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Abstract

This work was motivated by observational studies in pregnancy with spontaneous abortion (SAB) 

as outcome. Clearly some women experience the SAB event but the rest do not. In addition, the 

data are left truncated due to the way pregnant women are recruited into these studies. For those 

women who do experience SAB, their exact event times are sometimes unknown. Finally, a small 

percentage of the women are lost to follow-up during their pregnancy. All these give rise to data 

that are left truncated, partly interval and right-censored, and with a clearly defined cured portion. 

We consider the non-mixture Cox regression cure rate model and adopt the semiparametric spline-

based sieve maximum likelihood approach to analyze such data. Using modern empirical process 

theory we show that both the parametric and the nonparametric parts of the sieve estimator are 

consistent, and we establish the asymptotic normality for both parts. Simulation studies are 

conducted to establish the finite sample performance. Finally, we apply our method to a database 

of observational studies on spontaneous abortion.

Keywords

Empirical process; Generalized gradient projection algorithm; Spline function

1 Introduction

Our work was motivated by research work carried out at the Organization of Teratology 

Information Specialists (OTIS), which is a North American network of university or hospital 

based teratology services that counsel between 70,000 and 100,000 pregnant women every 

year. Research subjects are enrolled from the Teratology Information Services and through 
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other methods of recruitment, where the mothers and their babies are followed over time. 

Recently it has been of interest to assess the effects of medication and vaccine exposures on 

spontaneous abortion (SAB). By definition SAB occurs before week 20 of gestation; any 

pregnancy loss after that is called still birth. Ultimately we would like to know if an 

exposure modifies the risk of SAB for a woman, which may be increased or decreased. It is 

known that in the population for clinically recognized pregnancies the rate of SAB is about 

12%. On the other hand, in our database the empirical SAB rate is consistently lower than 

10%. This is due to the fact that women may enter a study any time before week 20 in 

gestation. The fact that we don’t observe the women from the start of their pregnancy is 

known as left truncation in survival analysis; it reflects the selection bias in that women who 

have early SAB events can be seen as less likely to be in our studies. In addition, a 

substantial portion of the SAB events do not have an exact known date, rather a window 

during which it occurred is typically available. This is known as interval censoring in 

survival analysis. Finally, the fact that the majority of the pregnant women are free of SAB is 

considered ‘cured’ in the time-to-event context.

Like in other clinical studies our data also have right-censoring due to loss to follow-up 

before 20 weeks of gestation. The typical survival analysis models assume that all subjects 

in the study population will eventually experience the event of interest, at least if they are not 

lost to follow-up. When this is not the case, in the literature researchers have proposed 

mixture and non-mixture cure models to deal with the situation. Mixture cure models have 

parts for the cure rate and the hazard function of the uncured subjects separately. The most 

popular semiparametric mixture cure rate model adopts logistic regression for the cure rate 

and Cox regression for the hazard rate. For example, Sy and Taylor (2000) proposed the 

estimation under this model for right-censored data. Ma (2010) proposed the estimation 

under the same model for interval censored data, and Lam and Xue (2005) and Hu and 

Xiang (2016) adopted the sieve approach to ease computation for interval censored data. 

While mixture cure models might have useful interpretation in practice, in our own 

experiences they also pose challenges because there are two parameters for each covariate 

from the two parts, including for the main exposure of interest. Such models are also 

computationally complex, and may have numerical identification issues with real data.

Non-mixture cure models have become popular for analyzing population with a well defined 

cured portion. An immediate advantage of such models is the simple formulation, and its 

similarity with commonly used survival methods such as the Cox regression model 

(Tsodikov 1998). Chen et al. (1999) showed that non-mixture cure models follow the 

biological process associated with cancer clinical trials, and proposed a semiparametric 

method for a non-mixture cure model based on the Cox regression for right-censored data. 

Zeng et al. (2006) further extended the Cox regression to general transformation models. For 

interval censored data, Liu and Shen (2009) proposed a semiparametric method under the 

non-mixture cure model structure and established consistency of their estimator, and Hu and 

Xiang (2013) adopted the sieve approach for the nonparametric part and besides consistency 

they also established the asymptotic normality for the parametric part of the model.

In practical data analysis using cure models, a predetermined follow-up time window is 

often used to identify the observed cured subjects, see for example, Sy and Taylor (2000) 
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and Zeng et al. (2006). The end point of the follow-up window is called cure threshold by 

Zeng et al. (2006), and it is assumed that most or all events will occur before the cure 

threshold. In some applications, the cure threshold may be naturally defined related to the 

events of interest. For example, spontaneous abortion (SAB) mentioned earlier is only 

defined as pregnancy loss before week 20 of gestation, and subjects without such events 

before week 20 are clearly “cured” for SAB. Therefore, the cure threshold is naturally 

defined as week 20 in this case. In this way, the cure model is also a natural candidate tool 

for analyzing this type of data.

The fact that the SAB data consist of both interval censored and exactly observed event 

times is referred as partly interval censored and actually occurs very often in practice. 

Another example of partly interval censored data is progression free survival (PFS) time in 

clinical trials, because PFS time is defined as the smaller of death and progression times 

which are usually right-censored and interval censored, respectively. Intuitively the 

asymptotic results for the maximum likelihood estimation (MLE) under the Cox model with 

partly interval censored data will be the same as those for the MLE with right-censored data 

in terms of convergence rate, since for both partly interval censored and right-censored data 

the likelihood function will be dominated by the term with observed events. However, Kim 

(2003b) pointed out that if the interval censored observations are naively ignored from the 

whole data set, both estimation bias and standard error will be enlarged. Hence, a method 

correctly addressing this type of complex data is needed. Unfortunately we have found no 

published work on cure rate model with partly interval censored data in the presence of left 

truncation, which is the case for the SAB data application that we will describe in more 

details in Sect. 7. We will consider the sieve approach which has shown efficiency in 

computation for both nonparametric and semiparametric survival analysis problems under 

smoothness assumptions, and has variance estimator readily available. Ramsay (1988) has 

observed that closely related to the well-known B-splines, there are so-called M-splines and 

I-splines, where the M-splines are the derivatives of the I-splines. In the following we will 

use the B-spline form for theoretical developments, and the M-spline and I-spline form for 

simplicity of computing.

To our best knowledge, this work is the first attempt to provide an approach for analyzing 

complex survival data that are partly interval censored, left truncated and with a cured 

portion. The paper is organized as follows. Section 2 proposes the semi-parametric sieve 

MLE for the non-mixture Cox model when data are left truncated, partly interval censored 

and with a cured portion. The reason for us to work with a non-mixture cure model is 

partially due to the relative simplicity of the model structure, makes computing and 

theoretical development more manageable for our complex data. Section 3 provides all the 

asymptotic results for both the parametric part and the nonparametric part including 

consistency and asymptotic normality. The asymptotic normality for the nonparametric part 

is established for a smooth functional of the sieve estimator. Section 4 describes the 

computational method for the proposed sieve MLE. Section 5 finds the estimator for the 

variance of both the parametric and the nonparametric part. Section 6 conducts simulation 

studies to verify the finite sample performance for the proposed method. Section 7 applies 

the proposed methodology to analyze an observational data set on spontaneous abortion. 

Section 8 summaries the theoretical and numerical results and discusses a few cases when 
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the data structure is simplified, and mentions some potential future work. In Supplementary 

Material we provide proofs for all theorems in this paper with necessary lemmas using 

modern empirical process theory.

2 Semiparametric sieve MLE.

Consider the non-mixture cure model proposed by Chen et al. (1999), in which the survival 

function of the event time T given covariates Z = z ∈ ℝd is S t z = exp −eβ′zF t , where 

β = φ0,β′ ′ is a vector of regression parameter contains an intercept φ0 and d-dimensional 

vector β, z = 1, z′ ′, and 0 ≤ F (t) ≤ 1 is a distribution function. Let F (τ) = 1 and in the 

following we focus on the case when τ < ∞; for example, F (·) could be a right truncated 

exponential distribution function or a uniform distribution. Since the survival function here 

does not decrease beyond τ , there are no subjects with T > τ and the cure threshold is 

naturally equal to τ (Zeng et al. 2006). Because S(τ |z) < ∞, there is a positive proportion of 

subjects who do not experience the event within the time window (0, τ), and these are 

considered cured subjects. That is, a subject is cured implies that T = τ (< ∞ ). For our SAB 

data described in the Introduction, τ equals week 20 of gestation, i.e. if a woman’s 

pregnancy survived to week 20 then she was ‘cured’ from SAB.

Write Λ (t) = F (t) exp(φ0), which represents the baseline cumulative hazard for the non-

mixture cure model. Note that Λ and (F , φ0) have a one-to-one correspondence and 0 ≤ Λ 
(t) ≤ exp(φ0) since F is a distribution function and has maximum of one. The baseline cure 

rate is S(τ|0) = exp{−eφ0}.

In the following we rewrite the above non-mixture cure model as

S t z = exp −eβ′Z Λ t , (1)

where 0 ≤ Λ (t) ≤ A (τ) = exp(φ0). While (1) appears the same as the regular Cox regression 

model, it is different in that the baseline cumulative hazard in the regular Cox model 

approaches infinity as there are no cured subjects, but here Λ(t) is bounded. It is easy to 

show that (1) is identifiable:Suppose exp −eβ′z Λ t = exp −eβ′z Λ t for all t. Let z = 0, we 

have Λ ⋅ = Λ ⋅ . Then β′z = β′z. Since z is arbitrary, we also have β = β.

Let Q be the left truncation time on [0, τ1] with 0 < τ1 ≤ t. And let [U, V] be the observation 

interval on [Q, τ], where U and V may be both equal to τ. We assume that T and [U, V] are 

independent given Z and Q, and T and Q are independent given Z. With left truncated data 

the baseline cumulative hazard Λ(·) may not be reliably estimated due to the lack of 

observations near time zero. In this paper we will show that nonetheless the functional 

increase of the baseline cumulative hazard from a “nonzero” point can be still accurately 

estimated. We note that since exp(φ0) = Λ (τ), it will be also hard to estimate φ0 and 

therefore the (baseline) cure rate with left truncated data.
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Denote Δ1 = I[U<T≤V] for interval censoring, Δ2 = I[T>V] for right-censoring and Δ3 = I[T≤U] 

for observed events. Let X = T Δ3 + U, V Δ1 + V Δ2, then X = X, Q, Z, Δ1 , Δ2 , Δ3  is the 

observed vector of random variables. Let λ (t) satisfy Λ t = ∫ 0
t λ u du. The log-likelihood 

of an i.i.d. sample xi = xi, qi, zi, δ1, i, δ3, i  with xi = tiδi, 3 + ui, vi δ1, i + viδ2, i for i = 1, …, n, 

based on the cure model (1) is

ln β, λ ; ⋅ = ∑
i = 1

n
δ1, ilog exp −e

β′Zi Λ (ui) − Λ (qi) − exp −e
β′Zi Λ (vi) − Λ (qi)

+ ∑
i = 1

n
δ2, i −e

β′Zi Λ (vi) − Λ (qi) + ∑
i = 1

n
δ3, i −e

β′Zi Λ (ti) − Λ (qi) + β′zi + log λ (ti)

,

(2)

by omitting the additive terms that do not involve (β, λ).

The optimization of the above log-likelihood can be very challenging, as the semi-

parametric MLE approach would discretize λ into point masses at each distinct observed 

event time, and under the continuous distribution assumption the number of distinct 

observations is comparable to the sample size. We will then have to maximize (2) with a 

very large number of parameters when the sample size is large. To ease the computational 

difficulties for these type of estimation problems, Geman and Hwang (1982) proposed a 

sieve maximum likelihood estimation procedure. The main idea of the sieve method is to 

maximize the likelihood with much fewer variables in a subclass that “approximates” to the 

original function space. In addition, Huang et al. (2008) established that the sieve method 

provides an easy way to compute the observed information matrix. In the following the sieve 

maximum likelihood estimation is proposed for the non-mixture cure model with partly 

interval censored and left truncated data.

Let the B-spline basis functions of order l be B j
l (t)

j = 1

pn
 with knot sequence ξ j j = 1

pn + l

satisfying

0 = ξ1 = ⋯ = ξl < ξl + 1 < ⋯ < ξpn
< ξpn + 1 = ⋯ = ξpn + l = τ,

where pn = O(nk) for k < 1. with B j
l (t)

j = 1

pn
, define
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Ψn = λn = ∑
j = 1

pn
α jB j

l :α j ≥ 0 for  j = 1, …, pn .

The requirement for all coefficients being nonnegative will guarantee that Ψn only contains 

nonnegative function for approximating the space of smooth hazard functions on [0, τ].

If λ is replaced by λn in (2) we have the log-likelihood function as

ln β, λn ; ⋅ = ∑
i = 1

n
δ1, ilog exp −e

β′𝒵i ∫
qi

ui
∑
j = 1

pn
α jB j

l t dt

− exp −e
β′𝒵i ∫

qi

vi
∑
j = 1

pn
α jB j

l t dt + ∑
i = 1

n
δ2, i −e

β′𝒵i ∫
qi

vi
∑
j = 1

pn
α jB j

l t dt

+ ∑
i = 1

n
δ3, i −e

β′𝒵i ∫
qi

ti
∑
j = 1

pn
α jB j

l t dt + β′zi + log ∑
j = 1

pn
α jB j

l ti .

(3)

The sieve maximum likelihood estimation is obtained through maximizing the log-

likelihood function (3) in terms of (β, λn). Note that the sieve MLE could have good 

asymptotic properties if Ψn “approximates” the space of nonnegative functions.

3 Asymptotic properties

In this section, we describe the asymptotic properties of the proposed sieve semi-parametric 

MLE. Study of the asymptotic properties of the proposed sieve estimator needs empirical 

process theory and requires some regularity conditions, regarding the event time, the 

observation time, the truncation time and the covariates. Denote θ0 = (β0 ,λ0) as the true 

parameter and baseline hazard function. The following conditions sufficiently guarantee the 

results in the forthcoming theorems.

C1 Covariate variable Z is bounded, that is, there exists a scalar z0 such that | Z| < 

z0. Here |·| denotes Euclidean norm. 𝔹 is a compact set in ℝd and includes β0 in 

its interior.

C2 For the true baseline cumulative hazard Λ0(·) for T, let λ0(·) satisfy 

Λ0 t = ∫ 0
t λ0 du. Then λ0 (·) has a positive lower bound and bounded pth 

derivative λ0
(p) ( ⋅ )on 0, τ .

C3 For 0 < τd < τ, (U, V) are continuously distributed for U ∈ [Q, τ – τd] and V ∈ 
[U + τd, τ]. In addition, (U, V) has some probability mass at (τ, τ).

C4 The joint density function of (U, V, Q, Z), fU, V, Q, Z has a positive lower bound 

and an upper bound for u ∈ [q, τ – τd] and v ∈ [u + τd, τ], and for 0 ≤ q ≤ τ and 

q ≤ u ≤ τ
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lim
hq 0, hz 0

Pr(q ≤ Q ≤ q + hq, z ≤ Z ≤ z + hz,U ≥ u)

hq∏i = 1
d hz

(i)

= ∫u

τ − τd∫u + τd

τ
f U, V , Q, Z(u, v, q, z)dvdu + f Q, Z

(0) (q, z),

where hz = (hz
(1), …, hz

(d))′ f Q, z
(0)  is the joint probability density and mass function 

of (Q, Z, U) at U = τ and has positive lower and upper bounds.

C5 For some η ∈ 0, 1 , a′Var(Z T , Q)a ≤ ηa′E ZZ′ T , Q a for all a ∈ ℝd.

Remark 1 Condition C2 implies that λ0(t) is bounded on [0, τ] and hence the survival rate of 

T at τ is not 0, which is assumed by the cure rate model. Condition C2 also implies that the 

first derivative of λ0(t) is bounded on [0, τ], which is necessary to apply the result of 

Example 19.10 in Vaart (1998) in the proof of consistency. Condition C3 guarantees the 

interval censored term in the likelihood function to be bounded, and U and V both equal to τ 
for a significant portion of observations. Condition C4 implies that the Q is continuous and 

the density function of (Q, Z) is bounded on [0, τ], though U has point mass at τ. Condition 

C1, C2 and C4 imply that the density functions of T, U and V all have positive lower bounds 

and hence the data structure is truly partly interval censored including significant portions of 

observed events, interval censored events and right-censored events. Condition C5 will be 

used similarly as C13 and C14 in Wellner and Zhang (2007).

Before stating our main theorems, we define some notations. For the knot sequence ξ j j = 1

pn + l

previously defined for Ψn with pn = O (nk) for κ < 1, further let maxj Δj = maxj=l,…, pn (ξj +1 

– ξj) and minj Δj = min j=l,…, pn (ξj +1 – ξj). Then, with ξ j j = 1

pn + l
 we define

𝔉n = λn ∑
j = 1

pn
α jB j

l : a0 ≤ α j ≤ Kτb0 for j = 1, …, pn,
α j + 1 − α j
max j Δ j

≤ K2d0 for j = 1, …, pn

− 1,∫
0

τ
λn (t)dt ≤ τb0,

max j Δ j
min j Δ j

has a upper bound independent of n ,

(4)

where a0, b0 and d0 satisfy a0 ≤ λ0 (t) ≤ b0 and λ0′ (t) ≤d0 on [0, τ], K is a large positive 

number for relaxing the constraints on 𝔉n in finite sample computing as discussed in Sect. 4.

Note that a0, b0 and d0 do exist given C2. Then 𝔉n ⊂ Ψn. Note that Ψn is a general space of 

nonnegative spline functions, and for the theoretical developments some regularity 
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conditions are necessary to form 𝔉n. We also let θ = (β, λ) with β ∈ 𝔹 and λ ∈ 𝔉n. Then 

θ ∈ Ωn = 𝔹, 𝔉n . We denote θn = β, λn  the maximize of ln (θ;) over Ωn.

Define ⋅
L2 v

 the norm associated with the joint probability measure v(t, q) for (T, Q) 

based on the fact that T ≥ Q, as f
L2 v

= ∫ 0
τ ∫ q

τ f 2 t dv t, q
1/2

. Then we could define the 

distance between θ1 = (β1, λ1) and θ2 = (β2, λ2) as

d(θ1, θ2) = β1 − β2
2 + λ1 − λ2 L2(v)

2 1/2
.

For one single observation x from the random observation X and a general semi-parametric 

variable θ = (β, λ), the likelihood (after removing terms unrelated to θ) is given by

l(θ; x) = δ1log exp −eβT z Λ (u) − Λ (q) − exp −eβT z Λ (v) − Λ (q) + δ2 −eβT z Λ (v) − Λ (q)

+ δ3 −eβT z Λ (t) − Λ (q) + βT z + log λ (t) .

We denote 𝕄 θ = Pl θ; x  with P being the true joint probability measure of X, and 

𝕄n θ = ℙnl θ; x  with ℙn f = 1
n ∑i = 1

n f (yi) the empirical process indexed by f. In what 

follows, we first show the consistency of the proposed estimator and establish the rate of 

convergence.

Theorem 1 Suppose that C1–C5 hold, then θn is a consistent estimator for θ0 = (β0, λ0) and

d θn, θ0 = Op n−min pκ, 1 − κ /2 .

Remark 2 This theorem implies that for κ = 1/ 1 + 2p , d θn, θ0 = Op n− p/(1 + 2p) . For any 

fixed q and t with 0 < q ≤ τ1 and q < t ≤ τ, Lemma 4 in the supplemental material implies 

that ∫ q
t λn(s) − λ0(s) 2 ds

1/2
< cd θn, θ0 . Hence, the estimation for the baseline hazard at 

any “non-zero” point is fine and the functional increase Λ0(t) – Λ0 (q) can be consistently 

estimated by the proposed sieve MLE. This is similar to the theoretical result for the 

estimated baseline hazard based on left truncated interval censored data in Kim (2003a).

Now we present the asymptotic normality for the proposed estimator including the 

parametric part and the smooth functional of the nonparametric part. Consider a parametric 

smooth submodel with parameter (β, λ(s,h)), with λ(s,h) = λ + sh, then 

λ(0, h) = λ ,
∂ λ(s, h)

∂s s = 0 = h and
∂ϕ λ s, h

∂s
s = 0

= ϕλ λ h  for a functional ϕ(·). Let ℋ be the 
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class of functions h defined by this equation. The score operator for λ with h is the 

directional derivative at λ along h:

lλ(θ; x)[h] = ∂
∂s

l β, λ s, h ; x
s = 0

≡ f h(β, λ ; x) .

And the two times directional derivative at λ along h1 and h2 is

lλ, λ(θ; x)[h1][h2] = ∂
∂s

f h1(β, λ(s, h2) ; x)
s = 0

.

In addition, for h = h1, …,hd ′ with hs ∈ ℋ for s = 1, …, d, let lλ (θ; x)[h] be the d-

dimensional vector with its sth element lλ (θ; x)[hs]. For h1 = (h1, 1, …, h1, d)′ and 

h2 = (h2, 1, …, h2, d)′, let lλ,λ (θ; x)[h1][h2] be the d × d matrix with its ith row j th column 

element lλ,λ (θ; x)[h1,i][h2,j].

For the d-dimensional β = β1, …, βd ′, let lβ θ; x = lβ1
θ; x , …, lβd

θ; x ′, where lβs θ; x  is 

the partial derivative of l (θ; x) with respect to βs, s = 1 , . . . , d. Denote 

ϕs θ, h = lβs θ; x − lλ θ; x [h] 2
 for s = 1 , . . . , d. If hs* = arg minh∈ℋ p ϕs θ0, h , then by 

Theorem 1 on page 70 in Bickel et al. (1993) the efficient score for β0 is lβ(θ; x) – lλ (θ; x) 

[h*] with h* = (h1*, …, hd*)′. Let ϕ (θ, h) = {lβ(θ; x ) – lλ (θ; x)[h]}⊗2, where v ⊗ 2 = vv′ for a 

column vector v. Then the information matrix for β0 is given by

I(β0) = Pϕ(θ0, h*) . (5)

Theorem 2 Suppose that C1–C5 hold,

n(βn − β0) = n−1/2I−1(β0) ∑
i = 1

n
l*(θ0; xi) + oP(1),

Where l*(θ; x ) = lβ (θ0; x ) – lλ (θ0; x) [h*]. That is, n βn − β0 d N 0, I−1 β0 by the 

central limit theorem.

Since the convergence rate we established is slower than 1/ n, the asymptotic normality is 

not easy to obtain for λn ⋅ , the nonparametric part of the sieve MLE. However it can still 

be shown that the asymptotic normality is available for its smooth functional ρ θn = ∫ q
t λn, 

which is the plug-in estimator of Λ0 (t) – Λ0(q) for any fixed q and t with 0 < q ≤ τ1 and q < 
t ≤ τ. Here q > 0 is chosen due to left truncation, when the parameter cannot be estimated 

reliably on the region close to zero. This corresponds to the consistency result for the 

nonparametric part we discussed in Remark 2.
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The asymptotic normality of ρ θn  is established using the idea in Shen (1997) and Chen et 

al. (2006).

Let 𝔉0 = λ : λ satisfies C2  and 𝔐 be the linear span of 𝔹, 𝔉0 − β0, λ0 . Let 

w = wβ′ , wλ ′ ∈ 𝔐, then the directional derivative along w of l (θ; x) evaluated at θ0 is given 

by

dl(θ0 + tw; x)
dt t = 0

=
dl(θ0; x)

dθ w = lβ(θ0; x)′wβ + lλ(θ0; x) wλ , (6)

where lλ(θ0; x)[wλ] is as previously defined. Based on the directional derivative, the Fisher 

information inner product for w and w is defined as w, w = P
dl θ0; x

dθ w
dl θ0; x

dθ w  and 

the Fisher information norm for w is given by w 2 = w, w .

For any w ∈ 𝔐, we write

dρ(θ0)
dθ [w] = lim

t 0

ρ(θ0 + tw) − ρ(θ0)
t .

Theorem 3 Given that C1–C5 hold,

n ρ(θn) − ρ θ0 d N 0,
dρ(θ0)

dθ

2
,

where
dρ(θ0)

dθ

2
= sup

w ∈ 𝔐, w = 1

dρ(θ0)
dθ [w]2 .

4 Computing the sieve MLE

In the theoretical part we denoted the sieve MLE θn = β, λn  as the maximizer of ln (β, λn; 

·) defined by (3) over Ωn = 𝔹, 𝔉n . In finite sample computing, we consider to relax the 

conditions for the αj ‘s in 𝔉n given in ( 4).

In what follows we first outline how to choose the spline knot sequence based on the 

observed data. Specifically, let

𝒪 = qi i = 1
n ∪ ui i:δ1, i = 1 ∪ vi i:δ1, i + δ2, i = 1, vi ≠ τ ∪ ti i:δ3, i

= 1,
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that is, 𝒪 contains observations of (Q, U, V, T) excluding vi i:δ2, i = 1, vi = τ
, which represent 

a significant portion of observations by C3. Then we let the number of the interior knots be 

[n1/3] (the closest integer to n1/3) for sample size n and put interior knots at quantiles of 𝒪.

In 𝔉n the condition 
α j + 1 − α j

max j Δ j
≤ K2d0 implies that the difference between two adjacent B-

spline coefficients is not large compared to max j Δ j, which will hold if a0 < α j < K τb0 for 

finite sample size and large K. In addition, by Lemma 5 in the supplemental material we 

have proved that 
max j Δ j
max j Δ j

 based on 𝒪 is asymptotically bounded.

Hence, we define

𝔉n′ = λn = ∑
j = 1

pn
α j B j

l : a0 ≤ α j ≤ K τ b0, for j = 1, ..., pn, ∫0
τ
λn(t)dt ≤ τ b0

with the knot sequence we just mentioned, as a simplified version of 𝔉n for computing and 

find the maximizer θ of (3) over Ωn′ = 𝔹, 𝔉n′ . From the compactness of 𝔹, we simply let | β 

| ≤ c0.

We observe that in (3) the integration of the B-spline basis functions are involved, which 

complicates the computing. As an alternative to the B-spline based sieve estimation, 

monotone I-spline technique for sieve estimation was first introduced by Ramsay (1988). In 

what follows we choose to adopt the monotone I-splines to approximate the baseline 

cumulative hazard Λ0(·). Thus the integration of B-spline basis functions can be avoided. We 

note that Joly et al. (1998) also applied a similar computational approach for estimating the 

baseline hazard and the cumulative hazard functions in survival data with a penalty term in 

the likelihood, but with no theoretical results.

Let I j
l  and M j

l  be the I-spline and M-spline basis functions, respectively, as defined, by 

Ramsay (1988) and Schumaker (1981), withM j
l t =

d I j
l t

dt . Wu and Zhang (2012) showed 

that I j
l t = ∑k = j + 1

pn + 1
Bk

l + 1 t  andM j
l t = l

ξ j + l − ξ j
B j

l t , where ξ j +l, ξj are two knots from 

the knot sequence ξk k = 1
pn + l

 associated with the according B-spline basis functions. Note that 

I j
l  has degree l, while both B j

l  and M j
l  have degree l — 1.

Then we can show that ,ΦN, n = ∫ 0 λn : λn ∈ 𝔉n′  is equivalent to 𝔉I, n with the I-spline 

function space 𝔉I, n defined as
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𝔉I, n = Λn = ∑
j = 1

pn
η jI j

l : ∑
j = 1

pn
η j ≤ τb0, a0 ≤ l

ξ j + 1 − ξ j
η j ≤ Kτb0, for j = 1, …, pn .

Hence, the B-spline based estimation problem can be converted to an equivalent I-spline 

based estimation problem. As just discussed, for finite sample case with large K we could 

further simplify 𝔉I, n as

ΦI, n = Λn = ∑
j = 1

pn
η jI j

l : ∑
j = 1

pn
η j ≤ τb0, η j ≥ m j, for j = 1, …, pn , (7)

with each small positive number m j =
ξ j + l − ξ j

l a0.

Now we write the likelihood with I-spline basis functions as

l n(β, Λn ; ⋅ ) = ∑
i = 1

n
δ1, i log  exp −e

β′zi ∑
j = 1

pn
η jI j

l (ui) − ∑
j = 1

pn
η jI j

l (qi)

− exp −e
β′zi ∑

j = 1

pn
η jI j

l (vi) − ∑
j = 1

pn
η jI j

l (qi)

+ ∑
i = 1

n
δ2, i −e

β′zi ∑
j = 1

pn
η jI j

l (vi) − ∑
j = 1

pn
η jI j

l (qi)

+ ∑
i = 1

n
δ3, i −e

β′zi ∑
j = 1

pn
η jI j

l (ti) − ∑
j = 1

pn
η jI j

l (qi)

+ β′zi + log ∑
j = 1

pn
η jM j

l (ti) .

(8)

In practice for the finite sample I-spline based computing,

We need to find the maximizer ζn = β, Λn ∈ Ωn = 𝔹, ΦI, n  for l n β, Λn ; ⋅  as defined by 

(8) over Ωn. Then by the aforementioned equivalency, we havel n ζn; ⋅ = ln θn; ⋅ . Since the 

constraints in ΦI,n given by (7) is made by linear inequalities, the maximization of (8) over 

Ωn can be efficiently implemented by the generalized gradient projection algorithm 

(Jamshidian 2004), as done in Zhang et al. (2010) and Wu and Zhang (2012). More details 

about this algorithm can be found in these papers.
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5 Variance estimation

In addition to the advantage in computing the MLE, it is also straightforward to obtain the 

consistent observed information matrix for β based on the proposed sieve MLE approach. 

Denote Bl = B1
l , …, Bpn

l ′ as the vector of B-spline basis functions of order l, then

lλ θn; x Bl = lλ θn; x B1
l , …, lλ θn; x Bpn

l ′ ⋅

Let A11 = ℙn lβ  θn; x ⊗ 2 , A12 = ℙn  lβ θn; x   lλ θn; x   Bl ′ ,  A21 = A12′  and A22

= ℙn lλ  θn; x   Bl ⊗ 2 .

 The 

observed information matrix is given by

O = A11 − A12A22
−1 A21 . (9)

Theorem 4 Given that C1–C5 hold,O P I β0 , where I (β0) is given in (5).

Next, we propose how to estimate the variance 
dρ θ0

dθ

2
 for the plug-in estimatorρ θn  of 

Λ0(t) − Λ0(q). We consider a similar method as for the observed information matrix for β. In 

what follows we adopt the idea described in Cheng et al. (2014). Let λn = ∑ j = 1
pn α j B j

l  with 

θ = β, λn . By the construction of A11, A12, A21 and A22 above, we can treat 

O = A22 − A21A11
−1A12 as the observed information matrix for the spline coefficient vector 

α = α1, …, αpn
′. Since ρ θn = ∫ q

t λn s ds = ∫ q
t ∑ j = 1

pn α jB j
l s ds, we have

∂ρ θn
∂α =

∂ρ θn
∂α1

, …,
∂ρ θn
∂αpn

′ = ∫q

t
B1

l s ds, …,∫q

t
Bpn

l s ds ′ ≡ ω .

Hence, by delta method the variance for ρ θn  can be estimated byω′O−1ω.

6 Simulation studies

From our previous experiences as well as the literature cubic or quadratic splines are good 

enough to get satisfactory sieve estimations. In simulation studies we let all spline basis 

functions have order l = 3, that is, we will use quadratic B-spline and M-spline basis 

functions, cubic I-spline basis functions. We choose sample size as 200 and 500 with 1000 

repetitions. The knot sequence for splines is chosen as described in Sect. 4.
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Let β0 = (β0,1, β0,2)′ = (0.7 −0.5)′ and let covariate Z = (Z1, Z2)′, where Z1 follows 

standard normal distribution and Z2 follows Bernoulli distribution with probability 0.5 of Z2 

= 1.

We generate T with cumulative hazard function Λ0, k ⋅ Z = Λ0, k ⋅ exp β0′ Z for k = 1, 2, 3, 

where Λ0, 1 t = e1.2 1 − e−t

1 − e−4 , Λ0, 2 t = 1 − e−t

1 − e−4  and Λ0, 3 t = e−1.2 1 − e−t

1 − e−4  for 0 ≤ t ≤ 4, and 

Λ0,1(t) = e1.2, Λ0,2(t) = 1 and Λ0,3(t) = e−1.2 for t > 4. Λ0,1(·) represents the situation with an 

average observed cure rate of 0.135 (small cure rate), Λ0,2(·) with an average cure rate of 

0.448 (medium cure rate) and Λ0,3(·) with an average cure rate of 0.755 (large cure rate). 

How to generate T with a specific cumulative hazard function (or a survival function) is 

referred to Sect. 5.1 in Liu and Shen (2009), which is based on the connection between a 

non-mixture cure model and a mixture cure model as pointed out by Chen et al. (1999).

For all three baseline cumulative hazard functions we generate left truncation time Q and 

observation interval [U, V] in two different ways: (1) Q is generated from Uniform [0, 1], 

and [U, V] is generated from Uniform [1, 4.5];(2) Q is generated from Uniform [0, 4], and 

[U, V] is generated from Uniform [Q, 4.5]. For both cases U and V are set to 4 if they are > 

4, and U = V − 0.005 if V − U < 0.005. For (1) the resulting average truncation rates in the 

uncured subjects with Λ0,1(·), Λ0,2(·) and Λ0,3(·) are 0.654, 0.501, and 0.421, respectively, 

and the resulting average overall censoring rates (including interval censoring and right 

censoring) in the remaining subjects after truncation are 0.108,0.163 and 0.195, respectively; 

for (2) the corresponding average truncation and average overall censoring rates are 0.894, 

0.831, and 0.794, and 0.258, 0.323 and 0.359, respectively. We refer to the above two 

settings as relatively light truncation and censoring (TC) versus heavy TC in the following.

Since the final observed data sets for analysis are truncated, in Table 1 for each setting we 

have reported the average rates of cured, uncured and right-censored (URC), and uncured 

but not right-censored (UNRC) among the truncated data. In the observed data all cured 

subjects are right censored. Hence the observed right-censored subjects include all cured 

subjects and uncured but right-censored ones. Note that all aforementioned average rates are 

obtained from the simulation studies with sample size 500 (1000 repetitions).

Before discussing the simulation results, in the following we outline how to obtain a 

truncated data set with sample size n.

1. Generate a sample of Z with sample size 10 × n; then generate a sample of T 
given Z;

2. Generate a sample of Q with sample size 10 × n;

3. Comparing each observation of Q with the corresponding observation of T, for 

observations with Q ≤ T, we generate corresponding observations of U and V;

4. Choose a random subset with sample size n from the generated sample of (T, Q, 

U, V, Z) satisfying Q ≤ T.
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In the simulation, we use the proposed sieve MLE method to estimate the parametric part β 
and the nonparametric part λ0,k (t) with its smooth functionals Λ0,k (t) – Λ0,k (q) for k = 1, 

2, and 3. Due to limitation of space we present here results for the small and large cure rates 

(k = 1 and 3), while the results for k = 2 are in-between of these two cases and are available 

from the authors. Tables 2 and 3 present the results for estimating β for n = 200 and 500, and 

Tables 4 and 5 present the results for the plug-in estimates of Λ0,k(t) – Λ0,k (q) with k = 1 

and 3, q = 1 and t = 1.5, 2.5, 3.5, respectively. The tables include the average point estimates, 

sample standard deviation (SD) and average estimated standard error based on the proposed 

estimated information matrix introduced in Sect. 5 (SE), and coverage probability of 

nominal 95% confidence intervals based on the estimated standard error (95% CP).

For the nonparametric part, we also show the estimation results of the baseline hazard 

function λ0,k (·) with k = 1 and 3 on interval [0, 3.9] for sample size 200 and 500, which are 

averaged over 1000 curves. Figures 1 and 2 present the results for estimating λ0,1(·) and 

λ0,3(·), respectively.

From Tables 2 and 3 we can see that the simulation results for estimating both β and the 

increments of the baseline cumulative function from q to t in general become more accurate 

(i.e. smaller variances) when the sample size is increased from 200 to 500, or the truncation 

and censoring becomes less severe, with also more accurate standard errors compared to the 

sample standard deviations.

We also see that the coverage probabilities of the confidence intervals are generally 

acceptable. With increasing sample size the parametric estimate becomes less biased, and we 

discuss the nonparametric estimate separately below.

In Figs. 1 and 2, we see that the nonparametric estimate becomes more accurate for larger n 

in terms of “function distance” ∫ q
t λn s − λ0 s 2ds, but not necessarily at each time point. 

These figures also show that the estimation close to the right end point τ = 4 is not very 

accurate for light truncation and censoring and sample size 200, which is likely caused by 

the small number of the events around there. We note that the estimation near τ = 4 seems to 

improve with heavier truncation and censoring, most likely because with heavier truncation 

more observations appear at later times (closer to τ = 4). In addition, it is important to note 

that the baseline hazard becomes noticeably underestimated close to time zero when the cure 

rate is larger and truncation and censoring is more severe. This underestimation is likely 

caused by the reduced risk set sizes due to left truncation, and is consistent with our 

theoretical result that the estimation of the hazard function close to time zero is not reliable. 

However, we have noted earlier that the increments of the baseline cumulative hazard 

function can nonetheless be well estimated.

Finally for the plug-in estimation of Λ0,k, Tables 4 and 5 show that the plugin estimation 

bias for the increments of the baseline cumulative hazard is not always decreased when the 

sample size is increased from 200 to 500. This is a not contradiction to the results in Figs. 2 

and 3, where the accuracy for the nonparametric estimate λn ⋅  is improved in terms of 

“function distance” when the sample size is increased or truncation and censoring is less 
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severe. The fact that ∫ q
t λn s − λ0 s 2ds is smaller (nonparametric estimate is better in terms 

of L2 distance) cannot imply that ∫ q
t λn s − λ0 s ds is smaller (plug-in point estimate is 

better). On the other hand, Tables 4 and 5 show that in all scenarios the nonparametric plug-

in estimation bias is acceptably small, standard errors and coverage probabilities all appear 

acceptable.

Overall the simulations show that sample size 200 provides quite good estimation results 

which are comparable to those from sample size 500 in all settings.

7 Spontaneous abortion data analysis

We apply the proposed sieve MLE method to an observational data set on spontaneous 

abortion from the autoimmune disease in pregnancy database of the Organization of 

Teratology Information Specialists (OTIS) mentioned earlier. Our focus is to investigate the 

potential effect of autoimmune disease medication on (spontaneous abortion) SAB, which is 

defined as any spontaneous pregnancy loss occurring before week 20 of gestation.

Our study sample includes pregnant women who entered a research study between 2005 and 

2012. It consists of 923 women who entered the study before week 20 of their gestation. 

Since some women in the population may experience the SAB event before having the 

chance to enter the study, we consider the study entry time as left truncation time. Among 

the 923 subjects 56 women experienced the SAB event and the exact SAB time is known, 10 

women also experienced the SAB event but only a time window including the incidence is 

available, 2 women were lost to follow-up before week 20, the rest of the women did not 

experience the SAB event.

In our proposed method, the lost to follow-up subjects and the observed cured subjects 

(subjects did not experience the SAB events before the cure threshold of week 20) are both 

treated as right-censored in the likelihood function under the nonmixture cure model, the 

same as in Sy and Taylor (2000). This way in the study sample we have 56 subjects with 

exact observed event times, 10 interval censored event times, and the rest are treated as 

right-censored. So the data set is partly interval censored with left truncation, and also with a 

well defined cured portion. Since 10 interval censoring from all 66 women who experienced 

SAB is not an ignorable portion, the existing methods based on right-censoring alone is not 

applicable here. Therefore the proposed sieve MLE method can be a good choice for the 

analysis.

For the primary comparison groups, among the 923 women 481 were pregnant and with 

certain autoimmune diseases which were treated with medications under investigation, 262 

were women with the same specific autoimmune diseases but who were not treated with the 

medications under investigation, and the rest were healthy pregnant women without 

autoimmune diseases who were not treated with the medications. We also include three 

important covariates: maternal age, prior therapeutic abortion (TAB; yes/no), and smoking 

(yes/no). The distributions of the covariates are given in Table 6. For the analysis, as in the 

simulation studies we use quadratic B-spline and M-spline basis functions, and cubic I-

spline basis functions. The knot sequence for the splines is chosen as described in Sect. 4.
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Table 7 presents the estimation results for our study sample based on the proposed sieve 

MLE approach. According to the results from Table 7 we do not have statistical evidence to 

show that the autoimmune disease drugs have any significant effects on the risk of SAB. We 

also see that older women have higher risk to experience the SAB events and smoking will 

increase the risk of the SAB. Table 7 also shows the proposed sieve MLE for Λ0(t) and Λ0(t) 
– Λ0(q) with t = 17, 18, 19 and q = 5 (weeks). The standard errors of these estimates are 

consistent with our theoretical results and imply that while the direct estimate for the 

baseline cumulative hazard function for the SAB occurring time has too much variability 

due to left truncation, the functional increase from a point not close to zero can still be 

reliably estimated.

Figure 3 shows the estimated baseline hazard function based on the proposed sieve MLE, 

and implies that the highest risk period for women to experience the SAB events is between 

5 and 10 weeks of gestation. This is consistent with existing scientific knowledge about 

spontaneous abortion. In addition, the baseline survival function conditional upon having 

survived 5 weeks of pregnancy is also plotted in Fig. 3.

Since the baseline hazard cannot be estimated accurately at early stage of pregnancy, the 

unconditional baseline survival is not shown here. Similarly, the baseline cure rate can be 

estimated by the baseline survival function at week 20 of pregnancy, which is 0.9825; but 

this estimate may be unreliable due to left truncation since the unconditional baseline 

survival function is used here.

8 Concluding remarks

In this paper we have proposed the semiparametric sieve MLE method to analyze complex 

survival data that are partly interval censored, left truncated and with a cured portion. The 

proposed approach is motivated by a spontaneous abortion data application with this type of 

complex structure, since no existing survival method is able to directly handle this type of 

survival data. Non-mixture cure model based on the Cox regression is used due to the 

relative simplicity of the likelihood computation. Using modern empirical process we have 

thoroughly studied the asymptotic properties for the proposed method: we have established 

that the proposed estimation is consistent; we have also established the asymptotic normality 

for both estimators of the parametric part and a functional of the nonparametric part. In 

addition, we have provided closed-form variance estimation for both the parametric and the 

nonparametric parts. In simulation studies we have showed that the finite sample 

performance of the proposed sieve MLE is satisfactory. Finally, the proposed model was 

successfully applied to analyze the SAB data set.

The proposed method is designed for relatively general survival data and usually applicable 

for simpler data structures. For different types of survival data, the proposed model may 

perform differently. For example, if partly interval censored data is replaced by right-

censored only data, the proposed sieve MLE has the same asymptotic properties in terms of 

convergence rate and asymptotic normality as we mentioned in Sect. 1. However, if the data 

is purely interval censored, the estimation of hazard function will not be available based on 

the likelihood (since the third term in (2) disappears); separately by similar method as in 
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Zhang et al. (2010) it can be shown that the rate of estimation of the baseline cumulative 

hazard function will be slower than n. In addition, if there is no left truncation, the baseline 

cumulative hazard function itself can be reliably estimated, as opposed to only its 

increments.

We have established that due to lack of data information around time zero for left truncated 

data, the nonparametric estimation around that region is not reliable. In the future we plan to 

tackle this issue and improve the estimation for the nonparametric part around time zero. 

Another potential work might be to replace the Cox model by the more general 

transformation model (Zeng et al. 2006) and develop the general semiparametric sieve MLE 

method. Related to this, checking whether our proposed model fits the data well could be a 

penitential research topic. Very recently Peng and Taylor (2017) proposed residual-based 

model diagnosis methods for the mixture cure model. But we found no work that has been 

published for model checking for the non-mixture cure models. For interval-censored data, 

Sun (1997) reviewed diagnostic methods for the Cox regression model, which were mostly 

residual and graphically based (Farrington 2000), and no theory existed to provide goodness-

of-fit tests. Developing these techniques under the mixture cure model and with left 

truncated and mixed censoring types data will be non-trivial, but nonetheless very useful in 

practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
True baseline hazard function (true) and its sieve MLE (sieve) with small cure rate
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Fig.2. 
True baseline hazard function (true) and its sieve MLE (sieve) with large cure rate
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Fig.3. 
Estimated baseline hazard (left) and baseline survival function conditional on having 

survived 5 weeks of pregnancy (right)
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Table 1

Average rates of cured, URC and UNRC in truncated data sets for different simulation settings

Cured URC UNRC Cured URC UNRC

Light TC Heavy TC

Small cure 0.313 0.018 0.669 0.597 0.021 0.382

Medium cure 0.621 0.015 0.364 0.827 0.013 0.160

Large cure 0.842 0.008 0.150 0.938 0.005 0.057
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Table 2

Estimation of the parametric part with small cure rate

True value Estimate SD SE 95% CP (%)

Light truncation and censoring

Size = 200 β0,1 0.7 0.711 0.112 0.117 96.5

β0,2 −0.5 −0.503 0.177 0.186 96.0

Size = 500 β0,1 0.7 0.709 0.069 0.071 95.7

β0,2 −0.5 −0.501 0.112 0.114 95.4

Heavy truncation and censoring

Size = 200 β0,1 0.7 0.736 0.153 0.163 96.4

β0,2 −0.5 − 0.525 0.244 0.256 94.7

Size = 500 β0,1 0.7 0.716 0.098 0.097 95.7

β0,2 −0.5 −0.510 0.149 0.155 95.5

Lifetime Data Anal. Author manuscript; available in PMC 2019 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 25

Table 3

Estimation of the parametric part with large cure rate

True value Estimate SD SE 95% CP (%)

Light truncation and censoring

Size = 200 β0,1 0.7 0.717 0.209 0.221 96.7

β0,2 −0.5 − 0.527 0.405 0.412 96.5

Size = 500 β0,1 0.7 0.710 0.129 0.129 95.3

β0,2 −0.5 − 0.524 0.244 0.245 95.0

Heavy truncation and censoring

Size = 200 β0,1 0.7 0.736 0.381 0.468 96.8

β0,2 −0.5 −0.619 0.697 0.856 99.0

Size = 500 β0,1 0.7 0.720 0.212 0.230 96.7

β0,2 −0.5 − 0.509 0.399 0.427 96.6
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Table 4

Estimation of the baseline cumulative hazard difference with small cure rate

True value Estimate SD SE 95% CP (%)

Light truncation and censoring

Size = 200 Λ0,1(1.5)−Λ0,1(l) 0.490 0.507 0.109 0.112 95.9

Λ0,1(2.5)−Λ0,1(l) 0.967 0.980 0.207 0.224 96.8

Λ0,1(3.5)−Λ0,1(l) 1.142 1.142 0.233 0.308 98.3

Size = 500 Λ0,1(1.5)−Λ0,1(l) 0.490 0.496 0.067 0.070 96.6

Λ0,1(2.5)−Λ0,1(l) 0.967 0.974 0.126 0.133 95.5

Λ0,1(3.5)−Λ0,1(l) 1.142 1.144 0.148 0.171 96.6

Heavy truncation and censoring

Size = 200 Λ0,1(1.5)−Λ0,1(l) 0.490 0.515 0.133 0.143 96.2

Λ0,1(2.5)−Λ0,1(l) 0.967 1.020 0.262 0.277 96.4

Λ0,1(3.5)−Λ0,1(l) 1.142 1.210 0.295 0.328 97.7

Size = 500 Λ0,1(1.5)−Λ0,1(l) 0.490 0.500 0.087 0.087 94.4

Λ0,1(2.5)−Λ0,1(l) 0.967 0.983 0.155 0.160 95.9

Λ0,1(3.5)−Λ0,1(l) 1.142 1.170 0.178 0.185 95.5

Lifetime Data Anal. Author manuscript; available in PMC 2019 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 27

Table 5

Estimation of the baseline cumulative hazard difference with large cure rate

True value Estimate SD SE 95% CP (%)

Light truncation and censoring

Size = 200 Λ0,3(1.5)−Λ0,3(l) 0.044 0.046 0.013 0.015 96.9

Λ0,3(2.5)−Λ0,3(l) 0.088 0.088 0.028 0.032 96.1

Λ0,3(3.5)−Λ0,3(l) 0.104 0.104 0.032 0.074 99.1

Size = 500 Λ0,3(1.5)−Λ0,3(l) 0.044 0.046 0.008 0.009 96.1

Λ0,3(2.5)−Λ0,3(l) 0.088 0.088 0.018 0.019 95.4

Λ0,3(3.5)−Λ0,3(l) 0.104 0.104 0.020 0.030 98.6

Heavy truncation and censoring

Size = 200 Λ0,3(1.5)−Λ0,3(l) 0.044 0.047 0.021 0.025 95.9

Λ0,3(2.5)−Λ0,3(l) 0.088 0.094 0.039 0.056 97.6

Λ0,3(3.5)−Λ0,3(l) 0.104 0.109 0.044 0.070 98.0

Size = 500 Λ0,3(1.5)−Λ0,3(l) 0.044 0.047 0.013 0.014 94.5

Λ0,3(2.5)−Λ0,3(l) 0.088 0.092 0.025 0.029 96.1

Λ0,3(3.5)−Λ0,3(l) 0.104 0.107 0.029 0.033 95.4
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Table 6

Mean (SD) or n (%) of covariates by comparison groups

Diseased treated
(N = 481)

Diseased control
(N = 262)

Healthy control
(N = 180)

Maternal age 32.37 (4.85) 33.13 (4.75) 32.35 (5.04)

Prior Tab—yes 62 (12.89%) 28 (10.69%) 13 (7.22%)

Smoking—yes 61 (12.68%) 28 (10.69%) 5 (2.78%)

Lifetime Data Anal. Author manuscript; available in PMC 2019 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 29

Table 7

Estimation of covariate effects and baseline cumulative hazard using the spontaneous abortion data

Estimate SE p value

Maternal age 0.079 0.025 0.002

Prior tab −0.358 0.436 0.411

Smoking 0.823 0.364 0.024

Healthy control −0.303 0.479 0.527

Diseased control 0.236 0.279 0.398

Λ0(17) 0.0173 0.020 –

Λ0(18) 0.0174 0.020 –

Λ0(19) 0.0174 0.020 –

Λ0(17)−Λ0(5) 0.0124 0.004 –

Λ0(18)−Λ0(5) 0.0125 0.004 –

Λ0(19)−Λ0(5) 0.0126 0.004 –
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