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Abstract

Introduction:This study investigated the extent towhich subjective and objective data

from an online registry can be analyzed using machine learning methodologies to pre-

dict the current brain amyloid beta (Aβ) status of registry participants.
Methods:Wedeveloped and optimizedmachine learningmodels using data fromup to

664 registry participants.Modelswere assessed on their ability to predict Aβ positivity
using the results of positron emission tomography as ground truth.

Results: Study partner–assessedEverydayCognition scorewas preferentially selected

for inclusion in themodels by a feature selection algorithm during optimization.

Discussion: Our results suggest that inclusion of study partner assessments would

increase the ability of machine learningmodels to predict Aβ positivity.

1 INTRODUCTION

The global incidence of dementia caused by Alzheimer’s disease (AD)

is expected to increase to over 130 million people by 2050, and in

the face of this growing health crisis, several world governments have

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
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set 2025 as a deadline for finding a way to treat or prevent AD.1 Yet

progress on finding a cure for AD has been slow. Difficulty in finding

treatments for AD is most likely a combination of uncertainty over the

cause of AD and the fact that individuals who are at risk for the disease

cannot easily be identified prior to the onset of cognitive impairment.
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Considerable evidence indicates that abnormal levels of amyloid beta

(Aβ) protein are one of the earliest biomarkers of AD, pre-dating the

appearance of clinically diagnosed dementia by up to 20 years.2 High

brain Aβ levels in older, cognitively normal patients are also associated

with a more rapid progression to mild cognitive impairment (MCI) or

AD-associated dementia.2 Consequently, monitoring Aβ levels in the

brain is important for identifying patients at risk of developing AD

before they become symptomatic. Because early detection of these

at-risk patients would allow disease-modifying treatments to be com-

menced sooner rather than later, improved techniques for assessing

amyloid burden could markedly improve clinical trial outcomes and

would improve the ability to care for patients with AD dementia.

Amyloid burden can be assessed in vivo by positron emission tomog-

raphy (PET)3,4 or analysis of cerebrospinal fluid (CSF).5,6 Neverthe-

less, the invasiveness and high cost of such procedures, coupled with

the low availability of the needed equipment and technical exper-

tise in primary care clinical settings, precludes their use in large-scale

patient screening. Thus, there is a need to develop noninvasive, eas-

ily accessible, and cost-effectivemethodologies for identifying patients

who are likely to have high Aβ burden. Several low-cost markers that

may be predictive of Aβ status in the brain have been suggested pre-

viously, including demographics, apolipoprotein E (APOE) genotype,

cognition,7–10 polygenic risk scores,11,12 magnetic resonance imaging

(MRI),13–15 plasma Aβ,16–18 and other blood biomarkers.16,19 In addi-

tion, Ashford et al.20 recently described a statistical model for pre-

dicting Aβ status that leveraged data collected in an online research

and recruitment registry for cognitive aging, the Brain Health Reg-

istry (BHR). The data used by this model consisted solely of informa-

tion collected by the BHR through online surveys from participants,

demonstrating the feasibility of using low-cost, self-reported data to

identify Aβ+ patients. However, because Ashford et al. focused exclu-

sively on self-reported, subjective assessments of cognition, the accu-

racy of models for predicting amyloid positivity based on information

from the BHR may be improved if these models made use of the data

from objective assessments of cognition that are also included in the

registry21 (as described in more detail below). Furthermore, although

Ashford et al. used a linearmodel (logistic regression) to drive their sta-

tistical analysis, a number of other groups have selected and evaluated

potential biomarkers forAβpositivitybyemployingnon-linearmachine

learning techniques, including kernalized support vector machines and

random forests.7,19,22–25 In light of the complex, non-linear nature of

biological processes, non-linearmodelsmaybebetter suited for uncov-

ering relationships between putative disease biomarkers and clini-

cal disease status.26 However, to date, non-linear models have not

been used to analyze data from the BHR, and we were interested in

whether non-linear models would provide improved results relative to

Ashford et al.

We were particularly interested in exploring two types of objec-

tive data in the BHR that were not considered previously by Ash-

ford et al., namely, results from the Cogstate Brief Battery (CBB),27

which is a computerized cognitive assessment, and study partner–

assessed Everyday Cognition metrics (SP-ECog),28 which are based on

evaluations provided by people who are familiar with the participants

RESEARCH INCONTEXT

Systematic review: The authors reviewed the literature

using electronic databases (e.g., PubMed) and search engines

(e.g., Google Scholar). Previous studies have described sta-

tistical or machine learning techniques for the prediction of

brain amyloid beta (Aβ) status, including recent work using

self-reported data from the same online registry that is the

basis for this study.

Interpretation: Althoughpreviouswork revealed that online,

self-reporteddatamayhaveutility in thepredictionofAβ sta-
tus, thiswork suggests that inclusion of study partner assess-

ments would increase the accuracy of such predictions.

Future directions: In order to further ascertain the ability of

themachine learningmodels described in this article tomake

accurate predictions of Aβ status, future work may include

evaluation of the models’ performance on other data sets.

Additional research is also needed to determine whether

higher predictive performance might be achieved through

further optimization of these models, either as a result of

improved feature selection processes or through inclusion of

additional features.

HIGHLIGHTS

∙ Data from an online registry can be used to predict brain

amyloid beta (Aβ) positivity.
∙ Partner assessments are key data for machine learning

models of Aβ status.
∙ Feature selection did not improvemodel performance, but

certain features could be removed without lowering per-

formance.

∙ Imputation ofmissing scores not only did not improve per-

formance but also did not lower performance.

rather than the participants themselves. Changes in both metrics are

associated with cognitive decline in patients with AD, suggesting that

they may be useful, either alone or combined, for predicting amyloid

status.29,30 Therefore, we hypothesized that analyses of CBB and SP-

ECog scores would increase the predictive ability of models targeting

Aβ status. Because only a small subset of BHR patients had CBB and

SP-ECog data available, wewere also interested inwhether techniques

such as imputation might help generate better models using these fea-

tures.

The goals of this study were to (1) examine the extent to which data

from the BHR, including objective measures of cognition such as CBB

and SP-ECog, can be analyzed using machine learning methodologies

to provide a prediction of contemporaneous Aβ positivity; (2) develop
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predictive models from BHR data using random forests and kernel-

ized support vector machines, two types of non-linear machine learn-

ing classifiers; and (3) identify optimal groups of features present in

the BHR data set that would maximize the predictive value of these

models.

2 METHODS

2.1 BHR Dataset

Data were obtained from the BHR database. BHR is a public online

registry for research recruitment, assessment, and longitudinal moni-

toring with a focus on cognitive aging.30,31 Participants register online

and, after agreeing to an online informed consent form, they complete

several questionnaires and self-administered cognitive assessments.

At the time of the analyses described in this paper, 70,992 participants

were enrolled in BHR. The data set used for this study included BHR

participants with available Aβ status as of June 2019 (n = 930). BHR

allows participants to be enrolled simultaneously in the BHR and cer-

tain other studies, with data linkage between the BHR and co-enrolled

studies.30 Aβ data for BHR participants were obtained from two such

co-enrolled studies, the ImagingDementia-Evidence for Amyloid Scan-

ning (IDEAS) study32,33 and clinical studies at the San Francisco Veter-

ans AffairsMedical Center (SFVAMC). Inclusion criteria for these stud-

ies have been described elsewhere.20 Apart from having a known Aβ
status, the key inclusion criterion for our analyseswas that participants

had completed certainBHRmeasuresof interest, including age, gender,

level of education, subjective memory concern, family history of AD,

self-reported ECog score, and aGeriatric Depression Scale Short Form

score (GDS-SF; all of which are further described below). A total of

664 participants met these criteria and were included in the modeling,

althoughevaluations of certainBHRmetrics (SP-ECog andCBBscores)

focused on subgroups of participants (n = 148-449) whose records

included one or both of such metrics. Of the 664 participants, 105

were listed in the BHR as having dementia, 459 as having mild cogni-

tive impairment (MCI), and 92 as cognitively unimpaired (CU) (8 partic-

ipantshadno informationoncognitive status). The impairment level for

this subgroupwas clinician-rated for participants enrolled in the IDEAS

study and self-reported for participants enrolled in the SFVAMC stud-

ies. Clinician-rated impairment level in IDEAS was determined prior to

PET scans as described byNosheny et al.33 Impairment levels (whether

self-reported or clinician-rated) were used only to monitor distribu-

tion of patients across subgroups and were not used to train any of the

models. Figure 1 shows a flow diagram of the numbers of participants

excluded from the entire BHR data set to create the various samples

used in this study.

BHR participants complete a questionnaire during registration that

asks for self-reported sociodemographic information. For this analysis,

we focused on the following sociodemographic variables: age, gender

(male, female), and education. All of these variables are known to be

associated with Aβ and are often included as predictors in Aβ predic-
tion models that utilize data obtained in-clinic.32,34,35 The categorical

variable education was converted to years of education (ranging from

6 to 20 years). Data on the distribution of these demographic markers

(as well as some of the health-related measurements described in Sec-

tion 2.2 below) are included in Table 1.

2.2 Subjective health-related measures

BHR participants are invited to complete further online self-report

questionnaires including an assessment of detailedmedical history and

overall health. This analysis used subjective memory concern (“Are

you concerned that you have a memory problem?”), family history

of AD (“Have you, your sibling(s), or parent(s) ever been diagnosed

with Alzheimer’s disease?”), self-reported and study partner-reported

Everyday Cognition Scale (or ECog) score (which are further described

below), and Geriatric Depression Scale Short Form (or GDS-SF) score,

all of which have been shown previously to be correlated with Aβ
levels.28,34,36,37

2.3 Geriatric depression scale short form

The GDS-SF is a 15-item screening tool used to rate severity of

depressive symptoms in older adults.38 BHR participants complete an

online version of the GDS-SF that contains content that is identical

to the paper version. Higher scores represent greater symptoms of

depression.

2.4 Everyday cognition scale

The Everyday Cognition Scale (ECog) is a 39-item assessment of the

participant’s self- or study partner–reported capability to perform

everyday tasks in comparison to activity levels 10 years earlier.28 BHR

participants complete an online adaptation of the ECog.30 This analy-

sis used both the self-reported (Self-ECog) and study partner-reported

(SP-ECog) scores.

2.5 Cogstate brief battery CBB scores

The CBB is a computerized cognitive assessment battery that has

been validated under supervised and unsupervised conditions in var-

ious populations, including aging studies and studies on AD and

related dementias.39–41 Only participants whose CBB scores met pre-

set integrity criteria were included.42 The CBB consists of four cogni-

tive tests29:

1. The detection test (DET) is a measure of psychomotor function

and information-processing speed that uses a simple reaction time

paradigmwith playing-card stimuli. The subject is asked to press the

“yes” keyas soonas the card in the centerof the screen turns faceup.

The software measures the speed and accuracy of each response.
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F IGURE 1 Generation of samples and subsamples

The primary outcome variable for this test is reaction time in mil-

liseconds for correct responses normalized using a logarithmic base

10 (Log 10) transformation.

2. The identification test (IDN) is a measure of visual attention and

uses a choice reaction time paradigm with playing-card stimuli.

The subject is asked whether the card displayed in the center of

the screen is red. The subject responds by pressing the “yes” key

when the joker card is red and “no” when it is black. The pri-

mary outcome for this test is reaction time in milliseconds for cor-

rect responses normalized using a logarithmic base 10 (Log 10)

transformation.

3. The one card learning test (OCL) is a measure of visual learn-

ing and memory that uses a pattern-separation paradigm with

playing-card stimuli. In this task, the playing cards are identical to

those found in a standard deck of 52 playing cards. The subject

is asked whether the card displayed in the center of the screen

was seen previously in this task. The subject responds by pressing

the “yes” or “no” key. The primary outcome variable is the propor-

tion of correct responses (accuracy) normalized using an arcsine

transformation.

4. The one-back test (ONB) is a measure of working memory and uses

a well-validated n-back paradigm with playing-card stimuli. In this

task, the playing cards are identical to those found in a standard

deck of 52 playing cards. The subject is asked whether the card dis-

played in the center of the screen is the same as the card presented

immediately before. The subject responds by pressing the “yes” or

“no” key. The primary outcome variable for this test is accuracy of

correct response.

2.6 Amyloid Beta

Aβ PET scan results were provided directly by IDEAS (n = 539) or the

SFVAMC studies (n = 114). Determination of participant Aβ status

for IDEAS has been described previously.43 In short, study imaging

specialists interpreted Aβ PET images using approved reading
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TABLE 1 Comparison of data subsets

SP-ECog+ / CBB+ SP-ECog+ / CBB- SP-ECog- / CBB+ SP-ECog- / CBB-

Total subjects, n 148 264 361 664

Age, mean (SD) 72.7 (5.3) 73.4 (5.4) 73.0 (5.4) 73.5 (5.5)

Female, n (%) 56 (37.8%) 108 (40.9%) 147 (40.7%) 294 (44.3%)

Education, mean (SD) 16.5 (2.7) 16.2 (2.8) 16.5 (2.6) 16.2 (2.7)

FamHxAD, n (%) 49 (33.1%) 80 (30.3%) 119 (33.0%) 213 (32.1%)

Self_SMC, n (%) 133 (89.9%) 242 (91.7%) 313 (86.7%) 593 (89.3%)

Self-ECog, mean (SD) 1.78 (0.57) 1.84 (0.64) 1.70 (0.54) 1.78 (0.61)

GDS_Score, mean (SD) 2.14 (2.34) 2.46 (2.68) 2.17 (2.39) 2.46 (2.68)

AD, n (%) 11 (7.4%) 52 (19.7%) 30 (8.3%) 105 (15.8%)

MCI, n (%) 110 (74.3%) 185 (70.1%) 243 (67.3%) 459 (69.1%)

Aβ+, n (%) 84 (56.8%) 168 (63.6%) 177 (49.0%) 365 (55.0%)

Abbreviations:AD, diagnosedwithAlzheimer’s disease;Aβ+, amyloid betapositive.; CBB-, subset doesnot includesCogstateBriefBattery scores;CBB+, sub-

set includes Cogstate Brief Battery scores; FamHxAD, family history of Alzheimer’s disease; GDS_Score, Geriatric Depression Scale (short form) score; MCI,

diagnosed with mild cognitive Impairment; SD, standard deviation; Self_SMC, self-reported subjective memory concern; Self-ECog, self-assessed Everyday

Cognitionmetric; SP-ECog-, subset does not include study partner–assessed Everyday Cognition scores; SP-ECog+, subset includes study partner–assessed

Everyday Cognition scores.

methodologies for each tracer (fluorine 18 (18F)–labeled florbetapir,

18F-labeled flutemetamol, and 18F-labeled florbetaben). A “negative”

interpretationmeant that the retentionof theAβ tracerwas in cerebral
white matter only and a “positive” interpretation meant that Aβ tracer
retention was also found in cortical gray matter. SFVAMC studies

followed the same interpretation scheme, based on visual reads of PET

scans performed using 18F-labeled florbetapir. For the IDEAS group,

PET scans preceded the BHR data collection, whereas in the SFVAMC

studies, BHR online data collection was not restricted to time of PET

scan.

2.7 Machine learning classifier construction and
feature selection

BHR data were used to construct random forest (RF) and support

vector machine (SVM) classifiers implemented in the Python library

scikit-learn (scikit-learn.org).44 All SVM classifiers used a radial basis

function (rbf) kernel. In each case, the predictive target of the RF and

SVM models was contemporaneous Aβ status of individual patients,

and the predictive performance of the models was assessed by cal-

culating the area under the receiver-operating characteristic (ROC)

curve (AUC). Optimal input features were selected using a greedy

forward feature selection algorithm. Specifically, starting with a model

having no features, each feature was added to the model in turn and

the AUC score was determined. Themodel with the highest AUC score

was retained, and this process was repeated until no features could

be added without decreasing the AUC score, revealing the optimal

feature set. The initial pool of features for this selection process

consisted of a fixed set of seven sociodemographic and health-related

measurements (age, gender, years of education, family history of AD,

subjective memory concern (SMC), Self-ECog score, and GDS-SF

score), both with and without two additional types of features (SP-

ECog score and a set of four CBB scores). Thus, the starting pool of

features used in this study ranged from 7 to 12. BHR participants

who lacked data for a particular feature under investigation were

excluded from that portion of the study, and therefore changes to

the initial feature set altered the number of samples used to perform

the feature selection and training. Sample numbers are reported in

Tables 1 and 2 for each experimental condition. At the same time as

feature selection, certain hyperparameters (number of trees for RF

models; regularization parameter and gamma for SVM models) were

optimized. Feature selection, hyperparameter optimization, andmodel

evaluation were performed using nested cross-validation. Specifically,

feature selection and hyperparameter optimizationwere performed in

the inner cross-validation loop. The resulting models were validated in

the outer, 10-fold cross-validation loop using held-out data from each

testing fold. This process was repeated three times, and the reported

AUC scores are averages of the 30 AUC scores from the outer cross-

validation loop over 10 folds and three repetitions. Mean AUC scores

for each experimental condition were compared using a Wilcoxon

rank-sum test, with P< .05 denoting statistical significance. In addition

to AUC scores, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were also calculated. Because the

output of each model was the probability of a subject being Aβ+, an
arbitrary cut-off probability of 0.5 was used to separate positive and

negative classes when calculating sensitivity, specificity, PPV, andNPV.

2.8 CBB and SP-ECog imputation

For certain analyses, missing CBB scores and/or missing SP-ECog

scoreswere imputedusingmachine learning regressors.Missing scores

were imputed using the IterativeImputer class from scikit-learn, which
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TABLE 2 Results of feature selection

Model SP-ECog CBB N AUC, mean (SD) Sens. Spec. PPV NPV AUC (n= 148), mean (SD)

RF No No 664 0.5871 (0.0641) 64.82% 49.16% 60.97% 53.53% 0.5574 (0.1836)

Yes 361 0.5192 (0.0901) 49.84% 53.34% 50.25% 52.57% 0.5019 (0.1554)

Yes No 264 0.6244 (0.1198) 75.59% 42.22% 70.00% 48.84% 0.5970 (0.1294)

Yes 148 0.5790 (0.1467) 65.37% 44.76% 61.11% 49.00% 0.5708 (0.1734)

SVM No No 664 0.5864 (0.0659) 75.37% 37.44% 59.49% 56.11% 0.4750* (0.1699)

Yes 361 0.4856 (0.0845) 48.12% 52.84% 50.74% 51.37% 0.4499 (0.1615)

Yes No 264 0.6034 (0.1201) 88.70% 19.33% 65.94% 52.71% 0.6606 (0.1215)

Yes 148 0.5138 (0.1326) 79.77% 22.22% 57.36% 48.37% 0.4013* (0.1427)

Final column (labeled as n=148) reports scores generatedusing adata set consisting only of the148 subjectswith data for all 12 features. Valuesmarkedwith

* are significantly different (P < .05) from the corresponding means in the fifth column. Abbreviations: RF, random forest; SVM, support vector machine; SP-

ECog, study partner–assessed Everyday Cognition score; CBB, Cogstate Brief Battery score; AUC, area under the receiver-operating characteristic curve,

measured by 10-fold cross-validation; SD, standard deviation; Sens., sensitivity; Spec., specificity; PPV, positive predictive value; NPV, negative predictive

value.

F IGURE 2 Performance ofmodels after feature selection. Blue boxes represent baseline performance of models with hyperparameter
optimization but no feature selection. Orange boxes represent performance of models with both hyperparameter optimization and feature
selection. Abbreviations: RF, random forest; SVM, support vector machine; SP-ECog, study partner–assessed Everyday Cognition score; CBB,
Cogstate Brief Battery score; AUC, area under the receiver-operating characteristic curve

applies a Bayesian ridge regressor to model each feature with missing

values as a function of other features in a round-robin fashion.

3 RESULTS

3.1 Feature selection

Table 2 andFigure 2 summarize the results of the feature selection pro-

cess when applied to RF and SVM machine learning models trained to

predict Aβ status, depending on whether SP-ECog and/or CBB scores

were made available to the feature selection algorithm. AUC scores

ranged from 0.485 to 0.624. In the case of an RF model, including SP-

ECog scores in the pool of features available to the selection algorithm

resulted in higher average AUC scores when compared to omitting SP-

ECog scores (0.624 vs 0.587, P= .015). Conversely, including CBB data

in the pool of features available to the selection algorithm produced

consistently lower scores (P< .006 in three of the four cases). Because

sample sizes varied depending on the initial feature pool (as a result

of missing values among subjects), we repeated the feature selection
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F IGURE 3 Effect of imputation of SP-ECog and CBB data. Models having significantly different scores with andwithout imputation (P< .05)
are denoted with an asterisk. No imputation was necessary for models without SP-ECog and CBB scores, but these were built in parallel with rest
as controls; minor differences between paired results for thesemodels are the result of random variation inherent in cross-validation process.
Abbreviations: RF, random forest; SVM, support vector machine; SP-ECog, study partner–assessed Everyday Cognition score; CBB, Cogstate Brief
Battery score; AUC, area under the receiver-operating characteristic curve

process using only those subjects who had data for all 12 features

(n = 148). These results are presented in a separate column in Table 2.

Note that the statistical difference seen in theSVMmodel trainedusing

the seven core features (i.e., excluding SP-ECog andCBB scores), which

used the same subset of patients in either case, is likely due to random

variation inherent in the cross-validation process.

Because models were trained and evaluated using a nested cross-

validation approach, feature selection was applied independently to

each of the outer cross-validation folds in order to prevent leakage of

information from the testing folds. As a result, each run of the nested

cross-validation generated 30 locally optimal feature sets (10 folds x 3

repetitions). The frequency with which a given feature appears among

these 30 sets provides an indication of feature importance. Figure 4

summarizes the occurrence of each feature in the 30 optimal feature

sets generatedundereach starting condition.Whenstartingwith initial

pools of features that included SP-ECog, the most common or second

most common feature in the optimal feature sets was always SP-ECog.

When SP-ECog is not included in the initial feature sets, themost com-

mon features were usually Self_SMC andGDS_Score.

3.2 CBB and SP-ECog imputation

There was a significant amount of variability in whether any particular

BHR participant reported SP-ECog scores or results from each of the

four CBB tests on any one assessment. Consequently, 400 of the sam-

ples hadnoSP-ECog score and215of the samplesweremissing at least

one CBB score. To include either or both of these metrics in the fea-

ture selection process, it was necessary to limit the data set to patients

having these categories of data, which reduced the sample size consid-

erably (see Figure 1 and Table 1). To explore an alternative method to

address the missing data, imputation was used to generate predictions

for missing CBB data and missing SP-ECog data based on the available

data for each patient. This allowed inclusion of CBB and/or SP-ECog

in the initial feature set without excluding as many participants from

the analysis formissing data. However, therewas a risk that imputation

might negatively impact the models, since imputed data may not be as

predictive as real data. The results from models trained using imputed

data are summarized and compared to the original models in Figure 3.

AUC scores ranged from 0.46 to 0.62. In three of the four models that

used imputed CBB score, imputation resulted in a significant increase

in AUC scores relative to excluding data from patients with missing

data. Inother cases, imputationhadnosignificant effect onAUCscores.

4 DISCUSSION

The main findings of this study are that (1) SP-ECog is potentially a

key feature when building machine learning models to predict Aβ sta-
tus using data collected through the BHR; (2) including CBB scores
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generated by BHR participants had a statistically significant nega-

tive effect on the ability of these models to predict Aβ status; and

(3) imputation ofmissing CBB scores andmissing SP-ECog data did not

improve the predictive performance of models, but the models built

using imputed data performed equivalently to those built using only

actual data, suggesting that imputation may be a useful strategy for

addressingmissing data in the BHR data set.

Adding feature selection to the training pipeline did not have a sta-

tistically significant effect on the performance of themodels (Figure 1).

However, this is not entirely surprising. The benefits of feature selec-

tion stem from removing noisy data that can affect the ability of mod-

els to accurately learn relevant patterns. Because of the small number

of features in this case, it is likely that noise is not a significant factor.

On the other hand, it is notable that we were able to eliminate a sig-

nificant proportion of the features (41% on average) and still retain the

same levels of performance.

In addition, looking at what features were selected reveals some

interesting patterns. When SP-ECog was included in the starting fea-

ture pool prior to feature selection, it appeared more frequently in the

final feature sets thananyother feature. Thiswas true regardless of the

typeofmodel (RF vs SVM),whether or notCBB scoreswere included in

the initial features, andwhether or notmissing CBB or SP-ECog scores

were imputed. Moreover, in the case of an RF model trained on all of

the available features other than the CBB scores, removing SP-ECog

caused a statistically significant decrease in the average AUC score

(P = .015). A similar effect was seen in an SVMmodel (P = .038) when

the various initial feature pools were analyzed using consistently sized

data sets (n = 148; i.e., the population of subjects who have all 12 fea-

tures). Taken together, these results suggest that the presence of SP-

ECog was a key contributor to the models’ ability to predict Aβ status.
This result is consistent with previous work that found that SP-ECog is

statistically associated with cognitive decline in BHR participants.30,33

Our results also suggest that SP-ECog is more predictive than Self-

ECog. When models were trained on initial feature sets that included

both SP-ECog and Self-ECog, Self-ECog appeared in the final optimal

feature sets less frequently thanmost of theother features. In contrast,

when the same process was applied to initial feature sets that omitted

SP-ECog, the feature selection process was more likely to select Self-

ECog, as under these conditions Self-ECog appeared in the final opti-

mal features sets about as frequently as most of the other features.

A likely explanation for these results lies in the fact that the greedy

selection algorithm is designed to select non-redundant features. Thus,

Self-ECog may be weakly predictive of Aβ status, but in the presence

of SP-ECog, the stronger correlation between SP-ECog and Aβ posi-

tivity causes the selection algorithm to select SP-ECog. Then, in later

selection rounds, the algorithm continues to avoid Self-ECog because

the addition of Self-ECog on top of the already present SP-ECog does

not provide enough added benefit.

On the other hand, inclusion of the CBB test scores in the initial

feature set did not have a significant positive effect on the final AUC

scores. In fact, including CBB scores in the initial feature set but

omitting SP-ECog consistently resulted in lower AUC scores than for

any of the other initial feature sets we tested. This was somewhat

surprising, as other studies have demonstrated the validity of the

CBB as a screening tool for AD patients.27,29,39–41,45–47 One possible

explanation is that although CBB scores are accurate measures of

cognitive decline, cognitive decline alone is insufficient to predict Aβ
status. However, a recent analysis of data from another web-based

registry for Alzheimer’s patients, the Alzheimer’s Prevention Trial

(APT) webstudy (aptwebstudy.org), concluded that one of the CBB

tests (One Card Learning, or OCL), when administered remotely, was

one of the top predictors of Aβ status.24 Similarly, in another recent

article, lower accuracy on the CBBOCL test was reported to be associ-

ated with an increased likelihood of being Aβ+ in a logistic regression

model, but notably this association was masked when Self-ECog and

SP-ECog scores were also included in the model.33 Thus, contrary to

our finding that adding CBB to the feature set results in lower AUC

scores, these other articles suggest that scores from the CBB OCL are

predictive of Aβ status.
Given that a number of patients in the original data set were miss-

ing SP-ECog and CBB scores, we also examined whether imputation

of these features might be a useful strategy for managing this miss-

ing data. Under three of the four starting conditions involving imputed

CBB data, CBB imputation produced average AUC scores that were

higher (P < .05) relative to our initial approach of eliminating samples

with missing CBB data (Figure 3). However, in all of these cases, simply

omitting the CBB scores from the initial feature set resulted in equiv-

alent results. When we looked in detail at the features selected when

imputedCBBdata is present, wewere surprised to see thatCBB scores

were almost never present in the final feature set. Thus, imputation of

CBB data does not improve scores by increasing the performance of

the CBB data itself. Rather, imputation appears to make it more likely

that the feature selection process ignores the CBB data entirely, which

for some reason causes the averageAUCscore to increase.Wehypoth-

esize that this effect may result from a limitation of the feature selec-

tion process. Feature selection is an NP-hard problem, and no tech-

nique is guaranteed to identify the optimal feature set, other than an

exhaustive search of all possible combinations of features.48 There-

fore, it is possible that, once it adds any of the CBB scores to the list

of features, the feature selection algorithm becomes unable to reach

the highest scoring combination of features.

Imputation of SP-ECog data did not improve performance of the

models, as the scores from models based on imputed SP-ECog data

were indistinguishable frommodels based on non-imputed data. Here,

the lack of effect of imputation was not because of a failure of the fea-

ture selection algorithm to pick SP-ECog as one of the features. As

shown in Figure 4, for both RF and SVM models trained using an ini-

tial feature pool that included imputed SP-ECog data, SP-ECog was

nearly always present in the optimal group of features, which suggests

that the imputed scores did provide some predictive value. However,

comparing the feature distributions in Figure 4 for imputed SP-ECog

datawith those for actual SP-ECogdata reveals that Self-ECog appears

more frequently in optimal feature sets when imputation is used. We

speculate that imputation of SP-ECog weakens the predictive power

of the SP-ECog scores, leading to both metrics being necessary for an

optimal AUC score inmany cases.

http://aptwebstudy.org
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F IGURE 4 Frequency of feature selection. (A) Non-imputed data. (B) Imputed data. Abbreviations: RF, random forest; SVM, support vector
machine; SP-ECog or SP_ECog_score, study partner–assessed Everyday Cognition score; CBB, Cogstate Brief Battery score; FamHxAD, family
history of Alzheimer’s disease; Self_SMC, self-reported subjectivememory concern; Self_ECog_score, self-assessed Everyday Cognitionmetrics;
GDS_Score, Geriatric Depression Scale (short form) score; Det_BS, Cogstate Detection test; IDN_BS, Cogstate Identification test; OCL_BS,
Cogstate One Card Learning test; ONB_BS, Cogstate One Back test
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The range of AUC scores generated by themachine learningmodels

used in this study in the absence of SP-ECog andCBBmetrics are lower

than AUC scores previously reported by Ashford et al. for a statistical

model that used logistic regression to analyze a similar set of features

from the BHR.20 In particular, Ashford et al. reported a cross-validated

AUC score of 0.66, andweobtained an averageAUC score of 0.587 and

0.586 for RF and SVM classifiers, respectively, based on a similar set of

BHR features. However, because we were interested in assessing mul-

tiple types ofmachinemodels (RF and SVM) and different hyperparam-

eters (including optimal feature sets), we used nested cross-validation

to minimize the introduction of bias into this process. Because Ash-

ford et al. did not need to use nested cross-validation, their scores are

not directly comparable to the ones reported here. In the absence of

feature selection or hyperparameter optimization, where a single level

of cross-validation can be applied, our RF and SVM models achieved

a score of 0.62 (Figure 1), which is similar to the score reported by

Ashford et al. Our results are also in line with Langford et al.,24 which

reported an AUC score of 0.598 when training an XGBoost classifier

to predict Aβ status using data from remote, web-based testing. Ansart

et al.25 also looked at possible low-cost biomarkers for Aβ positivity,
reporting AUC scores between 0.675 and 0.824 for random forests

applied to a variety of data sets. However, theirmodel included data on

subjects’APOE ε4 genotype, which is difficult to obtain reliably through
an online registry. Because theirmodels achievedAUC scores of 0.637-

0.751 using APOE ε4 genotype as the sole feature, it is likely that their

models would have performed significantly worse if the APOE ε4 fea-

ture was omitted. Finally, Insel et al.7 reported a random forest model

for predicting Aβ positivity that had a positive predictive value (PPV)

of 65%. Insel’s models also include APOE ε4 genotype as a feature and

therefore arenotdirectly comparable toourmodels. Even so, their PPV

figure is similar to the 50% to 70%PPV range reported here.

Some limitations that may operate to limit the generalizability of

the current findings are worth noting. Elevated Aβ levels are consid-

ered necessary but not sufficient for anADdiagnosis,49 and so by look-

ing exclusively at Aβ status, our model may be ignoring other clini-

cally relevant features. Moreover, the fact that our analysis was lim-

ited to patients in the BHR whose Aβ status had been determined by

PETmay have introduced a selection bias. Similarly, because ourmodel

only included patients who had completed BHR’s online surveys, it

might overestimate the ability of online metrics to predict Aβ positiv-
ity. Another potential source of error stems from the fact that most

patients who participated in the IDEAS study were informed about

their Aβ status. Because the BHR data rely heavily on self-reported

informationand the results of self-administered tests,manyof themet-

rics used in ourmodel could be affected by patients’ knowledge of their

Aβ status. Finally, the lack of racial, ethnic, and educational diversity

among the BHR participants may limit the generalizability of the study.

In conclusion, our results demonstrate the feasibility of predicting

Aβ status in older adults through the use of an online registry involving
subjective assessments from participants and study partners as well

as computerized cognitive tests administered in an unsupervisedman-

ner. Such an online approach is inexpensive, non-invasive, easily acces-

sible, and scalable and therefore could be a useful method for pre-

screening older adults for clinical trials prior to assessing Aβ positiv-
ity using PET imaging. Our results also reveal that certainmetrics, such

as SP-ECog, may be better suited than others to classifying patients as

Aβ+. Additional research is needed to determine whether higher pre-

dictive performancemight be achieved through further optimization of

the machine learning models described in this article, either as result

of improved feature selection processes or through inclusion of addi-

tional features.
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