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Influence of magnetic field configuration on magnetohydrodynamic waves
in Earth’s core

Nicholas Knezek⁎, Bruce Buffett
Dept. of Earth and Planetary Science, University of California Berkeley, United States

A B S T R A C T

We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the
surface of Earth’s core. Past studies have been limited to using simple background magnetic field configurations.
However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To
permit a more general treatment of background magnetic field and layer stratification, we combine finite volume
and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies
and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic
waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background
field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave
structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are
trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon
the distribution of magnetic field strength at the CMB.

1. Introduction

Earth’s geomagnetic field originates due to motions in Earth’s liquid
outer core. Despite decades of study, many aspects of the large-scale
dynamics of the core are uncertain. In particular, it is possible that the
topmost region of the outer core is stably stratified and does not par-
ticipate in convection with the rest of the core fluid. Many authors have
claimed to detect such a layer using seismic (Tanaka, 2007) or geo-
magnetic evidence (Whaler, 1980; Lesur et al., 2015), but its existence
remains in dispute. Changes in Earth’s internal magnetic field, termed
geomagnetic secular variation (GSV), originate due to fluid motions
near the core surface and can be used to study the dynamics of fluid in
this region (Holme and Whaler, 2001; Livermore et al., 2016). In par-
ticular, periodic fluctuations in GSV have been attributed to magneto-
hydrodynamic waves in Earth’s core, which can constrain properties
such as the strength of the core’s internal magnetic field (Hide, 1966;
Hori et al., 2015) or the thickness and strength of buoyancy of the
proposed stratified layer (Buffett, 2014). These techniques are be-
coming increasingly powerful due to active satellite missions which
enable high-resolution observations of GSV (Finlay et al., 2016), and
several authors have already claimed to detect previously unobserved
propagating waves and fluid motions using satellite observations
(Chulliat et al., 2015; Livermore et al., 2016).

To obtain useful constraints on physical properties of the core from

periodic signals in the GSV, the structure of magnetohydrodynamic
waves and their dependence on various core properties must be derived
through analytical or numerical techniques. Past studies have used
simplified models of the core’s internal field such as a pure dipole
(Braginsky, 1993) or axially-aligned field (Vidal and Schaeffer, 2015) to
simplify the description of the problem. However, observations of
Earth’s core field (Jackson et al., 2000) and the latest high-resolution
numerical dynamo models (Schaeffer et al., 2017) indicate that the true
field in the core is likely to be have a more complicated structure. Be-
cause these waves depend on the internal magnetic field to propagate,
the configuration of the background magnetic field can heavily influ-
ence their period and spatial structure and therefore dramatically in-
fluence the interpretation of observations.

Analytical derivations of waves modes in Earth’s core typically re-
tain only a simplified description of the field. Braginsky (1993) and
Bergman (1993) use the radial component of a pure dipole field to
derive the structure of Magnetic-Archimedes-Coriolis (MAC) waves and
equatorially-trapped Rossby waves in a stratified layer near the CMB.
Both authors find the strongest fluid motions near the equator, where
the dipole approximation has no radial component. However, the ob-
served geomagnetic field has a significant radial component in this
region (Jackson et al., 2000), so it would be reasonable to question at
least some of the conclusions of these studies. Hide (1966), in contrast,
uses a beta-plane approximation to derive slow Rossby waves in the
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bulk of the core with a purely toroidal field where
̂⎯→⎯

=B r θ ϕ B r θϕ( , , ) sin0 , sometimes referred to as the Malkus field. The
Malkus field increases steadily with radial distance from the rotation
axis and has its strongest value in the equatorial region at the CMB.
From physical arguments, Braginsky (1993) and Bergman (1993) argue
that the toroidal field should be small near the CMB, and recent high-
resolution numerical dynamo simulations support this claim (Schaeffer
et al., 2017), so the Malkus field may not be a suitable approximation
for the region close to the CMB.

Numerical solutions have the potential to overcome the limitations
imposed by analytical techniques, permitting studies with more general
background field configurations. However, numerical studies often use
fields similar to those used in analytical derivations. Vidal and Schaeffer
(2015) use the Malkus field and an axially-aligned field ̂⎯→⎯

=B r θ ϕ B z( , , ) 0
to confirm that fast MC waves are largely unaffected by the background
magnetic field. More relevant to this work, Márquez-Artavia et al.
(2017) uses a simple toroidal field ̂⎯→⎯

=B r θ ϕ B θϕ( , , ) sin0 to examine
magnetic shallow water waves on a sphere. Buffett (2014) derived so-
lutions for MAC waves with both a constant radial field ̂⎯→⎯

=B r θ ϕ B r( , , ) 0
and a vertical field, finding very different wave structures for each (see
Buffett, 2014, Fig. 2 and Extended Data Fig. 1). All of these studies used
spherical harmonics to describe the field and layer structures when
formulating the eigenvalue problem for the waves. Spherical harmonic
expansions are commonly used to study waves in Earth’s core and are
numerically efficient for simple background field configurations.
However, the complexity of the computations increase severely with
more general descriptions of the background magnetic field due to
coupling between modes which necessarily lead to dense matrix
equations that are computationally expensive to solve. This has limited
the study of more complex background magnetic fields, despite the fact
that the choice of background field likely has a large influence on wave
structures and on the interpretation of geomagnetic observations.

In order to understand the influence of background magnetic field
configuration on waves in stratified layers, we develop a new flexible
numerical model that utilizes a hybrid finite-volume and Fourier ei-
genvalue method. A finite-volume formulation allows us to efficiently
study wave dynamics with complex background magnetic fields while
using only sparse matrices. Finite volume methods also avoid numerical
singularities at the north and south poles that arise with finite differ-
ence methods and may also simplify coupling the spherical shell layer
presented in this work to the non-spherical structure of geostrophic
motion in the bulk core in future work. We choose not to adopt a finite-
element approach because our domain is regular and so we can avoid
the extra numerical overhead required to track connectivity of ele-
ments. A linearized description of the waves allows for Fourier de-
composition of the problem into individual azimuthal wave modes, as
modes do not couple to each other when the background magnetic field

and layer buoyancy are axially-symmetric, which is assumed
throughout this paper. We combined these ingredients to formulate an
eigenvalue problem for the wave motion and obtain solutions for the
wave structures, periods, and quality factors.

2. Model formulation

We compute the velocity (
→
V ), magnetic field (

⎯→⎯
B ), pressure (P), and

radial displacement (Ur) for waves in the thin layer. The evolution of
these variables are determined by a set of governing equations derived
from the Navier–Stokes equations for velocity, the induction equation
for magnetic field, and mass continuity equations for pressure and ra-
dial displacement. These equations are discretized using a hybrid finite
volume and Fourier (FVF) method. Finally, the equations are linearized
and wave solutions are obtained by using a sparse-matrix eigenvalue
solver.

2.1. Governing equations

We adopt the Boussinesq approximation to describe the motion of a
viscous and incompressible fluid (see e.g. Jones, 2011). Gravity →g and
the initial density stratification ρ r( )0 of the core fluid are both radial, so
the buoyancy force has only a radial component ̂− ρgr( ), where ρ is the
fluid density at any subsequent time (see Eq. 6). The centrifugal force
that arises in the rotating frame is incorporated in the pressure term∇P ,
but the magnetic force is expressed in terms of the Maxwell magnetic
stress tensor T without absorbing the magnetic pressure into P:

= ⎛
⎝

− ⎞
⎠

T B B B δ1
2

.ij i j ij
2

(1)

With these simplifications, the momentum equation becomes

̂
→

= −∇ + ∇ + ∇
→

− ×
→

−ρ DV
Dt

P
μ

T ρν V ρ V ρgr1 · 2 Ω .
0

2

(2)

As we retain pressure as a variable, we must explicitly enforce the
continuity equation

∇
→

=V· 0. (3)

We use the magnetohydrodynamic approximation (e.g. Roberts and
King, 2013) to describe the evolution of the magnetic field

∂
⎯→⎯

∂
= ∇ ×

→
×

⎯→⎯
+ ∇

⎯→⎯B
t

V B η B( ) 2
(4)

where =η σμ1/( )0 is the magnetic diffusivity. The magnetic field is also
subject to the condition

∇
⎯→⎯

=B· 0. (5)

2.2. Thin-layer approximation

The governing equations are linearized by assuming that the waves
are small perturbations of a background state

→
=

→
+ → = +

⎯→⎯
=

⎯→⎯
+

→
= +

= +

V V v U U u B B b P P p ρ

ρ ρ

, , , ,

Δ
r r r0 0 0 0

0 (6)

In a thin layer, radial velocities are relatively small, so the radial
force balance is nearly hydrostatic. We also adopt a hydrostatic back-
ground state

→
= =V U0, 0r0 0 (7)

where P0 and ρ0 are the hydrostatic pressure and initial density profile.
For the radial buoyancy force, the local density of the fluid ρ is

disturbed by radial motion through the (radial) background density
gradient ∂ ∂ρ r/0 . Assuming the displacement of the parcel (ur) is small,

(l-1)

(k+1)

(l+1)
(k-1)

n̂

n̂
n̂

ˆ
n̂

ˆ(l,k)

Fig. 1. Finite-volume cell geometry. Dimensions exaggerated for illustration purposes.
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the density perturbation can be written as = − ∂ ∂ρ u ρ rΔ /r 0 . The buoy-
ancy force can therefore be written

̂ ̂ ̂− = − −
∂
∂

= − +ρg r ρ g ρ
g
ρ

ρ
r

u r ρ g ρ N u r( ) ( )r r0 0
0

0
0 0

2

(8)

where

= −
∂
∂

N
g
ρ

ρ
r0

0

(9)

is the Brünt-Vaïsaïlla frequency, which defines the strength of stratifi-
cation. In this model, we allow both N and B0 to vary with radius r and
colatitude θ through the layer

=
⎯→⎯

=
⎯→⎯

N N r θ B B r θ( , ), ( , )0 0

The radial component of the momentum Eq. (2) is nearly hydro-
static, so the radial gradient in the pressure perturbation balances the
buoyancy force

= − ∇ −p N u0 ( )r r
2 (10)

where the subscript r is used to denote the radial component of a vector
quantity.

Pressure perturbations induced by radial motion drive a horizontal
flow. We make the usual assumption of retaining only the radial com-
ponent of the rotation vector in the governing equations (i.e.

= θΩ Ωcosr ) because the horizontal component contributes to the
Coriolis force only through the (small) radial velocity. Therefore, sub-
tracting the hydrostatic state (7) and eliminating small terms, the
horizontal momentum Eqs. (2) become

̂∂→

∂
= − ∇ + ∇ + ∇ → − × →v

t ρ
p

ρ μ
T ν v cosθ r v1 ( ) 1 ( · ) ( ) 2(Ω )θ ϕ

θ ϕ l θ ϕ θ ϕ
,

0
,

0 0
,

2
,

(11)

where Tl is a linearized version of the Maxwell stress tensor T retaining
only terms involving interactions between B0 and b. Note that we retain
the viscous force to promote numerical stability, although this term is
typically quite small.

Small radial velocities relative to horizontal velocities ( ≪v vr θ ϕ, ) are
expected when the characteristic radial length scale is small compared

with the horizontal length scale. The corresponding radial magnetic
perturbations are also very small ( ≪b br θ ϕ, ) as they are related through
the induction Eq. (4). Consequently, we solve for the horizontal per-
turbations in the magnetic field using the induction equation

∂
∂

= ∇ × → ×
⎯→⎯

+ ∇
→b

t
v B η b( ) ( )θ ϕ

θ ϕ θ ϕ
,

0 ,
2

, (12)

and evaluate the radial component (if needed) using the solenoidal
condition ∇

→
=b· 0.

2.3. Non-dimensionalization

The equations are cast into a non-dimensional form using the core
radius Rc as the characteristic lengthscale and the reciprocal rotation
rate of the earth 1/Ω for the characteristic time scale (see Table 1). This
results in two dimensionless constants – the Ekman number E and the
magnetic Prandtl number Pm – and two dimensionless parameters that
can vary through the layer – buoyancy frequency NΩ and a di-
mensionless radial magnetic field Br (see Table 2). Here, the char-
acteristic magnetic field ′ =B ρημ Ω0 is 0.86mT for η =0.8m2/s, but
can vary with different choices for core conductivities. Collecting terms,
the governing Eqs. (11) and (12) become

̂ ̂∂
∂

= −∇ + ∇ + ∇ →− × →−
v

t
p E

P
T E v θr v N u r( · ) 2(cos )θ ϕ

m
l θ ϕ r

,
,

2
Ω
2

(13)

and

Fig. 2. Longitudinal slices of velocity fields for Rossby wave
modes with peak velocity normalized to 1. (a) = =mℓ 1, 1
and (b) = =mℓ 3, 2. Note that (a) includes non-zero flow at
the poles – no modifications to the method are required to
handle this case.

Table 1
Physical constants used for model.

Symbol Constant Value

Ω Rotation Rate of Earth 7.3× −10 5/s
Rc Radius of Outer Core 3480 km
ν Momentum Diffusivity −10 2 m2/s
η Magnetic Diffusivity 0.8 m2/s
ρ0 Density 104 kg/m3

μ0 Vacuum Permeability × −1.26 10 6 m kg/s2A2

N Brunt-Väisälä Frequency O (1Ω)
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∂
∂

= ∇ × → × + ∇
→b

t
v B E

P
b( ) ( )θ ϕ

r θ ϕ
m

θ ϕ
,

,
2

, (14)

where variables now represent their non-dimensional forms. The
equations are supplemented by the incompressibility condition

∇ → =v· 0 (15)

and a linearized relationship between ur and vr

∂
∂

=u
t

v .r
r (16)

2.4. Hybrid finite volume – fourier method

The governing equations are discretized using a combination of fi-
nite volume (e.g. Ferziger and Peric, 2002) and Fourier methods, jointly
abbreviated as FVF. The domain is split into cells with a regular spacing
in radius and colatitude. Each term in the governing equations is in-
tegrated over the cell volume then converted into a surface integral
using Gauss’ theorem. We then divide this quantity by the cell volume
to obtain an operators that look similar to those used in finite difference
methods. Each cell is indexed by the letter k in the radial direction and l
in the latitudinal direction, while the letter m denotes the longitudinal
wave number of the Fourier mode. Radial positions +r r, , and −r , re-
spectively, denote the location of the center, top, and bottom faces of
the cell in question, and rΔ denotes the radial thickness of the cell. An
analogous notation is used for the meridional position (i.e. + −θ θ θ, , ). An
example of a cell is shown in Fig. 1. We demonstrate the approach by
deriving the (discrete) operator for the radial pressure gradient.

For the radial pressure gradient,

̂∫∇ = ⎛
⎝

⎯ →⎯⎯ ⎞
⎠

p
V

p dS r( ) 1
Δ

·r S (17)

where =V r θ r θ ϕΔ sin Δ Δ Δ2 represents the volume of the cell and the
integral is taken over the total surface S (e.g. Aris, 1962). The surface
integral is subdivided into individual faces, where +Ar and −Ar denote
the area of the top and bottom radial faces and +̂nr and −̂nr represent the
vectors normal to those faces (see Fig. 1). A similar notation is used for
the other faces. Summing the contributions from all six faces gives

̂ ̂ ̂ ̂ ̂ ̂
̂ ̂ ̂ ̂ ̂ ̂

∇ = + +

+ + +

+ + + − − − + + +

− − − + + + − − −

p
V

p A r n p A r n p A r n

p A r n p A r n p A r n

( ) 1
Δ

{ ( · ) ( · ) ( · )

( · ) ( · ) ( · )}.

r r r r r r r θ θ θ

θ θ θ ϕ ϕ ϕ ϕ ϕ ϕ (18)

Interpolating the surface values of p using the values at the centers
of adjacent cells, we obtain

∇ = − − −

− +

+ + − − + + − −

+ −

p
r

r r
p r

r r
p θ

r θ
p θ

r θ
p

θ θ
r θ

p

( )
2 Δ 2 Δ

sin
4 sin

sin
4 sin

sin sin
4 sin

.

r
k l k l k l k l k l

k l

( , )
2

2
( 1, )

2

2
( 1, ) ( , 1) ( , 1)

( , )
(19)

This expression appears similar to a finite difference operator, but
correctly accounts for the spherical geometry of the domain and does
not introduce coordinate singularities at the north and south poles. The

̂θ component of the pressure gradient is derived in a similar manner

and results in a similar expression. The ̂ϕ component is somewhat
simpler because we use the Fourier series to interpolate values onto the
ϕ-faces of the cell. Adopting the small angle approximation

≈ϕ ϕsinΔ /2 Δ /2, the expression for ∇p( )ϕ simplifies into

∇ = ⎛
⎝

⎞
⎠

p im
rsinθ

p( )ϕ
k l k l( , ) ( , )

(20)

where m represents the Fourier mode.
Expressions for all other terms in the governing equations are de-

rived in a similar manner. We introduce short-hand notation for the
derived numerical operators to simplify notation. For example, the di-
vergence operator can be represented as

∇ → = ∇ + ∇ + ∇v v v v· r r θ θ ϕ ϕ (21)

where ∇ ∇ ∇, ,r θ ϕ represent numerical operators that include terms due to
the spherical geometry of the problem (e.g. ∇ ≠ ∂r r). Details of these
derivations and the resulting operators can be found in the supplement.

2.5. Eigenvalue formulation

Perturbations in the fields are constrained to vary periodically in
time and longitude with complex time frequency ω and longitudinal
wavenumber m:

⎡

⎣

⎢
⎢
⎢
⎢

→ ⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

→ ⎤

⎦

⎥
⎥
⎥
⎥

+

v r θ ϕ t
b r θ ϕ t

p r θ ϕ t
u r θ ϕ t

v r θ
b r θ

p r θ
u r θ

e

( , , , )
( , , , )

( , , , )
( , , , )

( , )
( , )

( , )
( , )

.θ ϕ

r

θ ϕ

r

i ωt mϕ, , ( )

(22)

Applying this constraint and introducing the notation from Section
2.4, the final governing equations for the model are

= − ∇ −p N u0 ( )r rΩ
2 (23a)

= − ∇ + ∇ + ∇ → +iωv p E
P

T E v θ v( ) ( · ) ( ) 2cosθ θ
m

l θ θ ϕ
2

(23b)

= − ∇ + ∇ + ∇ → −iωv p E
P

T E v θ v( ) ( · ) ( ) 2cosϕ ϕ
m

l ϕ ϕ θ
2

(23c)

̂= ∇ × → × + ∇
→

iωb v B r E
P

b( ) ( )θ r θ
m

θ
2

(23d)

̂= ∇ × → × + ∇
→

iωb v B r E
P

b( ) ( )ϕ r ϕ
m

ϕ
2

(23e)

= ∇ + ∇ + ∇v v v0 r r θ θ ϕ ϕ (23f)

=iωu v .r r (23g)

Note that we do not explicitly solve for br because its effect on the
dynamics is very small. However, the magnetic induction Eqs. (23d)
and (23e) in combination with mass continuity (23f) enforce the con-
dition ∇

→
=b· 0 when the initial field is solenoidal, and br can always be

recovered from the solution using the solenoidal condition.

2.6. Boundary conditions

Boundary conditions are needed at the top and bottom radial sur-
faces of the layer to close the equations. However, we do not need
conditions at =θ 0 and =θ π in the FVF method because the area of the
face of the cell adjoining the north and south pole vanishes and thus
does not contribute to the surface integral.

At the CMB we impose no radial motion and adopt (viscous) stress-
free boundary conditions because viscous boundary layers are not ex-
pected to play a large role in the dynamics of the waves when the
Ekman number (E) is small. Consequently, the boundary conditions on
velocity at the CMB are

Table 2
Non-dimensional parameters with representative values.

Parameter Definition Value in Core Value in Model

E ν
Rc2Ω

−10 15 – −10 14 −10 11

Pm ν
η

−10 6 – −10 5 −10 2

NΩ − ∂
∂

g
ρ

ρ
r

1
Ω 0

0 −0 101 −0 101

Br ̂⎯→⎯
B r ρημ· / Ω0 0

0.1 – 1.0 0.0 – 1.0
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= ∂
∂

=
∂
∂

=v v
r

v
r

0, 0, 0.r
θ ϕ

(24)

The conditions at the bottom boundary of the layer are more com-
plex. Viscous stress-free conditions are reasonable when E is small, but
it is not obvious that the radial motion should vanish. Numerical cal-
culations show that the radial motion is indeed small for zonal MAC
waves when the underlying region is geostrophic (Buffett, 2014).
Braginsky also argued for no radial motion at the bottom boundary for
non-zonal waves by introducing a density jump at the base of the layer
(Braginsky, 1998). When the density jump is large enough the asso-
ciated buoyancy suppresses radial motion at the boundary. Gravity
waves can propagate along the interface, but the periods are short
compared with the period of non-zonal MAC waves, so the motion is
effectively decoupled. As long as the timescale of dynamics in the in-
terior is different enough from the period of waves in the layer, then it
seems reasonable to decouple the motion in these two regions. We do
this by adopting (24) as boundary conditions on the base of the layer.

These conditions are incorporated directly into FVF discretization
for cells adjoining the top and bottom boundaries, with details found in
the supplement.

The appropriate conditions on pressure follow directly from (23a).
When either the radial motion or the stratification (N) vanishes, we
require

∂
∂

=
p
r

0 (25)

at the top and bottom boundary of the layer. These are again im-
plemented directly into the FVF operators, with details in the supple-
ment.

A natural choice of boundary conditions for the magnetic field at the
CMB is to match the numerical solution to a potential field outside the
core. These boundary conditions are not easily implemented in a finite
volume formulation, but fortunately the pseudo-vacuum boundary
conditions

=b | 0ϕ θ CMB, (26)

are a good approximation. Braginsky (1998) offers a detailed discussion
of these boundary conditions for waves in a thin layer, but they can be
justified with a simple physical argument. In the mantle, horizontal and
radial components of a potential magnetic field perturbation are of the
same order ∼b b| |θ ϕ r, mantle mantle. However, in a thin layer, horizontal
perturbations to the magnetic field are much larger than the radial
perturbations due to large horizontal fluid motions, ≫b b| |θ ϕ r, layer layer.
The magnetic field must be continuous, so at the CMB, bθ ϕ, must be
similar in magnitude to br . Thus, ∼ ≪b b b| | |r θ ϕ θ ϕCMB , CMB , layer. As the
horizontal perturbation of the magnetic field is much smaller at the
CMB than within the layer, we can adopt the conditions shown in (26)
without significantly affecting the wave dynamics.

At the bottom of the layer, the boundary conditions for the magnetic
field must match the solution for a perturbation in the conductive fluid
deeper inside the core. The waves we wish to study require buoyant
stratification to propagate and thus decay in the region below where
there is no buoyant restoring force. However, these waves do interact
with the convective fluid in the bulk of the core through magnetic in-
duction and pressure and potentially couple to modes of oscillations in
the bulk of the core. To fully treat this problem would require a de-
scription of motion through the whole core, which is beyond the scope
of this work. Instead, we choose to simulate only the stratified layer
region and approximate the bulk of the core fluid as stationary, al-
lowing the magnetic perturbation to propagate into the core with a skin
depth dependent on the period of oscillation.

To implement this boundary condition in our model, we require the
magnetic field to be continuous across the bottom boundary and in-
tegrate the induction equation across the interface, assuming that
horizontal gradients in the magnetic field are negligible compared to

radial gradients. The continuity condition becomes

+ ∂ =−
+

−
+B v E

P
b[ ] [ ] 0r θ ϕ

m
r θ ϕ, , (27)

where −
+[ ] denotes the discontinuity in quantities above +( ) and below

−( ) the bottom layer boundary. The velocity above the boundary does
not vanish because we impose viscous stress free conditions. Below the
boundary, =−v 0θ ϕ, and the magnetic perturbation inside the core obeys
a diffusion equation. The solution below the layer is

− =− + + − +b r r b r e e( ) ( )θ ϕ b θ ϕ b
i r r δ i ωt mϕ

, ,
[(1 )( )/ ] ( )b (28)

where rb denotes the radial location of the bottom layer boundary and δ
denotes the dimensionless magnetic skin depth

=δ E
ωP
2 .

m (29)

Using (28) to evaluate the boundary condition in (27) gives

+ ∂ − + =+ + +B v E
P

b i
δ

b(1 ) 0.r θ ϕ
m

r θ ϕ θ ϕ, , , (30)

When the magnetic perturbation at =r rb is mainly due to the ve-
locity discontinuity at the base of the layer, it is reasonable to ap-
proximate ∂ +br θ ϕ, using the diffusive solution complementary to (28). In
this case, the boundary condition reduces to

=
+

+ +b δB P
i E

v
2(1 )θ ϕ

r m
θ ϕ,

0
, (31)

with further details found in the supplement.
As the magnetic skin depth depends upon the period of the wave,

these boundary conditions require knowledge of the period of the
waves prior to solving the eigenvalue problem. Thus, we use an itera-
tive approach: an estimate of the wave period is used for the initial
calculation, then the solution is recomputed using the updated wave
period. Typically, convergence requires only a few iterations.

2.7. Solving the eigenvalue problem

Incorporating boundary conditions into the discrete operators, the
governing Eqs. (23) are cast into the form of a generalized eigenvalue
problem =ωBx Ax where A and B are sparse matrices, ω is the ei-
genvalue, and x is the eigenvector containing the wave structure for
each variable. We let

= v v v b b p ux [ , , , , , , ].T
r θ ϕ θ ϕ r (32)

where each variable is indexed first by cell radial coordinate k, then cell
latitudinal coordinate l. In other words, the first two elements of vr are

= =v k l( 0, 0)r and = =v k l( 1, 0)r . Thus, x is a vector with × ×N N7 r θ

components, where Nr and Nθ are the number of radial and latitudinal
cells in the model, respectively. With this formulation, B is a singular
semi-positive definite mass matrix consisting only of ones and zeros on
the diagonal representing time derivatives and A is a sparse block
matrix containing the rest of equation dynamics and boundary condi-
tions.

Typical model runs have ∼N 40r and ∼N 200θ , so that x has
∼ 56,000 components. The matrices are extremely sparse; most sub-
matricies only require storing a few terms near the diagonal. Although
A is a ×N N N N(7 7 )r θ r θ matrix with ∼N N O(7 ) (10 )r θ

2 9 possible compo-
nents, it only requires the storage of × ∼O N N O(100 7 ) (10 )r θ

6 terms
due to the sparsity of the discretized FVF operators.

Matrices are assembled in the Python language using the sparse
matrix toolkits included in the scipy and numpy packages (Van Der
Walt et al., 2011; Jones et al., 2001). After the matrices are assembled
in Python, the eigenproblem is solved using the Scalable Library for
Eigenvalue Problem Computations (SLEPc) (Hernandez et al., 2005). A
desired wave frequency ω0 is targeted using the shift–invert technique.
The shifted eigenproblem is then solved using an iterative Krylov–Schur
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method, finding the requested number of solutions with frequencies
closest to the desired wave frequency ω0. The Krylov–Schur method
normalizes the eigenvector each iteration, minimizing the pressure
term and removing its extra degree of freedom (recall that the boundary
conditions on p leaves the average amplitude unconstrained). The ei-
genvector contains information about the structure of the wave, and the
eigenvalue specifies the wave period and decay rate. Since the eigen-
vector is unconstrained up to a constant factor, the amplitude of the
wave is determined by defining an excitation or by comparison to ob-
served secular variation and inferred core fluid velocities.

3. Results

Using the FVF method, we are able to examine the effect of different
magnetic field configurations on magnetohydrodynamic waves in
Earth’s core. We first verify the technique by deriving global waves with
a reduced subset of the equations. We choose global barotropic Rossby
waves because they have an exact analytical solution to compare
against and they demonstrate that our formulation allows flow directly
across the north and south poles. Next, we examine the effect of non-
dipolar fields on the structure of zonal MAC waves and compare to the
results of Braginsky (1993) and Buffett (2014). Finally, we study the
effects of varying magnetic field strength and structures on the spatial
extent and characteristics of non-zonal MAC waves, with relevance to
recent observations by Chulliat et al. (2015).

3.1. Global barotropic rossby waves

Barotropic Rossby waves arise in a thin spherical shell of fluid due
to interactions between inertia, pressure, and the Coriolis force:

∂→

∂
= − ∇ − × →v

t ρ
p v1 2Ω

(33)

Solutions for Rossby waves are well studied (e.g. Platzman, 1968)
and can be expressed in terms of a streamfunction formulation for the
velocity field

̂→ = ∇ ×v rΨ . (34)

The radial component of the curl of the governing Eq. (33) can be
written in terms of the streamfunction as

∂∇
∂

= − ∂
t r
Ψ 2Ω Ψϕ

2

2 (35)

which for vertically invariant fluid motions admits solutions of

= +CP θ eΨ (cos )m i mϕ ωt
ℓ

( ) (36)

where P x( )m
ℓ are the associated Legendre polynomials and C is an ar-

bitrary constant. Note that degree ℓ is distinct from index l, which is
used previously to denote latitudinal grid cell in the FVF method.
Substituting (36) into (35) gives an expression for the wave frequency

=
+

ω m2
ℓ(ℓ 1)

Ω.Rossby
(37)

Rossby waves emerge from our numerical model by removing the
influence of magnetic field and fluid stratification. Fig. 2 shows nu-
merical solutions for two wave modes: one specified by = =mℓ 1, 1
and the other by = =mℓ 3, 2. Numerical and analytical solutions were
found to agree precisely with a grid size of 20 radial and 120 latitudinal
cells, with a maximum root mean squared error between normalized
velocity fields of × −1.6 10 4 and wave periods in agreement to four
significant digits. Note that the FVF model correctly computes the
Rossby wave with = =mℓ 1, 1 which represents a solid-body rotation
around an equatorial axis and includes flow across the north and south
poles.

3.2. Zonal magnetic archimedes coriolis (MAC) waves

Analytical solutions for zonal MAC waves were given by Braginsky
(1993). He adopted a constant buoyancy frequency through the layer
and used the radial component of a dipole as the background magnetic
field. He proposed the same boundary conditions as those assumed in
our FVF model, although he relaxes the bottom boundary conditions to
pseudo-vacuum conditions to derive the leading-order analytical solu-
tion. His lowest frequency wave (at latitudinal degree =ℓ 2) is com-
pared with the results of our FVF model in Fig. 3. Wave structures are
nearly identical, with very small (<2%) differences in the relative am-
plitudes of the flow components. Braginsky’s expression for the wave
period gives 63.42 years with his preferred layer parameters (see Fig. 3
caption), while the FVF model gives 72.8 years. Most of this dis-
crepancy arises because Braginsky discards diffusion when deriving his
expression for the wave period. When we reduce the magnetic diffu-
sivity in our model by a factor of four the wave period becomes
63.34 years, a difference of only ∼ 0.1%.

Our FVF model is also able to reproduce numerical MAC wave re-
sults from a previous spectral model (Buffett, 2014). The two lowest-
order MAC waves for the case of constant buoyancy and constant radial
magnetic field were compared for two different values of NΩ. Wave
structures and periods converged to a stable solution with a resolution
of 20 radial by 120 latitudinal cells, with rms error of the wave struc-
tures within 1% and wave periods and quality factors ( R I=Q ω ω( )/2 ( ))
within 2% for both modes.

Unlike the analytical or spectral decomposition solutions, the FVF
model permits the study of more general background magnetic field
configurations than just constant or dipole fields. Earth’s observed field
is neither constant nor a perfect dipole, but instead has a dominant
dipole structure with a significant amount of higher-order structure

overlaid. As the Lorentz force takes the form
⎯→⎯

∇
⎯→⎯

B B· ( ) in the

Fig. 3. Comparison of Braginsky analytical (left) and FVF numerical (right) solutions for
zonal MAC waves with Braginksy’s preferred parameters H=80 km,
N=2 = =η BΩ, 2 m /s, 0.5 mTd2 . Longitudinal (a), latitudinal (b), and radial (c) compo-
nents of flow are shown for a meridional slice through the stable layer, with (a) offset 90°
in phase. The relative amplitudes of the flow are fixed in the solution, but the overall
magnitude is unconstrained. A representative estimate for vϕ is chosen for comparison to

waves in Earth’s core.
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magnetohydrodynamic approximation, it is insensitive to the polarity
of the field. Then, as waves in a thin layer are mainly sensitive to the
radial magnetic field, it is appropriate to examine the root-mean-square
(RMS) radial magnetic field strength as a function of latitude. It can be
seen in Fig. 4a that historical observations of the average magnetic field
strength by latitude at the CMB show a RMS field strength of ∼0.5mT at
high latitudes and ∼0.3mT near the equator (Jackson et al., 2000). This
represents a lower bound on the total field at the CMB, as unobserved
small-scale features likely contribute to the total RMS field at the CMB.
To approximate the structure of the total field at the CMB, we add white
noise to a dipole field and take the root-mean-square of the distribution,
giving

= +B θ B θ σ( ) cos .r
rms

d
2 2 2 (38)

Values of Bd =0.5mT and σ =0.3mT are chosen to approximate
Earth’s observed CMB field with a small amount of unobserved noise
(Fig. 4a). Braginsky (1998) used the same value for his dipole but did
not include noise, resulting in zero field strength at the equator. The
core’s internal radial magnetic field is also likely to vary with radius.
While our model can accommodate radial variations, the details of
these variations are unknown and likely to be small in a thin layer, so
these preliminary results simply use the CMB field throughout the layer
depth.

The dipole with noise approximation of the total field produces
MAC waves with peak zonal flows at mid-latitudes and no flow at the
equator, in stark contrast to MAC waves derived using a dipole, which
have peak flow on the equator. A dipole permits flow at the equator
because the force balance between the Lorentz and Coriolis forces are
perfectly maintained as they become weaker near the equator.
However, non-zero field strength at the equator alters the force balance
in the ϕ-component of the momentum equation. To a first approxima-
tion, we have a balance between the Coriolis force θ u2Ωcos θ and the
Lorentz force ∂B br r ϕ. When Br is dipolar, we can achieve a balance
between the Coriolis and Lorentz forces with a non-zero ∂ br ϕ at the
equator. Otherwise, if Br is finite at the equator, ∂ br ϕ must vanish at the
equator to maintain the force balance, which precludes any source of

generation due to uϕ. Consequently, uϕ must be zero at the equator for
these wave motions.

This result demonstrates the importance of magnetic field config-
urations when studying waves in Earth’s core. Braginsky’s MAC wave
solution is only valid due to the precise balance between Coriolis and
Lorentz forces near the equator resulting from a perfect dipole field, and
even small perturbations to Br alter the basic structure of the solution
significantly. Because Earth’s field includes significant power near the
equator, a constant radial field seems to be a better approximation than
a dipole field for MAC waves, as it produces a similar basic wave
structure. However, both the dipole and constant field approximations
give very different wave structures and properties to those derived
using a more realistic magnetic field configuration with our FVF
method.

3.3. Non-zonal MAC waves

Strong equatorial flux patches with varying intensity are observed
in many core-surface magnetic field models (e.g. Finlay et al., 2016).
Chulliat examines these patches using measurements of magnetic se-
cular acceleration and finds oscillating signals consistent with waves
travelling both east and west with periods between six and ten years
(Chulliat et al., 2015). He appeals to waves propagating in a stratified
layer to explain these observations and cites a prior study by Bergman
(1993). However, approximations Bergman uses in his derivation of
analytical solutions lead to purely damped perturbations (see eq. 3.6 in
that study). Bergman also performs numerical computations (Figs. 2
and 3 in that study), but only finds propagating waves with periods of
several months or less, and these solutions required unrealistically
strong stratification and weak magnetic fields. Therefore, it is reason-
able to question the use of this model to interpret longer period motions
in magnetic secular acceleration. Indeed, Bergman recognizes this when
he states ”…we do not know the relevance of the solutions to the H
layer” (Bergman, 1993). We use our model to determine whether
equatorially trapped waves with properties similar to Chulliat’s ob-
servations can arise with physically plausible magnetic field config-
urations and stratified layer properties.

We examine waves with a zonal wavenumber of m=6 to corre-
spond to the strongest signal observed in recent secular accelerations. In
our initial investigations, we computed non-zonal MAC waves in a
140 km thick layer with N=Ω and found periods of hundreds to
thousands of years, more than an order of magnitude larger than ob-
servations. Closer agreement between our equatorial waves and ob-
served wave periods requires thinner layers with stronger stratification.
Based on previous estimates for properties of a layer arising from
compositional stratification, we examine waves in a layer that is 20 km
thick with a constant buoyancy of N =10 Ω (Gubbins and Davies,
2013; Buffett and Seagle, 2010) and are able to find equatorial waves
propagating to the east with periods roughly matching observations for
reasonable (∼0.5 mT) magnetic field strength. We are also able to find
westward propagating waves, but they require very strong (∼10mT)
radial magnetic fields to match the short periods observed, which may
cast some doubt on this explanation for the observations.

On the other hand, the existence of a thin, strongly stratified layer is
very plausible. For example, barodiffusion would produce a layer of
strong stratification (Gubbins and Davies, 2013), particularly in a
broader region of stable thermal stratification. In fact, it is difficult to
prevent a compositionally stratified layer from forming. Numerical
calculations show that a thin layer of compositional stratification inside
a thicker layer of thermal stratification would not substantially alter the
period of low-frequency zonal MAC waves in the thicker layer, although
it could lower the amplitude of flows at the CMB depending on the
thickness of the stronger sub-layer.

One intriguing feature of these equatorially-trapped non-zonal MAC
waves is their dependence on the background magnetic field. The fre-
quency of the waves depends mainly on the RMS strength of the

Fig. 4. Comparison of MAC wave zonal flow velocities (vϕ) for three choices of radial

magnetic field. We include a dipole field (Braginsky, 1993), a constant field, and a dipole
plus noise (see text), which is intended to approximate gufm1 at 1990 (Jackson et al.,
2000). All runs use H=80 km, N=2Ω. Note that a finite magnetic field strength at the
equator causes vϕ to vanish.
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background field, with stronger fields producing shorter periods.
However, the spatial structure of the waves is largely insensitive to
changes in the total RMS field. Instead, the spatial distribution of
background magnetic field has a large influence on the latitudinal ex-
tent of the waves. We compute several wave solutions using (38) to
construct a range of simple models for the radial magnetic field, in-
cluding a dipole with several different amounts of noise and a constant
radial field (see Fig. 5). A nearly dipolar field with only 0.1mT noise
produces strong equatorial trapping, with peak flow near the equator
(see Fig. 6). Larger amounts of noise result in stronger relative field
strengths in the equatorial region and produce waves that are less
confined to the equator. In the limit of a constant radial field the peak

flow velocities occur at mid-latitudes. Because the spatial distribution
of magnetic field strength is important in determining the spatial
structure of the waves, the spatial extent of oscillations in observed
secular acceleration could provide a constraint on distribution of total
magnetic field strength at the CMB, including small scale structures
unable to be observed directly.

Further examination of these waves is needed before drawing strong
conclusions, as there are many differences between our computed
waves and Chulliat’s observations. First, the equatorial waves we find
propagate only to the east with reasonable magnetic field strengths,
unlike Chulliat’s observed waves which propagate in both directions. In
addition, some of the sub-decadal waves found are heavily damped.
Some waves have quality factors ( R I=Q ω ω( )/2 ( )) less than one,
whereas others have much higher quality. Finally, we need to further
explore how a thin, strongly-stratified layer overlying a thicker layer of
weak stratification would impact the zonal MAC waves studied in
(Buffett, 2014). Further examination of layer and magnetic field
structures are needed to see if there exist waves and layer structures
that can explain all observed signals.

4. Conclusions

We have developed a new hybrid finite volume and Fourier (FVF)
numerical model to study magnetohydrodynamic waves in a thin
stratified layer in Earth’s core. The FVF model is flexible and extensible,
allowing for spatially varying buoyancy and background magnetic
fields in both depth and latitude. We have validated it by comparison to
previous analytical and numerical results and have shown that waves
derived using simple background fields have very different structures
than those derived with more realistic fields.

With additional high-resolution observations of the geomagnetic
field constantly being collected, techniques to study core dynamics and
properties utilizing observations of GSV will become increasingly
useful. We have shown that interpreting observed periodic signals re-
quires an accurate treatment of the latitudinal configuration of the
background magnetic field when deriving wave modes, which is now

Fig. 5. Magnetic field distributions used for non-zonal MAC wave solutions in Fig. 6. Note
that small noise values have relatively high (low) field strength at high (low) latitudes,
while large noise values results in field structures more evenly distributed across latitude.
Included for comparison is the observed zonal-averaged RMS radial core field in 2010
from the CHAOS-6 field model (Finlay et al., 2016).

Fig. 6. Comparison of wave structures of four non-zonal MAC waves computed using four different magnetic field distributions (shown in Fig. 5). Note that as the field structure changes
between a dipole field and a constant field, flow moves to progressively higher latitudes.
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made possible with our FVF model. In the future, we hope to use the
model to study wave modes such as the non-zonal MAC waves in more
detail to derive constraints on core magnetic field and stratified layer
properties and provide insight into many topics including core dy-
namics, energetics, and many other questions of geophysical sig-
nificance.
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