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ABSTRACT OF THE DISSERTATION

Machine learning applied to parameter spaces of theories beyond the Standard Model

By

Jacob Hollingsworth

Doctor of Philosophy in Physics and Astronomy
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Professor Daniel Whiteson, Chair

Several theoretical parameter spaces are analysed using techniques from machine learning.

First, machine learning is used to leverage high dimensional detector information to constrain

the mass and coupling of a simplified model which extends the standard model with a heavy

Z’ boson. The high dimensional information is seen to improve the exclusion contours of the

analysis relative to a low dimensional analysis that instead uses summary statistics. Next,

generative models are used to sample a high dimensional parameter space of a supersym-

metric model subject to a constraint. Generative models are seen to provide an increase in

efficiency of over an order of magnitude in a search for models that satisfy the constraint when

compared to random sampling. Finally, we analyse a dataset of supersymmetric theories to

understand how they may best discovered in experiment. We propose a set of experiments

to be performed at the Large Hadron Collider that are most sensitive to these models.
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Chapter 1

Introduction

At the time of writing, the Standard Model of particle physics (SM) is the most successful

description of physics at the subatomic level. The SM has endured decades of diverse and

sensitive experimental challenges to its legitimacy, with no experiment yet reaching the

conventional 5σ significance required to claim a discovery of physics incompatible with the

SM. This success comes in spite of numerous very strong challenges to the Standard Model.

Issues with the SM include the lack of a consistent description of gravity, the absence of a cold

dark matter candidate, and an insufficient explanation for the observed matter antimatter

asymmetry.

The SM also contains many inelegant aspects that, while not disqualifying, may hint to-

wards a more fundamental theory. The first of these is the hierarchy problem, where large

cancellations are required to achieve the observed Higgs boson mass in the presence of novel

physics at high energies. Also included is the strong CP problem, where a parameter in the

strong sector of the SM (θQCD) is found experimentally to be very nearly zero, though no

theoretical explanation for this is available.
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A last element of the SM that hints towards a more fundamental description of physics is the

large number of free parameters, primarily masses and couplings, that are required in order to

make quantitative predictions. The SM can be abstractly thought of as a black-box function;

mapping input variables to experimental observables. However, this function also requires

additional parameters that are unknown and may only be determined in experiment. In total,

the SM requires 19 additional parameters, which are given in Table I. These parameters form

a 19 dimensional “theory space" of possible universes a priori. As experiments are performed

to determine the value of a parameter, the dimension of the surviving space consistent with

experiment reduces by one until a single point is reached. For the SM, all parameters have

been determined in experiment. However, the requirement for such a large number of input

parameters may lack the aesthetic appeal that one may expect of a truly fundamental theory.1

Theories of physics beyond the Standard Model (BSM) attempt to overcome one or more of

these challenges faced by the SM. This is often accomplished by proposing new physics at

energy scales that have thus far been unobtainable in experiment. BSM theories typically

inherit most or all of the free parameters of the SM and include additional free parameters

related to the novel physics introduced by the theory.

There are practical challenges in reducing the theory space of BSM models. Because the

added parameters describe physics at scales out of reach of current experiments, it is incredi-

bly difficult to determine their value. One must either carefully analyze all available data for

limited direct evidence of BSM physics or very precisely measure low energy observables for

possible influence from BSM physics. This is made more difficult in many BSM models where

experimental observables are complicated functions of the fundamental theory parameters,

so that experimental constraints are nontrivial to apply to the theory space.
1Many oppose the legitimacy arguments derived from aesthetics, as there is no reason that a fundamental

theory must appeal to a theorist’s notion of beauty. Here we do not cast judgement on the validity or
invalidity of such complaints, and merely introduce the discussion to later expand on the practical difficulties
that accompany the necessity of a large number of free parameters.

2



Parameter Description
me Electron mass
mµ Muon mass
mτ τ mass
mu Up quark mass
mc Charm quark mass
mt Top quark mass
md Down quark mass
ms Strange quark mass
mb Bottom quark mass
θ12 CKM matrix 12 element
θ13 CKM matrix 13 element
θ23 CKM matrix 23 element
δCP CKM matrix phase
g1 U(1) gauge coupling
g2 SU(2) gauge coupling
g3 SU(3) gauge coupling

θQCD QCD vacuum angle
v Higgs vacuum expectation value
mh Higgs boson mass

Table 1.1: Free parameters of the Standard Model with a brief description. Most param-
eters are particle masses and couplings between different particles. Does not include free
parameters needed to account for neutrino masses in the SM.

3



Additionally, BSM parameter spaces are often very high dimensional. This makes standard

parameter scan based approaches of finding experimentally consistent regions computation-

ally expensive. As a concrete example, much of this thesis will discuss a BSM model with 19

unknown free parameters. Simply sampling a small, medium, and large value for each pa-

rameter would require 319, or over 1 billion, model evaluations to completely cover the space.

This is a manifestation of the curse of dimensionality, where the number of configurations

within a space increases exponentially with its dimension.

Recently, machine learning has been incredibly successful at performing diverse tasks in

extremely high dimensional spaces. Benefiting from the relative availability of large datasets

as well as increasing GPU capabilities, deep learning in particular has been widely adopted

for learning from large, high dimensional datasets. As such datasets are often also found

in high energy physics, it is natural to turn to deep learning as a potential solution to the

model selection problem in high energy physics previously described. The focus of this thesis

is to study the use of deep learning as an improvement upon current methods of determining

parameters for BSM models.

In Chapter 2, we briefly review the SM and give a full review of the Minimal Supersymmetric

Standard Model (MSSM), a theoretically favored high dimensional BSM model. We also

introduce the constrained MSSM (cMSSM) and phenomenological MSSM (pMSSM), two

lower dimensional MSSM subspaces that will be discussed throughout this work. Towards

the end of this discussion, we introduce the concept of simplified models. In the second half

of this chapter, we review fundamental aspects of machine learning, with particular emphasis

on supervised learning.

In Chapter 3, we use novel machine learning algorithms to determine the mass and coupling

of a new particle in a simplified model for a simulated experiment. While the parameter

space is only 2 dimensional, machine learning is used to leverage the full dimensionality of the

space of observables in the statistical analysis of the data. This allows us to determine the

4



values for the mass and coupling with greater confidence than standard approaches, which

often utilize low dimensional summary statistics in their statistical analyses.

In Chapter 4, we utilize two generative frameworks to directly produce pMSSM models that

are consistent with an experimental constraint. This bypasses the need to perform extensive

parameter scans in order to construct the region of the parameter space that survives the

constraint. Additionally, the generative frameworks are carefully chosen so that the search

results are not biased by the use of a generative model, enabling one to confidently perform

further searches on the generated data points.

In Chapter 5, we perform a systematic study of the pMSSM parameter space with the hope of

guiding experimentalists towards analyses that could best exclude the remaining unexcluded

regions of the pMSSM. We first develop a classification scheme for pMSSM model points

based upon the mechanism used to achieve the experimentally observed amount of dark

matter. We then study the models in each class to determine which analyses could be

performed at collider experiments to best exclude that class of models.

5



Chapter 2

Background

2.1 Particle Physics

2.1.1 The Standard Model

The Standard Model of particle physics posits the matter content of the universe and de-

scribes the behavior of this matter with a Lagrangian density constructed from all renor-

malizable terms that are invariant with respect to local transformations of the gauge group

SU(3)c × SU(2)L × U(1)Y and global transformations of the Poincaré group. The matter

content of the SM and their representation in the gauge group is summarized in Table 2.1.

We break the Lagrangian density into 3 distinct parts: the electroweak sector, the quantum

chromodynamics sector and the Higgs sector.

LSM = LEW + LQCD + LHiggs. (2.1)

6



Fermions (Spin 1
2
)

Field Description Representation (SU(3)c, SU(2)L, U(1)Y )
Qi Left-handed quark doublet (3, 2, 1

3
)

uR,i Right-handed up quark (3, 1, 4
3
)

dR,i Right-handed down quark (3, 1, −2
3
)

Li Left-handed lepton doublet (1, 2, −1)
`R,i Right-handed lepton (1, 1, −2)

Bosons (Spin 1)
Field Description Representation (SU(3)c, SU(2)L, U(1)Y )
B U(1)Y gauge boson (1,1, 0)
W a SU(2)L gauge bosons (1, 3̄, 0)
Ga SU(3)c gauge bosons (8̄,1, 0)

Scalars (Spin 0)
Field Description Representation (SU(3)c, SU(2)L, U(1)Y )
H Higgs field (1,2, 1)

Table 2.1: Particle content of the Standard Model. Representations under which the fields
transform with respect to gauge transformations are given in the third column. For U(1)Y
transformations, the hypercharge is given instead. The index i = 1, 2, 3 and runs over the 3
generations of fermions, which differ only in mass.

This section will review each sector of the SM individually. The focus is primarily on un-

covering the appearance and meaning of free parameters in each sector of the theory. This

discussion is heavily inspired by the references [18, 19, 20].

The Electroweak Sector

The electroweak weak sector of the Standard Model contains the kinetic terms for fermion

fields and gauge boson fields associated with the SU(2)L×U(1)Y symmetry. Before directly

discussing the electroweak sector, we first discuss the procedure for constructing gauge in-

variant Lagrangian density for an arbitrary local, continuous gauge symmetry. This will

greatly simplify future discussions of the electroweak and quantum chromodynamics sectors

of the Standard Model.
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A local, continuous gauge transformation V acts on fermions in the fundamental represen-

tation of the gauge group as

ψ′ = V ψ. (2.2)

Kinetic terms for fermions require derivatives of ψ, however, naïve derivatives of ψ are

difficult to make gauge invariant due to the appearance of an additional term

(∂µψ)′ = V ∂µψ + (∂µV )ψ. (2.3)

This is easily understood as the derivative of ψ depends on its value in a neighborhood of

points around x. So, the transformed derivative must depend on how this neighborhood of

points transforms as well and thus cannot be locally gauge invariant. Because of this, the

comparator is introduced, which allows distant points to transform in the same way:

U(y, x)′ = V (y)U(y, x)V (x)† (2.4)

It is easily verified that ψ(y) and U(y, x)ψ(x) transform in the same way and that U(y, y) = 1

is required for consistency. The gauge covariant derivative is defined

nµDµψ = lim
ε→0

ψ(x+ εn)− U(x+ εn, x)ψ(x)

ε
. (2.5)

This modifies the usual derivative to allow for local gauge invariance. Since the derivative

only depends on points in the neighborhood of ψ(x), we expand around U(x, x) = 1.

U(x+ εn, x) = 1 + igεnµAaµ(x)Ta +O(ε2) (2.6)

where n is a four-vector, g is a scaling constant known as the coupling, Ta are the generators

of the Lie group, and Aaµ is a field that quantifies the transformation associated with rotation

8



in the a direction of the group in the nµ direction of spacetime to first order in ε. Plugging

in, we see that

Dµψ = (∂µ − igAaµTa)ψ (2.7)

Aaµ can be shown to transform according to

(
AaµTa

)′
= V

(
AaµTa +

i

g
∂µ

)
V † (2.8)

by substituting Equation 2.6 into Equation 2.4. Gauge covariant derivatives thus transform

in the same manner as the fields on which they act. So, they may be used to easily construct

kinetic terms for fermions such as iψ̄γµDµψ. This also implies that higher order gauge

covariant derivatives transform in the same way. This may be used to construct kinetic

terms for the newly introduced fields Aaµ.

One can see that the commutator of gauge covariant derivatives depends only on derivatives

of the gauge fields Aaµ.

[Dµ, Dν ]ψ = −ig
(
∂νAµ − ∂µAν + gAaµA

b
νf

c
abTc

)
ψ (2.9)

where we have defined AaµTa = Aµ and f cab are the structure constants of the Lie group.

Evaluating the commutation reveals a tensor F i
µν = (∂µA

i
ν−∂νAiµ+gAaµA

b
νf

i
ab) that depends

only on derivatives of the gauge field. Substituting this definition into the previous expression

shows that

[Dµ, Dν ] = −igF i
µνTi (2.10)

One can use this commutation relation to show that terms such as Fαβ
i F µν,i are gauge

invariant. These are gauge field kinetic terms as they depend on the square of the derivative
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of the gauge fields. There are two possible Poincaré invariant combinations, Tr [F µνFµν ] and

εαβµνTr
[
FαβF µν

]
.

These concepts allow us to write down the most general Lagrangian density for this theory

that is compatible with gauge and Poincaré symmetries, known as the Yang-Mills Lagrangian

[21]:

LY ang−Mills = −1

4
F µν
i F i

µν −
g2θYM
32π2

εαβµνF i
αβFµν,i + ψ̄ (iγµDµ −m)ψ. (2.11)

We can now turn to the Standard Model gauge groups, beginning with the electroweak

(SU(2)L × U(1)Y ) sector [22, 23] Left handed fermions are organized into SU(2) doublets

Qi =

uL,i
dL,i

 Li =

νL,i
`L,i

 (2.12)

and right handed fermions are SU(2) singlets. The gauge covariant derivatives for these

fermions are given by

Dµ =


∂µ − ig1Y Bµ SU(2) singlets

∂µ − ig1Y Bµ − i
2
g2W

a
µσa SU(2) doublets,

(2.13)

where Y is the hypercharge of the fermion and the σi
2
appear as these generate transforma-

tions in SU(2). The fieldsW a
µ are associated with generators of SU(2)L and Bµ is associated

with U(1)Y . The covariant derivatives here must be augmented for SU(3) triplets as well;

see the next subsection.

We will adopt the standard notation for the fermion fields, which writes the Weyl spinors of

the Standard Model in Dirac spinor notation, where projection to the chirality of the field
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is implied. With this, we can rewrite Equation 2.11 as:

LEW = −1

4
BµνBµν −

1

4
W a
µνW

µν
a +

∑
f

if̄γµDµf, (2.14)

where the sum over f runs over all fields {Li, Qi, uR,i, dR,i, `R,i}. We remark that terms

proportional to θYM in Equation 2.11 are not present in the electroweak sector as they may be

absorbed into fermion field definitions via chiral rotations: ψ → exp(iγ5θYM)ψ. Additionally,

the mass terms of Equation 2.11 vanish due to the chirality of the fermions. We also remark

that one cannot construct Dirac mass terms such as, for example, m
(
¯̀
L,i`R,i + ¯̀

R,i`L,i
)
, as

these are not SU(2)L invariant.

Quantum Chromodynamics Sector

The quantum chromodynamics (QCD) sector of the Standard Model pertains to the particle

fields that transform non-trivially under the SU(3)c group, namely the quarks and gluons

[24]. Quarks are organized in SU(3) triplets:

uL/R,i =


uL/R,i,r

uL/R,i,g

uL/R,i,b

 dL/R,i =


dL/R,i,r

dL/R,i,g

dL/R,i,b

 . (2.15)

The gauge covariant derivatives from the previous section are augmented with a new gauge

field:

Dµ = Dµ,EW −
i

2
g3G

a
µλa SU(3) triplets, (2.16)

where Dµ,EW refers to Dµ as defined in Equation 2.13 and the λa refer to the Gell-Mann

matrices, which generate λa
2

rotations SU(3) up to a factor of 2.
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We can now write down the QCD Lagrangian by once again referring to Equation 2.11

LQCD = −1

4
Ga
µνG

µν
a −

g2θQCD
32π2

εαβµνGi
αβGµν,i. (2.17)

Quark kinetic terms are not included here as they have been included in the electroweak

sector of the Lagrangian. For SU(3) gauge symmetries, the θ term no longer vanishes,

though it is constrained to be extremely close to 0 by experiment.1

The Higgs Sector

The Higgs sector describes the behavior and interactions of the lone scalar field in the

Standard Model, the Higgs field [26, 27, 28]. This Higgs field is responsible for breaking

the SU(2)L × U(1)Y gauge group to the familiar U(1)EM gauge group. In breaking this

symmetry, it also provides mass terms for the fermions of the Standard Model as well as the

weak gauge bosons. While the phenomenology of this sector is very rich, for this thesis we

do not recount the full consequences of electroweak symmetry breaking in detail. Instead,

we focus on constructing the Lagrangian before electroweak symmetry breaking so that the

full SM parameter space is introduced.

The Higgs sector introduces a new scalar field Φ, known as the Higgs field. The Higgs field

is an SU(2) doublet and can be written in terms of 2 complex scalar fields φ+ and φ0:

Φ =
1√
2

φ+

φ0

 . (2.18)

1There is a long theoretical discussion surrounding the θQCD term. Here, this term no longer vanishes in
the sense that it cannot be absorbed into field redefinitions by performing chiral rotations, as could be done
for the analogous U(1) and SU(2) terms. However, it may be written as a total derivative of the Chern-
Simons current, and so its effects are invisible in perturbation theory. This term does have non-perturbative
effects due to gauge field configurations that cannot be built perturbatively from the vacuum. The strong
experimental constraints are derived from one such non-perturbative effect on the neutron electric dipole
moment [25].
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The most general Lagrangian that is invariant with respect to Lorentz and gauge transfor-

mations for Φ (excluding interactions with other fields) is given by

LHiggs ⊃ |DµΦ|2 + µ2Φ†Φ− λ
(
Φ†Φ

)2
. (2.19)

Introducing a scalar field to the theory also allows for many gauge invariant interaction

terms. Each of these comes with an associated coupling known as a Yukawa coupling. The

full Lagrangian including these interaction terms is:

LHiggs = |DµΦ|2 + µ2Φ†Φ− λ
(
Φ†Φ

)2
+(

Q̄iΦ̃yu,ijuR,j + Q̄iΦyd,ijdR,j + L̄iΦy`,ij`R,j + h.c.
)

(2.20)

where Φ̃ = iσ2Φ∗. One can check manually that these additional interaction terms are gauge

invariant.

Symmetry breaking occurs because the potential for Φ is minimized at some nonzero value

〈Φ〉. We may choose a gauge where

〈Φ〉 =
1√
2

0

v

 . (2.21)

Substituting this into the previous equation yields terms:

LHiggs ⊃ ūL,imu,ijuR,j + d̄L,imd,ijdR,j + ¯̀
L,im`,ij`R,j + h.c. (2.22)

We observe the appearance of Dirac mass terms for fermions, where we have identified

ma,ij =
ya,ijv√

2
for a = {u, d, `}.
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Naïvely, we have introduced 54 new parameters, as each new interaction term is accompanied

by a (potentially complex) mass. However, redundancies in field definition and basis rotations

cause many of these free parameters to be unphysical. The matrixm` may be diagonalized by

a bi-unitary transformation m`,diag = U`m`V
†
` .

2 Mapping `L,i → U`,ij`L,j and `R,i → V`,ij`R,j

diagonalizes the lepton mass matrix m`, and the only physical parameters remaining are the

diagonal masses.

For the quark terms, a similar decomposition may not be performed. As for the lepton

masses, yu and yd may be diagonalized analagously

mu,diag = UumuV
†
u (2.23)

md,diag = UdmdV
†
d . (2.24)

However, the matrices for each basis transformation are in general not equal, which has phe-

nomenological consequences. The fields dL,i and uL,i couple to W± bosons in the gauge co-

variant derivatives as they appear in an SU(2) doublet. Rotating dL → UddL and uL → UuuL

causes formerly diagonal interactions in these kinetic terms to gain off-diagonal interactions

according to the matrix U †uUd. This matrix, known as the Cabbibo-Kobayashi-Maskawa

(CKM) matrix, parameterizes the newly introduced off-diagonal couplings that result from

the transformation to mass eigenstates. The CKM matrix contains 4 real parameters,

θ12, θ13, θ23, δ
CP , after the absorption of unphysical relative phases into the definition of

quark fields.

Summary and Clarifying Remarks

We have constructed the Standard Model Lagrangian. We have seen that there are 19

free parameters which must be input to the theory. The electroweak sector of the SM
2In machine learning this is instead called a singular value decomposition.
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Lagrangian contains 2 free parameters: the couplings associated with the U(1)Y and SU(2)L

gauge groups, g1 and g2, respectively. The QCD sector also contains two free parameters:

the coupling associated with the SU(3) gauge group g3 as well as θQCD. The Higgs sector

accounts for the remaining 15 parameters: 4 CKM parameters, 6 quark masses, 3 lepton

masses, the higgs mass, and the higgs quartic coupling.3

One may solve the Euler-Lagrange equations for the Lagrangian of Equation 2.1 in the usual

way to find the equations of motion for the fields of the Standard Model. This, however,

finds little practical use when computing quantities of interest. Typically, one is interested

in computing amplitudes of the kind:

M = 〈f |S |i〉 (2.25)

where |f〉 is a final state defined at t = ∞, |i〉 is an initial state defined at t = −∞, and S

is an operator which evolves the initial state forward in time from t = −∞ to t = ∞. For

instance, this is the case at high energy particle colliders such as the Large Hadron Collider,

where the initial state may be two high energy protons and the final state may be some

channel of interest to an experimentalist. These computations are efficiently performed

using the Feynman rules of a theory, which graphically represent terms in a perturbative

expansion for such amplitudes. In this thesis, it is not crucial to detail the Feynman rules of

the Standard Model (or any other model). These computations are instead abstracted away

as a black box by numerous computer programs.

However, it is important to note that problems arise when computing Feynman diagrams

containing loops. Such diagrams often lead to divergent integrals, despite appearing initially

as higher order terms in a perturbative expansion. These divergences are remedied by recog-

nizing that the Lagrangian has thus far been written in terms of bare parameters and fields.
3The parameterization of the Higgs sector is not unique. A full parameterization requires specifying 2

quantities from {mh, λ, µ
2, v}.
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A bare quantity defines its tree-level value, or its value when loop corrections are not taken

into account. Such a quantity cannot be measured as loop diagrams may not be “turned off"

in experiment.

Instead, we understand that infinities in the perturbative expansion must be unphysical and

write bare quantities as the sum of a physical (renormalized) part and counterterms which

cancel these divergent terms. This procedure causes renormalized quantities to attain a

dependence on an unphysical mass scale, known as the renormalization scale. Requiring

observables to be independent of renormalization scale yields β-functions which describe the

dependence of parameters on the scale of the theory.4 The parameters of the Lagrangians

introduced in this thesis should be interpreted as renormalized parameters defined at a fixed

mass scale.

2.1.2 Supersymmetry

Supersymmetry (SUSY) is a spacetime symmetry that allows for rotations between fermions

and bosons. Such a symmetry is motivated by the hierarchy problem. Loop corrections to

the Higgs boson mass cause the appearance of terms that diverge quadratically with the

scale of any new physics, where fermions and bosons give opposite sign contributions [29].

Equal quadratically divergent contributions from a fermion and boson are thus a natural

solution to the hierarchy problem. We review supersymmetry in order to later introduce

the Minimal Supersymmetric Standard Model (MSSM). This discussion draws heavily from

References [19, 29, 30].

The simplest supersymmetric Lagrangian contains a Weyl fermion ψ, a complex scalar field

φ, and a non-propagating auxillary field F , which must be introduced to allow for rotations

between ψ and φ. This is because ψ contains 4 degrees of freedom off-shell whereas φ only
4The evolution of parameters with renormalization scale is described as parameter “running." β-functions

are also referred to as renormalization group equations.
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contains 2, and so F must possess 2 degrees of freedom to account for the difference. The

Lagrangian is known as the Wess-Zumino model:

LWZ = F ∗F + |∂µφ|2 + iψ̄σµ∂µψ. (2.26)

Under a supersymmetry transformation parameterized by an infinitesimal 2 Grassmann num-

ber valued component object ε which transforms as a Weyl spinor under Lorentz transfor-

mation, the fields transform as:

δεφ = εψ (2.27)

δεψα = −i (εσµ)α ∂µφ (2.28)

δεF = −iε̄σ̄µ∂µψ. (2.29)

One can show that δLWZ is given by a total derivative, and so the action is unchanged upon

integration over spacetime.

One may also extend this symmetry to vector bosons. To each vector boson Aaµ, we associate

a spin-1
2
fermion λa and an auxillary field Da. Note that, because Aaµ only has 3 off-shell

degrees of freedom, Da must be a real scalar field. A supersymmetric Lagrangian for these

fields is given by

L = −1

4
F a
µνF

µν
a +D2 + iψ̄σµDµψ. (2.30)
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This Lagrangian is invariant up to a total derivative under supersymmetric transformations:

δεA
a
µ = − 1√

2

(
ε̄σ̄µλ

a + λ̄aσ̄aµε
)

(2.31)

δελ
a
α = − 1

2
√

2
(σµσ̄ν)α F

a
µν +

1√
2
εαD

a (2.32)

δεD
a = − i√

2

(
ε̄σ̄µDµλ

a −Dµλ̄
aσ̄µε

)
. (2.33)

It is typically more convenient to label related fields as components of a single multiplet

(φ, ψ, F ) or (Aµ, λ,D). This is done more naturally after introducing superspace coordinates.

Superspace coordinates augment the 4 typical (commuting) spacetime coordinates t, x, y, z

with 4 additional (anti-commuting) coordinates θα, θ̄α̇, where α, α̇ = 1, 2. Fields over this

space are known as superfields.

Because θ and θ̄ are anti-commuting, the Taylor expansion of a superfield S over these

coordinates terminates after only a few terms:5

S = ϕ(xµ) + θη(xµ) + θ̄χ̄(xµ) + θ̄σνθVν(xµ)+

θ2N(xµ) + θ̄2M(xµ) + θ2θ̄ᾱ(xµ) + θ̄2θβ(xµ) + θ̄2θ2ζ(xµ) (2.34)

One can study the transformation of the component fields (over spacetime) with respect to

SUSY transformations of the coordinates:

θα → θα + εα (2.35)

θ̄α̇ → θ̄α̇ + ε̄α̇ (2.36)

xµ → xµ + iεσµθ̄ + iε̄σ̄µθ (2.37)

5We choose a brave notation that does not differentiate between superfields and fields over spacetime.
The differentiation between fields and superfields should be clear from context.
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to see that, in particular:

δεϕ(xµ) =
1√
2

(εη + ε̄χ̄) (2.38)

δεη(xµ) =
√

2εαN +
1√
2

(σµε̄)α (Vµ − i∂µϕ) (2.39)

δεN(xµ) =
1√
2

(
ε̄ᾱ− i

2
ε̄σ̄µ∂µη

)
(2.40)

These are identical to the transformations δεφ, δεψα, δεF for the multiplet of fields in the Wess-

Zumino model under the identifications (ϕ(xµ), η(xµ), N(xµ)) = (φ(xµ),
√

2ψ(xµ), F (xµ)),

provided that all fields outside of this multiplet are set to 0. This can be enforced by

requiring a superfield Φ to satisfy:

D̄αΦ = 0 (2.41)

where D̄α = − ∂
∂θ̄α̇

+ iσµαα̇θ̄
α̇∂µ. Such Φ are known as chiral superfields, and are the most con-

venient representation of these multiplets when constructing supersymmetric Lagrangians.

Φ takes a particularly nice form under a coordinate transformation yµ = xµ − iθ̄σµθ, where

now Φ(yµ) = φ(yµ) +
√

2θψ(yµ) + θ2F (yµ).

We may also represent the multiplet (Aµ, λ,D) as a superfield. Once again, a general su-

perfield has redundant components. To represent a multiplet containing a vector boson, we

enforce the superfield V to be real:

V = V ∗ (2.42)
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Such superfields are known as vector superfields. From Equation 2.34 we see that, for a

vector superfield,

φ(xµ) = φ(xµ)∗ (2.43)

χ(xµ) = η(xµ) (2.44)

vν(xµ) = vν(Xµ)∗ (2.45)

N(xµ) = M(xµ)∗ (2.46)

α(xµ) = β(xµ) (2.47)

ζ(xµ) = ζ(xµ)∗ (2.48)

With an eye towards the set of fields (Aµ, λ,D) that this vector superfield to represent, we

make the definitions:

χα = λα −
i

2
(σµ∂µη̄)α (2.49)

vµ = Aµ (2.50)

ζ =
1

2
D − 1

4
∂µ∂

µϕ (2.51)

Thus, the vector superfield can be expressed in terms of its component fields:

V = ϕ+ θχ+ θ̄χ̄+ θ̄σµθAµ + θ2N + θ̄2N∗ + θ̄2θ

(
λ− i

2
σµ∂µχ̄

)
+

θ2θ̄

(
λ̄− i

2
σ̄µ∂µχ

)
+ θ2θ̄2

(
1

2
D − 1

4
∂µ∂µϕ

)
. (2.52)

Similar to the chiral superfield case, one can confirm that the fields (Aµ, λ,D) transform

as expected under a SUSY transformation, provided that terms containing ϕ, χ and N are

ignored. The presence of these extra component fields is due to gauge freedom. One may

choose a gauge (known as Wess-Zumino gauge) where the fields ϕ, χ,N disappear. A more

complete discussion of gauge transformations for superfields is given at the end of this section.
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Superfields provide a compact representation of the matter content in a SUSY theory. We

now turn our attention to constructing SUSY Lagrangians from these superfields. We saw

in Equation 2.29 that the F term of a chiral superfield transforms as a total derivative under

SUSY transformations. It can be shown that any analytic function W of a chiral superfield

is again a chiral superfield. So, the F component of an analytic functionW (Φ) is a candidate

term for a SUSY Lagrangian, as the action of such a term remains invariant under SUSY

transformations. The F component may be extracted by either differentiation or integration

twice with respect to θ, as these operations are equivalent for Grassman variables:

L =

∫
d2θW (Φ) + h.c. (2.53)

The function W is known as the superpotential.

Kinetic terms can be attained by extracting the θ2θ̄2 term of a vector superfield given by a

real function of chiral superfields, which similarly leaves the action invariant under SUSY

transformations. This term is known as the Kahler potential or as a D term, since the θ2θ̄2

of a vector superfield contains the D field. The canonical Kahler potential is given by:

K =

∫
dθ2dθ̄2Φ∗Φ (2.54)

In order to develop a SUSY theory with interactions mediated by gauge bosons, we must

specify the the behavior of superfields with respect to gauge transformations. Chiral and

vector superfields transform under gauge transformation according to:

Φ→ exp(igΛ)Φ (2.55)

egV → eigΛegV e−igΛ
†
. (2.56)
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where V = VaT
a, Λ = ΛaT

a and Λa are chiral superfields. Alternative choices, such as a

real-valued function or general superfield, would cause Φ to no longer be a chiral superfield

after gauge transformation. One can confirm that the familiar component fields of Φ and V

transform in the same way as in non-SUSY gauge theories.

The canonical Kahler potential must be modified in order to maintain gauge invariance. As

in non-SUSY theories, the mediating vector bosons are utilized to cancel novel terms that

appear due to gauge transformation. The gauge invariant Kahler potential is given by:

K = Φ∗egV Φ (2.57)

Lastly, we must include kinetic terms for vector superfields. The chiral superfield

Wα = −1

4
D̄2e−VDαe

V (2.58)

is analogous to the field strength tensor of non-SUSY theories and is referred to as the

supersymmetric field strength. The D term of Tr[WαWα] leaves the action invariant under

SUSY transformations, and serves as a natural candidate to form gauge boson kinetic terms.

2.1.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is the minimal (in terms of matter

content) extension of the Standard Model that is supersymmetric. The MSSM proposes new

supersymmetric partners for each Standard Model particle seen in the previous section. Ad-

ditionally, two Higgs doublets are required in order to have consistent electroweak symmetry

breaking. The MSSM retains the SU(3)c×SU(2)L×U(1)Y gauge symmetry of the Standard

Model. The new fields as well as their charges with respect to the U(1)Y symmetry are given
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Chiral Superfields
Field Description Representation (SU(3)c, SU(2)L, U(1)Y )
Qi Left-handed quark doublet (3, 2, 1

3
)

ūR,i Left-handed anti-up quark (3̄, 1, −4
3
)

d̄R,i Left-handed anti-down quark (3̄, 1, 2
3
)

Li Left-handed lepton doublet (1, 2, −1)
¯̀
R,i Left-handed anti-lepton (1, 1, −2)
Hu Left-handed up Higgs doublet (1, 2, 1)
Hd Left-handed down Higgs doublet (1, 2, −1)

Vector Superfields
Field Description Representation (SU(3)c, SU(2)L, U(1)Y )
B U(1)Y vector superfield (1,1, 0)
W a SU(2)L vector superfields (1, 3̄, 0)
Ga SU(3)c vector superfields (8̄,1, 0)

Table 2.2: Particle content of the MSSM. Representations under which the fields transform
with respect to gauge transformations are given in the third column. For U(1)Y transforma-
tions, the hypercharge is given instead. The index i = 1, 2, 3 and runs over the 3 generations
of fermions, which differ only in mass.

in Table 2.2. The Lagrangian is composed of the superfield kinetic terms introduced in the

previous section, the superpotential, and a SUSY breaking sector.

For the fields of the MSSM, the most general renormalizable gauge invariant superpotential

is given by:

WRPV = µHuHd + Y ff ′

u HuQf ūR,f ′ + Y ff ′

d HdQf d̄R,f ′ + Y ff ′

L HuLf ¯̀
R,f ′

+ λijkLiLj`R,k + λ′ijkQiLj d̄R,k + λ′′ijkūR,id̄R,j d̄R,k + miLiHu. (2.59)

The last 4 terms in this expression are problematic as they lead to tree-level proton decay.

Proton lifetimes have been determined experimentally to be very large, and so these couplings

must either be 0 or extremely suppressed. In most discussions of the MSSM, as well as those

undertaken in this thesis, we impose a Z2 symmetry known as R-parity. R-parity can be

understood as mapping particle fields ψ → +ψ and sparticle fields ψ̃ → −ψ̃. This symmetry
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causes the problematic terms of Equation 2.59 to dissapear, leaving:

WMSSM = µHuHd + Y ff ′

u HuQf ūf ′ + Y ff ′

d HdQf d̄f ′ + Y ff ′

L HuLf ēf ′ . (2.60)

Imposing R-parity has significant phenomenological implications. First, we remark that each

term in the Lagrangian must have an even number of superpartners. Thus, production of

SUSY particles at experimental colliders must occur in pairs. Additionally, a SUSY particle

undergoing decay must produce at least one SUSY particle in the final state. Consequently,

the lightest supersymmetric particle (LSP) must be stable, as there is no lighter supersym-

metric particle that may appear in the final state. Due to its longterm stability, the LSP is

a natural dark matter candidate.

It is clear that supersymmetry must be broken at low energies, as sparticles have yet to be

detected in experiment, though unbroken SUSY would yield sparticles at the same mass as

their easily detected SM counterpart. Supersymmetry may be broken either spontaneously or

explicitly. The MSSM explicitly breaks supersymmetry by including all non-SUSY invariant

terms that are invariant under transformations of the MSSM gauge group and that do not

reintroduce quadratic divergences to the Higgs mass.6 Terms that do not introduce quadratic

divergences to the masses of scalar particles are termed “soft", and hence this sector of the

Lagrangian is known as the soft SUSY breaking Lagrangian.

Lsoft = −1

2

(
M1B̃B̃ +M2W̃

aW̃a +M3g̃
ag̃a

)
−
(
Aff

′

u Q̃fhu ˜̄uf ′ + Aff
′

d Q̃fhd
˜̄df ′ + Aff

′

e
˜̀
fhd ˜̄ef ′

)
−
(
Q̃†fmq,ff ′Q̃f ′ + ˜̀†

fm`,ff ′
˜̀
f ′ + ˜̄u†fmu,ff ′ ˜̄uf ′ +

˜̄d†fmd,ff ′
˜̄df ′ + ˜̄e†fme,ff ′ ˜̄ef ′

)
−
(
m2
hu |hu|

2 −m2
hd
|hd|2 −Bµhuhd

)
+ h.c. (2.61)

6The MSSM in this form is also sometimes referred to as the unconstrained MSSM, or uMSSM.
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We can clearly see that these terms are not invariant under SUSY transformation as they are

written in terms of sparticle fields rather than superfields. The first line provides mass terms

to the gauginos. The second line describes trilinear interactions between sparticle fields. The

third line provides masses and mixings to sfermions fields. The last line describes masses

and mixings between Higgs bosons.

The bino, wino, and higgsino fields are not mass eigenstates of the theory. Instead, they

form a multiplet ψ0 = (B̃, W̃ , h̃0
d, h̃

0
u) with mass terms given by -1

2
(ψ0)

†
Mχ0ψ0 + h.c. where

Mχ0 =



M1 0 −g1vd/
√

2 g1vu/
√

2

0 M2 g2vd/
√

2 −g2vu/
√

2

−g1vd/
√

2 g2vd/
√

2 0 −µ

g1vu/
√

2 −g2vu/
√

2 −µ 0.


(2.62)

The off-diagonal higgsino-bino and higgsino-wino couplings result from electroweak sym-

metry breaking and derive from Higgs-higgsino-gaugino interactions. The mass matrix is

Hermitian and may thus be diagonalized by a single matrix, which can then be absorbed

into the definition of ψ0 to yield mass eigenstates.

The mass eigenstates of this matrix are the neutralinos, which form from a superposition

of bino, wino, and higgsino states. They are referred to by their mass ordering χ0
i where

i = {1, 2, 3, 4}. The neutralinos are electrically neutral and χ0
1 is often the lightest sparticle

in the spectrum and thus serves as a promising cold dark matter candidate. In large regions

of the parameter space, the neutralinos take on nearly pure states. In such cases, the

neutralino is often referred to as its primary component. The charged wino and charged

higgsino fields are similarly not mass eigenstates of the theory. Instead, these states combine

to form a multiplet ψ± = (W̃+, h̃+
u , W̃

−, h̃−d ) which is then diagonizalized to form two mass

eigenstates, referred to as charginos.
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A careful accounting of all new parameters introduced by the MSSM shows that 124 pa-

rameters are required in order to make quantitative predictions [31]. The MSSM inherits

18 parameters from the Standard Model and contains 1 parameter analogous to the SM

Higgs mass. This leaves 105 genuinely novel parameters. This high dimensionality prohibits

extensive study of the parameter space.

Some of the terms in Equation 2.61 cause phenomenologically unviable processes at tree

level. The new phases of the theory cause novel CP violating processes. Off diagonal

elements in mass matrices and trilinear couplings introduce flavor changing neutral currents.

Additionally, mass differences between first and second generation sparticles cause large kaon

mixing. All of these processes are heavily constrained by experiment. The phenomenological

MSSM (pMSSM) enforces these experimental constraints by restricting to the subspace of

the MSSM where the coefficients of these terms are set to 0 [32]. This reduces the space to

19 novel parameters given in Table 2.3.

One can still account for theories of spontaneously broken supersymmetry since Equation

2.61 contains all possible terms that may break SUSY. A theory of spontaneously broken

supersymmetry will simply constrain the parameters appearing in these terms. The con-

strained MSSM (cMSSM) is a theory where SUSY breaking is mediated via gravitational

interactions between MSSM fields and a hidden sector of fields which break SUSY and are

singlets with respect to the MSSM gauge group.7 The hidden sector is posited to be in-

sensitive to MSSM gauge quantum numbers so that the soft Lagrangian only depends on a

common gaugino mass, a common sfermion mass, and a common trilinear coupling. These

universal parameters, along with the higgsino mixing parameter, form the cMSSM parameter

space. The theory may then be reparameterized in terms of the ratio of Higgs vacuum ex-
7The cMSSM may refer to multiple theories of supersymmetry breaking which yield identical parameter

spaces. Most commonly discussed is minimal supergravity (mSUGRA)[33, 34, 35, 36], but also included is
gauge mediated supersymmetry breaking [37, 38, 39] and anomaly mediated supersymmetry breaking.[40, 41]
In this thesis, we use cMSSM to refer to the mSUGRA scenario.
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Parameter Description
|M1| Bino mass
|M2| Wino mass
M3 Gluino mass
|µ| Bilinear Higgs mass
|At| Trilinear top coupling
|Ab| Trilinear bottom coupling
|Aτ | Trilinear τ coupling
MA Pseudo-scalar Higgs mass
mL̃1

1st gen. l.h. slepton mass
mẽ1 1st gen. r.h. slepton mass
mL̃3

3rd gen. l.h. slepton mass
mẽ3 3rd gen. r.h. slepton mass
mQ̃1

1st gen. l.h. squark mass
mũ1 1st gen. r.h. u-type squark mass
md̃1

1st gen. r.h. d-type squark mass
mQ̃3

3rd gen. l.h. squark mass
mũ3 3rd gen. r.h. u-type squark mass
md̃3

3rd gen. r.h. d-type squark mass
tan β Ratio of Higgs VEVs

Table 2.3: Parameters of the pMSSM. “Left-handed” and “right-handed” are abbreviated by
l.h. and r.h., respectively.
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Parameter Description
m0 Universal sfermion mass
m1/2 Universal gaugino mass
A0 Universal trilinear coupling

tan β Ratio of Higgs VEVs
sign(µ) Sign of higgsino mixing parameter

Table 2.4: The parameters of the cMSSM. The parameter sign(µ) = {−1, 1} is discrete.
The remaining parameters are continuous.

pectation values (VEVs) and the sign of the higgsino mixing parameter. This is summarized

in Table 2.4.

2.1.4 Simplified Models

Simplified models attempt to present an effective description of physics at a relatively low

energy scale in terms of relatively few parameters [42]. There is no illusion that such a model

is a fundamental description of physics. In fact, simplified models are often the limit of a

fully developed BSM theory, such as the MSSM, where many particles and interactions have

been integrated out.

There are multiple benefits to using simplified models as opposed to fully developed BSM

theories. Multiple BSM theories may have the same simplified model limit, allowing simpli-

fied model studies to cover a multitude of BSM scenarios. Simplified model results are thus

said to be “model independent", or independent of the details of any fundamental, higher

energy theoretical description.

An additional advantage of simplified models is that, by design, the parameter spaces are low

dimensional, containing only the operators and fields that are immediately relevant to the

process described by the model. As such, explorations of simplified model phenomenology are

computationally cheap and limits are relatively easy to set and communicate when compared

to high dimensional parameter spaces.

28



An example of a simplified model is presented in the next chapter, where we consider a

simplified model that describes the addition of a heavy Z ′ boson to the Standard Model.

The Z ′ boson is posited to have identical quantum numbers to the SM Z boson with larger

mass. Such a boson often arises in BSM models [43]. All other particles and interactions of

the fundamental theory are assumed to be negligible, so that the only free parameters of the

theory are the mass of the new boson and its coupling to SM fermions.

2.2 Machine Learning

2.2.1 Supervised Learning

Assume a set of m pairs {(xi, f(xi))} is given, where xi ∼ p(x). In general, xi ∈ Rn is

referred to as a feature vector and f(xi) ∈ Rd is referred to as the target. The target vector

may be continuous or discrete, and the mapping f may be extremely complicated or have no

closed form available. The set of {(xi, f(xi))} pairs is known as the training set. The goal of

supervised learning is to construct a map f̂ : Rn → Rd such that f̂(xi) = f(xi). Moreover, f̂

is constructed to generalize well to samples outside of the initial set, so that f̂(x) reasonably

approximates f(x) for arbitrary x ∼ p(x).

Supervised learning can generally be split into two types of problems: regression and classifi-

cation. Regression problems attempt to model continuous y whereas classification problems

attempt to predict binary (0 or 1) or categorical y. We will review supervised learning in four

parts: model definition, optimization, evaluation, and regularization. Importantly, though,

these are often logically coupled, and so a linear reading may require revisiting and refining

previously introduced concepts. Much of the discussion follows the references [44, 45].
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Model Definition

Model definition refers to specifying the form of f̂ . The simplest example of a machine

learning model is nearest neighbor regression, which evaluates f̂(x) = f(xj), where xj is

the closest point in the training set to x. This is easily generalized to k nearest neighbors

regression, where f̂(x) = 〈f(xj)〉 and the average is taken over xj in the set of k points

closest to x in the training set.

Machine learning models can be made more expressive by introducing parametric dependen-

cies to f̂ . The simplest example of such a model is linear regression, where the output is a

linear function of x:

f̂(x) = wTx+ b. (2.63)

The vector w and b are parameters of the model, which may also be referred to as the

weights and bias, respectively.8 For convenient notation, we will assume the feature vector

x is augmented with a 1, so that the bias may be included in w. It is clear that the quality

of the machine learning model depends crucially on the choice of w. In the next part of this

section, we review a method for choosing the optimal weights. The analogous linear model

for binary classification problems is logistic regression, which includes a sigmoid function to

achieve outputs in the range (0, 1) i.e. f̂(x) = σ(wTx), where:

σ(z) =
1

1 + e−z
. (2.64)

Linear models are limited by their inability to capture nonlinear dependencies on the features.

While the feature vector may be augmented to include nonlinear transformations of features,

8A more explicit notation would include the parametric dependence of f̂ on the weights and bias i.e.
f̂(x;w, b), though this dependence will be left as understood.
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this introduces the need for engineering relevant features and increases model complexity

which may cause issues with generalization.

Instead, one can choose to employ a nonlinear model. Nonlinear regression models include

support vector machines, kernel ridge regression, and gaussian process regression among

others. These make use of the kernel trick, where x is implicitly projected into a higher

(potentially infinite) dimensional space and inner products between x and xi in the training

set are used in the prediction f̂ .

Neural networks are an alternative to these methods which scale well with the number of

input data. Neural networks transform the feature vector by iteratively performing matrix

multiplication and function evaluation. That is:

f̂(x) = a(WDa(WD−1a(...a(W1x)))) (2.65)

where Wi are real matrices of weights and a is a function, known as the activation function.

The feature vector x is also referred to as the input layer and the full evaluation is referred

to as the output layer. Applications of a in between these two layers are known as hidden

layers. D is referred to as the depth of the neural network. Neural networks with more than

1 hidden layer are typically called deep networks.

Neural networks are often introduced diagrammatically as in Figure 2.1, where the relevant

parts have been labelled. Common choices for the activation function are sigmoid, softmax,

rectified linear unit (ReLU). It is important to note that a must be nonlinear in order to be

able to model nonlinear dependencies on the features.
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... ...
...

f̂(x)x

x

W1x

a(W1x)

W2a(W1x)

a(W2a(W1x))

Figure 2.1: A diagram of a neural network.

Name Problem Type Function

L2 Regression L = 1
2m

m∑
i=1

(
f̂(xi)− f(xi)

)2

L1 Regression L = 1
m

m∑
i=1

∣∣∣f̂(xi)− f(xi)
∣∣∣

Cross Entropy Classification L = − 1
m

m∑
i=1

yTi log

(
e−f(xi)∑C

j=1(e−f(xi))j

)
Cross Entropy (Binary) Classification L = − 1

m

m∑
i=1

[
f(xi) log(f̂(xi))+

(1− f(xi)) log(1− f̂(xi))
]

Table 2.5: Common loss functions for supervised learning problems and their different use
cases. For multi-class cross entropy loss with C classes, yi is assumed to be one-hot encoded;
it is a C dimensional vector that is 1 for the correct class and 0 elsewhere.

Model Optimization

As seen in linear regression and neural networks, the performance of many supervised learning

models is critically dependent upon the weights. The process of determining the optimal

model weights is known as training. To determine the weights of a model, we first define a

loss function L to quantify how poorly a model performs on the given training set. Common

choices for loss functions are summarized in Table 2.5. Once the performance of the model has
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been meaningfully quantified, the learning problem is then transformed into an optimization

problem. That is, the weights of the model are chosen so that the loss function is minimized.

Loss functions may be minimized either analytically (where available) or numerically. An-

alytical optimizations may be performed using calculus of variations, which provide closed

form solutions to the equations ∂L
∂w

= 0. Solutions exist for linear regression and kernel ridge

regression, however, the implementation of analytical solutions typically scale poorly with

the amount of training data. Additionally, many models do not have analytical solutions

available, such as SVMs and neural networks.

Numerical algorithms are more commonly used to optimize machine learning models. These

compute derivatives of the loss function to inform updates to the weights. This is iterated

until the model reaches a global or local minimum, or a certain number of iterations is

reached. The simplest numerical optimization algorithm is gradient descent, which updates

the weights according to:

w ← w − α∂L
∂w

(2.66)

Gradient descent steps in the direction of the negative gradient until a minimum in the loss

function is reached. In this equation, α is a hyperparameter, meaning that it is an input to

the model which must be provided beforehand. If α is too small, convergence to the minimum

may be very slow, and the model is more likely to become stuck in a local minimum. If α is

too large, the model will continuously skip beyond the minimum and the loss will diverge.

A detailed method of selecting hyperparameters is given in the portion on regularization.

Many modifications can be made to gradient descent. A common variant of gradient descent

is stochastic gradient descent [46], where instead of calculating the derivative of the loss on

33



the entire training set, only a batch of training set samples is used at a time.9 This tends

to increase the convergence rate of the model, but the final trained model will tend to be

slightly displaced from the minimum evaluated on the full training set. Additionally, one

can include higher order derivative information, such as the Hessian, in order to incorporate

curvature information into the optimization steps [47].

One can also include a momentum term in the weight updates. This results in faster progress

towards the minimum as momentum builds up through consecutive steps in the same direc-

tion. It also allows the model to coast through flat regions of the loss function and escape

from shallow, non-optimal local minima. Finally, one can perform adaptive adjustments

to the learning rate over the course of the optimization. Common numerical optimization

algorithms include gradient descent, stochastic gradient descent, RMSProp [48], Adadelta

[49], Adamax [50], Adam [50], and AMSGrad [51], with Adam being an extremely popular

choice for training neural networks.

When optimizing neural networks, all weights cannot be updated simultaneously with a

single derivative evaluation. Instead, weights are updated beginning with the output layer

and updates are “propagated" back until the input layer is reached. Hence, the algorithm

for numerical optimization of neural networks is known as backpropagation [52].

Model Evaluation

Once a model has been chosen and trained, its performance must be evaluated to determine

if the training process was successful. A first method of measuring the performance of a

model is by plotting the average loss computed on the training set as a function of complete
9Some reserve “stochastic gradient descent" for the case where the batch size is 1 and instead use the

name “minibatch gradient descent" for batch sizes larger than 1. For this thesis we will refer to both of these
cases as stochastic gradient descent.
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iterations through the training data, which is known as the learning curve. The average loss

is expected to decrease as training continues.

Low training loss alone is not a good performance metric. This is because good performance

on the training data may not always imply good performance on data outside of the training

set. In fact, since the weights of a model are determined by measuring performance on the

training set, the model will tend to perform better on the training set than on out of sample

data. To measure the performance of the model on data outside of the training sample, a

fraction of the initial set of data points, known as the test set, is set aside and kept hidden

during training. Following training, the average loss of the model evaluated on the test set

may be evaluated to infer performance on unseen data. One may also evaluate the testing

loss at each epoch to plot a learning curve for the test data.

We have already seen that many models require hyperparameters to be input before predic-

tions may be made. Examples include the learning rate α and the size and width of layers

in a neural network. Additional sources of hyperparameters will be introduced in the next

section on regularization. The set of hyperparameters form a low dimensional space which

typically does not have readily available gradients. A tempting way to determine the best

choice of hyperparameters is to randomly sample this space to find the configuration with

the lowest testing error. However, this will cause the model to overestimate its ability to

generalize. Just as the parameters of the model are fit to the training set and so the model

typically outperforms on the training set, the hyperparameters in such a case would be fit

to the testing set, and so the model will outperform on the testing set.

A solution is to instead introduce a cross validation set. This is a subset of the training set

that is withheld during the optimization of weights and is only used to determine the best

choice of hyperparameters. The optimization of the cross validation error within the space of

hyperparameters may be performed either by grid search, random scan, or other derivative-

free optimization algorithms, such as genetic algorithms [53] or bayesian optimization [54].
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This is known as hold out cross validation. More involved cross validation procedures, such as

k folds cross validation, repeated k folds cross validation, and nested k folds cross validation

aim to increase the data efficiency of this process. In typical deep learning applications,

hold out cross validation is often preferred as the computational cost of alternative cross

validation methods far outweighs the benefits of increased data efficiency.

For regression problems, low mean squared error or mean absolute error on the test set is

typically sufficient to determine whether a supervised model has been successfully trained.

For classification problems, the cross entropy loss is typically used as a performance metric

because it is sensitive not only to the accuracy of a prediction, but also the confidence in that

prediction. It is often also advantageous to analyze elements of the confusion matrix and

functions of these elements, depending on the intended use of the classifier. These include

ROC curves, precision recall curves, AUC, and F score among others [55].

Regularization

Thus far, the training procedure defines the best model as that which optimizes a perfor-

mance measure on the training set. However, the goal of supervised learning includes the

ability for models to generalize well to unseen data. The optimization of weights with no

regard towards ability to generalize often causes the trained model to perform very well on

the training set but generalize poorly to data in the testing set. This is known as overfitting,

or the model is said to have high variance. Regularization of a machine learning model is

any attempt to increase the ability of the model to generalize to data beyond the training

set, potentially at the expense of performance on the training set.

One method of regularization is to include an additional term in the loss function to incen-

tivize the model to choose smaller weights, as smaller weights will tend to produce smoother

functions. For instance, instead of optimizing a loss function described in Table 2.5, one may
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optimize Lregularized = L+λwTw. This type of regularization is known as weight decay. One

may also choose to use an L1 norm instead: Lregularized = L+λ
∑

i |wi|.10 The regularization

parameter λ is a hyperparameter that must be input to the model. Very large λ will cause

all weights to tend toward 0. Such models will underfit the training data, or will fail to

capture variance in the training set and would be said to have high bias. Very small λ will

only minimally regularize the model and would tend to overfit the training data.

Alternative methods of regularization are model specific. For instance, one may randomly

exclude neurons in a neural network while proportionally scaling the output of surviving

neurons, as in dropout [56]. Batch normalization is also believed to have a regularizing effect

on neural networks [57].

Finally, one may regularize a model by altering the training procedure. One example of this

is data augmentation, where perturbations or symmetric transformations of training data

are performed in order to augment the training set. Another is early stopping, where cross

validation error is computed at each epoch of training, and the model from the epoch with

lowest cross validation error is selected as the final model.

10For both regularized loss functions, the bias term is not included in the sum over weights.
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Chapter 3

Resonance searches with Machine

Learned Likelihood Ratios

This chapter is heavily based on work previously published in collaboration with Daniel White-

son [58].

3.1 Introduction

A primary focus of the physics program at the Large Hadron Collider is the search for

beyond the standard model (BSM) physics. Many BSM models predict the existence of

heavy, short lived particles that rapidly decay to familiar standard model particles, leaving

a telling experimental signature known as a resonance. Historically, the discovery of new

resonances has revolutionized our understanding and confidence in models of particle physics

[59, 60, 61, 62, 63, 64, 65]. A similar discovery made in the current age would likely have a

similar impact.

38



Many searches for BSM resonances involve fitting signal and background spectra in the invari-

ant mass of the final state particles, allowing one to construct a likelihood ratio [66, 67, 68, 69].

Recently, this has been greatly improved by utilizing machine learning at various steps in

the process [70, 71]. However, relying solely on the invariant mass neglects a great deal of

the available information when determining the likelihood ratio of an event. The full event

information is given by the set of four-momenta of every particle in the final state. Summa-

rizing this relatively high dimensional information with invariant mass plausibly results in a

significant amount of information loss.

Certain methods have been developed that aim to overcome this information loss [72, 73,

74, 75, 76, 77]. The matrix-element method searches for new particles by approximating the

detector response with a simple transfer function and marginalizing matrix elements over

the unseen detector degrees of freedom [78, 79, 80]. This approach uses multivariate detector

level output in determing the likelihood ratio, but critically relies on the choice of transfer

functions and can often be very computationally expensive to perform.

In this chapter, we implement a new method of analysis, originally applied to effective field

theories (EFTs), which machine learns a likelihood ratio from latent information that is

extracted from simulations [81, 82, 83, 9]. Similar to the matrix element method, this new

method utilizes multivariate output of a detected event and so it is expected to provide

similar improvements in performance. However, it removes the need to approximate the

detector using transfer functions, and thus may be viewed as a direct improvement over the

matrix element method.

Transferring the methods of Refs. [81, 82, 83, 9] from EFTs to resonance searches is non-

trivial for several reasons. First, EFTs have a morphing structure, allowing squared matrix

elements to be written as simple polynomials of the parameters of the theory [84, 81]. Con-

sequently, by evaluating the squared matrix element of an event at a handful of “benchmark"

points in the parameter space, one is able to infer the squared matrix element for arbitrary
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theory parameters, affording significant improvements in computational efficiency. However,

resonanace searches do not have a complete morphing structure, as the squared matrix el-

ement typically has a non-polynomial dependence on mass. As such, the squared matrix

element of an event must be evaluated at every point in the parameter space.

Additionally, the most successful methods for EFTs rely on using the derivative of the log

likelihood ratio with respect to the theory parameters, known as the score, to successfully

train the machine learning models. Scores are readily available in EFT calculations, but must

be numerically calculated for resonance searches, which greatly increases the computational

cost of the analysis. As a result, we are constrained to use the less sample efficient methods,

which do not rely on this information during training. This work is the first to show that

these difficulties can be overcome, and that these methods may still provide substantial

improvements over traditional methods beyond the context of EFTs.

In Section II, we review the theory behind performing a resonance search and review the

new method that we use to calculate the likelihood ratio. In Section III, we will introduce a

simple BSM model and detail how the new framework will be used to search for a resonance

in the model. In Section IV, we show the results of our resonance search. In Section V, we

discuss the implications of this work and possible future directions.

3.2 Method

Let θ denote a set of theory parameters. Using a standard suite of programs, we can produce

a set of simulated events X = {x ∼ p(x|θ)}, where x is a random variable of detector level

observables and is used interchangably as a realization of this random variable. However,

the inverse problem of determining which θ produced a set of events X is extremely difficult.

The Neyman-Pearson lemma shows that the optimal discriminator between two competing
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theories, parameterized by θ and θ0 respectively, is the likelihood ratio:

r(x|θ, θ0) =
p(x|θ)
p(x|θ0)

=

∫
dz p(x|z)p(z|θ)∫
dz p(x|z)p(z|θ0)

, (3.1)

where z is the latent parton level four momenta of all particles in the final state, which is

unobservable in experiment.

For typical showering and detector simulations, p(x|z) is intractible due to the extremely large

number of ways an event may shower and be detected. For this reason, r(x|θ, θ0) is typically

calculated by attempting to approximate p(x|θ) and p(x|θ0) directly, using histograms of

x. The number of data points required to adequately populate the bins of the histogram

scales exponentially with the dimension of x, which is known as the curse of dimensionality.

As a result, this approach becomes impractical as the dimension of x becomes moderately

large. As such, histograms usually are constructed in only one or two summary statistics of

x, which may result in information loss relative to higher dimensional approaches.

A recent study with effective field theories has offered an alternative method of calculating

r(x|θ, θ0) as a function of the detector level output [81]. The remainder of this section follows

the discussions in Refs. [81, 82, 83, 9] very closely. We first consider the joint likelihood

ratio:

r(x, z|θ, θ0) =
p(x|z)p(z|θ)
p(x|z)p(z|θ0)

=
p(z|θ)
p(z|θ0)

. (3.2)

All intractable parts of the joint likelihood ratio cancel, and for simulated events, we can

calculate r(x, z|θ, θ0) in terms of tractible matrix elements as

r(x, z|θ, θ0) =
σ(θ)−1|M(z|θ)|2

σ(θ0)−1|M(z|θ0)|2
, (3.3)
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where σ gives the cross section as a function of theory parameters andM gives the matrix

element as a function of parton level momenta and theory parameters. The joint likelihood

ratio cannot be calculated for observed data, as it requires knowledge of z which is not well

defined in experiment. However, in the following paragraphs, we demonstrate that machine

learning the joint likelihood ratio of simulated events will result in the true likelihood ratio

in Eq. (3.1) under a specific set of conditions.

Consider a function r̂(x|θ, θ0) that attempts to predict r(x, z|θ, θ0) given only information

of x. We can quantify the error of the function when evaluated on a set of data (x, z) ∼

ptrain(x, z) with the functional:

L[r̂] =

∫ ∫
dx dz ptrain(x, z) |r̂(x|θ, θ0)− r(x, z|θ, θ0)|2 . (3.4)

Optimizing this loss requires varying the functional with respect to r̂(x|θ, θ0):

δL
δr̂

= 2

∫
dz ptrain(x, z) (r̂(x|θ, θ0)− r(x, z|θ, θ0)) (3.5)

= 2ptrain(x)r̂(x|θ, θ0)− 2

∫
dz ptrain(x, z)r(x, z|θ, θ0). (3.6)

The loss is extremized by setting this variation to 0, yielding:

r̂(x|θ, θ0) =
1

ptrain(x, z)

∫
dz ptrain(x, z)r(x, z|θ, θ0). (3.7)

This result holds for an arbitrarily sampled training set. The utility of this solution is clear

when we choose the training distribution so that ptrain(x, z) = p(x, z|θ0). When the data is
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sampled with this distribution, Equation 3.7 greatly simplifies:

r̂(x|θ, θ0) =
1

p(x|θ0)

∫
dz p(x, z|θ0)

p(x, z|θ)
p(x, z|θ0)

(3.8)

=
p(x|θ)
p(x|θ0)

(3.9)

Thus, using a deep neural network to represent r̂(x|θ, θ0), we can use standard optimization

techniques employed in machine learning to train an estimator that will converge to the

familiar likelihood ratio of Equation 3.1 in the limit of infinite data, an infinitely large

neural network, and perfect loss optimization. In realistic implementations, deviations from

the true likelihood ratio may occur due to the effect of finite datasets, finite neural networks,

and inefficient optimization. This likelihood depends only on x, and so it can be evaluated

for simulated and observed events alike.

We can use the joint likelihood ratio to construct alternative, more complicated loss func-

tionals that similarly converge to the true likelihood ratio. A summary of these methods as

well as their different properties is found in the references [81, 83]. In this work, we find the

ŝ(x|θ, θ0) that minimizes the ALICE (approximate likelihood with improved cross-entropy

estimator) loss functional, which is given by:

L[ŝ] = −
∫ ∫

dx dz p(x, z|θ0)
[
s(x, z|θ, θ0) log(ŝ(x|θ, θ0))+

(1 − s(x, z|θ, θ0)) log(1 − ŝ(x|θ, θ0))
]
, (3.10)

where we have defined

s(x, z|θ, θ0) =
1

1 + r(x, z|θ, θ0)
. (3.11)
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With ŝ(x|θ, θ0), we can form an estimator for the likelihood ratio

r̂(x|θ, θ0) =
1− ŝ(x|θ, θ0)

ŝ(x|θ, θ0)
, (3.12)

which similarly converges to the true likelihood ratio. The minimization is performed over

a balanced training set, with an equal number of events drawn from p(x|θ) and p(x|θ0).

Given the likelihood ratio of each event, the likelihood ratio over X is trivially found:

r(X , θ, θ0) =
∏
x∈X

r(x|θ, θ0) (3.13)

There are a handful of ways to diagnose mismodelling and poor convergence. Errors that

result from simulations mismodelling the physical process can be addressed by introducing

nuisance parameters and profiling over them [9, 85]. Errors due to poor convergence of the

neural network can be addressed by increasing network complexity, increasing the training

set size, or tuning learning parameters. Among other methods, poor convergence can be

diagnosed by extensively sampling many p(x|θ) and p(x|θ0) and visually comparing the

distributions p(x|θ) and r̂(x|θ, θ0)p(x|θ0). However, in higher dimensions, it may be necessary

to compare distributions of summary statistics instead [81, 85].

Built into this approach, as well as many standard approaches, is the assumption that the

dataset X is accurately modeled by a simulated distribution p(x|θ), where θ is possibly

augmented by nusiance parameters. As with all simulation-based methods, inaccuracies

in the model will lead to systematic uncertainties in the results. We also highlight the

assumption that parton level four momenta z can be associated to each event x in the

dataset. This assumption is satisfied for Monte Carlo derived background estimates, but

would be difficult to satisfy with fully data driven background estimates.
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3.3 A Toy Problem

We study a simple model that allows for analytical solutions in order to better present the

concepts of the previous section. Consider constructing p(x|µ) from the distributions:

p(x|z) =
1√

2πσs
e
− (x−z)2

2σ2s (3.14)

p(z|µ) =
1√
2π
e−

(z−µ)2
2 . (3.15)

To complete the analogy to experiments at high energy colliders, p(z|µ) may model a hard

scattering process and the distribution p(x|z) models smearing due to detector effects. For

this example, the integral for p(x|µ) is tractable

p(x|µ) =

∫
dz p(x|z)p(z|µ) (3.16)

=

√
1

2π(σ2
s + 1)

e
− (x−µ)2

2(σ2s+1) , (3.17)

and so the likelihood ratio may be written

r(x|µ, µ0) = e
2(µ−µ0)x−(µ2−µ20)

2(σ2s+1) . (3.18)

We now introduce a parameterized model r̂(x|θ, θ0) which attempts to predict the joint

likelihood p(x|z)p(z|µ)
p(x|z)p(z|µ0)

with only knowledge of x. We choose the model r̂(x|θ, θ0) = eax+b and

optimize the loss

L[r̂] =

∫ ∫
dx dz ptrain(x, z) |r̂(x|θ, θ0)− r(x, z|θ, θ0)|2 (3.19)

with ptrain(x, z) = p(x, z|µ0) to determine the best value of parameters a and b.
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The model weights a and b may be learned analytically:

∂L
∂a

= 0 =⇒ µ =
1√

2π(σ2
s + 1)

∫
dx xe

− (x−µ0)
2

2(σ2s+1) eax+b (3.20)

∂L
∂b

= 0 =⇒ 1 =
1√

2π(σ2
s + 1)

∫
dx e

− (x−µ0)
2

2(σ2s+1) eax+b (3.21)

This system of equations is solved by

a =
2(µ− µ0)

2(σ2
s + 1)

(3.22)

b =
µ2 − µ2

0

2(σ2
s + 1)

. (3.23)

Comparison with the analytic solution given in Equation 3.18 shows agreement between the

solution derived from direct integration and the optimized machine learning model.

It is worth highlighting the differences in the computations required for each approach. The

analytical solution of Equation 3.18 required evaluating the integral appearing in Equa-

tion 3.16. The distributions p(x|z) and p(z|µ) were intentionally defined so that this integral

was tractable, but this is not generally the case. A numerical approximation of Equation 3.16

would not be a viable alternative as each x would require its own numerical integral over z.1

On the other hand, the machine learning model required only the optimization of Equation

3.19 with respect to the model parameters. An analytic solution to the optimization problem

also required evaluating integrals of the sort found in Equation 3.16. However, numerical

solutions do not require such integrals. Additionally, since x is integrated instead of being

held fixed as before, any integrals appearing in the optimization may be approximated using

a finite set of samples as is typical in machine learning. We thus see that the difficult

integration problem of the former approach is cast into a familiar optimization problem in

the latter approach.
1There would also be practical difficulties with such an integral. Typically detector simulations stochas-

tically map z to x. One would need to invert this mapping in order to hold x fixed.
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3.4 Experiment

We consider collisions qq̄ → qq̄ in the standard model with a massive Z ′ boson included

[86, 87]. The θ that parameterizes this theory is θ = (MZ′ , gZ′), where MZ′ is the mass

of the Z ′ boson and gZ′ is its coupling to standard model quarks. We attempt to find the

Z ′ resonance using two different methods of calculating the likelihood ratio: the ALICE

approach described above and the benchmark histogram-based approach, utilized in many

current LHC searches [88, 89, 90, 91].

We sample 104 events at every point on a grid in θ-space spanning MZ′ ∈ [275, 325] GeV

and gZ′ ∈ [0, 2], with grid spacing ∆MZ′ = 5 GeV, ∆gZ′ = .2, yielding a total of 1.21× 106

weighted events. We use a constant width ΓZ′ = 2.4 GeV for every theory in the grid.

Events are sampled using MadMiner [9], which generates, showers, and detects events using

MadGraph v2.6.5, Pythia8 and Delphes, respectively [10, 11, 12]. Jets are reconstructed

using the anti-kT algorithm with distance parameter R = .5 [92]. Events where more or

fewer than two jets are detected are discarded.

For each event, our observables x consist of the four-vector of each reconstructed jet. A cut is

placed on the invariant mass so that mjj ∈ [150, 450] GeV and on the jet transverse momenta

such that pT > 20 GeV. For each sample, we calculate the tree-level joint likelihood ratio

at every other grid point, which MadMiner performs by using Madgraph’s reweight feature

[93]. The joint likelihood ratios are then used to unweight the samples in preparation for

machine learning.

We focus on a qualitative assessment of the application of machine learned likelihood ratios

to resonance searches. As such, we neglect additional complications that may arise in an

experimental setting that are not expected to affect qualitative results, such as pile up

interactions, trigger strategies, the dependence of ΓZ′ on MZ′ , or additional diagrams that

47



Table 3.1: Table of hyperparamaters used to the train neural network

Hyperparameter Value
Activation function tanh

Number of hidden layers 3
Neurons per hidden layer 12

Initial learning rate 2.2× 10−3

Final learning rate 10−4

Learning rate decay schedule Linear
Optimizer AMSGrad
Batch Size 128

Validation Split .25
Number of Epochs 100

Training Samples (unweighted) 106

θ0 (300 GeV, 2.0)

may contribute to the detected final state. An interesting direction for future study would

be to incorporate these effects into the analysis.

We use MadMiner to train a neural network capable of calculating r(x|θ, θ0) using the ALICE

loss functional. We parameterize the dependence on θ, as described in Refs. [81, 94], which

allows us to evaluate r(x|θ, θ0) at any θ in the parameter space using a single neural network.

The neural network is trained with hyperparameters given in Table 3.1 to minimize the loss

in Equation 3.10. We fix θ0 = (300 GeV, 2.0), though results should be independent of this

choice.

We also calculate the likelihood ratio from histograms. For this method, we bin events

sampled from p(x|θ) and p(x|θ0) in invariant mass, and the likelihood ratio is again given by

the ratio of normalized counts in each bin. We use a fixed bin size of 20 GeV at all points in

the parameter space.

We separately generate a test dataset Xtest of 10000 events with θtest = (285 GeV, 1.2) and

compare the results of a resonance search using our machine learned r̂(x|θ, θ0) to one using

r(x|θ, θ0) calculated from histograms. The test set is used to calculate expected p-values for

N test events in the asymptotic limit. In this work, we take N = 50. To demonstrate the
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Figure 3.1: Distributions of invariant mass plotted for events drawn from θ = (285 GeV, 1.0)
(orange) and θ0 = (315 GeV, 1.0) (blue). We use these histograms to calculate the likelihood
ratio, given by the ratio of counts in each bin.

limit setting abilities of these methods, we follow the example in Ref. [81]. We assume an

asymptotically large test set and calculate

pθ = exp (N〈log r(x|θ, θMLE)〉x∈Xtest) , (3.24)

where θMLE is the parameters of the maximum likelihood estimate, which is the θ that

maximizes r(Xtest, θ, θ0). This expression takes a simple form because the dimension of our

parameter space is two.

Before presenting the results to the full problem described above, we attempt to develop

an intuition regarding all of the likelihood ratios discussed thus far. For this, we limit our

analysis to the set of events drawn from θ = (285 GeV, 1.0) and θ0 = (315 GeV, 1.0). In

Figure 3.1, we show histograms in invariant mass for events drawn from θ and events drawn

from θ0. The ratio of counts in each bin gives the likelihood ratio if the invariant mass is the

only information available. The logarithm of this likelihood ratio is plotted as the grey line

in Figure 3.2.
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Figure 3.2: A comparison between the log likelihood ratio (grey, calculated using histograms
in Figure 3.1), the expected machine learned log likelihood ratio (blue), and the expected
log joint likelihood ratio (magenta) for events sampled from θ = (285 GeV, 1.0) (solid) and
θ0 = (315 GeV, 1.0) (dashed). Expectations are calculated with respect to all events that
lie within the given invariant mass bin. We remark that the expected value of rhist(x|θ, θ0)
in a bin does not depend on the distribution from which an event is sampled, as only the
number of events within each bin will change. The expected machine learned likelihood ratio
is closer than the histogram approach to the expected joint likelihood ratio, which represents
the optimal expected log likelihood ratio if given complete parton information of every event.
The neural network approaches are not well converged at large invariant masses due to the
lack of events in this region of the feature space.
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The next step is to compare the likelihood ratio calculated from histograms to the machine-

learned likelihood ratio as well as the joint likelihood ratio, which benefits from parton-level

information. A neural network is used to discriminate between events sampled from θ and θ0

by minimizing the ALICE loss functional. To compare this to the benchmark result, we show

the expected value of the machine learned log likelihood ratio within each invariant mass

bin. A full justification of this comparison is provided in section A of the appendix. This

expectation is plotted for events sampled from p(x|θ) (solid) and p(x|θ0) (dashed) in blue.

The neural network uses multivariate detector level information, which allows it to make

more powerful predictions than the histogram based approach, which only uses invariant

mass.

We also plot the expected log joint likelihood ratio within each invariant mass bin in magenta

for events drawn from p(x|θ) (solid) and p(x|θ0) (dashed). The expected joint likelihood ratio

represents the most powerful expected likelihood ratios possible, as it requires knowledge of

all considered parton level event information. We see that the machine learning approach is

able to use the extra available information to modestly outperform the histogram approach.

3.5 Results

In Figure 3.3, we plot p values as a function of mass and coupling, calculated using the

ALICE likelihood ratio. In Figure 3.4, we show the same plot, calculated using histogram

based likelihood ratios. While both approaches are capable of selecting the correct region of

θ-space, the results are significantly less constrained for the histogram approach than when

using the ALICE based likelihood ratio.

We remark that only kinematic information is used to form the likelihood ratios used in

Figures 3.3 and 3.4. A full analysis would include total rate information. However, the
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Figure 3.3: We show the expected p values plotted against mass and coupling for an Asimov
test set drawn from the theory (285 GeV, 1.2). The p values are calculated using our machine
learned likelihood ratio. The true value of θ is marked with a black x. In comparison to
Figure 3.4, p values are more peaked around the true value of θ.

Figure 3.4: We show the expected p values plotted against mass and coupling for an Asi-
mov test set drawn from the theory (285 GeV, 1.2). The p values are calculated using our
likelihood ratio derived from histograms. The true value of θ is marked with a black x. In
contrast to Figure 3.3, p values are more dispersed around the true value of θ.
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Figure 3.5: We show the expected p values plotted against mass and coupling for an Asimov
test set drawn from the theory (285 GeV, 1.2). The p values are calculated using our machine
learned likelihood ratio trained only on invariant mass. The true value of θ is marked with
a black x.

contribution of rate information to the log likelihood ratio is independent of the method

used to calculate the kinematic portion of the log likelihood ratio, and thus is unable to

change the relative ordering of the methods.

We believe that the ALICE likelihood ratio is able to outperform histogram based approaches

due to the increased information utilized by ALICE. That is, the ALICE likelihood ratio

uses information of the full four-momenta of both final state jets. On the other hand, the

histogram based approach only has access to the invariant mass of the jet pair and cannot

be extended to use additional observables due to the curse of dimensionality.

A possible critique of this interpretation is that the histogram based approach does not

perform as well as ALICE because it requires use of a binned PDF, which may result in

information loss. To address this concern, we also train a neural network using the ALICE

loss functional to predict the likelihood ratio as a function of only invariant mass, instead

of the full eight-dimensional dimensional jet four-momenta. This can be considered the
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continuous limit of the histogram based likelihood ratio, as it avoids the need for binning

while only using the information in invariant mass. The expected p values plotted over θ are

shown in Figure 3.5 and the hyperparameters used to train our neural network are shown in

Table 3.2.

We see that the machine learned likelihood ratio trained only on invariant mass performs

very similarly to the histogram result. This indicates there is not a substantial difference in

available information due to binning effects.

In a final attempt to uncover the extra information used by the fully multivariate ALICE

likelihood ratio, we train an additional neural network with the ALICE loss functional, but

provide the detected invariant mass as well as the difference in pseudorapidity of the two

final state jets, denoted ∆yjj. The input is thus two dimensional. The hyperparameters

used to train the neural network are the same as those in Table 3.2, with the initial and final

learning rates adjusted to 2.3× 10−3 and 4× 10−5, respectively.

Because the neural networks for the machine learned likelihoods include θ as an input, they

offer a very natural interpolation in θ-space relative to the histogram approach. In Figure

3.6, we use this property to compare the exclusion contours of the fully multivariate, eight

dimensional machine learned likelihood ratio (blue), the two dimensional machine learned

likelihood ratio (green), and the machine learned likelihood ratio that is only dependent on

invariant mass (purple). We see that the neural network trained on two dimensional input

performs very similarly to the neural network trained on eight dimensional input, and that

both of these significantly outperform the one dimensional approach.

This result demonstrates that the extra information used by the fully multivariate approach

is largely or nearly entirely captured in ∆yjj. While these exclusion contours depend on the

hyperparameter N and will also change if we included rate information into the analysis, the

relative ordering will not depend on these factors.
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Figure 3.6: The 1σ (solid) and 2σ (dashed) exclusion contours for the machine learned
likelihood ratio calculated using the full input (blue), invariant mass and ∆yjj (green), and
only invariant mass (purple). The black x denotes the true value of θ. The fully multivariate
and two dimensional approaches perform very similarly, and both provide more powerful
exclusion contours than the approach that uses only invariant mass.

Table 3.2: Table of hyperparamaters used to the train neural network with invariant mass
as input.

Hyperparameter Value
Activation function tanh

Number of hidden layers 3
Neurons per hidden layer 8

Initial learning rate 10−3

Final learning rate 10−5

Learning rate decay schedule Linear
Optimizer AMSGrad
Batch Size 128

Validation Split .25
Number of Epochs 100

Training Samples (unweighted) 106

θ0 (300 GeV, 2.0)
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3.6 Conclusion

In this work, we have performed the first application of a novel likelihood-free inference

method, ALICE, beyond the scope of effective field theories. ALICE, along with most meth-

ods from this new class of analysis techniques, relies on machine learning latent information

extracted from simulations in order to produce a useful likelihood ratio. We have compared

the new method to the traditional histogram based approach of performing a resonance

search, and have seen dramatic improvement when multivariate detector level event infor-

mation is included.

ALICE outperforms the histogram approach by providing significantly tighter exclusion con-

tours. We believe that this improvement is similar to the improvement seen when using the

matrix-element method, and originates from the greater amount of information that can

be meaningfully utilized in multivariate analyses. Since we are now able to compare lower

dimensional analyses to a fully dimensional analysis, we were able to conclude that nearly

all information is captured in the observables mjj and ∆yjj for our simple process. ALICE

can be seen as an improvement over the matrix-element method, as it does not require one

to approximate the detector using transfer functions.

Possibilities for future work include utilizing the partial morphing structure with the coupling

to improve the computational efficiency of this work. One could also numerically evaluate

derivatives of the joint likelihood ratio with respect to the mass. In combination with the

partial morphing structure in the coupling, this would grant full access to the derivative

of the joint likelihood ratio with respect to the theory parameters, which is known as the

joint score. For EFTs, methods that include the joint score in the loss function have been

more successful than those that neglect this information. It is possible that these results also

generalize to resonance searches, and that even more information can be extracted from the

detector level four-momenta.
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Additionally, one could study if these results generalize to the case where a full treatment of

systematic uncertainties in the input is performed. Since these methods scale well to high

dimensional problems [95], one could also expand the space of observables to include the

four-momenta of all jet constituents, rather than only using reconstructed jet four-momenta.

This would potentially increase the information available to the neural network, at the

cost of increasing the dimensionality of the problem. Finally, this work may be applied to

more complicated resonant processes. We expect that, since we already see improvement

in discovery potential in the relatively simple process considered here, more complicated

processes may see even greater benefit from the extra information present in the multivariate

approach.
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Chapter 4

Efficient Sampling of constrained high

dimensional theoretical spaces with

machine learning

This chapter is heavily based on work previously published in collaboration with Michael Ratz,

Philip Tanedo, and Daniel Whiteson [96].

4.1 Introduction

Models of physics beyond the Standard Model often feature many new parameters that

are unknown a priori and may only be determined by experiment. However, experimental

constraints are not trivial to apply, as they often are expressed in terms of weak scale ob-

servables rather than the theory’s fundamental parameters. While it is often straightforward

(if computationally expensive) to calculate the weak scale observables from the parameters,
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the inverse problem is typically intractable. That is, weak scale constraints do not allow for

a trivial reduction of the dimensionality of the theory space.

The standard approach is to numerically scan over the theoretical parameters and reject

those that are not consistent with experimental data. However, the number of samples

required for a brute-force search of the parameter space increases exponentially with its

dimension. Thus, particle physicists studying models of new physics are often faced with a

computationally intractable task. One may pragmatically restrict to a more tractable subset

of parameters based on theoretical prejudice. The danger of this approach is that one may

miss viable parameters that are both consistent with experimental observations and generate

novel phenomenology.

The MSSM is a well-known example of a new physics model with a large number of free

parameters (∼ 100). Most of these parameters are the masses and couplings of the su-

persymmetric partners of Standard Model particles [29]. This overwhelming dimensionality

prohibits a fully general survey of the parameter space. Studies of the MSSM typically re-

strict to theoretically motivated subspaces [1, 97, 98, 99, 100, 101, 102, 2, 103, 104, 15, 105].

These include the 4+1 dimensional cMSSM as well as the 19 dimensional pMSSM [33, 32].

However, even these reduced spaces are difficult to scan using a brute-force search.

High dimensionality is not the only challenge when scanning the parameters of the MSSM.

The fundamental parameters of the theory are defined at some high energy scale and must

be evolved to the energy scale of the experiment. This evolution requires one to solve the

coupled RGEs for the high-scale parameters over many orders of magnitude to the weak

scale. The computational cost of RGE running and calculating experimental observables for

a single set of parameters is expensive, O(second) for a modern CPU.

Many recent scans have incorporated machine learning in some capacity to decrease the

computational burden of brute-force searching these spaces [15, 105, 101]. These use various
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machine learning models to learn the forward problem of determining weak scale properties

given high-scale parameters. This bypasses the need to perform RGE running and weak scale

computations, however one is still faced with the challenge of doing a brute-force search over

a high-dimensional parameter space. Machine learning models for the forward problem

are thus only a constant improvement in computational time compared to the exponential

dependence on the dimension of the space.

In this work, we introduce two methods to efficiently sample high-dimensional parameter

spaces subject to constraints at the weak scale. We test these frameworks by sampling

regions of the cMSSM and pMSSM parameter spaces that admit a Higgs mass consistent

with its experimental value [106, 107]. The first uses a deep neural network to machine-learn

the likelihood of an event satisfying this constraint and then samples this likelihood using

HMC. The second trains a generative model known as a normalizing flow. We then compare

the performance of these frameworks to random sampling.

These methods allows us to directly and quickly generate points in the parameter space

that admit a consistent Higgs mass. By solving the inverse problem of sampling high-scale

parameters given weak scale properties, we aim to minimize inefficiencies that arise in a

brute-force search.

Our presentation is a proof of concept for these generative models and is encouraging for

practical applications. For example, the ability to efficiently scan the MSSM parameter space

makes it much easier to determine the high-scale parameters that are consistent with a new

particle’s mass and width if a sparticle is discovered. Alternatively, a trained generative

model may permit scans over parameters that are consistent with experimental observations

to search for specific theoretical features that one may wish to study, for example: gauge

coupling unification, a particular type of dark matter particle, or low fine-tuning measures.
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As a demonstration of the efficiency of the generative models, we scan the cMSSM and

pMSSM parameter spaces for points that produce the Higgs mass and that saturate the

observed dark matter relic density, requiring [108, 109]

122 GeV < mh < 128 GeV ,

0.08 < ΩDMh
2 < 0.14 .

In this study, the generative models have been trained for consistency with the Higgs mass,

not the relic density. We compare a brute-force scan using random sampling to a generative

model that has been trained to sample points that admit a consistent Higgs mass. We show

that the generative models dramatically increase the sampling efficiency of this scan.

4.2 Methods

4.2.1 Data Generation

The cMSSM contains 4 continuous parameters defined at the GUT scale and 1 discrete

sign parameter. These are the universal scalar mass m0, the universal gaugino mass M1/2,

universal trilinear coupling A0, the ratio of Higgs vacuum expectation values tan β, and

the sign of µ. The pMSSM is the most general subspace of the MSSM that admits first

and second generation universality, no new sources of CP violation, and no flavor changing

neutral currents [32]. Parameters of the pMSSM are defined at the EW scale. The full list

parameters of the pMSSM are listed as part of Table 4.2.

Our datasets are formed by uniform random sampling within bounded regions of the param-

eter space: cMSSM parameters are sampled at the GUT scale and pMSSM parameters are

sampled at the EW scale. Bounds are listed for the cMSSM and the pMSSM in Table 4.1

and Table 4.2, respectively [1, 2], and are chosen to cover large volumes of the parameter
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Parameter Domain Description
m0 [0, 10] TeV Universal scalar mass
m1/2 [0, 10] TeV Universal gaugino mass
A0 [−6m0, 6m0] TeV Universal trilinear coupling
tan β [1.5, 50] Ratio of Higgs VEVs

Table 4.1: Parameter bounds in the cMSSM scan, following Ref. [1]. A uniform prior is used
for all parameters except A0, where we uniformly sample A0/m0.

space that are sensitive to modern collider experiments. For the cMSSM, we fix sign(µ) = 1.

We sample approximately 1.5× 106 datapoints in the cMSSM and approximately 1.95× 107

datapoints in the pMSSM. Once sampled, we calculate Higgs masses and relic densities with

micrOMEGAs, which internally uses the spectrum generator SoftSUSYv4.1.0 [14, 13].

We apply two theoretical constraints: (i) consistent electroweak symmetry breaking and (ii)

the positivity of all squared masses. In addition to these, we also require that SoftSUSY

converges. We do not require that the lightest supersymmetric particle is neutral, though

this is the case for 90% of the cMSSM and 99% of the pMSSM parameter points with a

consistent Higgs mass.

The theoretical uncertainty in the Higgs mass is significantly larger than its experimental

uncertainty [110]. We take the uncertainty in the Higgs mass calculations to be σmh = 3 GeV

for all points in the data set [1, 2].

4.2.2 Neural Network

We train the neural network by assigning all points in the dataset a likelihood

L(θ) =


1 |mh(θ)−mh,exp| < σmh ,

0 otherwise ,
(4.1)
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Parameter Domain Description
|M1| [.05, 4] TeV Bino mass
|M2| [.1, 4] TeV Wino mass
M3 [.4, 4] TeV Gluino mass
|µ| [.1, 4] TeV Bilinear Higgs mass
|At| [0, 4] TeV Trilinear top coupling
|Ab| [0, 4] TeV Trilinear bottom coupling
|Aτ | [0, 4] TeV Trilinear τ coupling
MA [.1, 4] TeV Pseudo-scalar Higgs mass
mL̃1

[.1, 4] TeV 1st gen. l.h. slepton mass
mẽ1 [.1, 4] TeV 1st gen. r.h. slepton mass
mL̃3

[.1, 4] TeV 3rd gen. l.h. slepton mass
mẽ3 [.1, 4] TeV 3rd gen. r.h. slepton mass
mQ̃1

[.4, 4] TeV 1st gen. l.h. squark mass
mũ1 [.4, 4] TeV 1st gen. r.h. u-type squark mass
md̃1

[.4, 4] TeV 1st gen. r.h. d-type squark mass
mQ̃3

[.2, 4] TeV 3rd gen. l.h. squark mass
mũ3 [.2, 4] TeV 3rd gen. r.h. u-type squark mass
md̃3

[.2, 4] TeV 3rd gen. r.h. d-type squark mass
tan β [1, 60] Ratio of Higgs VEVs

Table 4.2: Parameter bounds in the pMSSM scan, following Ref. [2]. A uniform prior is
used for all parameters. “Left-handed” and “right-handed” are abbreviated by l.h. and r.h.,
respectively.
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where we ignore a normalization constant. All data points that fail the theoretical constraints

are assigned a likelihood of zero.

We use a deep neural network to learn the function L(θ) [111]. This has two benefits. First,

it greatly reduces the time required to evaluate the likelihood of a point. Second, it provides

a differentiable interpolation of L(θ). In the next section we show that HMC requires many

evaluations of the likelihood and its gradients. It thus utilizes the full potential of these

benefits.

We train a deep neural network L̂(θ) to minimize the usual L2 loss function

L = |L̂(θ)− L(θ)|2 . (4.2)

We use a training, validation, and testing split of 0.7, 0.15, 0.15 respectively for both datasets.

Batch norm and dropout layers are used in between each hidden layer of the neural network.

Backpropogation is performed using the ADAM optimizer [112].

Some of the pMSSM parameters in Table 4.2 span a disconnected range of positive and

negative values, for example M1, M2 and µ. We preprocess these parameters by shifting

negative values to create a single continuous domain; for example, for µ we shift the negative

values by 200 GeV. This has no physical significance and simply prepares the data for input

into the neural network. We then standardize each feature. For the cMSSM dataset, we use

the feature A0/m0 in place of A0, as this feature is uniformly distributed.

4.2.3 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo method is a Markov chain Monte Carlo technique that uses

an analog of energy conservation to effectively sample the target distribution [113, 114]. To

use the method, we first define an auxiliary momentum variable p, where each component
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is initially drawn from a normal distribution. Next, we define a potential energy function

given by

V (θ) = − log(L̂(θ)) . (4.3)

The kinetic energy function takes the familiar form T = p2/2 where we set the mass to unity,

m = 1. We then evolve the system from time t = 0 to t = τ according to the Hamiltonian

equations of motion

∂θi
∂t

= pi ,
∂pi
∂t

=
∇L̂(θ)

L̂(θ)
. (4.4)

We solve these equations using the leap-frog algorithm so that energy is approximately

conserved. We take θ(τ) as a proposal to add to the Markov chain. The proposal is accepted

with probability

P = min

(
1,
e−H(θ(τ),p(τ))

e−H(θ(0),p(0))

)
. (4.5)

Energy conservation implies that a solution to the the equations of motion should always

yield probability 1. However, a rejection step is necessary because we solve these equations

numerically. If θ(τ) is rejected, then θ(0) is added to the Markov chain instead. In the limit

of an infinite number of samples, the Markov chain converges to a sample of the distribution

L̂(θ). We seed the Markov chain with a random positive sample from the dataset used to

train the neural network. We bound the parameter space with hard walls of infinite potential

energy.
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4.2.4 Normalizing Flows

It is difficult to draw samples from a complicated distribution in a high-dimensional param-

eter space. On the other hand, it is easy to draw samples from an equally high-dimensional

Gaussian distribution. Normalizing flows is a technique that learns an invertible map f

from the simple distribution pZ to the challenging distribution pY . One then creates a set of

samples from the challenging distribution by mapping easy-to-generate samples:

pY (y) = pZ(f−1(y))

∣∣∣∣det

(
∂f

∂y

)∣∣∣∣−1

. (4.6)

The function f depends on a set of parameters Θ which are learned by maximizing the log

likelihood of a training set, X . The loss function for this training is thus

L(X ) = −
∑
y∈X

(
log
(
pZ(f−1(y))

)
− log

∣∣∣∣det

(
∂f

∂y

)∣∣∣∣) .
It is helpful to construct f to be the composition of n successive maps, f = fn ◦ · · · ◦f1 [111].

Defining zi+1 = fi(zi) and identifying y = zn+1 yields the loss function

L(X ) = −
∑
y∈X

(
log (pZ(z1))−

n∑
i=1

log

∣∣∣∣det

(
∂zi+1

∂zi

)∣∣∣∣
)
.

We choose the fi to be autoregressive transformations. This means that the parameters Θk
i

that define the function fi acting on the kth feature zki depends only on the first (k − 1)

features z1
i , · · · , zk−1

i :

zki+1 = fi
(
zki ; Θk

i (z
1:k−1
i )

)
.
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This structure ensures that the Jacobian matrix ∂zi+1/∂zi is lower triangular so that the

determinant is simply the product of diagonal elements and may be computed in linear

time.

The function Θk
i

(
z1:k−1
i

)
can be represented efficiently with a Masked Autoencoder for Dis-

tribution Estimation (MADE) [115]. MADE networks turn off specific internal weights of the

neural network so that the autoregressive property is enforced, allowing one neural network

to output all model parameters rather than performing a sequential loop over features.

For our application, we choose fi to be rational-quadratic neural spline flows with autore-

gressive layers [8]. These are piece-wise monotonic functions defined as the ratio of two

quadratic functions on the interval [−B,B], with K + 1 knots determining the boundaries

between bins. Outside of this interval, the transformation is defined to be the identity. These

transformations are parameterized by 3K − 1 parameters for each feature, which are K bin

heights, K bin widths, and K − 1 positive derivative values at the knots, as the derivatives

are set to 1 at −B and B to ensure a continuous derivative over the domain. Permutation

layers are included between rational-quadratic transformation layers. We implement the

normalizing flow using the Python package nflows [8].

4.3 Results

We analyze the performance of these generative frameworks on the cMSSM and pMSSM

datasets described above. The cMSSM is low dimensional and can be scanned relatively well

with brute-force search. Thus, we view the cMSSM as a test for the generation methods and

the pMSSM as a more practical application. We present the results for the neural network

with HMC as well as the normalizing flow side by side. For each method, we generate a

dataset of 4× 105 datapoints.
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Figure 4.1: Histograms of cMSSM parameters that yield the experimental Higgs mass. We
observe good agreement between the random sampling, HMC, and the flow model. Black:
Data obtained through random sampling with a uniform prior and rejecting points that
do not have a consistent Higgs mass. Magenta: data sampled with HMC. Blue: data
sampled from the flow model. No rejection step is applied to generated samples.

We present histograms of generated variables to confirm that the distribution of theory

parameters is not biased by our generative framework. We also present histograms of mh to

ensure that our generative models sample within the band of permitted Higgs masses and

ΩDMh
2 to provide evidence that the distribution of weak scale quantities match, as these

are sensitive to higher order correlations in high energy scale parameters. Finally, we report

sampling efficiencies, which are defined as the fraction of the dataset that satisfy a constraint.

The hyperparameters used for the supervised neural network, Hamiltonian Monte Carlo, and

normalizing flow are given in the Appendix for both datasets.

4.3.1 cMSSM

In Figure 4.1, we compare histograms of the cMSSM parameters at the GUT scale. For

both generative models, we see very good agreement between the distribution of generated

samples and the distribution of randomly sampled points after the Higgs mass constraint is
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applied. Next, we run the parameters to the weak scale in order to perform the combined

search for ΩDMh
2 and mh. In Figure 4.2, we show the distribution of Higgs masses for

generated points and randomly sampled points with a rejection step applied. We see that

the generative models typically sample within the band of permitted Higgs masses.

As an example application, we show histograms of the dark matter relic density for these

datasets in Figure 4.3. We see that the distribution over dark matter relic densities from

the generative models appear to accurately reflect the same distribution in the dataset after

the Higgs mass constraint is applied. We emphasize that because the RGEs are coupled,

weak-scale quantities are generally sensitive to higher-order correlations of the GUT scale

parameters, and so matching weak-scale distributions is evidence of matching higher order

correlations in the GUT scale parameters. This indicates that the mh-constrained subspace

has been accurately sampled, allowing for an exploration of additional constraints, such as

relic density.

In Table 4.3, we compare various statistical properties of random sampling to those of our

generative frameworks trained to satisfy the Higgs mass constraint. The first row shows the

sampling efficiency with respect to the theoretical constraints mentioned in Section II.A.

We see that samples from the generative models are more likely to pass these constraints, as

points with a consistent Higgs mass necessarily satisfy the theoretical constraints. The second

row shows the sampling efficiency with respect to the Higgs mass constraint. Predictably,

the generative models have significantly higher sampling efficiencies than random sampling.

We also see that the flow model slightly outperforms the HMC sampling method.

The third row shows the sampling efficiencies with respect to the combined Higgs mass and

relic density constraint, where the generative models are still trained to only satisfy the

Higgs mass constraint. This simulates a scenario where one would like to study the effect of

imposing a new constraint in addition to the constraints that are explicitly trained on. Once

again, we see that the generative models have much higher sampling efficiencies, resulting
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Sampling Method
Constraint Random HMCmh NFmh
Theory 0.595 0.859 0.879
Theory ∩mh 0.0389 0.723 0.796
Theory ∩mh ∩ ΩDMh

2 0.000222 0.00271 0.00456

Table 4.3: Comparison of sampling efficiency in the cMSSM for several methods and several
levels of constraints. We compare a brute force random scan (random), Hamiltonian MC of
a neural network trained to learn the mh constraint (HMCmh), and normalizing flows that
incorporate the mh constraint (NFmh). The constraints applied are theoretical consistency
checks (see text), consistency with the experimental Higgs mass and consistency with the
Higgs mass and the dark matter relic density (ΩDMh

2).

from the high probability that the samples pass the Higgs mass constraint. We see an

increase in sampling efficiency of approximately an order of magnitude for both generative

frameworks.

4.3.2 pMSSM

Differences between the generative models appear in the higher-dimensional pMSSM. In

Figure 4.4, we compare histograms of parameters sampled using brute-force search, HMC

and the normalizing flow model. Despite the increased dimensionality, we find very good

agreement in the distributions of all parameters.

Figures 4.5 and 4.6 present histograms of mh and ΩDMh
2 for the pMSSM. The generative

models tend to sample in the band of allowed Higgs masses, with the normalizing flow model

matching the brute-force scan well. We see general agreement with the true distribution of

dark matter abundances for both generative frameworks, though the HMC samples do not

match the brute-force distributions as well as those from the flow model.

Table 4.4 summarizes the performance of our sampling methods in the pMSSM. See Sec-

tion 4.3.1 for a detailed description of the quantities presented in the table. We find that

generative models greatly increase the sampling efficiency relative to a brute-force search. In
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Figure 4.2: Histogram of Higgs masses in the cMSSM for different sampling methods. The
generative models are seen to mostly sample points consistent with the Higgs mass constraint.
Gray: data obtained through random sampling with a uniform prior. Black: the same
randomly sampled data, but points that do not have a consistent Higgs mass are rejected.
Magenta: data sampled with HMC. Blue: data sampled with the normalizing flow.
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Figure 4.3: Histogram of dark matter thermal relic densities in the cMSSM for different
sampling methods. We observe that the distributions of the generative models match the
distribution of random sampling, providing evidence that the generative models are able to
match higher order correlations in GUT scale parameters. Gray: data obtained through
random sampling with a uniform prior. Black: the same randomly sampled data, but
points that do not have a consistent Higgs mass are rejected. Magenta: data sampled with
HMC. Blue: data sampled with the normalizing flow. Generative models have been trained
to satisfy the Higgs mass constraint.
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Figure 4.4: Histograms of pMSSM parameters that yield the experimental Higgs mass. We
observe good agreement between random sampling, HMC, and the flow model. Black: Data
obtained through random sampling with a uniform prior and rejecting points that do not
have a consistent Higgs mass. Magenta: data sampled with HMC. Blue: data sampled
from the flow model. No rejection step is applied to generated samples.
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Figure 4.5: Histogram of Higgs masses in the pMSSM. The generative models are seen to
mostly sample points consistent with the Higgs mass constraint. Gray: data obtained
through random sampling with a uniform prior. Black: the same randomly sampled data,
but points that do not have a consistent Higgs mass are rejected. Magenta: data sampled
with HMC. Blue: data sampled with the normalizing flow.
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Figure 4.6: Histogram of dark matter thermal relic densities in the pMSSM. We observe
that the distributions of the generative models match the distribution of random sampling,
providing evidence that the generative models are able to match higher order correlations
in EW scale parameters. Gray: data obtained through random sampling with a uniform
prior. Black: the same randomly sampled data, but points that do not have a consistent
Higgs mass are rejected. Magenta: data sampled with HMC. Blue: data sampled with the
normalizing flow. Generative models have been trained to satisfy the Higgs mass constraint.

fact, the improvement in sampling efficiency is much greater than that seen in the cMSSM.

This is largely due to the poorer performance of a brute-force search in the higher-dimensional

pMSSM.

4.4 Conclusion

We implement two generative frameworks that utilize machine learning in order to increase

the sampling efficiency of searches in supersymmetric parameter spaces. These sampling

methods offer a more efficient way to search the high-dimensional parameter spaces in models

of new particle physics. We compare these generative frameworks to the currently used

method of a brute-force search, and have seen orders of magnitude of improvement in the

sampling efficiency for both parameter spaces considered here. We show that our generative
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Sampling Method
Constraint Random HMCmh NFmh
Theory 0.479 0.810 0.866
Theory ∩mh 0.0189 0.709 0.776
Theory ∩mh ∩ ΩDMh

2 0.00165 0.0591 0.0685

Table 4.4: Comparison of sampling efficiency in the pMSSM for several methods and several
levels of constraints. Methods compared are brute force random scan, Hamiltonian MC
of a neural network trained to learn the mh constraint (HMCmh), and normalizing flows
that incorporate the mh constraint (NFmh). Constraints applied are theoretical consistency
checks (see text), consistency with the experimental Higgs mass and consistency with the
Higgs mass and the dark matter relic density (ΩDMh

2).

frameworks are able to sample the underlying data distribution without any evidence of bias

or mode collapse.

In the cMSSM, both methods significantly outperformed random sampling, with the flow

model slightly outperforming HMC. In the pMSSM the flow model significantly outper-

forms HMC. This is likely due to the larger dimensionality of the pMSSM. In addition to

performance benefits, the flow model is also quicker to train and sample, making it clearly fa-

vorable to HMC. However, the HMC framework is more complementary to previous works,

as it learns the forward problem of determining likelihoods and uses tested Monte Carlo

algorithms to sample this likelihood.

Possibilities for future work include incorporating additional constraints into the generative

model. In theory, there is no limit to the number of constraints that can be included into

either generative model. However, forming an initial dataset for learning may be difficult

when the constraints are very strict. A possible remedy is to train generative models with less

restrictive constraints which are then used to produce sizable datasets of points that already

satisfy many constraints. This new dataset could then be searched to form a training set for

a generative model with increasingly restrictive constraints.

Given the ability of the generative machine learning models to efficiently explore high-

dimensional parameter spaces, it will be interesting to apply the techniques described here
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to other problems. For instance, one may identify relations that explain why there is a ‘little

hierarchy’ between the electroweak scale and the scale of soft parameters, which go beyond

the focus point scenario [116]. In general, one may be able to identify manifolds of viable

points in high-dimensional parameter sets, and explore their geometry.

We have shown promising results in subspaces of the MSSM parameter space. These results

apply generally to any high-dimensional parameter space with constraints that are compu-

tationally expensive to verify. Another direction for future study may be applications to

the parameter spaces of even higher-dimensional models of new physics. This includes po-

tentially relaxing constraints built into the pMSSM parameter space, but could also include

applications to non-SUSY theories. Finally, one could attempt to further tune the neural

network structure and hyperparameters in order to achieve higher sample efficiency than was

achieved in this work.
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Chapter 5

Proposed experimental tests for the

phenomenological MSSM

In the previous chapter, large steps were taken towards reducing the sampling inefficiencies

inherit to exploring constrained high dimensional parameter spaces. However, generated

samples still lie within a high dimensional space and the phenomenology of these samples

must be analyzed to determine potential signals that may be observed in experiment. In this

chapter, we analyse models satisfying many experimental constraints in order to determine

how they may best be observed in experiment. In the future, the sampling methods of the

previous chapter may be used to greatly increase the breadth of this search.

This work is still in progress and no methods or results presented here should be considered

as final. The results reported were developed in collaboration with Daniel Whiteson and

benefited from conversations with Jonathan Feng and Anyes Tafford.
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5.1 Introduction

Supersymmetric extensions of the Standard Model serve as a primary candidate for physics

beyond the Standard Model (BSM). The Minimal Supersymmetric Standard Model (MSSM)

is a theoretically favored supersymmetric model of BSM physics that serves as motivation for

many experimental searches. The MSSM presents a diverse range of possible phenomenolo-

gies and experimental signatures due to the large number of parameters that it introduces.

Searching the MSSM parameter space is a computationally expensive task due to the over-

whelming dimensionality of the space.

The phenomenological MSSM (pMSSM) is a lower dimensional subspace of the MSSM that

neglects terms that produce tree level flavor changing neutral currents or tree level CP

violation, and requires mass universality between first and second generation sparticle masses

[32]. This dramatically reduces the dimensionality of the parameter space, requiring only 19

parameters to fully describe the theory. Though still computationally expensive to explore,

the pMSSM has been scanned many times, most notably by the ATLAS collaboration in

light of their 8 TeV data [103]. These searches have revealed large regions of the parameter

space that remain unexcluded by current experimental constraints.

In this work, we determine which experiments have the greatest sensitivity to the remaining

unexcluded regions of the pMSSM. Our focus is on collider experiments performed at the

Large Hadron Collider (LHC). We first generate a set of pMSSM models that are consistent

with the following constraints:

1. Higgs mass consistent with experiment to within 3 GeV [106, 107]

2. Dark matter relic density consistent with experiment to within .03 [108, 109]

3. The lightest supersymmetric particle (LSP) is a neutralino.
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4. Consistent with all current collider constraints.

Inspired by parameter scans in the constrained MSSM [1], we develop a classification scheme

which partitions the pMSSM parameter space according to the mechanism by which the ex-

perimentally observed dark matter relic density is attained. We then decompose models into

their simplified model spectrum to determine which final state analyses are most relevant to

a given model point. We report the final states of highest cross section in the decomposition

that do not appear in the list of experimental results. We report these results for each class

of models individually, so that we may study the dependence of the experiment’s sensitivity

on the type of pMSSM model.

5.2 Methods

5.2.1 Parameter Space Scan

We first sample 2× 107 pMSSM models randomly from a uniform distribution with bounds

given in Table 4.2. Each model is then analyzed using SoftSUSYv.4.1.10 and micrOmegasv5.2.6

[13, 99, 14]. From this scan, only models that possess a neutralino LSP, admit a consistent

Higgs mass, and saturate the dark matter relic density are selected. Additional theoretical

constraints are also implicitly applied at this step. Namely, the model is required to allow for

consistent electroweak symmetry breaking and all squared masses must be positive. Models

for which SoftSUSY is unable to converge are discarded.

Models that pass these constraints are then evaluated using SUSY-AI [15]. SUSY-AI is a

machine learning model which has been trained to classify pMSSM models as consistent or

inconsistent with the referenced ATLAS collider studies with 93% accuracy [117, 118, 119,

78



120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,

139]. In total, 9228 pMSSM models survive all constraints applied to the space.

For the 9228 surviving pMSSM models, we use SModelS to decompose the model into its

simplified model spectrum [16, 140]. The cross section of each simplified model is computed

by multiplying the production cross section by all branching ratios appearing in the simplified

model. The production cross sections required for this decomposition were computed using

Pythia 8 [11] and branching ratios are computed using SoftSUSY. Only strong production

cross sections are considered. Simplified models are clustered according their final state and

each final state is assigned a cross section by summing the cross sections of simplified models

containing that final state. Final states that are invisible to experiment or that contain long

lived sparticles are removed.

The final states presented here are the R parity even products of the decay of two sparticles.

Decays of unstable SM particles are not considered when evaluating final states, and so

the final states computed here may not correspond to the particles that would be directly

measured in experiment. Currently, no kinematic information is considered in determining

the cross section of the final state. For each model, we log the 20 final states with the largest

cross section that are not covered in the ATLAS pMSSM study. We then rank the final states

according to the average cross section over all models for which the final state appears.

5.2.2 Classification of pMSSM Models

We classify pMSSM models in terms of the mechanism by which the experimental dark mat-

ter relic density is attained. In large regions of the parameter space, the lightest neutralino

takes on a nearly pure state. A nearly pure higgsino or wino LSP will strongly interact

with other matter, and so will tend to undersaturate the relic density. On the other hand, a

nearly pure bino LSP will generally only interact weakly with other matter, and so will tend
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to oversaturate the relic density. An exception to this is when a mechanism is present which

enhances interaction cross sections. Such mechanisms include a resonant s-channel annihi-

lation cross-section (pole annihilation), a nearly degenerate next-to-lightest supersymmetric

particle (NLSP) which allows for large LSP-NLSP interaction cross-sections (coannihilation),

and a mixed LSP which contains non-negligible wino or higgsino components.

The classification scheme presented here is inspired by the classification of models in the

cMSSM [1]. The cMSSM is typically partitioned into 5 classes:

• Z/h pole annihilation

• A0 pole annihilation

• t̃ coannihilation

• τ̃ coannihilation

• Well-tempered / Focus point

Pole annihilation classes are labelled by the mediator of the resonant s-channel annihilation

process. Coannihilation classes are labelled by the nearly degenerate NLSP that coanni-

hilates with the LSP [141, 142]. Well-tempered and focus point refers to models in which

the LSP acquires a significant higgsino component [143, 116]. Since phenomenology varies

greatly across each class and relatively little within a class, it is common to consider the

phenomenology of each class in isolation.

We extend this concept to the pMSSM with the following classification:
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• Z/h pole annihilation

• A0 pole annihilation

• ν̃1 coannihilation

• ν̃3 coannihilation

• Q̃1 coannihilation

• L̃1 coannihilation

• ũR coannihilation

• d̃R coannihilation

• ẽR coannihilation

• t̃ coannihilation

• b̃ coannihilation

• τ̃ coannihilation

• W̃ coannihilation

• g̃ coannihilation

• ν̃τ τ̃ pair annihilation

• g̃ũR pair annihilation

• g̃d̃R pair annihilation

• g̃Q̃1 pair annihilation

• g̃t̃ pair annihilation

• g̃b̃ pair annihilation

• t̃b̃ pair annihilation

• B̃/H̃

• B̃/W̃

Pole annihilation and coannihilation classes are labelled as in the cMSSM. Because sparticle

masses are less constrained in the cMSSM than in the pMSSM, there are more potential

coannihilation partners present in the pMSSM. B̃/H̃ and B̃/W̃ refer to models where a bino

LSP contains a higgsino or wino (respectively) admixture. Pair annihilation labels models

where two sparticles are nearly degenerate with the each other so that interactions between

them dominate contributions to the effective LSP annihilation cross section. A schematic of

these mechanisms is shown in Figure 5.1.

Models are first classified according to the components of the LSP. Models containing LSPs

that are less than 96% bino are classified as B̃/H̃ if the Higgsino component is larger than the

wino component, and B̃/W̃ otherwise. The remaining models are classified by extracting the
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Figure 5.1: A schematic of dark matter mechanisms for bino LSPs presented here. Anni-
hilation occurs between two neutralino LSPs. Coannihilation occurs between an LSP and
a slightly more massive sparticle, in this case the t̃ or b̃ squarks. Pair annihilation occurs
between two slightly more massive sparticles. This contributes to the effective LSP annihi-
lation cross section as the more massive sparticles are unable to decay to neutralinos after
pair annihilating to an SM final state.

normalized contribution of each channel to the effective LSP annihilation cross section from

micrOmegas. The initial state of each channel is associated with a class from the above list.

As an example, the initial state χ̃0
1t̃ is associated with stop coannihilation. The full list of

initial states that define each class is available in Appendix C. At this step, pole annihilation

is treated as a single class. For each model, the normalized contributions to the relic density

of channels with initial states from the same class are summed and the model is assigned to

the class for which this sum is the largest.

Pole annihilation models with LSP mass less than 70 GeV are labelled Z/h pole annihilation.

Remaining pole annihilation models are labelled A0 pole annihilation after verifying that the

A0 mass is within 200 GeV of twice the LSP mass. Large annihilation cross sections that

do not satisfy either of these condition are due to t channel sfermion exchange.1 We choose

to label these diagrams as coannihilation, since t channel sfermion exchange only becomes
1A last alternative would be s channel exchange of a heavy Higgs H, however, this does not occur for

any points in our data set. More precisely, all points for which |2mχ̃1
0
− mA0 | > 200 GeV also satisfy

|2mχ̃1
0
−mH | > 200 GeV.
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large when the mass of the sfermion is near that of the LSP, i.e. coannihilation processes

are large.

This algorithm is summarized below. Performing classification in this way is advantageous as

it avoids the need for arbitrary mass cutoffs and naturally handles regions of the parameter

space where multiple mechanisms may overlap, which is more abundant in the pMSSM

than the cMSSM due to the larger dimensionality. We have checked the consistency of

this classification scheme with previous classification algorithms in the cMSSM and observe

general agreement in Figure 5.2.
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for θ in dataset do

if |ZB(θ)|2 < .96 then

if |ZW (θ)|2 > |ZHu(θ)|2 + |ZHd(θ)|2 then
c(θ) = B/W

else
c(θ) = B/H

end

else

for each class c do
Σc = Sum(contributions from class c to Ω−1

DM)

end

c(θ) = argmax(Σc) if c(θ) = pole_annihilation then

if mχ0
1
< 70 GeV then

c(θ) = Z/h pole annihilation

else if |2mχ0
1
−mA0| < 200 GeV then

c(θ) = A0 pole annihilation

else

/* t-channel sfermion exchange */

c(θ) = class with next largest Σc

end

end

end

5.3 Results

All results are presented for the set of models which pass the set of constraints previously

listed. It is important to reiterate that the results here are a work in progress; they are
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Figure 5.2: For a data set of constrained MSSM models, we plot a 2 dimensional slice in the
parameter space as in Figure 2.1 of Reference [1]. As in the reference, models are required to
possess the correct Higgs mass, relic density, a neutralino LSP, and charginos heavier than
100 GeV. On the left, we use the classification algorithm presented in the reference. On
the right, we use the newly proposed classification algorithm. We see general agreement in
the cMSSM. The new classification scheme easily generalizes to the pMSSM, whereas the
classification scheme in the reference does not.
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not peer reviewed and are likely to change in the future. It may be better to interpret this

section as the form of results that we seek, rather than emphasizing a specific result that is

likely to change as our methods improve.

5.3.1 Collider Studies

We present the final states of simplified models with the largest cross section that were not

included in current experimental databases in Table 5.1. Results are presented for each class

of models individually.

Final State σBSM Nfinal_state/Nclass

W̃
co
an

ni
hi
la
ti
on

MET b b jet jet 83.13 fb 17 / 24

MET b b l 30.03 fb 16 / 24

MET ta ta ta 14.65 fb 11 / 24

MET jet jet ta ta 10.98 fb 16 / 24

MET b b ta 10.17 fb 16 / 24

L̃
1
co
an

ni
hi
la
ti
on

MET l 3.92 fb 3 / 18

MET b b jet 2.44 fb 9 / 18

MET b b jet jet 0.55 fb 4 / 18

MET W b jet t 0.26 fb 3 / 18

MET jet t t 0.21 fb 3 / 18

ν̃ τ
co
an

ni
hi
la
ti
on

MET jet t t 1.24 fb 5 / 16

MET b b jet 0.89 fb 7 / 16

MET W b jet t 0.35 fb 3 / 16

MET jet jet t t 0.16 fb 3 / 16

MET b b jet jet 0.15 fb 3 / 16
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g̃
co
an

ni
hi
la
ti
on

MET b b jet jet 37.69 fb 32 / 64

MET b b jet jet jet 8.51 fb 61 / 64

MET b b jet jet jet jet 1.55 fb 38 / 64

MET W jet jet jet 0.68 fb 4 / 64

MET b b b b b b 0.50 fb 17 / 64

g̃
ũ
R
pa

ir
an

ni
hi
la
ti
on MET b jet jet jet 0.57 fb 1 / 2

MET b b jet jet jet jet 0.30 fb 1 / 2

MET W jet jet jet 0.12 fb 1 / 2

MET W jet jet 0.07 fb 1 / 2

MET higgs jet jet 0.01 fb 1 / 2

g̃
t̃
pa

ir
an

ni
hi
la
ti
on MET b b jet jet 11.37 fb 1 / 3

MET b b jet jet jet 2.03 fb 2 / 3

None

None

None

g̃
b̃
pa

ir
an

ni
hi
la
ti
on MET b b jet 0.54 fb 2 / 2

MET b b jet jet 0.11 fb 1 / 2

MET W b b 0.05 fb 1 / 2

None

None
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Q̃
1
co
an

ni
hi
la
ti
on

MET b b jet 1.07 fb 75 / 179

MET W W b b 0.97 fb 4 / 179

MET b jet jet jet t 0.78 fb 4 / 179

MET b b jet jet 0.76 fb 18 / 179

MET Z Z b b 0.69 fb 5 / 179

ũ
R
co
an

ni
hi
la
ti
on

MET jet jet ta ta 4.45 fb 7 / 137

MET W jet jet 1.94 fb 29 / 137

MET b b jet 1.23 fb 57 / 137

MET jet t t 1.23 fb 48 / 137

MET W W t t 1.08 fb 5 / 137

d̃
R
co
an

ni
hi
la
ti
on

MET W jet jet 3.63 fb 37 / 155

MET higgs jet jet 2.37 fb 20 / 155

MET b jet jet t 1.95 fb 16 / 155

MET W higgs jet 1.39 fb 6 / 155

MET b b jet jet jet 1.28 fb 6 / 155

˜̀ R
co
an

ni
hi
la
ti
on

MET W jet jet 3.72 fb 4 / 17

MET b jet jet t 1.62 fb 3 / 17

MET Z jet jet 1.49 fb 4 / 17

MET W b t 0.82 fb 4 / 17

MET b b jet 0.59 fb 7 / 17

b̃ 1
co
an

ni
hi
la
ti
on

MET b b b jet jet t 21.77 fb 3 / 101

MET W W b b 13.46 fb 14 / 101

MET b b jet jet t t 12.79 fb 5 / 101

MET W b b jet jet 8.29 fb 4 / 101

MET b b jet t t 3.42 fb 3 / 101
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t̃ 1
co
an

ni
hi
la
ti
on

MET b b jet jet jet 14.54 fb 8 / 105

MET b b jet jet jet jet 9.65 fb 3 / 105

MET b b jet 3.67 fb 27 / 105

MET jet jet ta ta 2.67 fb 3 / 105

MET b b jet jet 2.43 fb 19 / 105

τ̃ 1
co
an

ni
hi
la
ti
on

MET jet jet ta ta 1.15 fb 7 / 27

MET jet jet ta ta ta 0.81 fb 3 / 27

MET b t ta 0.34 fb 4 / 27

MET W ta ta 0.29 fb 3 / 27

MET b jet t ta 0.21 fb 3 / 27

t̃b̃
pa

ir
an

ni
hi
la
ti
on MET b b jet 2.04 fb 10 / 20

MET b b jet jet 0.99 fb 7 / 20

MET b b jet jet jet 0.87 fb 2 / 20

MET b jet jet t 0.51 fb 4 / 20

MET b b t t 0.03 fb 2 / 20

Z
/h

po
le

an
ni
hi
la
ti
on MET W b t 820.82 fb 6 / 12

MET W W b 79.63 fb 3 / 12

MET W W W Z 12.45 fb 3 / 12

MET W W W higgs 9.80 fb 3 / 12

MET W W Z higgs 4.86 fb 3 / 12

A
0
po

le
an

ni
hi
la
ti
on MET b b jet 3.83 fb 35 / 139

MET jet t t 2.21 fb 20 / 139

MET W jet jet 2.05 fb 38 / 139

MET b jet jet t 2.05 fb 7 / 139

MET b b jet jet 1.59 fb 14 / 139
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B̃
/H̃

MET W W W Z 30.97 fb 3 / 6369

MET jet jet ta ta ta 26.34 fb 4 / 6369

MET W W Z Z 19.29 fb 3 / 6369

MET W W Z 17.63 fb 3 / 6369

MET W jet jet ta ta 16.15 fb 3 / 6369

B̃
/W̃

MET ta ta ta 2.67 fb 4 / 1120

MET jet jet l ta 2.08 fb 11 / 1120

MET b jet jet t ta ta 1.76 fb 3 / 1120

MET b b l 1.50 fb 5 / 1120

MET W Z jet jet jet jet 1.46 fb 4 / 1120

Table 5.1: Table of most relevant R parity even final states for each class of dark matter
models ordered according to the BSM contributions to the final state. τ leptons in the final
state are labelled ta. The last column of the table gives the number of models within the
class for which the final state appears over the total number of models in the class.

As the methods used to attain these results are still evolving, we will simply provide general

commentary rather than an in depth analysis of the specific results appearing here. A

weakness of the results presented here is that the R parity even final state of the decay

of two sparticles is not always equivalent to the final state seen in experiment, due to the

instability of heavy SM particles.

For example, many classes are seen to be sensitive to final states containing W bosons. In

experiment, W bosons decay in the beam pipe and may not be directly detected. Instead,

they may detected through their leptonic decay channel, and so the final state may be

covered by one of the ATLAS analyses. A specific instance of this is the MET W jet jet

final state appearing as the third most relevant final state for A0 pole annihilation models.

In experiment, this may be detected as lepton + jets + MET, which is covered by ATLAS

current ATLAS analyses [119].
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Another weakness of these results is the lack of kinematic information. Large cross sections

are seen for some processes, however, it is not known whether these events would be accessible

at the LHC. For instance, final state particles may be too soft to be detected in experiment.

Incorporating kinematic information into the results would greatly increase the utility of

Table 5.1.

Many classes are sensitive to final states of 1-2 b quarks + jets + MET. As b quarks quickly

hadronize, they are detected as jets and so these final states contribute to the jets + MET

analyses [117, 118]. As only unexcluded models are shown, BSM contributions to the jets

+ MET final state could not have been significant enough to exclude the model. Thus, we

include specifically 1-2 b + jets + MET final states in our results as the sensitivity to these

channels may be increased by an analysis that specifically selects for the relevant number of

b-tagged jets.

5.4 Conclusion

We have presented an analysis of pMSSM models containing a neutralino LSP, a Higgs boson

mass consistent with experiment, a dark matter relic density that saturates the experimental

value, and that are not excluded by analyses performed on 8 TeV ATLAS data. We have

developed a classification scheme for these models based on the mechanism by which the

experimental dark matter relic density is achieved. We have analyzed the sensitivity of these

models to potential collider analyses and have presented the most abundant final states for

each class of models that have not been already searched for in experiment.

There are numerous ways in which these results may be improved. First, the number of

models available for some classes of dark matter is quite low. This can be improved by

using a generative model to sample models satisfying the set of constraints considered here
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[96]. Additionally, some of the models that are labelled as unexcluded by SUSY-AI may be

deemed excluded by a full analysis, as the classification accuracy of SUSY-AI is only 93%.

Using class labels derived from a Monte Carlo simulation, as is done by CheckMATE, would

avoid this potential issue [17]. Another way in which these results could be improved is the

inclusion of t channel interactions between decaying sparticles in simplified models, which

would result in non-MET final states. Currently, the simplified model spectrum is computed

by SModelS, which neglects these interactions.

Removing final states which decay to states already covered by ATLAS analyses would

increase the utility of results. Currently, these final states may simply be skipped when

reading Table 5.1. Another possible direction for future study would be to analyse the direct

and indirect dark matter detection rates of all pMSSM models in the dataset, comparing to

current and planned exclusion limits [144].
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Appendix A

Appendix

A.1 Appendix A

We justify the comparison of the expected value of the machine learned log likelihood ratio

within each invariant mass bin used in Chapter 3. Consider a test set Xtest of N events

drawn from the distribution ptest(x) where N is large. Using only invariant mass (denoted

mjj) to find the log likelihood ratio, we have

log r(Xtest, θ, θ0) = N

∫
dmjj ptest(mjj) log r(mjj|θ, θ0). (A.1)

A binned form of the expression log r(mjj|θ, θ0) is plotted as the grey line in Figure 3.2.

Using higher dimensional observations x = (mjj, x
′) to find the log likelihood ratio, we

instead have:

log r(Xtest, θ, θ0) = N

∫
dx ptest(x) log r(x|θ, θ0),
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which can be manipulated to take the same form as Equation A.1:

log r(Xtest, θ, θ0) = N

∫
dmjj ptest(mjj)

[ ∫
dx′ p(x′|mjj) log r(x′,mjj|θ, θ0)

]
. (A.2)

The bracketed expression is approximated by taking the expectation within bins of invariant

mass using the same binning as the previous case. This is plotted as the blue and magenta

lines in Figure 3.2. We see that the bracketed expression is analogous to log r(mjj|θ, θ0)

when using higher dimensional data to calculate the log likelihood ratio.

A.2 Appendix B

We present the hyperparameters for our machine learning models found in Chapter 4 in

Table A.1.

A.3 Appendix C

For each class of pMSSM models introduced in Chapter 5, we list the initial states of con-

tributing channels to the effective LSP annihilation cross section that are included in this

class.
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Parameter cMSSM pMSSM
Su

pe
rv
is
ed

N
N

Learning rate 0.001 0.0001245
Hidden layers 5 10
Nodes per layer 49 154
Dropout 0.5 0.0
Activation
function

Sigmoid Sigmoid

Optimizer ADAM ADAM
Batch size 128 128
Epochs 50 50

H
M
C

Step size 0.025 0.008
Number of
steps

12 12

Mass 1.0 1.0
Chain length 5000 5000
Burn-in steps 1000 1000
Number of
chains

100 100

N
F

Num trans-
forms

3 3

Batch size 1024 1024
Epochs 300 300
B 2.0 2.0
NN hidden fea-
tures

64 64

Table A.1: Hyperparameters used for the machine learning models for to the cMSSM and
pMSSM datasets.
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Class Inital States
Pole Annihilation χ̃0

1χ̃
0
1

W̃ Coannihilation χ̃0
1χ̃

0
2, χ̃0

1χ̃
±
1 , χ̃

±
1 χ̃
±
1 , χ̃

±
1 χ̃

0
2

L̃1 Coannihilation ν̃eν̃e, ν̃µν̃µ, ẽLẽL, µ̃Lµ̃L, ν̃eν̃mu, ν̃eẽL, ν̃eµ̃L,
ν̃µẽL, ν̃µµ̃L, ẽLµ̃L, χ̃0

1ν̃e, χ̃0
1ν̃µ, χ̃0

1ẽL, χ̃0
1µ̃L

ν̃τ Coannihilation ν̃τ ν̃τ , χ̃0
1ν̃τ

g̃ Coannihilation g̃g̃, χ̃0
1g̃

Q̃1 Coannihilation ũLũL, c̃Lc̃L, d̃Ld̃L, s̃Ls̃L, ũLd̃L, ũLc̃L, ũLs̃L,
d̃Lc̃L, d̃Ls̃L, c̃Ls̃L, χ̃0

1ũL, χ̃0
1c̃L, χ̃0

1d̃L, χ̃0
1s̃L

ũR Coannihilation ũRũR, ũRc̃R, c̃Rc̃R, χ̃0
1ũR, χ̃0

1c̃R
d̃R Coannihilation d̃Rd̃R, d̃Rs̃R, s̃Rs̃R, χ̃0

1d̃R, χ̃0
1s̃R

˜̀
R Coannihilation ẽRẽR, ẽRµ̃R, µ̃Rµ̃R, χ̃0

1ẽR, χ̃0
1µ̃R

b̃ Coannihilation b̃b̃, χ̃0
1b̃

t̃ Coannihilation t̃t̃, χ̃0
1t̃

τ̃ Coannihilation τ̃ τ̃ , χ̃0
1τ̃

ν̃τ τ̃ Pair Annihilation τ̃ ν̃τ
g̃ũR Pair Annihilation g̃ũR, g̃c̃R
g̃d̃R Pair Annihilation g̃d̃R, g̃s̃R
g̃Q̃1 Pair Annihilation g̃ũL, g̃c̃L, g̃d̃L, g̃s̃L
g̃t̃ Pair Annihilation g̃t̃1
g̃b̃ Pair Annihilation g̃b̃1

t̃b̃ Pair Annihilation t̃1b̃1

Table A.2: Initial states of contributing channels to DM relic density associated with each
class of pMSSM models. No differentiation is made between particle and antiparticle states.

107


	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Particle Physics
	The Standard Model
	Supersymmetry
	The Minimal Supersymmetric Standard Model
	Simplified Models

	Machine Learning
	Supervised Learning


	Resonance searches with Machine Learned Likelihood Ratios
	Introduction
	Method
	A Toy Problem
	Experiment
	Results
	Conclusion

	Efficient Sampling of constrained high dimensional theoretical spaces with machine learning
	Introduction
	Methods
	Data Generation
	Neural Network
	Hamiltonian Monte Carlo
	Normalizing Flows

	Results
	cMSSM
	pMSSM

	Conclusion
	Acknowledgements

	Proposed experimental tests for the phenomenological MSSM
	Introduction
	Methods
	Parameter Space Scan
	Classification of pMSSM Models

	Results
	Collider Studies

	Conclusion

	Bibliography
	Appendix Appendix
	Appendix A
	Appendix B
	Appendix C




