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Abstract

In this article, we study the estimations of partially linear single-index models (PLSiM)
with repeated measurements. Specifically, we approximate the nonparametric function by
the polynomial spline, and then employ the quadratic inference function (QIF) together with
profile principle to derive the QIF-based estimators for the linear coefficients. The asymptotic
normality of the resulting linear coefficient estimators and the optimal convergence rate of the
nonparametric function estimate are established. In addition, we employ a penalized procedure
to simultaneously select significant variables and estimate unknown parameters. The resulting
penalized QIF estimators are shown to have the oracle property, and Monte Carlo studies
support this finding. An empirical example is also presented to illustrate the usefulness of
penalized estimators.
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1 Introduction

In regression analysis with repeated measures over time (i.e., longitudinal/panel data or cluster

data), semiparametric models have been used to take into account both linear and nonlinear effects

of covariates. The pioneering work in this context can be traced back to Severini and Staniswalis

(1994), followed by a series of efforts, such as Chen et al. (2012); Chen and Jin (2006); Fan and Li

(2004); He et al. (2005); Lin and Carroll (2001, 2006); and Su and Ullah (2006). All of these works

focus on the case in which the models either contain one nonparametric component or a summand

of nonparametric functions. The typical approach for estimating parameters in these models is

kernel-based backfitting and local scoring, proposed by Buja et al. (1989). Although those mod-

els are very flexible, they have some limitations. For example, the model with one multivariate

nonparametric function suffers from the “curse of dimensionality” when the number of covariates

is moderate or large, while the model with a summand of nonparametric functions does not take

into account the interaction effects among covariates. In addition, the backfitting estimation al-

gorithm can become computationally expensive when the number of covariates is large. This is

because it requires extensive iterations to update the estimator of each nonparametric component

(Härdle et al.; 2004; Yu et al.; 2008). This motivates us to adapt partially linear single-index mod-

els (PLSiM) to analyze repeatedly measured data. Semiparametric single-index models have been

widely used as an appealing and effective statistical tool to model the relationship between the re-

sponse variable and multivariate covariates, since it achieves dimension reduction and relaxes the

restrictive parametric assumptions. See Horowitz (1998) for detailed discussion and illustration

of the usefulness of this model. The PLSiM as a natural extension allows discrete explanatory

variables to be modeled in the linear part. See Carroll et al. (1997); Chen et al. (2013); Liang and

Wang (2005); Xia and Li (1999) for studies and applications of PLSiM.

To estimate parameters in PLSiM, various methods have been proposed, including the back-

fitting algorithm (Carroll et al.; 1997), the penalized spline (Yu and Ruppert; 2002), the average

derivative estimation method (ADE, Powell et al.; 1989), the minimum average variance estima-

tion (MAVE, Xia and Härdle; 2006; Xia et al.; 1999), the profile least squares approach (PrLS,
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Ichimura; 1993; Liang et al.; 2010), and the estimating function method (EFM, Cui et al.; 2011).

It is noteworthy that the backfitting algorithm can be unstable and penalized spline estimation may

not be efficient. Although the ADE, MAVE and profile methods overcome these limitations, ADE

may suffer from the curse of dimensionality as mentioned in Xia (2006), MAVE may encounter

the sparseness problem as noted by Cui et al. (2011), and the PrLS estimator is not easy to obtain

due to minimizing a high-dimensional nonlinear objective function. In addition, the above meth-

ods mainly focus on cross-sectional data rather than repeatedly measured data. Moreover, the true

correlation structure within each cluster is often unknown, and ignoring such a correlation could

yield biased estimators (Wang; 2003), inefficient estimators, and low power in hypothesis test-

ing. Hence, we need to use a sophisticated method to parsimoniously separate within-subject and

between-subject variation, and should not simply treat repeated measurements as cross-sectional

observations. Consequently, developing an effective estimation procedure and then establishing

its theoretical justifications for PLSiM with repeatedly measured data become an important and

challenging task.

To alleviate the impact of correlation misspecification and to pursue estimation efficiency, we

employ the quadratic inference function (QIF) proposed by Qu and Lindsay (2003); Qu et al. (2000);

used for estimation in parametric models. This approach enables us to take into account the within-

cluster correlation without specifying the covariance function. Furthermore, it is more efficient

than the generalized estimating equation (GEE) approach when the working correlation is misspec-

ified, as demonstrated in Qu et al. (2000). In this paper, we propose a QIF estimation procedure by

incorporating the profile principle (Severini and Wong; 1992) for PLSiM with repeated measure-

ments. Specifically, it consists of two steps: (i) For the given parametric components, employ the

QIF approach to obtain an estimate of the nonparametric component by polynomial splines– It is

noteworthy that the resulting nonparametric estimator is a function of the given parametric com-

ponents; (ii) Based on the nonparametric estimator, construct the profiled QIF objective function

for the parametric components and then obtain their estimators.

The QIF approach has been recently applied to estimation in single-index models (Bai et al.

2



(2009)) and PLSiM (Lai et al. (2013)) with the nonparametric functions estimated by penalized-

splines and local linear smoothing, respectively. Spline estimation approach is known as computa-

tionally faster and more efficient than kernel smoothing in semiparametric models with correlated

data (Lin et al. (2004)). It is noteworthy that Bai et al. (2009) studied the asymptotic normality for

the index parameters by assuming that the true nonparametric link function is known. Comparing

to Bai et al. (2009), we derive root-n consistency and a sandwich formula for the covariance matrix

of the parametric estimators by estimating the link function with polynomial splines. Therefore,

to obtain the asymptotic properties, we face significant theoretical challenges since the parametric

QIF estimators are involved in the nonparametric functional estimator with divergent parameters.

Thus, the classical asymptotic theory cannot be directly applied. Accordingly, we explore a new

approach to establish the asymptotic normality of the parametric estimators in the PLSiM. Another

contribution in our paper is that we introduce the penalized QIF (PQIF) to reduce the model com-

plexity, which shrinks irrelevant coefficients of the linear and single-index components to zero. The

resulting estimators of the nonzero coefficients are shown to be asymptotically normal and have

the oracle property. Furthermore, Xue et al. (2010) applied the QIF to additive models and studied

the optimal convergence rate of the spline estimators for the additive nonparametric functions.

The paper is organized as follows. Section 2 introduces the models and then applies QIF to ob-

tain parametric and nonparametric estimations. The theoretical properties of parametric estimators

are established. Section 3 proposes a penalized quadratic inference function approach for PLSiM

to simultaneously estimate parameters and select variables, and the resulting estimators possess the

oracle property. The practical implementations are developed in Section 4, and simulation studies

and an empirical example are presented in Section 5. The last section concludes the article with a

brief discussion, and technical proofs are given in the Appendix.

2 Models and Estimation Methods
2.1 Models

Suppose that the data consist of n independent subjects and the i-th (i = 1, . . . , n) cluster has

mi repeated measures. Let Yij be the response variable, and Xij = (Xij,1, . . . , Xij,d1)
T and
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Zij = (Zij,1, . . . , Zij,d2)
T be d1 × 1 and d2 × 1 covariate vectors, respectively, for the j-th ob-

servation in the i-th cluster. Denote Yi = (Yi1, . . . , Yimi
)T, X i = (Xi1, . . . , Ximi

)T

mi×d1 , and

Zi = (Zi1, . . . , Zimi
)T

mi×d2 . Consider the partially linear single-index model (PLSiM),

E (Yij |Xij, Zij ) = µij = g (βTXij) +αTZij, (2.1)

where β is an unknown index vector which belongs to the parameter space {β = (β1, . . . , βd1)
T :

‖β‖2 = 1, β1 > 0,β ∈ Rd1}, ‖β‖2 =
(
β2

1 + · · ·+ β2
d1

)1/2 is the Euclidean norm of β, and

α = (α1, . . . , αd2)
T. In addition, g (·) is an unknown differentiable function of Uij (β) = βTXij .

Finally, assume that ei = Yi − µi, where µi = (µi1, . . . , µimi
)T, ei ∼ (0,Σi), and Σi is a positive

definite matrix. It is noteworthy that (2.1) reduces to Fan and Li’s (2004) mean function of their

semiparametric model when d1 = 1.

2.2 Estimation method

In the estimation procedure, we approximate the smooth function g in (2.1) by polynomial splines.

To this end, let N = Nn be the number of interior knots. For theoretical reasons, we assume

that, for any β in the neighborhood of its true parameter value, Uij (β) is distributed on a compact

interval [a, b] for 1 ≤ j ≤ mi and 1 ≤ i ≤ n, so that the range of the B-splines can be well

defined. See Sun et al. (2008) for the same assumption. Divide [a, b] into (N + 1) subintervals:

IJ = [ξJ , ξJ+1) for J = 0, . . . , N − 1 and IN = [ξN , 1], where (ξJ)NJ=1 is a sequence of interior

knots that is given as

ξ−(p−1) = · · · = a = ξ0 < ξ1 < · · · < ξN < b = ξN+1 = · · · = ξN+p.

The resulting distance between neighboring knots is hJ = ξJ+1 − ξJ for 0 ≤ J ≤ N , and let h =

max0≤J≤N hJ . Furthermore, define the p-th order B-spline basis asBp(u) = {BJ,p(u) : 1− p ≤ J

≤ N}T (de Boor; 2001; Shen et al.; 1998), and let G = G(p−2) be the space spanned by Bp(u).

Then, the unknown function g in (2.1) can be approximated by a linear combination of the B-spline

functions such that g(u) ≈
∑N

J=1−p γJBJ,p(u) with a set of coefficients γ = (γ1−p, . . . , γN)T.

Accordingly,

µij ≈
∑N

J=1−p
γJBJ,p

(
βTXij

)
+αTZij =

∑N

J=1−p
γJBJ,p (Uij (β)) +αTZij. (2.2)
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To estimate β, α and g, we next apply QIF to efficiently incorporate the within-cluster corre-

lation structure. For the sake of simplicity, we assume that the number of repeated measurements

are equal, i.e., mi = m <∞. LetR be a common working correlation matrix. Following the QIF

approach, the inverse ofR can be approximated by a linear combination of k basis matrices, i.e.,

R−1 ≈ a1M 1 + · · ·+ akM k, (2.3)

where M 1, . . . ,M k are known symmetric basis matrices and a1, . . . , ak are unknown constants.

As stated in Qu et al. (2000), this is a sufficiently rich class that accommodates, or at least

approximates, the correlation structures most commonly used. For example, if R is of com-

pound symmetric structure with correlation ρ, R−1 can be represented by a1M 1 + a2M 2, where

M 1 = I (the identity matrix) andM 2 is a matrix with diagonal entries 0 and off-diagonal entries

1, a1 = −{(m− 2) ρ+ 1} /k1, a2 = ρ/k1, k1 = (m− 1) ρ2 − (m− 2) ρ − 1, and m is the di-

mension of R. See Qu et al. (2000) for more examples. Subsequently, we estimate the parameter

vector θ = (βT,αT)
T and the nonparametric function g (·) by a profile QIF approach in two steps

below.

Step 1. For a fixed θ, let Bp (Ui (β)) = {Bp (Ui1 (β)) , . . . , Bp (Uim (β))}Jn×m and Jn = N + p,

where Ui (β) = (Ui1 (β) , . . . , Uimi
(β))T. Then, from equations (2.1), (2.2), and (2.3), we obtain

the estimating function of γ that is

φi (γ,θ) =

 Bp (Ui (β))A−1/2M 1A
−1/2

{
Bp (Ui (β))T γ +ZT

iα− Yi
}

...
Bp (Ui (β))A−1/2M kA

−1/2
{
Bp (Ui (β))T γ +ZT

iα− Yi
}
 , (2.4)

whereA is an m×m diagonal matrix with its diagonal entries being the marginal variances of Yij

for j = 1, · · · ,m. Let

Φn (γ,θ) =
1

n

n∑
i=1

φi (γ,θ) and Ψn (γ,θ) =
1

n2

n∑
i=1

φi (γ,θ)φi (γ,θ)T .

Since the dimension of (2.4) is kJn, which is larger than the number of unknown parameters, we

follow Qu et al.’s (2000) approach to estimate γ by minimizing the following equation,

Qn (γ,θ) = Φn (γ,θ)T Ψn (γ,θ)−1 Φn (γ,θ) , (2.5)

and the resulting estimator is γ̂QIF (θ) = {γ̂QIF
J (θ)}NJ=1−p = arg minγ Qn (γ,θ). Accordingly, the
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nonparametric estimator of g in (2.1) is

g̃ (u,θ) =
∑N

J=1−p
γ̂QIF
J (θ)BJ,p(u) = B(u)Tγ̂QIF (θ) . (2.6)

For estimating regression parameters, we need to estimate not only g but also its first derivative

g′. To this end, we follow de Boor’s (2001) approach to approximate g′ by the spline functions

with one order less than that of g. As a result,

g̃′ (u,θ) =
∑N

J=2−p
γ̂

QIF,(1)
J (θ)BJ,p−1(u),

where γ̂QIF,(1)
J (θ) = (p− 1)

{
γ̂QIF
J (θ)− γ̂QIF

J−1 (θ)
}
/ (ξJ+p−1 − ξJ) for 2−p ≤ J ≤ N . In addition,

it can be re-expressed as g̃′ (u,θ) = Bp−1(u)TD1γ̂
QIF (θ), whereBp−1(u) = {BJ,p−1(u) : 2− p ≤ J ≤ N}T ,

and

D1 = (p− 1)


−1

ξ1−ξ2−p

1
ξ1−ξ2−p

0 · · · 0

0 −1
ξ2−ξ3−p

1
ξ2−ξ3−p

· · · 0
...

... . . . . . . ...
0 0 · · · −1

ξN+p−1−ξN
1

ξN+p−1−ξN


(Jn−1)×Jn

.

Step 2. Before estimating θ = (βT,αT)
T, we eliminate β1 and reform the space of β to ensure iden-

tifiability (see Cui et al.; 2011), and the resulting space of β is {((1−
∑d1

l=2 β
2
l )

1/2, β2, . . . , βd1)
T :∑d1

l=2 β
2
l < 1}.

Let β(1) = (β2, . . . , βd1)
T and J =∂β/∂β(1) be the Jacobian matrix of size d1 × (d1 − 1),

which is

J =

 −β(1)T
/

√
1−

∥∥∥β(1)
∥∥∥2

Id1−1

 .

Then, we apply the same techniques used in the estimation of g to estimate β(1) and α. Let

g̃ (Ui (β) ,θ) = {g̃ (Ui1 (β) ,θ) , . . . , g̃ (Uim (β) ,θ)}T

and its gradients with respect to β and α be

∇β g̃ (Ui (β) ,θ) =

{
∂g̃ (Ui1 (β) ,θ)

∂β(1)
, . . . ,

∂g̃ (Uim (β) ,θ)

∂β(1)

}T

m×(d1−1)

and

∇αg̃ (Ui (β) ,θ) =

{
∂g̃ (Ui1 (β) ,θ)

∂α
, . . . ,

∂g̃ (Uim (β) ,θ)

∂α

}T

m×d2
,

respectively. Denote D̂i (θ) = [∇β g̃ (Ui (β) ,θ) , {∇αg̃ (Ui (β) ,θ) +Zi}]T

(d1−1+d2)×m.
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Based on equations (2.1), (2.2), and (2.3), we obtain the estimating function of (β,α) that is

ωi (β,α) =

 D̂i (θ)A−1/2M 1A
−1/2 {g̃ (Ui (β) ,θ) +Ziα− Yi}

...
D̂i (θ)A−1/2M kA

−1/2 {g̃ (Ui (β) ,θ) +Ziα− Yi}

 . (2.7)

Since the dimension of (2.7) is k (d1 − 1 + d2) which is larger than the number of unknown pa-

rameters, we adopt Qu et al.’s (2000) approach to estimate β(1) andα by minimizing the following

function,

Q∗n (β,α) = Ωn (β,α)T Ξn (β,α)−1 Ωn (β,α) , (2.8)

where

Ωn (β,α) =
1

n

n∑
i=1

ωi (β,α) and Ξn (β,α) =
1

n2

n∑
i=1

ωi (β,α)ωi (β,α)T . (2.9)

As a result, we obtain the estimators β̂
(1)QIF,

and α̂QIF of β(1) and α. Then, using the fact that

β1 =

√
1−

∥∥∥β(1)
∥∥∥2

, we have β̂QIF
1 . Let β0 =

{
β0

1 ,
(
β(1)0

)T}T

and α0 be the true parameters

in model (2.1). For the sake of simplicity, define ξ̃ij = ξij − E
(
ξij
∣∣Uij (β0

))
and ξ̂ij = ξij −

Ê
(
ξij
∣∣Uij (β0

))
, where Ê

(
ξij
∣∣Uij (β0

))
is an estimator of E

(
ξij
∣∣Uij (β0

))
obtained by using

polynomial splines with order p for the random variable (or vector) ξij . For example, X̃ij =

Xij−E
(
Xij

∣∣Uij (β0
))

and X̂ij = Xij− Ê
(
Xij

∣∣Uij (β0
))

. After simplification, it can be shown

that for all 1 ≤ j ≤ m and 1 ≤ i ≤ n,

∂g̃
(
Uij
(
β0
)
,θ0
)

∂β(1)
= g′

(
Uij
(
β0
)
,θ0
)
J TX̂ij {1 + op (1)} ,

∂g̃
(
Uij
(
β0
)
,θ0
)

∂α
= −Ê

(
Zij
∣∣Uij(β0)

)
{1 + op (1)} .

Accordingly, D̂i(θ
0) = [{g′(Ui1(β0),θ0)X̂i1, . . . , g

′(Uim(β0),θ0)X̂im}TJ , (Ẑi1, . . . , Ẑim)T]T{1 +

op(1)}.

Let θ̂
(1)QIF

=

{(
β̂

(1)QIF
)T

, (α̂QIF)
T

}T

and θ(1)0 =
{(
β(1)0

)T

, (α0)
T
}T

. Moreover, define

Di

(
β0
)

=
[{
g′
(
β0T

Xi1

)
X̃i1, . . . , g

′
(
β0T

Xim

)
X̃im

}T

J ,
(
Z̃i1, . . . , Z̃im

)T]T

, (2.10)

Ω̇
(
β0
)

= E


Di

(
β0
)

Λ1Di

(
β0
)T

...
Di

(
β0
)

ΛkDi

(
β0
)T

 , (2.11)
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and

Ξ
(
β0
)

= E


Di

(
β0
)

Γ1,1Di

(
β0
)T · · · Di

(
β0
)

Γ1,kDi

(
β0
)T

... . . . ...
Di

(
β0
)

Γk,1Di

(
β0
)T · · · Di

(
β0
)

Γk,kDi

(
β0
)T

 , (2.12)

where Γr,r′ = ΛrΣΛr′ with Λr = A−1/2M rA
−1/2 for r, r′ = 1, . . . , k. Then, the asymptotic

properties of parametric estimators are given below.

Theorem 1. Under Conditions (C1)-(C6) given in Appendix A.1 and the assumption that nN−(2p+2) →

0 and nN−4 → ∞ as n → ∞, we have that,
∥∥∥θ̂(1)QIF

− θ(1)0
∥∥∥ = Op

(
n−1/2

)
, and as n → ∞,

√
n
(
θ̂

(1)QIF
− θ(1)0

)
→ N

(
0,Σ−1

θ(1)0

)
, where Σ

θ(1)0 = Ω̇
(
β0
)T

Ξ
(
β0
)−1

Ω̇
(
β0
)
.

In addition, partition Σ−1

θ(1)0 into


(

Σ11

θ(1)0

)
(d1−1)×(d1−1)

(
Σ12

θ(1)0

)
(d1−1)×d2(

Σ21

θ(1)0

)
d2×(d1−1)

(
Σ22

θ(1)0

)
d2×d2

, and then we ob-

tain the following results.

Theorem 2. Under Conditions (C1)-(C6) in Appendix A.1 and the assumption of that nN−(2p+2) →

0 and nN−4 →∞ as n→∞, we have that, as n→∞,
√
n
(
β̂

(1)QIF
− β(1)0

)
→ N

(
0,Σ11

θ(1)0

)
and
√
n (α̂QIF −α0)→ N

(
0,Σ22

θ(1)0

)
.

Theorem 1, together with the multivariate delta-method, leads to
√
n
(
β̂

QIF
− β0

)
→ N

(
0,Σβ0

)
,

as n→∞, where Σβ0 = JΣ11

θ(1)0J
T.

After obtaining the estimator θ̂
QIF

= {(β̂
QIF

)T, (α̂QIF)T}, we replace θ by θ̂
QIF

in g̃ (u,θ) defined

in (2.6) and obtain ĝ(u). To study the properties of ĝ(u), we define

˜̇Φn (γ) = ˜̇Φn =
1

n

n∑
i=1


Bp

(
Ui
(
β0
))

Λ1Bp

(
Ui
(
β0
))T

...
Bp

(
Ui
(
β0
))

ΛkBp

(
Ui
(
β0
))T

 (2.13)

and

Ψ̃n = n−2

n∑
i=1


Bp

(
Ui
(
β0
))

Γ1,1Bp

(
Ui
(
β0
))T · · · Bp

(
Ui
(
β0
))

Γ1,kBp

(
Ui
(
β0
))T

... . . . ...
Bp

(
Ui
(
β0
))

Γk,1Bp

(
Ui
(
β0
))T · · · Bp

(
Ui
(
β0
))

Γk,kBp

(
Ui
(
β0
))T


kJn×kJn

.

(2.14)

Furthermore, let B∗p (·) be the p-th Bernoulli polynomial that is inductively defined as follows:

B∗0(u) = 1, B∗i (u) =

∫ u

0

iB∗i−1(u)d(u) + bi,
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where bi = −i
∫ 1

0

∫ x
0
B∗i−1(u)dudx is the i-th Bernoulli number. Subsequently, for u ∈ IJ and

0 ≤ J ≤ N , define

b∗(u) = −g
(p)(u)

p!
B∗p

(
u− ξJ
h

)
and ϑn = n−1

n∑
i=1


Bp

(
Ui
(
β0
))

Λ1b
∗ (Ui (β0

))
...

Bp

(
Ui
(
β0
))

Λkb
∗ (Ui (β0

))
 . (2.15)

Moreover, denote d∗(u) = Bp(u)T(˜̇ΦT

nΨ̃−1
n
˜̇Φn)−1 ˜̇ΦT

nΨ̃−1
n ϑn. Then, we obtain the asymptotic results

of ĝ(u) given below.

Theorem 3. Under Conditions (C1)-(C6) given in Appendix A.1 and the assumption that nN−(2p+2) →

0 and nN−4 →∞ as n→∞, we have that, as n→∞,

(i) σ−1
n (u) {ĝ (u)− g(u)− b∗(u)hp + d∗(u)hp} → N (0, 1) for any u ∈ IJ and 0 ≤ J ≤ N ,

where σ2
n (u) = Bp(u)T(˜̇ΦT

nΨ̃−1
n
˜̇Φn)−1Bp(u), ˜̇Φ,Ψ̃, and b∗(u) and ϑn are defined in (2.13), (2.14),

and (2.15), respectively;

(ii) |ĝ(u)− g(u)| = Op

{
(nh)−1/2 + hp

}
uniformly in u ∈ [0, 1].

Remark 1: By letting N � n1/(2p+1) which satisfies the assumption on N in the above

theorem, the spline estimator ĝ(u) has the optimal convergence rate, which is Op

{
n−p/(2p+1)

}
. It

is noteworthy that Shen et al. (1998) established the same convergence rate for spline estimation

in univariate nonparametric regression.

3 Penalized QIF for PLSiM

In practice, the true model is often unknown. This motivates us to penalize the QIF in (2.8) and

then simultaneously select significant variables and estimate resulting parameters (βT
1,α

T
1)

Tof the

parametric components (βT,αT)
T. By the assumption that β1 > 0 in model (2.1), we assume that

the first componentX1 ofX= (X1, . . . , Xd1)
T is a significant covariate. Accordingly, the penalized

quadratic inference function (PQIF) is as follows:

L (β,α) =
1

2
Q∗n (β,α) + n

d1∑
l=2

pλ1l (|βl|) + n

d2∑
s=1

pλ2s (|αs|) , (3.1)
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where pλ (·) is a penalty function with a regularization parameter λ. We allow (βl)
d1
l=2 and (αs)

d2
s=1

to have different penalty functions with different regularization parameters.

There are various penalty functions available in literature such as the L1 and L2 penalties, that

yield the LASSO-type and ridge-type estimators, respectively. Here, we consider the smoothly

clipped absolute deviation (SCAD) penalty proposed by Fan and Li (2001), whose first derivative

is defined as

p′λ (θ) = λ

{
I (θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I (θ > λ)

}
,

where pλ (0) = 0, a = 3.7, and (t)+ = tI (t > 0). For the given tuning parameters, the penalized

estimators β̂
PQIF,(1)

and α̂PQIF are obtained by minimizing L (β,α) with respect to β(1) and α. As a

result, β1 is estimated by β̂PQIF
1 =

√
1−

∥∥∥β̂PQIF,(1)
∥∥∥2

2
.

We next study the theoretical properties of estimators β̂
PQIF

= {β̂PQIF
1 , (β̂

PQIF,(1)
)T}T and α̂PQIF

with the SCAD penalty. Without loss of generality, we assume that the correct model in (2.1)

has regression coefficients β0 =
{(
β0

1

)T
,
(
β0

2

)T
}T

and α0 =
{

(α0
1)

T
, (α0

2)
T }T , where β0

1 =

{β0
1 , (β

(1)0
1 )T

(d10−1)×1}T and α0
1 are d10 × 1 and d20 × 1 nonzero components of β0 and α0, respec-

tively, and β0
2 and α0

2 are (d1 − d10) × 1 and (d2 − d20) × 1 vectors with zeros. In addition, let

X1
ij = {(Xij,1, . . . , Xij,d10)

T}d10×1 and Z1
ij = {(Zij,1, . . . , Zij,d20)T}d20×1. Then, define

J1 =

 −β(1)0T

1 /

√
1−

∥∥∥β(1)0
1

∥∥∥2

Id10−1


d10×(d10−1)

, (3.2)

D1i (β1) =
[{
g′
(
βT

1X
1
i1

)
X̃1
i1, . . . , g

′ (βT
1Xim) X̃1

im

}T

J1,
(
Z̃1
i1, . . . , Z̃

1
im

)T]T

,

Ω̇1

(
β0

1

)
= E


D1i

(
β0

1

)
Λ1D1i

(
β0

1

)T

...
D1i

(
β0

1

)
ΛkD1i

(
β0

1

)T

 ,

and

Ξ1

(
β0

1

)
= E


D1i

(
β0

1

)
Γ1,1D1i

(
β0

1

)T · · · D1i

(
β0

1

)
Γ1,kD1i

(
β0

1

)T

... . . . ...
D1i

(
β0

1

)
Γk,1D1i

(
β0

1

)T · · · D1i

(
β0

1

)
Γk,kD1i

(
β0

1

)T


where X̃1

ij = X1
ij−E

(
X1
ij

∣∣βT
1X

1
ij

)
and Z̃1

ij = Z1
ij−E

(
Z1
ij

∣∣βT
1X

1
ij

)
. Moreover, denote β̂

PQIF,(1)
={(

β̂
PQIF,(1)

1

)T

,
(
β̂

PQIF

2

)T
}T

and α̂PQIF =
{

(α̂PQIF
1 )

T
, (α̂PQIF

2 )
T}T. Subsequently, we obtain the oracle

10



properties of the penalized estimators given below.

Theorem 4. Under Conditions (C1)-(C6) in the Appendix A.1, if nN−(2p+2) → 0, nN−4 → ∞,

λ1l → 0, n1/2λ1l → ∞, λ2s → 0, and n1/2λ2s → ∞ for all 1 ≤ l ≤ d1 and 1 ≤ s ≤ d2, then

we have that, as n → ∞, the penalized estimators satisfy: i) P (β̂
PQIF

2 = 0, α̂PQIF
2 = 0) → 1; ii)

√
n

{(
β̂

(1)PQIF

1 − β(1)0
1

α̂PQIF
1 −α0

1

)}
→ N

{
0,Σ−1

θ
(1)0
1

}
, where Σ

θ
(1)0
1

= Ω̇1

(
β0

1

)T
Ξ1 (β0

1)
−1

Ω̇1

(
β0

1

)
.

Under the conditions of Theorem 4, it can be easily shown that
√
n(β̂

PQIF

1 −β0
1)→ N(0,JΣ11

θ
(1)0
1

J T)

and
√
n(α̂PQIF

1 −α0
1)→ N(0,Σ22

θ
(1)0
1

), where Σ11

θ
(1)0
1

and Σ22

θ
(1)0
1

are the upper and lower block-diagonal

matrices of Σ−1

θ
(1)0
1

with sizes d10−1 and d20, respectively. As a result, the PQIF method yields con-

sistent and asymptotically unbiased estimators, even though the correlation structure is misspeci-

fied. As demonstrated in Qu et al. (2000), the QIF approach is more efficient than the generalized

estimating equation (GEE) approach when the working correlation is misspecified. Although the

true correlation structure is unknown in practice, the closer the working correlation is to the true

correlation, the more efficient the regression coefficient estimators can be, which leads to a better

model. Hence, we propose employing the coefficient of determination to select an appropriate

correlation structure.

4 Estimation Algorithm

We propose an algorithm to find penalized estimators by minimizing equations (2.5) and (3.1). For

given β and α, the estimating equation of (2.5) for γ, is

Q̇n (γ) = 2Φ̇n (γ)T Ψn (γ)−1 Φn (γ)− Φn (γ)T Ψn (γ)−1 Ψ̇n (γ) Ψn (γ)−1 Φn (γ) = 0, (4.1)

where Φ̇n(γ) is a kJn×Jn matrix {∂Φn(γ)/∂γ}, Ψ̇n(γ) is a three dimensional array {∂Ψn(γ)/∂γ1,

. . . , ∂Ψn(γ)/∂γJn}, Φn(γ)TΨn(γ)−1Ψ̇n(γ)Ψn(γ)−1Φn(γ) is a Jn × 1 vector

[
Φn (γ)T Ψn (γ)−1 {∂Ψn (γ) /∂γJ}Ψn (γ)−1 Φn (γ)

]N
J=1−p .

11



And the second derivative ofQn (γ) with respect to γ is Q̈n (γ) = 2Φ̇n (γ)T Ψn (γ)−1 Φ̇n (γ)+Rn,

where

Rn = 2Φ̈n (γ)T Ψn (γ)−1 Φn (γ)− 4Φ̇n (γ)T Ψn (γ)−1 Ψ̇n (γ) Ψn (γ)−1 Φn (γ)

+2Φ̇n (γ)T Ψn (γ)−1 Ψn (γ)−1 Ψ̇n (γ) Ψn (γ)−1 Φn (γ)

−Φn (γ)T Ψn (γ)−1 Ψ̈n (γ) Ψn (γ)−1 Φn (γ) .

Since Rn = op(1), Q̈n (γ) can be approximated by 2Φ̇n (γ)T Ψn (γ)−1 Φ̇n (γ). By the definition of

Qn (γ), its first and second derivatives implicitly depend on β and α. For the sake of clarification,

we denote Q̇n (γ) = Q̇n (γ,β,α) and Q̈n (γ) = Q̈n (γ,β,α). Then, applying Newton-Raphson

method, we obtain the iterative estimation procedure,

γ̂i+1 = γ̂i − Q̈−1
n

(
γ̂i, β̂

i
, α̂i
)
Q̇n

(
γ̂i, β̂

i
, α̂i
)
, (4.2)

where
(
γ̂i, β̂

i
, α̂i
)

is the estimated values of (γ,β,α) at the i-th step for i ≥ 0. Accordingly,

g and g′ can be estimated by ĝi+1(u) = Bp(u)Tγ̂i+1 and (ĝi+1(u))
′

= Bp−1(u)TD1γ̂
i+1. Let

θ(1) =
{(
β(1)

)T

,αT
}T

.

To estimate θ(1) =
{(
β(1)

)T

,αT
}T

and θ = (βT,αT)
T, we next consider the following quan-

tities:

Q̇∗n (β,α) = Q̇∗n (β,α, ĝ, ĝ′) =
{
∂Q∗n (β,α) /∂θ(1)

}
(d1−1+d2)×1

,

Q̈∗n (β,α) = Q̈∗n (β,α, ĝ, ĝ′) =
{
∂Q∗n (β,α) /∂θ(1)

(
θ(1)
)T}

(d1−1+d2)×(d1−1+d2)
,

Σ∗λ1 (β) = diag
{
p′λ12 (|β2|) / |β2| , . . . , p′λd1 (|βd1|) / |βd1|

}
,

Σ∗λ2 (α) = diag
{
p′λ21 (|α1|) / |α1| , . . . , p′λd2 (|αd2|) / |αd2 |

}
,

and Σ∗λ (β,α) =

(
Σ∗λ1 (β) 0

0 Σ∗λ2 (α)

)
. Then, set the initial values β̂0

l of β̂l to be the standard-

ized values obtained by fitting the single index model using the np package in R, while the initial

values α̂0
s of α̂s and γ̂0 of γ̂ are calculated from the least squares approach. If the i-th iterative

estimate β̂il and α̂is are close to zero (i.e.,
∣∣∣β̂il ∣∣∣ < δ1 and |α̂is| < δ1 for some small threshold value

δ1), we set β̂i+1
l = α̂i+1

s = 0. When β̂i+1
l 6= 0 and α̂i+1

s 6= 0, we adopt the approach of Fan and Li
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(2001) and obtain the locally quadratic approximation of L
(
β̂
i+1
, α̂i+1

)
in (3.1) as follows:

Q∗n

(
β̂
i
, α̂i
)

+ Q̇∗n

(
β̂
i
, α̂i, ĝi+1,

(
ĝi+1

)′)T (
θ̂

(1),i+1
− θ̂

(1),i
)

+
1

2

(
θ̂

(1),i+1
− θ̂

(1),i
)T

Q̈∗n

(
β̂
i
, α̂i, ĝi+1,

(
ĝi+1

)′)(
θ̂

(1),i+1
− θ̂

(1),i
)

+ n

d1∑
l=2

pλ1l

(∣∣∣β̂il ∣∣∣)
+n

d2∑
s=1

pλ2s
(∣∣α̂is∣∣)+

1

2
n
(
θ̂

(1),i+1
)T

Σ∗λ

(
β̂
i
, α̂i
)(
θ̂

(1),i+1
)
− 1

2
n
(
θ̂

(1),i
)T

Σ∗λ

(
β̂
i
, α̂i
)
θ̂

(1),i
.

Minimizing the above function with respect to θ̂
(1),i+1

, we obtain that(
β̂

(1),i+1

α̂i+1

)
=

(
β̂

(1),i

α̂i

)
−
{
Q̈∗n

(
β̂
i
, α̂i, ĝi+1,

(
ĝi+1

)′)
+ nΣ∗λ

(
β̂
i
, α̂i
)}−1

{
Q̇∗n

(
β̂
i
, α̂i, ĝi+1,

(
ĝi+1

)′)
+ nΣ∗λ

(
β̂
i
, α̂i
)(

β̂
(1),i

α̂i

)}
, (4.3)

and β̂i+1
1 is calculated from

√
1−

∥∥∥β̂(1),i+1
∥∥∥2

2
. Repeat (4.2) and (4.3) until

∥∥∥θ̂i+1
− θ̂

i
∥∥∥

2
< δ2 and

‖γ̂i+1 − γ̂i‖2 < δ2 for some small threshold value δ2. Using similar techniques given above, we

are able to obtain the spline coefficient estimator γ̂QIF and unpenalized estimators
(
β̂

QIF,(1)
, α̂QIF

)
by minimizing (2.5) and (2.8) iteratively.

It is noteworthy that the tuning parameters are unknown in the computation of penalized es-

timators. Hence, we need to select the tuning parameters in the iterative process to complete the

whole computation algorithm. To this end, we employ the BIC criterion modified by Wang et al.

(2007) to choose the tuning parameters pλ1 and pλ2 in the penalized-QIF procedure, which is

BIC (λ1, λ2) = L(β̂, α̂) + log (n)× (d1 + d2 − 1) /n.

The optimal λ1 and λ2 are selected by minimizing BIC, i.e., (λ̂1, λ̂2) = arg min(λ1,λ2)BIC(λ1, λ2).

5 Numerical Studies

5.1 Simulation results

We present Monte Carlo studies to evaluate the finite sample performance of the proposed penal-

ized QIF estimators. To this end, let S represent any candidate model and S0 be the true model.

Then, define the model S to be overfitted, correct, and underfitted if S ⊃ S0 and S 6= S0, S = S0,
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and S 6⊃ S0, respectively. In 500 realizations, we calculate the proportions of models correctly

fitted (C), overfitted (O), and underfitted (U). In addition, we report the average number of truly

nonzero coefficients that are correctly set to nonzero (NC), and the average number of truly nonzero

coefficients that are incorrectly set to zero (NI). To assess the estimation accuracy, we compare the

SCAD-penalized QIF (PQIF) estimate with the ORACLE estimate obtained by assuming that the

true model is known a priori. The assessment measure is the squared root value of the estimated

mean squared error (MSE) defined as
∑500

k=1

∥∥∥β̂(k) − β0
∥∥∥2

/500 and
∑500

k=1

∥∥α̂(k) −α0
∥∥2
/500,

where β̂(k) and α̂(k) are the parameter estimates calculated in the k-th realization.

In this study, we consider a “sine-bump” model (Carroll et al.; 1997)

Yij = sin

{
π
(
β0TXij − A

)
C − A

}
+α0TZij + εij,

where A =
√

3/2 − 1.645/
√

12, C =
√

3/2 + 1.645/
√

12, j = 1, ..., 5, i = 1, · · · , n, and

n = 100, 200, and 500. Furthermore, covariates Xij = (Xij,1, . . . , Xij,7)T are independently gen-

erated from uniform [0, 1], Zij,1 are simulated from Bernoulli(0.5), and (Zij,2, Zij,3, Zij,4)T fol-

lows a multivariate normal distribution with mean 0 and covariance (i.e., cov(Zij,k1 , Zij,k2) =

0.5|k1−k2| for 2 ≤ k1, k2 ≤ 4). Their corresponding regression parameter vectors are β0 =

1/
√

14(3, 2, 0, 0, 1, 0, 0)T and α0 = (1, 0, 0,−0.5)T. Moreover, the random errors (εi1, ..., εi5)T

are generated from a multivariate normal distribution with mean 0, variance σ2, and an associated

exchangeable correlation parameter ρ = 0.6. The two standard errors, σ = 0.2, 0.5, are used for

examining the performance of the proposed estimators via the signal-to-noise ratio. To assess the

robustness of covariance setting, we finally consider three different working correlation structures:

independent (IND), exchangeable (EXCH), and AR(1), although the data are simulated from the

exchangeable setting. In this study, we use a cubic spline to estimate the nonparametric function,

and assume that the family of candidate knots contains the operating knots (i.e., the nearest repre-

sentation of the true knots). In the literature, selection criteria for the number of interior knots are

usually classified into two categories: consistent (e.g., the Bayesian information criterion BIC) and

efficient (e.g., the Akaike information criterion AIC and the cross-validation CV). For the sake of

consistency, we follow the approach of Qu and Li (2006) and Xue et al. (2010), and employ BIC
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to select the number of interior knots N . However, this does not exclude the possibility of using

AIC or CV (e.g., see Huang et al. (2002)) to choose the number of knots when the user focuses on

efficiency.

Based on the order assumptions on the number of interior knots N in Theorem 1 and Re-

mark 1, we choose N from a given interval
[[
n1/(2p+1)

]
, 5
[
n1/(2p+1)

]]
by minimizing BIC(N) =

Qn(γ̂, θ̂) + log(n)× (N + p)/n, where [a] denotes the closest integer to a. As a result, N = 2 on

average among 500 replications for n = 100, 200, and 500.

Tables 1 and 2 report the variable selection and estimation results for β0 and α0, respectively.

Both tables correspondingly indicate the three and two truly nonzero coefficients of β0 andα0 that

are correctly set to nonzero. On the other hand, the average numbers of truly nonzero coefficients

that are incorrectly set to zero decrease as the sample size increases. In addition, the proportions of

models correctly fitted increase with the sample size, while the difference between the PQIF and

ORACLE estimators in terms of the squared root MSE measure is diminishing as the sample size

increases. The above findings confirm theoretical results under different signal-to-noise ratios. It is

noteworthy that although the correct working correlation structure (i.e., EXCH) performs the best,

the other two working correlation structures (IND and AR(1)) also yield good performance. This

finding corroborates Theorem 4 by showing that the PQIF estimators are consistent even though

the working correlation is mis-specified.

Finally, we evaluate the nonparametric estimate of g. Figure 1 respectively depicts the spline

estimated functions ĝ (û) (solid curve) together with the true nonlinear function g(u) (dashed

curve) under the exchangeable, AR(1), and independent error structures, when n = 100, σ = 0.2.

It shows that all three estimated curves are fairly similar, and close to the true curve. In sum, our

proposed PQIF approach performs well in estimating both parametric and nonparametric compo-

nents.
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5.2 Empirical example

To illustrate the practical usefulness of PQIF, we consider a data set from Frees (2004) that studies

the debt maturity structure of a firm. The data contain 328 observations of unregulated firms over

the period 1980-1989. The response variable (DEBTMAT) is the value-weighed average of the

maturities of the firm’s debt that is calculated based on the formula given in Stohs and Mauer

(1996). The explanatory variables are defined as follows: LEVERAGE is the ratio of total debt

(the sum of long-term debt, long-term debt due within 1 year, and short-term debt) to the market

value of the firm; ASSETMAT is the (book) value-weighted average of the maturities of current

assets and net property, plant, and equipment; MV/BV is the market value of the firm scaled by

the book value of assets; SIZE is the natural logarithm of the estimate of firm value measured

in 1982 dollars using the producer price index deflator; CHANGEEPS is the difference between

next year’s and this year’s earnings per share scaled by this year’s common stock price per share;

The firm’s effective tax rate (TAXRATE) is split into two variables GTAXRATE and BTAXRATE,

where GTAXRATE=TAXRATE and BTAXRATE= 0 if TAXRATE is between zero and one,

and GTAXRATE= 0 and BTAXRATE=TAXRATE otherwise; VAR is the ratio of the standard

deviation of the first difference in earnings before interest, depreciation, and taxes to the average

of assets over the ten year period (1980-89); TERM is the difference between the long-term and

short-term yields on government bonds; LOWBOND is a dummy variable, in which LOWBOND

equals one if the firm has a rating of CCC or is unrated, and zero otherwise; and HIGHBOND is

also a dummy variable and it equals one if the firm is rated AA or higher, and zero otherwise.

We fit the data with PLSiM by using the standardized continuous variables as the single in-

dex components, including X1 =LEVERAGE, X2 =ASSETMAT, X3 =MV/BV, X4 =SIZE,

X5 =CHNGEEPS, X6 =GTAXRATE, X7 = BTAXRATE, X8 =VAR, and X9 =TERM. In

addition, the two dummy variables, LOWBOND and HIGHBOND, are the linear components,

i.e., Z1 =LOWBOND and Z2 =HIGHBOND. Since the distribution of DEBTMAT is highly right

skewed, we take the natural logarithm transformation of DEBTMAT so that Y = log (DEBTMAT+ 1).

As a result, we have that E(Yij|Xij, Zij) = g (βTXij) + αTZij , where Xij = (Xij,1, . . . , Xij,9)T,
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Zij = (Zij,1, Zij,2)T, β = (β1, . . . , β9) , and α = (α1, α2) for i = 1, · · · , 328 and j = 1, · · · , 10.

We use cubic splines to estimate g (·) and the number of interior knots N is selected by the BIC

criterion described in Section 5.1.

Table 3 reports the variable selection and estimation results by using the proposed PQIF method

with the exchangeable, AR(1), and independent working correlation structures. In the single index

component, four of the six selected variables are common across the three working correlation

structures. Among those four variables, LEVERAGE, ASSETMAT, and MV/BV have significant

positive effects on DEBTMAT, while VAR has a significant negative effect on DEBTMAT. In the

linear component, the signs of coefficient estimates of both dummy variables, LOWBOND and

HIGHBOND, are negative. In addition, the p-values of all variables selected by the penalized QIF

method are less than 0.05. It is noteworthy that the coefficient signs for LEVERAGE, ASSET-

MAT, LOWBOND and HIGHBOND are consistent with the agency cost hypothesis given in Stohs

and Mauer (1996), while MV/BV shows a different sign from the agency cost hypothesis. To

further understand this sign difference, we calculate the correlation coefficient between MV/BV

and LEVERAGE. It is -0.458, which shows a moderately negative correlation. This inverse rela-

tionship between MV/BV and LEVERAGE may cause MV/BV to have a different sign from the

agency cost hypothesis regarding LEVERAGE, by controlling for the LEVERAGE variable in the

regression model. This finding is also consistent with Stohs and Mauer (1996).

In addition to the four common variables mentioned above, the variables SIZE and GTAXRATE

have been selected in the AR(1) and IND settings and the EX and AR(1) settings, respectively. The

coefficient estimates of SIZE are positive, which is consistent with the agency cost hypothesis. In

contrast, the positive coefficients of GTAXRATE contradict the agency cost hypothesis (see Stohs

and Mauer, 1996). In sum, although the estimated regression coefficients obtained from the three

working correlation structures, EXCH, AR(1), and IND, are slightly different, they yield the same

significant effect on DEBTMAT. To assess the model fitting, we next calculate the coefficients of

determination under the EXCH, AR(1) and IND settings, which are 0.488, 0.495, and 0.475, re-

spectively. Since these values are similar, the model fitting via the PQIF method is robust against
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the three correlation structures. Based on the coefficient of determination, one may favor AR(1).

However, its resulting model yields a contradictory sign of GTAXRATE. Consequently, we slightly

prefer IND to EXCH and AR(1).

To study the relationship between the response variable and the aggregate (i.e., linear combina-

tion) of continuous variables, Figure 2 depicts estimated nonparametric functions of ĝ (û) versus û

(thick curves) together with their 95% confidence intervals (upper and lower thin curves) for three

working correlation settings, where û = β̂
T
X . The three functions exhibit a similar pattern and

show an increasing trend in general. Specifically, they increase sharply in the beginning, and then

become less steep as the index increases. There is a drop towards at higher index values and then

they increase again. In conclusion, the relationship between the debt maturity and index is nonlin-

ear rather than identity, after controlling for two dummy variables, and this provides an insightful

finding on corporate debt maturity structure.

6 Discussion

In partially linear single-index models with repeated measurements, we employed the quadratic

influence function together with the profile approach to obtain parameter estimators for both para-

metric and nonparametric components. The asymptotic properties of the resulting estimators are

established. Furthermore, we proposed a penalized quadratic function approach to select variables

and estimate parameters. The resulting PQIF estimator shares the same asymptotic distribution as

the oracle. To broaden the usefulness of the proposed approach, we could consider a mixed effects

model by assuming that part of α or β has random effects. In practice, incorporating the missing

data and measurement errors in model structure is also worth further study. Finally, extending

the model structure by including the quasi likelihood function and censor data would enhance the

applicability in real data analysis.
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Appendix

We begin this appendix by presenting some notation that will be used in the proofs of theorems.

For any positive numbers an and bn, an � bn means that limn→∞ an/bn = c, where c is a positive

constant. In addition, denote the space of the p-th order smooth functions φ as C(p) ([0, 1]) ={
φ
∣∣φ(p) ∈ [0, 1]

}
. For any two functions φ and ϕ, let φ (Ui) and ϕ (Ui) be m × 1 vectors. Then,
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define the empirical inner product and the empirical norm as 〈φ, ϕ〉n = n−1
∑n

i=1 φ (Ui)
T ϕ (Ui)

and ‖φ‖2
n = 〈φ, φ〉n, respectively. If functions φ and ϕ are L2-integrable, we further define the

theoretical inner product and theoretical L2 norm as 〈φ, ϕ〉 = E
{
φ (Ui)

T ϕ (Ui)
}

and ‖φ‖2 =

E
{
φ (Ui)

T φ (Ui)
}

, respectively. For 1 ≤ r ≤ ∞, denote ‖ζ‖r = (|ζ1|r + · · · + |ζs|r)1/r, for any

vector ζ = (ζ1, . . . , ζs)
T ∈ Rs, and ‖ζ‖∞ = max (|ζ1| , · · · , |ζs|). For any symmetric matrix A,

denote its Lr norm as ‖A‖r = maxζ∈Rs,ζ 6=0 ‖Aζ‖r ‖ζ‖
−1
r . For any matrix A = (Aij)

s,t
i=1,j=1, de-

note ‖A‖∞ = max1≤i≤s
∑t

j=1 |Aij|. To develop the theoretical results of the proposed estimators,

we next present the following technical conditions.

A.1 Six Conditions

(C1) The density function fβT
Xij

(·) of the random variable βTXij is bounded away from 0 on

[a, b] for β in a neighborhood of β0 and it satisfies the Lipschitz condition of order 1.

(C2) g (·) ∈ C(p) ([0, 1]) and p ≥ 3.

(C3) There exists 0 < cξ <∞, such that the distances between neighboring knots satisfy

max
0≤J≤N−1

|hJ+1 − hJ | = o
(
N−1

)
and h/ min

0≤J≤N
hJ < cξ.

(C4) The eigenvalues of M r, 1 ≤ r ≤ k are bounded away from 0 and infinity. Let Γ =

(Γr,r′)
k
r,r′=1 = (Γj,j′r,r′)

m,k
j,j′=1,r,r′=1. For any 1 ≤ j ≤ m, and any given vector a = (ar)

k
r=1 ∈

Rk, there exist constant 0 < cΓ < CΓ < ∞, such that cΓ

∑k
r=1 a

2
r ≤

∑k
r,r′=1 arar′Γj,j,r,r′ ≤

CΓ

∑k
r=1 a

2
r .

(C5) The eigenvalues of Ω̇
(
θ0
)

and Ξ
(
θ0
)

are bounded away from 0 and infinity.

(C6) E (Xij |βTXij = uij ) ∈ C(1) ([0, 1]) and E (Zij |βTXij = uij ) ∈ C(1) ([0, 1]) for uij ∈ Sβ .

It is noteworthy that Condition (C1) is the same as Condition (d) in Cui et al. (2011). Condition

(C2) is given in Theorem 2.1 of Shen et al. (1998), and Condition (C6) is weaker than the last

one of Condition (a) in Cui et al. (2011). In addition, Condition (C3) is given in equation (3)

and Remark 4 of Shen et al. (1998). Finally, Condition (C4) is required for the existence of the
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asymptotic variances of the estimators, while Condition (C5) is needed for the convergence rates

of the parametric and nonparametric estimators. Before proving the proposition and theorems, we

provide eight lemmas below.

A.2 Eight Lemmas

For notational simplicity, we denote Uij = Uij
(
β0
)

and Ui = (Ui1, . . . , Uim)T.

Lemma A.1. Under Conditions (C1) and (C3), we have that, as n→∞,

max
1−p≤J,J ′≤N

∣∣〈BJ,p, BJ ′,p〉n − 〈BJ,p, BJ ′,p〉
∣∣ = Oa.s.

{√
(log n)h/n

}
.

Proof. Using Bernstein’s inequality from Bosq (1998), we can directly prove the result.

Lemma A.2. Under Conditions (C1) and (C3), for any a ∈ RJn , there exist constants 0 < c1 <

C1 <∞ such that

c1h ‖a‖2
2 ≤

∥∥Bp (Ui)
T a
∥∥ ≤ C1h ‖a‖2

2 .

Proof. Lemma A.2 follows from Theorem 5.4.2 of DeVore and Lorentz (1993).

The next lemma can be found in Demko (1986), which plays an important role in the proof of

Lemma A.4.

Lemma A.3. Suppose that A is a positive definite Hermitian matrix A such that A has no more

than k nonzero entries in each row. Then, we have that
∥∥A−1

∥∥
∞ ≤ 33

√
k
∥∥A−1

∥∥5/4

2
‖A‖1/4

2 .

Lemma A.4. Assume Conditions (C1), (C3), and (C4) hold. Then, as n → ∞, there exist con-

stants 0 < CΨ < ∞, 0 < c2 < C2 < ∞, 0 < C3 < ∞, and 0 < c4 < C4 < ∞, such

that, with probability 1, (i) c2h
−1IkJn ≤ n−1Ψ̃−1

n ≤ C2h
−1IkJn , (ii)

∥∥∥n−1Ψ̃−1
n

∥∥∥
∞
≤ CΨh

−1, (iii)∥∥∥∥∥
(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1
∥∥∥∥∥
∞

≤ C3 (nh)−1, and (iv) c4 (nh)−1 IkJn ≤
(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1

≤ C4 (nh)−1 IkJn ,

where ˜̇Φn and Ψ̃n are defined in (2.13) and (2.14), respectively.
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Proof. Define Φ̇ = E


Bp (Ui) Λ1Bp (Ui)

T

...
Bp (Ui) ΛkBp (Ui)

T


kJn×Jn

and

Ψ = E


Bp (Ui) Γ1,1Bp (Ui)

T · · · Bp (Ui) Γ1,kBp (Ui)
T

... . . . ...
Bp (Ui) Γk,1Bp (Ui)

T · · · Bp (Ui) Γk,kBp (Ui)
T


kJn×kJn

.

Let Γr,r′ = (Γj,j′r,r′)
m
j,j′=1. Then, for 1 ≤ r, r′ ≤ k, we have that

E
{
Bp (Ui) Γr,r′Bp (Ui)

T
}

=

[
m∑

j,j′=1

E {BJ,p (Uij) Γj,j′r,r′BJ ′,p (Uij′)}

]N
J,J ′=1−p

= Θ
(1)
r,r′ + Θ

(2)
r,r′ ,

where

Θ
(1)
r,r′ =

[
m∑
j=1

E {BJ,p (Uij) Γj,jr,r′BJ ′,p (Uij)}

]N
J,J ′=1−p

and

Θ
(2)
r,r′ =

[∑
j 6=j′

E
{
BJ,p(Uij)Γj,j′r,r′BJ ′,p(Uij′)

}]N
J,J ′=1−p

.

By B-spline properties, Θ
(1)
r,r′ has no more than 2p − 1 nonzero entries in each row, and Θ

(2)
r,r′ =

O (h2). Next define Ψ1 =


Θ

(1)
1,1 · · · Θ

(1)
1,k

... . . . ...
Θ

(1)
k,1 · · · Θ

(1)
k,k


kJn×kJn

and Ψ2 =


Θ

(2)
1,1 · · · Θ

(2)
1,k

... . . . ...
Θ

(2)
k,1 · · · Θ

(2)
k,k


kJn×kJn

.

Accordingly, Ψ = Ψ1 + Ψ2 = Ψ1 + O (h2), and Ψ1 has no more than (2p− 1) k nonzero entries

in each row. By Lemma A.2 and Condition (C4), for any vector a = (ar,J)k,Nr=1,J=1−p ∈ R
kJn , we

have that

aT Ψ1a ≤ CΓ

m∑
j=1

k∑
r=1

N∑
J,J ′=1−p

ar,Jar,J ′E {BJ,p (Uij)BJ ′,p (Uij)}

≤ CΓC1h

m∑
j=1

k∑
r=1

N∑
J=1−p

a2
r,J = kCΓC1h ‖a‖2

2 = C ′h ‖a‖2
2 ,

where C ′ = kCΓC1. Analogously, we can show that aT Ψ1 a ≥ c′h ‖a‖2
2. Therefore, as n →

∞, c′h ‖a‖2
2 ≤ aT Ψa ≤ C ′h ‖a‖2

2. Moreover, Lemma A.1 implies that
∥∥∥(nΨ̃n −Ψ

)∥∥∥
∞

=

Oa.s.

{√
(log n)h/n

}
. Consequently, with probability 1, c′h ‖a‖2

2 ≤ aT nΨ̃na ≤ C ′h ‖a‖2
2 when

n→∞. This leads to c2h
−1IkJn ≤ n−1Ψ̃−1

n ≤ C2h
−1IkJn where c2 = C ′−1 and C2 = c′−1. This

completes the proof of part (i).
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To demonstrate part (ii), we have that

‖Ψ1‖2 = sup
a

{
(Ψ1a)T (Ψ1a) / ‖a‖2

2

}1/2

≤ sup
a

{
C ′h (Ψ1a)T Ψ−1

1 (Ψ1a) / ‖a‖2
2

}1/2

= C ′1/2h1/2 sup
a

{
aT Ψ1a/ ‖a‖2

2

}1/2 ≤ C ′h.

Analogously, we can show that
∥∥Ψ−1

1

∥∥
2
≤ c′−1h−1. It is also noteworthy that Ψ1 is a positive

definite Hermitian matrix. The above results, together with Lemma A.3, yield∥∥Ψ−1
1

∥∥
∞ ≤ 33

√
(2p− 1)

∥∥Ψ−1
1

∥∥5/4

2
‖Ψ1‖1/4

2 ≤ C ′Ψh
−1,

where C ′Ψ = 33
√

(2p− 1)c′−5/4C ′1/4. Let ξ = Ψη, where η is any given kJn × 1 vector. Then,∥∥Ψ−1ξ
∥∥
∞ ≤

∥∥Ψ−1
∥∥
∞ ‖ξ‖∞ ≤ C ′Ψh

−1 ‖ξ‖∞ .

Subsequently, ‖Ψη‖∞ ≥ C ′−1
Ψ h ‖η‖∞. By Lemma A.1, we further have that∥∥∥(nΨ̃n −Ψ

)
η
∥∥∥
∞
≤
∥∥∥nΨ̃n −Ψ

∥∥∥
∞
‖η‖∞ = Oa.s.

{√
(log n)h/n

}
‖η‖∞ .

Accordingly, with probability 1,
∥∥∥nΨ̃nη

∥∥∥
∞
≥ (1/2)C ′−1

Ψ h ‖η‖∞, as n → ∞. Moreover, let

ξ1 = nΨ̃nη. Then, with probability 1,
∥∥∥n−1Ψ̃−1

n ξ1

∥∥∥
∞
≤ 2C ′Ψh

−1 ‖ξ1‖∞ as n → ∞, where

CΨ = 2C ′Ψ. This completes the proof of part (ii).

Using the above results in the proof of part (ii), we have that ˜̇ΦT

nΨ̃−1
n
˜̇Φn � nh−1 ˜̇ΦT

n
˜̇Φn. This,

in conjunction with Lemma A.1, yields
∥∥∥∥˜̇ΦT

n
˜̇Φn − Φ̇TΦ̇

∥∥∥∥
∞

= Oa.s.

(
h3/2n−1/2

√
log n

)
. Next, let

Λr = (Λj,j′r)
m
j,j′=1. Then, from the definition of Φ̇, we obtain that

Φ̇TΦ̇ =
∑k

r=1

[[∑m

j,j′=1
E {BJ,p (Uij) Λj,j′rBJ ′,p (Uij′)}

]N
J,J ′=1−p

]2

=
∑k

r=1

[[∑m

j=1
E {BJ,p (Uij) Λj,j′rBJ ′,p (Uij)}+O

(
h2
)]N

J,J ′=1−p

]2

= ˜̇ΦT ˜̇Φ +O
(
h3
)
,

where ˜̇ΦT ˜̇Φ =
∑k

r=1

[[∑m

j=1
E {BJ,p (Uij) Λj,jrBJ ′,p (Uij)}

]N
J,J ′=1−p

]2

.

By B-spline properties, ˜̇ΦT ˜̇Φ has no more than 4p − 3 nonzero entries in each row. Then, ap-

plying the same techniques used in the proof of Part (ii), we are able to show that there exists a

25



constant 0 < C ′3 < ∞ such that ‖(˜̇ΦT ˜̇Φ)−1‖∞ ≤ C ′3h
−2. This, together with the above result, im-

plies that, ‖(Φ̇TΦ̇)−1‖∞ ≤ C ′3h
−2 {1 + o (1)}, Accordingly, with probability 1, ‖(˜̇ΦT

n
˜̇Φn)−1‖∞ ≤

C ′3h
−2 {1 + o (1)}, as n→∞. Subsequently, using the result that ˜̇ΦT

nΨ̃−1
n , ˜̇Φn � nh−1 ˜̇ΦT

n
˜̇Φn, there

is a constant 0 < C3 < ∞, such that, with probability 1, ‖(˜̇ΦT

nΨ̃−1
n
˜̇Φn)−1‖∞ ≤ C3n

−1h−1, when

n→∞. This completes the proof of part (iii). Finally, we can employ the similar techniques used

in part (i) to prove part (iv).

To find the asymptotic approximation of the nonparametric function estimation ĝ, we next

introduce a lemma obtained from equation (2.7) of Barrow and Smith (1978).

Lemma A.5. Under Conditions (C1)-(C3), we have that, for any u ∈ IJ and 0 ≤ J ≤ N , there

exists γ0 ∈ RJn such that g(u)−
{
Bp (u)T γ0 − b∗(u)hp

}
= o (hp), where b∗(u) is given in (2.15).

Before using the above lemma, we first have that
∣∣∣Ψn (γ0)− Ψ̃n

∣∣∣ = op (n−1), where Ψ̃n is given

in (2.14). Let γ̂QIF = γ̂QIF
(
θ0
)
, where θ0 =

(
β0T,α0T

)T
. By similar arguments as given in Qu and

Li (2006), we can prove that ‖γ̂QIF − γ0‖∞ = oa.s. (1). Then, by the Taylor expansion,

γ̂QIF − γ0 =
{
Q̈n

(
γ0
)}−1 {

Q̇n (γ̂QIF)− Q̇n

(
γ0
)}
{1 + op(1)} ,

where Q̈n (γ0) =
{
∂Qn (γ0) /∂γ0∂ (γ0)

T} and it is asymptotically equivalent to 2˜̇ΦT

nΨ̃−1
n
˜̇Φn.

Since Q̇n (γ̂QIF) = 0, we obtain that

γ̂QIF − γ0 = −
(

2˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1

Q̇n

(
γ0
)
{1 + op(1)}

= −
(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n Φn

(
γ0
)
{1 + op(1)} =

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n ×

n−1

n∑
i=1

 Bp (Ui) Λi,1

{
Yi −Bp (Ui)

T γ0 −ZT
iα
}

...
Bp (Ui) Λi,k

{
Yi −Bp (Ui)

T γ0 −ZT
iα
}
 {1 + op(1)} , (A.1)

where g (Ui) = {g (Ui1) , . . . , g (Uimi
)}T. This, together with Lemma A.5, leads to

γ̂QIF =
(
r̃QIF
e + r̃QIF

g

)
{1 + op(1)}, where

r̃QIF
e =

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n n−1

n∑
i=1


Bp (Ui) Λi,1ei

...
Bp (Ui) Λi,kei

 , (A.2)
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r̃QIF
g = γ0 −

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n ϑnh

p + τn(u)o (hp) , (A.3)

ϑn is defined in (2.15), and

τn(u) =

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n n−1

n∑
i=1


Bp (Ui) Λi,11m

...
Bp (Ui) Λi,k1m

 .

Let θ0 =
{(
β0
)T
, (α0)

T
}T

be the vector of the true parameters. Accordingly, g̃
(
u,θ0

)
= g̃(u) =

{g̃e(u) + g̃g(u)} {1 + op(1)} , where g̃e(u) = Bp (u)T r̃QIF
e and g̃g(u) = Bp (u)T r̃QIF

g . The next three

lemmas present some asymptotic properties of g̃e and g̃g.

Lemma A.6. Under Conditions (C1), (C3), and (C4), {Var (g̃e(u) |X,Z)}−1/2 g̃e(u) → N (0,1)

as n → ∞, where Var (g̃e(u) |X,Z) = Bp (u)T
(

Φ̇T
nΨ̃−1

n Φ̇n

)−1

Bp(u), X= (XT
1, . . . ,X

T
n)T, and

Z= (ZT
1, . . . ,Z

T
n)T.

Proof. By the definition of g̃e(u) and (A.2), it can be written as g̃e(u) =
∑n

i=1 aT
i εi, in which

aT
i ai = n−2Bp(u)T

(
Φ̇T
n Ψ̃−1

n Φ̇n

)−1

Φ̇T
n Ψ̃−1

n ×
Bp (Ui) Γ1,1Bp (Ui)

T · · · Bp (Ui) Γ1,kBp (Ui)
T

... . . . ...
Bp (Ui) Γk,1Bp (Ui)

T · · · Bp (Ui) Γk,kBp (Ui)
T

 Ψ̃−1
n Φ̇n

(
Φ̇T
n Ψ̃−1

n Φ̇n

)−1

Bp(u),

and conditional on (X,T), εi are independent with mean 0 and covariance Im. Hence, the proof of

this lemma follows if the Lindeberg-Feller conditions are satisfied. To this end, it suffices to verify

that max1≤i≤n a
T
iai = oa.s. (

∑n
i=1 a

T
iai). Let 1Jn be a Jn × 1 vector with elements 1. By Lemma

A.4, we have that, with probability 1,

max
1≤i≤n

aT
iai ≤ n−2 ‖Bp(u)‖2

∞

∥∥∥∥∥
(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1
∥∥∥∥∥

2

∞

∥∥∥∥˜̇ΦT

n

∥∥∥∥
∞

∥∥∥Ψ̃−1
n 1Jn

∥∥∥2

∞

∥∥∥˜̇Φn

∥∥∥
∞

× max
1≤i≤n

max
J,J ′,r,r′

∣∣∣∣∣
m∑

j,j′=1

BJ,p (Uij) Γj,j′r,r′BJ,p (Uij′)

∣∣∣∣∣
≤ n−2CC2

3n
−2h−2hC2

Ψn
2h−2 = O

(
n−2h−3

)
,

as n→∞. After algebraic simplification, Var (g̃e(u) |X,Z) = Bp (u)T

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1

Bp(u). By

(iv) in Lemma A.4, we have that, for any u ∈ [0, 1], Var (g̃e(u) |X,Z) ≤ C4 (nh)−1 ‖Bp(u)‖2
2 ≤
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C ′4 (nh)−1, and Var (g̃e(u) |X,Z) ≥ c4 (nh)−1 ‖Bp(u)‖2
2 ≥ c′4 (nh)−1, where C ′4 = C4 ‖Bp(u)‖2

2

and c′4 = c4 ‖Bp(u)‖2
2. As a result, for any u ∈ [0, 1],∑n

i=1
aT
iai = Var (g̃e(u) |X,Z) � (nh)−1 . (A.4)

Consequently, by Condition (C4), max1≤i≤n a
T
iai = oa.s. (

∑n
i=1 a

T
iai). We complete the proof.

Lemma A.7. Under Conditions (C1), (C3), and (C4), we have that, with probability 1, there exist

constants 0 < cσ < Cσ <∞, such that

cσ (nh)−1 ≤ sup
u∈[0,1]

Var (g̃e(u) |X,Z) ≤ Cσ (nh)−1 ,

as n→∞. As a consequence, g̃e(u) = Op

{
(nh)−1} uniformly in u ∈ [0, 1].

Proof. Lemma A.7 follows immediately from (A.4).

Lemma A.8. Under Conditions (C1)-(C4), we have that, for any u ∈ IJ and 0 ≤ J ≤ N ,

g̃g(u)− g(u) = b∗(u)hp −Bp (u)T

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n ϑnh

p + op (hp) ,

where Φ̇, Ψ̃n, b∗ (u), and ϑn are given in (2.13), (2.14) and ( 2.15), respectively.

Proof. According to the definition of g̃g (u), equation (A.3), and Lemma A.5, we have that, for

any u ∈ IJ and 0 ≤ J ≤ N ,

g̃g(u) = Bp (u)T γ0 −Bp (u)T

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n ϑnh

p +Bp (u)T τn(u)o (hp)

= g(u) + b∗(u)hp −Bp (u)T

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n ϑnh

p

+Bp (u)T τn(u)o (hp) + o (hp) .

In addition, by Lemma A.4, we obtain that, for any u ∈ [0, 1],∣∣Bp (u)T τn(u)
∣∣ ≤ ‖Bp(u)‖∞

∥∥∥∥∥
(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1
∥∥∥∥∥
∞

∥∥∥∥˜̇ΦT

n

∥∥∥∥
∞

∥∥∥Ψ̃−1
n

∥∥∥
∞
Op (h) = Op(1).

As a result,

g̃g(u) = g(u) + b∗(u)hp −Bp (u)T

(˜̇ΦT

nΨ̃−1
n
˜̇Φn

)−1 ˜̇ΦT

nΨ̃−1
n ϑnh

p + op (hp) ,

which completes the proof.
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Next we establish the asymptotic convergence rate of g̃
(
u,θ0

)
and g̃′

(
u,θ0

)
, which will be

used in the proof of Theorem 1.

Proposition A.1. Under Conditions (C1)-(C4) given in the Appendix A.1, and N → ∞ and

nN−3 →∞, as n→∞,

(i)
∣∣g̃ (u,θ0

)
− g(u)

∣∣ = Op

{
(nh)−1/2 + hp

}
uniformly in u ∈ [0, 1];

(ii)
∣∣g̃′ (u,θ0

)
− g′(u)

∣∣ = Op

(
n−1/2h−3/2 + hp−1

)
uniformly in u ∈ [0, 1].

Proof. The results of (i) in Proposition A.1 follow immediately from Lemmas A.6-A.8. Using

the fact that g′(u) is approximated by the spline functions with one order less than that of g, we

have g̃′(u) = Bp−1(u)TD1γ̂
QIF. Then, employing similar techniques to those used in the proofs

of Lemma A.8 and (A.4), we obtain that, with probability approaching 1, the bias and variance

of ĝ′(u) are of orders O (hp−1) and O
{(
n−1/2h−3/2

)2
}

, respectively. Accordingly, part (ii) holds.

A.3 Proof of Theorem 1

Let θ0 =
[
β0

1 ,
{
θ(1)0

}T
]T

. The root-n consistency of θ̂
(1)QIF

can be proved by following similar rea-

soning as in Ichimura (1993). In the following, we will prove the asymptotic normality. Applying

the Taylor expansion, we obtain that

θ̂
(1)QIF
− θ(1)0 = −

{
Q̈∗n
(
θ0
)}−1

Q̇∗n
(
θ0
)
{1 + op(1)} ,

where Q̈∗n
(
θ0
)

=
{
∂Q∗n

(
θ0
)
/∂θ(1)0∂

(
θ(1)0

)T}
is a (d1 − 1 + d2) × (d1 − 1 + d2) matrix and

Q̇∗n
(
θ0
)

=
{
∂Q∗n

(
θ0
)
/∂θ(1)0

}
is a (d1 − 1 + d2) × 1 vector. By the definition of Q∗n

(
θ0
)

in

(2.8), we further have that

Q̇∗n
(
θ0
)

= 2Ω̇n

(
θ0
)T

Ξn

(
θ0
)−1

Ωn

(
θ0
)

+Op

(
n−1
)
, (A.5)

where Ω̇n

(
θ0
)

=
{
∂Ωn

(
θ0
)
/∂θ(1)0

}
is a (d1 − 1 + d2) × k (d1 − 1 + d2) matrix. Moreover,

Condition (C6) yields
∣∣∣X̂ij − X̃ij

∣∣∣ = Op

{
(nh)−1/2 + h

}
and

∣∣∣Ẑij − Z̃ij∣∣∣ = Op

{
(nh)−1/2 + h

}
.
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These results together with Proposition A.1 imply that∣∣∣D̂i

(
θ0
)
−Di

(
β0
)∣∣∣ = Op

{
(nh)−1/2 + h+

(
nh3
)−1/2

+ hp−1
}

= Op

{
h+

(
nh3
)−1/2

}
.

(A.6)

Define Ω̃n

(
β0
)

= − 1
n

∑n
i=1


Di

(
β0
)

Λ1ei
...

Di

(
β0
)

Λkei

. According to Condition (C3), we have that

h � N−1. Then, the assumption on N in the theorem implies that nh2p+2 → 0 and nh4 → ∞ as

n→∞. As a result, one has

Ωn

(
θ0
)
− Ω̃n

(
β0
)

=
1

n

n∑
i=1


{
Di

(
β0
)}

Λ1 {g̃ (Ui)− g (Ui)}
...{

Di

(
β0
)}

Λk {g̃ (Ui)− g (Ui)}

+Op

{
h+

(
nh3
)−1/2

}
Op

{
hp + (nh)−1/2

}
= Op

(
n−1/2

)
Op

{
hp + (nh)−1/2

}
+Op

{
h+

(
nh3
)−1/2

}
Op

{
hp + (nh)−1/2

}
= Op

(
hp+1 + n−1/2h1/2 + n−1/2hp−3/2 + n−1h−2

)
= op

(
n−1/2

)
.

By (A.6), one has

Ω̇n

(
θ0
)

= ˜̇Ωn

(
θ0
)

+Op

{(
nh3
)−1/2

+ h
}
,

Ξn

(
θ0
)

= Ξ̃n

(
θ0
)

+Op

[
n−1

{(
nh3
)−1/2

+ h
}]

, (A.7)

where

˜̇Ωn

(
θ0
)

=
1

n

n∑
i=1.


Di

(
β0
)

Λ1Di

(
β0
)T

...
Di

(
β0
)

ΛkDi

(
β0
)T

 ,

Ξ̃n

(
θ0
)

= n−2

n∑
i=1


Di

(
β0
)

Γ1,1Di

(
β0
)T · · · Di

(
β0
)

Γ1,kDi

(
β0
)T

... . . . ...
Di

(
β0
)

Γk,1Di

(
β0
)T · · · Di

(
β0
)

Γk,kDi

(
β0
)T

 .

Thus

Q̈n

(
θ0
)

= 2Ω̇n

(
θ0
)T

Ξn

(
θ0
)−1

Ω̇n

(
θ0
)

+ op(1)

= 2˜̇Ωn

(
θ0
)T

Ξ̃n

(
θ0
)−1 ˜̇Ωn

(
θ0
)

+ op(1).
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Accordingly,

θ̂
(1)QIF
− θ(1)0 =

{˜̇Ωn

(
θ0
)T

Ξ̃n

(
θ0
)−1 ˜̇Ωn

(
θ0
)}−1

×˜̇Ωn

(
θ0
)T

Ξ̃n

(
θ0
)−1

Ω̃n

(
β0
)
{1 + op(1)} .

Note that ˜̇Ωn

(
θ0
)

= Ω̇
(
β0
)

+ Op

(
n−1/2

)
and nΞ̃n

(
θ0
)

= Ξ
(
β0
)

+ Op

(
n−1/2

)
, where Ω̇

(
β0
)

and Ξ
(
β0
)

are defined in (2.11) and (2.12), respectively. Thus, ˜̇Ωn

(
θ0
)T

Ξ̃n

(
θ0
)−1 ˜̇Ωn

(
θ0
)

=

nΣ
θ(1)0 + Op

(
n−1/2

)
. By Lindeberg-Feller Central Limit Theorem and Condition (C5), we have

that
√
n(θ̂

(1)QIF
− θ(1)0)→ N(0,Σ−1

θ(1)0), as n→∞. This completes the proof.

A.4 Proof of Theorem 3

Theorem 3 follows from Lemmas A.6-A.8 and the fact that
∥∥∥θ̂QIF

− θ0
∥∥∥

2
= Op

(
n−1/2

)
.

A.5 Proof of Theorem 4

The proof of this theorem consists of three steps. Step I establishes the convergence rate of

{(β̂
PQIF

)T, (α̂PQIF)T}; Step II shows the sparsity of
{(
β̂

PQIF
)T

, (α̂PQIF)
T
}

; Step III demonstrates the

asymptotic distribution of the penalized estimators.

Step I. Let κn = n−1/2 + an + cn, where an = max2≤l≤d1
{∣∣p′λ1l (|β0

l |)
∣∣ , β0

l 6= 0
}

,

cn = max1≤s≤d2
{∣∣p′λ2s (|α0

s|)
∣∣ , α0

s 6= 0
}

, and β0
l and α0

s are the l-th and s-th elements of β0 and

α0, respectively, for l = 2, . . . , d1 and s = 1, . . . , d2. In addition, let β̃
(1)

= β(1)0 + κnv1,

β̃1 =

√
1−

∥∥∥β̃(1)
∥∥∥2

2
, β̃ =

{
β̃1,
(
β̃

(1)
)T}T

, and α̃ = α0 + κnv2, where v1 = (v12, . . . , v1d1)
T,

v2 = (v21, . . . , v2d2)
T, and ‖v1‖2 = ‖v2‖2 = C for some positive constant C. Thus,

Q∗n

(
β̃, α̃

)
−Q∗n

(
β0,α0

)
=

(
β̃

(1) − β(1)0

α̃−α0

)T

Q̇∗n
(
β0,α0

)
+

1

2

(
β̃

(1) − β0

α̃−α0

)T

Q̈∗n (β∗,α∗)

(
β̃

(1) − β0

α̃−α0

)
, (A.8)

for some
{

(β∗)T , (α∗)T
}T that lies between

{(
β0
)T
, (α0)

T
}T

and
(
β̃

T
, α̃T
)T

. Applying (A.5) and
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(A.7), we obtain that

Q̇∗n
(
θ0
)

= −2˜̇Ωn

(
θ0
)T

Ξ̃n

(
θ0
)−1 1

n

n∑
i=1


Di

(
β0
)

Λ1ei
...

Di

(
β0
)

Λkei

 {1 + op(1)} = Op

(
n1/2

)
,

and Q̈∗n (β∗,α∗) = 2˜̇Ωn

(
θ0
)T

Ξ̃n

(
θ0
)−1 ˜̇Ωn

(
θ0
)

+ op(1) = Op (n) .

As a result, the first term on the right-hand side of (A.8) is of orderOp{Cn1/2(n−1/2+an+cn)} and

the second term � C2n(n−1/2 + an + cn)2. From the Taylor expansion and the Cauchy-Schwarz

inequality, as n→∞, we further have that∣∣∣∣∣n
d1∑
l=2

pλ1l

(∣∣∣β̃l∣∣∣)− n d1∑
l=2

pλ1l
(∣∣β0

l

∣∣)+ n

d2∑
s=1

pλ2s (|α̃s|)− n
d2∑
s=1

pλ2s
(∣∣α0

s

∣∣)∣∣∣∣∣
≤ n

(√
d10κnan ‖v1‖2 + κ2

nbn ‖v1‖2
2 +

√
d20κncn ‖v2‖2 + κ2

ndn ‖v2‖2
2

)
≤ nCκ2

n

(√
d10 + bnC +

√
d20 + dnC

)
, (A.9)

where bn = max2≤l≤d1
{∣∣p′′λ1l (|β0

l |)
∣∣ , β0

l 6= 0
}

and dn = max1≤s≤d2
{∣∣p′′λ2s (|α0

s|)
∣∣ , α0

l 6= 0
}

. When

bn → 0, dn → 0, and C is sufficiently large, the second term on the right-hand side of (A.8) dom-

inates its first term and (A.9). Thus, for any give ν > 0, there exists a large constant C such

that,

P

{
inf
V12
L
(
β0 + κnv1,α

0 + κnv2

)
> L

(
β0,α0

)}
≥ 1− ν,

as n → ∞, where V12 = {(v1, v2) : ‖v1‖ = C and ‖v2‖ = C}. Accordingly, the rate of con-

vergence of
{(
β̂

PQIF
)T

, (α̂PQIF)
T
}

is Op

(
n−1/2 + an + cn

)
. Moreover, under the assumptions that

λ1l → 0 and λ2s → 0 for all 1 ≤ l ≤ d1 and 1 ≤ s ≤ d2, we have that an = 0 and cn = 0.

Consequently, the rate of convergence of
{(
β̂

PQIF
)T

, (α̂PQIF)
T
}

is Op

(
n−1/2

)
.

Step II. Let β1 =
{
β1,
(
β

(1)
1

)T}T

and α1 satisfy
∥∥β1 − β0

1

∥∥ = Op

(
n−1/2

)
and ‖α1 −α0

1‖ =

Op

(
n−1/2

)
, respectively. We then show, with probability tending to 1, that

L

{(
β1

0

)
,

(
α1

0

)}
= min

C
L

{(
β1

β2

)
,

(
α1

α2

)}
, (A.10)

as n → ∞, where C =
{
‖β2‖ ≤ C∗n−1/2, ‖α2‖ ≤ C∗n−1/2

}
and C∗ is a positive constant. To

this end, consider βl ∈
(
−C∗n−1/2, C∗n−1/2

)
for l = d10 + 1, . . . , d1. When βl 6= 0, one has
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∂L (β,α) /∂βl = ∂Q∗n (β,α) /∂βl + np′λ2l (|βl|) sgn (βl), where

∂

{
1

2
Q∗n (β,α)

}
/∂βl =

1

n

n∑
i=1

[[
βlg̃
′ (βTXij)

{
Xij,1 − Ê (Xij,1 |βTXij )

}
+

d1∑
l′=2

g̃′ (βTXij)
{
Xij,l′ − Ê (Xij,l′ |βTXij )

}]m
j=1

ΛrD̂i (β)T

T

1≤r≤k

Ξn (β,α)−1 Ωn (β,α)

=
1

n

n∑
i=1

[[
βlg̃
′ (βTXij)

{
Xij,1 − Ê (Xij,1 |βTXij )

}
+

d1∑
l′=2

g̃′ (βTXij)
{
Xij,l′ − Ê (Xij,l′ |βTXij )

}]m
j=1

ΛrD̂i (β)T

T

1≤r≤k

Ξn (β,α)−1×

1

n

n∑
i=1

[
D̂i (β) ΛrD̂i (β)T

(
β(1) − β(1)0

α−α0

)(
1 +Op

(
n−1/2

))
− D̂i (β) Λrei

]k
r=1

.

Since
∥∥β − β0

∥∥ = Op

(
n−1/2

)
and ‖α−α0‖ = Op

(
n−1/2

)
, we have that n−1∂

{
1
2
Q∗n (β,α)

}
/∂βl

is of order Op

(
n−1/2

)
. Thus,

∂L (β,α) /∂βl = nλ1l

{
λ−1

1l p
′
λ1l

(|βl|) sgn (βl) +Op

(
n−1/2λ−1

1l

)}
.

Using the results of lim infn→∞ lim infβl→0+ λ
−1
1l p

′
λ1l

(|βl|) > 0 and n−1/2λ−1
1l → 0, we further

obtain ∂L (β,α) /∂βl > 0 for βl > 0 and ∂L (β,α) /∂βl < 0 for βl < 0. Analogously, we can

show that ∂L (β,α) /∂αs > 0 for αs > 0 and ∂L (β,α) /∂αs < 0 for αs < 0. Consequently, the

minimum of L (β,α) is attained at β2 = 0,α2 = 0, which proves (A.10). This, together with the

result of Step I, implies that, with probability tending to 1, β̂
PQIF

2 = 0 and α̂PQIF
2 = 0, as n → ∞.

This completes the proof of part (i) in Theorem 4.

Step III. Lastly, we demonstrate the asymptotic normality of β̂
PQIF

1 and α̂PQIF
1 . Define

Rλ1 =
{
p′λ12

(∣∣β0
2

∣∣) sgn
(
β0

2

)
, . . . , p′λd10

(∣∣β0
d10

∣∣) sgn
(
β0
d10

)}T
,

Σλ1 = diag
{
p′′λ12

(∣∣β0
2

∣∣) , . . . , p′′λd10 (∣∣β0
d10

∣∣)} ,
Rλ2 =

{
p′λ21

(∣∣α0
1

∣∣) sgn
(
α0

1

)
, . . . , p′λd20

(∣∣α0
d20

∣∣) sgn
(
α0
d20

)}T
,

Σλ2 = diag
{
p′′λ21

(∣∣α0
1

∣∣) , . . . , p′′λd20 (∣∣α0
d20

∣∣)} , (A.11)

where β0
l and α0

s are the l-th and s-th elements of β0
1 and α0

1, respectively, for 2 ≤ l ≤ d1 and

1 ≤ s ≤ d2. Furthermore, define

D̂1i (β1) =
[{
g̃′
(
βT

1X
1
i1

)
X̂1
i1, . . . , g̃

′ (βT
1X

1
im

)
X̂1
im

}T

J1,
(
Ẑ1
i1, . . . , Ẑ

1
im

)T]T

,
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where X̂1
ij = X1

ij − Ê
(
X1
ij

∣∣βT
1X

1
ij

)
and Ẑ1

ij = Z1
ij − Ê

(
Z1
ij

∣∣βT
1X

1
ij

)
. By (3.1), β̂

(1)PQIF

1 and α̂PQIF
1

satisfy

0 =


∂L

(
ˆβ

PQIF

1 ,α̂PQIF
1

)
∂

ˆβ
(1)PQIF

1

∂L
(

ˆβ
PQIF

1 ,α̂PQIF
1

)
∂α̂PQIF

1

 =
1

2
Q̇∗1n

(
β̂

PQIF

1 , α̂PQIF
1

)
+ (A.12)

n

(
Rλ1

Rλ2

)
+ n

(
Σλ1 0

0 Σλ2

)(
β̂

(1)PQIF

1 − β(1)0
1

α̂PQIF
1 −α0

1

)
+Op

(
n−1
)
,

where the first derivative Q̇∗1n (β1,α1) = Ω1n (β1,α1)T Ξ1n (β1,α1)−1 Ω1n (β1,α1). The quanti-

ties Ω1n (β1,α1) and Ξ1n (β1,α1) are defined in the same manner as Ωn (β,α) and Ξn (β,α) in

(2.9) by replacing X i, Zi and D̂i with X i,1 = (X1
i1, . . . , X

1
im)

T

m×d10 , Zi,1 = (Z1
i1, . . . , Z

1
im)

T

m×d20 ,

and D̂1i (β1), respectively. Let θ̂
PQIF

1 = {(β̂
PQIF

1 )T, (α̂PQIF
1 )T}T. Then,

Q̇∗1n

(
θ̂

PQIF

1

)
= 2Ω̇1n

(
θ̂

PQIF

1

)T

Ξ1n

(
θ̂

PQIF

1

)−1

Ω1n

(
θ̂

PQIF

1

)
+Op

(
n−1
)

= 2Ω̇1n

(
θ̂

PQIF

1

)T

Ξ1n

(
θ̂

PQIF

1

)−1

Ω̇1n

(
θ̂

PQIF

1

)(
β̂

(1)PQIF

1 − β(1)0
1

α̂PQIF
1 −α0

1

)
− (A.13)

2Ω̇1n

(
θ̂

PQIF

1

)T

Ξ1n

(
θ̂

PQIF

1

)−1 1

n

n∑
i=1


D1i

(
β̂

PQIF

1

)
Λ1ei

...

D1i

(
β̂

PQIF

1

)
Λkei

+Op

(
n−1
)
.

By (A.12) and (A.13), we have that{
Ω̇n

(
θ̂

PQIF

1

)T

Ξn

(
θ̂

PQIF

1

)−1

Ω̇n

(
θ̂

PQIF

1

)
+ n

(
Σλ1 0

0 Σλ2

)}(
β̂

(1)PQIF

1 − β(1)0
1

α̂PQIF
1 −α0

1

)

+n

(
Rλ1

Rλ2

)
= Ω̇n

(
θ̂

PQIF

1

)T

Ξn

(
θ̂

PQIF

1

)−1 1

n

n∑
i=1


Di

(
β̂

PQIF

1

)
Λ1ei

...

Di

(
β̂

PQIF

1

)
Λkei

+Op

(
n−1
)
.

Let Σλ =

(
Σλ1 0

0 Σλ2

)
. Applying the Lindeberg-Feller Central Limit Theorem and Condition

(C5), we obtain that

√
n
(

Σ
θ(1)0

1

+ Σλ

){(
β̂

(1)PQIF

1 − β(1)0
1

α̂PQIF
1 −α0

1

)
+
(

Σ
θ(1)0

1

+ Σλ

)−1
(
Rλ1

Rλ2

)}
→ N

{
0,Σ

θ(1)0

1

}
.

Finally, using the fact that
√
nΣλ =

√
nRλ1 =

√
nRλ2 = 0, under the assumptions that λ1l → 0

and λ2s → 0 for all 1 ≤ l ≤ d1 and 1 ≤ s ≤ d2, we complete the proof of part (ii) in Theorem 4.
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Table 1: Variable selection and estimation results for β0 with the exchangeable (EXCH), AR(1),
and independent (IND) working correlation structures for σ = 0.2, 0.5. The columns of C, O, and
U present the percentage of correct-fitting, over-fitting, and under-fitting, respectively. The column
NC (and correspondingly NI) reports the average number of truly nonzero (zero) coefficients that
are correctly (incorrectly) set to nonzero. The columns PQIF and ORACLE show the squared root
values of the estimated MSEs of the penalized and oracle estimates.

Variable selection and parameter estimation
σ n C O U NC NI PQIF ORACLE

EX 0.902 0.098 0.000 3 0.104 0.0187 0.0158

100 AR(1) 0.854 0.146 0.000 3 0.164 0.0217 0.0179

IND 0.818 0.182 0.000 3 0.190 0.0265 0.0221

EX 0.986 0.014 0.000 3 0.014 0.0118 0.0110

0.2 200 AR(1) 0.976 0.024 0.002 3 0.024 0.0130 0.0122

IND 0.980 0.020 0.000 3 0.020 0.0167 0.0158

EX 1.000 0.000 0.000 3 0.000 0.0071 0.0071

500 AR(1) 1.000 0.000 0.000 3 0.000 0.0077 0.0077

IND 1.000 0.000 0.000 3 0.000 0.0100 0.0095

EX 0.866 0.134 0.000 3 0.144 0.0545 0.0424

100 AR(1) 0.846 0.154 0.000 3 0.174 0.0643 0.0559

IND 0.806 0.194 0.000 3 0.210 0.0733 0.0605

EX 0.926 0.074 0.000 3 0.076 0.0310 0.0272

0.5 200 AR(1) 0.910 0.090 0.002 3 0.096 0.0341 0.0308

IND 0.896 0.104 0.000 3 0.108 0.0392 0.0366

EX 0.990 0.010 0.000 3 0.010 0.0195 0.0173

500 AR(1) 0.986 0.014 0.000 3 0.014 0.0209 0.0192

IND 0.982 0.018 0.000 3 0.018 0.0232 0.0221



Table 2: Variable selection and estimation results for α0 with the exchangeable (EX), AR(1), and
independent (IND) working correlation structures for σ = 0.2, 0.5. The columns of C, O, and U
present the percentage of correct-fitting, over-fitting, and under-fitting, respectively. The column
NC (and correspondingly NI) reports the average number of truly nonzero (zero) coefficients that
are correctly (incorrectly) set to nonzero. The columns PQIF and ORACLE show the squared root
values of the estimated MSEs of the penalized and oracle estimates.

Variable selection and parameter estimate
σ n C O U NC NI PQIF ORACLE

EX 0.906 0.094 0.000 2 0.102 0.0152 0.0141

100 AR(1) 0.854 0.146 0.000 2 0.084 0.0176 0.0164

IND 0.918 0.082 0.000 2 0.084 0.0210 0.0200

EX 0.994 0.006 0.000 2 0.006 0.0105 0.0100

0.2 200 AR(1) 0.980 0.020 0.002 2 0.020 0.0114 0.0110

IND 0.972 0.028 0.000 2 0.030 0.0141 0.0141

EX 1.000 0.000 0.000 2 0.000 0.0063 0.0063

500 AR(1) 1.000 0.000 0.000 2 0.000 0.0071 0.0071

IND 0.996 0.004 0.000 2 0.004 0.0089 0.0089

EX 0.902 0.098 0.000 2 0.108 0.0387 0.0332

100 AR(1) 0.822 0.178 0.000 2 0.182 0.0412 0.0374

IND 0.876 0.124 0.000 2 0.140 0.0534 0.0471

EX 0.968 0.032 0.000 2 0.032 0.0259 0.0255

0.5 200 AR(1) 0.944 0.056 0.002 2 0.078 0.0294 0.0276

IND 0.920 0.080 0.000 2 0.080 0.0433 0.0342

EX 0.992 0.008 0.000 2 0.008 0.0173 0.0173

500 AR(1) 0.994 0.006 0.000 2 0.006 0.0182 0.0179

IND 0.994 0.006 0.000 2 0.006 0.0182 0.0179



Table 3: The PQIF estimates for debt maturity example with standard errors (SE) and the corre-
sponding p-values across the EX, AR(1), and IND working correlation structures.

Variables EXCH AR(1) IND

Estimate SE p-value Estimate SE p-value Estimate SE p-value

LEVERAGE (X1) 0.867 0.006 < 0.001 0.846 0.003 < 0.001 0.916 0.003 < 0.001

ASSETMAT (X2) 0.478 0.012 < 0.001 0.516 0.006 < 0.001 0.379 0.014 < 0.001

MV/BV (X3) 0.073 0.012 < 0.001 0.066 0.012 < 0.001 0.039 0.014 0.003

SIZE (X4) 0.052 0.013 < 0.001 0.058 0.013 < 0.001

GTAXRATE (X6) 0.113 0.011 < 0.001 0.027 0.011 0.007

VAR (X8) −0.033 0.017 0.026 −0.102 0.016 < 0.001 −0.107 0.012 < 0.001

LOWBOND (Z1) −0.328 0.030 < 0.001 −0.348 0.028 < 0.001 −0.385 0.031 < 0.001

HIGHBOND (Z2) −0.106 0.047 0.012 −0.101 0.044 0.011 −0.125 0.047 < 0.001
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Figure 1: Three graphs of ĝ (û) versus û (solid curves), together with the true function g(u) (dashed
curve), for the exchangeable, AR(1), and independent working correlation structures, when the
sample size n = 100.
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Figure 2: Three graphs of ĝ (û) versus û (solid curves), together with their corresponding 95%

confidence intervals (upper and lower thin curves), for the exchangeable, AR(1), and independent
working correlation structures.




