 shows that the gap between the lower- and the upper-bounds of the total ex-
pected costs is smaller than that implied in Table 1.6. This is mainly because the additional
fixed ES and transmission costs dilute the share of the cost that ES capacity and expected
overflow account for. Also notice that, in most cases, the cost gap increases as we expand
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Figure 1.3: (a) Deployment of transmission lines and ES systems for 24 wind farms. (b)
Correlation coefficients between wind outputs of the 24 wind farms.

the network by adding distant wind farms. Again, this is mainly because the average trans-
mission capacity decreases in transmission distance; as a result, more ES capacity has to be
added, which is not captured in the lower-bound cost. Finally, the computational times in
all the instances are in magnitude of seconds. We thus conclude that, under the assumed
settings of the ES-transmission network, our model is computationally efficient to solve and
is able to output near-optimal ES-transmission deployment.

Technological Considerations

How do the forms of ES technologies and their advancements impact cost savings in power
infrastructure planning? Various ES technologies will continue to be competing in the fore-
seeable future ([83]). These technologies distinguish themselves from each other by storing
potential energy in different ways with different cost-efficiency parameters. For example,
pumped hydro storage systems have high upfront cost, low per-unit capital cost and rel-
atively high conversion efficiency (75% − 78%), lead-acid batteries have high capital cost
with high conversion efficiency, while compressed air energy storage systems feature very
low capital cost with low conversion efficiency ([72]). As characterized in our models, these
technological aspects impact the need for ES via different mechanisms. Furthermore, as
these technologies advance and diffuse, the ES capacity cost and conversion efficiency re-
main uncertain to a large extent.

Our second set of experiments evaluate how the cost-savings respond to different values of
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Table 1.8: The number of junction sites and the number of ES systems (in parentheses), as
a parameter varies from 10% to 500% of its baseline value or the conversion efficiency varies
from 0.40 to 0.99 (the “N/A” entries correspond to the cases where the infrastructure is not
economically feasible).

Perturbed Parameters 10% 50% 200% 500%
FIT Rate (p) N/A 5(5) 5(5) 5(4)
Fixed ES Capacity Cost (h) 5(5) 5(5) 5(5) 5(4)
Variable Transmission Capacity Cost (a) 5(0) 5(4) 5(5) N/A
Fixed Transmission Capacity Cost (g) 8(8) 5(5) 5(5) 5(5)
Mean Distance to the Load Center 5(0) 5(4) 5(5) N/A
Perturbed Parameter 0.40 0.60 0.80 0.99
ES Round-trip Conversion Efficiency (αβ) 5(4) 5(5) 5(5) 5(5)

these parameters. Our major finding is that the R&D priority should be given to addressing
the bottleneck cost factor in order to maximize cost-savings. For example, more investment
is desirable in improving conversion efficiency in the case of compressed air energy storage
systems, and in reducing the per-unit ES capacity cost for lead-acid batteries. More detailed
analysis is omitted here for brevity and is available in Section A.4.

Layout Robustness

As the last issue, is our planning model robust in the cost-minimizing sense? An ES-
transmission network has to be planned in the presence of uncertainties, such as FIT rates
adjustments, technology advancements, building material cost fluctuations, climate changes,
etc. After infrastructure is built, it is still possible to locally adjust ES and transmission
capacities. However, it will be too cost-prohibitive to change the network layout as those
uncertainties evolve over time. Therefore, a layout that is cost-efficient for a wide range of
system parameter values is desirable.

The optimal layout may change at two levels. The topology-level reconfiguration affects
the assignment of wind farms to junction sites. At the junction level is the switch between
installing and not installing an ES system at a junction site, and subsequently between
building an economic and an ES-free transmission line downstream of it.

We solve multiple instances of planning model (1.13) for cost-efficient layouts based on the
settings of the case study, perturbing parameters one at a time. Table 1.8 summarizes how the
number of junction sites and the number of deployed ES systems change accordingly. These
two numbers represent the layout changes at the topology- and junction- levels, respectively.
The baseline layout has five ES-coupled junction sites, as depicted in Figure 1.3 (a).

Table 1.8 shows that the baseline layout is remarkably robust. Set from 50% to 200%
of the baseline value, almost no single parameter alone can affect the layout, except that
one ES system is removed when either the variable transmission capital cost or the mean
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distance is halved. Further parameter deviations result in more significant layout changes,
but are very unlikely to occur.

The above results suggest that the cost-efficient layout of the ES-transmission network
is robust against gross misestimation of model parameters. Two reasons may explain this
robustness. First, the whole system intricately depends on multiple parameters. Impact of
misestimation of any one of them is substantially mitigated by the others. Even if more
than one cost factors deviate, their influences upon layout is more likely to counteract than
reinforce each other, with the fixed and variable transmission capacity costs being an exam-
ple. Second, most of the two-echelon facility location models in literature (for example, [84]
and [17]) assume that the upstream facilities to be deployed are disjoint. In contrast, in our
problem, all the selected junction sites are connected to a given load center. As a result,
the favored junction sites not only cluster nearby wind farms, but also tend to be close to
the given load center. This centrality of the junction sites substantially enhances the layout
robustness.

1.7 Conclusion

In this chapter, we study the problem of planning economic energy storage systems and
transmission lines for distributed wind resources. Under the FIT policy instrument, the ES
operating policy is to store surplus energy that exceeds the rated transmission capacity, and
release it later when the transmission line becomes available for additional loads. While
saving transmission capacity cost, operating ES systems incurs both energy friction loss and
overflow loss over time, in addition to its building cost. We develop models to characterize
these trade-offs and determine the sites and the sizes of ES systems as well as the associated
topology and capacity of the transmission network. In our first model, under the assumption
that ES systems have sufficient energy capacity, we derive optimal transmission line capac-
ities for a single wind farm with and without ES being colocated, respectively. Then we
incorporate these quantities to formulate a location model as an MISOCP to determine the
ES-transmission network. Our second model addresses the ES sizing problem. We derive an
upper bound of the expected energy overflow, from which an overestimated economic storage
size as well as the associated transmission capacity is obtained. These two models provides
the lower and the upper bounds of the total expected cost. The case study, as well as the
analysis of model inaccuracy in Appendix A, demonstrates that our deployment scheme is
near-optimal.

Our model and analysis lead to several findings. 1) First, while utilization of ES systems
saves significant amount of transmission cost, the marginal value of adding ES capacity
diminishes faster than the marginal value of adding transmission capacity. This is because
a relatively small amount of ES capacity is sufficient for smoothing short-term fluctuations
of wind outputs; but adding more ES capacity does not help reduce energy friction loss and
is inefficient in reducing energy overflow loss compared with adding transmission capacity.
Therefore, it is cost-efficient to install small-sized ES systems on electricity junction sites. 2)
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Advancements in ES technologies can further bring down the total cost of an ES-transmission
network by improving round-trip energy conversion efficiency and reducing upfront cost and
per-unit capacity cost of ES. Depending on the form of the ES technology, the priority
of R&D resources should be given to addressing the bottleneck cost factor. For example,
the bottleneck cost factor is the round-trip conversion efficiency for compressed air energy
storage systems, and is the per-unit capacity cost for lead-acid batteries. 3) The layout of the
ES-transmission network is robust against FIT rates adjustments, technology advancements,
building material cost fluctuations, climate changes, etc. This is partly because the system
relies on multiple parameters and partly because of the centrality of the favored junction
sites towards the given load center in our problem setting.

This work is the first attempt to provide tractable methods to determine both the layout
and capacity of an ES-transmission network to tap distributed wind resources. The work
adopts some core ideas from the field of supply chain design. We believe that more con-
tribution to planning renewable energy systems can be made by the supply chain research
community. Two possible extensions to this work can be beneficial. Firstly, despite the
prevalence of the FIT policy instrument in the initial phase, wind energy is expected to
enter the energy biding market when it accounts for a considerable share of the total energy
production in the future. Under such scenario, the process of wind energy prices are stochas-
tic, and more ES capacity is desired to store energy and shift its delivery to high-price hours.
The question then arises: how to make adaptive budgeting decisions on investment in trans-
mission lines and ES systems, given the evolving wind energy market (i.e., from FIT-based
to bid-based)? Secondly, although the radial topology with a single load center is a realistic
setting for the initial stage of wind energy development and captures most of the trade-offs
in the scenario of covering multiple wind farms, it will be more interesting (and much more
challenging) to develop models that address the complexity where the grid is meshed and
multiple load centers are present.
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Chapter 2

Hierarchical Coordination of
Charging Plug-in Electric Vehicles

2.1 Introduction

Plug-in electric vehicles (PEVs) are currently receiving worldwide attention. With widely
released incentive policies and technological maturity, the adoption of PEVs will potentially
reach a remarkable scale in the foreseeable future [87]. However, PEVs’ charging load can be
a substantial burden to the operations of existing power grid when they highly penetrate and
when their charging is not properly managed. In the distribution system, voltage-drops [23],
excessive increase in power losses [37] and overloading of distribution transformers [28][89]
are likely to occur. As a result, coordinated PEV charging, as an effective and cost efficient
way to mitigate the charging stress on power systems, has attracted wide interest.

In the literature, coordinated PEV charging strategies can be categorized into two groups,
namely the centralized and the decentralized approaches. In the centralized approach, a
group of PEVs are controlled by an aggregator who dictates the optimal charging decisions
for each vehicle at each time slot. For example, [23] proposes two mathematical models based
on quadratic and dynamic programming to coordinate the charging of multiple electric ve-
hicles in distribution network to minimize the power losses. [88] explores the relationships
between feeder losses, load factor and load variance and proposes three optimal charging
control algorithms to minimize the impacts of PEVs charging on the distribution system.
[91] proposes a centralized coordinated PEVs charging control framework that considers the
interactions between the charging service provider, the retailer and the distribution system
operator. [49] formulates a centralized charging coordination problem for a relatively small
vehicle population (20-50 PEVs), and proposes a dual-ascent solution method. In [40] and
[39], the authors consider a centralized supervisory scheduler to coordinate PEV charging
in distributed charging stations. They use control price signals derived via utility and game
theory approaches to regulate the charging demands. However, it can be difficult in real-
ity to calibrate customers charging utility or to obtain truthful control price signals. The
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computational burden may also become non-trivial if the scheduler faces a huge volume of
demands. For decentralized strategies, in [80], a dynamic program is formulated to determine
the optimal charging schedule for individual PEVs facing day-ahead prices. [98] develops
a decentralized charging coordination framework using ADMM algorithm. [41] proposes a
decentralized control algorithm to achieve the valley-filling charging profile. In each com-
putation iteration, each PEV locally optimizes its own charging profile based on the price
signals broadcasted by the utility. The global optimality is also obtained when the algo-
rithm converges. Additionally, [63] and [69] both propose game-based, decentralized control
strategy for coordination of electric vehicles charging.

We differ from these papers in that our focus is on development of centralized and dis-
tributed PEV charging coordination strategies specifically for large-scale, multiple parking
decks in multi-family dwellings. While most of the papers that propose a decentralized
charging scheme decompose the centralized problem with respect to each PEV, our work
emphasizes coordination of distributed charging decks from the service aggregators’ perspec-
tive. Occupants of large cities living in multi-family dwellings are likely to become the early
adopters of PEVs. Compared with people residing in other types of areas, they are generally
more aware of environmental issues that fossil fuel consumption brings about and thus more
motivated to embrace this green technology. In addition, being indispensable supporting
facilities for multi-family dwellings, parking decks naturally aggregate the electric vehicles
and serve as an ideal space to enable coordinated charging. Moreover, in cities where time-
based electricity rates are applied, charging service providers have incentive to reap profit
from shifting charging loads to off-peak periods by means of charging coordination. Related
literature in this subject is relatively scarce. For instance, [90] applies an intelligent EDA
algorithm to manage charging of large number of PEVs parked at a municipal parking sta-
tion. Through early work in [101], it is found that in absence of coordination across multiple
distributed parking decks under a single distribution feeder, coordinated operation within
only individual parking decks, in response to electricity price variability and mere local con-
straints, may still not be adequate. In some cases, the occurrence of unexpected overlapped
charging hours in multiple parking decks could even cause more severe damage to the power
grid than uncoordinated charging.

Based on the early work [101], this chapter presents a hierarchical optimal control frame-
work to achieve charging coordination between multiple PEV parking decks. We first formu-
late a centralized finite-horizon control problem to maximize the utility of charging service
provider. Then we develop distributed control strategy based on Lagrangian relaxation (LR)
techniques by decoupling the proposed centralized model with respect to each parking deck.
The major advantage of this approach is that only a set of sub-problems of much smaller
scales need to be solved in parallel by the local parking deck operators. And a major
contribution of this work is our design of an effective heuristic algorithm to search for fea-
sible solutions that generate tight lower bounds of the optimal objective value. Simulation
results show that valley-filling can be efficiently achieved 1) under the distributed charging
coordination framework that we propose and 2) with a simple flat charging price, a pricing
scheme that we believe is more applicable to local residential communities than the variable
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Figure 2.1: Schematic illustration of a distributed charging system in an urban area.

price scheme.
The remainder of this chapter is organized as follows. System description is presented

in Section 2.2. The problem formulation and solution algorithm are described in Section
2.3. We carry out simulations for distributed charging systems in Section 2.4, and finally,
conclude this chapter in Section 2.5.

2.2 Description of Distributed Charging Systems

A typical topology of a distributed charging system in an urban area is illustrated in Fig.2.1.
Power voltage from the transmission side is stepped down first by the primary distribution
transformer and then by the local transformers before the power is used in each of the M
local residential communities. Each community i (i = 1, 2, ...,M) consists of one or multiple
dwellings (typically multi-storied residence halls) and a PEV charging deck with |Ni| charging
ports (Ni denotes the set of charging ports of parking deck i). The charging load and the
base load (i.e., loads excluding the charging load in a community) are directly connected
to the local transformers. Both the primary transformer and the local transformers are
capacitated.

The M distributed charging decks can be owned by either a single or multiple charging
service providers. Each charging deck purchases electricity from the utility at time-of-use
(TOU) rates (which vary in different hours during a day) and then sells it to the customers
at retail price.



CHAPTER 2. COORDINATION OF CHARGING ELECTRIC VEHICLES 27

We assume that the PEV arrival and departure processes and the initial SOC of each PEV
are all stochastic but with known probability distributions. In fact, this type of information
can be adaptively learned from the historical charging behaviors of customers. Once a
PEV connects to the nith charging port (ni = 1, 2, ..., |Ni|) at charging deck i, its battery
capacity Bni and initial/pre-charge state of charge (SOC), SOCA

ni
, are obtained through

the battery management system (BMS) on board. In addition, the customer is required
to inform the charging system of the expected parking duration, Tni , and the desired SOC
after charge, SOCD

ni
. We assume that the TOU electricity rates are exogenously given.

When PEVs become prevalent, it’s likely that their large-scale aggregate charging demand
will influence the TOU prices in a way that the prices during the peak charging hours (e.g.
from midnight to 6:00 am) will increase. However, despite the highly stochastic charging
behavior of each individual PEV, the patterns of aggregate charging demand and thus the
TOU rates in a certain region should be relatively stable and publicly known over a long
period. The problem setting in our work is also applicable to the scenario where exogenous
day-head market electricity prices are charged by service providers. Lastly, based on the
historical load data, the day-ahead forecast of both the aggregate and the local base loads
are available to the charging system. Based on above information, the coordinated charging
system schedules PEV charging at each port by repeatedly solving an optimal charging
control problem, which we elaborate on in the next section.

2.3 Coordinated Charging Strategies

Control System Overview

In this section, we design coordinated PEV charging control system for multiple charging
decks under a primary distribution transformer. We propose to design the charging control
system to be model-based and forward-looking in making control decisions, and that is able
to explicitly take into account the optimality considerations and handle state and input
constraints [76]. Specifically, the optimal control problem is solved at discrete time instants
tk = t0 +k∆t, k = 0, 1, ..., with t0 being the initial time and ∆t being the interval length. The
charging power P ∗ni at each port ni is kept constant within each interval and is regarded as a
semi-continuous decision variable which can either be zero or take value between a threshold
value and the maximum charging power Pmax due to the limits of the regulation capability of
power electronics in charging port. Only the first segment of each power trajectory (i.e., the
charging power for interval (tk, tk+1]) is sent to the corresponding port for implementation.
At the end of interval (tk, tk+1], the charging control system receives updated information of
each port (e.g., being vacant/occupied and the SOC of the accommodated PEV) as well as
the forecasts of upcoming charge demand process and base load over the planning horizon.
Then it repeats the above procedure to make and implement the charging decisions for the
next interval (tk+1, tk+2] and so on. The structure of the control system is depicted in Fig.2.2.

Note that the forecast of the upcoming demand process consists of sample paths of the
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Figure 2.2: Structure of the coordinated charging control system.

upcoming PEV arrival/departure processes and of the initial/desired SOC associated with
each upcoming PEV. The charging control system generates these sample paths based on the
probability distributions of these stochastic processes and random variables. The realized
demand process for each charging port does not necessarily resemble the forecast precisely;
however, the pooled charging power can thus be reasonably estimated when each charging
deck accommodates sufficient number of PEVs.

With the aid of the forecast sample paths, the controller is able to estimate the aggregated
charging load across the ports over the planning horizon and schedule charging for each port
accordingly.

Centralized Coordinated Charging

We first formulate the centralized coordinated control problem. In the centralized scenario,
a single control system, or the aggregator make charging schedules for each port of the M
distributed charging decks by solving a centralized optimization problem at each interval.
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For coordination purposes, we simply regard the charging power during each 15-min con-
trol interval as constant. The electro-thermal dynamic response of distribution transformer
during the charging power regulation process is not discussed. Comparing to the length of
a control interval, which is normally selected as 15 minutes, the duration of transient pro-
cesses of distribution transformer is insignificant. Mathematically, we propose the following
objective function to be maximized at tk.

J(tk) =∑
i∈I

∑
ni∈Ni

H−1∑
j=0

γjCni(tk+j) · Pmax∆t · [p(tk+j)− c(tk+j)]

−
∑
i∈I

∑
ni∈N̄i

⋃
N̂i

G(αni |SOCA
ni
, SOCD

ni
, Bni)

+
∑
i∈I

∑
ni∈Ni

H−1∑
j=0

κ · (H − j) · Cni(tk+j),

(2.1)

where:
I is the set of distributed electric vehicle parking decks.
Ni is the set of the charging ports in parking deck i ∈ I.
N̄i is the set of the charging ports which become occupied by EV arrivals during the current
time interval in charging deck i ∈ I.
N̂i is the set of charging ports which are predicted to be occupied by forecast EV arrivals
within the planning horizon in charging deck i ∈ I.
H is the planning horizon and is also the maximum number of intervals within which a PEV
should be charged to the desired SOC.
γ is a time discount factor, 0 < γ ≤ 1.
Pmax is the maximum charging power of each charging port.
Cni(tk+j), the decision variable, is the fraction of Pmax that the control system charges the
PEV at port ni at (k + j)th interval. The charging power P ∗ni = CniPmax.
p(tk+j) and c(tk+j) are the retail and the purchase (TOU) electricity prices at (k + j)th
interval, repectively.
αni is the fraction of battery capacity that will not be fulfilled for the PEV which has just
arrived during the current interval or is predicted to arrive within the planning horizon
at port ni. This variable is used to modify the service level in case of excessive charging
demand (e.g. high energy demand in extremely short duration) to ensure the feasibility
of the optimization problem. The resulting choice of αni can also help the system operator
determine the maximum possible departure SOC that can be satisfied.
G(·) is the dollar valued penalty of not fully satisfying customer demand. Given information
of SOCA

ni
, SOCD

ni
and Bni for PEV at port ni, G(·) is an increasing function of αni .

κ is a positive weight factor associated with the earliness consideration which is explained
in the next paragraph.
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The first term of the objective function is to maximize the projected total profit over the
planning horizon. The second term penalizes unfulfilled charging demands and is regarded
as the dollar valued loss of customer goodwill. The last term implies our preference to
early charging, as the weighting factors associated with the charging powers decrease in
time. The charging system thus tends to charge PEVs early so as to prepare for unexpected
early departure of PEVs or unexpected mass arrivals. Following this objective function, we
formulate the following centralized coordinated charging optimization problem to be solved
at tk.

max
Cni ,uni ,αni

J(tk)

s.t.
∑
i∈I

∑
ni∈Ni

Cni(t)Pmax ≤ AT ξT (t)λ,

∀t ∈ {tk, tk+1, ..., tk+H−1}, (2.2a)∑
ni∈Ni

Cni(t)Pmax ≤ Aiξi(t)λ,

∀t ∈ {tk, tk+1, ..., tk+H−1},∀i ∈ I, (2.2b)

tk+Tni∑
t=tk

ρCni(t) · Pmax∆t + SOCA
ni
Bni ≥ (SOCD

ni
− αni)Bni ,

∀ni ∈ Ni, ∀i ∈ I, (2.2c)

tk+Tni∑
t=tk

ρCni(t) · Pmax∆t + SOCA
ni
Bni ≤ Bni

∀ni ∈ Ni, ∀i ∈ I, (2.2d)

Cni(t) ≤ Sni(t),

∀t ∈ {tk, tk+1, ..., tk + Tni},∀ni ∈ Ni,∀i ∈ I, (2.2e)

θthuni(t) ≤ Cni(t) ≤ uni(t),

∀t ∈ {tk, tk+1, ..., tk+H−1},∀ni ∈ Ni,∀i ∈ I, (2.2f)

0 ≤ αni ≤ SOCD
ni
− SOCA

ni
∀ni ∈ N̄i

⋃
N̂i,∀i ∈ I, (2.2g)

αni = 0, ∀ni ∈ Ni\(N̄i

⋃
N̂i),∀i ∈ I, (2.2h)

uni(t) ∈ {0, 1}, ∀t ∈ {tk, tk+1, ..., tk+H−1},
∀ni ∈ Ni,∀i ∈ I, (2.2i)

where:
AT is capacity of the primary distribution transformer which serves the area covering all the
charging decks in set I.
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Ai is capacity of the local distribution transformer which serves the local community with
charging deck i.
ξT (t) is the proportion of the available capacity of the primary distribution transformer that
can be used for PEV charging at time t (The remaining capacity are used to satisfy base
load).
ξi(t) is the proportion of the available capacity of the local distribution transformer that can
be used for EV charging at deck i at time t.
λ is the average power factor of charging load.
ρ is the charging efficiency.
Tni is the expected parking duration of the PEV at port ni. We assume that the charging
should be finished within the planning horizon, that is, Tni ≤ H∆t,∀ni ∈ Ni,∀i ∈ I.
Sni(t) is the state of charging port ni at time t. 1 if it is occupied by a PEV, 0 otherwise.
At the beginning of each interval, PEVs that have just arrived during the last interval are
directed to the unoccupied charging ports.
uni(t) is a binary decision variable, 1 if charging at port ni is activated at time t, 0 otherwise.
θth is the minimum ratio of the actual charging power to the rated charging power Pmax
because of the limits in power electronics.

In the above optimization problem, constraints (2.2a) impose the limit on capacity avail-
ability of the primary distribution transformer. At any interval within the planning horizon,
the sum of the total base load and the total charging load of all the charging decks in set I
should not exceed the rated capacity of the primary distribution transformer. Constraints
(2.2b) are the local versions of constraints (2.2a), requiring that the sum of the local base
load and the load of the corresponding charging deck should not exceed the rated capacity
of the local distribution transformer. In practice, considering the load diversity, the rated
capacity of the primary transformer is normally lower than the sum of all the rated capac-
ities of local transformers. Constraints (2.2c) and (2.2d) make sure that each PEV will be
charged to the promised state before the specified departure time. Constraints (2.2e) ensure
that port ni is on the charging mode at time t only if it is occupied by an PEV. Constraints
(2.2f) ensure that each port ni is either on the standby mode or the charging mode where the
charging power cannot be lower than θth of the maximum charging power Pmax. Constraints
(2.2g) specify the range of unfulfillment for each EV that has just arrived during the current
interval or is predicted to arrive within the planing horizon. Constraints (2.2h) enforce that
the promised charging service level for the PEVs which arrive before the current time interval
cannot be compromised. Constraints (2.2i) ensure that the decision on the mode of each
port at each time is binary.

Optimization problem (2.2) is a mixed integer linear program when G(·) in the second
term of the objective function (2.1) is linear in αni as follows:

G(αni |SOCA
ni
, SOCD

ni
, Bni) = µαni ,∀ni ∈ Ni, ∀i ∈ I, (2.3)

where µ is a positive weight factor. The problem is in general NP-hard and the computational
burden increases exponentially in the length of the planning horizon and in the number of
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PEVs connected to the charging system.

Distributed Coordinated Charging

An alternative to the centralized coordinated charging strategy is to develop a distributed
charging coordination system in which local controllers schedule for their respective local
charging decks in parallel and iterate to achieve the common objective. The solution
approach that we design is a distributed sub-gradient method (See [71] for more theoretical
discussion). Specifically, following the Lagrangian Relaxation method [86], we relax the
primary capacity constraints (2.2a) and add them as penalty terms to the objective function
(2.1). The objective and the optimization problem thus become:

JLR(tk|~η) = J(tk)

+
H−1∑
j=0

ηtk+j(
AT ξT (tk+j)λ

Pmax
−
∑
i∈I

∑
ni∈Ni

Cni(tk+j)),
(2.4)

and

max
Cni ,uni ,αni

JLR(tk|~η)

s.t. (2.2b)− (2.2i),
(2.5)

where ~η = (ηtk , ηtk+1
, ..., ηtk+H−1

) is the vector of nonnegative Lagrangian multipliers. Then
given ~η, we decompose optimization problem (2.2) into M subproblems with respect to each
charging deck. For charging deck i, the local coordinated charging optimization problem at
tk becomes:

max
Cni ,uni ,αni

Ji(tk|~η)

s.t. (2.2b)− (2.2i), for the fixed i,
(2.6)

where we define

Ji(tk|~η)
.
=∑

ni∈Ni

H−1∑
j=0

Cni(tk+j){γjPmax∆t[p(tk+j)− c(tk+j)]

+ κ · (H − j)− ηtk+j}

−
∑

ni∈N̄i
⋃
N̂i

G(αni |SOCA
ni
, SOCD

ni
, Bni).

(2.7)

It can be easily shown that

JLR(tk|~η) =
∑
i∈I

Ji(tk|~η) +
H−1∑
j=0

ηtk+j
AT ξT (tk+j)λ

Pmax
.
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To find a close-to-optimal solution, we iteratively solve the relaxed optimization prob-
lems (2.6) with the Lagrangian multipliers updated by the following subgradient method. At
iteration r, the optimal solution to the relaxed optimization problems (2.6) gives an upper
bound J∗LR(tk|~ηr) for the optimal objective value J∗(tk) of the centralized optimization prob-
lem (2.2). If the optimal solution to (2.6) is infeasible to (2.2) (i.e., if it violates at least one
of the primary transformer capacity constraints (2.2a)), we propose a heuristic algorithm to
find a feasible solution to (2.2), thus giving a lower bound LBr for J∗(tk). In order to update
the Lagrangian multipliers to reduce the gap between J∗LR(tk|~ηr) and LBr, we first compute
the step size as follows:

∆r =
βr(J∗LR(tk|~ηr)− LB)∑tk+max{Tni}

t=tk
(AT ξT (t)λ

Pmax
−
∑

i∈I
∑

ni∈Ni Cni(t))
2
, (2.8)

where βr > 0 is a step size coefficient. Formula (2.8) satisfies ∆r → 0 as r → ∞ and∑∞
r=0 ∆r = ∞, which guarantees asymptotic convergence of J∗LR(tk|−→η r) to the optimal

objective value J∗(tk) [47].
Then the multipliers for the next iteration r + 1 are set as:

ηr+1
t = max{0, ηrt −∆r(

AT ξT (t)λ

Pmax
−
∑
i∈I

∑
ni∈Ni

Cni(t))},

∀t ∈ {tk, tk+1, ..., tk+H−1}.
(2.9)

We propose the following heuristic algorithm to find a feasible solution and consequently
a lower bound LBr for J∗(tk) at iteration r.

1. For each instant t, t ∈ {tk, tk+1, ..., tk+H−1}, compute PLR
i (t), the power consumption

at charging deck i suggested by the optimal solutions to the decomposed optimization
problems (2.6). Compute the total power consumption PLR

T (t) =
∑

i∈I P
LR
i (t).

2. Tighten the local capacity constraints (2.2b) by shrinking ξi(t), the proportion of the
local transformer capacity that is available for its affiliated PEV charging deck, in the
following scheme:

ξsi (t) = min{ξs,0i (t), ξi(t)}, (2.10)

where

ξs,0i (t) =

{
PLRi (t)

PLRT (t)

AT ξT (t)
Ai

, if PLR
T (t) > 0;

AT ξT (t)∑
i∈I Ai

, if PLR
T (t) = 0.

(2.11)

3. Solve the decomposed optimization problems (2.6) with ξsi (t) in replace of ξi(t) in the
local transformer capacity constraints (2.2b), ∀t ∈ {tk, tk+1, ..., tk+H−1}.
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The solutions obtained from the above heuristic algorithm are guaranteed to satisfy
the primary transformer capacity constraints (2.2a) and are subsequently feasible to the
centralized optimization problem (2.2). In fact, it can be easily verified that Eq. (2.11)
ensures

∑
i∈I ξ

s,0
i (t)Aiλ = AT ξT (t)λ irrespective with PLR

T (t) being greater than or equal to

zero; since ξsi (t) ≤ ξs,0i ,∀i ∈ I by Eq. (2.10), we guarantee that the local transformer capacity
constraints (2.2b) dominate the primary transformer capacity constraints (2.2a) by replacing
ξi(t) with ξsi (t). Furthermore, Eq. (2.11) implies that the constraint tightening scheme tends
to shrink ξi(t) less significantly when PLR

i (t) accounts for a larger proportion of PLR
T (t) than

when it accounts for less. This differentiation in constraint tightening results in a feasible
solution which does not deviate significantly from the solution to the decomposed problem
(2.6); we thus expect that the gap between the lower bound LBr and the upper bound
J∗LR(tk|~ηr) can be small from the initial iteration, which helps us find the optimal solution
within few iterations.

We summarize the implementation steps of the distributed coordinated charging strategy
as follows:

1. At each time instant tk, each charging deck i updates the realized and the forecast
information of charging demands as well as the amount of available power for PEV
charging from the local transformer. Then each local charging coordination system
solves the distributed optimization problem (2.6), with initial Lagrangian multipliers
~η0 = ~0.

2. Based on the optimal solution obtained in step 1), each charging deck i reports to
the upper-level aggregator its projected power consumption PLR

i at each time interval
over the planning horizon. The aggregator checks if the global transformer capacity
constraints (2.2a) are satisfied:

a) If YES, the distributed solution is centrally feasible and optimal. Skip to step 4).

b) Otherwise, the distributed solution is centrally infeasible. The aggregator dictates
updated Lagrangian multipliers ~η1 to the charging decks following the preceding
subgradient method. Then it broadcasts the updated {ξsi } to charging deck i
following the heuristic algorithm in search of a feasible solution.

3. Repeat step 2 until one of following termination conditions is satisfied at iteration r:

a) The gap between LBr and J∗LR(tk|~ηr) is smaller than a specified tolerance value.

b) The iteration number exceeds a specified maximum iteration number rmax.

c) The evaluation time exceeds a specified maximum time Tmax.

4. Implement the charging schedule for interval (tk, tk+1] based on the best possible fea-
sible solution obtained from step 1) or step 3).

5. When the time proceeds to the next instant tk+1, the above process from step 1) is
repeated to determine the charging schedule for interval (tk+1, tk+2].
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2.4 Case Studies

Parameter Settings

Assume M = 5 residential communities get electrical power supply through a common pri-
mary distribution transformer in the city of Beijing, China. According to the empirical
study on PEV charging behavior [62] and the 2011 Beijing transportation report [15], the
initial SOC of private PEVs arriving at a residential charging deck follows the normal dis-
tribution N(0.6, 0.12), the arrival time follows the normal distribution N(7 : 00pm, (1.5hr)2)
and the departure time can be described by the normal distribution N(7 : 45am, (1.0hr)2).
(N(a, b2) denotes a normal distribution with mean a and standard deviation b.) Battery
of BMW ActiveE is selected in this study [12]. The rated charging power Pmax = 7kW
and the PEV battery capacity is 32kWh. In ideal conditions, the rated operation range
of ActiveE is 160km. Considering the relatively long driving range of ActiveE, customers
are not likely to charge their PEVs every day. In our study, it is suggested that a dweller
charges his/her PEV for a certain day with probability 0.7. Following the central limit the-
orem, when the number of PEVs of a local community is substantial, the daily number of
arrivals with charging needs can be approximately normally distributed, which we assume
to be N(60, 62), N(80, 82), N(100, 102), N(120, 122) and N(120, 122) for each charging deck,
respectively. In addition, we assume that the desired SOC is fixed at 1 for simplicity. Using
these parameter values, we generate the forecast and the realized demand profiles indepen-
dently in the simulations. As to the charging system parameters, the rated capacities of
the five local transformers are 400kVA, 500kVA, 750kVA, 750kVA and 750kVA, respectively,
and the rated capacity of the primary distribution transformer is 2520kVA, which is 80% of
the sum of the local transformer capacities. The average charging power factor is assumed
to be λ = 1, the charging efficiency ρ = 0.92 and the minimum ratio of the actual charging
power to the rated charging power θth = 0.3. The step-size coefficient βr in Eqn. (2.8)
is tuned to be 250 for fast convergence. As to the termination conditions described in the
preceding section, we set the maximum tolerated gap between LBr and J∗LR(tk|~ηr) to be 5%
of J∗LR(tk|~ηr), the maximum number of iteration rmax = 20, and the maximum evaluation
time Tmax = 5min. The values of these termination parameters are chosen specifically for
the case that we discuss in this work, respecting various aspects of the problem, such as its
scale, topology, data accuracy and realistic service requirements.

Fig. 2.3 shows the time-varying ratios of the base load to the rated transformer capacity
for the whole distributed communities and for each local community. Also shown in Fig. 2.3
is the industrial TOU electricity rates in Beijing [11], being $0.0584/kWh, $0.1099/kWh
and $0.139/kWh for off-peak, shoulder and on-peak periods, respectively. The electricity
retail prices for PEV charging is assumed uniform, as $0.1608/kWh. It can be seen that
the fluctuations of the base load and of the TOU rates positively correlate to each other;
therefore, the charging system tends to charge PEVs during the off-peak (i.e. 0:00am -
6:00am) periods, when it is more profitable and there is also more available power for charging
than in other periods.
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Figure 2.3: Ratios of the base load to the rated transformer capacity (solid line) and TOU
electricity rates (dashed line), (a) with respect to the primary distribution transformer, and
(b)-(f) with respect to local transformers 1-5, respectively.

We assume that the sampling and decision interval ∆t = 15min. At each instant tk,
the forecasts of PEV arrivals during the next four intervals (i.e. 1 hour) are taken into
account and the maximum charging planning horizon for each PEV is 15hours. Therefore,
the planning horizon H = 1 + 4 + 4 × 15 = 65. In the optimization problems, we use
Eqn. (2.3) as the linear penalty term for unfulfilled demands. Other parameter values are
taken as follows: γ = 1, µ = 0.1608 and κ = 1.608 × 10−6. All the parameter values are
chosen or tuned based on reality and optimization considerations. The simulations run on a
PC with Intel Core i5 CPU (2.27 Ghz) and 4 GB RAM.
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Less Coordinated Charging Strategies

In order to demonstrate the effectiveness of the centralized and the distributed coordinated
charging strategies, we also consider two less coordinated strategies for comparison purposes.

1) The no-control strategy imposes no control on PEV charging. That is, any PEV will
start being charged at the rated charging power immediately after it enters a parking deck
and gets plugged in. The full-speed charging lasts until the PEV departs or its battery
becomes fully charged.

2) Another strategy, which we name “myopic” strategy, enables coordination only within
each charging deck. In other words, each local charging control system solves the optimiza-
tion problem (2.6) for only one iteration and then schedules PEV charging independently at
each interval.

Simulation Results

We carry out simulations of 24-hour operations of the five distributed charging decks starting
from 12:00pm, following different charging strategies. The simulated charging systems start
from a stationary state after multiple days of operations. Figs. 2.4 and 2.5 show the time
evolution of the charging powers of the local charging decks and of the whole distributed
charging system, respectively. In the figures, we refer to the distributed, the centralized, the
myopic and the no-control charging strategies as DCTR, CTR, MYO and NoC, respectively,
and refer to the available charging power (i.e transformer capacity less the base load) as
AVL.

Fig. 2.4 shows that, following the distributed, the centralized and the myopic strategies,
local charging decks choose to charge PEVs during the off-peak period 12:00am-6:00am when
TOU electricity rates are the lowest in a day; in addition, while all stratifying the local power
availability constraints (2.2b), the decks start charging PEVs immediately at 12:00am owing
to the earliness incentive that we incorporate into the objective function (2.1). Comparing
these three coordinated charging strategies during the busy charging period, we observe
that the distributed and the centralized charging strategies consume strictly less power than
available power most of time, while the myopic strategy hits the local charging power limit
almost all the time. To explain this difference, note that the capacity constraints on the
primary transformer (2.2a) are tighter than the local power availability constraints (2.2b), so
the latter are non-binding during the busy period when the centralized and the distributed
strategies are adopted. In contrast, the functionality of charging coordination across the
distributed charging decks is not available to the myopic strategy; consequently, the myopic
charging schedule violates the primary capacity constraints (2.2a) during the peak hours,
which is clearly shown in Fig. 2.5. Fig. 2.4 also shows that much smoother local charging
power over time results from the distributed coordination, compared with the fluctuating
charging power following the centralized coordination, as the latter strategy is indifferent
to the affiliation of the charging ports to the charging decks while shifting the loads. The
value of charging coordination is also demonstrated by the inferior performance that the
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Table 2.1: Overall system performance following different charging strategies.

Profit Transformer Capacity Valley
($/day) Constraint Violated Filling

DCTR 706.1 None Yes
CTR 706.1 None Yes
MYO 706.1 Primary No
NoC 208.7 Primary & Local No

no-control strategy presents in Figs. 2.4 and 2.5. Its power consumption in both the local
and the primary levels follows the PEV arrival process and violates the capacity constraints.

We summarize the overall system performance following different charging strategies in
Table 2.1. It shows that the total profits reaped in a day following the distributed and the
centralized strategies are the same as the profit by the myopic charging strategy; this is
because the TOU rates are fixed within the off-peak period and thus shifting loads within
this period does not decrease the revenue. It is also shown that these profits are 3.4 times
as large as the profit earned by the no-control strategy. This remarkable gap in profit
demonstrates the value of load shifting from peak periods to off-peak periods. Moreover,
while all the four strategies are able to satisfy charging demands to almost 100% level, only
the distributed and the centralized charging strategies are feasible both within and across the
distributed charging decks, in the perspective of transformer overload protection. Finally,
only under distributed and centralized charging strategies, the valley filling target is achieved
by responding to TOU incentives. Due to its uncoordinated nature, myopic charging strategy
causes “rebound effect” (i.e. it creates an excessive overlapping charging peak), and does
not effectively achieve valley filling.

We next investigate the computational efficiency of the four charging strategies. The
coordinated PEV charging problem needs to be solved in real time and is thus demanding
efficient online computing algorithms. The evaluation times of making charging decisions at
each interval are summarized in Table 2.2. It can be seen that, due to dimension reduction
in the optimization problems, the distributed and the myopic charging strategies consume
less than one third of the mean/maximum/minumum evaluation times that are required by
the centralized strategy. The distributed strategy consumes roughly the same amount of
the minimum evaluation time as the myopic strategy, but consumes more than twice the
amount of the maximum evaluation time. This is because the distributed strategy is able to
find the optimal solution within one iteration during the periods when transformer capacity
constraints are not binding, thus being computationally identical with the myopic strategy;
on the other hand, at some intervals during the busy charging period, the distributed strategy
needs additional computation to find a globally feasible (and optimal) solution. In most
cases, the convergence is reached within two iterations. This is because the feasible charging
power schedules slightly shift charging load among adjacent intervals. Consequently, the
expected charging cost does not change under the block-wise TOU tariffs.

To further demonstrate the computational advantage of the distributed charging strategy,
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Figure 2.4: Charging power following distributed, centralized, myopic and no-control charg-
ing strategies. (a)-(e) correspond to charging decks 1-5, respectively.
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Figure 2.5: Total charging power of the five charging decks following distributed, centralized,
myopic and no-control charging strategies.

Table 2.2: Evaluation times of making charging decisions following different charging strate-
gies.

Mean Maximum Minimum
(sec) (sec) (sec)

Distributed 3.7653 8.8229 1.6194
Centralized 11.2769 24.5647 7.5939
Myopic 2.4770 3.9164 1.6744

we scale down/up the problem size to see how the evaluation times change with respect to the
problem size. By scaling the size of the problem, we multiply the transformer capacities, the
base load and the number of PEVs arrivals at each charging deck by a common scaling factor.
In these numerical tests, we place no restriction on the evaluation time, but keep all other
termination conditions unchanged. As shown in Fig. 2.6, both the maximum and the mean
evaluation times are smaller under the distributed control than under the centralized control
of all scales being considered. The evaluation times for solving centralized/distributed
scheduling problems in each iterations increase; but the convergence under the distributed
control can still be achieved within very few iterations. Moreover, the evaluation time
grows approximately linearly in the problem scale under the distributed control, whereas it
grows superlinearly under the centralized control. Therefore, we expect that the distributed
charging strategy is more computationally viable than the centralized charging strategy when
being implemented in a large scale.

2.5 Conclusion

This chapter investigates the plug-in electric vehicles charging coordination problem for mul-
tiple parking decks in multi-family dwellings. A centralized finite-horizon optimization model
is first proposed to maximize the total utility of charging service providers (i.e. total profits
less the dollar value of penalty for failing to meet customer charging needs). By exploiting
the structure of the centralized control problem, the original model is then decomposed into
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Figure 2.6: Mean and maximum evaluation times with different system scales following the
distributed and the centralized coordination strategies.

several sub-problems that can be solved locally in parallel iteratively with updated multi-
pliers information broadcasted by the centralized controller. We then propose an efficient
heuristic method to find the feasible solution to accelerate the convergence. Simulations in a
scenario with 5 parking decks are carried out and computational results are compared. The
simulation results demonstrate the effectiveness of centralized, distributed and myopic con-
trol strategies in shifting charging load to off-peak periods by responding to TOU electricity
tariffs. Besides, the proposed distributed approach has the following advantages:

1) The distributed approach successfully achieves charging coordination between multiple
parking decks and prevents undesirable charging rebound, which happens when charging
coordination is only implemented within each charging deck separately.

2) Compared with the centralized approach, the distributed approach reduces the problem
dimension by decoupling the centralized charging problem into several subproblems with
respect to each parking deck. Therefore, this approach is able to be effectively applied
online even when the number of electric vehicles and parking decks controlled are large.

3) Besides, at each iteration in the distributed algorithm, only aggregate charging power
demand of each parking deck is required to be publicized. This is applicable for the scenario
when the controlled parking decks are operated or owned by different entities who are not
willing to disclose all of its customers charging information to the centralized controller.
What’s more, the reduced volume of data exchange between the aggregator and the local
controllers enables the proposed hierarchical distributed framework to be less demanding on
communication infrastructure than the centralized approach.

4) Finally, though we do not explicitly investigate this point in this work, the distributed
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approach is more likely to be robust against system faults. In case of system failure at
the centralized controller, which may otherwise cause a total collapse of the whole system,
each parking deck can switch to myopic mode and still effectively shift the charging load
to off-peak periods. In other cases, when fault occurs to any of the subsystems at parking
decks, the fault can be easily isolated.

There are a number of extensions worth further investigations. For example, it is in-
teresting to investigate the problem where power flow and power losses of distribution
network are also considered. Also, a distributed control framework coordinating PEV
charging/discharging and renewable energy generation can be an interesting and important
extension of this work. PEVs and renewable energy can jointly enable the sustainable energy
future that is featured by distributed energy generation and storage [50]. In a scenario where
multi-family dwellings are mounted with renewable energy (e.g., wind/solar energy) gener-
ation units, the proposed distributed PEV charging systems are also able to provide energy
reserve to offset intermittence of wind/solar energy generation. The distributed charging
service providers can also participate in ancillary service by means of vehicle to grid support
to earn more profit [80].
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Chapter 3

Integration of Shared Mobility for
Home Delivery Services

California, along with many other regions in the world, is experiencing two socioeconomic
transformations: 1) Sharing economy, in which people share access to goods and services,
is prospering. The market size of sharing economy has the potential for increasing global
revenues from roughly $15 billion today to around $335 billion by 2025 ([75]). One of the
key sectors that is being impacted is transportation, with leading companies (e.g., Uber,
Lyft and Car2Go) disrupting the traditional business of people-riding transit. 2) Meanwhile,
retail e-commerce sales is expanding rapidly worldwide, with an annual growth rate of around
20%, and is projected to reach $2.4 trillion in 2017 according to [34]. To advance their
logistics competitiveness, some major players have kept piloting new delivery services (e.g.,
Walmart To Go, Google Express and Amazon Fresh, etc.) during the past several years.

A question that naturally arises from these phenomena but has not been well addressed
is: Is it possible for retail e-commerce to rely on crowdsourced shared mobility for delivery
services on a large scale? [13] anticipates that the power of such a mode is that “...it
does not require the asset-heavy infrastructure of warehouses, vehicle fleets, fuel costs and
employed drivers that traditional logistics companies have to pay for and manage... it’s an
asset-light model, akin to the likes of Uber and Airbnb, with low overheads meaning it can
scale relatively fast depending on demand.” Can this marriage of sharing economy and e-
commerce really have all these claimed merits? Until recently, such practice has remained
in its infancy. On the one hand, most of the existing leading companies and promising
start-ups in the courier industry primarily rely on professional people and dedicated fleets
(e.g., 95% of Zipments’ couriers are professionals). On the other hand, some companies (e.g.,
DHL, Walmart and start-ups including Posmates and Deliv) have begun to experiment with
crowdsourced delivery ([81]).

The goal of this chapter is to evaluate whether and/or how to foster the large-scale adop-
tion of this prospective sharing mode of delivery services in urban areas. While business
objectives in general do not directly address the interests of external stakeholders, govern-
ments and logistics services providers are responsible for assessing the potentially substantial
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impacts of this mode shift with the ultimate goal of balancing societal and environmental
concerns with economic objectives as the Triple Bottom Line ([31]). This responsibility, for
example, is particularly relevant to the California state government, given its strategies to
develop multi-model integrated freight systems and to create car sharing programs ([22]) as
well as for its commitment to a 15% reduction (from 2010 levels) of GHG emissions to achieve
1990 levels by 2020 as dictated in [5]. According to the California Environmental Protection
Agency ([21]), transportation was accountable for 37% of the total GHG emissions in the
state for 2013, dwarfing all other sectors.

The first part of this chapter develops planning models for this prospective mode of
sharing logistics. The models are based on a one-transshipment logistics setting: a fleet
of short-haul trucks or vans are dispatched from a depot and unload goods at terminals of
service zones. Passenger cars nearby with available mobility are attracted to each terminal,
each picking up a ration of goods and delivering them within the service zone to their
destinations, which are assumed to be uniformly distributed. Contrasting the conventional
mode where dedicated vehicles travel closed-loop routes, a salient feature of the shared
mobility is its one-way nature: a car starts an outbound trip by approaching the closest
destination and the service ends once it drops off the last package. Numerically solving 9, 600
different instances of this open vehicle routing problem reveals the structural properties of
the route patterns. To characterize these properties, a continuous approximation (CA) model
is developed. Combining this model with the CA model of short-haul truck routes results
in strategic service zone deployment in the form of a closed-form expression of the optimal
density of zones as well as the associated optimal cost.

The second part of this chapter studies the operating costs and GHG emissions impli-
cations of the sharing logistics paradigm. Based on the analytical solutions to the service
zone designs, three logistics scenarios are evaluated: two prospective shared-mobility sce-
narios that minimize operating costs and GHG emissions, respectively, are evaluated; then,
the conventional truck-only home delivery services scenario is evaluated as the benchmark.
Case studies calibrate these optimal designs with detailed empirical parameter estimates.
Comparing operating costs and GHG emissions across these three scenarios leads to a dis-
cussion of what conditions under which it is worthwhile (and how) to facilitate the transition
into this prospective sharing mode. As an extension, a non-linear driver payment scheme is
derived, which induces efficient supply of shared mobility.

The contributions of this work are as follows. 1) To the best of the authors’ knowledge,
this work is the first attempt to design and analyze the logistics system that features large-
scale integration of shared mobility for home delivery services, using analytical models and
empirical parameter estimates. In particular, the asymmetry of one-way passenger cars’
routes invalidates existing CA models for vehicle routing problems (VRP); the CA model
in this work, along with the underlying insights into the open-loop routes properties, fills
this gap in literature. 2) A major finding of this work is that adopting shared mobility for
home delivery services is likely to be either asset-light or cost-efficient, but not both, unless
additional policy instruments exist. Under normal operating conditions, the prospective
sharing logistics system increases operating costs by 2.73% and increases GHG emissions by
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3.95%, compared with the conventional truck-only scenario. Having not been fully identified
in literature, this potential cost inefficiency can be a major explanation for the sharing
logistics paradigm not having taken place on a large scale. On the other hand, this paradigm
has the potential to create considerable economic and environmental benefits if additional
investment in heavy-duty fleet assets and policy instruments (such as fuel-efficiency standards
and subsidy incentives) are possible. 3) Another finding is that, upon entering this paradigm,
even exclusively minimizing operating costs does not significantly increase emissions relative
to the minimum level of emissions. This is a more robust result than in other retail logistics
contexts such as the one considered in [17], in which retail store operations may cause a
more significant tension between the environmental and financial preferences. 4) Finally,
governments and delivery services companies potentially need to carefully design the driver
compensation schemes to cost-effectively induce supply of shared mobility. The proposed
non-linear pricing scheme serves this purpose.

The remainder of this chapter is organized as follows: Section 3.1 reviews the related
literature; Section 3.2 introduces the basic model settings; Section 3.3 presents the shared-
mobility logistics planning model; Section 3.4 analyzes operating costs and GHS emissions
implications based on empirical estimates; finally, Section 3.5 concludes the chapter. Addi-
tional technical proof is provided in Appendix B.

3.1 Literature Review

Large-scale adoption of shared mobility for retail e-commerce is an important prospect, but
it has not received wide attention in literature. The vast majority of the studies concerning
the impact of sharing economy on the transportation sector have focused on the trans-
portation of passengers instead of packages. One group of these studies investigates vehicle
sharing, which refers to the case where people access mobility services by temporary usage
without ownership of the vehicles. For example, [10] study the economic and environmental
implications of the car sharing business and find that its overall environmental impact can
be negative due to aggregate vehicle usage. [85] and [52] study the deployment and opera-
tions problems arising in bike-sharing systems, employing network flow models and empirical
methods, respectively. [46] notice the recent development of one-way electric vehicles sharing
(e.g. Car2Go) and formulate a service region design problem. Another stream of literature
is concerned with ride sharing, which refers to a different mode of transportation where a
passenger accesses a vehicle for a trip with its driver already en route. See [38] for a compre-
hensive review of ride sharing management and [1] for a review of an important operations
problem, namely the dynamic matching of shared rides.

In contrast, studies on goods logistics with shared mobility are few and mostly qualita-
tive. [19] identify different types of logistics coexisting in the sharing economy based on an
exploratory analysis of 32 cases. [81] examine 18 businesses. They argue that the two major
obstacles to the development of crowdsourced delivery are trust building and a “chicken-and-
egg” dilemma: a critical mass of couriers is needed to insure quality delivery and to attract
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customers, but a critical mass of customers is needed to attract couriers. However, the analy-
sis in this chapter shows that a major obstacle may be high operating costs, which contradicts
the “low overheads” claim by [13]. Recently, [59] and [58] propose a conceptual taxi-based
people-freight sharing system. They formulate a routing problem as a mixed integer linear
program and propose a neighborhood search heuristic solution algorithm. In comparison,
this work develops continuous approximation models for a home delivery logistics system,
with emphasis on its overall economic and environmental implications.

Logistics planning with environmental sustainability considerations has been studied
in contexts other than sharing economy. [17] models the dependence of operating costs
and GHG emissions on the density of retail stores and finds that improving consumer fuel
efficiency can be an effective way of mitigating emissions. [20] find that household-level
economies of scale in transportation (i.e., a person performs many errands in a single trip)
may actually increase the overall carbon footprint relative to the case of home delivery
services. The service region deployment problem considered in this work is based on CA
models in a one-transshipment setting. CA methods for one-transshipment logistics systems
are investigated in [100] with detailed discussion on the approximation error, and in [82]
with environmental considerations. Again, the key distinction of this work is the inclusion
of shared mobility.

3.2 Model Settings

Topology: Consider a one-transshipment logistics system. A depot is located at the center
of a service region of interest. At the inbound stage, a fleet of short-haul trucks or vans
(hereafter referred to as trucks) are dispatched from the depot, each carrying a truck load
of packages. A truck stops at one or multiple terminals, where it unloads packages to be
delivered in service zones. Each terminal is located at the center of a service zone. Figure
3.1 illustrates the route of a truck that visits three service zones. At the outbound stage,
passenger cars nearby with available mobility (hereafter referred to as cars) are attracted to
each terminal. Then they pick up a ration of goods and deliver them to their destinations
within a service zone. Such a transshipment setting captures the fundamental tradeoff: To
carry a truck load of goods to travel a certain distance, a truck is typically more cost efficient
than a cohort of cars of equal capacity; however, to carry one kilogram of goods to travel a
certain distance, a car is more cost efficient than a truck.

Moreover, assume that the whole service region is of a squared diamond shape with area
a. The service zones partition the service region into z squared diamonds of equal size.
Each zone has one vertex pointing toward the depot (Figure 3.2 in Section 3.3 depicts a
service zone and outbound car routes). Manhattan metric of distance (l-one norm) is used
throughout the chapter. As a result, all points on the boundary of the service region are
equally distant to the depot; so are all points on the boundary of a zone to its terminal.
The above topological assumptions are made for simplicity of analysis. Layout robustness
in Section 3.4 implies that locally relaxing those restrictions (i.e., in terms of tilings and
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Figure 3.1: An illustration of home delivery services with shared mobility of passenger
vehicles–one truck route with three service zones.

distance metrics) do not significantly affect the results.
Demands and mobility availability: Assume that the demand destinations consti-

tute a Poisson point process–the destinations are uniformly and independently distributed
over the service region. The total number of destinations per unit area for one dispatch, N ,
is a Poisson random variable, i.e., N ∼ Poisson(n), where n is the mean density of the desti-
nations. The random package weight G for each destination is independently and identically
distributed with mean g. Also assume that available cars are uniformly and independently
distributed in the region with density m. A summary of parameter notation and estimates is
available in Table 3.1 in Section 3.4. Symbols throughout this chapter are subscripted with
a vehicle type (“t” for trucks and “c” for cars) wherever necessary.

The shared mobility logistics planning problem thus boils down to determining the num-
ber of the service zones, z, which implies other decisions such as the zone size and the average
number of cars to serve each zone. The CA model in Section 3.3, based on the above setting,
can be readily extended to the case where the distribution of demands, destinations and cars
are non-uniform, as long as the non-uniformity is modest.

3.3 The Shared-Mobility Logistics Planning Problem

This section describes CA models of different components of this transshipment logistics
system with shared mobility. Striking a balance among the costs of these components yields
a closed-form expression of the optimal number of service zones and the associated optimal
cost, which can be compared with the optimal cost of the conventional truck-only scenario.
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Terminal-bound Car Trips & Transshipment

Each service zone on average requires mz nearest cars to distribute packages within the zone.
mz is equal to ang

vcz
, since ang

z
is the average weight of packages of a zone and the cars are

assumed to be loaded to capacity vc for simplicity. These cars are uniformly scattered in a
squared diamond of area mz

m
centering the terminal. Their mean distance to the terminal

can be approximated by the mean distance between a point in this diamond and the center.
This l-1 distance is computed by integration as follows:

da =

∫ 1
2

√
mz
m

0

√
2r

8r
mz
m

dr =

√
2

3

√
mz

m
. (3.1)

At a terminal, a freight truck unloads packages weighing mzvc, which mz cars then pick
up. This transshipment process incurs the following cost:

cf + ch0mzvc + ch1mz = cf + chmz, (3.2)

where cf represents the fixed charge. ch0 is per kilogram cost of unloading packages from
the truck and ch1 is the cost of loading packages into each of the mz cars. ch = ch0vc + ch1
is the combined variable handling cost per car.

Outbound Car Trips

Each car’s outbound trip breaks down into two portions. In the line-haul portion, the car
travels the shortest path from the terminal to the destination that is the closest to the
terminal among those on its route. After that, the car proceeds along the detour portion
of the route to visit all the remaining destinations. Aggregating all the trips in a zone, an
approximation of the total outbound trip distance consists of the following two parts:

do = dl(n,
vc
g

)mz + λ
√
an, (3.3)

where the two terms on the right-hand side represent the total line-haul and detour trip
lengths, respectively. In particular, dl(n,

vc
g

) is the average of individual line-haul trip lengths.
dl primarily depends on the demand density n as well as the number of destinations that
each car visits, as approximately measured by vc

g
. The detour portion is asymptotically

structurally similar to a traveling salesman problem (TSP) tour as n goes to infinity. Hence,
the total detour length is approximated to be proportional to

√
an with a coefficient λ.

The appropriate function form of dl(n,
vc
g

) and the value of λ should fit with the optimal

routes, which are solutions to the open vehicle routing problems (OVRPs). As a variant
of the classic, closed-loop VRP, the OVPP is defined so that vehicles do not return to
the origin once they finish delivering all the packages, and is no easier to solve. State-of-
the-art commercial solvers are only able to consistently solve instances with up to 50 nodes.
Fortunately, various local-search heuristics developed in the past 15 years have demonstrated



CHAPTER 3. SHARED MOBILITY FOR DELIVERY SERVICES 49

superior solution accuracy and efficiency. In this work, a record-to-record heuristic embedded
in the open-source library VRPH ([44]) is applied to solve 96, 000 randomly generated OVRP
instances with different values of n, vc

g
, variation coefficient of G and random realizations

of destinations ([60] demonstrate the high accuracy of this type of heuristic). Figure 3.2
depicts four OVRP routes with different demand densities and car capacities. Figure 3.3
shows the average individual and the total line-haul lengths with different demand densities
and car capacities. Figure 3.4 shows the values of the detour coefficient λ and the total
detour lengths.

Figures 3.2-3.4 reveal the following properties of the outbound car trips: 1) From Figure

3.3 (a), dl approaches a value near
√

2
3

= 0.471, the mean distance from a point in a zone of
unit area to its terminal, when n→ 0. 2) Within the parameter value range of interest, either
increasing n or vc

g
decreases the line-haul trip length, since the first destination on a one-way

route thus becomes more likely to be closer to the terminal. In contrast, the line-haul portion
of a standard VRP route is less sensitive to n or car capacity due to its closed-loop symmetry.
This observation suggests that a region with sparser demand destinations or smaller cars will
gain more savings by not having to travel the return line-haul trip, which would be relatively
long. 3) Numerical experiments also show that the variability of package weight G, though
affecting the mean number of destinations a car visits (i.e., E[vc

G
]), has negligible effect on the

average line-haul length. 4) Comparing Figure 3.3(b) and Figure 3.4(b), the detour portion
dominates the whole route length when car capacity is relatively large (e.g., vc

g
= 14, 23).

In those cases, Figure 3.4(a) shows that the detour coefficient λ is nearly constant. When
vc
g

= 5, the detour and the line-haul portions are of similar length and λ increases in n.
However, heavy packages for e-commerce home delivery are rare in reality, and the ratio vc

g

is likely to be greater than five.
Based on the these observations, the following function form is proposed to approximate

the average individual line-haul trip length:

dl(n,
vc
g

) = (

√
2

3
− α(
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g

)β(1− 1

γ
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an
z

))

√
a

z
(3.4)

where α = 0.055, β = 0.470 and γ = 0.374 are parameters that minimize the sum of squared
approximation errors of the problem instances. The dashed lines in Figure 3.3(a) represent
the approximations given by this model. Despite the certain degree of misestimation (up to
10.7% when n = 70 and vc

g
= 23), the model and the estimates capture the aforementioned

one-way routing structural properties and are effective for a wide range of parameter settings.
Further validation with real out-of-sample data is beyond the scope of this work. Similarly,
the minimum-squared-error estimate of λ is 1.005, which is close to 0.97 as [51] estimates for
TSP tour with the Manhattan metric.

Inbound Truck Trips

At the inbound stage, assume that each truck carries a full truck load (i.e., vt kilograms)
of packages, unloads them at y = vt

mzvc
= vtz

ang
terminals on average and then returns to the
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Figure 3.2: Outbound routes with different demand densities and car capacities in a squared-
diamond service zone of unit area. Arrowed line segments represent the line-haul portion of
routes. Blue circles represent destinations.
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Figure 3.3: Line-haul trip lengths in a squared-diamond service zone of unit area. (a) Average
of 100 individual trip lengths (solid line) and its approximation given by Eqn. (3.4) (dashed
line). (b) Total length.

Figure 3.4: Detour trip lengths in a squared-diamond service zone of unit area. (a) Average
of 100 individual detour coefficients. (b) Total length.
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depot. The detour portion is thus a trip on s lattices and has a fixed length dt,d = y
√

2a
z

.

The line-haul portion consists of the trips both before and after the detour trip. Following
a similar discussion in [25] for this routing scenario, to minimize the total line-haul truck
trip length dt,l in the region, arrange y zones for each truck into an area such that this area
is elongated towards the depot. A truck first visits the terminal that is the nearest to the
depot, and then moves forward to visit the rest of the first dy

2
e terminals. On its return trip,

the truck visits the remaining terminals. Consequently, the average departing/returning
line-haul trip plus a one-way trip halfway into the elongated area of y zones approximates
an average trip from the depot to a point in the region, i.e.,

dt,l
2

+ 1
2

dt,d
2
≈
√

2a
3

. Hence, let

dt,l = 2
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2a
3
− dt,d

2
. The total inbound trip length becomes:
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ang

vt
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(
2
√

2a

3
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2
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2
√
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3
+

√
2az

2
, (3.5)

where ang
vt

is the number of trucks in one dispatch. As discussed in [24], this approximation
is particularly appropriate for large-scale logistics systems with large numbers of trucks and
services zones.

Optimal Number of Service Zones

The strategic deployment of delivery service zones is represented by the optimal number of
service zones, z∗, in the homogenous setting of this work, striking a balance between the
truck mode and the shared mobility mode with a goal of minimizing total operating costs
and/or GHG emissions. The following procedure solves for z∗.

To calculate the total trip length of cars, dc, combine models (3.1) and (3.3) for terminal-
bound and outbound trips, respectively, and substitute the line-haul formula (3.4) as well as
mz = ang

vcz
into the model. Mathematically,

dc = z(mzda + do) = Φc
1√
z

+ Ψc, (3.6)

in which

Φc =(

√
2

3
− α(
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)β)
a1.5ng
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+
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2

3

1√
m

(
ang
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)1.5, (3.7a)

Ψc =α(
vc
g

)β
a
√
ng

γvc
+ λa

√
n. (3.7b)

Similarly, rewrite model (3.5) of the total inbound truck trip length as:

dt = Φt

√
z + Ψt, (3.8)
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in which

Φt =

√
2a

2
, (3.9a)

Ψt =
ang

vt

2
√

2a

3
. (3.9b)

Let cc and ct denote the per-km cost incurred by trucks and cars, respectively, where
the cost refers to operating costs, GHG emissions, or a monetized combination of both.
Meanwhile, assume that the cost of package handling in the transshipment process as char-
acterized in (3.2) is negligible, with three reasons: 1) First, omitting the term associated
with the fixed charge cf leads to a closed-form expression of z∗. 2) This cost, which is mainly
due to fuel consumption of vehicles while idling and the time consumption of drivers while
loading/unloading packages, is small relative to the en route cost. 3) In fact, the estimates of
cc and ct in Section 3.4 already takes into account different states (i.e., traveling and idling)
of both vehicles and drivers. Subsequently, the total cost of one dispatch is given by:

c(z) = Φccc
1√
z

+ Ψccc + Φtct
√
z + Ψtct, (3.10)

which immediately implies the optimal number of zones and the minimum cost, respectively:

z∗ =
Φccc
Φtct

, (3.11a)

c(z∗) =2
√

ΦcccΦtct + Ψccc + Ψtct. (3.11b)

The above closed-form quantities lead to several observations on systems configuration:
1) Both z∗ and c(z∗) are proportional to the service region area a, as expected. 2) Scale
economy of household demand does exist, but in a weak way. Specifically, when demand
scales up,

√
ΦcΦt and Ψc in Eqn. (3.11b) increase by less than the proportional increase in

both demand density n and intensity g, but Ψt is proportional to n and g. Therefore, when
demand becomes extremely dense and intense, the truck mode component Ψtct dominates
other terms in (3.11b) and the scale economy tapers off. 3) Similarly, the discussion as to
whether to adopt shared mobility is most meaningful when demand is moderate such that
the car-related terms in (3.11b) are significant (however, this statement may not hold when
more general performance considerations are taken into account, such as agility and social
trust building, which are beyond the scope of this work). 4) Finally, increasing the density
of available shared mobility m is not an effective means to directly reduce the total cost,
as m only appears in the denominator of the second term of Φc and has much diminished
marginal value. Nevertheless, increasing the supply of shared mobility may indirectly reduce
the total cost by lowering the price of delivery services. (3.11a) and (3.11b) also result in
economic and environmental analysis, which is the focus of Section 3.4.
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Benchmark: the Truck-only Scenario

The benchmark for evaluating the logistics system with shared mobility is a scenario where
only trucks fulfill home delivery services. Following the approach in [24], the following VRP
CA model approximates the total truck travel length in this scenario:

db =
2
√

2

3

√
a
ang

vt
+

2√
6
a
√
n, (3.12)

where the first term on the right-hand side approximates the total line-haul trip length and
the second term approximates the detour length. Hence, the total cost is ctdb.

3.4 Analysis

This section begins with parameter estimates for the logistics planning problem in Section
3.3. The first part of analysis is a comparison between logistics system designs with two
different objectives: to minimize operating costs and to minimize GHG emissions, within
the shared-mobility scenario. The second part of analysis is a comparison between the
shared-mobility scenario and the benchmark truck-only scenario. These comparisons lead to
discussion on possible government incentives. The section ends with an extended discussion
on designing an efficient car driver payment scheme.

Parameter Estimates

Cost parameters: Cost parameter values are calibrated based on empirical evidence. To
consider both the economic and the environmental objectives, the total cost refers to either
operating costs or GHG emissions, denoted by co and ce, respectively:

1. Operating costs consist of vehicle costs and driver wages:

a) The vehicle costs break down into components of fuel consumption, maintenance,
and distance-related depreciation. On September 14, 2015, the average prices
of diesel and gasoline in the U.S. were pt = $0.664 L−1 and pc = $0.663 L−1,
respectively (http://www.eia.gov/petroleum/gasdiesel/). For trucks, according
to [56], the fuel efficiency of a UPS delivery van (Freightliner P70) is 10.6 miles
per gallon of diesel, or ft = 0.222 L/km. The truck fuel cost estimate is thus
0.664 × 0.222 = $0.147 km−1. From the same report, the maintenance cost is
$0.130 mile−1, or $0.081 km−1. From [9], distance-related depreciation cost of a
van under city driving conditions is $0.081 mile−1, or $0.050 km−1. Collectively,
adjusting for annual inflation of 2.5%, the 2015 vehicle cost of a truck is ot =
ftpt + ut + lt = 0.147 + 0.081× 1.0253 + 0.050× 1.02512 = $0.301 km−1, where u
and l denote per-km costs of maintenance and depreciation, respectively.
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For cars, the average fuel efficiency of passenger cars in the U.S. is 23.4 miles per
gallon of gasoline according to the [97]. Since a car for delivery services in an urban
area typically has more frequent stops than under normal operating conditions,
estimate the fuel efficiency to be 18 miles per gallon, or fc = 0.157 L/km. The
car fuel cost is thus 0.663 × 0.157 = $0.104 km−1. [9] estimate the maintenance
cost of a passenger car to be $0.047 mile−1, or $0.029 km−1, and the depreciation
cost to be $0.074 mile−1, or $0.046 km−1. Collectively, the 2015 vehicle cost of
a car is oc = fcpc + uc + lc = 0.104 + 0.029 × 1.02512 + 0.046 × 1.02512 = $0.205
km−1.

b) To consider driver wages, a truck driver’s wage is bt = $30 hour−1 as [9] assume.
In the benchmark truck-only scenario, the average speed of a UPS delivery van is
20.8 miles per hour, or st = 33.5 km/hour, according to [56]. The per-km wage is
thus wt = 30/33.5 = $0.896 km−1. In the shared-mobility scenario, trucks do not
stop at demand destinations. Hence, assume the average speed to be 29.9 miles
per hour, or st = 48.3 km/hour, which is the simple average of driving speeds in
50 U.S. cities (http://infinitemonkeycorps.net/projects/cityspeed/). The wage is
thus wt = 30/48.3 = $0.621 km−1.

For car drivers, they participate in delivery services only if the expected payout
is no smaller than can be earned otherwise. Therefore, assume the car driver
wage to be bc = $19.0 hour−1, which is the average earnings per hour of Uber
drivers according to [45]. Also assume that the average speed of cars for delivery
services is 18 miles per hour, or sc = 29.0 km/hour, which is smaller than the
aforementioned average speed of a delivery van, considering that the relatively
slow last-mile delivery accounts for a greater share in car trips than in truck trips.
The car driver wage is thus wc = 19.0/29.0 = $0.655 km−1.

c) Combining vehicle costs and driver wages, the per-km operating costs for trucks
are cot = ot + wt = $1.20 km−1 in the truck-only scenario and $0.922 km−1 in the
shared-mobility scenario. The per-km operating cost for cars is coc = oc + wc =
$0.860 km−1.

2. When the cost refers to GHG emissions, the per-km estimates are cet = etft = 0.597
kg/km for trucks and cec = ecfc = 0.369 kg/km for cars, where [35] estimates that CO2
emissions are 10, 180 grams from a gallon of diesel (i.e., et = 2.69 kg/L) and 8, 887
grams from a gallon of gasoline (i.e., ec = 2.35 kg/L).

System parameters: [96] reports that a similar P70 delivery van has capacity of up to
20.8 m3 with 110 kg m−3, which amounts to 2, 288 kg. Hence, let truck capacity vt = 2, 000
kg. For cars, interior space is not a realistic estimate of the loading capacity for home
delivery services. Instead, suppose the car capacity is vc = g · 15 = 150 kg, where g = 10
kg is assumed to be the mean weight of goods demanded at each designation. This value
of g is smaller than the estimate of 18 kg in [17] for the amount of goods that the average



CHAPTER 3. SHARED MOBILITY FOR DELIVERY SERVICES 56

Table 3.1: Parameter estimates.

Logistic Region area Demand density Mean demand Car density
setting a n g m

100 km2 100 km−2 10 kg 50 km−2

Aggregate Φc Ψc Φt, Φh Ψt, Ψh

constants 2.42× 103 1.04× 103 7.07, 7.07 471, 157
Per-km Operating cost Vehicle cost Driver wages GHG emissions

costs co = o+ w o = fp+ u+ l w = b/s ce = fe
Trucks $0.923 (1.20)† $0.302 $0.621 (0.896) 0.597 kg
Heavy-duty $1.02 (1.30) $0.402 $0.621 (0.896) 1.00 kg
Cars $0.860 $0.205 $0.655 0.369 kg
Vehicle Fuel efficiency Emissions rate Load capacity Average speed

specifications f e v s
Trucks 0.222 L/km 2.69 kg/L 2, 000 kg 48.3 (33.5) km/hr
Heavy-duty 0.373 L/km 2.69 kg/L 6, 000 kg 48.3 (33.5) km/hr
Cars 0.157 L/km 2.35 kg/L 150 kg 29.0 km/hr
Basic Fuel price Maintenance Depreciation Hourly wages

costs p u l b
Trucks $0.664 L−1 $0.0872 km−1 $0.0672 km−1 $30 hr−1

Cars $0.663 L−1 $0.0390 km−1 $0.0619 km−1 $19 hr−1

† Parameter values for the benchmark truck-only scenario are either in parentheses or the same as for the
shared-mobility scenario.

consumer carries with each shopping trip. Additionally, assume that the service region area
a = 100 m2, the demand density n = 100 km−2 and the density of available cars m = 50
km−2. Substituting these numbers into formulas (3.7) and (3.9) yields the values of Φc, Ψc,
Φt and Ψt, respectively.

For analysis later in this section, also consider a rare scenario where heavy-duty trucks
are in place of P70 delivery vans. From [16], the Freightliner M2-106 has load capacity of
about 6, 000 kg and fuel efficiency of 550 g/mile (6.3 miles per gallon). Repeating the above
procedure yields other parameter estimates for this heavy-duty model. Their symbols are
subscripted by “h”. Table 3.1 summarizes the parameter estimates. Parameters that most
significantly impact the logistics system design are analyzed later in this section.

Minimizing Operating Costs vs. Minimizing Emissions

Suppose that the service region adopts shared mobility for home delivery services. To what
extent does the design that minimizes operating costs compromise the goal of GHG emis-
sions abatement? It turns out that this logistics system has remarkably small tension between
these two preferences : Minimizing operating costs while ignoring GHG emissions results in
a service zone deployment that increases emissions from the minimum level by a negligible
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Table 3.2: Ratios of the number of service zones, operating costs and GHG emissions in the
operating costs minimizing system to those in the emissions minimizing system.

Scenarios Zone number Operating costs Emissions
z1/z2 co1/c

o
2 ce1/c

e
2

Baseline† 1.51 0.997 1.00
Demand density doubles (n→ 2n) 1.51 0.997 1.00
Trucks are heavy-duty 2.28 0.985 1.02
Car fuel efficiency doubles (fc → 1

2
fc) 2.82 0.980 1.02

Car driver wage doubles (wc → 2wc) 2.66 0.984 1.02
Car driver wage is halved (wc → 1

2
wc) 0.934 1.00 1.00

† In the baseline scenario, z1 = 319, co1 = $1.56× 103 and ce1 = 790 kg.

percentage (e.g., 0.25% in the baseline scenario); this compatibility of objectives is robust
with a wide range of parameter settings. Nonetheless, the optimal number of service zones
can significantly vary when the objective switches. Table 3.2 shows the ratios of the number
of service zones, operating costs and GHG emissions in the system that minimizes operat-
ing costs to those in the system that minimizes emissions, in the baseline and alternative
scenarios. Symbols for these two systems are subscripted by “1” and “2”, respectively.

To understand the large ratio (i.e., significantly greater than 1) of z1/z2 in those scenarios,
notice from Eqn. (3.11a) that the optimal number of zones is proportional to cc

ct
, the per-km

cost ratio of moving a car to moving a truck. This ratio is larger when the cost refers to
operating costs than when the cost refers to emissions, i.e., coc

cot
> cec

cet
, or z1/z2 = coc

cot
/ c

e
c

cet
=

fcpc+uc+lc+wc
ftpt+ut+lt+wt

/fcec
ftet

> 1. In fact, the fuel-related ratios fcpc
ftpt
≈ fcec

ftet
≈ fc

ft
< 1, but the ratio of

the non-fuel portion uc+lc+wc
ut+lt+wt

> fc
ft

. Therefore, whether the service zones are denser in the
operating cost minimizing design than in the emissions minimizing design is irrelevant to
the fact that cars have higher per-km fuel efficiency than trucks (given ec ≈ et and pc ≈ pt),
but hinges on whether the fuel consumption is more efficient than the non-fuel cost when
comparing cars with trucks. Put another way, if the car driver wage wc is low enough so
that uc+lc+wc

ut+lt+wt
< fc

ft
(the last scenario shown in Table 3.2), then the operating cost minimizing

design chooses sparser service zones to exploit more car trips because cars now have higher
operating cost efficiency than emissions efficiency relative to those of trucks.

Minimizing operating costs and minimizing emissions are compatible and robust because
of two structural properties. First, the service zone number z related terms in the total cost
model (3.10), Φccc

1√
z

+ Φtct
√
z, constitute a remarkably flat function of z in a large neigh-

borhood of z∗. Such structure is common to transshipment systems in other contexts (see
detailed discussion in [24] and [17]). Specifically, the emissions inefficiency in the operating
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cost minimizing design relative to the minimum emissions level is bounded as follows:

ce1−ce2
ce2

=
(Φccec

1√
z1

+Φtcet
√
z1)−2
√

ΦccecΦtc
e
t

2
√

ΦccecΦtc
e
t+Ψccec+Ψtcet

<
(Φccec

1√
z1

+Φtcet
√
z1)−2
√

ΦccecΦtc
e
t

2
√

ΦccecΦtc
e
t

= 1
2
(

√
cec/c

o
c√

cet/c
o
t

+

√
cet/c

o
t√

cec/c
o
c

)− 1,

(3.13)

in which z1 =
√

Φccoc
Φtcot

. This upper bound depends only on the discrepancy in the ratio of

per-km emissions to per-km operating costs between cars and trucks (i.e., cec/c
o
c and cet/c

o
t ),

rather than on these two ratio values themselves or on logistic setting parameters (e.g., n and
a). Moreover, this upper bound is small and robust. In the baseline scenario, cec/c

o
c = 0.429

and cet/c
o
t = 0.647, resulting in an upper bound of only 1

2
(
√

0.429√
0.647

+
√

0.647√
0.429

) − 1 = 2.17%.

Significantly enlarging the discrepancy between cec/c
o
c and cet/c

o
t (e.g., by using heavy-duty

trucks, doubling car fuel efficiency or doubling car driver wages as shown in Table 3.2) can
only slightly increase this upper bound.

Second, the objectives compatibility is further enhanced by the fact that z-independent
terms in (3.10), Ψccc and Ψtct, dominate the total cost. In the baseline scenario, for example,
these two components account for 85.1% of the total operating costs and 84.4% of the total
emissions. Consequently, emissions inefficiency is even much smaller than its upper bound
in (3.13), as the inequality results from dropping Ψccc + Ψtct from the denominator. A
closer look into formula (3.7b) shows that the dominant component of Ψc is λa

√
n, which

represents the total detour trip length of cars; formula (3.9b) shows that Ψc = ang
vt

2
√

2a
3

represents the total line-haul trip length of trucks. These two parts account for a large
share of routes because the downstream mode of transport in a transshipment system tends
to be more engaged in the last-mile delivery to exploit its cost-efficiency in transporting
small loads, whereas the upstream mode of transport tends be more engaged and efficient in
bulk trucking. Therefore, adjusting service zone deployment only affects parts of the routes,
namely the line-haul portion of car trips and the detour portion of truck trips. In contrast,
this insensitivity is not the case in [17], where the density of retail stores significantly affects
trip lengths of both the retail truck and shoppers’ cars.

Shared Mobility vs. Conventional Mobility

The objectives compatibility identified above makes it legitimate to use the operating costs
minimizing design to address a more fundamental question: Is it worthwhile to transition to
the shared-mobility business model for home delivery services? In particular, would adopting
shared mobility be both “asset-light” and “with low overheads,” as [13] claims?

Table 3.3 lists the increases in operating costs, GHG emissions and total vehicle trip
length due to transition from the benchmark truck-only mode to the shared-mobility mode,
in the baseline and alternative scenarios. The table and the following analysis show that,
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Table 3.3: Increases (by percent) in operating costs, GHG emissions and trip length due to
transition from the benchmark truck-only mode to the shared-mobility mode.

Scenarios Operating costs Emissions Trip length
(cot−cob)
cob

(cet−ceb)
ceb

(dc+dt−db)
db

Baseline 2.73 3.95 39.5
Trucks are heavy-duty† −14.1 −6.87 15.2
Demand density doubles (n→ 2n) 0.475 4.61 35.9
Demand density is halved (n→ 1

2
n) 4.71 3.27 42.8

Car density doubles (m→ 2m) 1.76 2.92 38.2
Car density is halved (m→ 1

2
m) 4.01 5.30 41.3

Car fuel efficiency doubles (fc → 1
2
fc) −1.29 −26.1 39.6

Truck fuel efficiency doubles (fc → 1
2
fc) 6.35 61.0 39.5

Car driver wage doubles (wc → 2wc) 52.3 3.95 40.2
Car driver wage is halved (wc → 1

2
wc) −22.8 3.95 40.4

Car capacity increases (vc/g → 20) −0.642 0.438 35.0
Car capacity decreases (vc/g → 10) 8.55 10.0 47.4

† Scenarios where shared mobility is likely to be favorable are in boldface.

under normal operating conditions, shared mobility is likely to have either of those two merits,
but not both, unless additional policy instruments exist.

(a) The baseline scenario represents an “asset-light” scenario, in which the final stage of
delivery is directly outsourced to shared mobility with no major investments in vehicle fleets
and other assets. However, Table 3.3 shows that adopting shared mobility in the baseline
scenario increases both operating costs (by 2.73%) and emissions (by 3.95%). Having not
been fully identified in literature, this potential cost inefficiency can be a major explanation
for the sharing logistics paradigm not having taken place on a large scale. In fact, the
efficiency gain of using cars is twofold: their open-loop routes are in general shorter than
conventional closed-loop routes for cars of the same capacity, and their per-km operating
costs and emissions are lower than those of trucks. However, these efficiency gains are
overly offset in the baseline scenario (as well as other non-boldfaced scenarios in Table 3.3)
by a demerit: cars are of much smaller loading capacity than trucks and consequently the
share-mobility logistics system incurs over 35% longer total trip distance than the truck-only
system.

(b) If heavy-duty trucks replace regular-size delivery vans as the upstream mode of trans-
port, Table 3.3 shows that adopting shared mobility can reduce operating costs by 14.1%
and reduce emissions by 6.87%. This scenario is thus “with low overheads.” However, it also
typically implies a potentially large investment in fleet assets.

From the total cost expression (3.11b), heavy-duty trucks are able to save cost in a shared
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mobility logistics system if and only if the following inequality holds:

2
√

ΦcccΦhch + Ψccc + Ψhch < 2
√

ΦcccΦtct + Ψccc + Ψtct. (3.14)

Rearranging terms and substituting Φtct = Φhch =
√

2a
2

into the above inequality yields:

Ψtct −Ψhch√
ch −

√
ct

>
√

2aΦccc. (3.15)

This condition requires that Ψh = ang
vh

2
√

2a
3

should be small enough such that the lefthand
side ratio is greater than the righthand side threshold. In other words, the load capacity of
heavy-duty trucks (vh) must be high enough to overcome the per-km cost inefficiency (i.e.,
ch > ct). Meanwhile, the righthand side threshold is increasing in

√
Φccc. Intuitively, greater

value of Φccc leads to denser service zones deployment and thus requires higher bulk-trucking
cost efficiency to offset the inefficiency that prolonged truck detour incurs.

(c) Another two scenarios in favor of adopting shared mobility are where car fuel efficiency
is high and where car driver wage is low, both implying smaller value of cc. However,
these scenarios are unlikely to occur in the near future, unless policy instruments are in
place. For example, a government may launch subsidy incentives to passenger car drivers for
fulfilling delivery services and/or mandate stringent fuel-efficiency standards to those cars.
Nonetheless, to justify those policy instruments requires justifying other social benefits that
shared mobility can potentially create, such as social trust building or unemployment rate
reduction, which are beyond the scope of this work.

The above discussion collectively suggests that the value of shared mobility is not direct
savings of operating costs or GHG emissions, but rather the potential it creates for further
cost reduction by means of additional fleet asset investment and/or policy instruments.

Payment Scheme

The last part of the analysis provides logistics services providers with a scheme of payment to
car drivers to induce sufficient supply of shared mobility for home delivery services. Preceding
analysis assumes simple hourly wages for analytical convenience. However, a car driver is
willing to participate in a home delivery service only if the payment is at least the amount
that he or she can otherwise expect to earn by providing ride share to passengers. Therefore,
the cost-efficient payment should be based on the expected revenue out of ride share services,
as derived as follows–

Packages uploaded at each terminal are to be delivered along open-loop car routes, which
are offered to nearby idling car drivers. Consider an offer of payment w(do) that entails do
km of outbound trip distance. If a car driver who is r km away from the terminal decides to
accept this offer, the estimated total time of fulfilling the delivery service is x = r

s
+ do

sc
, where

s denotes the normal cruise speed of a car and sc denotes the speed during delivery services
(sc < s). Alternatively, if the driver is engaged in ride sharing services during the time
window (0, x), then the driver is either carrying passengers or waiting for a new passenger.
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When carrying passengers, the driver receives payments from a ride-share company such as
Uber. Typically, the ride fare consists of three parts: base fare, per-mile fare and per-minute
fare. A passenger ride of duration τ thus generates income of wb + wmτ , where wb is the
base fare and wm is in terms of dollars per minute but incorporates both the per-minute fare
and the per-km fare, since the travel time is assumed to be proportional to travel distance
(this is valid for a traffic network with no congestion). Also assume that the waiting time
and passenger ride time are exponentially distributed with means µ and υ, respectively. The
driver’s expected income wp(x) over (0, x) is given by (the proof is available in the Appendix):

wp(x) =
µ(wb + wm/υ)

µ+ υ

(
υx+

µ

µ+ υ
(1− exp(−(µ+ υ)x))

)
. (3.16)

A driver’s choice between delivering packages and waiting for ride requests boils down to
comparing wp(x) and w(do). Since x = r

s
+ do

sc
, a driver will accept the offer if w(do) ≥

wp(
r
s

+ do
sc

). Therefore, for each pair of (r, do), the minimum payment is wp(
r
s

+ do
sc

).
Depending on practical settings, two different payment schemes can be implemented.

The first scheme sends offers sequentially to the nearest individual drivers. Each offer with
outbound trip distance do is with a payment wp(

r
s

+ do
sc

), assuming that a driver’s location
in terms of r is known to the logistics services provider. In contrast, the second scheme
does not differentiate drivers based on their locations and broadcasts offers simultaneously
to nearby drivers. Each offer is independent from r with a payment wp(

rc
s

+ do
sc

), where rc is
the critical range to design. Drivers accept the offer if being within rc km from the terminal,
or reject the offer otherwise. Given rc, the total number of drivers attracted to the terminal
is m

∫ rc
0

8rdr = 4m(rc)
2. To meet the demand for mz = ang

vcz
drivers requires 4m(rc)

2 ≥ mz.
Thus the minimal payment is determined by solving the following problem:

w∗(do) = min
rc

wp(
rc
s

+
do
sc

), subject to 4m(rc)
2 ≥ mz. (3.17)

It follows immediately that the optimal r∗c = 1
2

√
mz
m

when the constraint is binding and

w∗(do) =
µr∗c (wbυ + wm)

s(µ+ υ)
+
µ(wbυ + wm)

sc(µ+ υ)
do +

µ2(wbυ + wm)

υ(µ+ υ)2

(
1− exp(−(µ+ υ)

(r∗c
s

+
do
sc

))
)
.

(3.18)
This formula specifies the payment scheme to induce sufficient drivers for delivery services in
the second scenario. The first term represents the base fare for the delivery offer; the second
term is proportional to do and the third term is a nonlinear fare as a function of do.

Numerical results: Based on the data from Uber official website, set wb = $1.65 and
wm = $40.85 hour−1, considering that Uber takes 25% commissions (https://www.uber.com/
cities/san-francisco). Table 3.4 shows wp(1), the average income of an Uber driver in one
hour, with different combinations of µ and υ (which vary from city to city and time to time).
As expected, increasing µ or decreasing υ results in higher driver income. The calculated
range of income is consistent with the actual estimate from Hall and Krueger (2015), which
varies from $16.20 to $30.35.
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Table 3.4: Average income of Uber drivers in one hour.

(µ, υ): hour−1 (3,6) (3,5) (4,6) (4,5) (5,6) (5,5)
wp(1): $ 17.86 19.79 21.65 23.76 24.82 27.00

Table 3.5: Delivery payments with different densities of available cars.

m: km−1 10 20 50 100 150 200
w∗(do): $ 11.11 11.06 11.01 10.99 10.98 10.98

From the preceding estimates, s = 29.9 miles per hour and sc = 18.0 miles per hour.
When vc/g = 15 and n = 100, numerical studies in Section 3.3 indicate that the average
outbound trip distance is 12 km. Assuming µ = 4 hour−1 and υ = 5 hour−1, the delivery
payment for do = 12 km with different densities of available cars is listed in Table 3.5.

Table 3.5 shows that, when density m decreases, r∗c increases and so does payment w∗(do)
to drivers (since drivers are likely to be more distant from the terminal). Nonetheless, when
m decreases from 200 km−1 to 10 km−1, the payment only increases by 1.2%. This is
because the time for a driver traveling to the terminal is on average much less than the time
for outbound delivery services, i.e. r∗c

s
� do

sc
. Thus, the m-independent delivery time is the

dominant factor of driver payment. This result, along with the discussion on m at the end
of Section 3.3, suggests that abundance of shared mobility is not a key driver of decisions on
whether to foster sharing logistics.

3.5 Conclusion

This chapter studies the problem of logistics systems planning that integrates shared mobility
for home delivery services, given the rapid development of sharing economy and retail e-
commerce in recent years. The logistics setting is a one-transshipment system: a fleet of
short-haul trucks are dispatched from a depot and unload packages at terminals of service
zones. Passenger cars with available mobility are attracted to the terminals to pick up and
deliver packages to demand destinations. Such a logistics system exploits both the efficiency
of trucks in bulk-transport and the per-km efficiency of cars in hauling small loads of goods.
The open-loop nature of the shared vehicle routes incurs less trip length than conventional
closed-loop routes of vehicles of the same capacity. The downside of such a system, however,
is the prolonged total trip length due to the small load capacity of passenger cars.

The first part of this chapter presents planning models for this sharing logistics system.
Numerically solving open vehicle routing problem instances reveals the structural properties
of the shared-mobility routes, which a CA problem is proposed to characterize. With the
assumption of homogenous distributions of demands and available cars, the optimal service
zone design is in the form of a closed-form expression of service zone density and the associ-
ated cost. The second part of the chapter analyzes the operating costs and GHG emissions
implications of the sharing logistics system. Empirical estimates are provided to calibrate
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the models. Comparing three systems, one that minimizes operating costs, one that mini-
mizes emissions, and one as the benchmark that involves only trucks, this chapter discusses
the economic and environmental viability of the prospective sharing mode under different
logistics and policy conditions. Finally, a non-linear car driver payment scheme is provided
to induce efficient supply of shared mobility.

The models and analysis lead to several findings: 1) First, contrary to the belief that
adopting shared mobility for home delivery services is both “asset-light” and “with low
overheads,” such practice may not create immediate savings in operating costs and emissions.
On the other hand, in the long run, sharing logistics is able to generate a considerable
amount of economic and environmental benefit, because this new business model allows more
room to optimize truck fleet assets and policy instruments. 2) Second, upon entering this
sharing paradigm, even exclusively minimizing operating costs does not significantly increase
emissions relative to the minimum level of emissions. This compatibility of economic and
environmental preferences results from two system characteristics: i) The cost objective
function is remarkably flat, being insensitive to even large discrepancy in the ratio of per-km
emissions to per-km operating costs between cars and trucks. ii) The line-haul portion of
truck trips and the detour portion of car trips account for a large share of total vehicle routes
but are independent of service zone deployment. As a result, a system planner is able to
focus on the cost minimizing logistics design. 3) Finally, the CA model that characterizes
open-loop vehicle routes and the non-linear model of car driver payments can be useful
for governments and logistics services providers to evaluate the routing behavior and cost-
effectiveness of this logistics mode under various conditions.

This work is the first attempt to design and analyze the prospective sharing logistics
system based on analytical models and empirical parameter estimates. To further investigate
the impacts that this combination of sharing economy and retail e-commerce can potentially
bring about, two directions can be explored. First, home delivery services can utilize shared
mobility in different ways with additional complexity to analyze. For example, car drivers
can provide ride sharing services to passengers along the trip of delivering packages, or the
logistics setting can be with nonhomogeneous distributions of demands, available cars and
traffic conditions. Second, whereas this work focuses on operating costs and GHG emissions
as performance measures, it is worth considering other implications of sharing logistics, such
as social trust building, service agility and unemployment rate, which may or may not further
justify additional government regulation and incentives.
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Appendix A

Supporting Results for Chapter 1

A.1 Analysis of Model Inaccuracy in Section 1.4

We have shown in the main text that the modeling process described in Section 1.4 incor-
porates major wind characteristics and leads to efficient ES-transmission planning problem
formulation (1.13). However, these merits come at the cost of three sources of model in-
accuracy: (i) The use of uniform distribution approximation of wind outputs at individual
wind farms affects the sizing of the transmission lines that are upstream of the junction
sites. (ii) The similar approximation applied to the aggregated wind outputs at the junc-
tion sites affects the sizing of the downstream transmission lines. (iii) Myopically sizing
the upstream transmission lines without considering additional capacity cost downstream
of the junction sites creates model suboptimality. The first source of model inaccuracy has
been demonstrated in Section 1.4 to be reasonably small. In this section, we quantify and
explain the second and the third components of model inaccuracy using numerical and/or
theoretical analysis. The objectives of this analysis are to show that the model inaccuracy
is reasonably small in most practical settings and to gain more insights into the nature of
this infrastructure planning problem.

Errors of Approximating Aggregated Curtailed Wind Output at a
Junction Site

We first investigate the approximation errors of the aggregated wind outputs and show that
the errors are reasonably small under practical parameter settings. The numerical example
in Section 1.4 has demonstrated that approximating wind output by uniform distribution
incurs reasonably small cost error in the single-farm scenario. In the multiple-farm scenario,
however, even if uniformly distributed, the wind outputs at the individual farms get first
curtailed by the ES-free transmission lines and then aggregated, resulting in non-uniform
wind outputs faced by the junction sites. In order to characterize those aggregated wind
outputs as closed-form expressions (1.12a) and (1.12b), we applied uniform distribution
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approximation again - first to the individually curtailed and then to the aggregated outputs.
To investigate this approximation error, we consider the following scenario: Three wind

farms generate power flows that are correlated, have the same probability distribution and
travel the same distance before getting aggregated at a junction site. This simplified setting is
adequate for us to observe the effect of energy curtailment and aggregation. In the meantime,
it minimizes the number of parameters to perturb. Given wind power data, each instance
of the numerical test can be fully characterized by three parameters: the downstream trans-
mission distance, the correlation coefficient between the wind outputs and the single value
of upstream curtailment factor η as defined in (1.9), which has one-one correspondence to
the upstream transmission distance.

Figure A.1 (a) shows the distribution of the real wind output at a single farm. The spike of
the high power results from the rated power limit of wind turbines. The outputs at the other
two farms are generated by re-sampling from the same data to have the same probability
distribution and the specified correlation. Figures A.1 (b)-(f) are the histograms of the
distributions of the aggregated wind outputs (in dark bars) and their uniform distribution
approximations (in light bars) based on (1.12a) and (1.12b). We observe that, as expected,
either decreasing the inter-farm correlation or increasing the upstream curtailment results
in more non-uniform profile of the aggregated output distribution. Notice that the uniform
distribution may poorly approximate the real profile if the upstream curtailment is extremely
high, as represented by Figure A.1 (f).
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Figure A.1: Aggregated wind outputs with different degrees of correlation and curtailment.

We next define metrics of the approximation error. We first evaluate the downstream
variable cost, which is the sum of the transmission capacity cost and the friction (curtailment)
cost that are downstream of the ES-coupled (ES-free) junction site, in three different ways:
(i) The real cost is generated with real wind output data and with downstream transmission
capacity prescribed by (1.4) ((1.9)). (ii) The actual optimal cost is generated with the same
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real data and with the downstream transmission capacity found by line-search that leads to
the minimum downstream variable cost. (iii) The approximated cost is given by equation
(1.10) ((1.5)). Then we use the following two error metrics: (i) The real error refers to
the relative error between the real cost and the actual optimal cost; (ii) and the model error
refers to the relative error between the approximated cost and the actual optimal cost. These
two metrics, from the cost perspective, are consistent with most of error analysis in the main
text. They also isolate the approximation error in the sense that the inaccuracy due to
myopically sizing the upstream transmission lines becomes irrelevant, since the upstream
transmission capacity is fixed in each instance as given by (1.9).

For the case where the junction site is co-located with ES, Figure A.2 shows the cost
errors of 300 numerical test instances with different parameter values. One can see that the
real cost errors are less than 3% in almost all the instances, which is a strong indication that
the prescribed downstream transmission line capacity is near-optimal. When the junction-
load distance is long and the degree of the upstream curtailment is high, the real error tends
to be zero, since both the prescribed and the actual optimal line capacity tends to be the
average wind power. The model errors are in general greater than the real errors, but are
still contained within ±10% in most instances.
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Figure A.2: Real and model errors of uniform distribution approximation with an ES-coupled
junction site.
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For the case where the junction site has no ES, Figure A.3 shows the cost errors of
another 300 numerical test instances, from which we make the following observations: (i)
Overall, the cost errors are greater than their counterparts in the ES-coupled case. This is
because the absence of ES leads to the choice of higher downstream transmission capacity.
The uniform distribution approximation is less effective when the line capacity is closer to
the maximum wind power, since the curtailment loss, as represented by the right tail of
the real wind output distribution, becomes more non-uniform and thus more difficult to
approximate. (ii) Instances with lower correlation between individual wind outputs have
smaller real and model errors, as a result of the evener output profile as discussed previously.
It suggests that spatial pooling enhances the accuracy of uniform distribution approximation
by reducing the wind power variability. (iii) The approximation errors (particularly the real
errors) are still moderate when the upstream curtailment η < 0.5. Although we consider
the full range of values of η for demonstration purposes, in reality, however, farm-junction
transmission distance should be relatively short to save the ES-free transmission line cost
and prevent substantial curtailment loss. For example, η is only 0.07 when the farm-junction
distance is 50 miles in our numerical test setting; the associated approximation error is very
small.
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Figure A.3: Real and model errors of uniform distribution approximation with an ES-free
junction site.
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With the above numerical studies, we conclude that the error of approximating wind
output distribution using uniform distribution can be reasonably small in practical settings.
Spatial pooling of wind outputs and the deployment of ES systems both help enhance this
approximation accuracy.

Sub-optimality Due to Myopically Sizing a Transmission Line
Upstream of a Junction Site

Another source of model inaccuracy stems from the oversizing of the transmission lines. We
next describe an analytical approach to quantifying this inaccuracy, and then use numerical
experiments to justify that the inaccuracy is indeed minor.

For tractability reason, planning model (1.13) incorporates (1.9) developed in the single-
farm scenario as the farm-junction transmission line capacities. These capacity quantities do
not take into account the additional transmission capacity cost downstream of the junction
sites, and thus tend to be larger-than-optimal. Consequently, with less curtailment loss from
upstream, the transmission lines downstream of the junction sites expect to deliver more-
than-optimal wind power, so their capacities prescribed by the model is no-less-than-optimal.

To analyze this sub-optimality, we use the following problem setting: Uniformly dis-
tributed power is generated from a single wind farm, curtailed and transmitted by an ES-
free line down to an ES-coupled (ES-free) junction site that is lu miles away, and then flows
another (l − lu) miles through an economic (ES-free) line to get to the load center. This
simplified setting not only enables us to analytically quantify the sub-optimality, but also
excludes the model inaccuracy that is caused by approximating wind outputs at different
stages.

The sub-optimality can be measured as the relative error between the expected real to-
tal cost and the expected optimal total cost. To compute the expected real total cost, the
capacity of the transmission line upstream of the junction site is given by (1.9), while that
capacity downstream the junction site is the minimizer of the expected total downstream
curtailment (friction) and capacity cost. On the other hand, the expected optimal total cost
is found by jointly optimizing the upstream and the downstream transmission capacities.

The ES-free Case
For the scenario where the junction site has no ES, the following proposition gives an

upper bound of the sub-optimality.

Proposition 5. In the above problem setting with a single wind farm generating power
wt ∼ Unif(µ− ε

2
, µ+ ε

2
), suppose µ− ε

2
≥ 0 and there is no ES system at the junction site.

Then an upper bound of the sub-optimality due to myopically sizing the upstream transmission
line is given by

(i) 1
3

η
(2−η)

, if lu ∈ [0, l
2
);

(ii) 1
4

η
(2−η)

, if lu ∈ [ l
2
, l];

where η = alδ
p
< 1.
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Proof of Proposition 5: First consider the scenario of optimally sizing the transmission lines
upstream and downstream of the junction site. Obviously, it is never optimal to assign
different capacities to these two segments. Therefore, the problem is reduced to the single-
farm case without ES in Section 1.4, where a single wind farm delivers power through a
single line to the load center. The expected optimal total cost is given by (1.10), which we
explicitly rewrite here:

v∗ = alµ+ al(
1

2
− 1

2

δal

p
)ε. (A.1)

As to the case of myopically sizing the upstream transmission line, its capacity and the
expected upstream cost are given by (1.9) and (1.10), respectively, as follows:

Cu = µ+ (
1

2
− ηu)ε, (A.2a)

vu = aluµ+ alu(
1

2
− 1

2
ηu)ε, (A.2b)

where ηu = δalu
p

indicates the degree of curtailment of the upstream line. Consequently,
the junction site faces curtailed wind output w̌t that has the following cumulative density
function:

Fw̌t(w) =


0, if w < µ− ε/2;
w−(µ−ε/2)

ε
, if µ− ε/2 ≤ w < Cu;

1, if w = Cu.

(A.3)

Choosing the quantity of downstream line capacity with uncertain wind power is a
newsvendor type of problem. The overage cost is the per-unit capacity cost δa(l − lu) and
the underage cost is the per-unit profit p − δa(l − lu). Therefore, the newsvendor critical

fractile is p−δa(l−lu)
p

. Note that Fw̌t(·) is not left-continuous at w = Cu = µ+ (1
2
− ηu)ε, since

Fw̌t(C
−
u ) = 1− ηu < Fw̌t(Cu) = 1. This jump discontinuity leads to the following two cases:

Case (i): lu <
1
2
l. This is equivalent to the critical fractile p−δa(l−lu)

p
< 1− δalu

p
= 1− ηu.

Then the downstream transmission capacity is given by:

Cd = F−1
w̌t

(p−δa(l−lu)
p

)

= µ− ε/2 + p−δa(l−lu)
p

ε

= µ+ (1
2
− a(l−lu)δ

p
)ε.

(A.4)

The expected downstream curtailment loss is calculated as follows:

E[ld] =
∫ Cu
Cd

(wt − Cd)1
ε
dwt + P(wt ≥ Cu)(Cu − Cd)

=
∫ µ+( 1

2
−aluδ

p
)ε

µ+( 1
2
−a(l−lu)δ

p
)ε

(wt − µ− (1
2
− a(l−lu)δ

p
)ε)1

ε
dwt

+aluδ
p

(µ+ (1
2
− aluδ

p
)ε− µ− (1

2
− a(l−lu)δ

p
)ε)

= ε
2
(aδ
p

)2(l2 − 2lul).

(A.5)
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Adding the cost terms together yields the expected real total cost:

v = vu + p
δ
E[ld] + Cda(l − lu)

= alµ+ [al
2
− a2δ

2p
(3l2u − 2lul + l2)]ε.

(A.6)

Comparing (A.1) and (A.6), the absolute sub-optimality is bounded as follows:

v − v∗ = [al
2
− a2δ

2p
(3l2u − 2lul + l2)]ε− al(1

2
− 1

2
δal
p

)ε

= δa2

2p
ε(2lul − 3l2u)

≤ δa2

6p
εl2,

(A.7)

since (2lul − 3l2u) reaches its maximum, 1
3
l2, when lu = 1

3
l. Therefore, the relative subopti-

mality in case (i) is bounded as follows:

v−v∗
v∗

≤
δa2

6p
εl2

alµ+al( 1
2
− 1

2
δal
p

)ε

≤
δa2

6p
εl2

al ε
2

+al( 1
2
− 1

2
δal
p

)ε
(since µ− ε/2 ≥ 0)

=
δal
p

6(1− δal
2p

)

= 1
3

η
2−η ,

(A.8)

where η = δal
p

. We thus complete the proof of Proposition 5 (i).

Case (ii): lu ≥ 1
2
l. This is equivalent to the critical fractile p−δa(l−lu)

p
≥ 1− δalu

p
= 1− ηu.

Since Fw̌t(Cd) < 1 − ηu ∀Cd < Cu, we know that the choice of downstream line capacity
Cd = Cu = µ+ (1

2
− ηu)ε. Therefore, no curtailment occurs downstream of the junction site.

The expected real total cost can thus be calculated as:

v = vu + Cda(l − lu)
= aluµ+ alu(

1
2
− 1

2
ηu)ε+ [µ+ (1

2
− ηu)ε]a(l − lu)

= alµ+ [al(1
2
− δalu

p
) + p

2δ
( δalu

p
)2]ε.

(A.9)

Comparing (A.1) and (A.9), the absolute sub-optimality is bounded as follows:

v − v∗ = [al(1
2
− δalu

p
) + p

2δ
( δalu

p
)2]ε− al(1

2
− 1

2
δal
p

)ε

= δa2ε
2p

(l − lu)2

≤ δa2ε
8p
l2,

(A.10)

where the last inequality is due to the fact that (v − v∗) is monotonically decreasing in lu
for lu ∈ [1

2
l, l] and is thus maximized when lu = 1

2
l. Therefore, the relative suboptimality in

case (ii) is bounded as follows:
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v−v∗
v∗

≤
δa2ε
8p

l2

alµ+al( 1
2
− 1

2
δal
p

)ε

≤
δa2ε
8p

l2

al ε
2

+al( 1
2
− 1

2
δal
p

)ε
(since µ− ε/2 ≥ 0)

=
δal
p

8(1− δal
2p

)

= 1
4

η
2−η .

(A.11)

We thus complete the proof of Proposition 5 (ii).

The ES-coupled Case
Similar analysis of sub-optimality can be applied to the scenario where the junction site

is coupled with an ES system. However, complete analysis turns out to involve excessive
case discussion and complicated high-order terms in the bounds expressions, revealing little
insight into the problem. Therefore, below we discuss only one case, which is common and is
the most representative of the problem, as defined by three conditions: (i) The downstream
economic transmission line capacity is greater than the mean of the upstream curtailed wind
output. Otherwise the downstream line capacity would have to be the equal to the mean
upstream output, which loses the information about how the parameters affect the capacity
choice. (ii) The upstream transmission distance accounts for a limited proportion of the
entire transmission distance. Otherwise the downstream transmission capacity would tend
to be equal to the upstream transmission capacity and the problem would be reduced to
the ES-free scenario. (iii) The ES system is not severely inefficient. The conditions and the
result of the analysis are formalized in the following proposition:

Proposition 6. In the above problem setting, suppose µ− ε
2
≥ 0 and there is an ES system at

the junction site. Under the conditions (i) µ+ ε(1
2
− a(l−lu)δ

p(1−αβ)
) ≥ µ− 1

2
ε(aluδ

p
)2, (ii) lu <

l
2−αβ ,

and (iii) αβ ∈ [0.5, 1), an upper bound of the sub-optimality due to myopically sizing the
upstream transmission line is given by 1

9
θ

(2−θ) , where θ = alδ
(1−αβ)p

.

Proof of Proposition 6: Proving Proposition 6 requires the closed-form expressions of the
expected real total cost and the expected optimal total cost, which we summarize in the
following two lemmas and prove them at the end of this proof:

Lemma 1. Under conditions (i) and (ii) in Proposition 6, the expected real total cost is

v = al(µ+ ε/2)− a2δ(1−αβ)l2u+2δa2(l−lu)2

2p(1−αβ)
ε.

Lemma 2. Under conditions (ii) and (iii) in Proposition 6, the expected optimal total cost

is v∗ = al(µ+ ε/2)− a2δ[αβl(l−2lu)+l2u]
2pαβ(1−αβ)

ε.

Given these two lemmas, the absolute sub-optimality is calculated as follows:
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v − v∗ = al(µ+ ε/2)− a2δ(1−αβ)l2u+2δa2(l−lu)2

2p(1−αβ)
ε− al(µ+ ε/2) + a2δ[αβl(l−2lu)+l2u]

2pαβ(1−αβ)
ε

= a2δε
2αβ(1−αβ)p

[−αβ(1− αβ)l2u − 2αβ(l − lu)2 + αβl(l − 2lu) + l2u]

= a2δε
2αβ(1−αβ)p

[−αβl2 + 2αβllu + (1− 3αβ + α2β2)l2u]

= a2δε
2αβ(1−αβ)p

[l2u(1− αβ)2 − αβ(lu − l)2],

(A.12)

which is clearly increasing in lu when lu < l. Following condition (ii), letting lu = l
2−αβ

generates the following upper bound of the absolute sub-optimality:

v − v∗ < a2δε
2αβ(1−αβ)p

[(1−αβ
2−αβ )2l2 − αβ(αβ−1

2−αβ )2l2]

= a2δε
2αβp

(1−αβ
2−αβ )2l2.

(A.13)

We next derive a lower bound of v∗. This is equivalent to finding the value of lu that
maximizes m(lu) = αβl(l − 2lu) + l2u, which is the part of the expression of v∗ that involves
lu. Being a quadratic function of lu, m(lu) is deceasing for lu ∈ [0, αβ) and increasing
for lu ∈ [αβ, l

2−αβ ). Following condition (iii) that αβ ∈ [0.5, 1), it can be verified that

αβ > 1
2

l
2−αβ . Therefore, m(0) = αβl2 is greater than m( l

2−αβ ) and is thus the maximum of

m(lu) for lu <
l

2−αβ . Subsequently, we obtain the following lower bound of v∗:

v∗ ≥ al(µ+ ε/2)− a2δm(0)
2pαβ(1−αβ)

ε

= al(µ+ ε/2)− a2δl2

2p(1−αβ)
ε

≥ alε− a2δl2

2p(1−αβ)
ε,

(A.14)

where the last inequality is due to the assumption that µ− ε/2 ≥ 0. Combining inequalities
(A.13) and (A.14), we obtain the following upper bound of the suboptimality:

v−v∗
v∗

<
a2δε
2αβp

( 1−αβ
2−αβ )2l2

alε− a2δl2

2p(1−αβ) ε

=
( 1−αβ
2−αβ )2

2αβ

aδl
p

1− aδl
2(1−αβ)p

=
( 1−αβ
2−αβ )2

2αβ
(1−αβ)θ

1− θ
2

,

(A.15)

where θ = alδ
(1−αβ)p

. While (A.15) already presents an upper bound of the suboptimality,

we further simplify it to exclude αβ. Using condition (iii) that αβ ∈ [0.5, 1), we have
1−αβ
2−αβ = 1 − 1

2−αβ ≤ 1 − 1
2−0.5

= 1
3

and 1 − αβ ≤ 0.5. Therefore, the upper bound can be
relaxed and simplified as

v−v∗
v∗

<
( 1
3

)2

1

1
2
θ

1− θ
2

= 1
9

θ
(2−θ) . (A.16)

Proof of Lemma 1: To derive the expected real total cost, we first immediately know from
(1.9) that the upstream transmission capacity is
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Cu = µ+ (
1

2
− aluδ

p
)ε, (A.17)

and from (1.10) that the expected real cost upstream of the junction is

vu = aluµ+ alu(
1

2
− 1

2

aluδ

p
)ε. (A.18)

Given Cu and the consequent wind output that is curtailed at Cu and uniformly dis-
tributed in [µ − 1

2
ε, Cu), the expected downstream friction loss as a function of the down-

stream transmission capacity Cd becomes

E[ld] =
∫ Cu
Cd

(wt − Cd)(1− αβ)1
ε
dwt + P(wt ≥ Cu)(Cu − Cd)(1− αβ)

=
∫ µ+( 1

2
−aluδ

p
)ε

Cd
(wt − Cd)(1− αβ)1

ε
dwt + aluδ

p
(µ+ (1

2
− aluδ

p
)ε− Cd)(1− αβ)

= 1−αβ
2ε

(µ+ (1
2
− aluδ

p
)ε− Cd)2 + aluδ

p
(µ+ (1

2
− aluδ

p
)ε− Cd)(1− αβ).

(A.19)

The expected real downstream cost becomes

vd(Cd) = a(l − lu)Cd + p
δ
E[ld]

= a(l − lu)Cd + 1−αβ
2δε

(µ+ (1
2
− aluδ

p
)ε− Cd)2 + palu(µ+ (1

2
− aluδ

p
)ε− Cd)(1− αβ)

= 1−αβ
2δε

C2
d + [−p(1−αβ)(µ+( 1

2
−aluδ

p
)ε)

δε
− palu(1− αβ) + a(l − lu)]Cd

+1−αβ
2δε

(µ+ (1
2
− aluδ

p
)ε)2 + palu(µ+ (1

2
− aluδ

p
)ε)(1− αβ).

(A.20)
Applying the first-order condition, we obtain the minimizer of vd(Cd)

C∗d = µ+ ε(
1

2
− aδ(l − lu)
p(1− αβ)

). (A.21)

Condition (i) imposes that this quantity is greater than the mean of the upstream wind

output (which is given by (A.31)); condition (ii) is equivalent to µ+ε(1
2
− aδ(l−lu)

p(1−αβ)
) < µ+(1

2
−

aluδ
p

)ε, or C∗d < Cu, so that ES is necessary. Therefore, C∗d is the downstream transmission

capacity. Substituting Cd with C∗d in (A.20) yields the expected real downstream cost:

v∗d = a(l − lu)(µ+ 1
2
ε− δεa(l−lu)

p(1−αβ)
) + palu[

δεa
p

( l−lu
1−αβ − lu)](1− αβ)

+p(1−αβ)
2δε

[ δεa
p

( l−lu
1−αβ − lu)]

2.
(A.22)

Then the expected real total cost is the sum of the expected upstream and downstream
real costs as given in (A.18) and (A.22):

v = vu + v∗d
= al(µ+ ε

2
)− a2δ(1−αβ)l2u+2δa2(l−lu)2

2p(1−αβ)
ε.

(A.23)
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Proof of Lemma 2:
The evaluation of the expected real total cost needs joint optimization of transmission

capacities both upstream and downstream of the junction site, denoted by Cu and Cd,
respectively. From (1.8) we know that the expected upstream cost is

vu(Cu) =
p

2εδ
(µ+

ε

2
− Cu)2 + aluCu. (A.24)

Given Cu, Cd and the wind output that is curtailed at Cu and uniformly distributed in
[µ− 1

2
ε, Cu), the expected downstream friction loss becomes

E[ld] =
∫ Cu
Cd

(wt − Cd)(1− αβ)1
ε
dwt + P(wt ≥ Cu)(Cu − Cd)(1− αβ)

= 1−αβ
2ε

(Cu − Cd)2 + µ+ε/2−Cu
ε

(Cu − Cd)(1− αβ)

= −1−αβ
2ε

C2
u + 1−αβ

2ε
C2
d + (µ+ε/2)(1−αβ)

ε
(Cu − Cd).

(A.25)

The expected downstream cost is

vd(Cu, Cd) = a(l − lu)Cd + p
δ
E[ld]

= −p(1−αβ)
2εδ

C2
u + p(µ+ε/2)(1−αβ)

εδ
Cu + p(1−αβ)

2εδ
C2
d + [a(l − lu)− p(µ+ε/2)(1−αβ)

εδ
]Cd.
(A.26)

Then the expected total cost becomes

v(Cu, Cd) = vu(Cu) + vd(Cu, Cd)

= αβp
2δε
C2
u + (2aδεlu−2αβµp−αβpε)

2δε
Cu

+p(1−αβ)
2εδ

C2
d + [a(l − lu)− p(µ+ε/2)(1−αβ)

εδ
]Cd + p

2εδ
(µ+ ε

2
)2.

(A.27)

Note that the bilinear term CuCd cancels out in (A.25). As a result, the optimal upstream
and downstream transmission capacities, C∗u and C∗d , do not depend on each other. Applying
the first-order condition to (A.27) with respect to Cu and Cd, respectively, we obtain

C∗u = µ+ ε(
1

2
− aδlu
αβp

), (A.28a)

C∗d = µ+ ε(
1

2
− aδ(l − lu)

(1− αβ)p
). (A.28b)

Plugging (A.28a) and (A.28b) into (A.27) yields the expected optimal total cost given as
follows:

v∗ = v(C∗u, C
∗
d) = al(µ+ ε/2)− a2δ[αβl(l−2lu)+l2u]

2pαβ(1−αβ)
ε. (A.29)

Remarks



APPENDIX A. SUPPORTING RESULTS FOR CHAPTER 1 75

In most of practical settings of parameter values, η and θ are both much less than
one, suggesting that the model suboptimality as bounded in Propositions (5) and (6) are
well-contained. Moreover, these propositions as well as their proofs lead to the following
observations about the properties of the problem:

Curtailment-independence of downstream transmission capacity. After myopically sizing
the upstream transmission lines in both the ES-free and ES-coupled scenarios, we may choose
the downstream transmission capacity as if there were no upstream curtailment at all (though
it should not exceed the upstream line capacity). To see this point, notice that, under
proper conditions, the downstream transmission capacities prescribed in (A.4) and (A.21)
are identical with those prescribed by (1.9) and (1.4), respectively, where there assumes to
be no upstream curtailment. This effect of curtailment-independence might be against the
intuition that higher degree of upstream curtailment would result in more conservative sizing
of the downstream line. However, it can be understood by noticing that the power that has
been curtailed by the upstream line, no matter how much it is, is forgone and irrelevant to
the downstream power transmission. In other words, upstream curtailment does not affect
the profile of the wind power that can be transmitted via the downstream line.

This property may help simplify planning model (1.13). Specifically, we may replace
those farm-junction-specific wind characteristics (e.g., moments given by (11)) simply with
wind characteristics at each wind farm. This simplification frees us from approximating
curtailed wind power distribution by uniform distribution, which may also help reduce the
approximation error.

Decoupling of the joint optimization of upstream and downstream transmission capacities.
Proof of Lemma 2 shows that, under the given conditions, the jointly optimal upstream and
downstream transmission capacities given by (A.28) can actually be obtained in a decoupled
fashion, since the cross term of these two quantities cancels out in the expression of the
expected total cost (A.27). The explanation of the curtailment-independence of downstream
transmission capacity also applies here.

More interestingly, two consequences of this decoupling effect presents more insights into
our planning model. First, the jointly optimal downstream transmission capacity given by
(A.28b) turns out to be identical to that capacity given by (A.21) following the sub-optimal
approach, which is employed in our planning problem formulation. It suggests that, the
downstream transmission capacity, which accounts for a major part of the total cost in
reality, can be prescribed to be near-optimal by our planning model.

On the other hand, the jointly optimal upstream transmission capacity given by (A.28a)
differs from the myopically determined quantity (A.17) in the degree of curtailment by a
factor of 1

αβ
. In this way, the optimal sizing of upstream transmission takes the ES conversion

efficiency into account, tending to curtail more power if it anticipates more friction loss
downstream. Therefore, we may partly offset the suboptimality of planning model (1.13) by
replacing η = δq

p
with η̃ = δq

αβp
in the terms of upstream variable cost of the objective function

(1.13a). More specifically, the terms in the second bracket in (1.13a) can be replaced with
the following terms:
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∑
j∈J

∑
i∈I

[qijµi + qij(
1

2
− 1

2
η̃ij)εi]Yij +

∑
j∈J

∑
i∈I

[qijµi + qij(
1

2
− 1

2
ηij)εi]Zij. (A.30)

Numerical Tests
We next carry out numerical tests for further validation. Note that the optimal total cost

is found by doing two-dimensional line-search over the upstream and downstream transmis-
sion capacities given 2, 000 hours of uniformly distributed wind power from the wind farm.

In the ES-free scenario, we generate 10, 000 test instances for different values of l ∈
[10, 460] and lu ∈ [0, l]. In the ES-coupled scenario, we generate 100, 000 test instances for
different values of l ∈ [10, 460], lu ∈ [0, l] and αβ ∈ {0.3, 0.8}. The resulting suboptimality
as the relative error of the real total cost against the optimal total cost is summarized in
Table A.1. Note that the maximum suboptimality in the ES-free scenario, 33.6%, is close to
the upper bound 1

3
given by Proposition (5) when η = δal

p
= 1. When only considering more

practical cases where η ≤ 0.5 (i.e., l < 230 miles), this suboptimality becomes much smaller
in both cases.

The resulting suboptimality averages 2.48% with maximum 25.3%. Again, when only
considering those instances with η ≤ 0.5, the suboptimality becomes much smaller, averaging
0.41% with maximum 4.97%.

Table A.1: Model suboptimality due to myopically sizing an upstream transmission line.

ES-Free ES-Coupled
Mean Maximum Mean Maximum

η ∈ (0, 1) 5.68% 33.6% 1.34% 5.18%
η ∈ (0, 0.5] 2.48% 25.3% 0.41% 4.97%

Overall Model Inaccuracy

The overall model inaccuracy consists of the model suboptimality and the distribution ap-
proximation errors of the wind outputs at individual farms and at the junction sites. To
numerically investigate the overall model inaccuracy, we again use the same three-farm sce-
nario that is used to investigate the approximation error of aggregated wind outputs. How-
ever, for the purpose of incorporating model suboptimality, we also evaluate the upstream
transmission capacity, both myopically using formula (1.9) and optimally using line-search.
The overall model inaccuracy is then measured as the relative error between the real total
cost and the optimal total cost.

In the ES-free scenario, we generate 5, 000 instances for different values of l ∈ [20, 460],
lu ∈ [0, l] and ρ ∈ {0.3, 0.8}. In the ES-coupled scenario, we generate 200, 000 instances for
different values of l ∈ [20, 460], lu ∈ [0, l], ρ ∈ {0.3, 0.8} and αβ ∈ [0.5, 0.99]. The resulting
overall model inaccuracy is summarized in Table A.2. Through the numerical experiments,
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we observe, again, that large errors occur in the less realistic scenario where the whole
transmission distance is too long to be profitable. For those instances with η ≤ 0.5 in both
the ES-free and ES-coupled scenarios, the maximum error is significantly smaller as shown
in Table A.2.

Table A.2: Overall model inaccuracy.

ES-Free ES-Coupled
Mean Maximum Mean Maximum

η ∈ (0, 1) 10.7% 39.4% 7.08% 30.7%
η ∈ (0, 0.5] 8.25% 17.6% 6.42% 14.8%

In summary, we have demonstrated that the model inaccuracy due to uniform distribu-
tion approximation of wind outputs and myopically sizing upstream transmission lines is
reasonably small in most practical settings. Under some less realistic conditions, however,
the model inaccuracy can be substantial. We also provide closed-form upper bounds of model
suboptimality and present more insights that may potentially improve our planning model.

A.2 Proofs

Derivation of Equations (1.11a) and (1.11b)

In Section 1.4 we use uniform distribution to approximate the probability distribution of the
curtailed wind power wt,ij, which is from farm i and faced by site j. When ηij < 1, we claim
that this uniform distribution has mean and interval length as follows:

µij = µi −
1

2
εiη

2
ij, (1.11a)

εij =
√

(1− ηij)3(1 + 3ηij)εi. (1.11b)

To see (1.11a), note that the expected wind power that is curtailed by a transmission
line of capacity C can be expressed as:

µc =
∫ C
µ− ε

2
w 1
ε
dw + CP(wt ≥ C)

= 1
ε

1
2
[C2 − (µ− ε

2
)2] + C

ε
(µ+ ε

2
− C)

= C − (C−µ+ ε
2

)2

2ε
.

(A.32)

Substituting C with the optimal quantity µ + (1
2
− η)ε as given by (1.9) yields the

expression of the expected curtailed wind power given by (1.11a).
As for (1.11b), the second moment of the wind power curtailed by a line with capacity

C is:
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E[w2
t,c] =

∫ C
µ− ε

2
w2 1

ε
dw + C2P(wt ≥ C)

= 1
ε

1
3
[C3 − (µ− ε

2
)3] + C2

ε
(µ+ ε

2
− C).

(A.33)

The variance of this curtailed wind power becomes:

V ar(wt,c) = E[w2
t,c]− µ2

c

= (2C−2µ+ε)3(−6C+6µ+5ε)
192ε2

.
(A.34)

Again substituting C with the optimal quantity µ + (1
2
− η)ε into the above equation

yields:

V ar(wt,c) =
(1− η)3(1 + 3η)ε2

12
. (A.35)

The interval length of this uniform distribution becomes:

εc =
√

12V ar(wt,c) =
√

(1− η)3(1 + 3η)ε, (A.36)

which proves (1.11b).

Proof of Proposition 1

Proposition (1). Assume Cδb ≥ E[wb,τ ], and suppose f̃s(s) is an approximation of fs(s)
such that f̃s(s) is constant in the open interval (0, S). Then

(i) P̃(sτ = S) ≥ P(sτ = S);
(ii) Ẽ[oτ ] ≥ E[oτ ],

where P̃(·) and Ẽ[·] denote probability and expectation with respect to f̃s, respectively.

Proof of Proposition 1(i).
Throughout the proofs of Propositions 1, 2 and 3, we use Pw(·) and Ew[·] to denote

probability and expectation with wind output wb,τ+1 being the underlying random variable,
respectively.

In order to prove Proposition 1(i), we first express P(sτ = S) and P(sτ = 0) in terms of
fs(s). From (1.14), which describes the transition of sτ , the recursive formulae of P(sτ = S)
and P(sτ = 0) in the long run are given as follows:

P(sτ = S) =
∫ S−

0+
Pw(s+ α(wb,τ+1 − Cδb) ≥ S)fs(s)ds

+Pw(wb,τ+1 ≥ Cδb)P(sτ = S) + Pw(α(wb,τ+1 − Cδb) ≥ S)P(sτ = 0),
(A.37)

P(sτ = 0) =
∫ S−

0+
Pw(βs ≤ Cδb −wb,τ+1)fs(s)ds

+Pw(wb,τ+1 ≤ Cδb)P(sτ = 0) + Pw(βS ≤ Cδb −wb,τ+1)P(sτ = S).
(A.38)
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The last term on the RHS of (A.37) and the last term on the RHS of (A.38) are zero, since
Pw(α(wb,τ+1 − Cδb) ≥ S) = Pw(βS ≤ Cδb −wb,τ+1) = 0, according to the first assumption
that we make prior to Proposition 1. Rearranging the terms in the above equations yields:

P(sτ = S) =
1

1− Pw(wb,τ+1 ≥ Cδb)

∫ S−

0+
Pw(s+ α(wb,τ+1 − Cδb) ≥ S)fs(s)ds, (A.39)

P(sτ = 0) =
1

1− Pw(wb,τ+1 ≤ Cδb)

∫ S−

0+
Pw(βs ≤ Cδb −wb,τ+1)fs(s)ds. (A.40)

For notational simplicity, let

A(s) =
Pw(s+ α(wb,τ+1 − Cδb) ≥ S)

1− Pw(wb,τ+1 ≥ Cδb)
, (A.41)

B(s) = 1 +
Pw(βs ≤ Cδb −wb,τ+1)

1− Pw(wb,τ+1 ≤ Cδb)
. (A.42)

We thus have P(sτ = S) =
∫ S−

0+
A(s)fs(s)ds and P(sτ = 0) =

∫ S−
0+

(B(s) − 1)fs(s)ds.
Notice that, in the interval (0, S), A(s) is always positive and increasing in s, whereas B(s)
is always positive and decreasing in s. Then substituting (A.39)-(A.42) into the identity

P(sτ = S) +
∫ S−

0+
fs(s)ds+ P(sτ = 0) = 1, we obtain∫ S−

0+
(A(s) +B(s))fs(s)ds = 1. (A.43)

We repeat the above procedure from (A.37) to (A.42), with P(·) and fs(·) being replaced
with P̃(·) and f̃s(·), respectively. Notice that both A(s) andB(s) are functions of probabilities
of wind outputs, which are independent from any probability distribution of storage level.
Therefore, the resulting expressions of A(s) and B(s) are identical to those given by (A.41)
and (A.42). Since f̃s(s) is also defined as pdf of the storage level, we thus obtain∫ S−

0+
(A(s) +B(s))f̃s(s)ds = 1. (A.44)

Comparing Eqns.(A.43) and (A.44) gives∫ S−

0+
(A(s) +B(s))[fs(s)− f̃s(s)]ds = 0. (A.45)

We have assumed that fs(s) is decreasing in s on (0, S). This assumption can be reasoned
as follows: we have chosen the interval length δb such that {wb,τ} is an i.i.d process. And
notice that Cδb is greater than or equal to the mean of wb,τ . Therefore, at certain storage
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level sτ , the probability of charge is greater than or equal to the probability of discharge.
Also notice that α, β ∈ (0, 1), indicating that any difference ∆S = |Cδb − wb,τ | results in
smaller magnitude of increase in sτ when Cδb > wb,τ than the magnitude of decrease in
sτ when Cδb < wb,τ because of the friction loss. We thus know that fs(sτ + ∆S|sτ ) <
fs(sτ −∆S|sτ ),∀sτ ,∆S satisfying 0 < sτ −∆S < sτ < sτ + ∆S < S. We do not establish a
similar inequality of conditional probability given sτ = 0 or S. However, since S is assumed to
be large enough and real wind output distribution is smooth and continuous, unconditioned
density function fs(s) is tested to be decreasing in s on the open interval (0, S).

With the above monotonic assumption, since f̃s(s) is constant, and A(s), B(s) > 0 on
(0, S), we further know from (A.45) that fs(s)− f̃s(s) is decreasing in s and cross zero once
at the point denoted by smid ∈ (0, S).

To show P̃(sτ = S) ≥ P(sτ = S), it is equivalent to showing
∫ S−

0+
A(s)[fs(s)−f̃s(s)]ds ≤ 0.

Suppose, in order to derive a contradiction, that
∫ S−

0+
A(s)[fs(s) − f̃s(s)]ds > 0, which also

implies that
∫ S−

0+
B(s)[fs(s) − f̃s(s)]ds < 0 from (A.45). Construct a constant function

Ā(s) ≡ A(smid). Then Ā(s) > A(s),∀s ∈ (0, smid) and Ā(s) < A(s),∀s ∈ (smid, S). But we
also know that fs(s)− f̃s(s) > 0,∀s ∈ (0, smid) and fs(s)− f̃s(s) < 0,∀s ∈ (smid, S). It thus
follows that: ∫ S−

0+
Ā(s)[fs(s)− f̃s(s)]ds

>
∫ s−mid

0+ A(s)[fs(s)− f̃s(s)]ds+
∫ S−
smid

Ā(s)[fs(s)− f̃s(s)]ds
>

∫ s−mid
0+ A(s)[fs(s)− f̃s(s)]ds+

∫ S−
smid

A(s)[fs(s)− f̃s(s)]ds
=

∫ S−
0+

A(s)[fs(s)− f̃s(s)]ds
> 0.

(A.46)

Since Ā(s) ≡ A(smid) > 0, the above inequality immediately implies that
∫ S−

0+
[fs(s) −

f̃s(s)]ds > 0. However, following the similar approach, we also obtain that
∫ S−

0+
[fs(s) −

f̃s(s)]ds < 0 from the hypothesis
∫ S−

0+
B(s)[fs(s) − f̃s(s)]ds < 0. Therefore, a contradiction

is derived, which finishes the proof that P̃(sτ = S) ≥ P(sτ = S). �
Proof of Proposition 1(ii).

Let Λ denote the event that overflow occurs in the next interval. Then from Eqn.(A.41)

we have Pw(s+ α(wb,τ+1 − Cδb) ≥ S) = Pw(Λ|s) and A(s) = Pw(Λ|s)
1−Pw(wb,τ+1≥Cδb)

.

Conditioning on whether the storage level is at or below S, E[oτ ] and Ẽ[oτ ] can be
expressed as follows:

E[oτ ] = Ew[oτ |S]P(sτ = S) +

∫ S−

0+
Ew[oτ |Λ, s]Pw(Λ|s)fs(s)ds, (A.47)

Ẽ[oτ ] = Ew[oτ |S]P̃(sτ = S) +

∫ S−

0+
Ew[oτ |Λ, s]Pw(Λ|s)f̃s(s)ds. (A.48)
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In order to show Ẽ[oτ ] ≥ E[oτ ] by comparing the right-hand sides of (A.47) and (A.48),
first notice that Ew[oτ |S]P(sτ = S) ≤ Ew[oτ |S]P̃(sτ = S). Therefore, it suffices to show∫ S−

0+
Ew[oτ |Λ, s]Pw(Λ|s)[fs(s) − f̃s(s)]ds ≤ 0, or, equivalently,

∫ S−
0+

Ew[oτ |Λ, s]A(s)[fs(s) −
f̃s(s)]ds ≤ 0. To see why the latter statement is true, notice that Ew[oτ |Λ, s] is positive and
non-decreasing in s, andA(s) is positive. Therefore, Ew[oτ |Λ, s]A(s) ≤ Ew[oτ |Λ, smid]A(s),∀s ∈
(0, smid) and Ew[oτ |Λ, s]A(s) ≥ Ew[oτ |Λ, smid]A(s),∀s ∈ (smid, S). Again we already have
fs(s)− f̃s(s) > 0, ∀s ∈ (0, smid) and fs(s)− f̃s(s) < 0,∀s ∈ (smid, S). It thus follows that:

∫ S−
0+

Ew[oτ |Λ, s]A(s)[fs(s)− f̃s(s)]ds
≤

∫ s−mid
0+ Ew[oτ |Λ, smid]A(s)[fs(s)− f̃s(s)]ds+

∫ S−
smid

Ew[oτ |Λ, s]A(s)[fs(s)− f̃s(s)]ds
≤

∫ s−mid
0+ Ew[oτ |Λ, smid]A(s)[fs(s)− f̃s(s)]ds+

∫ S−
smid

Ew[oτ |Λ, smid]A(s)[fs(s)− f̃s(s)]ds
=

∫ S−
0+

Ew[oτ |Λ, smid]A(s)[fs(s)− f̃s(s)]ds
= Ew[oτ |Λ, smid]

∫ S−
0+

A(s)[fs(s)− f̃s(s)]ds
≤ 0.

(A.49)
where the last inequality is due to Ew[oτ |Λ, smid] > 0 and the proof by contradiction in

(i). Subsequently, we obtain Ẽ[oτ ] ≥ E[oτ ].

Proof of Proposition 2

Proposition (2). Assume wb,τ ∼ unif(µb − εb
2
, µb + εb

2
). Let A =

(Cδb−µb+
εb
2

)2

2β(µb+
εb
2
−Cδb)

and B =

α(µb+
εb
2
−Cδb)2

2(Cδb−µb+
εb
2

)
. Then

(i) For s ∈ (0, S), f̃s(s) ≡ f cs = 1
A+S+B

;

(ii) P̃(sτ = 0) = A
A+S+B

;

(iii) P̃(sτ = S) = B
A+S+B

.

Proof of Proposition 2.
Given wb,τ ∼ unif(µb− εb

2
, µb+

εb
2

) and wb,τ is i.i.d, we assume Cδb < µb+
εb
2

and Cδb >= µb
to be nontrivial. Following the transition model (1.14), we express the conditional probability
distribution of the storage level as follows:

Pw{sτ+1 = 0|sτ} =Pw{Cδb −wb,τ+1 ≥ βsτ}
=Pw{wb,τ+1 ≤ Cδb − βsτ}

=

{
0, if Cδb − βsτ < µb − εb

2
;

1
εb

[Cδb − βsτ − (µb − εb
2

)], if µb − εb
2
≤ Cδb − βsτ < µb + εb

2
.

(A.50)
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Pw{sτ+1 = S|sτ} =Pw{sτ + (wb,τ+1 − Cδb)α ≥ S}

=Pw{wb,τ+1 ≥
S − sτ
α

+ Cδb}

=

{
0, if S−sτ

α
+ Cδb > µb + εb

2
;

1
εb

[µb + εb
2
− S−sτ

α
− Cδb], if µb − εb

2
≤ S−sτ

α
+ Cδb ≤ µb + εb

2
.

(A.51)
To derive fsτ+1|sτ (u|sτ ), for infinitesimal storage level increment δu,

Pw{sτ+1 ∈ [u, u+ δu]|sτ}

=

{
Pw{sτ + α(wb,τ+1 − Cδb) ∈ [u, u+ δu]} if u ≥ sτ
Pw{sτ − 1

β
(Cδb −wb,τ+1) ∈ [u, u+ δu]} if u < sτ

=

{
Pw{wb,τ+1 ∈ [u,u+δu]−sτ

α
+ Cδb}, if u ≥ sτ ;

Pw{wb,τ+1 ∈ ([u, u+ δu]− sτ )β + Cδb}, if u < sτ .

(A.52)

Therefore,

fsτ+1|sτ (u|sτ ) =


1
αεb
, if u ∈ [sτ ,min{S, (µb + εb

2
− Cδb)α + sτ});

β
εb
, if u ∈ (max{0, µb−

εb
2
−Cδb
β

+ sτ}, sτ );
0, otherwise.

(A.53)

To obtain the approximated unconditional probability distribution of Sτ , notice that
fsτ+1(u) = fsτ (u) when τ is sufficiently large. Hence, in the case of uniformly distributed

wind energy wb,τ as well as the constant probability density f̃sτ (s) ≡ f cs ,∀s ∈ (0, S), we have

P̃(Sτ = 0) = P̃(sτ+1 = 0)

=
∫ Cδb−µb+

εb
2

β

0+
Cδb−βs−µb+

εb
2

εb
f̃sτ (s)ds+ P̃(Sτ = 0)

Cδb−µb+
εb
2

εb

=
fcs (Cδb−µb+

εb
2

)2

2βεb
+ P̃(Sτ = 0)

Cδb−µb+
εb
2

εb

⇒ P̃(Sτ = 0) = f cs
(Cδb − µb + εb

2
)2

2β(µb + εb/2− Cδb)
, (A.54)

and

P̃(Sτ = S) = P̃(sτ+1 = S)

=
∫ S−
S−α(µb+

εb
2
−Cδb)

µb+
εb
2
−S−s

α
−Cδb)

εb
f̃sτ (s)ds+ P̃(Sτ = S)

µb+
εb
2
−Cδb

εb

=
fcsα(µb+

εb
2
−Cδb)2

2εb
+ P̃(Sτ = S)

µb+
εb
2
−Cδb

εb

⇒ P̃(Sτ = S) = f cs
α(µb + εb

2
− Cδb)2

2(Cδb − µb + εb/2)
. (A.55)
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Substituting (A.54) and (A.55) into the identity P̃(Sτ = 0) + Sf cs + P̃(Sτ = S) = 1, we
obtain

f cs [
(Cδb − µb + εb

2
)2

2β(µb + εb/2− Cδb)
+ S +

α(µb + εb
2
− Cδb)2

2(Cδb − µb + εb/2)
] = 1.

Let A =
(Cδb−µb+

εb
2

)2

2β(µb+
εb
2
−Cδb)

and B =
α(µb+

εb
2
−Cδb)2

2(Cδb−µb+
εb
2

)
.

We thus obtain

f cs =
1

A+B + S
, (A.56)

which, together with (A.54) and (A.55), finishes the proof of Proposition 2.

Proof of Proposition 3

Proposition (3). Assume wb,τ ∼ unif(µb − εb
2
, µb + εb

2
). Then the expected energy overflow

of each interval of length δb is bounded from above by 5α
24S

(µb + εb
2
− Cδb)2. The derivatives

of this upper bound are − 5α
24S2 (µb + εb

2
− Cδb)2 with respect to S and −5αδb

12S
(µb + εb

2
− Cδb)2

with respect to C.

Proof of Proposition 3.
From Proposition 1(ii) we already know that E[oτ ] is bounded from above by Ẽ[oτ ]. In

the case of uniformly distributed wind energy wb,τ , we next compute the upper bounds for
the terms on the right-hand side of (A.48), respectively.

For the first term,

Ew[oτ |S] =

∫ µb+
εb
2

Cδb

(w − Cδb)
1

εb
dw =

1

2εb
(µb +

εb
2
− Cδb)2. (A.57)

From Proposition 2,

P̃(sτ = S)

= f cs
α(µb+

εb
2
−Cδb)2

2(Cδb−µb+εb/2)

< 1
S

α(µb+
εb
2
−Cδb)2

2(Cδb−µb+εb/2)

< 1
S
α(εb/2)2

2εb/2
(since Cδb ∈ [µb, µb + εb/2])

= αεb
4S
.

(A.58)

For the second term, when s ∈ [S − (µb + εb/2− Cδb)α, S),

Ew[oτ |Λ, s]Pw(Λ|s) = Ew[oτ |s]
=

∫ µb+εb/2
Cδb+(S−s)/α[w − Cδb − (S − s)/α] 1

εb
dw

= [µb+εb/2−Cδb−(S−s)/α]2

2εb
.

(A.59)
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Otherwise Ew[oτ |Λ, s]Pw(Λ|s) = 0. It thus follows that∫ S−
0+

Ew[oτ |Λ, s]Pw(Λ|s)f̃s(s)ds
=

∫ S−
S−(µb+εb/2−Cδb)α

[µb+εb/2−Cδb−(S−s)/α]2

2εb
f̃s(s)ds

<
∫ S−
S−(µb+εb/2−Cδb)α

[µb+εb/2−Cδb−(S−s)/α]2

2εb

1
S

ds

= α(µb+εb/2−Cδb)3
6εbS

≤ α
6εbS

εb
2

(µb + εb/2− Cδb)2 (since Cδb ≥ µb)

= α(µb+εb/2−Cδb)2
12S

.

(A.60)

Substituting (A.57), (A.58) and (A.60) into (A.48), we obtain

Ẽ[oτ ] <
5α

24S
(µb +

εb
2
− Cδb)2.

which provides an upper bound for E[oτ ] as a quadratic function of C. The derivatives
of this upper bound are − 5α

24S2 (µb + εb
2
− Cδb)2 with respect to S and −5αδb

12S
(µb + εb

2
− Cδb)2

with respect to C.

Proof of Proposition 4

Proposition (4). The optimal cost of the ES-transmission network is bounded from below
by the optimal objective value of planning model (1.13), and bounded from above by the total
cost given by the heuristic in Section 1.5.

Proof of Proposition 4. To justify the first half of Proposition 4, note that the real optimal
ES-transmission deployment is a feasible solution to model (1.13). Therefore, its total cost
v3 in the uncapacitated scenario given by (1.13a) is bounded from below by the optimal
objective value of model (1.13). But v3 is still less than the real optimal cost, since the
latter also incorporates the cost of additional ES capacity and the cost of energy overflow.
As for the second half, note that the heuristic outlined in Section 1.5 generates a feasible
deployment but also a total cost that includes overestimated cost of additional ES capacity
and the cost of energy overflow. Therefore, this total cost must be greater than the real
optimal cost.

A.3 Further Inspection of the Upper Bound of ES

Capacity in Section 1.5

In Section 1.4 and Section A.1, we have analyzed the inaccuracy of the model developed
in Section 1.4, where a lower bound of the total cost results from the assumption that the
ES systems are uncapacitated. In this section, our goal is to examine the tightness and
the accuracy of the cost upper bound as given in Table 1.5 developed in Section 1.5, which
derives an upper bound for ES capacity. Again we focus on a single wind farm scenario. The
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cost error analysis for multiple farms is similar and has been presented in the case study in
Section 1.6.

To set up the experiment, we consider those 24 sites in the case study and look into
their wind output data for each of the twelve months in 2006. The cycle length is set to
be δb = 24hr. The theoretical lower and upper bounds for the investment cost and energy
loss are calculated based on the models in Sections 1.4 and 1.5, respectively. The economic
transmission and the overestimated ES capacities are computed based on Table 1.5. In order
to obtain the actual optimal total cost, we simulate 2000hr system operations for multiple
runs, each run with different values of C and S. Then we calculate the average total cost
for each run, and select the pair of (C, S) that results in the smallest average total cost.
The simulations are carried out with different per-kWh ES capacity costs and with different
distances between the wind farm and the load center. Table A.3 summarizes the average
relative cost gaps between the upper and the lower bounds, between the upper bound and
the optimal value, and between the upper bound and the cost in the ES-free scenario. Figure
A.4 shows the profiles of site 26784 in March as typical instances. From these results we
make the following observations.

Table A.3: Average cost gaps between the upper and the lower bounds, between the upper
bound and the optimal value, and between the upper bound and the cost in the ES-free
scenario.

Distance (mile) UB - LB |UB - Opt.| ES-Free - UB
200 23.6% 6.6% 89.7%
120 20.2% 5.17% 81.5%
50 3.09% 6.78% 31.8%

• Firstly, as to the tightness of the cost upper bound, we first observe from Table A.3
and Figures A.4 (a), (c) and (e) that the optimal cost in most cases is much closer
to the upper bound than to the lower bound, suggesting that the cost upper bound
and its associated transmission and ES capacities are more effective estimates of the
optimal values. In some cases, the actual optimal cost even exceeds the upper bound,
as observed in Figure A.4 (e). This is due to the inaccuracy of the upper bound which
we investigate later in this section. Also notice that, in order to focus on the variables of
interest, we exclude the fixed transmission and ES installation costs, which, if included,
would account for a significant share of the total cost and further narrow the relative
gaps. Moreover, the cost gaps narrow as the distance between the wind farm and
the load center decreases, because less distance results in cheaper transmission, larger
transmission capacity to reduce energy overflow loss and thus less dependence on ES.

• Secondly, the cost gaps are bounded. The cost upper bound increases and then plateaus
as the per-kWh ES capacity cost increases, as shown in Figures A.4 (a), (c) and (e).
This is because increase in ES cost makes the investment in transmission capacity more
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Figure A.4: Total variable costs, (a), (c) and (e), and economic transmission and (overesti-
mated) ES capacities, (b),(d) and (f), with different distances between a wind farm and a
load center.

cost-effective than in ES capacity; eventually, the transmission capacity becomes large
enough to deliver all the daily wind energy and thus eliminate the use of additional ES
capacity for overflow prevention. This ES-transmission interrelation is clearly demon-
strated in Figure A.4(b). When the ES capacity cost is small (r ≤ $3.4/kWh), the
transmission capacity C remains at its lowest level of the average wind power µ, since
the costly long-distance transmission investment dominates the other cost components
and the ES capacity S can be large to hedge against energy overflow. As the ES ca-
pacity cost increases, S has to decrease and it becomes more favorable to invest in

transmission until C reaches
µb+

εb
2

δb
and no additional ES capacity is required when

r ≥ $4.2/kWh. Hence, as shown in the square-dotted line in Figure A.4(a), the cost
of ES capacity investment and the expected energy overflow first increases and then
diminishes to zero.
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• Thirdly, the model of cost upper bound involves two sources of inaccuracy. First, the
uniform distribution approximation of the daily wind output overlooks the tail of the
real output distribution beyond the upper support of the approximated uniform distri-
bution. Therefore, the approximated energy overflow is curtailed. The second source
of inaccuracy is the assumption that the wind outputs are independent across days.
This assumption is the key to the derivation of the closed-form upper bound expression
for ES capacity, which helps deliver managerial insights. However, while choosing long
intervals (such as one day) significantly reduces the auto-correlation of the wind output
process, ignoring this auto-correlation still causes underestimation of energy overflow
loss when storage level is nearly full. Collectively, the underestimation of inter-period
overflow loss offsets the overestimation of intra-overflow loss and ES capacity to vary-
ing degrees. The resulting cost upper bound is closer to the actual optimal cost than
theoretically expected on one hand, but on the other hand, this upper bound can be
exceeded.

Figures A.5 (a)-(c) are the histograms showing the distributions of the lag-one auto-
correlation of the daily wind output processes at the 24 sites of twelve months with
different transmission distances. The figures also show the proportion of instances
where the actual optimal cost exceeds its theoretical upper bound by a certain mar-
gin, as represented by the light-colored part of each bin. As expected, the larger the
auto-correlation is, the more likely the actual optimal cost is to exceed its upper bound.

We also observe tradeoffs between accuracy and tightness of the cost upper bound.
When the transmission distance is as short as 50 miles, Figure A.5 (c) shows that
the upper bounds are exceeded by over 8% in nearly half of all the instances. This
is because transmission investment is cheap enough and its capacity is prescribed as
µ+ρ(1

2
−θ) by both the models with and without ES capacity limit. The ES capacity S

in those instances also becomes zero. Consequently, the gap between the upper and the
lower bounds is zero, but it leaves the underestimation of the overflow dominant and
the actual optimal cost above the upper bound. In fact, S = 0 violates our assumption
in Section 1.5 that S should be large enough such that the probability of the storage
level switching from 0 to full state (or the other way round) is negligible. Fortunately,
S = 0 represents the cases where the investment in ES capacity as well as the impact
of this inaccuracy is small. If we only consider those instances with S > 0 due to cheap
ES capacity cost, almost no cost upper bounds are violated, as shown in Figure A.5
(d).

In contrast, Figures A.5 (a) and (b) and Table A.3 show that, when the transmission
distance l ≥ 120 miles, the cost upper bounds are not violated in most of the instances,
at the cost of relatively large gaps between the upper and the lower bounds.

• Last but not the least, Table A.3 also shows that the combination of economic trans-
mission line and ES can potentially significantly bring down the cost of building an
ES-free line, as represented by the dash-dotted line in Figures A.4 (a), (b) and (c).
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Figure A.5: Distribution of lag-one autocorrelation and the validity of the cost upper bounds.

However, this cost-saving also depends on the fixed installation cost of ES, which we
do not incorporate in these experiments. .

The above results and analysis suggest that the total variable cost and its associated
transmission and ES capacity given by Section 1.5 are more effective estimates of the optimal
values than those given by Section 1.4. This is because the former explicitly consider ES
capacity cost and involve modeling inaccuracies that are canceling to each other. We thus
also justify the heuristic approach to jointly planning ES-transmission network, as outlined
in Section 1.5.

A.4 Supporting Information for Section 1.6

Experiment Settings of the Case Study in Section 1.6

To generate the problem instances for the case study in Section 1.6, we choose the sites of
the potential wind farms identified in [73], which also includes the data of wind outputs.
The set of candidate junction sites J is the union of the set of the wind farms I and a set of
additional locations in this region. We repeat the experiments by adding wind farms that are
increasingly distant from Billings. In addition to the preceding parameters, we set the per-
kW fixed transmission line cost g = $4.5× 105/mile, fixed ES installment cost h = $1× 106

and variable ES cost r = $0.5/kWh. The experiments run on a Macbook Pro with 2.27 Ghz
dual-core Intel Core i5 CPU and 8 GB memory. All instances are solved using CPLEX 12.3
called by YALMIP modeling language ([61]).
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Figure A.6: Impact of different ES technologies and their advancements on cost-savings.

Analysis of Technology Considerations

The economic feasibility of each ES technology is significantly impacted by its cost-efficiency
parameters, such as round-trip energy conversion efficiency, upfront construction cost and
per-unit capacity cost. In Figure A.4 in Section A.3 we have already shown that systems
cost as well as economic ES and transmission capacities are very sensitive to per-kWh cost.
In what follows, we evaluate how the cost-savings respond to the different values of these
cost-efficiency parameters in our case study with 24 wind farms and 28 candidate junction
sites. The cost-savings are benchmarked against a scenario without ES co-location. The
results are shown in Figure A.6, from which we draw several observations.

• Firstly, cost savings increase when (i) the round-trip conversion efficiency αβ increases,
(ii) per-unit ES capacity cost decreases and (iii) the fixed upfront ES cost decreases,
as expected.

• Secondly, given upfront ES cost, when the per-unit ES capital cost is very high (e.g,
r ≥ 1.6 in our numerical test), cost-saving is small and cannot be effectively increased
by enhancing conversion efficiency. This suggests that high per-unit capacity cost dis-
courages adding ES capacity and it is not worth investing in improving the conversion
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efficiency, as in the case of lead-acid battery. However, when the per-unit ES capacity
cost decreases (e.g, r < 1.4 in our numerical test), the cost-saving is more sensitive
to reduction in per-unit ES capital cost when energy conversion is efficient (large αβ)
than when it is inefficient (small αβ). As shown in Figure A.6(b), for instance, when
the per-unit ES capital cost decreases from $0.6/kWh to $0.4/kWh, the cost saving
increases by 30.1% with αβ = 0.95, compared with the cost saving increased by only
12.7% with αβ = 0.65. This suggests that more investment is desirable in improving
conversion efficiency when the per-unit ES capacity cost has already been low, as in
the case of compressed air energy storage systems.

• Thirdly, as for the upfront ES cost, it is interesting to see that we can achieve cost
saving even with low conversion efficiency and high per-unit ES capacity cost (as shown
in Figure A.6(a) and (b)), until the upfront ES cost is too large to justify building any
ES systems (as shown in Figure A.6(c)). In the former case, the positive cost saving is
mainly achieved by a small base ES capacity that salvages transmission capacity cost
by smoothing short-term wind-out fluctuations.

The above observations collectively suggest that the cost-efficiency parameters jointly
determine the effectiveness of using ES systems. Therefore, the planners need to carefully
weigh these cost factors to properly size the ES systems, and the priority of ES R&D should
be given to addressing the bottleneck cost factor, be it conversion efficiency or capital cost.
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Appendix B

Supporting Results for Chapter 3

Proof of (3.16) Model the passenger riding process as an alternate renewal process, in
which the on state is waiting and the off state is riding. The driver is initially on for a
time Z1 and then remains off for a time Y1; then he/she goes on for a time Z2; then off
for a time Y2; then on, and so forth. The sequence of two random variables {Zi} and {Yi},
i ≥ 1, are independent and identically distributed as exponentials with µ and υ. A renewal
cycle {Vi = Zi + Yi} consists of an on period and an off period. The process starts over
again when the driver picks up a new passenger. Let N(x) denote the number of complete
renewal cycle up to time x and Sn be the completing time of nth renewal. They have a
straightforward relationship that N(x) = max{n : Sn ≤ x}. m(t) is the mean of N(x), i.e.
m(x) = E(N(x)).

During renewal cycle i, the driver receives a reward Ri = wb + wmYi. It follows that
E(Ri) = wb + wmE(Yi) = wb + wm/υ = E(R). The objective is to calculate the expected
total rewards during (0, x). In the stochastic setting, the total rewards is differentiated in
two cases: (1) When the driver is on at time x, i.e., the driver has finished N(x) rides and

the expected total rewards is E(
∑N(x)

i=1 Ri); (2) When the driver is off at time x, the expected
total rewards has two components: the reward from the N(x) complete rides and the reward
from the last incomplete ride. Since in practice the ride is always completed, the reward
for the last ride is assumed to be complete, that is, the driver gets full rewards. Then the
expected total reward is E(

∑N(x)+1
i=1 Ri) in this case. Hence, combining these two cases, the

expected total rewards is given by

wp(x) = E(

N(x)∑
i=1

Ri| on at x)P (on at x) + E(

N(x)+1∑
i=1

Ri| off at x)P (off at x)

= E(

N(x)+1∑
i=1

Ri)− E(RN(x)+1| on at x)P (on at x)

= (m(x) + 1)E(R)− E(RN(x)+1| on at x)P (on at x), (B.1)

where the first two equalities use the law of total probability and the last equality utilizes
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the Wald’s equation by observing that N(x) + 1 is a stopping time for {Ri}, i ≥ 1 ([79]).
First, m(x) is known as ([99])

m(x) =
µυ

µ+ υ

(
x− 1

µ+ υ
(1− exp(−(µ+ υ)x)

)
. (B.2)

Second, P (on at x) is given as ([95])

P (on at x) =
υ

µ+ υ
+

µ

µ+ υ
exp(−(µ+ υ)x). (B.3)

And

E(RN(x)+1| on at x) =

∫ ∞
0

E(RN(x)+1| SN(x) = y, on at x)dFSN(x)| on at x

=

∫ ∞
0

E(RN(x)+1| ZN(x)+1 > x− y)dFSN(x)| on at x

=

∫ ∞
0

E(R)dFSN(x)| on at x = E(R). (B.4)

Combine the above equations and the desired result follows

wp(x) =
µ(wb + wm/υ)

µ+ υ

(
υx+

µ

µ+ υ
(1− exp(−(µ+ υ)x))

)
. (B.5)
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