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Abstract 
 
 

Adoption of Renewable Energy Technologies under Uncertainty 
 

by 
 

Kiran Nari Torani 
 
 
 

Doctor of Philosophy in Agricultural and Resource Economics 
 

University of California, Berkeley 
 

Professor Gordon Rausser, Chair 
 
 
 
 

 
This dissertation presents both a theoretical and empirical examination of the optimal 
allocation of public R&D investments in combination with downstream policy 
instruments across emerging renewable technologies. The central issue remains how best 
to enable technological change, and accelerate innovation and widespread adoption of 
new energy technologies and move towards a more sustainable energy system.  
 
The first essay presents a stochastic dynamic real options model of the adoption of solar 
PV in the residential and commercial sector, evaluating the threshold and timing of the 
consumer’s optimal investment decision given two sources of uncertainty. Analytic 
results regarding the threshold of adoption under alternative regimes of R&D funding and 
technological change, electricity prices, subsidies and carbon taxes are derived. And we 
simulate the model to obtain a cumulative likelihood and timing of substitution amongst 
energy resources and towards solar PV under plausible rates of technological change, 
electricity prices, subsidies and carbon taxes.  
 
The results indicate that there will be a displacement of incumbent technologies and a 
widespread shift towards solar PV in the residential and commercial sector in under 30 
years, under plausible parameter assumptions - and that crucially, this can occur 
independent of consumer subsidies and carbon pricing policies (at $21/ton CO2, $65/ton 
CO2 and $150/ton CO2). In general, results across all scenarios consistently indicate that 
average historic consumer subsidies and carbon pricing policies up to $150/ton CO2 have 
a modest effect in accelerating adoption, and may not be an effective part of climate 
policy in this regard.  Instead, we find that R&D support and further technological change 
is the crucial determinant and main driver of widespread adoption of solar PV - 
suggesting that subsidies and taxes don’t make a substantial difference in a technology 
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that’s not viable, while research does. This further suggests that optimal policies may 
change over time, however current continued R&D support and technological 
advancement is the crucial determinant of widespread transition to solar and plausibly 
other backstop technologies – and that it should play a key role in policy measures 
intended to combat climate change. The results do not imply that carbon pricing 
shouldn’t play a role in climate policy in general. Carbon pricing may be effective in 
reducing emissions and encouraging the transition towards other clean technologies – 
however it has a decidedly modest impact in accelerating adoption of solar PV at levels 
up to $150/ton CO2.  
 
The second essay examines the role of technology features in policy design, and provides 
a broader discussion and context to the results from the first essay. It examines the key 
role of the technology innovation cycle and changing optimal policies at every stage of 
the technology in the transition towards renewable energy technologies.  And it examines 
the stages of the technology innovation process and the role of policy incentives at every 
stage - including the timing, sequencing, and role of investments in public R&D, in 
deployment polices, and in CO2 taxes.   
 
We examine the notion that that optimal policies will change over time, driven primarily 
by the characteristics of the technology, and its stage in the innovation cycle – and that 
this will crucially determine the impact, gains and tradeoffs between alternate policy 
measures such as R&D policies, deployment policies, and carbon pricing policies. We 
find that technology and policies must be deployed in a coordinated manner such that 
emission reduction benefits are achieved at an acceptable cost. And we find that targeted 
policy should consider every stage of the technology innovation cycle - from R&D to 
commercialization in overcoming barriers to the development and widespread adoption 
of nascent technologies.  
 
Based on our analysis and results we find that there is a pressing need for the reallocation 
of public resources from consumer subsidies towards public R&D budgets in emerging 
energy technologies such as solar PV, and plausibly other backstop technologies. We 
argue for an expanded role of aggressive R&D policies and increased public R&D 
funding – and contend that there is an imbalance in resources allocated towards adoption 
and commercialization subsidies relative to R&D investments for a technology such as 
solar PV. We contend that increased and aggressive R&D investments will be the key 
policy initiative in enabling the transition towards clean energy technologies such as solar 
PV in a sustainable manner.  
 
When deployment policies are justified, the appropriate timing and sequencing in the 
technology development stage is crucial. Investments in commercialization and 
deployment subsidies before sufficient R&D investments and breakthroughs have 
occurred will be ineffective and unsustainable, or alternatively will need to be very high 
to have any significant impact (Torani, Rausser, and Zilberman, 2014). Widespread 
adoption and commercialization of emerging and unproven technologies and systems will 
be unlikely to occur unless sufficient major technological discoveries and improvements 
have taken place - which will need to be driven by appropriate and sufficient R&D 
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investments. The logical sequence of policies necessitates first making sufficient 
investments and allocating resources towards R&D and the necessary technological 
discoveries, which can then be followed by downstream investments to enhance 
adoption, experience and LBD. In general, we find that the appropriate emphasis and 
sequencing of R&D and learning investments is a pertinent issue, and optimal timing and 
allocation between the two depends in part on the characteristics of the technology itself.  
 
In addition, while almost all economic studies find a case for imposing immediate 
restraints on GHG emissions, e.g. with initially low carbon taxes, we find that reasonable 
and plausible levels of CO2 taxes may not be effective in encouraging technology 
adoption and reducing emissions while clean technologies are not commercially viable as 
yet. To be effective in encouraging technology adoption at an early stage of technological 
innovation, we contend that a large CO2 tax may be needed, far larger than suggested at 
reasonable levels – with significant implications on distributional effects and political 
feasibility.  We emphasize that technology and policies must be deployed in a 
coordinated manner such that the emission reduction benefits are achieved at an 
acceptable cost (Williams et al., 2012). Our results suggest that the first and most 
important stage does not lie in imposing CO2 taxes, but rather in investing in R&D and 
technological advancements. Once clean technologies are sufficiently ready, reasonably 
priced carbon taxes will bite to a larger extent and be more effective at plausible levels. 
We find that one plausible strategy would be either to introduce high CO2 taxes or to 
subsidize R&D first, followed by deployment and LBD policies, and then to impose 
reasonable carbon taxes – in which case scientific advances and technological changes 
would make CO2 emissions abatement less costly, and CO2 pricing would be effective at 
reasonable levels.  
 
The third essay provides a precursor and basis for the other two chapters. The paper 
outlines an analytical framework to determine the optimal combination of renewable 
energy public R&D investment in combination with downstream policy instruments 
across the emerging technologies as an ex-ante portfolio analysis of public and private 
R&D under risk and uncertainty. Our framework is based on the estimation of probability 
distributions for potential future cost reductions resulting from R&D investments from 
the public and private sectors. 

To date, the government lacks coordinated support of renewable energy technologies 
across upstream R&D investments and downstream policy instruments.  Without an 
objective, ex-ante guide for renewable energy investment, governments are likely to 
promote technologies based on the effectiveness of political economic efforts.  The 
government’s policies should however depend on the technology’s probability 
distribution of cost breakthroughs for each technology and on the environmental impact. 
In this paper we outline an analytical framework to develop a portfolio analysis of R&D 
investments in renewable energy technologies, with the subsequent  analysis designed to 
allocate R&D investments across renewable energy technologies in a manner that 
minimizes the risk for a specified level of expected returns, taking into account both the 
expected reductions in cost and the variance of the expectations of cost reductions, and 
thus providing an objective benchmark for efficient allocation of resources across 
renewable energy technologies. Special emphasis is placed on the estimation of 
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probability distributions based on elicitation from experts in each field of technology in 
terms of the mean and standard deviation – on which we base the characterization of the 
underlying probability distributions on cost and productivity measures, and which forms 
the basis for executing a portfolio analysis of renewable energy technologies.  
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Chapter 1 
 

Introduction 
 
 

 
The transition towards clean technologies will play a key role in our efforts to meet 
deeper, long term green house gas (GHG) reductions1, beyond energy efficiency (EE) 
and carbon capture and storage (CCS). Meeting these goals will require a “significant 
reorientation of national energy trajectories” (Sagar et al., 2006) and the development and 
deployment of renewable technologies that are not yet commercialized. (Williams et al., 
2012; Chakravorty et al., 1997; Margolis and Kammen, 1999; Goulder and Parry, 2008). 
 

Technology and technology policies will play an important role in enabling the transition 
towards renewable energy technologies. The central issue in this regard remains how best 
to enable technological change, and accelerate innovation and widespread adoption of 
new energy technologies and move towards a more sustainable energy system.   
 
This dissertation presents both a theoretical and empirical examination of the optimal 
allocation of public R&D investments in renewable energy technologies in combination 
with downstream policy instruments across the emerging technologies.  
 
 
Innovation Subsidies versus Consumer Subsidies: A Real Options Analysis of Solar 
Energy 
 
The first essay, Chapter 2, considers the question of how to transition to a meaningful 
percentage of solar energy in a sustainable manner and which policies are most effective 
in accelerating adoption. We develop a theoretic stochastic dynamic real options model 
of the adoption of solar PV in the residential and commercial sector, evaluating the 
threshold and timing of the consumer’s optimal investment decision given two sources of 
uncertainty – i.e. uncertainty in the price of electricity and the cost of solar.  
 
We derive analytic results regarding the threshold of adoption under alternative regimes 
of R&D funding and technological change, electricity prices, subsidies and carbon taxes. 
And we develop an algorithm and simulation technique based on a bivariate kernel 
density estimation to derive projections of the cumulative likelihood and timing of 
substitution amongst energy resources and towards solar. In this paper, we apply the 
methodology to solar PV as an illustration of the technique given multiple sources of 
uncertainty, and provide a general framework to evaluate investments in competing 

1 Several US states have recently announced the goal of reducing greenhouse gas emissions by 80 percent 
below their 1990 levels by 2050. The magnitude of carbon cuts required is large – beyond what EE and 
CCS measures can achieve (Williams et al., 2012).  
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alternative renewable energy technologies. We simulate the model to obtain a cumulative 
likelihood and timing of substitution amongst energy resources and towards solar PV 
under plausible rates of technological change, electricity prices, subsidies and carbon 
taxes.  
 
Real options analysis (ROA) is a stochastic dynamic framework analyzing investment 
decisions in the presence of uncertainty of the economic environment, irreversibility, and 
the ability to postpone the investment decision (Dixit and Pindyck, 1994). It can be 
interpreted as a “dynamic net present value ( NPV)” which differs from traditional static 
“now or never” NPV breakeven models of investment, with a key result of the real 
options framework being that the investor will require a significant excess return above 
the expected present value before making the investment in light of these three factors.   
 
In this dissertation we extend the current literature both methodologically and 
empirically. Methodologically, we incorporate two sources of uncertainty as an extension 
of the traditional single variable model and provide new analytic insights and 
comparative static results which elucidate the differing paradigms of ROA and NPV.  
Empirically, to our knowledge, this is the first real options paper to examine the question 
of solar energy. Further, we develop an algorithm and simulation technique based on a 
bivariate kernel density estimation, which is essential due to the extension of ROA to 
incorporate two stochastic processes, and which has general applicability and can be used 
to evaluate investments in alternative renewable energy technologies.  
 
 
The Transition to Renewable Energy Technologies: Optimal Policies Over Time 
 
Chapter 3 follows directly from the results of the first essay. It examines the role of 
technology features in policy design, and provides a broader discussion and context to the 
results from chapter 2. In this paper, we illustrate the key role of the technology 
innovation cycle and changing optimal policies at every stage of the technology in the 
transition towards renewable energy technologies.  We examine the stages of the 
technology innovation process and the role of policy incentives at every stage - including 
the timing, sequencing, and role of investments in public R&D, in LBD and deployment 
polices, and in CO2 taxes.  We examine the notion that that optimal policies will change 
over time, driven primarily by the characteristics of the technology, and its stage in the 
innovation cycle – and that this will crucially determine the impact, gains and tradeoffs 
between alternate policy measures such as R&D policies, deployment policies, and 
carbon pricing policies.  
 
We consider the characteristics and stage of technology innovation, and the optimal 
timing and sequencing of policies in this regard - which we find will affect the impact of 
differing policy instruments, and which is noticeably absent from most studies evaluating 
and comparing policy instruments in environmental policy.  We examine the notion that 
technology and policies must be deployed in a coordinated manner such that emission 
reduction benefits are achieved at an acceptable cost. And we find that targeted policy 
should consider every stage of the technology innovation cycle - from R&D to 
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commercialization in overcoming barriers to the development and widespread adoption 
of nascent technologies.  
 
We place particular emphasis on the stages of the technology innovation process and the 
role of policy incentives at every stage - including the timing, sequencing, and role of 
investments in public R&D, in deployment policies and LBD, and in CO2 taxes. This 
paper examines the notion that that optimal policies will change over time, and that the 
technology under consideration will largely determine how and when to allocate 
available funds. This implies that optimal design may require differing polices for 
differing technologies, based on the characteristics of the technology and its stage of 
development. Balancing R&D and deployment investments is a pertinent issue, with a 
concrete tradeoff between allocating funds in one direction of the other. We contend that 
optimal allocation of public resources may require a different split between R&D and 
deployment for different technologies, based on the characteristics of the technology, its 
stage of development, and the gains achievable through R&D and deployment efforts. 
The appropriate emphasis and sequencing of R&D and deployment investments is a 
pertinent issue, and we explore the optimal timing and allocation between the two, which 
depends in part on the characteristics of the technology – which will in part determine the 
impact and effectiveness of differing policy incentives.   
 
It is in this context that we also examine the effectiveness of an emissions control policy 
such as a carbon tax in encouraging technology adoption at the early stages of an 
emerging renewable energy technology, while the technology is not commercially viable. 
While almost all economic studies find a case for imposing immediate restraints on GHG 
emissions, with many researchers advocating for an immediate, and at least initially low 
carbon tax (even if the true SCC is unknown), we evaluate the notion that reasonable and 
plausible levels of CO2 taxes may not be effective in encouraging technology adoption 
and reducing emissions while clean technologies are not commercially viable as yet.  
 
 
Managing R&D Risk in Renewable Energy: Biofuels vs. Alternate Technologies 
 
Chapter 4 presents the precursor and basis for the other two chapters. It is an examination 
of the government’s use of upstream R&D investments and downstream incentives across 
renewable energy technologies, intended to achieve commercial breakthroughs in 
biofuels, batteries, fuel cells, hydrogen, solar and wind energy. Each of these policy 
instruments is designed to alter the incentives for the use of renewable energy by making 
it more competitive with exhaustible sources of energy. 
 
This paper outlines an analytical framework to determine the optimal allocation of 
renewable energy public R&D investment in combination with downstream policy 
instruments across the emerging technologies as an ex-ante portfolio analysis of public 
and private R&D under risk and uncertainty. Currently there is no clear, ex ante plan to 
guide upstream or downstream public support of renewable energy technologies. It is 
with this motivation that this paper outlines a framework to determine the optimal 
combination of upstream R&D investments and downstream instruments.  Our 
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framework is based on the estimation of probability distributions for potential future cost 
reductions resulting from R&D investments from the public and private sectors. 
 
To date, the government lacks coordinated support of renewable energy technologies 
across upstream R&D investments and downstream policy instruments.  Without an 
objective, ex-ante guide for renewable energy investment, governments are likely to 
promote technologies based on the effectiveness of political economic efforts.  The 
government’s policies should however depend on the technology’s probability 
distribution of cost breakthroughs for each technology and on the environmental impact. 
In this paper we outline an analytical framework to develop a portfolio analysis of R&D 
investments in renewable energy technologies under risk and uncertainty.  
 
The subsequent portfolio analysis is designed to allocate R&D investments across 
renewable energy technologies in a manner that minimizes the risk for a specified level of 
expected returns, taking into account both the expected reductions in cost and the 
variance of the expectations of cost reductions, and thus providing an objective 
benchmark for efficient allocation of resources across renewable energy technologies. 
Special emphasis is placed on the estimation of probability distributions based on 
elicitation from experts in each field of technology in terms of the mean and standard 
deviation – on which we base the characterization of the underlying probability 
distributions on cost and productivity measures, and which forms the basis for executing 
a portfolio analysis of renewable energy technologies.  
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Chapter 2 
 
 

Innovation Subsidies versus Consumer Subsidies:  
A Real Options Analysis of Solar Energy* 

 
 
 
2 
 
 

 

 2.1 Introduction   
 
The installed capacity of solar PV systems has increased dramatically over the past five 
years, increasing by 53% per year in the US and by 60% per year globally. While this 
rapid growth has partly been driven by declining costs in solar, it has primarily been 
driven by state and federal incentives and policy support.  
 
Current adoption of solar PV systems without incentives remains unlikely. 
Notwithstanding recent declines, the high cost of solar PV renders it unable to compete 
with incumbent electricity technologies, even when incorporating benefits of the 
technology which might not have been previously accounted for (Goodrich et al., 2012; 
Borenstein, 2008).  
 
Incentives to the residential and commercial sectors (which historically account for 
approximately 70% of installed capacity in the US) have ranged from up-front cash 
rebates to renewable portfolio standards, and federal and state tax benefits. Incentives 
have covered an estimated 3% to 50% of total system cost, and have amounted up to 
$22,000 per installation (Peterson, 2011).    
 
Yet in 2012 solar energy amounted to little over 1% of generated electricity in the US 
(EIA, March 2013), and contributed the smallest share amongst all renewable-generated 
electricity.3 
 

* Co-authored with Gordon Rausser and David Zilberman. The authors gratefully acknowledge financial 
support from the Energy Biosciences Institute at the University of California, Berkeley.  
3 Which is ironic, since solar is by far the most abundant of all the renewable resources. 
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If our aim is to speed the commercialization and deployment of affordable, clean energy 
technologies and transition to market driven industries, then the central question remains 
- how do we get to a meaningful percentage of solar PV generation in a sustainable way?  
 
Will there be a widespread shift towards solar PV, and which policies are effective and 
which aren’t? The question is pertinent, and Chakravorty et al. (1997) suggest that the 
transition to backstop technologies may be the only viable solution to global warming. 
In this paper, we examine the prospects for future adoption of solar PV in the residential 
and commercial sector, recognizing that what drives the process on a sustainable basis is 
the consumer’s adoption decision. We examine which policies will have an impact in 
accelerating adoption and what role solar energy will ultimately play in our future energy 
mix. 
 
We use a stochastic dynamic framework, and develop a theoretic real options model to 
evaluate the threshold and timing of the consumer’s optimal investment decision, given 
two sources of uncertainty – uncertainty in both the price of electricity and the cost of 
solar. We derive analytic results regarding the threshold of adoption under alternative 
regimes of R&D funding and technological change, subsidies and carbon taxes. And we 
develop an algorithm and simulation technique based on a bivariate kernel density 
estimation to derive projections of the cumulative likelihood and timing of substitution 
amongst energy resources and towards solar. In this paper, we apply the methodology to 
solar PV as an illustration of the technique given multiple sources of uncertainty, and 
provide a general framework to evaluate investments in competing alternative renewable 
energy technologies.  
 
We use a real options approach (ROA) which is an application of option valuation 
techniques originally developed in the finance literature (Black and Scholes, 1973), but 
which has found important applications in natural resource economics (Arrow and Fisher, 
1974; Conrad, 1980; Brennan and Schwartz, 1985), environmental economics (Pindyck, 
2000), water economics (Carey and Zilberman, 2002), and most recently in renewable 
energy economics.  
 
ROA is fundamentally a stochastic dynamic framework analyzing investment decisions 
in the presence of three factors: uncertainty of the economic environment, irreversibility, 
and the ability to postpone the investment decision (Dixit and Pindyck, 1994). Traditional 
static “now or never” net present value (NPV) breakeven models of investment have 
resulted in predictions that have been observed to overestimate investment and adoption. 
However, a key result of the real options framework is that the investor will require a 
significant excess return above the expected present value before making the investment 
in light of these factors.   
 
Most recently, ROA has found applications in evaluating investments in renewable 
energy technologies, two notable examples being Lemoine (2010) and Schmit, Luo and 
Conrad (2011). Lemoine (2010) uses option valuation to compute a more complete 
market valuation of a plug-in hybrid electric vehicle (PHEV) by incorporating the 
additional benefit derived from the driver’s ability to respond to fuel and electricity prices 
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on a daily basis. Schmit et al. (2011) use the real options framework to evaluate 
combined entry and exit investment decisions in an ethanol plant.  
 
We extend the current literature both methodologically and empirically. 
Methodologically, based on Dixit & Pindyck (1994), we incorporate two sources of 
uncertainty as an extension of the traditional single variable model and provide new 
analytic insights and comparative static results. While both Lemoine (2010) and Schmit 
et al. (2011) incorporate two stochastic processes in their analysis, both papers do so in a 
different framework, and Lemoine examines the valuation but not the threshold of 
adoption, while Schmit et al. use a numerical approximation procedure to solve the 
optimal switching problem.  
 
Empirically, to our knowledge, this is the first real options paper to examine the question 
of solar energy. Further, we develop an algorithm and simulation technique based on a 
bivariate kernel density estimation, which is essential due to the extension of ROA to 
incorporate two stochastic processes, and which has general applicability and can be used 
to evaluate investments in alternative renewable energy technologies.  
 
The results of the model show that if assumptions are maintained, there will be a 
displacement of incumbent technologies and a widespread shift towards solar PV in the 
residential and commercial sector in under 30 years, across plausible rates of 
technological change. Projections consistently indicate that this can occur independent of 
downstream incentives and carbon pricing policies (at $21/ton CO2, $65/ton CO2 and 
$150/ton CO2) which generally have a modest impact – and may not be an effective part 
of climate policy in this regard.  Further, both consumer subsidies and carbon taxes 
become more ineffective with higher rates of technological change, making virtually no 
difference in certain cases. Results demonstrate that further technological change alone is 
the crucial determinant and main driver of adoption, outweighing the effect of subsidies 
and taxes. Suggesting that subsidies and taxes don’t make a substantial difference in a 
technology that’s not viable – instead that research does. These results are robust across 
varying levels of interest rates, technological change, electricity price growth, and 
incentives. 
 
The results suggest several significant policy conclusions: (i) Concerns regarding recently 
decreasing consumer subsidies dampening the consumer economics of solar adoption are 
overstated. (ii) Carbon taxes of $21/ton CO2 and $65/ton CO2 have a minor impact in 
accelerating widespread adoption of solar PV as compared to baseline projections. 
Carbon pricing at $21/ton CO2 accelerates adoption by an average of 0-3 years, and 
pricing at $65/ton CO2 accelerates adoption by an average of 2-5 years, depending on 
tech advancement scenario. (iii) A carbon tax of $150/ton CO2 will have a modest impact 
on accelerating adoption by an average of 6 - 8 years if the recent higher rates of 
technological advancement in solar PV are maintained. The impact will be more 
significant in the scenario with historical lower rates of technological advancement, 
accelerating adoption by an average of 10.5 to 15.5 years. However projections still 
indicate a widespread shift towards solar within 26-31 years in this scenario. 
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Results show that R&D support and technological advancement in solar PV is the crucial 
determinant in accelerating widespread adoption of solar PV and should play a key role 
in climate policy. Projections indicate that if recent rates of technological change in solar 
are maintained, there could be a widespread shift towards solar in 25-28 years without 
any subsidies or carbon pricing.  
 
The paper is organized as follows. Section 2.2 presents the model of the consumer’s 
adoption decision within a stochastic dynamic framework and two sources of uncertainty. 
Section 2.3 outlines the empirical model, and section 2.4 presents the simulation results 
and policy implications. Lastly, section 2.5 concludes with a discussion of the main 
results and limitations of the model.  
 

 

2.2 The Theoretic Model 
 
We examine the solar PV adoption decision in the residential/commercial sector, driven 
by the consumer’s objective to minimize costs. The consumer weighs the tradeoff 
between the cost of the solar PV unit versus the long term price of electricity and the 
potential cost savings that the investment in the solar unit may provide through the value 
of the displaced electricity.  
 
We abstract from other factors that may motivate the decision to invest in renewable 
technologies, including energy security concerns, climate change objectives and a general 
higher willingness to pay for such. Instead we focus on the basic objective of cost 
minimization, since it is crucial to consider the situation where the solar PV unit pays for 
itself as that would have a substantial impact on adoption by individual 
households/enterprises. 
 
We extend ROA to model the investment decision under uncertainty given two stochastic 
processes – the price of electricity, and the cost of the solar PV unit. Based on this 
methodology, a threshold decision rule influenced by the individual drift and volatilities 
of these two processes is developed.   
 
2.2.1The Value of a Live Project 
 
The risk neutral consumer’s decision to invest in the modern solar technology depends on 
the tradeoff between the expected present value of the investment and the fixed cost of 
the investment, represented by the levelized cost of solar electricity (LCOE). The value 
of the investment is given by the expected potential cost savings from adopting solar as 
well as the potential revenue from exporting solar generated electricity back to the grid4, 
assuming inelastic demand. This is given by:  
 

4 Given the parameterized values of asp > asu. 
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𝑉𝑉(𝑃𝑃) =  𝐸𝐸� �(𝑃𝑃 − 𝐶𝐶)(𝑎𝑎𝑎𝑎𝑎𝑎) +  𝐹𝐹𝐹𝐹𝐹𝐹 (𝑎𝑎𝑎𝑎𝑎𝑎 −  𝑎𝑎𝑎𝑎𝑎𝑎)� 𝑒𝑒−𝑟𝑟𝑟𝑟
∞

0
𝑑𝑑𝑟𝑟         (1) 

 
where 𝑃𝑃 is the price of electricity5, 𝐶𝐶 is the levelized cost of solar electricity, 𝑎𝑎𝑎𝑎𝑎𝑎 is the 
average amount of solar electricity produced, 𝑎𝑎𝑎𝑎𝑎𝑎 is the average amount of solar 
electricity used, 𝐹𝐹𝐹𝐹𝐹𝐹 is the feed in tariff for the excess solar electricity exported back to 
the grid, and r is the interest rate.  
 
This model captures the potential cost savings of the solar generated portion of the total 
bill.  During the hours when solar is not available, the household incurs no potential cost 
savings and uses grid supplied electricity as usual, since we are not adding any 
assumptions of storage.    
 
We assume that once the consumer has invested in the solar PV unit, she will not 
compare electricity prices and the levelized cost of solar on a daily basis, and decide 
whether to use grid or solar generated electricity depending on the prices. This would 
resemble a valuation similar to McDonald and Siegel (1985) and Lemoine (2010), but in 
the case of solar with no variable costs incurred on a daily basis, the assumption is that 
the user will choose to use the already paid for system first.  
 
The long term price of electricity and cost of solar are uncertain, and may be represented 
by Geometric Brownian Motion (GBM) processes6 such that: 
 

𝑑𝑑𝑃𝑃 = 𝛼𝛼𝑃𝑃𝑃𝑃𝑑𝑑𝑟𝑟 + 𝜎𝜎𝑃𝑃𝑃𝑃𝑑𝑑𝑧𝑧𝑃𝑃          (2) 
𝑑𝑑𝐶𝐶 = 𝛼𝛼𝐶𝐶𝐶𝐶𝑑𝑑𝑟𝑟 + 𝜎𝜎C𝐶𝐶𝑑𝑑𝑧𝑧𝐶𝐶           (3) 

 
Where 𝛼𝛼𝑃𝑃and 𝛼𝛼𝐶𝐶  are the drift rates for the price of electricity and cost of solar processes, 
and 𝜎𝜎𝑃𝑃 and 𝜎𝜎C  are the volatility measures respectively, and  𝑑𝑑𝑧𝑧𝑃𝑃  and 𝑑𝑑𝑧𝑧𝐶𝐶  are increments 
of a Wiener processes. E[𝑃𝑃(𝑟𝑟)] = 𝑃𝑃0𝑒𝑒𝛼𝛼𝑃𝑃𝑟𝑟and 𝐸𝐸[𝐶𝐶(𝑟𝑟)] = C0𝑒𝑒𝛼𝛼𝐶𝐶𝑟𝑟  where  𝑃𝑃(0) =  𝑃𝑃0  and 
𝐶𝐶(0) =  𝐶𝐶0. And 𝐸𝐸[𝑑𝑑𝑧𝑧𝑃𝑃2] = 𝐸𝐸[𝑑𝑑𝑧𝑧𝐶𝐶2] = 𝑑𝑑𝑟𝑟 as well as 𝐸𝐸[𝑑𝑑𝑧𝑧𝑃𝑃𝑑𝑑𝑧𝑧𝐶𝐶] = 𝛾𝛾𝑑𝑑𝑟𝑟, where 𝛾𝛾 denotes 
the correlation coefficient between P and C. Notably, technological change and an 
advancements in solar PV  implies that 𝛼𝛼𝐶𝐶  is negative, and an increasing rate of 
technological change implies 𝛼𝛼𝐶𝐶  will become increasingly negative.  
 
Although the price of electricity and cost of solar are both uncertain, once the investment 
is made, and the technology is adopted, future evolution of the cost of solar becomes 
irrelevant. Hence, the value of a live project, once adopted is given by: 
 

𝑉𝑉(𝑃𝑃) =
𝑃𝑃 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎
(𝑟𝑟 −∝𝑎𝑎)

−  
𝐶𝐶 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎

(𝑟𝑟)
+  

𝐹𝐹𝐹𝐹𝐹𝐹 (𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑎𝑎)
(𝑟𝑟)

          (4) 

 

5 Under the assumption of a flat rate tariff structure. 
6 A discussion of the GBM assumption is included in section III. 
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In the traditional NPV investment model, the consumer will invest if 𝑉𝑉(𝑃𝑃) ≥ 0, i.e. if the 
expected present value is positive7. Hence, the threshold price at which adoption occurs 
is given by: 
 

𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉∗ = �
𝐶𝐶 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎 −  𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑎𝑎

𝑟𝑟
� �
𝑟𝑟 −∝𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

�           (5)  
 
 
where 𝑎𝑎 =  (𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑎𝑎), i.e. the difference between the amount of solar electricity 
produced and used. 
 
Intuitively the consumer is more likely to adopt (i.e. 𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉∗ decreases) as the difference 
between the amount of solar produced and used increases, and as FIT increases due to the 
revenue potential. She is less likely to adopt the nascent technology as the LCOE and the 
total life cycle costs of the solar system increase.  
 
However, in practice consumers often require that the investment benefit exceeds the cost 
by a positive hurdle rate, which is not accounted for in the traditional NPV model, but 
which will invariably have consequences for the adoption potential of a technology. 
 
2.2.2 The Value of the Option to Invest 
 
When considering the value of the option to invest, the consumer will have to consider 
both the price of electricity and the cost of solar as random variables, i.e. they have the 
option to invest if the price of electricity should rise in the future and/or the cost of solar 
PV should fall. 
 
This yields a dynamic programming problem, and specifically an optimal stopping 
problem where the option to invest is a function of both these variables, i.e.  𝐹𝐹(𝑃𝑃,𝐶𝐶) and 
where one has to find the region of values of (𝑃𝑃,𝐶𝐶)where investment will occur, not 
occur and the critical boundary that separates these two regions.  
In the continuation region in which it is optimal to hold onto its option to invest, the 
Bellman equation is given by: 
 

𝑟𝑟𝐹𝐹𝑑𝑑𝑟𝑟 = 𝐸𝐸[𝑑𝑑𝐹𝐹]  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝐹𝐹(𝑃𝑃,𝐶𝐶)         (6) 
 
since there is no current period payout from holding the option. Equation (6) states that 
over the interval 𝑑𝑑𝑟𝑟, the return of the investment opportunity is equal to its expected rate 
of capital appreciation.   
 
Using Ito’s lemma to expand 𝑑𝑑𝐹𝐹, yields: 
 

𝑑𝑑𝐹𝐹 = 𝐹𝐹𝑃𝑃𝑑𝑑𝑃𝑃 + 𝐹𝐹𝐶𝐶𝑑𝑑𝐶𝐶 +
1
2

(𝐹𝐹𝑃𝑃𝑃𝑃(𝑑𝑑𝑃𝑃)2 + 2𝐹𝐹𝑃𝑃𝐶𝐶𝑑𝑑𝑃𝑃𝑑𝑑𝐶𝐶 + 𝐹𝐹𝐶𝐶𝐶𝐶(𝑑𝑑𝐶𝐶)2)         (7) 

7 As the levelized cost of electricity from solar includes the total life cycle costs (TLCC) of the system. 
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Which, substituting for 𝑑𝑑𝑃𝑃and 𝑑𝑑𝐶𝐶 and rearranging, yields: 
 

𝐸𝐸[𝑑𝑑𝐹𝐹] = 𝛼𝛼𝑃𝑃P𝐹𝐹𝑃𝑃𝑑𝑑𝑟𝑟 + 𝛼𝛼𝐶𝐶C𝐹𝐹𝐶𝐶𝑑𝑑𝑟𝑟 +
1
2

(𝐹𝐹𝑃𝑃𝑃𝑃𝜎𝜎P
2𝑃𝑃2 + 2𝐹𝐹𝑃𝑃𝐶𝐶𝛾𝛾𝜎𝜎𝑃𝑃𝜎𝜎𝐶𝐶𝑃𝑃𝐶𝐶 + 𝐹𝐹𝐶𝐶𝐶𝐶𝜎𝜎C

2𝐶𝐶2)𝑑𝑑𝑟𝑟        (8) 
 
Where 𝐸𝐸[𝑑𝑑𝑧𝑧𝑃𝑃] = 𝐸𝐸[𝑑𝑑𝑧𝑧𝐶𝐶] = 0 and where 𝛾𝛾 is the correlation coefficient between P and C. 
Given (8) the Bellman equation now becomes: 
 

𝛼𝛼𝑃𝑃P𝐹𝐹𝑃𝑃 + 𝛼𝛼𝐶𝐶C𝐹𝐹𝐶𝐶 +
1
2

(𝐹𝐹𝑃𝑃𝑃𝑃𝜎𝜎P
2𝑃𝑃2 + 2𝐹𝐹𝑃𝑃𝐶𝐶𝛾𝛾𝜎𝜎𝑃𝑃𝜎𝜎𝐶𝐶𝑃𝑃𝐶𝐶 + 𝐹𝐹𝐶𝐶𝐶𝐶𝜎𝜎C

2𝐶𝐶2) −  𝑟𝑟𝐹𝐹 = 0          (9) 
 
Which applies over the region of (P, C) space where it is optimal to leave the option 
unexercised.  
 
Over the region where the option is immediately exercised, we have the relevant value 
matching and smooth pasting conditions. However the boundary is itself unknown, and 
must be determined together with the solution for the function satisfying (9).    
 
Consistent with Dixit & Pindyck (1994), since the option function is homogeneous of 
degree 1 in P and C, the optimal decision should therefore depend only on the ratio 
k≡P/C, enabling us to write: 
 

𝐹𝐹(𝑃𝑃,𝐶𝐶) = 𝐶𝐶𝑓𝑓�𝑃𝑃 𝐶𝐶� � = 𝐶𝐶𝑓𝑓(𝑘𝑘)       (10) 
 
Where 𝑓𝑓(𝑘𝑘)is now the function to be determined. The corresponding partials are given 
by: 

𝐹𝐹𝑃𝑃(𝑃𝑃,𝐶𝐶) = 𝑓𝑓 ′(𝑘𝑘) 
 

𝐹𝐹𝐶𝐶(𝑃𝑃,𝐶𝐶) = 𝑓𝑓(𝑘𝑘) − 𝑘𝑘𝑓𝑓 ′(𝑘𝑘) 
 

𝐹𝐹𝑃𝑃𝑃𝑃(𝑃𝑃,𝐶𝐶) = 𝑓𝑓"(𝑘𝑘)/𝐶𝐶  
 

𝐹𝐹𝑃𝑃𝐶𝐶(𝑃𝑃,𝐶𝐶) = −𝑘𝑘𝑓𝑓"(𝑘𝑘)/𝐶𝐶 
 

𝐹𝐹𝐶𝐶𝐶𝐶(𝑃𝑃,𝐶𝐶) = 𝑘𝑘2𝑓𝑓"(𝑘𝑘)/𝐶𝐶  
 
And substituting these in the Bellman equation (9) yields: 
 

1
2

(𝜎𝜎P
2 − 2𝛾𝛾𝜎𝜎𝑃𝑃𝜎𝜎𝐶𝐶  + 𝜎𝜎C

2)𝑘𝑘2𝑓𝑓"(𝑘𝑘) + (𝛿𝛿𝐶𝐶 −  𝛿𝛿𝑃𝑃)𝑘𝑘𝑓𝑓′(𝑘𝑘) − 𝛿𝛿𝐶𝐶𝑓𝑓(𝑘𝑘) = 0      (11) 
where 𝛿𝛿𝑃𝑃 = (𝑟𝑟 − 𝛼𝛼P )  𝑎𝑎𝑎𝑎𝑑𝑑   𝛿𝛿𝐶𝐶 = (𝑟𝑟 − 𝛼𝛼C) 

 
The solution for 𝑓𝑓(𝑘𝑘) subject to the relevant boundary conditions: 
 

𝑓𝑓(0) =  0            (12𝑎𝑎)      
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𝑓𝑓(𝑘𝑘) =
𝑘𝑘 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎

(𝑟𝑟 − 𝛼𝛼P)
−
𝑎𝑎𝑎𝑎𝑎𝑎
𝑟𝑟

+
𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑎𝑎
𝐶𝐶 ∗ 𝑟𝑟

          (12b)8 

 
𝑓𝑓′(𝑘𝑘) =

𝑎𝑎𝑎𝑎𝑎𝑎
(𝑟𝑟 − 𝛼𝛼P)          (12c)9 

 
 
has the following form analogous to the one variable case: 
 

𝑓𝑓(𝑘𝑘) =  𝐴𝐴1𝑘𝑘β1              (13)   
 

where  𝛽𝛽1 =  1
2
− (𝛿𝛿𝐶𝐶 −  𝛿𝛿𝑃𝑃)/𝜎𝜎2 +  { [�(𝛿𝛿𝐶𝐶− 𝛿𝛿𝑃𝑃 )

𝜎𝜎2 − 1
2
]2  +  [(2𝛿𝛿𝐶𝐶)/𝜎𝜎2]}1/2 � 

 
and  𝜎𝜎2 = ( �𝜎𝜎P

2 − 2𝛾𝛾𝜎𝜎𝑃𝑃𝜎𝜎𝐶𝐶  + 𝜎𝜎C
2) �. 

 
Solving these equations yields the optimal investment threshold value 𝑘𝑘∗ and  𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴∗ : 
 
 

𝑘𝑘∗ ≡ 𝑃𝑃/𝐶𝐶 = �
𝛽𝛽1

𝛽𝛽1 − 1
� �
𝑎𝑎𝑎𝑎𝑎𝑎
𝑟𝑟

−
𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑎𝑎 
𝐶𝐶𝑟𝑟

� �
𝑟𝑟 −∝𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

�             (14) 

 
 

𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴∗ = �
𝛽𝛽1

𝛽𝛽1 − 1
� �
𝐶𝐶 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎 −  𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑎𝑎

𝑟𝑟
� �
𝑟𝑟 −∝𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

�   =    �
𝛽𝛽1

𝛽𝛽1 − 1
�𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉∗        (15) 

 
 
For 𝑃𝑃 < 𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴∗   the household holds onto its option to invest and for 𝑃𝑃 ≥ 𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴∗   the 
household exercises its option and invests in solar PV.  Since  𝛽𝛽1 > 1, and since 𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴∗ =
� 𝛽𝛽1
𝛽𝛽1−1

�𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉∗ , hence 𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴∗ > 𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉∗ . Thus, when accounting for irreversibility, uncertainty 
and the ability to wait, the household requires a higher price than given by the standard 
NPV rule before they are willing to invest.   
 
While a key result of the real options model has been to illustrate the effect of increased 
uncertainty on delaying investments, we extend the analysis to illustrate two significant 
dynamics that emerge - providing further insight into the differing paradigms of the NPV 
and ROA models of investment.  
 
 
 
 

8The value matching condition. 
9The relevant smooth pasting condition. 
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2.2.3 Proposition 1 A higher rate of technological change in the nascent technology 
delays adoption in ROA - resulting in an increase the k* threshold by increasing the 
excess return required by the consumer before she is willing to give up the option to 
invest.  
 
This is illustrated in fig. 2.1 in terms of the k* threshold ratio, indicating that the 
consumer will adopt later, at a higher price of electricity for a given cost of solar, i.e. she 
demands a higher premium before adopting the nascent technology.  
 
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a counterintuitive result of increased funding, R&D productivity and 
technological change, which are ultimately intended to promote adoption. On one hand, 
the asset has become cheaper – hence one would expect the consumer to be more likely 
to adopt the technology, and adopt it sooner. However, if the rate of cost decline 
increases, waiting instantly becomes more valuable and giving up the option to wait 
becomes more costly, hence the user will require a higher premium to give up this option. 
This is entirely consistent with the energy efficiency gap observed in consumer behavior.  
 
This captures the essence of ROA, i.e. the tradeoff between immediate payoff, versus 
capital appreciation and the payoff associated with such. Postponing the investment 
entails giving up immediate payoff for the benefit of capital appreciation. And with the 
increased capital appreciation, giving up the option to invest becomes more costly.  
 
Specifically, this effect is driven by the term (𝛼𝛼𝑃𝑃 −  𝛼𝛼𝐶𝐶) the equation for 𝛽𝛽: 10 
 

10The term (𝑟𝑟 −  𝛼𝛼𝐶𝐶) encourages adoption unambiguously by discounting the cost of solar more in present 
value terms.  

Fig. 2.1:  K* Separating Region of Adoption and Waiting  
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𝛽𝛽 =  
1
2
− (𝛼𝛼𝑃𝑃 −  𝛼𝛼𝐶𝐶)/𝜎𝜎2 + { [�

(𝛼𝛼𝑃𝑃 −  𝛼𝛼𝐶𝐶)
𝜎𝜎2 −

1
2

]2  +  [2(𝑟𝑟 −  𝛼𝛼𝐶𝐶)/𝜎𝜎2]}1/2 � 
               
                    
                delay                 adopt sooner11              
 
 
The term (𝛼𝛼𝑃𝑃 −  𝛼𝛼𝐶𝐶) represents the wedge between the price of electricity and cost of 
solar as illustrated in figure 2. An increase in this wedge essentially lends value to both 
the adoption of the asset, as well as to the value to waiting. The net effect is the one that 
dominates between the two. The condition for  𝛼𝛼𝐶𝐶 ↓ => 𝛽𝛽 ↓ is evident given the 
comparative statics for beta12. 
 
 

𝜕𝜕𝛽𝛽
𝜕𝜕𝛼𝛼𝑐𝑐

=  
1
𝜎𝜎2 −

1
𝜎𝜎2 [

(𝛼𝛼𝑃𝑃 −  𝛼𝛼𝐶𝐶)
𝜎𝜎2 +

1
2

] +
1
2

]/{ [�
(𝛼𝛼𝑃𝑃 −  𝛼𝛼𝐶𝐶)

𝜎𝜎2 −
1
2

]2 +  [2(𝑟𝑟 −  𝛼𝛼𝐶𝐶)/𝜎𝜎2]}1/2 � 

 
Where  𝜕𝜕𝛽𝛽

𝜕𝜕𝛼𝛼𝑐𝑐
> 0  𝑖𝑖𝑓𝑓𝑓𝑓  𝑟𝑟 > 𝛼𝛼𝑃𝑃 

 
And  𝜕𝜕𝛽𝛽

 𝜕𝜕𝛼𝛼𝑐𝑐
≤ 0  𝑖𝑖𝑓𝑓𝑓𝑓  𝑟𝑟 ≤ 𝛼𝛼𝑃𝑃 

 
given that  𝛽𝛽 is the positive root of the fundamental quadratic 

 
 
The relationship between r and 𝛼𝛼𝑃𝑃  determines the switching condition independent of the 
relative magnitudes of 𝛼𝛼𝑃𝑃  versus  𝛼𝛼𝐶𝐶 , i.e. the rate of increase in price of electricity versus 
the rate of decrease in cost of solar. Intuitively, this result signifies that one will postpone 
to reap the benefits of further technological change in solar as long as it isn’t 
prohibitively expensive to do so, i.e. as long as the price of electricity is not increasing at 
an increasing rate (in present value terms) while postponing the investment13.  
 
By comparison, the NPV threshold of investment remains unchanged irrespective of the 
rate of technological change, since it is a static “now or never” proposition and doesn’t 
consider the option of postponing the investment decision and further technological 
change in the nascent technology.     
 
 
 

11 If  (𝛼𝛼𝑃𝑃− 𝛼𝛼𝐶𝐶)
𝜎𝜎2  > ½. 

12Unambiguously 𝛽𝛽 ↓  => ( 𝛽𝛽
𝛽𝛽−1

) ↑ given beta is the positive root of the fundamental quadratic. 
13 One will postpone adoption if the price of electricity and cost of solar are both decreasing at a 
decreasing rate. Irrespective of the relative magnitudes of the rates of change and by virtue of their signs, 
the rate of decay of the cost of solar is greater than that of the price of electricity, in present value terms. 
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2.2.4 Proposition 2  An increase in the interest rate encourages adoption in ROA - 
resulting in a lower k* threshold. 
 
This is a counterintuitive result, and contrary to the standard NPV calculation in which an 
increase in the interest rate delays adoption, by discounting the future value of the 
investment at a higher rate and breaking even later.  
 

𝑟𝑟 ↑ => 𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉  
∗ ↑   

 
𝑟𝑟 ↑ => 𝑘𝑘∗ ↓ 

 
The comparative statics illustrate that 𝛽𝛽 will always increase with an increase in the 
interest rate, implying a decrease in the hurdle rate14.  
 

𝜕𝜕𝛽𝛽
𝜕𝜕𝑟𝑟

=  
1
𝜎𝜎2

1

{ [�(𝛼𝛼𝑃𝑃 −  𝛼𝛼𝐶𝐶)
𝜎𝜎2 − 1

2]2 +  [2(𝑟𝑟 −  𝛼𝛼𝐶𝐶)/𝜎𝜎2]}1/2 �
 > 0 

 

 𝑟𝑟 ↑ => 𝛽𝛽 ↑  => (
𝛽𝛽

𝛽𝛽 − 1
) ↓ 

 
However, the key lies in recognizing that k* is composed of two opposing dynamics, 
which would further indicate that ROA should not be as sensitive to the interest rate as 
NPV.  
 

𝑘𝑘∗   =
� 𝛽𝛽
𝛽𝛽 − 1� ↓   𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉  

∗ ↑

𝐶𝐶
 

 
Intuitively, the hurdle rate always decreases with an increase in the interest rate because a 
higher interest rate implies that the current loss from postponing increases, while the 
future gain from postponing decreases. The net effect is a decrease in k*.  
 
If however, the rate of technological change in solar were extremely low, such that the 
gain from postponing decreases further, this effect would drive down the hurdle rate 
further (consistent with Proposition 1) and k* could increase with an increase in the 
interest rate – in which case the NPV effect would dominate, and ROA would approach 
NPV.  
 

𝑘𝑘∗   =
� 𝛽𝛽
𝛽𝛽 − 1� ↓↓   𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉  

∗ ↑

𝐶𝐶
 

14 The hurdle rate is given by the expression � 𝛽𝛽
𝛽𝛽−1

�, and is defined as the excess return required above the 
standard NPV calculation which determines the optimal investment threshold in ROA, as illustrated in 
equation (15).  
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𝑟𝑟 ↑ => 𝑘𝑘∗ ↑ 

 
𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴  
∗   →    𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉  

∗  
 

 
Similarly, if uncertainty were to tend to zero, ROA would approach NPV 
 

𝜎𝜎2 → 0 => (
𝛽𝛽

𝛽𝛽 − 1
) → 0 

 
𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴  
∗   →    𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉  

∗  
 
illustrating that without option value, the mean effect is significant. With option value, 
both the mean and variance effects are significant. In the NPV scenario, a high interest 
rate reduces future value making adoption less likely. While in ROA, a high interest rate 
reduces the cost of high variance in the future, making adoption more likely15. In ROA 
the variance effect dominates - illustrating the differing paradigm of the two investment 
rules.   
 
 
2.3 Empirical Model  
 
The long term price of electricity and the cost of the solar PV unit are assumed to be 
uncertain, while all other inputs are modeled deterministically. The model is evaluated 
with a flat rate tariff structure for the price of electricity rather than time of use/real time 
pricing tariff rate structures. While there are numerous papers discussing the economics 
of solar PV with different tariff rate structures (Borenstein, 2007), we abstract from such 
issues and consider the base case of flat rate structure.  
 
Price of Electricity 
 
There have been numerous studies examining prices in electricity markets and the 
stochastic processes they may follow (Deng, 2000). Some studies contend that electricity 
price data might not be well represented by traditional commodity price models of GBM 
due to the fact that on-peak electricity spot prices are highly volatile and strongly mean 
reverting, while GBM does not capture this dynamic.16 
 
However, Schwartz and Smith (2000) and Pindyck (2001) contend that for considerations 
of long term investment decisions, the long term factor is the decisive one, and GBM 

15 Given the assumptions of GBM, the mean grows linearly with time, while the variance grows at a 
quadratic rate. 
16 Suggesting that combining a jump process with mean reversion can capture the salient features of daily 
electricity spot prices where GBM can’t.  
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assumptions are appropriate even if they might ignore short term mean reversion in the 
price dynamics.  
 
Consistent with this, we model the long-term electricity price process as a GBM process 
with the parameters based on futures contracts for PJM Interconnection Electricity 
Futures traded on the NYMEX17.  
 
The annual growth rate of the long term price of electricity is estimated from PJM 
electricity futures contracts for four consecutive years 2014-2017. Consistent with Fleten 
(2007), according to the GBM process the expected price of electricity evolves according 
to 𝐸𝐸[𝑃𝑃(𝑟𝑟)] = 𝑃𝑃0𝑒𝑒𝛼𝛼𝑃𝑃𝑟𝑟   where 𝛼𝛼P  represents the annual rate of growth in the price of 
electricity, estimated as 2.89% using an exponential regression.  
 
The annual historic volatility, which is a measure of the variance of the price distribution, 
is estimated using daily historical futures price changes of the daily prices of one-month 
ahead PJM electricity futures contracts traded three years in advance at the NYMEX. We 
have used prices for the trading period March 2009 – Feb 2013, such that the prices are 
for futures contracts delivery in March 2012 – Feb 2016. The resulting annual volatility 
was estimated as 𝜎𝜎 = 14.09%. 
 
In addition, as the future evolution of the price of electricity is crucial to the results, we 
also conduct simulations with electricity price parameters based on historical EIA 
average real residential and commercial electricity prices, for the years 1990 – 2002 and 
2003 – 2009, resulting in much lower annual electricity growth rates of -0.2479% and 
0.2011% respectively18. We discuss these results in addition to the results based on 
futures estimates, and present details in Appendix A.   
 
 
 
 
Cost of Solar 
 
Estimates of plausible rates of technological advancement in solar PV are based on 
historic installed cost data in the US (Barbose et al., 2012) as well as on expert elicitation 
(Rausser et al., 2010) to explore the possible link between R&D funding levels and 
technological advancement in solar, at two different levels.  
 
Historic installed prices of solar PV units (<= 10kW) have exhibited a dramatic decline in 
costs in recent years in the US, driven primarily by falling module costs. Recent estimates 
of price declines for the period 2008-2011 indicate a decline of -11.20% per year, while 
the period 2009-2011 indicates an even higher decline of -14.20% per year. 
 

17 The PJM Interconnection, LLC, administers the largest electricity market in the world serving more than 
44 million customers in the US. 
18 The estimated real annual electricity growth rate for the time period 1990 – 2012 was 0%. 
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Notwithstanding this recent precipitous decline in prices, we base our estimate of the long 
term  historic rate of price declines on average declines exhibited during the period 1998-
2011, corresponding with an annual growth rate of -4.41% in the cost of solar. And we 
base our estimates of the recent higher rate of cost declines observed during the years 
2007-2011 as - 9.30%, thereby adopting a more conservative view of rates that could 
plausibly be maintained in the future. 
 
In addition, we perform expert elicitation to capture the possible impact of a modest 
increase in R&D spending levels on the corresponding rate of technological change, as an 
indication of optimal R&D funding levels. 
 
Public R&D funding for solar has in general remained flat for the past two decades (mid 
1980’s – 2008) at an average level of $115 million per year. There has however been a 
recent spike in general R&D funding for renewable energy due to the Recovery Act in 
2009, and an associated increase in solar funding at $417 million in 2009, $359 million in 
2010, and $403 million in 2011.  
 
We performed expert elicitation based on a random sample of renewable-energy experts 
working on technical/scientific breakthroughs in solar PV, drawing from public, private, 
and academic research institutions. Probability distributions of future costs were elicited 
for two scenarios: (i) A public R&D funding level of $115 million per year as a 
representation of baseline historic R&D funding levels. (ii) A scenario with a 50% 
increase in R&D spending levels corresponding with a funding level of $173 million per 
year.  
 
The elicited estimates were fitted to a distribution using R/SHELF software and 
aggregated using a linear pool. Linear regressions were fitted to obtain estimates of 
annual drift rates for baseline/status quo funding scenario as well as increased funding 
scenarios. The results were 𝛼𝛼𝐶𝐶 𝑆𝑆𝑆𝑆= - 0.044/yr (a growth rate of -4.4% annually) for status 
quo funding, corresponding very closely with the historic rate of price declines based on 
Barbose et al. (2012), and 𝛼𝛼𝐶𝐶 𝐹𝐹𝑁𝑁= - 0.0563/yr (a growth rate of -5.63% annually) for the 
increased funding scenario.   
 
 
Investment Cost 
 
The current investment cost of a 10kW DC solar PV system19 and corresponding 
levelized cost of electricity (LCOE) are based on California Energy Commission 
estimates.  
 
Table 2.1 presents the average installed price of solar PV ($2012) given differing 
discount rates, including installation and replacement of inverters over the assumed 25 
year lifetime of the solar unit, assuming a 1% aging factor per year in the output of the 

19 Corresponding with a large residential and small commercial system. 
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PV unit. Current average retail inverter cost for a 10kW system lies at approx. $7120, and 
we assume that costs will decline by 2% per year, consistent with Wiser et al., (2006) and 
Borenstein (2008).  
 

Table 2.1 - Investment Cost and LCOE for a 10kW Solar PV Installation 
 
Annual Real Interest Rate 

 
3% 

 
5% 

Cost of PV Installation $56,000 $56,000 
Inverter replacement cost (8 yrs) $6057 $6057 
Inverter replacement cost (16 yrs) $5153 $5153 
Discounted Present Cost $63,993 $62,460 
Levelized Cost (per MWh) $295 $353 

 
 
Average Amount Produced 
 
The parameter for average amount of solar electricity produced is based on estimates 
provided by Borenstein (2008). The data is based on TRNSYS simulations for production 
from a 10kW (DC) solar PV installation in San Francisco, Sacramento, and Los Angeles 
over the course of one year, in conjunction with weather data from the U.S. National 
Renewable Energy Laboratory (NREL), assuming the panels were mounted at a 30 
degree tilt facing different directions, and a 16% derate conversion factor. The TRNSYS 
model produced hourly simulated production data for one year, resulting in averages that 
ranged from 1.349 -1.650 (kWh/hr – AC). We use an estimate of 1.499 kWh/hr, 
representing an annual 13139 kWh of solar electricity produced. 
 
 
Average Amount Used  
 
One would ideally base the parameter for average amount of solar PV used on real usage 
patterns of households with installed solar PV units. However absent such detailed data, a 
next best estimation is made based on the fact that demand peaks at hours during the day 
and seasons during the year when solar production peaks.  
Hence, given the broad overlap, we base our parameters on average U.S. household 
consumption. EIA estimates for the average annual electricity consumption for a U.S. 
residential utility household in 2011 was 11,280 kWh, averaging 940 kWh per month. 
Louisiana had the highest annual consumption at 16,176 kWh and Maine the lowest at 
6,252 kWh. 
 
 
Solar Feed in Tariff Rates  
 
The parameter used for the FIT rates are based on the CA PUC for different renewable 
energy technologies, including Solar. Feed-in tariffs are closely associated with solar PV 
panels, designed to encourage the adoption of renewable energy technologies. Under the 
feed-in-tariff, regional or national electric grid utilities are obliged to buy electricity 
generated from renewable energy sources and pay a guaranteed purchase price set in a 
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long-term (10–25 year) contract. As of 2009, FIT policies have been enacted in sixty 
three countries, including over a dozen states in the United States.  
 
We base our FIT parameter on the CA PUC rates effective January 2012, which range 
from $0.07688/kWh - $0.12326/kWh, depending on the contract start date and the length 
of the contract. We use an estimate of $0.097412/kWh as a baseline parameter, 
representing the average rate for a 25 year contract, ignoring time of delivery (TOD) 
adjustment factors. 
 
 
Average Historic Consumer Subsidies 
 
Incentives to the residential and commercial sector (which have historically accounted for 
approximately 70% of solar generation) have ranged from up-front cash rebates, to 
renewable portfolio standards, and federal and state tax benefits. Incentives have coved 
an estimated 3% - 50% of total system cost (Peterson, 2011), ranging from $500 - 
$22,000 per installation in the states surveyed, averaging at $14500 per installation. 
 
 
Carbon Taxes 
 
Carbon taxes remain controversial and surrounded by considerable uncertainty, and to 
date have not been enacted in the US on a national scale. 
 
Aside from controversy regarding efficacy, growth and distributional effects, estimates of 
the of the social cost of carbon (SCC) themselves remain highly uncertain due to the 
underlying uncertainties in the science of climate change science, choice of discount 
rates, and valuation of economic impacts (Pindyck, 2013). 
 
Current US government and NBER estimates set the SCC for 2010 at $21/ton CO2 
($2007) and $65/ton CO2 ($2007) representing estimates of “most likely” scenario and 
“potential higher-than expected” impacts respectively (Greenstone et al., 2011; 
Interagency Working Group, 2010). However, there is considerable disagreement 
regarding these estimates. 
Pindyck (2013) asserts that while $21/ton CO2 or $65/ton CO2 estimates might provide a 
reasonable estimate of “most likely outcomes” and plausible events, they fail to assess 
more extreme outcomes and capture the possibility of catastrophic climate outcomes - 
which should be of major concern, and which might lead to a SCC as high as $100-
$200/ton CO2.  
 
Given the debate regarding the correct SCC, we measure the impact of carbon pricing 
policies at $21, $65 and $150/ton CO2.  
 
 
We estimate the threshold of adoption under both the standard NPV investment rule as 
well as the ROA rule for various funding and technological advancement trajectories for 
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a representative 10kW solar PV system, and examine the sensitivity of the hurdle rate and 
threshold of investment to uncertainty and correlation parameters. 
 
Based on the results and parameters from the previous two sections (table 2.2), we 
illustrate how the price of electricity at which adoption of solar PV will occur exceeds 
that of the standard NPV calculation by a positive hurdle rate, which captures the excess 
return the consumer will require before making the irreversible investment:  
 

𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴∗ = �
𝛽𝛽1

𝛽𝛽1 − 1
�𝑃𝑃𝑁𝑁𝑃𝑃𝑉𝑉∗       (15) 

 
Consistent with propositions 1 and 2, we illustrate how (i) Increased R&D funding and 
technological advancement in solar PV will lead to delayed adoption. (ii) An increase in 
the interest rate will encourage adoption in the ROA model.  
 
 
Table 2.2 - Baseline Parameter Values (r = 3%) 

 

Note: P0 is based on EIA “Electric Power Monthly Feb 2013” average retail price  
to residential consumers. 

 
 

The baseline results are illustrated in tables 2.3 and 2.4 for r = 3% and 5% respectively, 
including the main result of the ROA k* threshold ratio - the constant ratio of P/C which 
separates the waiting region and adoption region (see fig. 2.1). 
 
 
 
 

Table 2.3 - ROA Results for Baseline Parameters (r = 3%) 
 𝜶𝜶𝑪𝑪 𝜷𝜷 Hurdle Rate � 𝜷𝜷

𝜷𝜷−𝟏𝟏
� 𝐏𝐏𝐑𝐑𝐑𝐑𝐑𝐑∗ = �

𝛃𝛃
𝛃𝛃 − 𝟏𝟏

�𝐏𝐏𝐍𝐍𝐏𝐏𝐍𝐍∗    𝒌𝒌∗ 

-0.0441 1.012 85.62 $0.876/kWh 2.97 
-0.0563 1.0104 96.69 $ 0.989/kWh 3.35 
-0.093 1.0078 130.00 $ 1.3298/kWh 4.51 

 Note: Drift rates  𝛼𝛼𝐶𝐶  are presented on annual basis. P*npv = $0.0102/kWh, C = $0.295/kWh. 
 
 
 

 
Baseline Parameter Values  

 
 

C = $0.295/kWh P0 = $ 0.1162/kWh 
FIT = $0.097412/kWh 𝛾𝛾 = 0 
asp = 13136 kWh/yr asu = 11280 kWh/yr 
𝛼𝛼𝑃𝑃= + 0.0289/yr 𝜎𝜎𝑃𝑃= 0.1409/yr   
𝛼𝛼𝐶𝐶 𝑆𝑆𝑆𝑆= - 0.0441/yr 𝜎𝜎𝐶𝐶 𝑆𝑆𝑆𝑆= 0.1409/yr  
𝛼𝛼𝐶𝐶 50% 𝐹𝐹𝑎𝑎𝑐𝑐𝑟𝑟 = - 0.0563/yr 𝜎𝜎𝐶𝐶 50% 𝐹𝐹𝑎𝑎𝑐𝑐𝑟𝑟 = 0.1409/yr  
𝛼𝛼𝐶𝐶 𝐻𝐻𝑖𝑖𝐻𝐻ℎ= - 0.093/yr 𝜎𝜎𝐶𝐶 𝐻𝐻𝑖𝑖𝐻𝐻ℎ= 0.1409/yr 
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Table 2.4 - ROA Results for Baseline Parameters (r = 5%) 
 𝜶𝜶𝑪𝑪 𝜷𝜷 Hurdle Rate � 𝜷𝜷

𝜷𝜷−𝟏𝟏
� 𝐏𝐏𝐑𝐑𝐑𝐑𝐑𝐑∗ = �

𝛃𝛃
𝛃𝛃 − 𝟏𝟏

�𝐏𝐏𝐍𝐍𝐏𝐏𝐍𝐍∗    𝒌𝒌∗ 

-0.0441 1.2172 5.6049 $0.797/kWh 2.258 

-0.0563 1.1938 6.1611 $0.8761/kWh 2.482 

-0.093 1.1459 7.855 $ 1.1171/kWh 3.164 

   Note: Drift rates  𝛼𝛼𝐶𝐶  are presented on annual basis. P*npv = $0.142/kWh, C = $0.353/kWh. 
 
 
In the baseline, the threshold price of adoption given by the standard NPV investment 
rule is    P* electricity = $0.0102/kWh for r=3%, and $0.142/kWh for r= 5% (while 
LCOE from solar is $0.295/kWh and $0.353/kWh respectively) indicating the extreme 
sensitivity of NPV to interest rate assumptions. Furthermore, the NPV calculation 
remains the same between all three technological change scenarios since NPV is 
essentially a static, “now or never” calculation – which doesn’t incorporate the dynamic 
features of ROA. 
 
The corresponding ROA threshold calculations are dependent on the rate of technological 
change in solar. The hurdle rate across all scenarios is significant, illustrating the large 
discrepancy between the two investment rules, i.e. by failing to account for the influence 
of uncertainty and irreversibility the NPV rule is biased in favor of early investment. 
 
Consistent with proposition 1, an increase in the rate of technological change results in a 
higher k*, indicating delayed adoption. Consistent with proposition 2, and contrary to the 
standard NPV result, an increase in the interest rate (for a given level of technological 
change) results in a lower k* threshold – thereby encouraging adoption in the sense that 
ROA is approaching NPV.  
 
Most importantly, given the P*roa and k* threshold results, for every price of electricity 
one can calculate the corresponding level of the cost of solar that will trigger adoption as 
illustrated in tables 2.5 and 2.6 for the historic lower rate of technological advancement 
and recent higher average cost decline scenarios respectively.    
 
 

Table 2.5 – Threshold of Adoption for Historic Lower Rate of Technical Change (r = 3%) 

�
β

β − 1
� 

K* = P/C P Electricity ($/kWh) C Solar ($/kWh) 

85.62 2.97 0.876 0.295 
85.62 2.97 0.743 0.25 
85.62 2.97 0.594 0.20 
85.62 2.97 0.297 0.10 
85.62 2.97 0.149 0.05 
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Table 2.6 – Threshold of Adoption for Recent Higher Rate of Technical Change (r = 3%) 

�
β

β − 1
� 

K* = P/C P Electricity ($/kWh) C Solar ($/kWh) 

130 4.51 1.330 0.295 
130 4.51 1.128 0.25 
130 4.51 0.902 0.20 
130 4.51 0.451 0.10 
130 4.51 0.226 0.05 

    
   

 
 
 

 
Robustness Analysis 
 
The sensitivity of P* roa and the k* threshold to uncertainty and correlation parameters 
are as anticipated (see table 7). A decrease (increase) in uncertainty, i.e. in 𝜎𝜎𝐶𝐶  or 𝜎𝜎𝑃𝑃 
parameters, reduces (increases) the k* threshold ratio as compared to baseline values, 
implying sooner (delayed) adoption. ROA illustrates that uncertainty can have impact on 
investment independent even under risk neutrality.  
 
A positive correlation of 0.3 between the price of electricity and cost of solar instead of 
the baseline assumption of no correlation, results in earlier adoption and a lower hurdle 
rate and k* threshold ratio, given the covariance of the variables. Correspondingly, a 
negative correlation of -0.3 between the price of electricity and cost of solar, results in 
delayed adoption and a higher hurdle rate and k* threshold.  
 
 

Table 2.7 - Robustness Analysis Results (r=3%) 
Parameter Value (old new) Hurdle Rate � 𝜷𝜷

𝜷𝜷−𝟏𝟏
�   𝒌𝒌∗ 

𝜎𝜎𝐶𝐶  or  𝜎𝜎𝑃𝑃  (↓) 0.1409  0.10 81, 92, 125 2.812, 3.196, 4.35 
𝜎𝜎𝐶𝐶  or  𝜎𝜎𝑃𝑃  (↑) 0.1409  0.20 94, 105, 139 3.29, 3.67, 4.82 

𝛾𝛾  (↑) 0   0.30 80, 91, 124 2.77, 3.16, 4.32 

𝛾𝛾  (↓) 0  - 0.30 91, 102, 135 3.16, 3.54, 4.69 

    

Baseline Values  85.62, 96.69, 130 2.97, 3.35, 4.5 

Note: All else constant at baseline values. Hurdle rate and k* are presented for three technological change 
scenarios (i.e.  𝛼𝛼𝐶𝐶  = -0.0441, -0.0563 and -0.093) respectively. 
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2.4 Results and Implications  
 
 
 

Fig. 2.2: Single Realization of GBM Stochastic Processes for the Price of Electricity 
and Cost of Solar 

 
 
For illustrative purposes, we include figure 2.2 to show a single realization of the 
stochastic GBM price processes over 50 years, for the base case scenario free of any 
incentives or carbon pricing.  In this realization, the price of electricity and the cost of 
solar for two alternative technological change assumptions are shown, together with the 
corresponding deterministic trend lines.  
 
The relevant baseline k* threshold values of 2.97 and 3.35 for the respective trajectories 
can be seen as the ratio required between the price of electricity and cost of solar at a 
given time that will trigger adoption, thus translating the analytic results of the previous 
section into a threshold measure of time.  
 
We base our results on 1000 realizations of each GBM stochastic price process, and 
develop an algorithm and simulation model based on a bivariate kernel density estimation 
to assess the joint distribution of the price and cost realizations, and corresponding k* 
distribution at each time step. This is crucial, as the extension of ROA to incorporate two 
stochastic processes renders the k* threshold of adoption as a ratio two unknown 
distributions at each time step.    
 
Given the random nature of the distribution of prices, our analysis allows us to estimate 
the cumulative distribution of adoption (figures 2.3 – 2.5) as a function of various policy 
parameters, which has previously not been done with the real options approach. These 
estimates provide key information to assess the net social benefit from investments in 
R&D and consumer subsidies.  
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Fig. 2.3: Cumulative Likelihood and Timing of Adoption 

Historic Lower rate of Technological Change in Solar Energy (r= 3%,  𝛼𝛼𝐶𝐶 = −0.048) 
 
 

 
Fig. 2.4: Cumulative Likelihood and Timing of Adoption 

50% Increased Funding and Technological Change in Solar Energy (r= 3%,  𝛼𝛼𝐶𝐶 = −0.056) 
 
 
 

 
Fig. 2.5: Cumulative Likelihood and Timing of Adoption 

Recent Higher Rate of Technological Change in Solar Energy (r= 3%, 𝛼𝛼𝐶𝐶 = −0.093) 
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We analyze the following scenarios based on baseline parameter values (table 2.2): (i) 
Baseline results for alternative solar R&D funding and technological change scenarios 
without consumer incentives or carbon pricing. This includes three technological change 
scenarios - a historic lower technological advancement in solar scenario corresponding 
with status quo R&D funding, a 50% increase in R&D funding corresponding with a 
modest increase in technological advancement as based on expert elicitation, and a third 
scenario corresponding with recent higher rates of technological advancement reflecting 
average cost declines observed during 2007-2011. (ii) The impact of historic average 
consumer subsidies of $14500 given alternative assumptions of technological change. 
(iii) The impact of  $21/ton CO2, $65/ton CO2 and $150/ton CO2 carbon pricing given 
alternative assumptions of technological change.  
 
In addition, we perform simulations for alternative electricity price parameters of -
0.2479% and +0.2011% based on EIA historical average residential and commercial 
electricity prices (for the years 1990-2002 and 2003-2009 respectively). The results for 
these simulations are presented in Appendix A, however in general they indicate the 
following: (i) As expected, a low or negative evolution of the price of electricity delays 
adoption considerably. (ii) Both consumer subsidies and carbon taxes display a modest 
increase in impact with lower growth rates of electricity prices. (iii) However, results 
remain consistent across all scenarios of differing electricity price trajectories with 
overall results demonstrating that further technological change is the crucial determinant 
and main driver of adoption. 
 
 
 
 

Table 2.8 – Baseline Results for Likelihood and Timing of Adoption & Impact of Average Historic  
Consumer Incentives (pelec = +2.89%, r=3%) 

PELEC 
+2.89% 

    

  BASELINE  AV. CONSUMER INCENTIVES 
 

Likelihood of 
Adoption 

 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase in 
R&D 

funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase in 
R&D 

funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

 
10%  13y 9m 13y 5m 12y 1m  10y 11m 10y 10m 10y 4m 
40%  23y 9m 22y 0m 18y 7m  20y 3m 18y 10m 16y 2m 
50%  27y 3m 25y 1m 20y 4m  23y 5m 21y 4m 17y 9m 
60%  31y 9m 28y 3m 22y 6m  27y 3m 24y 0m 19y 6m 
70%  36y 7m 32y 4m 24y 11m  31y 10m 27y 8m 21y 8m 
80%  45y 8m 39y 6m 28y 2m  40y 2m 33y 4m 24y 8m 
90%  Not within 50 

years 
Not within 
50 years 

34y 2m  Not 
within 50 

years 

43y 4m 29y 4m 
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Base Case20: Results for the cumulative likelihood and timing of adoption for the average 
consumer are shown in table 2.8 across alternative R&D and technological advancement 
scenarios in solar.  
 
Independent of any incentives or carbon pricing, projections indicate that if historic lower 
technological change rates are maintained, there is a 70% likelihood of adoption within 
approx. 37 years, and a 80% likelihood within approx. 46 years. However, if the higher 
average cost declines observed within the recent years are maintained, it would accelerate 
adoption considerably, resulting in a 70% likelihood of adoption within 25 years, and a 
80% likelihood within 28 years. In this latter scenario, under an entirely plausible rate of 
technological change, projections indicate that there could be a widespread shift towards 
solar in under 30 years in the residential and commercial sector – without any incentives 
or carbon pricing.  
 
This result is consistent with Chakravorty et al. (1997) who show an endogenous 
substitution amongst energy sources and a shift towards solar energy across all sectors in 
52 – 92 years21 and the subsequent implications for global warming. They use an optimal 
control framework, without uncertainty, to simulate an economy wide energy demand 
model with multiple exhaustible resources and multiple demand sectors with solar as the 
representative and most likely backstop technology across all sectors, including 
transportation. While they acknowledge that a mix of technologies may eventually 
dominate, our results indicate a dominant role for solar in the residential and commercial 
sector, and solar as a viable part of our future energy mix plausibly in under 30 years.  
 
Results based on expert elicitation (Rausser et al., 2010) suggest that a $60 million 
increase over historic status quo funding levels of $115 million/year may accelerate 
adoption by approx. 5-6 years on average as compared to baseline results. This suggests 
policy conclusions about levels of R&D funding that may be necessary to attain desired 
levels of adoption, and that a modest increase of $60 million may not be enough to 
accelerate adoption at a significant rate.   
 
 
Average Historic Consumer Incentives: Recent cost declines in solar PV have been 
accompanied with declining consumer incentives across most states - which many fear 
will dampen the overall consumer economics of solar adoption. Our results strongly 
suggest that these concerns are overstated.  
 
Results indicate (table 2.8) that if recent cost declines are maintained, average historic 
consumer incentives have a minimal impact of accelerating adoption by approximately 3 
years as compared to the base case scenario, i.e. a widespread shift would be observed 
with 70% likelihood within 22 years, and 80% likelihood within 25 years.    

20 We present the simulation results for r = 3%. However, consistent with the analytical results which 
illustrate the relative insensitivity of ROA to interest rate changes, the simulation results are very similar 
across r = 3% and 5%,  exhibiting the same key dynamics.  
21 By 2065 – 2105, depending on technological change scenario. 
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In the scenario with the lower historic rate of technological advancement, projections 
indicate a slightly higher impact of consumer incentives, accelerating adoption by an 
approximately 5-6 years as compared to the base case, albeit with widespread adoption 
still occurring only within 32 - 40 years. 
  
In general, the results indicate a difference of 3-6 years depending on cost decline 
scenarios - strongly suggesting the policy conclusion that average historic incentives have 
a modest impact in encouraging adoption of solar technologies, and virtually no impact if 
the recent higher cost declines are maintained. 
 
 
 

Table 2.9 – Impact of $21/ton CO2 Tax on Likelihood and Timing of Adoption (pelec = +2.89%, r=3%) 
PELEC 
+2.89% 

 
CO2 Tax 

($21/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost Decline 

(-9.3%) 
 
 

10%  12y 3m 12y 2m 11y 2m  12y 11m 12y 5m 11y 7m 
40%  22y 3m 21y 5m 17y 0m  23y 4m 20y 10m 17y 5m 
50%  25y 1m 24y 3m 18y 10m  27y 2m 24y 1m 19y 2m 
60%  29y 4m 27y 7m 20y 11m  31y 9m 27y 6m 21y 2m 
70%  34y 5m 31y 8m 23y 0m  36y 5m 31y 9m 24y 6m 
80%  42y 11m 39y 1m 25y 9m  45y 11m 38y 3m 26y 11m 

90%  Not within 50 
years 

Not 
within 50 

years 

31y 4m  Not within 50 
years 

Not within 
50 years 

32y 1m 

 
 
 
Carbon Taxes At $21/ton CO2 and $65/ton CO2: Results for a carbon tax of $21/ton 
CO2 and $65/ton CO2, representing SCC estimates for “most likely” and “higher-than 
expected” impact scenarios are shown in tables 2.9 and 2.10 respectively.  
 
Projections indicate that a $21/ton CO2 carbon tax accelerates adoption by an average of 
0-3 years, with a consistently lower impact in the scenario with the higher rate of 
technological advancement. The carbon tax would accelerate adoption by 2-3 years if the 
source of electricity were derived from coal, and by 0-1 years if derived from natural gas.  
 
Projections strongly suggest the policy conclusion that while this may be the most 
feasible level of carbon pricing, it is also the most ineffective and has a modest impact in 
accelerating adoption. Notwithstanding growth and distributional effects - a carbon tax of 
$21/ton CO2 would raise the price of a gallon of gasoline by $0.19 and a barrel of crude 
oil by $9.03.  
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Projections for carbon pricing at $65/ton CO2 in general indicate an acceleration of 
adoption by an average of 2-5 years, once again with a consistently lower impact in the 
scenario with the higher rate of technological advancement.  
 
Specifically, if the recent average cost declines in solar are maintained, results indicate 
that a widespread shift would be observed with 70% likelihood within 21 years (22 years 
if natural gas), and 80% likelihood within 23 years (26 years if natural gas), indicating an 
average of 4-5 years difference if derived from coal and 2-3 years difference if derived 
from natural gas. 
 
Only in the scenario with historical lower rates of technological advancement and coal as 
the incumbent source of electricity will the tax have a more significant impact of 
accelerating adoption by an average of 8 years – however projections still indicate that 
widespread adoption will occur on average in almost 34 years in this scenario.  
 
 
 
Table 2.10 – Impact of $65/ton CO2 Tax on Likelihood and Timing of Adoption (pelec = +2.89%, r=3%) 

PELEC 
+2.89% 

 
CO2 Tax 

($65/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

 
 

10%  10y 1m 9y 10m 9y 7m  11y 6m 11y 5m 10y 7m 
40%  18y 10m 17y 10m 14y 11m  20y 4m 19y 1m 15y 10m 
50%  21y 4m 20y 6m 16y 6m  23y 2m 21y 4m 17y 10m 
60%  25y 1m 23y 5m 18y 5m  28y 0m 25y 0m 19y 10m 
70%  30y 5m 27y 4m 20y 7m  32y 10m 29y 3m 22y 5m 
80%  36y 11m 32y 2m 23y 4m  42y 6m 33y 10m 26y 2m 

90%  Not within 50 
years 

46y 4m 28y 7m  Not within 50 
years 

45y 9m 32y 5m 

 
 
Results indicate that the impact of a $65/ton CO2 tax would be modestly higher than in 
the scenario with consumer incentives or the $21/ton CO2 tax – accelerating adoption by 
2-4 years if the incumbent electricity source were derived from natural gas, and 4-8 years 
if derived from coal. Consistent with previous results, the impact is diminished in the 
case of the higher rate of technological change.  
 
Concurrently, a carbon tax of $65/ton CO2 would raise the price of a gallon of gasoline 
by $0.58, and a barrel of crude oil by $27.95. 
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Carbon Taxes At $150/ton CO2: While a carbon tax of $150/ton CO2 has not been 
included in government estimates of the social cost of carbon (SCC), it has been 
suggested as representing considerations of catastrophic climate outcomes more 
accurately than lower estimates (Pindyck 2013). 
 
The results for the impact of a carbon tax of $150/ton CO2 are shown in table 2.11. If the 
recent rates of cost decline are maintained, the carbon tax would result in a widespread 
shift within 18.5 – 20.5 years, albeit this representing a moderate acceleration of an 
average of 6-8 years above baseline results free of any incentives.    
 
 
 
Table 2.11 – Impact of $150/ton CO2 Tax on Likelihood and Timing of Adoption (pelec = +2.89%, r=3%) 

PELEC 
+2.89% 

 
CO2 Tax 

($150/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

10%  6y 9m 6y 10m 7y 3m  8y 10m 8y 9m 8y 11m 
40%  13y 11m 13y 0m 11y 10m  17y 4m 16y 1m 14y 1m 
50%  16y 3m 15y 2m 13y 5m  19y 11m 18y 5m 15y 9m 
60%  19y 2m 17y 9m 15y 5m  23y 4m 20y 10m 17y 5m 
70%  22y 11m 21y 3m 17y 5m  27y 11m 24y 1m 19y 4m 
80%  29y 3m 26y 5m 20y 3m  33y 7m 29y 3m 22y 4m 
90%  46y 7m 36y 11m 25y 3m  Not within 50 

years 
39y 6m 26y 7m 

 
 
The impact will be more significant in the scenario with historical lower rates of 
technological advancement – accelerating adoption by an average of 10.5 and 15.5 years, 
given the incumbent source of electricity is derived from natural gas and coal 
respectively. However projections still indicate a widespread shift within an average of 
31 and 26 years respectively.   
 
Projections indicate that a tax of $150/ton CO2 applied to the lower technical change 
scenario will replicate the baseline results for the higher rates of technical change free of 
any incentives, if the incumbent source of electricity is derived from coal. However, it 
will not replicate baseline results for electricity derived from natural gas – a higher 
carbon tax than $150/ton CO2 would be necessary to do so.  
 
Concurrently, a $150 carbon tax would raise the price of a gallon of gasoline by $1.33, 
and the price of a barrel of crude by approx. $65. In addition, a $150 tax would more than 
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double the current price of electricity (if derived from coal), rendering it almost as high as 
the current cost of solar free of incentives. 
 
 
 
2.5 Conclusion  
 
This paper considers the question of how to transition to a meaningful percentage of solar 
energy in a sustainable way and which policies are most effective in accelerating 
adoption. We develop a stochastic dynamic real options model evaluating the threshold 
and timing of the consumer’s optimal investment decision given two sources of 
uncertainty, and obtain a cumulative likelihood and timing of substitution amongst 
energy resources and towards solar under plausible rates of technological change, 
subsidies and carbon taxes.  
 
Based on our specification, results indicate that there will be a widespread shift towards 
solar PV in the residential and commercial sector in under 30 years – and that this can 
occur independent of downstream incentives and carbon pricing policies (at $21/ton CO2, 
$65/ton CO2 and $150/ton CO2). In general, results across all scenarios consistently 
indicate that average historic consumer subsidies and carbon pricing policies have a 
modest effect in accelerating adoption, and may not be an effective part of climate policy 
in this regard.  
 
The results demonstrate that R&D support and further technological change is the crucial 
determinant in accelerating widespread adoption of solar PV - suggesting that subsidies 
and taxes don’t make a substantial difference in a technology that’s not viable, while 
research does. This further suggests that optimal policies may change over time, however 
current continued R&D support and technological advancement is the crucial determinant 
of widespread transition to solar and plausibly other backstop technologies – and that it 
should play a key role in policy measures intended to combat climate change.  
 
The results do not imply that carbon pricing shouldn’t play a role in climate policy in 
general. Carbon pricing may be effective in reducing emissions and encouraging the 
transition towards other clean technologies – however it has a decidedly modest impact in 
accelerating adoption of solar PV at levels up to $150/ton CO2. Suggesting, that if a 
widespread transition to solar energy is likely to happen in this sector, it will be because 
of R&D and technological advancement. 
 
There are several limitations of this study that should be addressed in further research. 
One, that we are assuming that R&D and technological change are independent of 
adoption. In reality, the innovation process is a continuum, such that the R&D and 
manufacturing processes are integrated and exhibit learning by doing effects. Inasmuch, 
taxes and subsidies may provide an incentive for adoption that enhances learning - which 
has not been included in this study. Despite the analysis by Nemet (2006) suggesting that 
learning by doing only weakly explains changes in the most important factors influencing 
cost reductions in solar PV over the past 30 years, the current omission of such effects 
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should be addressed in future research. Another limitation is that this study cannot 
capture the effect of subsidies that reduce the initial cost, but which tend to expire - 
which would aim to counter the Dixit Pindyck effect and would affect the results.  
 
Further, the implications of a widespread shift towards solar in this sector should be 
examined in further detail in terms of GHG emissions and climate change outcomes. We 
have seemingly assumed the shift towards solar in this sector as desirable, however this 
should ultimately be evaluated against the prospects and impact of other technologies - 
including solar adoption in the utility sector.  
 
Additionally, the estimated probability of adoption at each moment which we were able 
to derive as a function of each policy provides a key tool to assess the expected rate of 
return of various policies, which should be evaluated in future research.  
Nevertheless, the results of this study remain robust across varying levels of interest rate, 
technological change and incentives - with significant policy implications about the 
relationship between research subsidies and consumer subsidies in accelerating the 
widespread adoption of solar PV. 
 
The results consistently indicate that average historic consumer subsidies and carbon 
taxes will have a decidedly modest impact in encouraging the adoption of a technology 
that is not viable. Instead, continued R&D support and technological advancement is the 
crucial determinant and main driver of adoption, outweighing the effect of subsidies and 
taxes - and it should play a key role in climate policy.   
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Chapter 3 
 
 

The Transition to Renewable Energy Technologies: 
Optimal Policies Over Time* 

 
 
 

22 
 

 

 

3.1 Introduction  
 
Climate change is fundamentally an energy issue, and the transition towards clean 
technologies will play a key role in our efforts to meet deeper, long term green house gas 
(GHG) reductions23, beyond energy efficiency (EE) and carbon capture and storage 
(CCS). Meeting these goals will require a “significant reorientation of national energy 
trajectories” (Sagar et al., 2006) and the development and deployment of renewable 
technologies that are not yet commercialized (Williams et al., 2012; Chakravorty et al., 
1997; Margolis and Kammen, 1999; Goulder and Parry, 2008). 
 
Achieving this transition and the necessary technological breakthroughs will depend on 
both technical as well as economic forces (Sunding and Zilberman, 2001), and the 
government’s role will remain crucial given the public goods aspect of energy and 
environmental services. Technology and technology policies are pivotal, and policy 
incentives will play an important role in enabling the transition towards renewable energy 
technologies, including government investment in energy research and development 
(R&D) programs as well as early deployment of nascent technologies.  
 
The central issue in this regard remains how best to enable technological change, and 
accelerate innovation and widespread adoption of new energy technologies and move 
towards a more sustainable energy system.  This raises the question of how best to assess 
the tradeoffs between alternate policy measures and crucially, how much and when to 
invest in which policy measure.  

* Co-authored with Gordon Rausser and David Zilberman. The authors gratefully acknowledge financial 
support from the Energy Biosciences Institute at the University of California, Berkeley.  
23 Several US states have recently announced the goal of reducing greenhouse gas emissions by 80 percent 
below their 1990 levels by 2050. The magnitude of carbon cuts required is large – beyond what EE and 
CCS measures can achieve (Williams et al., 2012).  
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The key question remains - how we are allocating our public resources, and whether we 
should allocate public expenditure in one direction or the other, and under which 
circumstances? I.e. what is the optimal allocation between differing policy measures, 
including the balance between R&D investments and downstream policy instruments 
across emerging renewable energy technologies?   
 
The current allocation of US public expenditure on R&D subsidies versus deployment 
subsidies24 for solar PV technologies indicates that US public R&D expenditure has 
averaged at approximately $115 million per year from the mid 1980’s to 200825. This 
amount dwarfs in contrast to public spending on deployment and commercialization 
subsidies. In 2007, CA alone committed to spending $3.3 billion over 10 years on upfront 
consumer incentives for solar installations as part of the CSI, NSHP and POU programs26 
- by far surpassing the $115 average annual federal budget for Solar PV R&D. And yet, 
despite the substantial resources devoted to consumer adoption, in 2012 Solar amounted 
to little over 1% of generated electricity in the US (EIA Electric Power Monthly, March 
2013), and technically contributed the smallest share amongst all renewable-generated 
electricity.  
 
IEA estimates of worldwide energy subsidies (IEA, 2011; IEA, 2012) reveals that in 
2010 alone, fossil-fuel consumption subsidies amounted to $409 billion, and subsidies 
given to renewable energy amounted to $66 billion (which was a 10% increase over 
2009). Of this, $44 billion went to renewable based electricity (i.e. electricity generation 
from biomass, wind, solar PV in buildings, and geothermal energy) and $22 billion went 
to biofuels.  
 
Renewable energy subsidies in 2010 were the highest in the EU at $35 billion, followed 
by the US at approximately $18 billion. Together both the EU and the US accounted for 
almost 80% of the worldwide total in renewable energy subsidies at approximately $52 
billion in one year alone. Notably, Solar PV received 28% of total renewable electricity 
subsidies in 2010 globally (i.e. approx $18 billion worldwide), despite accounting for 
only 4% of subsidized renewable electricity generation.   
 
IEA estimates for 2011 showed a 24% increase over renewable energy subsidies from 
2010, with a total of $88 billion spent worldwide. Of this, $64 billion went to electricity, 

24 Goulder and Parry (2008) define technology policies as consisting of technology development (R&D) 
and technology deployment, in the sense that once technologies have been developed and are ready for 
commercialization, their deployment could be pushed by additional policy interventions which may be 
warranted on efficiency grounds if there are additional market failures that impede the diffusion process - 
and requiring public sector responses to encourage early adoption of new technologies through targeted 
policy incentives such as subsidies to favorable technologies, technology based and performance based 
standards, mandates, and government procurement programs.  
25 Notwithstanding the recent increase in total R&D funding in 2009, 2010, and 2011 due to the 2009 
Recovery Act. 
26 With a concurrent commitment of a total of $50 million on R&D investments over 10 years under the 
same CA initiative.     
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and the remainder to biofuels. Globally, Solar PV received more than any other 
renewable energy technology for electricity generation ($25 billion), followed by wind 
($21 billion) and bioenergy ($15 billion). Consistent with 2010 patterns, the EU and the 
US accounted for almost 80% of worldwide renewable energy subsidies in 2011. The EU 
once again provided the highest level of support in the world at almost $50 billion in one 
year alone, followed by the US at $21 billion.  
 
In general, current subsidies to solar PV far surpass R&D investments, yet solar PV 
accounted for only 4% of subsidized renewable electricity generation globally in 2010, 
and little over 1% of generated electricity in the US in 2012. This raises the critical 
question of how we are allocating our scarce public resources, and whether this current 
split between R&D and deployment policies is optimal. I.e. how do we assess the 
tradeoffs between alternate policy measures, what is the optimal allocation of public 
resources, and crucially, when should we invest in which policy incentive across 
emerging renewable energy technologies? 
 
This paper contends that optimal policies will change over time, and that the technology 
under consideration will largely determine how and when to allocate available funds. 
And that the relative emphasis on various policy measures should depend in part on the 
characteristics of the technology – i.e. that technology features should guide and inform 
energy policy design in order to be effective. This implies that optimal design may 
require differing polices for differing technologies, based on the characteristics of the 
technology and its stage of development. In this paper, we emphasize technology features 
in policy design, and contend that this will crucially affect the appropriate timing and 
sequencing of policies, as well the impact and effectiveness of differing policy measures.  
 
Policy design and the appropriate timing and sequencing of policies, without 
consideration of the characteristics of the technology and its stage of development are 
incomplete. We find that targeted policy should consider every stage of the technology 
innovation cycle - from R&D to commercialization in overcoming barriers to the 
development and widespread adoption of nascent technologies.  
 
This paper illustrates the key role of the technology innovation cycle and changing 
optimal policies at every stage of the technology in the transition towards renewable 
energy technologies. We stress that optimal policies will change over time, driven 
primarily by the characteristics of the technology, and its stage in the innovation cycle – 
and that this will crucially determine the impact, gains and tradeoffs between alternate 
policy measures such as R&D policies, deployment policies, and carbon pricing policies.  
 
Based on our analysis and results we find that there is a pressing need for the reallocation 
of public resources from consumer subsidies towards public R&D budgets in emerging 
energy technologies such as solar PV, and plausibly other backstop technologies. We 
argue for an expanded role of aggressive R&D policies and increased public R&D 
funding – and contend that there is an imbalance in resources allocated towards adoption 
and commercialization subsidies relative to R&D investments for a technology such as 
solar PV that is not commercially viable. Our results indicate that there is a pressing need 
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for increased R&D funding relative to consumer subsidies for emerging technologies 
such as solar PV which are not commercially viable – and that this should be the key 
policy objective in ensuring that emerging energy technologies and systems are 
commercially ready.  
 
Despite the inherent uncertainty of R&D investments and outcomes, given the significant 
innovation required in the energy sector with respect to climate change and the 
development of clean energy technologies - it is unlikely for any major technical 
breakthroughs to occur without R&D. We contend that increased and aggressive R&D 
investments will be the key policy initiative in enabling the transition towards clean 
energy technologies such as solar PV in a sustainable manner - and that the current 
emphasis on consumer subsidies with relatively low investments in R&D is not optimal 
for a technology such as solar PV (Torani, Rausser, and Zilberman, 2014).  
 
Admittedly, deployment policies and learning-by-doing (LBD) are a crucial part of 
technical change. And they are theoretically justified to the extent that capacity driven 
experience can lead to improvements such as greater expertise and cost reductions in 
technologies27 – often playing a key role in the large-scale uptake of new energy 
technologies. However, in general, learning is not an automatic byproduct of cumulative 
installed capacity, and should not be taken as such. While learning rates have been 
observed to play a vital role in a wide range of industries, including energy technologies, 
the potential for LBD may fundamentally differ among technologies, and at different 
stages of a technology. E.g. Nemet (2006) suggests that LBD only weakly explains 
changes in the most important factors influencing observed cost reductions in solar PV 
over the past 30 years.  In general, we do not yet have a clear understanding of what leads 
to experience and learning gains – despite numerous efforts to disentangle and understand 
the mechanism behind LBD and its cost reducing potential (Argote and Epple, 1990; 
IEA, 2000). Deployment policies are justified if a LBD potential exists, however it is 
crucial to evaluate and determine this potential and concomitant gains while committing 
$88 billion on renewable energy subsidies in one year alone28.   
 
Even when deployment policies are justified, the appropriate timing and sequencing in 
the technology development stage is crucial. We contend that technology and policies 
must be deployed in a coordinated manner to be effective and achieve emissions 
reductions benefits at an acceptable cost. Investments in commercialization and 
deployment subsidies before sufficient R&D investments and breakthroughs have 
occurred will be ineffective and unsustainable, or alternatively will need to be very high 
to have any significant impact (Torani, Rausser, and Zilberman, 2014). Widespread 
adoption and commercialization of emerging and unproven technologies and systems will 
be unlikely to occur unless sufficient major technological discoveries and improvements 
have taken place - which will need to be driven by appropriate and sufficient R&D 
investments. Even if deployment policies are justified during the pre-commercial phase 
(and not intended for mature technologies) – the appropriate timing and sequencing of 

27 With feedback into the R&D process and technology refinement. 
28 IEA estimates of renewable energy subsidies spent globally in 2011. 
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policies is still crucial. It makes little economic sense to invest billions of dollars in 
deployment subsidies and LBD prematurely, when dealing with a technology that is not 
sufficiently viable and before sufficient technological discoveries have been made (and 
with relatively few resources allocated towards R&D and technological discoveries). The 
logical sequence of policies necessitates first making sufficient investments and 
allocating resources towards R&D and the necessary technological discoveries, which 
can then be followed by  downstream policies to enhance adoption, experience and LBD 
which may also feed back into the R&D process for further technological improvement 
and refinement (provided a LBD potential exists).  Deployment policies and LBD before 
the technology is sufficiently viable, and to the extent that is currently being allocated, 
may be premature and will subsequently need to be extremely high to be effective. We 
contend that the appropriate timing and sequencing of policies in parallel with the 
characteristics of the technology under consideration is paramount, and that the first and 
foremost, R&D investments are required which can then be followed by deployment and 
commercialization subsidies where appropriate. However, we contend that deployment 
subsidies e.g. in the form of consumer subsidies must also be short lived and provided for 
a limited amount of time in order to be effective and counter the Dixit and Pindyck delay 
effect, i.e. given rational expectations, people will delay investment and adoption of a 
nascent technology due to the expectation of further technological change and future cost 
reductions (Torani, Rausser, and Zilberman, 2014). 
 
Balancing R&D and deployment investments is a pertinent issue, with a concrete tradeoff 
between allocating funds in one direction of the other. We contend that optimal allocation 
of public resources may require a different split between R&D and deployment for 
different technologies, based on the characteristics of the technology, its stage of 
development, and the gains achievable through R&D and deployment efforts. The 
appropriate emphasis and sequencing of R&D and learning investments is a pertinent 
issue, and optimal timing and allocation between the two depends in part on the 
characteristics of the technology itself and the appropriate sequencing of R&D and 
learning investments which will greatly affect the impact and effectiveness of differing 
policy incentives.   
 
It is in this context that we also examine the effectiveness of an emissions control policy 
such as a carbon tax in encouraging technology adoption at the early stages of an 
emerging renewable energy technology, while the technology is not commercially viable. 
While almost all economic studies find a case for imposing immediate restraints on GHG 
emissions, with many researchers advocating for an immediate, and at least initially low 
carbon tax (even if the true SCC is unknown), we contend that reasonable and plausible 
levels of CO2 taxes may not be effective in encouraging technology adoption and 
reducing emissions while clean technologies are not commercially viable as yet.  
 
Carbon pricing has been suggested as a policy to reduce emissions by both impacting 
demand and encouraging the adoption of new technologies – and some suggest even as a 
policy to induce technological innovation. Most argue for small CO2 tax (at least at first) 
even if the true SCC is unknown. However, to be effective in encouraging technology 
adoption at an early stage of technological innovation, we contend that a large CO2 tax 
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may be needed, far larger than suggested at reasonable levels – with significant 
implications on distributional effects and political feasibility.  We contend that if clean 
technologies are not commercially viable, it will impact the effectiveness of a realistic 
and plausible CO2 tax, and raise the question of alternate policy measures that may be 
more effective in accelerating the transition to sustainable energy systems given our 
current technology landscape (Chu and Majumdar, 2012).  
 
Given relatively low price elasticities of demand and uncertainty regarding the 
effectiveness of carbon pricing in inducing technological change, the effect of carbon 
pricing on adoption of emerging clean technologies is extremely relevant.  Given the high 
cost of emerging renewable energy technologies, we contend that reasonable levels of 
CO2 tax will have a modest effect in encouraging technology adoption, and that CO2 
taxes may have to be very high to be effective in encouraging the adoption of emerging 
clean technologies during the early stages of technological innovation.  
 
We contend that the stage of technological innovation will determine how effective 
policies such as reasonably priced consumer subsidies or carbon taxes will be in 
encouraging clean technology adoption and reducing emissions. We highlight the fact 
that  reasonable levels of consumer subsidies and carbon pricing policies will have a 
decidedly modest impact in encouraging technology adoption when technologies are in 
their nascent stages and not viable as yet. E.g. Torani, Rausser, and Zilberman (2014) 
find that reasonably priced carbon taxes at $21/ton CO2 or $65/ton CO2 will have only a 
modest impact on current Solar PV adoption levels. Instead, their results demonstrate that 
further technological change is the crucial determinant and main driver of adoption of 
solar PV, outweighing the effect of subsidies and taxes at levels up to $150/ton CO2. The 
results demonstrate that R&D support and further technological change is the crucial 
determinant in accelerating widespread adoption of solar PV - suggesting that subsidies 
and taxes don’t make a substantial difference in a technology that’s not commercially 
viable, while research does.  
 
Their results further support the notion that optimal policies may change over time, 
however current continued R&D support and technological advancement is the crucial 
determinant of a widespread transition to solar and plausibly other backstop technologies 
– and that downstream incentives or carbon pricing policies will have to be very high to 
be effective at this stage of the technology (i.e. higher than $150/ton CO2). In general, 
they state that carbon pricing may be effective in reducing emissions and encouraging the 
transition towards other clean technologies and may play a role in climate policy - – 
however it has a decidedly modest impact in accelerating adoption of solar PV at levels 
up to $150/ton CO2. Suggesting that if a widespread transition to solar energy is likely to 
happen, it will be because of further R&D and technological advancement – and that 
R&D and technological innovation should play an increased role in climate policy.  
We contend that the stage of technological innovation and subsequent technology 
readiness will determine how effective a reasonably priced carbon tax will be in 
encouraging clean technology adoption and emissions. With many clean technologies 
currently not commercially viable, a reasonably priced carbon tax may not have much of 
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an impact on technology adoption and may not be an effective policy for reducing carbon 
emissions.  
 
Once again we emphasize that technology and policies must be deployed in a coordinated 
manner such that the emission reduction benefits are achieved at an acceptable cost 
(Williams et al., 2012).  Our results suggest that the first and most important stage does 
not lie in imposing CO2 taxes, but rather in investing in R&D and technological 
advancements. Once clean technologies are sufficiently ready, reasonably priced carbon 
taxes will bite to a larger extent and be more effective at plausible levels. Reasonable 
carbon pricing when technologies are not sufficiently developed will not be effective in 
encouraging clean technology adoption as consumers and producers will not be able to 
switch to clean technologies if the cost of the technology is prohibitive. In effect, 
technologies need to be sufficiently developed to make this transition economically 
sustainable, as the switch to clean technologies will not be likely if they are unviable and 
relatively costly.  Thus despite calls for immediate imposition of carbon taxes (at least at 
initially low levels) we contend that one plausible strategy would be either to introduce 
high CO2 taxes or to subsidize R&D first, followed by deployment and LBD, and then to 
impose reasonable carbon taxes – in which case scientific advances and technological 
changes would make CO2 emissions abatement less costly, and CO2 pricing would be 
effective at reasonable levels.  
 
Crucially, this points towards the fundamental issue that R&D is a pressing and necessary 
part of technological innovation and our energy transition, particularly in the early stages 
of emerging technologies. While deployment and LBD further comprise an important 
part of technological change, balancing R&D and deployment investments, and the 
optimal timing and allocation between the two depends on the characteristics of the 
technology itself. Carbon pricing is justified, however the central question in this regard 
remains how much and how fast to react to the threat of global warming, and at what 
levels carbon pricing will be effective (Nordhaus, 2007). In general, we contend that an 
emphasis on technology features in policy design is crucial, since it will affect the impact 
and effectiveness of policy measures and will be critical in the transition towards more 
sustainable energy systems.   
 
We illustrate the broader issue that that policy design independent of the stage and 
characteristics of the technology under consideration is incomplete.  The technology 
under consideration should in part guide and inform energy policy, as it will affect the 
impact and effectiveness of differing policy measures, and will determine the logical 
sequence and timing of policies. However we find that these considerations are 
noticeably absent from most studies evaluating and comparing differing policy 
mechanisms - most of which focus solely on considerations of cost effectiveness, 
performance under uncertainty, distributional impacts etc. when assessing tradeoffs 
between policy instruments. We contend that what is notably absent in most discussions 
evaluating policy instruments is a  consideration of the characteristic of the technologies 
in question -  including the stage of technology innovation, and the optimal timing and 
sequencing of policies in this regard. And these factors will undoubtedly affect the impact 
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of the differing policy instruments and are a crucial determinant of the effectiveness of 
policy instruments.  
 
In this paper, we examine the stages of the technology innovation process and the role of 
policy incentives at every stage - including the timing, sequencing, and role of 
investments in public R&D, in LBD and deployment polices, and in CO2 taxes. This 
paper is organized as follows. Section 3.2 discusses the different stages of the innovation 
process and the main drivers of technological change which will play a significant role in 
guiding energy policy and affect efficiency of such. Section 3.3 outlines the significance 
and challenges of R&D policies, and highlights funding trends and the impact of such. 
Section 3.4 examines the timing and effectiveness of carbon pricing policies, and section 
3.5 discusses the significance of LBD and deployment policies. Lastly, section 3.6 
concludes with a discussion of the main results and suggestions for future research.   
 
 
 
3.2 The Innovation Process and the Drivers of Technological Change  
 
Technological innovation and the development of new energy technologies remains 
fundamental in the transition towards a clean and efficient energy economy. This paper 
contends that the characteristics of the technology under consideration (and its stage in 
the innovation cycle) will in part determine how and when to allocate available funds, 
influence policy effectiveness, and should in large part guide and inform energy policy.   
 
Policy design and the appropriate timing and sequencing of policies, without 
consideration of the characteristics of the technology and the stage it is in, is incomplete. 
In particular, targeted policy must consider every stage of the technology innovation 
cycle – from R&D to commercialization in overcoming barriers to the development and 
widespread adoption of nascent technologies. We discuss the key role of the technology 
innovation cycle and changing optimal policies at every stage of the technology in the 
transition towards (and widespread adoption of) renewable energy technologies.  
It is in this context that we examine the different stages of the innovation process and the 
main drivers of technological change which will play a significant role in guiding energy 
policy and affect the efficiency of such.  
 
Broadly speaking, the process of technology innovation consists of the R&D phase, 
demonstration phase, deployment, diffusion and commercial maturity, followed by the 
ultimate decline phase.  However, it is important to note that innovation is not a linear 
process, exhibiting various interdependencies, overlap, and feedback loops between 
stages - most notably the R&D and early deployment stages. In addition, often the stages 
themselves cannot be clearly disaggregated, distinguished or compartmentalized (Sagar et 
al., 2006). 
 
The initial stage of the technology life cycle is the innovation or R&D stage, followed by 
the post research and early phases of demonstration and deployment of the nascent 
technology. The diffusion stage represents the market penetration of the new technology, 
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ultimately followed by the maturation stages of saturation and then senescence, which is 
signified by a decline in the use and eventual substitution by another technology 
(Grubler, 1998; Grubler et al., 1999).  
 
Of the different stages of the technology life cycle, the two main contributors of technical 
change are captured in the complementary and inter-linked stages of R&D and learning 
by doing (LBD)  (Carraro et al., 2003), and both stages are vital to the process of 
technical change.   
 
Despite the inherent uncertainty of R&D outcomes, it is unlikely for any major technical 
change to occur without research and development. However, while R&D occurs largely 
during the early stages of technical development, even successful R&D outcomes rely 
crucially on the capacity to learn through deployment in order to surmount the initial 
higher costs and other barriers (e.g. infrastructure or institutional barriers) that may 
prevent further widespread commercial deployment of the new technology.  In other 
words, the commercialization of research outcomes critically depends on LBD and the 
productivity growth and cost reduction acquired through deployment and experience, 
without which R&D outcomes may never be followed by widespread commercialization 
of the technology (Sagar et al., 2006).  
 
In general, the process of innovation, upgrading, and commercialization is a continuum, 
with R&D and manufacturing processes being integrated and exhibiting LBD effects 
(Arrow, 1962; Clemhout and Wan, 1970; Feder, 1976; Sunding and Zilberman, 2001). 
Undoubtedly, LBD remains a crucial element of early deployment – referring to 
experience driven cost reductions as a function of cumulative production, installed 
capacity or deployment, and is often represented by learning or experience curves (IEA, 
2000). In theory, LBD can lead to cost reductions, greater expertise in technology 
operation, or institutional transformations necessary to support the introduction, diffusion 
and widespread use of new technologies (Sagar et al., 2006), with these improvements 
often playing a key role in the large-scale uptake of new energy technologies (van der 
Zwaan and Seebregts, 2004). 
 
It is crucial to note that while learning rates have been observed to play a vital role in a 
wide range of industries, including energy technologies (van der Zwaan and Seebregts, 
2004; McDonald and Schrattenholzer, 2001), the potential for LBD may fundamentally 
differ among companies, technologies, and even at different stages of a technology. In 
general, learning rates are most frequently observed, and are highest during the initial 
stages of technology deployment - exhibiting gains that are increasingly difficult to 
sustain as the technology matures. Predictably, the gains from learning may diminish as a 
technology matures and as future development is unable to sustain past progress ratios 
and cost reduction factors.    
 
Additionally, the potential for LBD and learning rates may differ amongst technologies 
(McDonald and Schrattenholzer, 2001). For example, Nemet (2006) suggests that LBD 
only weakly explains changes in the most important factors influencing observed cost 
reductions in solar PV over the past 30 years. Whereas Khanna and Chen (2014) examine 
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competing hypothesis explaining the decline in processing costs of US corn ethanol since 
1983, and conclude that LBD played an important role in reducing corn ethanol 
processing costs, exhibiting a learning rate of 0.25.  
 
In general, while numerous efforts have been made to disentangle and understand the 
details and mechanism behind LBD and the cost reducing potential (Argote and Epple, 
1990; IEA, 2000) – we still lack a clear understanding of the exact mechanism and 
conditions under which deployment leads to learning, and how to maximize and replicate 
this potential both within and across industries. In general, we have yet to obtain a clear 
understanding of the relative contribution of the differing mechanisms which lead to 
learning29 and cost reductions which remain essential for developing policies to promote 
the transition to sustainable energy technologies (Sagar et al., 2006).   
 
It should also be noted, that not all deployment and experience may lead to learning gains 
and cost reductions. Aside from the fact that the process itself is poorly understood, it is 
problematic that by definition, learning curve estimates have been based on technologies 
that have survived, representing a biased sample (Sagar et al., 2006). Technologies that 
have not survived beyond an early stage of development or deployment (Grubler, 1998) 
are omitted from the learning curve methodology. Hence one should employ caution 
when employing learning curves in estimating possible competitiveness of emerging 
energy technologies.  
 
In general, while the significance of LBD as a key element of deployment is not disputed, 
the learning process, learning potential and mechanism still remain poorly understood. 
Additionally, feedback from deployment and learning can also feedback into the 
technology R&D process, leading to refinement and improvement in technologies and 
future development. However, this requires both coordination and linkages between the 
R&D and the deployment processes. In general, it remains important to deconstruct both 
the R&D and LBD processes, and to improve the design of early deployment efforts and 
find conditions under which technologies can be most productively deployed with the 
greatest learning gains. This will invariably affect the impact and efficacy of policy 
measures and the optimal timing of policy instruments.  
 
 
 
3.3 R&D and Innovation Subsidies  
 
Undoubtedly, investments in R&D will play a crucial role in responding to the challenges 
posed by climate change - with significant innovation required in the energy sector in 
respect to developing clean energy technologies. R&D subsidies are unquestionably 
important and will play a key role, despite the inherent uncertainty of R&D outcomes. 
And despite the fact that no straightforward relationship exists between the amount of 
public R&D investments made, and potential outcomes in terms of improvement in 
energy systems (e.g. carbon factors or energy intensities). Fact remains that it is unlikely 

29 E.g. learning-by-manufacturing, learning-by-operating, learning-by-implementing etc. 
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for any major technical change to occur without research and development – as 
technological breakthroughs have historically not been achieved without R&D 
investments.  
 
In light of the challenges of climate change and the required transition to clean and 
efficient energy systems, there is a pressing need for public R&D budgets to be 
maintained or increased, since R&D is an unquestionable and necessary part of this 
transition (Margolis and Kammen, 1999; Sagar et al., 2006; Torani, Rausser and 
Zilberman, 2014). Given the public goods aspect of such a transition and the existence of 
environmental externalities and under- or un-priced environmental goods (i.e. low carbon 
technologies), as well as the private sector’s under-investment in basic research, and its 
desire to prevent the downside risk from renewable energy investments, the government’s 
role will remain crucial in achieving significant advances in new energy technologies 
(Rausser and Papineau, 2008; PCAST, 1997). 
 
Despite the inherent risk and uncertainty in R&D investments and outcomes, studies 
examining the impact of R&D investments and energy innovation have suggested that 
past federal spending on energy R&D has often yielded considerable net benefits and has 
led to the development of innovative technologies and a significant impact on the energy 
sector (NRC, 2001).  
 
Conversely, studies based on high levels of correlation between US R&D spending and 
patents issued in the energy sector have also determined that cutbacks in energy related 
R&D had a significant negative impact on innovation in the energy sector. Margolis and 
Kammen (1999) contend that R&D funding and innovation in new energy technologies is 
closely linked, and that there is a disconcerting underinvestment in energy technology 
R&D relative to other technology intensive sectors of the economy. In their study, they 
examine the total US investment in energy related R&D (both public and private) from 
1976-1996 which increased from approximately $100 to $200 billion, and the increase in 
the number of US energy related patents issued which increased from 70000 to 110000 – 
indicating the proportional increase of patents with R&D investments during this period 
as empirical support of a significant link and high degree of correlation between the two.  
 
They further point towards a boom & bust cycle in which R&D cutbacks during the 
1980s and 1990s (reaching a low of $4.3 billion in 1996) were accompanied with a 
parallel decline in patents related to energy technologies from a high of 228 in 1981 to a 
decline and eventual low of 54 in 1994. Indicating again that the cutbacks in energy 
related R&D had a significant impact of innovation in the energy sector. Another finding 
of their  study points towards the striking divergence between the low R&D intensity in 
the energy sector as compared to R&D intensities in other sectors (e.g. drugs and 
medicine, industrial chemicals and scientific and communications equipment), thereby 
raising the concern about the relatively low level of investment in energy technology 
R&D.   
 
In general, trends in public-sector energy technology R&D funding have shown a 
significant decline over the past two decades across the industrialized world, and remains 
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a cause for concern since this decline is invariably likely to impact the energy sector’s 
capacity to innovate, and to respond to the challenge of global climate change.  
 
Surveys of energy R&D funding levels in IEA member countries, display that public 
energy R&D budgets have been declining significantly in real terms since the early 
1980s: public energy R&D budgets show an overall decline of 39% between 1980 and 
1995, with particularly sharp declines in Germany, the UK and the US. Of this decline, 
nuclear funding fell by 40%, fossil fuel funding fell by 58% and funding for renewable 
energy fell by 56%. However, investments also displayed a diversity in trends, with some 
countries reducing their energy technology R&D budgets across all technologies, while 
other countries refocused their technology portfolios to eliminate some and favor other 
technologies (Margolis and Kammen, 1999).30  
 
In the US, public sector renewable energy R&D funding (versus energy R&D funding in 
general) has increased only modestly over the years. During the years 1978-2002, on 
average renewable energy funding comprised 11% of the total energy R&D budget 
(which also included energy efficiency, fossil fuels, nuclear, and hydrogen and fuel cells 
R&D) while the period 2003-2011 on average renewable energy funding comprised 
13.5% of the total R&D budget31 (figure 3.1).  The breakdown of renewable energy R&D 
funding amongst the various technologies indicates that solar R&D funding has steadily 
decreased over the years, while biofuels’ funding  has steadily increased – with both 
these technologies currently comprising the two largest shares of US public renewable 
energy technology funding (figure 3.2). Solar has previously and traditionally 
commanded the largest share of renewable energy R&D funding - averaging at 
approximately $115million per year from the mid 1980’s to 2008.  In addition, the share 
of wind energy R&D funding has declined over the recent years, while the share of 
geothermal R&D funding has seen a gradual but steady declined over the past decades.   
 

30 For example, nuclear technology R&D was cut back in the UK, US, Germany and Italy while it was 
increased in Japan and France.  
31 Notwithstanding the recent increase  in total R&D funding in 2009,2010, and 2011 due to the 2009 
Recovery Act  
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Fig. 3.1: Total Energy RD&D in Million USD ($2012), by FY 
Source: IEA R&D Database 1974 – 2011 

 
 

 

Fig. 3.2: Share of Renewable Energy R&D Funding (%) by Technology, 1974-2011 
Source: IEA R&D Database 1974 – 2011 
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Notwithstanding arguments for increased government energy R&D, historic trends 
however don’t reveal a clear correlation between R&D investment and improvement of 
the energy system and relevant indicators such as energy and carbon efficiencies (e.g. 
energy intensity (EI)32 or carbon factor (CF)33). For example, Sagar et al. (2006) examine 
past trends amongst selected industrialized countries over the time period 1975-1999 
which show no clear relationship between the average annual changes in EI, CF and 
public R&D budgets and intensity34, even when accounting for potential time lags 
between R&D spending and changes in the energy sector, and accounting for the fact that 
some R&D programs could affect one indicator but not the other.   
 
Instead, results indicate that many countries with the highest R&D intensities displayed 
relatively lower rates of EI improvements. Even accounting for the fact that it is harder 
for more efficient countries to achieve reductions in EI and CF, the results showed that 
other countries with relatively lower levels of public R&D funding have been more 
successful at achieving improvements in their energy and carbon efficiencies (e.g. 
Netherlands and Canada). 
 
In general, Sagar et al. (2006) point to the fact that no straightforward relationship exists 
between the level of R&D investment and the improvement of the energy system – and 
provides potential explanations for this, none of which are an argument against increased 
R&D budgets.   
 
Undisputedly, the factors ultimately influencing a countries energy sector and EI, CF 
indicators include energy supply sources, and structural factors (e.g. a shift from 
manufacturing to services). In particular, the limited impact of energy R&D spending and 
indicators could  be explained by the specific focus of energy R&D expenditures (e.g. as 
in the case of Japan where over 75% of Japanese government spending is on nuclear 
power, which accounts for less than 15% of the country’s  energy supply), or crucially, 
weak linkages between R&D efforts and the ultimate deployment of technologies, or 
lastly that public R&D has often not been targeted enough to specifically reduce EI or CF 
of economies. In all, pointing to the fact that the lack of correlation between public R&D 
budgets and EI and CF factors may actually be an indication of the issue with using R&D 
spending levels as a measure of these capabilities.  
 
Clearly, while public R&D budgets alone are not enough to transform a country’s energy 
sector, (since they alone do not automatically lead to a certain level of technological 
change in the real world), they have indisputably been the basis for innovation and 
technological advances. And without maintaining or increasing R&D budgets, addressing 
climate change and the transition to a sustainable energy system will be even more 
challenging.  
 

32 EI, the level of energy consumption per unit of GDP 
33 CF, the amount of carbon emissions per unit of energy consumption 
34 Public R&D expenditures per unit of GDP 
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In addition, Goulder and Parry (2008) justify public R&D and innovation policies on the 
grounds that: (i) Emissions control policies may be incapable of bringing about 
technological breakthroughs since they provide invention incentives only  indirectly by 
emissions pricing or by raising the costs of conventional “dirty” production methods 
through direct regulation. (ii) They address market failures beyond the pollution 
externality, e.g. the inability of inventors or innovators to fully appropriate the returns 
from the knowledge they create. Thereby implying that incentives for clean technology 
R&D will be inefficiently low, even if pollution externalities are appropriately priced. 
They argue that no single instrument can effectively correct market failures from both 
emissions externalities and the knowledge appropriation problem, and that achieving a 
given emissions reduction through one instrument alone involves considerably higher 
costs than employing two instruments and is an inefficient way to promote innovation 
(Fischer and Newell, 2008; Schneider and Goulder, 1997).  
 
Undisputedly, R&D is in itself not a sufficient, but a necessary part of technology 
innovation & transition. Deployment and LBD remain a crucial part of technological 
change, as well as the ability to determine at what stage to employ which policy 
mechanism, which will greatly affect the impact and effectiveness of differing policy 
incentives (Torani, Rausser, Zilberman, 2014). 
 
Admittedly, a focus only on R&D and the development of new technologies without 
emphasizing the role of deployment efforts and LBD is incomplete – however balancing 
R&D and deployment investments, and optimal timing and allocation between the two 
depends in part on the characteristics of the technology itself. This is a pertinent issue in 
policy analysis, and it depends on the kind of technology, the stage it is in, and the 
appropriate sequencing of R&D and learning investments (Torani, Rausser, Zilberman, 
2014). Different technologies may require a different split between R&D versus 
deployment investments, based on the characteristics of the technology and the gains 
achievable through R&D and deployment efforts.   
 
For example, Torani, Rausser and Zilberman (2014) find that average historic consumer 
subsidies and carbon pricing policies (up to $150/ton CO2) have a modest impact in 
accelerating adoption of Solar PV in the residential and commercial sector across 
plausible rates of technological change - making virtually no difference in certain cases, 
hence not being an effective part of climate policy in this regard. Their results 
demonstrate that further technological change alone is the crucial determinant and main 
driver of adoption of Solar PV, outweighing the effect of subsidies and taxes. Suggesting 
that subsidies and taxes don’t make a substantial difference in a technology that’s not 
viable – instead that research does. Their results show that R&D support and 
technological advancement in solar PV is the crucial determinant in accelerating 
widespread adoption of solar PV and should play a key role in climate policy35.  

35 Their results are robust across varying levels of electricity prices, interest rates, technological change, 
and incentives.  
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Their results further support the notion that optimal policies may change over time, 
however current continued R&D support and technological advancement is the crucial 
determinant of a widespread transition to solar and plausibly other backstop technologies 
– and that downstream incentives or carbon pricing policies will have to be very high to 
be effective at this stage of the technology (i.e. higher than $150/ton CO2).  
However, they state that carbon pricing may be effective in reducing emissions and 
encouraging the transition towards other clean technologies, and may thus play a role in 
climate policy – however that carbon pricing has a decidedly modest impact in 
accelerating adoption of solar PV at levels up to $150/ton CO2. Suggesting that if a 
widespread transition to solar energy is likely to happen in this sector, it will be because 
of further R&D and technological advancement.  
 
Similarly, Sagar et al. (2006) state that e.g. while fuel cells are advanced enough that they 
should be subject to both types of investment, a technology like fusion energy (with an 
operable  commercial prototype likely half a century away) still requires only R&D 
investments.  
 
Crucially, this points towards the fundamental issue that R&D is a pressing and necessary 
part of technological innovation and our energy transition, particularly in the early stages 
of technological innovation. While deployment and LBD further comprise an important 
part of technological change, balancing R&D and deployment investments, and the 
optimal timing and allocation between the two depends on the characteristics of the 
technology itself. In general, we contend that an emphasis on technology features in 
policy design is crucial, since it will affect the impact and effectiveness of policy 
measures and will be critical in the transition towards more sustainable energy systems.   
 
 
 
3.4 Efficacy of Carbon Taxes at Early Stages of Technological Innovation 
 
As a response to increasing scientific evidence that human activities are contributing 
significantly to global climate change (IPCC, 2007), considerable attention is being 
devoted to public policies to reduce greenhouse gas (GHG) emissions to counter climate 
change.  
 
In the US, interest in carbon pricing has been rising, in part due to policy makers 
discouraged with the inability to pass federal cap-and-trade legislation, and attracted to 
the possibility of introducing a carbon tax as part of broader tax reform or as a source of 
new revenue to reduce budget deficits (Goulder and Schein, 2013). Many consider carbon 
pricing the key to achieving a reduction in GHG emissions, and providing incentives for 
efficient investment and consumer adoption of clean technologies. However, some make 
the specific case that pollution pricing is effective in encouraging technology adoption 
but not technological innovation .  
 
Carbon taxes remain controversial and surrounded by considerable uncertainty, and to 
date have not been enacted in the US on a national scale. Aside from controversy 
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regarding efficacy, growth and distributional effects, estimates of the of the social cost of 
carbon (SCC) themselves remain highly uncertain due to the underlying uncertainties in 
the science of climate change science, choice of discount rates, and valuation of 
economic impacts (Pindyck, 2013). 
 
In general, there exists a wide literature evaluating and comparing various environmental 
policy instruments, with many researchers advocating for an immediate (and at least 
initially low) carbon tax, even if the true SCC is unknown.  Many studies compare 
different policy instruments and evaluate them on grounds including cost effectiveness, 
performance under uncertainty, distributional effects, political feasibility etc.  
 
While almost all economic studies find a case for imposing immediate restraints on GHG 
emissions, the difficult and central questions remain about how much and how fast to 
react to the threat of global warming and reduction in GHG emissions (Nordhaus, 2007). 
And this remains the central issue, including at what levels will CO2 taxes be effective in 
a practical sense. 
 
We contend that what is notably absent in most discussions evaluating policy instruments 
is a  consideration of the characteristic of the technologies in question -  including the 
stage of technology innovation, and the optimal timing and sequencing of policies in this 
regard. We contend that these factors will undoubtedly affect the impact of the differing 
policy instruments and are a crucial determinant of the effectiveness of policy 
instruments.  
 
Carbon pricing has been suggested as a policy to reduce emissions by both impacting 
demand and encouraging the adoption of new technologies – and as some suggest even as 
a policy to induce technological innovation.  Most argue for small CO2 tax (at least at 
first) even if SCC is unknown. However, to be effective in encouraging technology 
adoption at an early stage of technological innovation, we contend that a large CO2 tax 
may be needed, far larger than suggested at reasonable levels – with significant 
implications on distributional effects and  political feasibility.  We contend that if clean 
technologies are not commercially viable as yet, it will impact effectiveness of a realistic 
and plausible CO2 tax, and raise the question of alternate policy measures that may be 
more effective in accelerating the transition to sustainable energy systems given our 
current technology landscape (Chu and Majumdar, 2012). 
 
It is in this context that we examine how effective CO2 taxes may be in reducing 
emissions at reasonable and plausible levels. We discuss the impact of carbon pricing on: 
(i) A reduction in demand, which will depend crucially on elasticities. (ii) Technology 
adoption, especially considering the question of the effectiveness of carbon pricing 
during early stages of technological innovation. (iii) Effectiveness in inducing 
technological change.  
 
We contend that carbon pricing may have to be much higher than suggested plausible 
levels to be effective, especially with regard to technology adoption while nascent 
technologies are at early stages of innovation. The central question still remains how 
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much and how fast to react to the threat of global warming, and at what levels carbon 
pricing will be effective (Nordhaus, 2007). We contend that policy design in this regard 
without consideration of alternative technologies and their stage of innovation is 
incomplete. And that most studies do not consider the characteristics of the technologies 
in question, and do not evaluate the timing and sequencing of policy instruments with the 
technologies in mind. We contend that carbon pricing (or consumer subsidies) when the 
clean technologies in question are not viable, will only be moderately effective or 
subsequently will need to be much higher than reasonable estimates suggest in order to 
have a significant impact on GHG emissions.   
 
In general, there is an extensive literature and debate on the comparison and choice 
between various environmental instruments. There exists a wide literature comparing and 
evaluating differences between various environmental policy instruments, based on 
considerations of cost effectiveness, performance under uncertainty, distributional 
effects, and political feasibility.  While it is likely that the debate regarding the relative 
virtues of the various instruments (e.g. carbon tax, cap and trade, hybrid approaches, etc.) 
will continue, yet almost all economic studies find a case for imposing immediate 
restraints on GHG emissions.   
 
For example, Goulder and Parry (2008) evaluate the choice of instruments in 
environmental policy, and examine the tradeoffs between alternative policy measures 
such as emissions taxes, tradable emissions allowances, subsidies for emissions 
reductions, performance standards, mandates for the adoption of specific existing 
technologies, as well as briefly mentioning concurrent R&D and deployment policies for 
new “clean” technologies. 
 
They evaluate the choice among the alternative policy instruments based on competing 
evaluation criteria such as economic efficiency, cost–effectiveness (along a both a narrow 
and broad definition of cost), distribution of benefits or costs (across income groups, 
ethnic groups, regions, generations etc.), the ability to address uncertainties, uncertainty 
and policy flexibility, political feasibility and source of government revenue, and also 
comment on the inherent challenges associated with obtaining a  comprehensive 
assessment and general equilibrium impact of each instrument. 
 
Acknowledging the basic principle in economics that pollution should be priced at the 
marginal external cost, suggesting that emissions taxes are superior to alternative 
instruments, they highlight that this may not always be sufficient or reliable because of 
information problems, institutional constraints, technology spillovers, and fiscal 
interactions.  
 
Subsequently, they examine the strengths and weaknesses of alternative environmental 
policy instruments along dimension mentioned above, with several key findings: (i) No 
single instrument is clearly superior along all the dimensions evaluated.36 (ii) Significant 

36 E.g. “tradable allowance systems with free allocation might perform relatively well in terms of political 
feasibility but relatively poorly in terms of minimizing general equilibrium costs or achieving household 
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trade-offs arise in the choice of instrument. E.g. ensuring a reasonable degree of fairness 
in the distribution of impacts, or ensuring political feasibility, often will require a 
sacrifice of cost-effectiveness. (iii) Hybrid instruments that combine features of various 
instruments in their “pure” form may sometimes be desirable. (iv) If more than one 
market failure is involved, it may justify (on efficiency grounds) employing more than 
one instrument. 
 
However, notwithstanding their claim that no single instrument is superior to all others in 
all settings, they find that the instrument choice literature makes a strong case for the 
wider use of flexible, incentive-based policies (e.g. emissions taxes, tradable emissions 
allowances, subsidies for pollution abatement, and taxes on inputs/goods associated with 
emissions) rather than direct regulatory instruments (e.g. technology mandates and 
performance standards). 
 
Evaluated in terms of cost effectiveness, they find that the most cost-effective 
instruments (under the narrow definition of “cost”) are those that price the pollution 
externality directly (e.g. emissions taxes and tradable emissions permits). And that other 
price instruments are less cost-effective because they fail to optimally exploit all the 
major channels for emissions reductions. In addition, direct regulatory instruments also 
fail to optimally engage all of the major pollution reduction channels and, if non-tradable, 
fail to equate the marginal costs of emissions reductions across heterogeneous firms.  
 
Evaluated in terms of uncertainty and an instrument’s ability to adjust to new 
information, they find that in a static context, the relative efficiency impact of a pricing 
policy as compared to a quantity policy depends on the relative steepness of the aggregate 
marginal abatement cost curve and the marginal damage curve (Weitzman, 1974). In 
general these results carry over to a dynamic setting, where environmental damages 
depend on the accumulated stock of pollution. However, they state that some dynamic 
analyses (Kolstad, 1996; Pizer, 2002; Newell and Pizer, 2003) suggest that in the 
presence of uncertainty, a carbon tax might offer substantially higher expected efficiency 
gains than a cap-and-trade system.  
 
Regarding distributional impacts (in particular across household income groups) and the 
related issue of political feasibility, they find that the ultimate impacts of revenue-raising 
policies such as emissions taxes and auctioned emissions allowances depend critically on 
how the revenues are used37.  And that a fairer distributional burden could be achieved 
through  recycling revenues from carbon taxes or auctioned carbon allowances via tax 
reductions favoring low-income groups (Dinan and Rogers, 2002; Metcalf, 2007). In 
contrast, free allocation would tend to increase the disparity in the burden-to-income 

equity. The opposite applies for (revenue-neutral) emissions taxes or auctioned allowances. Direct 
regulatory policies have some appeal in terms of distribution but are generally less cost-effective along 
other dimensions. Emissions taxes and auctioned allowances may lose some of their key attractive 
properties if accompanying legislation does not require offsetting reductions in other taxes.” (Goulder and 
Parry, 2008).  
37 Since these affect low income groups disproportionately. 
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ratios between low- and high-income groups, since firms’ equity values (and 
subsequently that of upper-income groups) would rise with the increase in producer 
surplus (Dinan and Rogers, 2002). In this regard, direct regulatory policies may have 
some appeal since they avoid transferring rents from households (through large price 
increases) to firms. 
 
In general, despite the inherent challenges associated with a complete assessment of 
policy impact (including GE effects and the subjective emphasis placed on competing 
criteria), and notwithstanding the fact that no single instrument is superior to all others in 
all settings, they make a strong case for the wider use of flexible, incentive-based policies  
to reduce emissions. In addition, they briefly discuss the rationale to supplement 
emissions control policies with technology focused policies which directly promote the 
invention or deployment of new technologies. 
  
In contrast, Goulder and Schein (2013) focus specifically on the comparison and choice 
between carbon taxes and cap and trade policies to reduce GHG emissions, based on the 
main advantage of emissions pricing policies (e.g. carbon taxes and “cap and trade”) 
being their potential to achieve emissions reductions at lower cost than is possible under 
direct regulations (e.g. mandated technologies or performance standards)38.  
 
They evaluate the distinguishing features between the two policy instruments, claiming 
that arguments stating that carbon taxes are superior to cap and trade in terms of the 
incentives for reducing emissions, distributional impacts, options for employing or 
avoiding offsets, and potential for safeguarding international competitiveness are 
unfounded. And that if properly designed, the two approaches have equivalent potential 
along each of these dimensions, however this does depend critically on the specifics of 
the design (which they state is as important as the choice of instrument itself).  
  
They state that when comparably designed, a carbon tax, cap-and-trade system, and 
hybrid policy yield very similar incentives to reduce emissions. Comparably designed 
systems also imply the same distribution of policy costs across households or firms 
(depending on whether firms are allowed intra-marginal emissions without charge and 
the way revenues from auctioned allowances or carbon taxes are spent). In addition, the 
different policy tools have similar capabilities for mitigating potential adverse impacts on 
the international competitiveness of carbon-intensive domestic firms (depending on 
whether the policies are introduced upstream or downstream, and the extent to which 
provisions for border adjustments or output-based subsidies are included).  
 
However, they do find that along other dimensions, the alternatives perform differently. 
While no one approach dominates (with the ranking ultimately dependant on the 
emphasis one places on the different criteria) yet, they find that interestingly the carbon 

38 They also briefly touch upon the varying perspective amongst academic researchers e.g. Keohane (2009) 
and Stavins (2007) favor cap and trade, while Metcalf (2007) and the “Pigou Club” formed by Harvard’s 
Greg Mankiw prefer a carbon tax.  
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tax or hybrid seem to score better along the dimensions where the advantages or 
disadvantages are unambiguous. Interestingly, they further find that many of these 
advantages stem from the exogeneity of the allowance prices – which are likely to 
minimize expected policy errors in the face of uncertainties, prevent emissions price 
volatility, help avoid problematic interactions with other climate policies, and avoid large 
wealth transfers to oil exporting countries.  
 
In general, while the debate between the choice of instrument is likely to continue, 
nonetheless, they state that the virtues shared by all three instruments is that “each 
approach is a form of emissions pricing and, as such, each provides flexible and 
permanent incentives for emissions abatement that are absent in other forms of 
regulation. All three approaches have the potential to bring about greenhouse gas 
emissions reductions in a way that is cost-effective and equitable as well as 
environmentally successful” (Goulder and Schein, 2013). 
 
While the debate is likely to continue, almost all economic studies find a case for 
imposing immediate restraints on GHG emissions, with many researchers advocating for 
an immediate (and at least initially low) carbon tax even if the true SCC is unknown.  
However once again, the difficult and central question ultimately remains about how 
much and how fast to react to the threat of global warming and reduction in GHG 
emissions (Nordhaus, 2007).  
 
For example, Pindyck (2013) argues for an immediate carbon tax even if the true SCC is 
unknown. Based on the widely acknowledged fact that the true marginal social cost of 
burning a ton of carbon to society is greater that its marginal private cost, thereby 
imposing an externality on society which the consumer or firm should internalize, he 
advocates for imposing an immediate carbon tax on emissions (or adopting a similar 
policy such as cap-and-trade).  
 
He states, the only issue remains regarding the disagreement about the correct SCC due 
to certain fundamental challenges associated with its estimation. Subsequently there 
remains wide disagreement regarding the level of carbon pricing – with some on one end 
of the spectrum suggesting a small CO2 tax of about $10/ton CO2 (approx 10cents/gallon 
gasoline), arguing that increases in global temperatures will be moderate, in the distant 
future, and only with small economic impact. However, on the other end of the spectrum, 
others argue for immediate and stringent CO2 policy based on the possibility of dramatic 
temperature increases with catastrophic effects, thereby implying a large SCC of $100 - 
$200/ton CO2 (equivalent to approx $2/gallon gasoline).  
 
Pindyck (2013) outlines the fundamental reasons for this disagreement regarding the SCC 
as  based on the uncertainties surrounding climate change, i.e. uncertainties in the science 
of climate change, choice of discount rates (on which the IAMs are highly dependent), 
and valuation of economic impacts. In particular, he states that the uncertainty over the 
likelihood of alternative climate outcomes and their impact remain fundamental 
challenges. In addition, there are uncertainties surrounding the framework  to be used to 
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evaluate the benefits from GHG abatement, including the social welfare function and 
discount rate to value benefits occurring in the distant future. 
 
In addition, he argues that current IAMs remain unable to provide meaningful estimates 
of SCC, as they suffer from two major flaws: (i) The treatment of economic impact (e.g. 
loss functions relating temperature increases to reductions in GDP) is ad hoc, not based 
on economic theory, and has little predictive value. (ii) IAM simulations ignore the 
possibility of a catastrophic climate outcome, in terms of a very large economic effect – 
without which one cannot have meaningful estimates of the SCC.    
 
In general, the challenges in estimating the true SCC remain non-trivial (since we have 
no data to yield estimates of how likely catastrophic outcomes are), which is why most 
analysis is based on plausible events, but which ignore catastrophic outcomes which 
should be of concern. Which is why Pindyck (2013) asserts that $21/ton CO2 or $65/ton 
CO2 estimates may provide a reasonable estimate of “most likely outcomes” and 
plausible events, but fail to assess more extreme outcomes and capture the possibility of 
catastrophic climate outcomes - which might lead to a SCC as high as $100-$200/ton 
CO2.  
 
However, despite the uncertainties, his policy recommendation is not to delay action and 
impose and immediate carbon tax (or equivalent policy) by taking the $20/ton CO2 
Interagency Working Group estimate as an initial, rough and politically acceptable lower 
bound even if it may not be the true SCC39  – based on the fact that there is a social cost 
of carbon, which may be uncertain but is positive. And primarily because it is should be 
established that there is a social cost of carbon, which should be internalized in the prices 
that consumers and firms see and pay. He concludes that the carbon tax can later be 
increased or decreased accordingly as we obtain a better understanding of the 
uncertainties surrounding of climate change and its impacts.   
 
Similarly, Baumol & Oates (1971) argue for immediate carbon pricing and acceptability 
standards despite not knowing optimal SCC level, based on a similar theoretic 
justification of  the regulation of externalities by imposing unit taxes (or subsidies) to 
control emissions externalities40, as the market will in general  not generate appropriate 
levels of outputs where market prices fail to reflect the social damages/benefits associated 
with certain activities.   
 
However they acknowledge the practical challenges and inability to measure the marginal 
social damage associated with this approach. As with most authors, they point out that we 
do not know how to calculate the ideal tax or subsidy levels in practice. Subsequently 
they advocate the idea of establishing a practical substitute approach, representing a close 
approximation which may not results in an optimal allocation of resources, but does 

39 Or push for a substantial tax that would lead to a large reduction in emissions on the grounds that we 
need an “insurance policy” against a possible catastrophic outcome. 
40 By equating the tax on emissions activities equal to its marginal social cost. 
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possesses some important optimality qualities while avoiding having to resort to direct 
controls.41  
 
As a practical solution, they propose setting a set of environmental quality standards (i.e. 
admittedly arbitrary and subjective acceptability standards), followed by the imposition 
of taxes on related emissions sufficient to attain these standards (rather than taxes based 
on the unknown value of marginal net damages). This could be followed by an iterative 
adjustment in tax rates, such that with experience, appropriate tax levels for the 
achievement of a target reduction in pollution could be obtained (with the hope that this 
would be a convergent, iterative process – however they acknowledge that it is unclear 
whether this sequence would in fact converge toward the optimal taxes and resource 
allocation patterns). While this would not lead to Pareto efficient levels of the relevant 
activities and allocation of resources, it would be the least-cost method to realize the 
specified targets (rather than e.g. the optimal level of pollution) despite the arbitrary 
character of the acceptability standards selected. 
 
In an international context, Nordhaus (2007) advocates for internationally harmonized 
carbon taxes (HCT) as an approach to help countries coordinate their policies to slow 
global warming,  suggesting that price-type approaches such as HCTs are more effective 
and efficient instruments for coordinating policies and slowing global warming, than 
quantity approaches like those found in the Kyoto Protocol. He performs a comparison of 
price and quantity approaches  based on the  relationship to ultimate economic and 
environmental targets, performance under uncertainty, volatility of induced carbon prices, 
potential for corruption, and ease of implementation. And he  concludes that price-type 
approaches such as carbon taxes have major advantages for slowing global warming - 
while acknowledging that this approach is unfamiliar in international environmental 
agreements, that taxes are unpopular, and that they don’t impose explicit limits on the 
GHG emissions growth or concentrations.  
 
While identifying the fundamental obstacles that any international climate change regime 
faces, including the distribution of emissions reductions across countries  and the 
participation of low income countries - he focuses on the most crucial one as being the 
question of the ‘‘optimal’’ level of emissions reductions42. Consistent with the previous 
authors, he states that this is undoubtedly the most difficult and controversial question in 
the economics of global warming, and that any estimate of the efficient carbon tax is 
unlikely to capture all the nonmarket aspects of global warming, the problems of 
uncertainty and risk aversion, as well as the potential for ‘‘dangerous interferences’’ with 
many global processes.  
 
However, he strongly advocates for a HCT as it is a recognition that countries care about 
economic development and the future costs of global warming.  Regarding the 
appropriate level of carbon pricing, he cites the relatively low current efficient market 
price of carbon found in the RICE model - which he states was one of the major 

41 And the associated inefficiencies associated with direct controls, including real higher enforcement costs. 
42 I.e. the level and trajectory of emissions reduction 
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conclusions in a review of IAMs, namely that modest controls are generally optimal 
(Kelly and Kolstad, 1999). And he advocates that the tax start relatively low and then rise 
steadily over time, i.e. that countries would set market penalties on GHG emissions at 
levels that are equalized across different regions and industries. And that the tax would 
start relatively low and then, unless the outlook changes for better or worse, rise steadily 
over time to reflect the increasing prospective damages from global warming.43  
 
While most studies advocate for an (at least initially) low carbon tax, the UK 
Government’s Stern Review (2007) has a strikingly different conclusion from 
mainstream economic models, and argues for urgent, extreme and immediate reductions 
in GHG emissions on the basis that damages from climate change are large – resulting in 
the high end of SCC estimates of $310 per ton of carbon. Nordhaus (2007) however calls 
the review into question and finds that this very unambiguous and radical policy 
recommendation depends decisively on assumption of a near zero discount rate combined 
with a specific utility function which is not robust to the substitution of assumptions.  
 
In an analysis of the Stern Review on the Economics of Climate Change Nordhaus (2007) 
maintains that “it is a simple economic insight…that it is critical to have a harmonized 
carbon tax or the equivalent both to provide incentives to individual firms and households 
and to stimulate research and development in low-carbon technologies…..And that 
carbon prices must be raised to transmit the social costs of GHG emissions to the 
everyday decisions of billions of firms and people.” However, he states the crucial 
question remains regarding how much and how fast we should react to the threat of 
global warming, and that there is a wide disparity in estimates with the Stern Review’s 
radical proposal of SCC being at the high end. 
 
He calls the fundamental assumptions of the Stern Review into question and finds that the 
Review’s very low discount rates lie at the heart of the striking results and the need for 
immediate actions to reduce GHG emissions sharply. Combined with other assumptions, 
this magnifies impacts in the distant future and rationalizes deep cuts in emissions and 
consumption.  
 
However, substituting these assumptions with more conventional ones used in other 
analyses, he states that the Review’s conclusions disappear, resulting in the familiar 
climate-policy ramp in which policies to slow global warming increasingly tighten over 
time. A climate- policy ramp with modest rates of emissions reductions in the near term, 
followed by sharp reductions in the medium and long term. However, with the exact mix 
and timing of emissions reductions depending upon details of costs, damages, and the 
extent to which climate change and damages are nonlinear and irreversible.44 

43 “Because carbon pricing would be equalized across countries, the approach would be spatially efficient 
among those countries that have a harmonized set of taxes. If the carbon tax trajectory follows the rules for 
‘‘when efficiency,’’ it would also satisfy inter-temporal efficiency” (Nordhaus, 2007). 
44 “The logic of the climate-policy ramp is straightforward. In a world where capital is productive, the 
highest-return investments today are primarily in tangible, technological, and human capital, including 
research and development on low-carbon technologies. In the coming decades, damages are predicted to 
rise relative to output. As that occurs, it becomes efficient to shift investments toward more intensive 
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Despite the Stern Review, Nordhaus (2007) finds that the central and fundamental 
questions regarding the economics of climate change and environmental policy still 
remain unanswered - namely how much and how fast to react to the threat of global 
warming, and how costly it will be. 
 
It is in this context that we examine how effective reasonable and plausible levels of 
carbon pricing, as suggested by the general literature, may be in reducing emissions in a 
practical sense. This will be driven by three factors: (i) A reduction in demand, which 
will depend crucially on elasticities. (ii) Technology adoption, especially considering the 
question of the effectiveness of carbon pricing during early stages of technological 
innovation. (iii) CO2 effectiveness in inducing technological change.  
 
Firstly, the price elasticity of demand for e.g. oil will determine how effective a 
reasonably priced carbon tax will be in reducing emissions.  With a low price elasticity 
any moderately priced carbon tax will not have much of an impact on demand, and is not 
going to be an effective policy for reducing carbon emissions.   
 
As observed by Ozimek (2011), estimates of price elasticities vary, however Davis and 
Killian (2011) state that even under the largest plausible estimates, tax increases of the 
magnitude that are being discussed will have only a moderate short-run impact on total 
US gasoline consumption and carbon emissions based on their estimates. Long-run 
elasticities may be larger, but standard econometric models based on historical data do 
not allow the prediction of such long-run effects45. 
 
Estimates vary, and on the low end a recent IMF study (2011) estimated a long-run price 
elasticity of oil demand as -0.035 – which is lower than found in the results of several 
literature reviews of oil and gasoline price elasticities as shown by Hamilton (2008) 
(table 3.1). 
 

emissions reductions.  The exact mix and timing of emissions reductions depend upon details of costs, 
damages, and the extent to which climate change and damages are nonlinear and irreversible” (Nordhaus, 
2007). 
45 Similarly, The International Handbook on the Economics of Energy states that “The past is not 
necessarily a good guide to the future in this area, and it is possible that the very long-run response to price 
changes may exceed those found in empirical studies that from relatively short time periods.”  
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Table 3.1 - Review of Oil and Gasoline Price Elasticities 

Source: Hamilton (2008) 
 
 
 
However, several recent studies contend that the price elasticity of demand has decreased 
in the past decade, including a study by Hughes, Knittel, and Sperling (2008) who find 
short-run gas price elasticity estimates of -0.034 to -0.077 for 2001-2006 compared to the 
much larger estimates of -0.21 to -0.34 for 1975-1980. Notably, while these recent 
estimates may be larger than the IMF numbers, they are nevertheless low.   
 
On a technical note, while the evidence does seem to suggest that more recent estimates 
are better than earlier ones, Davis and Killian (2011) state that that they may still 
underestimate long run elasticities and should be treated with caution, highlighting 
several challenges associated with the measurement of the average price elasticity: (i) 
The response of demand to price changes may be asymmetric, with price increases 
causing a larger response to demand than price decreases – since price increases may be 
more likely to cause shifts to newer, more energy efficient technologies while price 
decreases are unlikely to undo such shifts. This would result in estimates of the average 
price elasticity to be a downward biased estimate for the response to price increases. (ii) 
The estimates shown are for the price elasticity of demand, and not the tax elasticity of 
demand, for which the consumption response is likely to be more persistent and may 
induce a larger behavioral response. (iii) Difficulties in estimation due to e.g. joint 
determination of price and quantity demanded such that single equation or panel data 
methods (like in the IMF estimates) may bias estimates towards zero. (iv) The sensitivity 
of the elasticity estimates to econometric misspecification. They illustrate this by 
examining U.S. state level demand for gasoline to demonstrate how sensitive elasticity 
estimates are to econometric misspecification, and derive estimates of the elasticity from 
-0.10 (single equation model) to -0.19 (panel data model) and lastly -0.46 (using changes 
in state level gas taxes as an instrument) - illustrating considerable variation in estimates. 
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Nonetheless they conclude that despite their results – even under the largest plausible 
estimates,  tax increases of the magnitude that are being discussed would have only a 
moderate short-run impact on total US gasoline consumption and carbon emissions based 
on their estimates. 
 
Secondly, the stage of technological innovation and subsequent technology readiness will 
determine how effective a reasonably priced carbon tax will be in encouraging clean 
technology adoption and emissions. With many clean technologies currently not 
commercially viable, a moderately/reasonably priced carbon tax may not have much of 
an impact on technology adoption and may not be an effective policy for reducing carbon 
emissions.  
 
A recent technology adoption study by Firestone and Marnay (2006) states that a carbon 
tax greater than $500/ton Carbon (equivalent to $136/ton CO2) would be required to 
incent significant adoption of carbon-free renewable energy based on the current state of 
technology. Using a Distributed Energy Resources (DER) Customer Adoption Model in 
which they simulate technology adoption, costs, and carbon emissions, they examine the 
question of the choice of economically optimal DER technologies for US commercial 
buildings across different cities, under a carbon tax.  
 
They simulate the technology adoption of DER, which include a range of energy 
conversion and storage technologies for improved carbon efficiency, including combined 
heat and power (CHP), small-scale power generation (e.g. solar technologies),  thermal 
and electrical storage (e.g. batteries and thermal tanks), and thermally activated cooling - 
all of which can reduce the carbon-intensity of meeting end-use energy loads.  
 
The output of their model under varying carbon tax scenarios includes optimal DER 
investment and technology adoption, optimal operating schedule, electricity and natural 
gas consumption and carbon emissions attributed to energy consumption. The results of 
their simulation indicate that carbon taxes have little effect on investment behavior and 
almost none on carbon emissions in SF, while results in Boston indicate that a realistic 
carbon tax level ($100/ton Carbon) incents less than one percent carbon reduction. 
Overall, they conclude that a realistic carbon tax ($100/ton Carbon equivalent to 
$27.25/ton CO2) is too small to incent significant carbon reducing effects on 
economically optimal DER adoption. And that in general, a carbon tax greater that 
$500/ton Carbon  (equivalent to $136/ton CO2) would be required to incent significant 
adoption of carbon free renewable energy.    
 
Similarly, Torani, Rausser, and Zilberman (2014) examine the question of how to 
transition towards a meaningful percentage of solar PV energy in a sustainable manner, 
and which policies are most effective in accelerating adoption of solar PV technologies. 
They develop a stochastic dynamic real options model of the adoption of solar PV in the 
residential and commercial sector, evaluating the threshold and timing of the consumer’s 
optimal investment decision given two sources of uncertainty, and obtain a cumulative 
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likelihood and timing of substitution amongst energy resources and towards solar under 
plausible rates of technological change, electricity prices, subsidies and carbon taxes.  
 
Based on their specification, their results indicate that there may be a displacement of 
incumbent technologies, and a widespread shift towards solar PV in the residential and 
commercial sector in under 30 years. However, this can occur independent of 
downstream incentives and carbon pricing policies (at $21/ton CO2, $65/ton CO2 and 
$150/ton CO2) – which have a decidedly modest impact in accelerating adoption, at least 
at levels up to $150/ton CO2 and may not be an effective part of climate policy in this 
regard46.  
 
Instead, their results demonstrate that further technological change is the crucial 
determinant and main driver of adoption, outweighing the effect of subsidies and taxes (at 
levels up to $150/ton CO2). The results demonstrate that R&D support and further 
technological change is the crucial determinant in accelerating widespread adoption of 
solar PV - suggesting that subsidies and taxes don’t make a substantial difference in a 
technology that’s not commercially viable, while research does. This further suggests that 
optimal policies may change over time, however current continued R&D support and 
technological advancement is the crucial determinant and main driver of a widespread 
transition to solar and plausibly other backstop technologies – and that it should play an 
increased role in climate policy.   
 
They state that their results do not imply that carbon pricing shouldn’t play a role in 
climate policy in general. Carbon pricing may be effective in reducing emissions and 
encouraging the transition towards other clean technologies – however it has a decidedly 
modest impact in accelerating adoption of solar PV at levels up to $150/ton CO2. 
Suggesting, that if a widespread transition to solar energy is likely to happen in this 
sector, it will be because of R&D and technological advancement.  
 
Similarly, Williams et al. (2012) examine the technology and policy path needed to 
achieve deep GHG emissions cuts by 2050 and find that widespread electrification of 
transportation and other sectors will be required, and argue for an expanded role for 
aggressive R&D policies, as well the need for technology and policies to be deployed in a 
coordinated manner such that emission reduction benefits are achieved at an acceptable 
cost.  
 
In their study they conduct modeling of the physical energy and economic transformation 
to obtain a realistic technology and policy roadmap required to meet the aggressive 
targets that certain states and countries have adopted for deep reductions in GHG 
emissions by 2050.  
 

46 Further, their results indicate that subsidies and taxes become increasingly ineffective with higher rates of 
technological change. 
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Specifically, they analyze the infrastructure and technology path required to meet 
California’s goal of an 80% reduction below 1990 levels47, and the specific changes in 
infrastructure, resources, technology, cost, and governance required for energy transition 
and to decarbonize CA economy. Crucially, they attempt to bridge the gap between 
planning for shallower, near-term GHG reductions, based entirely on existing 
commercialized technology, and deeper, long-term GHG reductions, which will depend 
substantially on technologies that are not yet commercialized48 – based on learning 
curves comparable to those in other studies.  
 
They find that technically feasible levels of energy efficiency and decarbonized energy 
supply alone will not be sufficient to achieve the aforementioned targets, and that 
widespread electrification of transportation and other sectors will be required to do so. 
Decarbonized electricity will play a pivotal role and become the dominant form of energy 
supply - requiring a transformation that demands technologies that are not yet 
commercialized, as well as coordination of investment, technology development, 
infrastructure deployment and policy roadmap. 
  
Their results indicate three main energy system transformations necessary to meet the 
target of reducing GHG emissions 80% below 1990 levels by 2050: (i) End use EE must 
be improved aggressively.  (ii) Electricity supply has to be nearly decarbonized, with 
renewable energy, nuclear, and fossil fuel with carbon capture and storage (CCS) each 
having the potential to become the principal long-term electricity resource in CA - 
however with all currently suffering from technical limitations and high costs. (iii) Most 
existing direct fuel uses (e.g., gasoline in cars) have to be electrified. There is no 
alternative to widespread switching of direct fuel uses to electricity in order to achieve 
the reduction target. They state that without electrification, the other measures combined 
would produce at best 2050 emissions of about 50% below the 1990 level. Additionally, 
the largest share of GHG reductions from electrification would need to come from the 
transportation sector. This result is corroborated by a recent report on achieving 80% 
GHG reductions in the EU which found that similar transformations were required, 
including electrification of transportation and buildings.    
 
With the pivotal role of electricity as the dominant component of the 2050 energy 
economy, the cost of decarbonized electricity becomes a paramount economic issue. And 
they estimate that generation mixes dominated by renewable energy, nuclear, and CCS, 
in the absence of cost breakthroughs, will raise the present average cost of electricity 
generation by a factor of about 2.  

47  California’s Assembly Bill 32 (AB32) requires the state to reduce GHG emissions to 1990 levels by 
2020, which is a reduction of 30% relative to business-as-usual assumptions. California has also set a target 
of reducing 2050 emissions 80% below the 1990 level, consistent with an Intergovernmental Panel on 
Climate Change (IPCC) emissions trajectory that would stabilize atmospheric GHG concentrations at 450 
parts per million carbon dioxide equivalent (CO2e) and reduce the likelihood of dangerous anthropogenic 
interference with the climate (Williams et al., 2012). 
48 With technology penetration levels within the range of technological feasibility for the United States 
suggested by recent assessments, i.e. they did not include technologies expected to be far from 
commercialization in the next few decades, such as fusion based electricity. 
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Subsequently their two main policy recommendations are: (i) It is crucial that these 
technologies and systems are commercially ready. Minimizing the cost of decarbonized 
generation should be a key policy objective, with some estimates indicating that 
aggressive R&D policies could reduce the cost of low-carbon generation in the United 
States from 2020 to 2050 by about 40% or $1.5 trillion. (ii) Technology and policies must 
be deployed in a coordinated manner such that the emission reduction benefits are 
achieved at an acceptable cost. E.g. “switching from fuels to electricity before the grid is 
substantially decarbonized negates the emissions benefits of electrification; large-scale 
deployment of electric vehicles without smart charging will reduce utility load factors 
and increase electricity costs; and without aggressive EE, the bulk requirements for 
decarbonized electricity would be doubled, making achievement of 2050 goals much 
more challenging. Thus the logical sequence of deployment for this transformation is EE 
first, followed by decarbonization of generation, followed by electrification of most 
direct uses of oil and gas.”  
 
They conclude that this transition crucially requires mobilizing investment and 
coordinating technology development and deployment on a very large scale over a very 
long time period. How best to achieve this currently a source of active debate regarding 
the roles of markets, government, carbon pricing, and R&D policy. But their policy 
recommendation regarding R&D funding, and technology and policy coordination and 
sequencing is pertinent, and raises the question of how best to enable the transition 
towards clean energy systems and which climate policy modalities will be most effective.   
 
Thirdly, some researchers make the case that carbon pricing is effective in encouraging 
technological innovation in addition to technology adoption. However in general, there is 
considerable uncertainty and disagreement regarding this issue, in addition to how the 
possibility of induced technological change may affect the optimal timing and extent of 
carbon emissions abatement and the optimal time path of carbon taxes.   
 
Some researchers have recently emphasized that CO2 policies and the rate of 
technological change are connected, in the sense that the price of carbon-based fuels 
affects incentives to invest in research and development (R & D) of alternative 
technologies. In addition, climate policies can affect the technology development through 
impacts on LBD to the extent that these policies affect producers' experience with 
alternative energy fuels or energy-conserving processes, they can influence the rate of 
advancement of knowledge. Thus, through impacts on patterns of both R & D spending 
and LBD, climate policy can affect technological innovation and change (Goulder and 
Mathai, 2000).  
 
However, other researchers have made the specific case that while pollution pricing may 
be effective in encouraging technology adoption it is not effective in encouraging 
technological innovation (Williams et al., 2012).  
 
Goulder and Parry (2008) state that achieving the aggressive goal of reducing GHG 
emissions by 80 percent below their 1990 levels by 2050 at reasonable cost will require 
more than substitution among known technological processes -  it will necessitate major 
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technological breakthroughs. Technological breakthroughs, which emissions control 
policies such as carbon pricing may be incapable of bringing about since they provide 
invention incentives only indirectly—by emissions pricing or by raising the costs of 
conventional, “dirty” production methods through direct regulation. In addition, the 
existence of additional market failures associated with technology innovation (e.g. the 
appropriability problem) implies that incentives for clean technology R&D will be 
inefficiently low, even if pollution externalities are appropriately priced.  
 
They find, that the theoretical and empirical literature comparing the efficiency of 
alternative environmental policy instruments in promoting the development of cleaner 
technologies (Jung et al., 1996; Fischer et al., 2003; Milliman and Prince, 1989) generally 
points towards the fact that no single instrument can effectively correct market failures 
from both emissions externalities and the knowledge appropriability problem – and that 
multiple market failures justify multiple instruments. Indeed, achieving a given emissions 
reduction through one instrument alone involves considerably higher costs than 
employing two instruments, and that e.g. imposing stiffer emissions prices than warranted 
by environmental externalities alone is an inefficient way to promote innovation (Fischer 
and Newell, 2008; Schneider and Goulder, 1997).49  
 
In general, the debate is likely to continue regarding how effective carbon pricing is in 
inducing technological change and innovation. And subsequently, how the potential of 
policy-induced technological change may impact the design of carbon-abatement 
policies, including the optimal timing and extent of carbon emissions abatement as well 
as the optimal time path of carbon taxes (Goulder and Mathai, 2000). 
 
 
 
3.5 Deployment Policies and Learning-By-Doing  
 
In general, there are strong arguments for technology innovation policies in addition to 
instruments aimed at curbing emissions. However, while most researchers agree that 
additional policies are warranted to support basic and applied research50, there is less 
agreement regarding the justification for policies intended to promote technology 
deployment. Crucially, we contend that deployment policies are justified, depending on 
the specific industries, processes, characteristics of the technology, stage of the 
technology innovation, LBD potential, and assumptions about consumer behavior.  
 
While investments in public R&D can initiate and support the development of new 
energy technologies, a focus on solely on publicly funded R&D and development efforts 

49 They state that this not only generates excessive short-term abatement, but it also fails to differentiate 
among technologies that may face very different market impediments. E.g. alternative automobile fuels and 
carbon capture and storage technologies might warrant relatively more support than other technologies, to 
the extent that there are network externalities associated with the new pipeline infrastructure required to 
transport fuels to gas stations, or emissions associated with underground storage sites.  
50 Although the specific instruments and level of support are less clear. 
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without emphasizing the role of deployment efforts and LBD is incomplete (Sagar et al., 
2006). It is widely acknowledged that the process of technical change involves LBD and 
the improvement of performance over time which is a product of experience which arises 
from cumulative installed capacity (Arrow, 1962), and without which one often can’t 
progress.    
 
Consequently, deployment efforts can play a crucial role in the commercialization of new 
energy technologies. They can help address factors that hinder widespread 
implementation of technologies, including cost, infrastructure needs, market barriers, 
information and financing constraints (IEA, 2000; IEA, 2003; Sagar, 2004), requiring 
public sector responses to encourage early adoption of new technologies through targeted 
policy incentives to help overcome these barriers. Public sector responses and effective 
early deployment efforts can be achieved through subsidies to favorable technologies, 
technology based and performance based standards, mandates, government procurement 
programs, and some argue even pollution charges and cap and trade. Notably, the relative 
emphasis of the various approaches may depend in part on the characteristics of the 
technology itself.  
 
In general, it is held that LBD justifies commercialization subsidies if and only if external 
economies and spillovers arise from private experience (Kemp, 1964). In addition, 
Goulder and Parry (2008) find that policies to promote clean technology development 
and deployment are justified on efficiency grounds to the extent that they can address 
market failures beyond the pollution externality including: (i) An appropriability market 
failure which could arise in connection with the deployment of new technologies. 
Specifically, early adopters of a new technology could achieve lower production costs for 
the new technology over time – which would award external benefits to later adopters of 
the technology and might justify short-term assistance for adopting the new technology. 
However, as the potential for deployment-related knowledge spillovers may vary 
depending on the technology, deployment policies would have to be evaluated along this 
dimension to be justified. (ii) A market failure relating to consumer valuation of energy-
efficiency improvements, which consumers may systematically undervalue.  They state 
that possible evidence for this is the tendency of consumers to require very short payback 
periods for durable energy-using equipment – effectively applying discount rates 
significantly above what might be considered the social discount rate (Marglin, 1963). 
Hence implying, that from a social welfare perspective, consumers tend to discount the 
future too heavily in their choices of consumer durables (or more broadly in their saving 
decisions), thus providing a rationale for government support.  
 
However any discussion of deployment policies must include mention of the broader 
need to deconstruct and improve our understanding of the LBD mechanism itself in order 
to enhance learning gains. Learning is not an automatic byproduct of cumulative installed 
capacity, and we do not yet have a clear understanding what leads to experience and 
learning gains. In this context, it is crucial that we both increase our understanding of the 
learning process as well as the integration between the complementary stages of R&D 
and LBD and the feedback loops between them – which may help in technology 
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refinement and lead to more improvements and breakthroughs as both are essential 
elements of technological change.  
 
In addition, the timing, sequencing and duration of appropriate policies is a pertinent 
issue. Given that investments for both R&D and learning are needed for technological 
change, balancing R&D and deployment investments, and the optimal allocation between 
the two becomes a pertinent issue, which we contend depends in part on the 
characteristics of the technology (Sagar et al., 2006; Torani, Rausser, and Zilberman, 
2014). Optimal utilization may require a different split between R&D and deployment 
(LBD) policies for different technologies, based on the estimated and potential gains 
achievable through R&D efforts as well as through deployment/LBD.51 We emphasize 
that this depends crucially on the characteristics of the technology, and the stage it is in - 
and that these considerations should guide energy policy. Not surprisingly, we contend 
that the technology under consideration mostly determines how and when to allocate 
available funds. E.g. Sagar et al. (2006) contend that while fuel cells are advanced 
enough that they should be subject to both types of investment, a technology like fusion 
energy (with an operable  commercial prototype likely half a century away) still requires 
only R&D investments.  
 
Notably, we contend that the promotion of the deployment of emerging energy 
technologies has a crucial role to play in the process of learning and to help overcome 
initial cost and infrastructure barriers.  If the innovation process involves LBD potential, 
unless firms have a sufficient volume of experience or a significant client base they will 
not invest in a technology, which will deter learning. Hence deployment policies, and 
taxes and subsidies are not a value by themselves, but provide an incentive for adoption 
that enhances learning and are justified provided a LBD potential exists. However we 
contend that the key to deployment subsidies is that they must be short lived, and 
provided for a limited amount of time to be effective, otherwise they won’t prevent delay.  
 
Preventing delay is a crucial element of deployment policies, therefore any subsidy has to 
be short lived. Otherwise, because of rational expectations, people will delay investment 
and adoption of the nascent technology, i.e. if a consumer knows that fuel cell cars will 
become cheaper (due to technological change), they will delay the investment and wait. 
Hence, in some regard, preventing delay is a public good and the government’s role will 
remain crucial.   
 
This dynamic is illustrated in Torani, Rausser, Zilberman (2014), in which they develop a 
real options model of the optimal threshold and timing of the consumer’s adoption of 
solar PV in the residential and commercial sector given uncertainty in both the price of 
electricity and the cost of solar. Although their study relates specifically to solar PV, they 

51 And while R&D typically precedes deployment, it may be justified to undertake them simultaneously or 
iteratively to exploit the possible interaction between the two – depending on the technology under 
consideration and its R&D and LBD potential.   
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provide a general framework to evaluate investments in competing alternative renewable 
energy technologies.  
 
ROA is fundamentally a stochastic dynamic framework analyzing investment decisions 
in the presence of uncertainty of the economic environment, irreversibility of the 
investment decision, and most importantly, the ability to postpone the investment 
decision (Dixit and Pindyck, 1994). While traditional static “now or never” net present 
value (NPV) breakeven models of investment have resulted in predictions that have been 
observed to overestimate investment and adoption - a key result of the real options 
framework is that in light of these three factors, the investor will require a significant 
excess return above the expected present value before making the investment.  
 
Specifically, while a general result of the real options model has been to illustrate the 
effect of increased uncertainty on delaying investments, they extend the analysis to 
illustrate a significant dynamic that emerges - which provides further insight into the 
differing paradigms of the NPV and ROA models of investment. Namely, that a high rate 
of technological innovation/change in the new technology delays adoption in ROA if the 
consumer has rational price expectations - resulting in an increase the excess return 
required by the consumer before she is willing to give up the option to invest, and 
commit to the investment.  
 
This is illustrated in figure 3.3 in terms of the k* threshold ratio, indicating that the 
consumer will adopt later, at a higher price of electricity for a given cost of solar, with a 
higher rate of technological innovation i.e. she demands a higher premium before 
adopting the nascent technology.  
 
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3: k* Separating Region of Adoption and Waiting  

𝑘𝑘∗ status quo  tech change                     

 

𝑘𝑘∗ increased tech change                        

 

WAIT 

ADOPT P 

 

 

 

C C 

 

 66 



  

This is a counterintuitive result of increased funding, R&D productivity and 
technological change, which are ultimately intended to promote adoption. However it is 
entirely intuitive - if the rate of cost decline increases, waiting instantly becomes more 
valuable and giving up the option to wait becomes more costly, hence the user will 
require a higher premium to give up this option. This finding is entirely consistent with 
the energy efficiency gap observed in consumer behavior.  
 
Intuitively, this result signifies that the consumer will postpone adoption to reap the 
benefits of further technological change in e.g. solar as long as certain conditions apply52.  
By comparison, the NPV threshold of investment remains unchanged irrespective of the 
rate of technological change, since it is a static “now or never” proposition and doesn’t 
consider the option of postponing the investment decision waiting for further 
technological change in the nascent technology before making the investment.  
In other words, because of the expectation of further technological change and future cost 
reductions, consumers will delay adoption of the nascent technology.  
 
This is entirely consistent with the energy paradox, and the inclination of households and 
firms to require very high internal rates of return in order to make energy saving 
investments. Ansar and Sparks (2009) use a stochastic OV model (focusing on the 
irreversibility, the uncertainty of their future payoff streams, and the investor’s 
anticipation of future technological advances, and the ability to delay the investment 
decision) and similarly find that delay allows the potential investor to cash in on future 
experience-curve effects which is a fundamental reason why households and firms delay 
making energy saving investments until internal rates of return exceed values of 50% and 
higher, consistent with observations in the economics literature. 
 
In terms of the implications on deployment policies, this dynamic implies that if given a 
permanent subsidy, people will delay adoption because of the expectation of 
technological change and cost reductions, and subsidies will not be as effective in 
encouraging adoption, deployment and learning. However, a limited time subsidy which 
is credible can counter the Dixit and Pindyck effect and the delay incentive. We contend 
that to be effective, deployment subsidies which reduce the initial cost need to be short 
lived and tend to expire – in order to aim to counter the Dixit Pindyk effect.  
 
Alternatively, one could avert this delay dynamic with a high commercialization subsidy 
or a high tax. However in the case of Solar PV, at its current state of technology and cost, 
Torani, Rausser, and Zilberman (2014) show that both subsidies and taxes would need to 
be higher than reasonable/plausible levels discussed in the literature (e.g. $150/ton CO2) 
to be effective at this stage. This is due to the expectation of future technological 
advances and cost reductions, the Dixit and Pindyck delay factor, as well as the fact that 

52  Namely that it isn’t prohibitively expensive to do so, i.e. as long as the price of electricity is not 
increasing at an increasing rate (in present value terms) while postponing the investment. One will 
postpone adoption if the price of electricity and cost of solar are both decreasing at a decreasing rate. 
Irrespective of the relative magnitudes of the rates of change and by virtue of their signs, the rate of decay 
of the cost of solar is greater than that of the price of electricity, in present value terms.  
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the technology is presently not commercially viable relative to traditional sources of 
electricity generation.   
 
Crucially, deployment subsidies are justified since they may provide an incentive for 
adoption that enhances learning – and they are justified if a LBD potential exists. 
However, to be effective, we contend that e.g. smart subsidies targeted to early adopters 
need to be offered for a limited amount of time and need to expire to aim to counter the 
Dixit &Pindyck delay effect. Conversely, if a limited LBD potential exists, then we 
contend that deployment subsidies have less justification – and that once again, it is 
crucial to understand the conditions under which deployment leads to learning for 
effective policy design, and to assess the LBD potential which will differ for each given 
technology. E.g. Nemet (2006) suggests that learning by doing only weakly explains 
changes in the most important factors influencing cost reductions in solar PV over the 
past 30 years, while Khanna and Chen (2014) attribute the decline in processing costs of 
US corn ethanol since 1983, in large part to LBD which they contend played an important 
role in reducing corn ethanol processing costs, exhibiting a learning rate of 0.25.  Once 
again, the processes underlying effective R&D and learning are not completely 
understood. However, both are essential elements in enabling technological change and 
should be used to guide energy policy.  
 
In addition, if the innovation process is a continuum, then R&D and LBD advances may 
exist at the same time with interactions and feedback between the two stages, in which 
case R&D subsidies and deployment subsidies may make sense simultaneously so as to 
exploit the possible interaction between the two. Once again, the technology under 
consideration will mostly determine how and when to allocate funds and direct policy – 
and evaluation of the stage of the technology and potential for LBD and R&D remains 
crucial.  
 
Balancing R&D and LBD investments is a pertinent issue, with a concrete tradeoff 
between allocating funds in one direction of the other. We contend that optimal allocation 
of public resources may require a different split between R&D and deployment for 
different technologies, based on the estimated gains achievable through R&D efforts as 
well as through deployment, what kind of technology, and the stage it is in.  
The appropriate emphasis and sequencing of R&D and learning investments is a pertinent 
issue. Additionally, we question the effectiveness of a carbon tax in encouraging 
technology adoption at early stages of a given technology, when the technology is not 
commercially viable as yet. Given the high cost of the new technology, we contend that 
CO2 taxes would have to be very high to be effective, with the concurrent impact on 
political feasibility and distributional effects  
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3.6 Conclusion  
 
This paper considers the question of how to transition to a meaningful percentage of 
renewable energy technologies in a sustainable way, and which policies are most 
effective in accelerating adoption. The central issue in this regard remains how best to 
enable technological change, and accelerate innovation and widespread adoption of new 
energy technologies and move towards a more sustainable energy system.  This raises the 
question of how best to assess the tradeoffs between alternate policy measures and 
crucially, how much and when to invest in which policy measure. The key question 
remains - what is the optimal allocation between differing policy measures, including the 
balance between R&D investments and downstream policy instruments across emerging 
renewable energy technologies?   
 
This paper emphasizes the role of technology features in policy design, which we find is 
noticeably absent from most studies evaluating and comparing policy instruments in 
environmental policy. Most discussions evaluating policy instruments do not consider the 
characteristic of the technologies in question - including the stage of technology 
innovation, and the optimal timing and sequencing of policies in this regard, which we 
contend will affect the impact of differing policy instruments.  
 
In this paper we emphasize that technology and policies must be deployed in a 
coordinated manner such that emission reduction benefits are achieved at an acceptable 
cost. We examine the stages of the technology innovation process and the role of policy 
incentives at every stage - including the timing, sequencing, and role of investments in 
public R&D, in deployment policies and LBD, and in CO2 taxes. 
 
Based on our analysis and results we find that there is a pressing need for the reallocation 
of public resources from consumer subsidies towards public R&D budgets in emerging 
energy technologies such as solar PV, and plausibly other backstop technologies. We 
argue for an expanded role of aggressive R&D policies and increased public R&D 
funding – and contend that there is an imbalance in resources allocated towards adoption 
and commercialization subsidies relative to R&D investments for a technology such as 
solar PV that is not commercially viable. We contend that increased and aggressive R&D 
investments will be the key policy initiative in enabling the transition towards clean 
energy technologies such as solar PV in a sustainable manner.  
 
While deployment policies and LBD are a crucial part of technical change, and they often 
play a key role in the large-scale uptake of new energy technologies - in general, learning 
is not an automatic byproduct of cumulative installed capacity, and should not be taken as 
such. The potential for LBD may fundamentally differ among technologies, and at 
different stages of a technology, and it is crucial that LBD potential is evaluate along with 
investments in deployment. Where deployment policies are justified, the appropriate 
timing and sequencing in the technology development stage is crucial. Investments in 
commercialization and deployment subsidies before sufficient R&D investments and 
breakthroughs have occurred will be ineffective and unsustainable, or alternatively will 
need to be very high to have any significant impact. (Torani, Rausser, and Zilberman, 
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2014). Widespread adoption and commercialization of emerging and unproven 
technologies and systems will be unlikely to occur unless sufficient major technological 
discoveries and improvements have taken place - which will need to be driven by 
appropriate and sufficient R&D investments. The logical sequence of policies 
necessitates first making sufficient investments and allocating resources towards R&D 
and the necessary technological discoveries, which can then be followed by downstream 
investments to enhance adoption, experience and LBD which may also feed back into the 
R&D process for further technological improvement and refinement (provided a LBD 
potential exists).  In general, the appropriate emphasis and sequencing of R&D and 
learning investments is a pertinent issue, and optimal timing and allocation between the 
two depends in part on the characteristics of the technology itself.  
 
It is in this context that we examine the effectiveness of a carbon tax in encouraging 
technology adoption at the early stages of an emerging renewable energy technology, 
while the technology is not commercially viable. While almost all economic studies find 
a case for imposing immediate restraints on GHG emissions, with many researchers 
advocating for an immediate, and at least initially low carbon tax, we find that reasonable 
and plausible levels of CO2 taxes may not be effective in encouraging technology 
adoption and reducing emissions while clean technologies are not commercially viable as 
yet. To be effective in encouraging technology adoption at an early stage of technological 
innovation, we contend that a large CO2 tax may be needed, far larger than suggested at 
reasonable levels – with significant implications on distributional effects and political 
feasibility.   
 
We contend that the stage of technological innovation and subsequent technology 
readiness will determine how effective a reasonably priced carbon tax will be in 
encouraging clean technology adoption and emissions. With many clean technologies 
currently not commercially viable, a reasonably priced carbon tax may not have much of 
an impact on technology adoption and may not be an effective policy for reducing carbon 
emissions.  
 
Once again we emphasize that technology and policies must be deployed in a coordinated 
manner such that the emission reduction benefits are achieved at an acceptable cost 
(Williams et al., 2012). Our results suggest that the first and most important stage does 
not lie in imposing CO2 taxes, but rather in investing in R&D and technological 
advancements. Once clean technologies are sufficiently ready, reasonably priced carbon 
taxes will bite to a larger extent and be more effective at plausible levels. Thus despite 
calls for immediate imposition of carbon taxes (at least at initially low levels) we contend 
that one plausible strategy would be either to introduce high CO2 taxes or to subsidize 
R&D first, followed by deployment and LBD policies, and then to impose reasonable 
carbon taxes – in which case scientific advances and technological changes would make 
CO2 emissions abatement less costly, and CO2 pricing would be effective at reasonable 
levels.  
 
Crucially, this points towards the fundamental issue that R&D is a pressing and necessary 
part of technological innovation and our energy transition, particularly in the early stages 
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of emerging technologies. While deployment and LBD further comprise an important 
part of technological change, balancing R&D and deployment investments, and the 
optimal timing and allocation between the two depends on the characteristics of the 
technology itself. Carbon pricing is justified, however the central question in this regard 
remains how much and how fast to react to the threat of global warming, and at what 
levels carbon pricing will be effective (Nordhaus).  
 
In general, we contend that an emphasis on technology features in policy design is 
crucial, since it will affect the impact and effectiveness of policy measures and will be 
critical in the transition towards more sustainable energy systems.  The technology under 
consideration should in part guide and inform energy policy, as it will affect the impact 
and effectiveness of differing policy measures, and will determine the logical sequence 
and timing of policies. However we find that these considerations are noticeably absent 
from most studies evaluating and comparing differing policy mechanisms.  
 
This paper illustrates the key role of the technology innovation cycle and changing 
optimal policies at every stage of the technology in the transition towards renewable 
energy technologies. We stress that optimal policies will change over time, driven 
primarily by the characteristics of the technology, and its stage in the innovation cycle – 
and that this will crucially determine the impact, gains and tradeoffs between alternate 
policy measures such as R&D policies, deployment policies, and carbon pricing policies.  
This analysis can be further extended by examining the role of mandates in the transition 
to renewable energy technologies, as well as the issues regarding introducing mandates 
too early when the technology isn’t available. Specifically, an examination of the effects 
and experiences with mandates with regard to first and second generation biofuels and 
other emerging renewable technologies should be evaluated in further research.  
 
Further, this analysis can be extended by a closer examination and better understanding 
of our current energy technology landscape and detailed technology features, including 
the characteristics of different technologies and their stage of development – which we 
contend should guide energy policy, and will affect the design of policies for differing 
technologies.  
 
Lastly, future research should examine the fact that we do not yet have a clear 
understanding of the R&D and LBD processes, what leads to R&D and LBD gains, and 
how to maximize these processes and potential. There is a crucial need to pay greater 
attention to these issues, as well as acquiring a greater understanding of these processes 
and determining their potential, limitations, and gains – which is a crucial factor in 
informing policy design and should be addressed in future research.  
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Chapter 4  
 
 

Managing R&D Risk in Renewable Energy: 
Biofuels vs. Alternate Technologies* 

 
 
  

 
  

 
 
 

 
4.1 Introduction 
 
Reaching the US federal government’s renewable energy milestones (Table 4.1) will 
require efficient coordination of public and private investments. Three sets of 
governmental policy instruments are used to encourage private investment in renewable 
energy: upstream R&D investments, downstream market incentives, and downstream 
non-market incentives. Upstream investments in renewable energy R&D actively involve 
the government in the research process with the private sector. Downstream market 
incentives (i.e., mandates, subsidies, tax credits) are expected to lead to additional 
commercial developments. Downstream non-market instruments (carbon taxes) create 
incentives for renewable energy production by pricing externalities resulting from 
utilization of exhaustible resources. Each of these policy instruments is designed to alter 
the incentives for the use of renewable energy by making it more competitive with 
exhaustible sources of energy. 
 
Historically, the economic viability of renewable energy has been determined by the 
prices of crude oil and natural gas. It is useful to recall Santayana’s maxim “those who 
cannot remember the past are condemned to repeat it” when considering the rapid 
expansion of solar energy in the late 1970’s which was brought to a halt when crude oil 
prices plummeted to slightly over $10 per barrel in the mid-1980s.  To eliminate this 
downside risk, private investors in renewable energy have actively engaged in lobbying 
for public funds (Rausser and Goodhue, 2002). For example, the coal industry spent 
millions in recent years in a lobbying effort to for a subsidization program conditioned 
upon crude oil prices with the following framework: if oil prices fall below $40 per 
barrel, the federal government would subsidize coal based liquid fuel plants, while if oil 

* Co-authored with Gordon Rausser and Reid Stevens. The authors gratefully acknowledge financial 
support from the Energy Biosciences Institute at UC Berkeley.  
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prices climbed above $80, liquefied coal companies would return a surcharge to the 
government.   
 
It is unlikely that the government will be able to coordinate renewable energy 
investments efficiently in the face of these political economic efforts without a clear, ex-
ante investment plan. To date, the government lacks coordinated support of renewable 
energy technologies across upstream R&D investments and downstream (market and 
non-market) policy instruments.  Each government agency’s approach to promoting 
renewable energy is compartmentalized. The DOE and the USDA both use upstream 
R&D investments, while much of federal government legislation focuses on downstream 
market incentives. The problem is not unique to the US; other the major players in 
renewable energy (Brazil, China, and the EU) find themselves with similar uncoordinated 
strategies.   
 
Without an objective, ex-ante guide for renewable energy investment, governments are 
likely to promote technologies based on the effectiveness of political economic efforts. 
This paper will provide an analysis of renewable energy technologies using portfolio 
analysis under risk and uncertainty. Though we restrict our analysis to the US renewable 
energy market, our findings are applicable to any countries that are using similar 
approaches to R&D investment and downstream incentives.  
 
 
4.2 Current R&D Renewable Energy Landscape 
 
R&D funding drives innovation in renewable energy. Both the federal government and 
the private sector are stakeholders in this process and both have an interest in successfully 
generating innovations that lead to enhanced productivity while decreasing damage to the 
environment. 
 
4.2.1 Public Sector 
 
The DOE’s renewable energy milestones targets (Table 4.1) suggest the federal 
government places a positive probability on breakthroughs in renewable energy 
technologies. Over the past twenty years, spending on energy R&D has remained more or 
less constant, whereas the share of renewable energy R&D has increased over the past ten 
years (Figure 4.1). 
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 Cellulosic Ethanol cellulosic ethanol cost competitive with conventional ethanol by 2012 

 
 

replace 30% of today’s gasoline in 2030 with biofuels 
 

 Hydrogen industry commercialization possible by 2015 
 

 
fuel cell vehicles in the showroom and hydrogen at fueling stations by 2020 

 
 

Solar reduce solar costs to grid parity in all U.S. markets by 2015 
 

 Wind 
reduce cost of energy from large systems to 3 cents\kwh by 2010 

 
 

greatly expanded deployment of distributed wind energy by 2016 
 

 
large-scale offshore wind and hydrogen production from wind by 2020 

 
 

Table 4.1: DOE Renewable Energy Milestones 
  

 
 

 
 

Figure 4.1: Federal Energy R&D ($ Millions) 
Source: Departmental Budget Summaries 

 
 
 

Figure 4.2 and Table 4.2 present a more detailed breakdown of federal renewable energy 
R&D. Both the DOE and USDA have bioenergy R&D programs. At the DOE, spending 
on the biomass and biorefinery systems R&D program has been increasing steadily since 
2004 in an attempt to reach the program’s goal of making cellulosic ethanol cost 
competitive by 2012.  
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Figure 4.2: Federal Renewable Energy R&D, Selected Technologies ($M) 
Source: IEA R&D Database 

 
 

 

     
     
 

  USDA DOE 
 

 
2002 5 92 

 
 

2003 14 86 
 

 
2004 14 69 

 
 

2005 14 89 
 

 
2006 12 90 

 
 

2007 12 150 
 

 
2008 2 198 

 
 

2009 20 214 
 

 
2010 28 220 

 

 

Source: Departmental Budget 
Summaries     

 
 

Table 4.2: DOE and USDA Biomass R&D ($M) 
 

      
 

Federal funds also support renewable energy through channels other than R&D. The 
Energy Independence and Security Act of 2007 amends the Renewable Fuels Standard to 
require 36 billion gallons of renewable fuels consumption in the U.S. by 2022, up from 9 
billion gallons in 2008. The Act also authorizes $500 million annually from 2008-2015 
for the production of advanced biofuels that yield at least an 80 percent reduction in 
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lifecycle green-house gas (GHG) emissions (RFA, 2008a). More recently, the new Farm 
Bill has approved a $1.01 per gallon credit for cellulosic biofuels, whereas the $0.51 per 
gallon subsidy for conventional ethanol producers has been reduced somewhat to $0.45 
per gallon. Facilities producing energy from wind, solar, geothermal or certain types of 
biomass are also eligible for a 1.5 cent per kWh tax credit for the first ten years of 
operation. The ethanol industry also benefits from the government’s ad valorem tariff of 
2.5% on ethanol imports, on top of a 54 cent per gallon import charge (RFA, 2008b). 
 
 
4.2.2 Private Sector 
 
Increasing levels of public sector spending have contributed to a favorable environment 
for new biofuels investments and downstream incentives. Oil companies are amongst the 
biggest investors in biofuels. British Petroleum has stated they foresee hydrogen as the 
likely ‘fuel of the future’ (Hargreaves, 2008), even though they are also investing 
significant sums in cellulosic ethanol with DuPont and in public-private R&D efforts 
(EBI). Chevron has invested in multiple solar energy projects, a hybrid solar/fuel cell 
power plant, stationary fuel cell power plants and a biodiesel power plant (Chevron, 
2008). Shell’s renewable energy segment is investing in a global network of hydrogen 
refueling stations, next-generation thin-film photovoltaic cells, and an algal biodiesel 
demonstration project (Fortson, 2007). In mid-2009, Exxon Mobil announced a $600 
million investment in algae based biofuels with Synthetic Genomics.  
 
Venture capital (VC) investment in renewable energy (Figure 4.3) has mirrored this 
exuberance. Though there was a pronounced spike in solar funding, which, at its peak, 
received more VC funding than all other technologies combined, funding for biofuels, 
solar, and wind technologies has begun to converge. In contrast, VC funding of battery, 
fuel cell, geothermal, and hydrogen technologies remains relatively low.  

 
 

 
 

Source: Venture One Inc. 
Figure 4.3: Biofuels vs. Alternative Technologies VC ($M) 
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4.2.3 Current Costs  
 
Current estimated costs of renewable energy production of potential transportation fuels 
and electricity generation are presented in Tables 4.3 and 4.4 respectively. Costs of 
energy from gasoline and coal are also listed as a benchmark.  
 

     
 

Fossil Fuel Benchmark  gasoline 0.012 
 

 
Biofuels corn ethanol 0.018 

 
 

  corn stover 0.0236 
 

 
  switchgrass 0.0354 

 
 

  miscanthus 0.0242 
 

 
  sugar cane (Brazil) 0.0101 

 
 

  sugar cane bagasse 0.056 
 

 
  biodiesel algae n/a 

 
 

  biodiesel waste 0.0103-0.0158 
 

 
  

biodiesel vegetable 
oil 0.0159-0.0203 

 
 

Table 4.3: Renewable Energy Costs, Transportation Fuels ($/MJ) 
 

     
     

 
 

Table 4.3 indicates the cost of cellulosic ethanol will have to be reduced by more than 
half to become competitive with gasoline. However, ethanol produced from Brazilian 
sugar cane is already cost-competitive with gasoline, although the reported value does not 
include import tariffs. Electricity production from biomass is almost cost-competitive 
with pulverized coal, as is electricity produced from anaerobic digestion. Landfill gas 
electricity is already cost-competitive with pulverized coal, though this source is 

     
     

 
Fossil Fuel Benchmark pulverized coal 0.011-0.014 

 

 
Biomass biomass electricity (no cogen) 0.014-0.019 

 

  
landfill gas electricity 0.008-0.01 

 

  
anaerobic digestion electricity 0.010-0.015 

 

  
hydrogen from wind 0.028-0.039 

 

 
Other Renewable Solar 0.083-0.11 

 

  
Wind 0.009-0.0136 

 

 
Table 4.4: Renewable Energy Costs, Electricity ($/MJ) 
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evidently limited in supply. Under the most favorable weather conditions, wind 
electricity is also cost-competitive with coal, but the variability of wind electricity costs is 
quite high. 
 
 
 
4.3 Analytical Framework 
 
 
The government’s choice of upstream R&D investments and downstream policy 
instruments will determine private sector investment in renewable energy technologies. 
The government’s policies should depend on the technology’s probability distribution of 
cost breakthroughs for each technology and on the environmental impact. Our goal is to 
develop a portfolio analysis of R&D investments in renewable energy technologies 
through a computable portfolio model, with a Bayesian structured updating process, and 
generation of a time- and performance-dependent optimal mixed strategy across 
renewable technologies. To model the cost reduction process, we evaluate each 
technology in a multiple output production function framework.  
 
 
4.3.1 Multiple Output Production Function Framework 
 
Each renewable energy technology can be represented in a multiple output production 
function framework with two outputs: an economic output and a carbon output. The 
production process includes a productivity parameter with three inputs: labor, capital, and 
feedstock. Given the duality between production and costs, increases in the productivity 
parameter are equivalent to downward shifts in costs, or lower costs per MJ of energy. 
 
This production process is consistent with the materials-balance principle, which 
explicitly accounts for pollution by-products as inevitable parts of the production process 
(Ayres and Kneese, 1969).53  Life Cycle Analysis (LCA) has been used to evaluate the 
material balance of inputs and outputs in renewable energy production in terms of 
environmental emissions and marketable outputs. Though LCA has a broad scope, 
incorporating the total amount of extractive resources and polluting resources over the 
course of production, the analysis assumes coefficients are fixed rather than functions of 
government policies and market forces (Rajagopal and Zilberman, 2008). Until general 
equilibrium effects are carefully modeled, LCA will not be able to reliably estimate the 
net environmental impact of biofuels. 
 
 

53 As explained by Pethig (2006) incorporating the materials-balance principle in theoretical analyses adds 
significantly more computational complexity, and environmental economists have been reluctant to 
explicitly incorporate it in their analyses. This means much of the production processes in present models 
are at variance with the law of the conservation of mass; the literature has rarely produced non-linear 
production models that satisfy the mass balance principle (van den Bergh, 1999).  
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4.4 Determination of the Optimal Portfolio  

 
Determining the optimal combination of upstream and downstream policy instruments 
across the technologies depends on the presumed governance structure and decision-
making process. The focal decision space is the combination of policy instruments across 
renewable energy technologies, updated each period in accordance with a Bayesian 
learning model characterizing the underlying probability distributions on costs and/or 
productivity measures. 
 
We acknowledge the institutional structure by explicitly modeling the private sector 
reaction function to government policy. The government acts as a “Stackelberg leader” 
maximizing its own objective function, given the private sector’s reaction function, by 
setting a combination of upstream R&D investments and downstream market and non-
market incentives. The public sector’s upstream R&D investments include both basic and 
applied research conducted by governmental agencies, universities, and in public-private 
research partnerships. The public sector’s downstream market incentives include price 
subsidization, renewable energy mandates, tax subsidies, credit subsidies, risk swaps, 
input subsidies, and trade distortions. The downstream non-market incentives are 
designed to attach prices to the production of non-market goods, like carbon, through 
taxes or trading schemes. Each of these policy instruments is designed to increase private 
sector R&D investments. The private sector reacts by investing in R&D, 
commercialization, and political economic efforts to maintain and expand favorable R&D 
investments and incentives (Rausser and Goodhue, 2002).  

 
A governing criterion function must be specified which incorporates both the “public 
interest” as well as the “specialized interest” of the private sector, or more specifically the 
recipients of governmental transfers (Rausser et al., 2008). The maximization of this 
criterion function will be subject to the constraints represented by the private sector 
investment in R&D and commercialization as well as the portfolio of probabilistic 
assessments for potential technological advancements and the external forces. This 
formulation will allow an evaluation of vested-interest group formation which may 
emerge around the design and implementation of various policy instruments. Also, in the 
context of this formulation, the effectiveness of the design and implementation of 
alternative policy instruments will be assessed in terms of incidence. In the analysis 
reported in the paper, we focus only on the probability distributions for future technology 
cost reductions. 
 
 
4.5 Analysis 

 
4.5.1 Elicitation Data 
 
A crucial first step in executing a portfolio analysis of renewable energy is an estimation 
of probability distributions based on elicitation from experts in each field of technology. 
Expert elicitation has long been used to quantify uncertainty when historical data is 
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unavailable by public, private, and academic research groups. Since the 1950s this 
approach has been used to estimate uncertain probabilities a variety of settings, from the 
risks posed by long-term nuclear storage to the health impacts of sulfur air pollution 
(EPA, 2009).  

 
The initial step in the expert elicitation process is to identify a population of renewable 
energy experts working on technical/scientific breakthroughs for each technology, 
drawing from public, private, and academic research institutions. The experts were 
chosen based on citations, publications in academic journals, and participation in national 
laboratories or technology startups receiving venture capital funds. 

 

       

 

  Total University Gov’t VC 

 

 

Batteries 72 27 22 23 

 

 

Biofuels 200 75 19 106 

 

 

H & FC 198 87 37 74 

 

 

Solar 205 108 30 67 

 

 

Wind 31 9 16 6 

 

 

Grand Total 706       

 

 
Table 4.5. Expert Population 

 

       

       A randomly selected sub-sample of the population of experts was interviewed, with the 
objective of eliciting probability distributions of future costs under different funding 
scenarios. After each interview, we fitted distributions to the responses which were sent 
to the experts for feedback.   
 
In tables 4.6-4.9 we summarize the responses for the initial round of interviews, in terms 
of the mean and standard deviation of the responses for the lower bound, median, and 
upper bound. 
 
 

The cost ($/kWh) of a 35kW lithium-ion battery pack for a passenger vehicle 

Batteries Lower Bound Mean 
Std. 
dev. Median Mean 

Std. 
dev. Upper Bound Mean 

Std. 
dev. 

2 yrs  Status Quo $                    594.25 115.18 $              618.25 79.78 $                  670.75 47.84 
5 yrs  Status Quo $                    504.25 137.57 $              556.25 105.31 $                  611.75 75.71 
10 yrs Status Quo $                    418.00 149.41 $              472.50 140.33 $                  533.00 128.46 

2 yrs  Incr Funding $                    534.25 112.51 $              596.25 71.34 $                  638.25 51.56 
5 yrs  Incr Funding $                    405.25 148.58 $              451.00 137.95 $                  518.75 112.43 

10 yr IncrFunding $                    302.75 187.48 $              347.25 175.01 $                  428.75 165.15 
n=4 

      The current specific cost of a 35kW lithium-ion battery pack is estimated at 
$706/kWh 

   Table 4.6: Batteries Data Summary 
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The cost ($/kW) of 80kW direct hydrogen PEM fuel cell stack for transportation applications 

Fuel Cells  Lower Bound Mean  
Std. 
dev.  Median Mean  

Std. 
dev.  Upper Bound Mean  

Std. 
dev. 

2 yrs  Status Quo  $                      42.00  4.47  $                47.33  5.03  $                    51.60  4.77 
5 yrs  Status Quo  $                      37.40  4.34  $                43.75  5.32  $                    49.00  7.42 
10 yrs Status Quo  $                      33.60  3.13  $                40.25  6.29  $                    46.00  9.62 

2 yrs  Incr Funding  $                      39.80  5.93  $                44.20  5.81  $                    48.40  7.4 
5 yrs  Incr Funding  $                      34.00  6.28  $                37.40  5.98  $                    44.00  10.22 
10 yr Incr Funding  $                      26.20  9.09  $                30.60  9.84  $                    38.60  14.74 

n=5             
The current cost ($/kW) of a 80kW direct hydrogen PEMFC stack is estimated 
at $50/kW.       

Table 4.7: Fuel Cells Data Summary 

The cost ($/kWh) of commercial scale PV Solar electricity generation. 

Solar  Lower Bound Mean  
Std. 
Dev.  Median Mean  

Std. 
Dev.  Upper Bound Mean  

Std. 
Dev. 

2 yrs  Status Quo  $                        0.12  0.028  $                  0.16  0.021  $                      0.18  0.035 
5 yrs  Status Quo  $                        0.09  0.014  $                  0.12  0.004  $                      0.15  0 
10 yrs Status Quo  $                        0.07  0.014  $                  0.10  0.028  $                      0.13  0.035 

2 yrs  Incr Funding  $                        0.11  0.035  $                  0.14  0.028  $                      0.17  0.028 
5 yrs  Incr Funding  $                        0.08  0.007  $                  0.11  0.004  $                      0.15  0.007 
10 yr Incr Funding  $                        0.06  0.007  $                  0.09  0.007  $                      0.11  0.014 

n=2             
The current cost of commercial scale PV Solar electricity generation is 
$0.18/kWh.       

Table 4.8: Solar Data Summary 

 
The cost ($/kWh) of biofuels from the biochemical conversion of cellulosic biomass. 

Biofuels  Lower Bound Mean  
Std. 
dev.  Median Mean  

Std. 
dev.  Upper Bound Mean  

Std. 
dev. 

2 yrs  Status Quo  $                        0.10  0.014  $                  0.12  0.009  $                      0.18  0 
5 yrs  Status Quo  $                        0.07  0  $                  0.11  0.000  $                      0.14  0 
10 yrs Status Quo  $                        0.05  0.007  $                  0.09  0.003  $                      0.11  0 

2 yrs  Incr Funding  $                        0.10  0.007  $                  0.11  0.009  $                      0.15  0.024 
5 yrs  Incr Funding  $                        0.06  0  $                  0.10  0.005  $                      0.12  0 
10 yr Incr Funding  $                        0.05  0.006  $                  0.08  0.008  $                      0.10  0.008 

n=2             
The current cost per gallon ($/gallon) of biofuelsfrom biological conversion of cellulosic biomass is estimated to be between 
$2.95-$4 per gallon.  
The energy content of biofuels is estimated as assume 75,700 btu per allon.       

Table 4.9: Biofuel Data Summary 
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As expected, these preliminary results reveal a significant impact on cost reductions 
resulting from the hypothetical funding increase. An increase in funding is associated 
with a 16% decrease in the expected cost of batteries, a 13% decrease in the expected 
cost of fuel cells, a 10% decrease in the expected costs of solar cells, and a 10% decrease 
in the expected cost of biofuels. A funding increase also significantly decreases the 
expected variance of future cost reductions. 
 
Though the current results indicate that the probability distribution of biofuels nearly 
stochastically dominates the other renewable energy technologies (with some overlap to 
be observed with solar PV technologies), we anticipate that further interviews will yield 
more concrete results and display an  increase in the overlap between distributions which 
will allow for rigorous portfolio analysis.  
 
The subsequent portfolio analysis is designed to allocate R&D investments across 
renewable energy technologies in a manner that minimizes the risk for a specified level of 
expected returns, taking into account both the expected reductions in cost and the 
variance of the expectations of cost reductions, and thus providing an objective 
benchmark for efficient allocation of resources across renewable energy technologies. 
 
 
4.6 Conclusion 
 
Currently there is no clear, ex ante plan to guide upstream or downstream public support 
of renewable energy technologies. As a result, it will be difficult for the public sector to 
avoid the pull of special interests working to obtain insurance against the downside risks 
of clean energy investments made by private firms, and to avoid the pitfalls of 
industrialization policies. It is with this motivation that we have outlined an analytical 
framework to determine the optimal combination of upstream R&D investments and 
downstream instruments. Our framework is based on the estimation of probability 
distributions for potential future cost reductions resulting from R&D investments from 
the public and private sectors. 
 
Our early stage results reveal that a hypothetical increase in total R&D funding has a 
significant impact on cost reductions, as well as a decrease in the variance of the 
probability distributions. Though biofuels show the most promise among the initial 
probability distributions, we anticipate further interviews to reveal an increase in the 
overlap among the technology future cost probability distributions. We anticipate that the 
portfolio analysis can guide the public sector as it invests amongst the numerous 
renewable energy technologies. Such an ex-ante guide is essential if the public sector is 
to achieve an efficient allocation of renewable energy public R&D investment in 
combination with downstream policy instruments across the emerging technologies. The 
challenge for governments is to exploit the complementarities between upstream R&D 
investments and downstream market and non-market incentives. 
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Chapter 5 
 

Conclusions 
 
 
 

This dissertation presents both a theoretical and empirical examination of the optimal 
allocation of public R&D investments in combination with downstream policy 
instruments across emerging renewable energy technologies. We consider the question of 
how best to enable technological change, accelerate innovation and widespread adoption 
of new energy technologies and move towards a more sustainable energy system. We 
examine the question of how best to assess the tradeoffs between alternate policy 
measures, which policies are most effective in accelerating adoption, and crucially, how 
much and when to invest in which policy measure. The key question remains - what is 
the optimal allocation between differing policy measures, including the balance between 
R&D investments and downstream policy instruments across emerging renewable energy 
technologies?   

 
In the first essay, chapter 2, we consider the question of how to transition to a meaningful 
percentage of solar energy in a sustainable manner and which policies are most effective 
in accelerating adoption. We develop a stochastic dynamic real options model of the 
adoption of solar PV in the residential and commercial sector, evaluating the threshold 
and timing of the consumer’s optimal investment decision given two sources of 
uncertainty. We simulate the model to obtain a cumulative likelihood and timing of 
substitution amongst energy resources and towards solar under plausible rates of 
technological change, electricity prices, subsidies and carbon taxes.  
 
The results indicate that there will be a displacement of incumbent technologies and a 
widespread shift towards solar PV in the residential and commercial sector in under 30 
years, under plausible parameter assumptions - and that crucially, this can occur 
independent of consumer subsidies and carbon pricing policies (at $21/ton CO2, $65/ton 
CO2 and $150/ton CO2). In general, results across all scenarios consistently indicate that 
average historic consumer subsidies and carbon pricing policies have a modest effect in 
accelerating adoption, and may not be an effective part of climate policy in this regard.   
 
Instead, the results demonstrate that R&D support and further technological change is the 
crucial determinant and main driver of widespread adoption of solar PV - suggesting that 
subsidies and taxes don’t make a substantial difference in a technology that’s not viable, 
while research does. This further suggests that optimal policies may change over time, 
however current continued R&D support and technological advancement is the crucial 
determinant of widespread transition to solar and plausibly other backstop technologies – 
and that it should play a key role in policy measures intended to combat climate change. 
Further, results indicate that subsidies and taxes become increasingly ineffective with 
higher rates of technological change. 
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The results do not imply that carbon pricing shouldn’t play a role in climate policy in 
general. Carbon pricing may be effective in reducing emissions and encouraging the 
transition towards other clean technologies – however it has a decidedly modest impact in 
accelerating adoption of solar PV at levels up to $150/ton CO2. Suggesting, that if a 
widespread transition to solar energy is likely to happen in this sector, it will be because 
of R&D and technological advancement. 
 
The final sections of this dissertation examine the role of technology features in policy 
design.  We illustrate the key role of the technology innovation cycle and changing 
optimal policies at every stage of the technology in the transition towards renewable 
energy technologies. We stress that optimal policies will change over time, driven 
primarily by the characteristics of the technology, and its stage in the innovation cycle – 
and that this will crucially determine the impact, gains and tradeoffs between alternate 
policy measures such as R&D policies, deployment policies, and carbon pricing policies.  
 
We consider the characteristics of the technologies in question, including the stage of 
technology innovation, and the optimal timing and sequencing of policies in this regard - 
which we find will affect the impact of differing policy instruments, and which is 
noticeably absent from most studies evaluating and comparing policy instruments in 
environmental policy.   
 
We emphasize that technology and policies must be deployed in a coordinated manner 
such that emission reduction benefits are achieved at an acceptable cost. We examine the 
stages of the technology innovation process and the role of policy incentives at every 
stage - including the timing, sequencing, and role of investments in public R&D, in 
deployment policies and LBD, and in CO2 taxes. 
 
Based on our analysis and results we find that there is a pressing need for the reallocation 
of public resources from consumer subsidies towards public R&D budgets in emerging 
energy technologies such as solar PV, and plausibly other backstop technologies. We 
argue for an expanded role of aggressive R&D policies and increased public R&D 
funding – and contend that there is an imbalance in resources allocated towards adoption 
and commercialization subsidies relative to R&D investments for a technology such as 
solar PV that is not commercially viable. We contend that increased and aggressive R&D 
investments will be the key policy initiative in enabling the transition towards clean 
energy technologies such as solar PV in a sustainable manner.  
 
While deployment policies and LBD are a crucial part of technical change, and they often 
play a key role in the large-scale uptake of new energy technologies - in general, learning 
is not an automatic byproduct of cumulative installed capacity, and should not be taken as 
such. The potential for LBD may fundamentally differ among technologies, and at 
different stages of a technology, and it is crucial that LBD potential is evaluated along 
with investments in deployment.  
 
Where deployment policies are justified, the appropriate timing and sequencing in the 
technology development stage is crucial. Investments in commercialization and 
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deployment subsidies before sufficient R&D investments and breakthroughs have 
occurred will be ineffective and unsustainable, or alternatively will need to be very high 
to have any significant impact (Torani, Rausser, and Zilberman, 2014). Widespread 
adoption and commercialization of emerging and unproven technologies and systems will 
be unlikely unless sufficient major technological discoveries and improvements have 
taken place - which will need to be driven by appropriate and sufficient R&D 
investments. The logical sequence of policies necessitates first making sufficient 
investments and allocating resources towards R&D and the necessary technological 
discoveries, which can then be followed by downstream investments to enhance 
adoption, experience and LBD. In general, we find that the appropriate emphasis and 
sequencing of R&D and learning investments is a pertinent issue, and optimal timing and 
allocation between the two depends in part on the characteristics of the technology itself.  
 
We further examine the effectiveness of a carbon tax in encouraging technology adoption 
at the early stages of an emerging renewable energy technology, while the technology is 
not commercially viable. While almost all economic studies find a case for imposing 
immediate restraints on GHG emissions, with many researchers advocating for an 
immediate, and at least initially low carbon tax, we find that reasonable and plausible 
levels of CO2 taxes may not be effective in encouraging technology adoption and 
reducing emissions while clean technologies are not commercially viable as yet. To be 
effective in encouraging technology adoption at an early stage of technological 
innovation, we contend that a large CO2 tax may be needed, far larger than suggested at 
reasonable levels – with significant implications on distributional effects and political 
feasibility.  We find that the stage of technological innovation and subsequent technology 
readiness will determine how effective a reasonably priced carbon tax will be in 
encouraging clean technology adoption and emissions.  
 
Once again we emphasize that technology and policies must be deployed in a coordinated 
manner such that the emission reduction benefits are achieved at an acceptable cost 
(Williams et al., 2012). Our results suggest that the first and most important stage does 
not lie in imposing CO2 taxes, but rather in investing in R&D and technological 
advancements. Once clean technologies are sufficiently ready, reasonably priced carbon 
taxes will bite to a larger extent and be more effective at plausible levels. Thus despite 
calls for immediate imposition of carbon taxes (at least at initially low levels) we contend 
that one plausible strategy would be either to introduce high CO2 taxes or to subsidize 
R&D first, followed by deployment and LBD policies, and then to impose reasonable 
carbon taxes – in which case scientific advances and technological changes would make 
CO2 emissions abatement less costly, and CO2 pricing would be effective at reasonable 
levels.  
 
In general, we find that an emphasis on technology features in policy design is crucial, 
since it will affect the impact and effectiveness of policy measures and will be critical in 
the transition towards more sustainable energy systems.  The technology under 
consideration should in part guide and inform energy policy, however we find that these 
considerations are noticeably absent from most studies evaluating and comparing 
differing policy mechanisms.  
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In this dissertation, all three chapters consider the question of  how to enable 
technological change, accelerate innovation and widespread adoption of new energy 
technologies and move towards a more sustainable energy system. All three papers raise 
one key question - what is the optimal allocation between differing policy measures, 
including the balance between R&D investments and downstream policy instruments 
across emerging renewable energy technologies?  In its entirety, this dissertation 
considers which policies are most effective in accelerating adoption, and crucially, how 
much and when to invest in which policy measure – with a special emphasis on the 
importance of understanding innovation and technology features in policy design.  
 
It is in this context that there are several issues that should be addressed in future 
research. Most importantly, a closer examination of the technology landscape and 
particular technology features is crucial. A deeper and more detailed examination of 
technologies such as solar PV illustrates that the main cost drivers consist of both 
equipment and installation – which will affect the LBD potential in both these areas, and 
subsequently the justification for subsidies will be driven by both these factors. A closer 
examination of how much of the existing subsidies were devoted to each of these areas 
(installation versus new equipment), as well as the potential for cost reductions in both 
these areas is pertinent - and innovation and policy may affect these two elements 
differently. In general, a more refined consideration of technologies and their cost 
drivers, supply chain issues, and infrastructure requirements will be crucial in developing 
a deeper understanding of innovation, and policy design and impact. Ultimately, different 
technologies will require a different structure of investment based on their particular 
characteristics and features.  
 
In addition, future research should deconstruct and examine the innovation process in 
more detail. It is also crucial to attempt to learn from the high rates of innovation 
displayed in other areas such as high tech and biotech. It is extremely important to 
examine questions regarding who conducts research, public and private issues, the role of 
universities versus companies, and  issues of technology transfer - in particular with 
regard to the field of renewable energy technologies. These considerations should be 
addressed in future research in an attempt to deepen our understanding of the innovation 
process, technological change and appropriate policy design.    
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APPENDIX A 

 
 
 
 
Overall, the results of the simulations for electricity price parameters based on EIA 
historical average residential and commercial electricity prices  of -0.2479% and 
0.2011% (for the time periods 1990-2002 and 2003-2009 respectively) indicate the 
following: (i) As expected, a low or negative evolution of the price of electricity delays 
adoption considerably. (ii) Both consumer subsidies and carbon taxes display a modest 
increase in impact with lower growth rates of electricity prices. (iii) However, results 
remain consistent across all scenarios of differing electricity price trajectories with 
overall results demonstrating that further technological change is the crucial determinant 
and main driver of adoption. 
 
 
 
 

Table A.1 – Baseline Results for Likelihood and Timing of Adoption & Impact of Average Historic 
Consumer Incentives (pelec = -0.248%, r=3%) 

PELEC 
-0.248% 

    

  BASELINE  AV. CONSUMER INCENTIVES 
 

Likelihood of 
Adoption 

 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase in 
R&D 

funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase in 
R&D 

funding 
(-5.6 %) 

 
Recent higher 

Av. Cost 
Decline 
(-9.3%) 

 
10%  21y 19y 6m 15y 6m  16y 7m 15y 8m 13y 2m 
40%  44y 10m 36y 3m 24y 9m  34y 5m 30y 9m 22y 
50%  54y 2m 42y 9m 27y 8m  40y 1m 36y 11m 25y 1m 
60%  66y 47y 10m 31y 1m  53y 10m 44y 4m 28y 
70%  84y 10m 59y 11m 34y 11m  69y 60y 1m 31y 10m 
80%  Not within 90 

years 
87y 5m 40y 5m  Not 

within 90 
years 

79y 2m 37y 1m 

90%  Not within 90 
years 

Not within 
90 years 

Not within 
90 years 

 Not 
within 90 

years 

Not within 90 
years 

56y 8m 
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Table A.2 – Baseline Results for Likelihood and Timing of Adoption & Impact of Average Historic 
Consumer Incentives (pelec = +0.2011%, r=3%) 

PELEC 
+0.2011% 

    

  BASELINE  AV. CONSUMER INCENTIVES 

 
Likelihood of 

Adoption 
 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase in 
R&D 

funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase in 
R&D 

funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

 
10%  19y 3m 18y 3m 15y 1m  15y 3m 14y 7m 13y 1m 
40%  38y 8m 33y 8m 23y 7m  32y 4m 27y 7m 20y 9m 
50%  48y 5m 39y 4m 26y  38y 8m 32y 4m 23y 4m 
60%  58y 2m 46y 2m 29y 2m  50y 11m 39y 9m 26y 2m 
70%  85y 7m 55y 32y 10m  67y 6m 46y 11m 29y 9m 
80%  Not within 90 

years 
67y 2m 38y 11m  Not within 

90 years 
68y 8m 34y 3m 

90%  Not within 90 
years 

Not within 
90 years 

54y 10m  Not within 
90 years 

Not within 90 
years 

53y 3m 

 
 
 
Base Case54: Results for the cumulative likelihood and timing of adoption for the average 
consumer are shown in tables A.1 and A.2 across alternative R&D and technological 
advancement scenarios in solar. Table A.1 shows results for annual electricity price 
growth rates of -0.2479% , while table A.2 shows the results for annual electricity price 
growth rates of +0.2011% as based on EIA historic average residential and commercial 
electricity prices.  
 
Projections for annual electricity price growth rates of -0.2479% indicate that 
independent of any incentives or carbon pricing, if historic lower technological change 
rates are maintained, there is a 50% likelihood of adoption within approx. 54 years, and a 
60% likelihood within approx. 66 years. However, if the higher average cost declines 
observed within the recent years are maintained, it would accelerate adoption 
considerably, resulting in a 50% likelihood of adoption within 28 years, and a 60% 
likelihood within 31 years. In this latter scenario, under an entirely plausible rate of 
technological change, and with negative growth in electricity prices, projections indicate 
that there could be a widespread shift towards solar in under 30 years in the residential 
and commercial sector – without any incentives or carbon pricing.  
 

54 We present the simulation results for r = 3%. However, consistent with the analytical results which 
illustrate the relative insensitivity of ROA to interest rate changes, the simulation results are very similar 
across r = 3% and 5%,  exhibiting the same key dynamics. In addition, we discuss results at the 50-60% 
likelihood level.  
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These results are similar to those for annual electricity price growth rates of +0.2011%, 
which indicate that independent of any incentives or carbon pricing, if historic lower 
technological change rates are maintained, there is a 50% likelihood of adoption within 
approx. 48 years, and a 60% likelihood within approx. 58 years. If the higher average 
cost declines observed within the recent years are maintained, in this scenario, it would 
accelerate adoption considerably, resulting in a 50% likelihood of adoption within 26 
years, and a 60% likelihood within 29 years. Again, in this scenario, under an entirely 
plausible rate of technological change, projections indicate that there could be a 
widespread shift towards solar in under 30 years in the residential and commercial sector 
– without any incentives or carbon pricing. Additionally, as expected, higher growth rates 
in electricity prices accelerate adoption in general as compared to the previous scenario 
with negative growth in electricity prices. 
 
 
Average Historic Consumer Incentives: Recent cost declines in solar PV have been 
accompanied with declining consumer incentives across most states - which many fear 
will dampen the overall consumer economics of solar adoption. Consistent with the 
results for annual electricity price growth rate of +2.89%, our results strongly suggest that 
these concerns are overstated, even in the scenario with lower annual growth rates of 
electricity prices of -0.2479% and 0.2011%.  
 
Results for annual electricity price growth rates of -0.2479% (table A.1) indicate that if 
recent rates of cost decline are maintained, average historic consumer incentives will 
have a minimal impact of accelerating adoption by approximately 3 years as compared to 
the base case scenario. This is consistent with results for both electricity price growth 
rates of +0.2011% (table A.2) and +2.89% (table 2.8). 
 
In the scenario with the lower historic rate of technological advancement, projections 
indicate a slightly higher impact of consumer incentives, accelerating adoption by an 
approximately 13 years (versus 8 years and 5-6 years for the scenarios with electricity 
price growth rates of +0.2011% and +2.89% respectively) as compared to the base case, 
albeit with widespread adoption occurring only within 47 years.   
 
In general, the results indicate a difference of 3-13 years depending on cost decline 
scenarios (versus 3-8 years and 3-6 years for the scenarios with electricity price growth 
rates of +0.2011% and +2.89% respectively), strongly suggesting the policy conclusion 
that in general, average historic incentives have a modest impact in encouraging adoption 
of solar technologies, and virtually no impact if the recent higher cost declines are 
maintained. The impact does however show a relative increase in scenarios with lower 
technological change and declining electricity price rates.  
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Table A.3 – Impact of $21/ton CO2 Tax on Likelihood and Timing of Adoption (pelec = -0.248%, r=3%) 
PELEC 
-0.248% 

 
CO2 Tax 

($21/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent higher 

Av. Cost 
Decline 
(-9.3%) 

 
 

10%  17y 5m 16y 9m 14y 2m  19y 3m 18y 14y 10m 
40%  37y 10m 33y 1m 22y 4m  42y 10m 33y 11m 23y 10m 
50%  47y 5m 39y 3m 24y 10m  53y 2m 39y 5m 26y 11m 
60%  59y 1m 46y 7m 28y  64y 4m 48y 7m 29y 8m 
70%  74y 8m 59y 11m 32y 4m  Not within 90 

years 
58y 4m 33y 4m 

80%  Not within 90 
years 

87y 6m 38y 2m  Not within 90 
years 

Not within 
90 years 

38y 10m 

90%  Not within 90 
years 

Not 
within 90 

years 

61y 2m  Not within 90 
years 

Not within 
90 years 

52y 2m 

 
 
  

Table A.4 – Impact of $21/ton CO2 Tax on Likelihood and Timing of Adoption 
(pelec = +0.2011%, r=3%) 

PELEC 
+0.2011% 

 
CO2 Tax 

($21/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent higher 

Av. Cost 
Decline 
(-9.3%) 

 
 

10%  16y 4m 15y 7m 13y 7m  17y 5m 16y 8m 13y 11m 
40%  33y 4m 29y 10m 21y 10m  36y 8m 31y 2m 21y 2m 
50%  41y 3m 34y 1m 24y 8m  47y 37y 4m 24y 5m 
60%  52y 3m 40y 8m 27y 6m  56y 9m 43y 3m 27y 4m 
70%  64y 9m 46y 9m 32y 3m  72y 51y 11m 31y 6m 
80%  Not within 90 

years 
68y 11m 37y 9m  Not within 90 

years 
69y 9m 36y 2m 

90%  Not within 90 
years 

Not 
within 90 

years 

Not within 
90 years 

 Not within 90 
years 

Not within 
90 years 

52y 10m 

 
 
 
 

 99 



  

Carbon Taxes At $21/ton CO2 and $65/ton CO2: Results for a carbon tax of $21/ton 
CO2 and $65/ton CO2, representing SCC estimates for “most likely” and “higher-than 
expected” impact scenarios are shown in tables A.3 – A.6 respectively.  
Projections for annual electricity price growth rates of -0.2479% indicate that a $21/ton 
CO2 carbon tax accelerates adoption by an average of 1 – 7 years, with a consistently 
lower impact in the scenario with the higher rate of technological advancement (table 
A.3). This result is only slightly higher that the results for both electricity price growth 
rates of +0.2011% (1-6.5 years) and +2.89% (0-3 years) as shown in tables A.4 and 2.9 
respectively.  
 
For electricity price growth rates of -0.2479%, the carbon tax would accelerate adoption 
by 1-1.5 years if the source of electricity were derived from natural gas, and by 3-7 years 
if derived from coal. Projections strongly suggest that while this may be the most feasible 
level of carbon pricing, it is also the most ineffective and has a modest impact in 
accelerating adoption across all growth rates for the price of electricity. Notwithstanding 
growth and distributional effects - a carbon tax of $21/ton CO2 would raise the price of a 
gallon of gasoline by $0.19 and a barrel of crude oil by $9.03.  
 
Projections for annual electricity price growth rates of -0.2479% indicate that a $65/ton 
CO2 carbon tax accelerates adoption by an average of 3-9 years (table A.5), once again 
with a consistently lower impact in the scenario with the higher rate of technological 
advancement. These results are again only slightly higher that the results for both 
electricity price growth rates of +0.2011% (3.5-6.5 years) and +2.89% (2-5 years) as 
shown in tables A.6 and 2.10 respectively. 
 
Specifically, if the recent average cost declines in solar are maintained, results indicate an 
average of 3 years difference if derived from natural gas and 6 years difference if derived 
from coal. 
 
Only in the scenario with historical lower rates of technological advancement and coal as 
the incumbent source of electricity will the tax have a more significant impact of 
accelerating adoption by an average of 12.5 years – however projections still indicate that 
widespread adoption will occur on average in almost 47.5 years in this scenario with 50-
60% likelihood. This result is slightly higher that the results for this scenario for both 
electricity price growth rates of +0.2011% (11 years) and +2.89% (8 years) as shown in 
tables A.6 and 2.10 respectively.  
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Table A.5 – Impact of $65/ton CO2 Tax on Likelihood and Timing of Adoption (pelec = -0.248%, r=3%) 

PELEC 
-0.248% 

 
CO2 Tax 

($65/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent higher 

Av. Cost 
Decline 
(-9.3%) 

 
 

10%  14y 9m 14y 8m 11y 8m  17y 4m 15y 6m 13y 7m 
40%  34y 3m 28y 6m 19y 7m  36y 5m 30y 4m 21y 11m 
50%  42y 10m 34y 21y 11m  44y 10m 37y 3m 24y 9m 
60%  52y 41y 1m 24y 11m  57y 5m 45y 5m 27y 9m 
70%  69y 8m 50y 1m 28y 6m  71y 6m 61y 10m 31y 7m 
80%  Not within 90 

years 
65y 5m 33y 3m  Not within 90 

years 
Not within 
90 years 

37y 5m 

90%  Not within 90 
years 

Not 
within 90 

years 

42y  Not within 90 
years 

Not within 
90 years 

52y 5m 

 
 
 
 

Table A.6 – Impact of $65/ton CO2 Tax on Likelihood and Timing of Adoption  
(pelec = +0.2011%, r=3%) 

PELEC 
+0.2011% 

 
CO2 Tax 

($65/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

  
Historic lower 

tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

 
 

10%  13y 6m 12y 7m 11y 9m  16y 15y 4m 12y 6m 
40%  30y 4m 25y 18y 10m  34y 3m 28y 11m 20y 1m 
50%  36y 6m 29y 4m 21y 4m  41y 11m 34y 22y 7m 
60%  47y 5m 36y 5m 24y 2m  50y 8m 40y 11m 25y 5m 
70%  63y 9m 45y 2m 27y 7m  63y 10m 49y 7m 28y 9m 
80%  Not within 90 

years 
69y 9m 32y 10m  Not within 90 

years 
63y 11m 33y 7m 

90%  Not within 90 
years 

Not 
within 90 

years 

42y 11m  Not within 90 
years 

Not within 
90 years 

42y 9m 
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Concurrently, a carbon tax of $65/ton CO2 would raise the price of a gallon of gasoline 
by $0.58, and a barrel of crude oil by $27.95. 
 
Carbon Taxes At $150/ton CO2: While a carbon tax of $150/ton CO2 has not been 
included in government estimates of the social cost of carbon (SCC), it has been 
suggested as representing considerations of catastrophic climate outcomes more 
accurately than lower estimates (Pindyck 2013). 
 
The results for the impact of a carbon tax of $150/ton CO2 with electricity growth rates -
0.2479% are shown in table A.7, while results for electricity growth rates of +0.2011% 
are shown in table A.8. 
  
Projections for annual electricity price growth rates of -0.2479% indicate that if recent 
rates of cost decline are maintained, the carbon tax would accelerate adoption by a 
modest 6-10 years above baseline results free of any incentives. This result is only 
slightly higher than the results for this scenario for both electricity price growth rates of 
+0.2011% (6-8.5 years) and +2.89% (6-8 years) as shown in tables A.8 and 2.11 
respectively.  
 
 
 
Table A.7 – Impact of $150/ton CO2 Tax on Likelihood and Timing of Adoption (pelec = -0.248%, r=3%) 

PELEC 
-0.248% 

 
CO2 Tax 

($150/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

10%  9y 9m 9y 5m 9y 2m  14y 5m 13y 1m 11y 2m 
40%  25y 10m 21y 2m 15y 5m  32y 3m 26y 7m 18y 10m 
50%  32y 11m 24y 9m 18y  40y 31y 7m 21y 7m 
60%  41y 31y 1m 20y 7m  49y 7m 38y 6m 24y 8m 
70%  58y 3m 37y 10m 23y 9m  69y 10m 49y 2m 28y 4m 
80%  90y 58y 28y 2m  Not within 90 

years 
68y 4m 34y 3m 

90%  Not within 90 
years 

Not 
within 90 

years 

40y 4m  Not within 90 
years 

Not within 
90 years 

51y 10m 
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Table A.8 – Impact of $150/ton CO2 Tax on Likelihood and Timing of Adoption  
(pelec = +0.2011%, r=3%) 

PELEC 
+0.2011% 

 
CO2 Tax 

($150/ton CO2) 

  
COAL 

  
NATURAL GAS 

 
Likelihood of 

Adoption 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

 
 

  
Historic 

lower tech 
advancement 

(-4.4%) 

 
50% 

Increase 
in R&D 
funding 
(-5.6 %) 

 
Recent 

higher Av. 
Cost 

Decline 
(-9.3%) 

10%  9y 5m 9y 5m 9y 1m  12y 4m 11y 10m 10y 7m 
40%  22y 10m 20y 1m 15y 4m  28y 7m 23y 8m 17y 4m 
50%  27y 7m 24y 4m 17y 6m  34y 7m 27y 6m 19y 10m 
60%  34y 7m 28y 11m 20y 3m  44y 3m 32y 10m 22y 6m 
70%  45y 37y 5m 23y 6m  57y 6m 41y 1m 25y 8m 
80%  74y 1m 50y 5m 27y 10m  89y 3m 57y 5m 30y 1m 
90%  Not within 90 

years 
Not 

within 90 
years 

35y 11m  Not within 90 
years 

Not within 
90 years 

44y 2m 

 
 
 
The impact is more significant in the scenario with historical lower rates of technological 
advancement – accelerating adoption by an average of 15 and 23 years, given the 
incumbent source of electricity is derived from natural gas and coal respectively. These 
results are again only slightly higher than projections for the scenarios with electricity 
price growth rates of +0.2011% (13.5 and 21.5 years respectively) and +2.89% (10 and 
15.5 years respectively) as shown in tables A.8 and 2.11 respectively. 
 
However, projections indicate that a tax of $150/ton CO2 applied to the lower technical 
change scenario (for both electricity derived from coal and natural gas) will still not 
replicate the baseline results for the higher rates of technical change free of any 
incentives – a higher carbon tax than $150/ton CO2 would be necessary to do so. In 
general, this result holds for all three electricity price growth rate scenarios (i.e. -
0.2479%, +0.2011% and +2.89%)55.  
 
Concurrently, a $150 carbon tax would raise the price of a gallon of gasoline by $1.33, 
and the price of a barrel of crude by approx. $65. In addition, a $150 tax would more than 
double the current price of electricity (if derived from coal), rendering it almost as high as 
the current cost of solar free of incentives. 

55 With the exception of the case with electricity price growth at +2.89%, the lower technical change 
scenario and the incumbent source of electricity derived from coal  - in which case a tax of $150/ton CO2 
will replicate baseline results for the higher rate of technical change free of any incentives.  
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