
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Sampled simulation for multithreaded processors

Permalink
https://escholarship.org/uc/item/6w6189fg

Author
Van Biesbrouck, Michael

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w6189fg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Sampled Simulation for Multithreaded Processors

A dissertation submitted in partial satisfaction of the requirements for the

degree

Doctor of Philosophy

in

Computer Science

by

Michael Van Biesbrouck

Committee in charge:

Bradley Calder, Chair
Paul Chau
Lieven Eeckhout
Timothy Sherwood
Michael Taylor
Dean Tullsen

2007

c©

Michael Van Biesbrouck, 2007

All rights reserved.

The dissertation of Michael Van Biesbrouck is approved,

and it is acceptable in quality and form for publication

on microfilm:

Chair

University of California San Diego

2007

iii

DEDICATION

For my family; they made me possible.

iv

EPIGRAPH

Measure with a micrometer.
Mark with a chalk.
Cut with an axe.

Ray’s Rule for Precision

Interfere? Of course we should interfere!
Always do what you’re best at, that’s what I say.

Doctor Who

v

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgments . xiii

Vita and Publications . xvi

Abstract . xvii

I Introduction . 1
A. Multithreaded Commodity Processors 2
B. Single-Threaded Sampled Simulation 4
C. Multithreaded Sampled Simulation 5
D. Multithreaded Workloads . 7

II Background . 10
A. SimPoint . 10
B. Multithreaded Performance Evaluation Approaches 12

1. SPEC Rate Metrics . 13
2. Weighted Speedup . 13
3. Variation in Multithreaded Performance 14
4. Using One SimPoint Per Benchmark 15
5. Repeated Full Execution . 15
6. FAME . 16

C. Acknowledgement . 16

III Sampling Startup . 18
A. Introduction . 18

1. Sample Starting Image . 19
2. Sample Architecture Warmup 20

B. Background . 21

vi

1. Sample Starting Image . 21
2. Warmup . 23
3. SMARTS and TurboSMARTS 25
4. Parallel simulation of simulation points 26

C. Discussion . 26
1. Statistical Sampling . 27
2. Sample Starting Image . 28
3. Warmup . 31
4. Methodology . 37
5. Error Analysis . 38
6. Total simulation time . 43
7. Storage Requirements . 45
8. Using MHS and LVS with SMARTS 47

D. Summary . 49
E. Acknowledgements . 50

IV The Co-phase Matrix . 51
A. Background . 53

1. Sampling Challenge for a Multithreaded Processor 53
2. Using Single Simulation Points 57

B. Discussion . 58
1. Guiding Fast-forwarding Using the Last Sample 58
2. Finding Phases to Improve Sampling 59
3. The Co-Phase Matrix . 60
4. Guiding Fast-Forwarding . 61
5. Estimating Performance with a Dynamic Co-Phase Matrix . . . 65
6. Estimating Performance with a Static Co-Phase Matrix 66
7. Original Methodology . 67
8. Pairwise Simulation Results . 73
9. Relative Error . 81
10. Four-Context Simulation Results 82
11. Revised Methodology For the Static Co-Phase Method 83
12. Single Starting Point Co-Phase Matrix-Driven Simulation . . . 85

C. Summary . 87
D. Acknowledgement . 87

V Benchmark Suite Performance . 89
A. Background . 91

1. Starting Offset Effects in SMT Simulation 92
2. Evaluating Benchmark Suites with PCA 99

B. Discussion . 101

vii

1. All Combination Performance 102
2. Convergence of All Combination Performance Estimates 103
3. Reducing Co-phases Using PCA 107
4. Finding Homogeneous Intervals 109
5. Microarchitecture-Independent Characteristics 109
6. Workload Characterization . 113
7. Principal Components Analysis 114
8. Cluster Analysis . 117
9. Interpolation of Cluster Centers 118
10. Weighting Average Throughput 118
11. Baseline Simulator . 119
12. Cluster and Principal Components Analysis 121
13. Homogeneous Intervals . 121
14. Interpolation . 123
15. Summarizing Benchmark Suite Performance 125
16. Clustering Using More Than Two Threads 128
17. Random Representative Points 130

C. Summary . 131
D. Acknowledgements . 132

VI Conclusion . 134

Bibliography . 136

viii

LIST OF FIGURES

Figure III.1 Reducing associativity from 4-way to 2-way. 34
Figure III.2 Reducing the number of sets. 34
Figure III.3 Number of simulation point samples used with Max K

set to 400. 39
Figure III.4 Accuracy of SimPoint assuming perfect sampling. . . . 39
Figure III.5 Percentage error in estimating overall CPI as compared

to SimPoint with no sampling error. 39
Figure III.6 Average CPI error: average CPI sample error as a per-

centage of CPI. 40
Figure III.7 The 95% confidence interval as a percentage of CPI. . . 40
Figure III.8 Analysis of wrong-path loads while using LVS. 44
Figure III.9 Change in percentage error due to LVS. 44
Figure III.10 Total time to simulate all samples including fast-forwarding,

loading checkpoints, warming and doing detailed simu-
lation. 44

Figure III.11 Average storage requirements per sample. 46
Figure III.12 Total storage requirements per benchmark. 46

Figure IV.1 IPC Time-varying behavior for each program when it is
run by itself on the SMT processor. The x-axis scale is
percentage of execution. 54

Figure IV.2 Time Varying IPC when running all the above 2 pro-
gram combinations at the same time together on a dual
hardware context SMT Processor. 55

Figure IV.3 Random sampling results. 56
Figure IV.4 Approximating detailed execution with the co-phase ma-

trix. 62
Figure IV.5 Number of phases found for each program. 70
Figure IV.6 Number of phase combinations that could have occurred

and the number that actually occurred during detailed
simulation. 70

Figure IV.7 IPC statistics for all two-program combinations. 71
Figure IV.8 Overall IPC error comparing the different sampling tech-

niques. 71
Figure IV.9 Error in IPC for co-phase matrix simulation using the

dynamic co-phase matrix with 1% Phase sampling. . . 74
Figure IV.10 Error in IPC for co-phase matrix simulation using the

Static co-phase matrix. 74
Figure IV.11 Relative progress for bzip2-gcc. 78

ix

Figure IV.12 Relative progress for bzip2-vpr. 78
Figure IV.13 Coefficient of variation improvements through phase sep-

aration. 80
Figure IV.14 Overall and per-thread performance for bzip2-gcc un-

der different architecture configurations. 81
Figure IV.15 Overall IPC error rates for four four-threaded combina-

tions. 83
Figure IV.16 Per-thread IPC accuracy for the equake-gzip-lucas-perl

combination. 83
Figure IV.17 Number of co-phases per benchmark pair. 85
Figure IV.18 Error in CPI for static co-phase method simulation. . . 86

Figure V.1 The graphs show the IPC when equake and gcc are run
together from various starting offsets. There are graphs
for each program’s IPC and their combined IPC. The
shade of gray at (x, y) indicates IPC when simulation
starts with gcc x instructions from the start of its ex-
ecution and equake y instructions from the start of its
execution. Simulation completed after a total of 10 bil-
lion instructions were committed. 92

Figure V.2 Relative progress of equake and gcc. Each line repre-
sents a single 10B-instruction execution of equake-gcc
from a different starting offset (either equake or gcc is
always run from the beginning). Each plotted point
represents execution offsets that occur during SMT ex-
ecution. 93

Figure V.3 IPC of equake and gcc running singly and as a pair. . 96
Figure V.4 L2 cache miss behavior of equake and gcc running

singly and as a pair. 96
Figure V.5 Performance effect disagreement after hardware config-

uration change. 0% indicates that all starting offsets im-
prove (or degrade) due the change; 50% indicates that
half improve and half degrade, the worst possible result. 98

Figure V.6 All combination CPI convergence using random sampling.104
Figure V.7 All combination CPI convergence using stratified ran-

dom sampling. 105
Figure V.8 Confidence intervals for varying numbers of random sam-

ples. 106
Figure V.9 Cumulative distributive function for marginal change in

IPC. 122

x

Figure V.10 Error using different interpolation parameters (configu-
ration 32k 4M A). 123

Figure V.11 Error varying c using all configurations. 124
Figure V.12 Effects of configuration choice on co-simulation point

performance. 125
Figure V.13 Weights used for each co-simulation point using two in-

terpolation parameters. 127
Figure V.14 Overall average IPC using two interpolation parameters. 127
Figure V.15 Error using different numbers of randomly chosen rep-

resentative points (configuration 32k 4M A). 130

xi

LIST OF TABLES

Table III.1 Processor simulation model. 37

Table IV.1 Phases found in two programs (5M instruction inter-
vals) and a co-phase matrix. The table on the top shows
the phase-ID trace gathered from SimPoint. The matrix
in the middle shows an example final co-phase matrix
from simulating the two threads together. The bottom
table shows the results of co-phase matrix simulation. 63

Table IV.2 SMT processor configuration. 68
Table IV.3 IPC and number of co-phases found for each set of four

programs. 82

Table V.1 Microarchitecture-independent characteristics. 111
Table V.2 SMT processor configurations. 120

xii

ACKNOWLEDGMENTS

This dissertation would not have been possible without my advisor,

Professor Brad Calder. He guided me in all my research at UCSD and in many

ways shaped the material contained herein. I also need to thank my co-authors,

Professors Tim Sherwood and Lieven Eeckhout. Tim was involved in the creation

of the original co-phase matrix paper; as a final-year PhD student he contributed

to the basic ideas that started the paper and as a first-year professor at UCSB he

helped write the final published version. When I presented the paper at ISPASS

in 2004, I first met Lieven. He began collaborating with me and Brad shortly

thereafter. Our first paper idea did not work out, but since then we published

four papers together that formed the rest of this dissertation. Lieven contributed

substantially to the ideas and writing in each of these papers, meeting weekly by

phone despite an awkward time difference.

I must thank all the students in the Architecture Lab, particularly those

that kept the machines and submission queues running over the years. During

my time at UCSD I have probably simulated a quadrillion instructions using

simulators that sacrificed efficiency for accuracy. In the Architecture Lab at

UCSD we simulate more instructions than almost anywhere else, just so that

others will need to simulate fewer instructions than ever before. This could not

be done without the effort of many people that was put into the lab infrastructure,

nor without consequences to everyone else trying to run jobs simultaneously, often

with pressing deadlines. I think that we would all like to thank the grants that

allowed us to get a new cluster of machines when we moved to the new building,

making our more extravagant experiments possible.

All of the professors, resident and merely visiting, whose classes, semi-

nars and talks that I attended while at UCSD also contributed. Nothing is ever

so off-topic that does not inspire useful ideas. Similarly, this dissertation is the

xiii

lesser for every class and talk that I did not attend, however good or bad the rea-

son. Fortunately, others around me at UCSD did attend and benefited directly,

and through them I benefited indirectly.

As a foreign student who moved, newly married, to the part of the

mainland US furthest from where he lived and into unfamiliar geography (desert,

ocean, mountains and the scrubland in between), I would like to thank the family

members, co-workers and friends that supported my move and the nice people at

my destination, on campus and off. I also need to thank Irwin and Joan Jacobs

for making it financially possible.

Chapter II and Chapter IV contain material from A Co-Phase Matrix

to Guide Simultaneous Multithreading Simulation [59], in International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), Michael Van

Biesbrouck, Timothy Sherwood and Brad Calder. The dissertation author was

the primary investigator and author of this paper. Portions of these chapters are

c©2004 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

Chapter III contains material from Efficient Sampling Startup for Sam-

pled Processor Simulation [55], in IEEE Micro Magazine, Michael Van Bies-

brouck, Lieven Eeckhout and Brad Calder. The dissertation author was the

primary investigator and author of this paper. Portions of these chapters are

c©2005 Springer-Verlag Berlin Heidelberg. Free use of this material is permitted

under the German Copyright Law of September 9, 1965, in its current version

(amended 8 May 1998). Non-free uses may require permission from Springer-

Verlag.

xiv

Chapter III contains material from Efficient Sampling Startup for Sim-

Point [57], in IEEE Micro Magazine, Michael Van Biesbrouck, Lieven Eeckhout

and Brad Calder. The dissertation author was the primary investigator and au-

thor of this paper. Portions of these chapters are c©2006 IEEE. Personal use of

this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works must be obtained from the IEEE.

Chapter IV and Chapter V contain material from Considering All Start-

ing Points for a Simultaneous Multithreading Simulation Methodology [56], in

International Symposium on Performance Analysis of Systems and Software (IS-

PASS), Michael Van Biesbrouck, Lieven Eeckhout and Brad Calder. The disser-

tation author was the primary investigator and author of this paper. Portions

of these chapters are c©2006 IEEE. Personal use of this material is permitted.

However, permission to reprint/republish this material for advertising or promo-

tional purposes or for creating new collective works for resale or redistribution

to servers or lists, or to reuse any copyrighted component of this work in other

works must be obtained from the IEEE.

Chapter V contains material from Representative Multiprogram Work-

loads for Multithreaded Processor Simulation [58], in IEEE International Sympo-

sium on Workload Characterization (IISWC), Michael Van Biesbrouck, Lieven

Eeckhout and Brad Calder. The dissertation author was the primary investigator

and author of this paper. Portions of these chapters are c©2007 IEEE. Personal

use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective

works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

xv

VITA

1997 Bachelor of Mathematics in Computer Science
University of Waterloo

1999 Masters of Mathematics in Computer Science
University of Waterloo

2007 Doctor of Philosophy in Computer Science
University of California, San Diego

xvi

ABSTRACT OF THE DISSERTATION

Sampled Simulation for Multithreaded Processors

by

Michael Van Biesbrouck

Doctor of Philosophy in Computer Science

University of California San Diego, 2007

Professor Bradley Calder, Chair

Microarchitectural simulation of multithreaded architectures with shared

resources, such as simultaneous multithreading (SMT) cores and multi-core pro-

cessors with shared caches, is time-consuming and the results of simulation may

be difficult to interpret. It is time-consuming because modern benchmarks run

for hundreds of billions (or even trillions) of instructions, and accurate multi-core

and SMT simulation requires higher-detail models than single-threaded simula-

tion. The statistics collected when two programs execute together can be difficult

to interpret because the programs both exhibit independent phase behavior and

affect each other’s execution. Starting one program slightly later than during the

original execution will change the phases that execute together and thus change

the effects that the programs have on each other.

Accurate sampled simulation requires accurate sample collection. We

evaluate techniques to improve sampling accuracy and performance, both for

single-threaded and multithreaded simulation. These techniques include warming

the CPU with detailed execution, storing cache state and techniques to minimize

the size of checkpoints.

Previous work showed that single-program performance can be accu-

rately estimated by dividing execution into phases and only simulating represen-

xvii

tative samples from each phase. We demonstrate that the juxtaposition of phases

(‘co-phase’) from a pair of programs has similar behavior to a single-threaded

phase. Furthermore, simulation of all possible co-phases allows analysis of all

distinct SMT behaviors and this comprehensive knowledge of program interac-

tions can be combined with information about the sequence of phases executed

by each program to reconstruct the combined execution of the programs from

any given starting point. Given the short samples, the set of executions from all

possible starting offsets can be sampled in minutes, determining the average per-

formance of the programs. This removes the problem of interpreting the results

of small numbers of experiments.

Finally, we propose three techniques for using the co-phase techniques to

summarize the behavior of all possible interactions within a suite of benchmarks.

We reduce the scale of this problem using Priciple Components Analysis, allowing

our techniques to scale to large numbers of benchmarks an concentrate simulation

on the most significant behaviors.

xviii

I

Introduction

Treatments of single-threaded simulation methodology are legion, but

prior to the work included in this dissertation there were few papers on mul-

tihreaded simulation methodology. Chapter III details improvements to single-

threaded simulation methodology, but all subsequent chapters address the prob-

lems of multithreaded simulation.

This dissertation shows that näıve experimentation using multithreaded

simulation is slow and may produce misleading results. To remedy these prob-

lems we present the co-phase matrix method of sampled multithread simulation,

improvements to sampled simulation in general, and techniques to avoid mislead-

ing results by looking at all possible ways that benchmarks can interact on a

multithreaded processor.

This introduction outlines the state of the multithreaded processor mar-

ket and the problems inherent in efficient, accurate and meaningful multithreaded

simulation. Each aspect of the problem is treated in full in subsquent chapters.

1

2

I.A Multithreaded Commodity Processors

The number of transistors available in commodity CPU chip design con-

tinues to increase, roughly doubling every 18 months [33, 45]. In the past, the

increased transistor count was used to double performance through increasingly

aggressive out-of-order execution designs. This created more on-chip execution re-

sources than could be used simultaneously by a single execution thread. Simulta-

neous Multithreading (SMT) [54] was developed to take advantage of these wasted

resources. A single SMT core provides the same interface as a shared-memory ma-

chine with multiple cores; each virtual core is called a context. Several programs

(or threads of a single program) execute simultaneously, sharing most aspects

of the underlying microarchitecture while keeping independent architected state.

Since an SMT machine can usually fully utilize microarchitectural resources it

is worthwhile to make the chip design even more aggressive. This increases the

potential for single-threaded performance as well as aggregate multithreaded per-

formance. The ALPHA EV8 design included support for four contexts but was

never built. Later, Intel extended the Pentium4 processor to support two contexts

and called this implementation of SMT Hyper-Threading[32].

Despite optimism that single-CPU performance would continue to in-

crease [23], the high complexity of CPU designs and resulting power and heat

problems made it difficult to maintain the rate of single-threaded performance

improvements. Intel abandoned the Pentium4 in favor of the descendents of its

earlier architecture, still in use on laptops, and thus stopped creating Hyper-

Threaded CPUs. This capability is slated to return to Intel processors in 2008,

but in a different and unspecified form [50]. The focus of most chip designers

switched to chip multicore processor (CMP) design. Using multiple, less powerful,

cores on a die is a simpler and more power-efficient way to use increased tran-

sistor counts to improve aggregate performance. Unlike SMT processors, CMPs

3

normally only share caches and off-chip communication bandwidth (particularly

to memory).

IBM introduced the POWER5, using both SMT and CMP technology.

Each chip contained two out-of-order cores with two contexts each. Intended

for mainframes, multiple chips were put in packages, multiple packages on cards

and potentially many cards in a single machine. The POWER6, successor to

the POWER5, continues to use SMT and CMP technology. To achieve higher

performance and lower power use, the cores are now in-order. The simpler core

designs allow smaller, faster and more efficient cores. Previously, under contract

to design the processors for Xbox 360 and PlayStation31 game consoles, IBM

created similar in-order SMT cores with two contexts. The Xbox 360 has three

such cores; the PlayStation3 only has one but it shares a die with many other

cores of a different type.

Sun Microsystems also has multicore processors with a variant of SMT.

The Niagara processor has eight small, in-order cores with four contexts each. Its

successor, the Niagara2, supports eight contexts per core. This line of processors

targets webserver workloads with complicated flow control and frequent mem-

ory dependence. For these processors, the contexts exist just to ensure that the

processors rarely stall by providing several applications between which to switch.

The reported performance of the Niagara2 is impressive, but the intended appli-

cations of the processor and the differences in SMT implementation put it outside

the scope of this work.

This dissertation focuses on two-context out-of-order SMT processors.

Dual-core single-context processors and in-order cores are simpler cases of the

SMT processors examined so all SMT results can be applied directly. Where ap-

propriate, extensions to processor configurations with more than two concurrent

1The PlayStation3’s CPU is also known as the CELL processor and can be found in a variety of other

configurations, such as supercomputers and network processors.

4

threads are discussed.

I.B Single-Threaded Sampled Simulation

Benchmarks used for single-threaded simulation are frequently too long

to simulate in their entirety. Current industry-standard benchmarks, such as

SPEC CPU2000 execute hundreds of billions of instructions; SPEC CPU2006

is designed to have significantly longer runtimes, and has programs that run for

trillions of instructions. Even on today’s fastest architectural simulators, simu-

lating some of the SPEC CPU2000 benchmarks takes several weeks to complete.

The processors to be simulated are becoming slower to simulate as they become

more complex and the length of the benchmarks to be simulated is increasing so

simulation time is increasing even though the computers running the simulations

are becoming faster. In order to measure cycle-level events and to examine the

effect that microarchitecture optimizations would have on the whole program,

computer architects usually avoid long detailed simulation times by taking sam-

ples, either a small number of large execution intervals or a large number of small

ones, and then use that information to approximate the full program behavior.

Early papers used single execution intervals near the start of program

execution. For programs that change behavior over time, this could be extremely

inaccurate.[48] Statistical sampling methods such as random sampling and pe-

riodic sampling [65] avoid this problem by sampling many intervals throughout

all of execution. SimPoint [19, 48, 39] uses targeted sampling to identify small

numbers of samples by analyzing program execution and dividing it into several

distinct phase behaviors and simulating just one interval from each phase. In

general, the technique is more accurate with many phases and small intervals

than it is with fewer phases and larger intervals. SimPoint is discussed in more

detail in Section II.A.

5

These techniques can be used to accurately estimate the performance

characteristics of each benchmark on a given microarchitectural configuration.

They are most accurate in comparing two program executions when the same set

of sampled intervals are used in each case. Uniprocessor simulators are normally

designed so that every execution of a program produces the same results and

executes all of the same non-speculative instructions no matter how the simulated

microarchitecture is configured. Simulators sample execution using checkpoints

or fast-forwarding to minimize the time required run benchmarks. Techniques

to maximize the accuracy of checkpoints while reducing disk-usage requirements

are discussed in Chapter III.

I.C Multithreaded Sampled Simulation

When multiple threads are simulated then determinism is typically lost.

Even on a uniprocessor, full-system simulators and simulators supporting thread

libraries may simulate instructions in different orders and the number of simu-

lated instructions may change. This dissertation focuses on multithreaded sim-

ulators without full-system support and workloads of single-threaded progams.

The non-speculative instructions executed are deterministic, as in the uniproces-

sor case, but the instructions being run concurrently will change. Changing the

simulated microarchitecture alters the performance of the simulated workload,

but the programs will be affected to different degrees. Consider a multiproces-

sor as a uniprocessor that fetches bundles of instructions drawn from all the

workload programs simultaneously (instead of a bundles of instructions from a

single program). It is a deterministic uniprocessor executing a nondeterministic

instruction stream. Runs with different microarchitectural parameters effectively

run different programs, thus making them hard to compare.

Not only are multithreaded workloads more complicated, the simulators

6

must be more complicated to execute them with accurate timing. Uniprocessor

simulators always know when instruction arguments will be available as soon as

an instruction is fetched, allowing immediate execution of the instruction effects

without loss of simulation fidelity. In contrast, the timing of an instruction in a

multithreaded machine may depend upon instructions from a different program

that have yet to be fetched. For example, a load may need to wait hundreds

of cycles to execute because its address is dependent upon a previous load that

did not hit in cache. The additional time that it will take the dependent load

to complete after the load address is available depends upon which cache (if

any) contains the data. If the data is currently in a shared cache then any of

tens to hundreds of upcoming instructions in other programs could evict the

cache line, nearly doubling the already long exection time of the dependent load.

On an SMT processor, even slight variations in timing will affect contention

for functional units and other resources. Faithful reproduction of these effects

requires accurate simulation of complex processor internals that could be safely

ignored in uniprocessor simulation, increasing simulation time.

Questions that were simple to answer in a single-threaded environment,

such as “which sections of execution will represent the complete workload?”, are

more complex in a multithreaded environment. In a multithreaded processor we

care about the sections of execution coming from two separate programs and

which sections will execute at the same time. For single-threaded execution, the

choice of intervals to execute is dependent upon a simple analysis of the bench-

marks alone, but in the multithreaded case the combinations of intervals that

execute at the same time is dependent also on the microarchitectural configura-

tion.

When two or more programs share a processor’s resources at a cycle-

level granularity, as is the case with SMT, the performance of the two applications

7

becomes entangled; this is true to a lesser extent for programs that only share

a cache. If there are multiple programs running at the same time, the behavior

of all the programs will affect not only the overall performance of the machine

but also the distribution of performance between the different programs, causing

some to execute faster than others. Changing a hardware parameter that has an

effect on performance may change which parts of the programs execute together.

This change, in turn, may mean that the machine is now executing a different mix

of behaviors, which will influence the overall performance. This interdependence,

or entanglement, makes it difficult to summarize or estimate the overall behavior

of the system. The challenge in creating a sampling approach to SMT lies in

determining how far to fast-forward each individual thread between samples. This

distance will vary as the threads execute through different phases of execution;

the distance also varies with different microarchitecture configurations.

This dissertation solves the problem using the co-phase matrix. In Chap-

ter IV the method is explained and used to track the execution of pairs of pro-

grams from given starting points for 1–10 billion instructions with high levels of

accuracy.

I.D Multithreaded Workloads

Most of today’s processors run multiple programs simultaneously through

SMT or multicore processing. This dissertation does not consider large-scale par-

allel scientific applications. That type of workload is sufficiently complex that

entire supercomputers have been designed for single applications or particular

types of applications. In such cases algorithms and architecture may be co-

designed for maximal performance of a single program running by itself. For this

class of applications Perelman et al. [40] have a phase-based analsysis procedure

for programs running on real hardware and Ekman and Stenström [15] use ran-

8

dom sampling for programs that synchronize frequently. Instead, we consider the

performance of commodity machines that must be capable of running a wide va-

riety of applications and the mixed workloads that run on machines that are not

dedicated to a single task. Some programs are designed to run identical threads

simultaneously for CPU-intensive tasks such as encoding full-motion video, but

most users will run a heterogeneous set of programs and individual programs may

run many threads that accomplish distinct tasks. For example, a web browser and

its helper applications may be simultaneously parsing HTML, decoding JPEG

images, decompressing gzip-encoded web pages, interpreting JavaScript, playing

audio and showing Flash animations while other programs and operating system

threads run on the same system. A thorough analysis of a new system requires

understanding the consequences of running any combination of these threads and

programs.

Virtualization provides additional types of mixed workloads. Now, mul-

tiprocessors are frequently bought to run several operating systems simultane-

ously. The scale can range from a home user wanting to run Windows and

Linux at the same time to datacenter server consolidation in which one large

machine runs many servers for several companies. In any such case we expect

the workloads running in the separate operating system images to have little

or no coordination between themselves. Within a datacenter hosting servers for

multiple companies there is no reason to believe that the workloads would be sim-

ilar. Architects designing machines for such uses need to be aware of all possible

interactions between virtualized images and their relative importance.

All of the multithreaded work in this dissertation uses the assumption

that the workload will consist of independent programs executing with shared

resources. For performance-modeling, we need to look at all the ways in which

programs in a workload might interact. Programs are not like competitive runners

9

that both start from the beginning of their track and will run until they reach the

end of the track at nearly the same time. They are more like cars and trucks on a

highway, entering and exiting based on their private agendas, interacting as they

switch lanes and cause traffic jams due to careless driving. To understand how

a pair of programs can interact we need to know what happens when they start

to run at the same time, when one is half-way through executing as the other

starts, and every other combination of points of progress. Furthermore, the set

of programs that are concurrently scheduled changes over time so an aggregate

view of the performance of an entire benchmark suite is important. These issues

are considered in Chapter V.

II

Background

There are two types of background material presented in this chapter.

First, we explain the SimPoint tools for the analysis of single-threaded programs.

These tools are used in several different ways in each of the subsequent chapters.

Second, we make a brief overview of techniques for evaluating multithreaded

processors that are related to this work.

II.A SimPoint

SimPoint is a toolset for the analysis of single-threaded dynamic pro-

gram execution. It determines which parts of execution are similar to each other

and finds representative samples for each program behavior so that detailed exe-

cution of the representative samples is sufficient to accurately estimate program

execution.

To perform the SimPoint analysis, a desired sample size is chosen. The

sample size is the interval size (in dynamic instructions) at which the user wants

to perform simulation or program analysis. We use sample sizes of 1, 5 and 10

million instructions for different experiments in this dissertation; some papers

have used samples as large as 300 million instructions. The program execution is

10

11

then broken up into consecutive intervals equal to the sample size, and a profile is

gathered for every interval. The profile measures what code was executed during

each interval and its frequency. Either an instrumented binary running on real

hardware or a simulator doing fast functional simulation can collect this data.

The profile is represented as Basic Block Vectors (BBVs). A basic block vector is

an array with one entry for every static basic block in the program. An interval’s

basic block vector has a count for each basic block, which is the number of times

that the basic block was executed during the interval. A given program will have

different BBV profiles for different inputs, but for a given program binary and

input the profile will be independent of the microarchitecture used.

The angle between two BBVs determines how different the relative mix

of basic blocks is between two intervals, as does the distance between them. The

large number of basic blocks in the program, and often even those within a single

interval, makes the comparison time-consuming. Creating a random projection

from the original dimensional space to a smaller dimensional space decreases the

cost of comparing two vectors. If two vectors are similar before projection, they

will still be similar after the projection. Using a sufficiently large dimensional

space makes it unlikely for dissimilar vectors from the old space to be projected

onto similar vectors in the new space.

In the Single SimPoint process, the BBVs for every interval are com-

pared to a BBV representing the complete execution of the program in order to

find a single interval that is the closest to the complete execution of the program.

This technique is used by the simulation methodologies described in Section II.B.4

and Section II.B.6.

More generally, SimPoint can be used to classify each interval as having

one of several distinct program behaviors, called phase behaviors. Each set of

intervals with the same phase behavior make up a phase. SimPoint determines

12

which intervals to group into phases using the k-means clustering algorithm,

which divides the BBVs into k groups. The groups are chosen to be centered

around k points. Many such clusterings are possible, so the algorithm minimizes

the sum of squares of distances between BBVs and cluster centers. Choosing

k too high will increase the number of phases without improving the model,

so SimPoint tries many values of k and picks one that accurately models the

distribution of BBVs. The Bayesian Information Criterion (BIC) is used to

compare the quality of clusterings with different numbers of cluster centers. This

metric combines the quality of the clustering with a cost function for increasing k

so that small accuracy improvements are not bought at the cost of large increases

in the number of phases.

Finally, SimPoint finds intervals that best represent each phase. It does

this by choosing the interval with BBV closest to the centroid of all the BBVs

in the phase. Simulating this interval, called a simulation point will give an

execution representative of the phase. Collecting statistics for all of the simu-

lation points and weighting them according to the number of intervals in their

phases allows us to estimate whole-program performance. Since the phases are

microarchitecture-independent we can safely compare microarchitectures using

this approach. In general, the most accurate results can be had by using more

phases, requiring more intervals to be simulated. Shorter intervals also lead to

more phases. Fortunately, many phases represented by short intervals can be

faster to simulate than fewer large intervals while still having improved accuracy

[39, 19].

II.B Multithreaded Performance Evaluation Approaches

Evaluating the performance of a multithreaded machine running a single

multithreaded benchmark is simple in concept — run a program from start to

13

finish and time how long it takes. When multiple programs are run together they

will end at different times but the system behavior running a single program

might not be of interest. Stopping the timing after the first program exits will

not represent system performance, either, since two systems could have the first

program end at the same time but make different amounts of progress in the other

programs. In a simulation environment, the programs will execute so slowly that

complete execution is impossible. Solving this problem is the main contribution

of this thesis. In this section we survey the approaches that have been used

elsewhere.

II.B.1 SPEC Rate Metrics

The SPEC rate metrics evaluate system performance when running mul-

tiple copies of the same benchmark on multithreaded machines. Since all of the

running programs are the same and the objective is to run them as many times

as possible within a lengthy time limit, different ending times are not an issue.

We can use the techniques in Chapter IV to efficiently evaluate this metric.

II.B.2 Weighted Speedup

The weighted speedup metric [51] can be used when programs make dif-

ferent amounts of progress on a multithreaded machine. Each program’s perfor-

mance improvement (speedup) is measured by dividing its multithreaded perfor-

mance by its single-threaded performance for the same sequence of instructions.

The speedups are summed to get the weighted speedup. This provides the ex-

act aggregate speedup over the instructions that were executed as compared to

single-threaded execution. This number is useful for studies that simulate pro-

gram execution on a multithreaded processor for a fixed number of instructions

and on real hardware for long-running workloads that are not identically mixed

14

each time.

Although a good tool, weighted speedup can be misleading. A processor

or scheduler can maximize its weighted speedup by executing programs unfairly,

giving more resources to the programs that will get the greatest gains. Two

weighted speedups from different executions could represent effective workloads

that are too dissimilar to be worth comparing. We propose methods to evaluate

performance that are not dependent upon execution termination to avoid these

problems.

II.B.3 Variation in Multithreaded Performance

Alameldeen and Wood [1] have examined program variability causing

nondeterminism. For example, memory latency can be variable but is modeled as

a constant in most simulators; they have observed that small variations in mem-

ory latency can lead to widely different execution paths in multithreaded systems.

They observed this phenomenon using both real and simulated CMP machines.

Their experiments show that variability due to nondeterminism plays a significant

role unless simulations are continued for long periods of time. They use a statis-

tical approach to reduce the simulation times of their real-world benchmarks. By

repeating short experiments many times they are able put a tight bound on the

average-case execution times and avoid situations in which unpredictable events

could cause them to reach incorrect conclusions.

In Chapter V we find that small changes is program offsets can lead to

different multithreaded performance results. Rather than sampling many slight

variations in starting offsets we look at the effect of starting offset on a much

larger scale; the variations due to small changes are subsumed in the variation

on larger scales. We also use moderately long sample lengths to minimize the

possible effects of variation.

15

II.B.4 Using One SimPoint Per Benchmark

Raasch and Reinhardt [42] examined the effects of partitioned resources

on SMT execution. To reduce simulation time they used 100M-instruction single

simulation points from SimPoint for each benchmark program-input pair. As a

further optimization, Principle Components Analysis (PCA) and clustering were

used to eliminate simulation points that were similar to other simulation points.

The executed all of the possible two-thread pairs until both programs executed at

least 100M instructions or one thread executed 300M instruction; most executions

would have gone beyond the range of the simulation point interval. Their goal

was to capture the typical behavior of a workload independent of when each

individual program was started, ensuring that they observed a wide range of

program behaviors using a limited amount of simulation time.

In Chapter V we use similar techniques to represent the behaviors of

benchmark suites but we use multiple phases per benchmark and weight the

results according to phase frequency over the benchmark suite. Our work in

Chapter IV allows us to efficiently examine execution from all possible starting

points without losing any phase behaviors.

II.B.5 Repeated Full Execution

Tuck and Tullsen [53] ran multithreaded workloads on real SMT hard-

ware to compare practice with simulation papers. Not being constrained by

slowdown from simulations they ran each multi-program combination multiple

times in succession. Timing began when a thread terminated for the first time

and did not end until at least 12 threads were run to completion, more if neces-

sary to ensure that three instances of each thread were included in the timing.

This methodology allows averaging over multiple offsettings and avoids timing

execution with only one thread running. Repeated runs of this procedure had an

16

average maximum variance of 1%.

This technique can be recreated efficiently using our techniques in Chap-

ter IV, but we prefer to randomly sample the effects of different starting offsets.

This allows us to statistically analyze when we have looked at enough of the

possible program executions to bound our error.

II.B.6 FAME

The FAME methodology [60, 61] consists of different proposals for exe-

cution on real hardware and in simulators, published subsequently to most of the

results presented in this dissertation. On real hardware they advocate the pre-

vious technique of repeatedly executing the programs together. For simulation

purposes, they use 300M-instruction single SimPoints, similar to those used by

Raasch and Reinhardt [42]. As with the real-hardware methodology, they exe-

cute the samples repeatedly together. In both cases, they attempt to iterate until

the average performance converges. They predict the required number of repeti-

tions required to ensure this will happen based on single-threaded performance,

assuming that single-threaded behavior will dominate over thread interactions.

Our differences from the previous two techniques necessarily apply here.

Additionally, our predictions of convergence are based on statistical tests rather

than heuristics.

II.C Acknowledgement

This chapter contains material from A Co-Phase Matrix to Guide Si-

multaneous Multithreading Simulation [59], in International Symposium on Per-

formance Analysis of Systems and Software (ISPASS), Michael Van Biesbrouck,

Timothy Sherwood and Brad Calder. The dissertation author was the pri-

mary investigator and author of this paper. Portions of these chapters are

17

c©2004 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

III

Sampling Startup

Before looking at multithreaded sampled simulation, we need to look

at the techniques that can make single-threaded sampled simulation accurate

and efficient. Some of them will be reused later as part of the multithreaded

simulation methodology.

III.A Introduction

Modern computer architecture research relies heavily on cycle-accurate

simulation to help evaluate new architectural features. In order to measure cycle-

level events and to examine the effect that hardware optimizations would have

on the whole program, architects are forced to execute only a small subset of the

program at cycle-level detail and then use that information to approximate the

full program behavior.

The subset chosen for detailed study has a profound impact on the

accuracy of this approximation, and picking these points so that they are as

representative as possible of the full program is a topic of several research stud-

ies [8, 27, 47, 48, 65]. The two difficulties in using these sampling techniques

efficiently and accurately are getting the correct memory image to execute the

18

19

sample and warm architecture state when simulating the sample. We collectively

refer to both issues as Sampling Startup.

III.A.1 Sample Starting Image

The first issue to deal with is how to accurately provide a sample’s

starting image. The Sample Starting Image (SSI) is the state needed to accu-

rately emulate and simulate the sample’s execution to achieve the correct out-

put for that sample1. The two traditional approaches for providing the SSI are

fast-forwarding and using checkpoints. Fast-forwarding quickly emulates the pro-

gram’s execution from the start of execution or from the last sample to the current

sample. The advantage of this approach is that this is trivial for all simulators to

implement. The disadvantage is that it serializes the simulation of all of the sam-

ples for a program, and it is non-trivial to have a low-overhead fast-forwarding

implementation—most fast-forwarding implementations in current simulators are

fairly slow.

Checkpointing is the process of storing the program’s image right before

the sample of execution is to start. This is similar to storing a core dump of the

program so that it can be replayed at that point in execution. A checkpoint stores

the register contents and the memory state prior to a sample. The advantage of

checkpointing is that it allows for efficient parallel simulation. The disadvantage

is that if a full checkpoint is taken it can be huge and consume too much disk

space and take too long to load.

In this chapter we examine two efficient ways of storing the SSI. One is

a reduced checkpoint where we only store in the checkpoint the words of memory

that are to be accessed in the sample we are going to simulate. This is the Touched

Memory Image (TMI). Our TMI files are two orders of magnitude smaller than

1For convenience of exposition, we use ‘sample’ as a noun to refer to a sampling unit and ‘sample’ as a verb

to refer to collecting a sample unit.

20

normal checkpoints. The second approach is very similar, but is represented

differently. For this approach we store a sequence of executed load values for the

complete sample, the Load Value Sequence (LVS); after compression it becomes

the Reduced Load Value Sequence (RLVS). Both of these approaches take about

the same disk space. Since they are small they also load instantaneously and are

significantly faster than using fast-forwarding and full checkpoints.

III.A.2 Sample Architecture Warmup

Once we have an efficient approach for dealing with the sample’s starting

image we also need to reduce as much error in simulation due to the architecture

components not being in the same state as if we simulated the full detailed

execution from the start of the program up to that simulation point. To address

this we examine a variety of previously proposed techniques and compare them

to storing the detailed state of the memory hierarchy as a form of architecture

checkpoint.

We first examine a technique called Hit on Cold which assumes that all

architecture components are cold and the first access to it during the sample’s

simulation is a hit. A second technique we study uses a Fixed Warmup period

before the execution of each sample. Recently, more sophisticated warmup tech-

niques [11, 20, 21, 22] have focused on finding for each sample how far back in

the instruction stream to go to start warming up the architecture structures.

We examine the performance of MRRL [21, 22] in this chapter. An important

advantage of this type of technique is its accuracy. The disadvantage is that

it requires architecture component simulation for N million instructions before

detailed simulation of the sample, which adds additional overhead to simulation.

The final technique we examine is storing an architecture checkpoint of

the major architecture components at the start of the sample. This Architecture

21

Checkpoint is used to faithfully recreate the state of the major architecture com-

ponents, such as caches, TLBs and branch predictors at the start of the sample.

It is important that this approach works across different architecture designs for

it to be used for architecture design space explorations. To that end, we ex-

amine a form of architecture checkpointing that allows us to create the smaller

size instances of that architecture component. For example, you would create

an architecture checkpoint of the largest cache you would look at in your design

space exploration study, and the way we store the architecture checkpoint will

allow smaller sizes and associativities to be faithfully recreated.

III.B Background

This section discusses prior work on Sample Startup techniques. We dis-

cuss checkpointing and fast-forwarding for obtaining a correct SSI, and warmup

techniques for obtaining an architecture checkpoint as accurately as possible.

III.B.1 Sample Starting Image

As stated in the introduction, starting the simulation of a sample is

much faster under checkpointing than under fast-forwarding (especially when the

sample is located deep in the program’s execution trace—fast-forwarding in such

a case can take several days). The major disadvantage of checkpoints however

is their size; they need to be saved on disk and loaded at simulation time. The

checkpoint reduction techniques presented in this chapter make checkpointing

a much better alternative to fast-forwarding as will be shown in the evaluation

section of this chapter.

Szwed et al. [52] propose to fast-forward between samples through na-

tive hardware execution, called direct execution, and to use checkpointing to

communicate the application state to the simulator. The simulator then runs

22

the detailed processor simulation of the sample using this checkpoint. When the

end of the sample is reached, native hardware execution comes into play again to

fast-forward to the next simulation point, etc. Many ways to incorporate direct

hardware execution into simulators for speeding up the simulation and emulation

systems have been proposed, see for example [9, 17, 34, 46].

One requirement for fast-forwarding through direct execution is that the

simulation needs to be run on a machine with the same ISA as the program that

is to be simulated. One possibility to overcome this limitation for cross-platform

simulation would be to employ techniques from dynamic binary translation meth-

ods such as just-in-time (JIT) compilation and caching of translated code, as

is done in Embra [63], or through compiled instruction-set simulation [37, 43].

Adding a dynamic binary compiler to a simulator is a viable solution, but doing

this is quite an endeavor, which is why most contemporary out-of-order simu-

lators do not include such functionality. In addition, introducing JITing into a

simulator also makes the simulator less portable to host machines with different

ISAs. The code to save and restore checkpoints, however, can be easily portable.

Related to this is the approach presented by Ringenberg et al. [44].

They present intrinsic checkpointing, which takes the SSI image from the previous

simulation interval and uses binary modification to bring the image up to state for

the current simulation interval. Bringing the image up to state for the current

simulation interval is done by comparing the current SSI against the previous

SSI, and by providing fix-up checkpointing code for the loads in the simulation

interval that see different values in the current SSI versus the previous SSI. The

fix-up code for the current SSI then executes stores to put the correct data values

in memory.

Our approach is easier to implement as it does not require binary mod-

ification. In addition, combining intrinsic checkpointing with warmup is not

23

straight-forward. The fix-up code which stores values in memory affects the cache

contents. As a result, implementing intrinsic checkpointing for small simulation

intervals can be inaccurate.

III.B.2 Warmup

There has been a lot of work done on warmup techniques, or approx-

imating the hardware state at the beginning of a sample. This work can be

divided roughly in three categories: (i) simulating additional instructions prior

to the sample, (ii) estimating the cache miss rate in the sample, and (iii) storing

the cache content or taking an architecture checkpoint. In the evaluation section

of this chapter, we evaluate four warmup techniques. These four warmup tech-

niques were chosen in such a way that all three warmup categories are covered in

our analysis.

Warmup N Instructions Before Sample

The first set of warmup approaches simulates additional instructions

prior to the sample to warmup large hardware structures [8, 65, 20, 21, 22, 12,

7, 25, 31, 36]. A simple warmup technique is to provide a fixed-length warmup

prior to each sample. This means that prior to each sample, caches and branch

predictors are warmed by, for example, 1 million of instructions. MRRL [21,

22] on the other hand, analyses memory references and branches to determine

where to start warming up caches and branch predictors prior to the current

sample. MRRL examines both the instructions between the previous sample and

the current sample and the instructions in the sample to determine the correct

warmup period. BLRL [12], which is an improvement upon MRRL, examines only

the sample to see how far one needs to go back before the sample for accurate

warmup.

24

SMARTS [65] uses continuous warmup of the caches and branch predic-

tors between two samples, i.e., the caches and branch predictor are kept warm

by simulating the caches and branch predictor continuously between two sam-

ples. This is called functional warming in the SMARTS work. The reason for

supporting continuous warming is their small sample sizes of 1000 instructions.

Note that continuously warming the cache and branch predictor slows down fast-

forwarding.

The warmup approaches from this category that are evaluated in this

chapter are fixed-length warmup and MRRL.

Estimating the Cache Miss Rate

The second set of techniques does not warm the hardware state prior

to the sample but estimates which references in the sample are cold misses due

to an incorrect sample warmup [28, 64]. These misses are then excluded from

the miss rate statistics when simulating the sample. Note that this technique in

fact does no warmup, but rather estimates what the cache miss rate would be

for a perfectly warmed hardware state. Although these techniques are useful for

estimating cache miss rate under sampled simulation, extending these techniques

to processor simulation is not straight-forward because we need to know which

of the excluded misses would have been hits on a warm cache. The hit-on-

cold approach evaluated in this chapter is another example of cache miss rate

estimation; the benefit of hit-on-cold over the other estimation techniques is its

applicability to detailed processor simulation.

Checkpointing the Cache Contents

Lauterbach [30] proposes storing the cache tag contents at the beginning

of each sample. This is done by storing tags for a range of caches as they are

25

obtained from stack simulation. This approach is similar to the Memory Hierar-

chy State (MHS) approach presented in this chapter (see Section III.C.3 for more

details on MHS). However, there is one significant difference. We compute the

cache content for one single large cache and derive the cache content for smaller

cache sizes. This is more efficient than running a stack simulation as is done by

Lauterbach.

Although this can be done through stack simulation, it is still signif-

icantly slower and more disk space consuming than simulating only one single

cache configuration as we do. The Memory Timestamp Record (MTR) presented

by Barr et al. [3] is also similar to the MHS proposed here. The MTR allows for

the reconstruction of the cache and directory state for multiprocessor simulation

by storing data about every cache block. The MTR is largely independent of cache

size, organization and coherence protocol. Unlike MHS, its size is proportional to

program memory. This prior work did not provide a detailed comparison between

their architectural checkpointing approach and other warmup strategies; in this

chapter, we present a detailed comparison between different warmup strategies.

III.B.3 SMARTS and TurboSMARTS

Wunderlich et al. [65] provide SMARTS, an accurate simulation infras-

tructure using statistical sampling. SMARTS continuously updates caches and

branch predictors while fast-forwarding between samples of size 1000 instructions.

In addition, it also warms up the processor core before taking the sample through

the detailed cycle-by-cycle simulation of 2000 to 4000 instructions.

At the same time we completed the research for our chapter, Tur-

boSMARTS [62] presented similar techniques that replace functional warming

with a checkpointed SSI and checkpointed architectural state similar to what we

discuss in this chapter. In addition to what was studied in [62], we compare a

26

number of reduced checkpointed SSI techniques, we study the impact of wrong-

path load instructions for our techniques, and we examine the applicability of

checkpointed sampling startup techniques over different sample sizes.

III.B.4 Parallel simulation of simulation points

The most obvious way to get simulation speedup when simulating sam-

ples is to employ parallel simulation on a cluster of machines [36, 30, 18, 10]. For

example, Girbal et al. [18] present DiST to increase the simulation speed through

parallel simulation. DiST divides the complete program execution in a number of

chunks that are distributed over a number of machines. DiST then fast-forwards

on each machine to the assigned chunks. When the assigned chunk is reached,

detailed processor simulation gets started. To deal with the warmup issues, DiST

simulates the first part of a given chunk twice: once as the first part of the given

chunk under cold start, and once at the end of the previous chunk assigned to

another machine. Warmup is stopped when both simulations of the same chunk

parts converge to identical simulation results.

The results from this chapter are directly applicable to parallel simula-

tion to further improve its speed. The reduced checkpoints can be used to start

the simulation on each machine. Note that the reduced checkpoints not only

eliminate fast-forwarding time, but are also fast to transfer over a distributed en-

vironment due to their small size. The Memory Hierarchy State (MHS) warmup

strategy can be used to accurately and efficiently warmup hardware state.

III.C Discussion

Detailed cycle-by-cycle simulation of complete benchmarks is practically

impossible due to the huge dynamic instruction counts of today’s benchmarks

(often several hundred billions of instructions), especially when multiple processor

27

configurations need to be simulated during design space explorations. Sampling is

an efficient way for reducing the total simulation time. There exist two main ways

of sampling, statistical sampling and phase-based sampling. The use of SimPoint

for phase-based sampling was previously discussed in Section II.A. In this chapter

we focus on studying the applicability of the Sample Startup techniques presented

for SimPoint and statistical sampling. In addition, we also provide summary

results for applying these Sample Startup techniques to SMARTS.

III.C.1 Statistical Sampling

Statistical sampling takes a number of execution samples across the

whole execution of the program, which are referred to as clusters in [8] because

they are groupings of contiguous instructions. These clusters are spread out

throughout the execution of the program in an attempt to provide a representative

cross-cut of the application being simulated. Conte et al. [8] formed multiple

simulation points by randomly picking intervals of execution, and then examining

how these fit to the overall execution of the program for several architecture

metrics (IPC, branch and data cache statistics).

SMARTS [65] provides a version of SimpleScalar [5] using statistical

simulation, which uses statistics to tell users how many samples need to be taken

in order to reach a certain level of confidence. One consequence of statistical sam-

pling is that tiny samples are gathered over the complete benchmark execution.

This means that in the end the complete benchmark needs to be functionally sim-

ulated, and for SMARTS, the caches and branch predictors are warmed through

the complete benchmark execution. This ultimately impacts the overall simula-

tion time.

28

III.C.2 Sample Starting Image

The first issue to deal with to enable efficient sampled simulation is

to load a memory image that will be used to execute the sample. The Sample

Starting Image (SSI) is the program memory state needed to enable the correct

functional simulation of the given sample.

Full Checkpoint

There is one major disadvantage to checkpointing compared to fast-

forwarding and direct execution for providing the correct SSI. This is the large

checkpoint files that need to be stored on disk. Using many samples could be

prohibitively costly in terms of disk space. In addition, the large checkpoint file

size also affects total simulation time due to loading the checkpoint file from disk

when starting the simulation of a sample and transferring over a network during

parallel simulation.

EIO Files and Checkpointing System Calls

Before presenting our two approaches to reduce the checkpoint file size,

we first detail our general framework in which the reduced checkpoint methods

are integrated. We assume that the program binary and its input are available

through an EIO file during simulation. We use compressed SimpleScalar EIO

files; this does not affect the generality of the results presented in this chapter,

however. An EIO file contains a checkpoint of the initial program state after the

program has been loaded into memory. Most of the data in this initial program

image will never be modified during execution. The rest of the EIO file contains

information about every system call, including all input and output parameters

and memory updates associated with the calls. This keeps the system calls exactly

the same during different simulation runs of the same benchmarks.

29

In summary, for all of our results, the instructions of the simulated

program are loaded from the program image in the EIO file, and the program is

not stored in our checkpoints. Our reduced checkpoints focus only on the data

stream.

Touched Memory Image

Our first reduced checkpoint approach is the Touched Memory Image

(TMI) which only stores the blocks of memory that are to be accessed in the

sample that is to be simulated. The TMI is a collection of chunks of memory

(touched during the sample) with their corresponding memory addresses. The

TMI contains only the chunks of memory that are read during the sample. Note

that a TMI is stored on disk for each sample. At simulation time, prior to

simulating the given sample, the TMI is loaded from disk and the chunks of

memory in the TMI are then written to their corresponding memory addresses.

This guarantees a correct SSI when starting the simulation of the sample. A

small file size is achieved by using a sparse image representation, so regions of

memory that consist of consecutive zeros are not stored in the TMI. In addition,

large regions of non-zero sections of memory with only a few zeros between them

are combined and stored as once chunk. This saves storage space in terms of

memory addresses in the TMI, since only one memory address needs to be stored

for a large consecutive data region.

An optimization to the TMI approach, called the Reduced Touched

Memory Image (RTMI), only contains chunks of memory for addresses that are

read before they are written. There is no need to store a chunk of memory in

the reduced checkpoint in case that chunk of memory is written prior to being

read. A TMI, on the other hand, contains chunks of memory for all reads in the

sample.

30

Load Value Sequence

Our second approach, called the Load Value Sequence (LVS), involves

creating a log of load values that are loaded into memory during the execution

of the sample. Collecting an LVS can be done with a functional simulator or

binary instrumentation tool, which simply collects all data values loaded from

memory during program execution (excluding those from instruction memory

and speculative memory accesses). When simulating the sample, the load log

sequence is read concurrently with the simulation to provide correct data values

for non-speculative loads. The result of each load is written to memory so that,

potentially, speculative loads accessing that memory location will find the correct

value. The LVS is stored in a compressed format to minimize required disk space.

Unlike TMI, LVS does not need to store the addresses of load values. However,

programs often contain many loads from the same memory addresses and loads

with value 0, both of which increase the size of LVS without affecting TMI.

In order to further reduce the size of the LVS, we also propose the

Reduced Load Value Sequence (RLVS). For each load from data memory the

RLVS contains one bit, indicating whether or not the data needs to be read from

the RLVS. If necessary, the bit is followed by the data value, and the data value

is written to the simulator’s memory image at the load address so that it can be

found by subsequent loads; otherwise, the value is read from the memory image

and not included in the RLVS. Thus the RLVS does not contain load values

when a load is preceded by a load or store for the same address or when the

value would be zero (the initial value for memory in the simulator). This yields

a significant additional reduction in checkpoint file sizes. An alternate structure

that accomplishes the same task is the first load log presented in [35].

31

III.C.3 Warmup

We compare five warmup strategies, not performing any warmup, hit

on cold, 1M-instructions of detailed execution fixed warmup, MRRL and stored

architecture state. The descriptions in this section summarize the warmup tech-

niques in terms of how they are used for uniprocessor architecture simulation.

No Warmup

The no-warmup strategy assumes an empty cache at the beginning of

each sample, i.e. assumes no warmup. Obviously, this will result in an overesti-

mation of the number of cache misses, and by consequence an underestimation of

overall performance. However, the bias can be small for large sample sizes. This

strategy is very simple to implement and incurs no runtime overhead.

Hit on Cold

The hit on cold strategy also assumes an empty cache at the beginning

of each sample but assumes that the first use of each cache block in the sample is

always a hit. The no warmup strategy, on the other hand, assumes a miss for the

first use of a cache block in the sample. Hit on cold works well for programs that

have a high hit rate, but it requires modifying the simulator to check a bit on

every cache miss. If the bit indicates that the cache block has yet to be used the

sample then the address tag is added to the cache but the access is considered to

be a hit.

An extension to this technique is to try to determine the overall pro-

gram’s average hit rate or the approximate hit rate for each sample, then use this

probability to label the first access to a cache block as a miss or a hit. We did

not evaluate this approach for this dissertation.

32

Memory Reference Reuse Latency

The Memory Reference Reuse Latency (MRRL) [21, 22] approach pro-

posed by Haskins and Skadron builds on the notion of memory reference reuse

latency. The memory reference reuse latency is defined as the number of dynamic

instructions between two consecutive memory references to the same memory lo-

cation. To compute the warmup starting point for a given sample, MRRL first

computes the reuse latency distribution over all the instructions from the end of

the previous sample until the end of the current sample. This distribution gives

an indication about the temporal locality behavior.

MRRL subsequently determines wN which corresponds to the N% per-

centile over the reuse latency distribution, the point at which N% of memory

references will be made to addresses last accessed within wN instructions. Warm-

ing then gets started wN instructions prior to the beginning of the sample. The

larger N%, the larger wN , and thus the larger the warmup. We use N% = 99.9%

as proposed in [21].

Sampled simulation under MRRL then proceeds as follows. The first

step is to fast-forward to or load the checkpoint at the starting point of the

warmup simulation phase. From that point on until the starting point of the

sample, functional simulation is performed in conjunction with cache and branch

predictor warmup, i.e. all memory references warm the caches and all branch

addresses warm the branch predictors. When the sample is reached, detailed

processor simulation is started for obtaining performance results. The cost of the

MRRL approach is the wN instructions that need to be simulated under warmup.

Memory Hierarchy State

The fourth warmup strategy is the Memory Hierarchy State (MHS)

approach, which stores cache state so that caches do not need to be warmed

33

at the start of simulation. The MHS is collected through cache simulation, i.e.

functional simulation of the memory hierarchy. Design-space exploration may

require many different cache configurations to be simulated. Note that the MHS

needs to be collected only once for each block size and replacement policy, but can

be reused extensively during design space exploration with smaller-sized memory

hierarchies. Our technique is similar to trace-based construction of caches, except

that storing information in a cache-like structure decreases both storage space

and time to create the cache required for simulation. In addition to storing cache

tags, we store status information for each cache line so that dirty cache lines are

correctly marked.

Depending on the cache hierarchies to be simulated, constructing hi-

erarchies of target caches for simulation from a single source cache created by

functional simulation can be complicated, so we explain the techniques used and

the necessary properties of the source cache.

If a target cache i has si sets with wi ways, then every cache line in it

would be contained in a source cache with s′ = cisi sets and w′ ≥ wi ways, where

ci is a positive integer. We now describe how to initialize the content of each set

in the target cache from the source cache. To initialize the contents of the first

set in the target cache we need to look at the cache blocks in the first ci sets

of the source cache, giving us ciw
′ ways. For a cache with LRU replacement we

need to store a sequence number for the most recent use of each cache block. We

select the most recently used wi cache blocks to put in the target set. The next ci

sets of the source cache initialize the second set of the target cache, and so forth.

In general, s′ = LCMi(si) and w′ = maxi(wi) ensure that the large cache contains

enough information to initialize all of the simulated cache configurations. (In

the common case where si is always a power of two, the least common multiple

(LCM) is just the largest such value.)

34

D:
20
H:
40
L:
127
P:
47

A:
100
E:
57
I:
3
M:
140

B:
75
F:
34
J:
24
N:
50

C:
85
G:
110
K:
10
O:
23

D:
20

B:
75

F:
34

H:
40

I:
3

K:
10

O:
23

P:
47

00 00

11

01 01

11

1010

Figure III.1: Reducing associa-
tivity from 4-way to 2-way.

D:
20

J:
24

I:
3

K:
10

O:
23

F:
34

H:
40

P:
47

D:
20
H:
40
L:
127
P:
47

A:
100
E:
57
I:
3
M:
140

B:
75
F:
34
J:
24
N:
50

C:
85
G:
110
K:
10
O:
23

00

01

10

11

0

1

Figure III.2: Reducing the number of
sets.

Figures III.1 and III.2 demonstrate how MHS works when reducing the

cache associativity and the number of sets, respectively. In the figures, each row

is a cache set with a number of columns equal to the associativity of the cache.

Each cache block is labeled with a letter; the letters represent tags. The number

below the letter is the time (in memory operations) since the cache block was last

used. In the top row of the large cache (cache set 00), blocks D and B are the

most recently used blocks. When associativity is reduced to two in Figure III.1,

those are the two most recently used blocks, so they are retained. Figure III.2

reduces the number of cache lines to two, merging cache sets 00 and 10 to a single

set, 0; cache sets 01 and 11 are merged into set 1. The new cache sets contain

the most recently used entries from both of the cache sets that were merged into

them. Also note that this operation will increase the length of the cache tags by

one bit.

Inclusive cache hierarchies can be initialized easily as just described,

but exclusive cache hierarchies need something more. For example, assume that

the L2 cache is 4-way associative and has the same number of cache sets as a

2-way associative L1 cache. Then the 6 most recently accessed blocks mapped to

a single cache set will be stored in the cache hierarchy, 2 in the L1 cache and 4 in

the L2 cache. Thus the source cache must be 6-way associative. If, instead, the

L2 cache has twice as many sets as the L1 cache then the cache hierarchy will

contain 10 blocks that are mapped to the same L1 cache set, but at most 6 of

35

these will be mapped to either of the L2 cache sets associated with the L1 cache

set. The source cache still only needs to be 6-way associative.

We handle exclusive cache hierarchies by creating the smallest (presum-

ably L1) target cache first and locking the blocks in the smaller cache out of the

larger (L2, L3, etc.) caches. Then the sets in the larger cache can be initialized.

Also, the associativity of the source cache used to create our MHS must be at

least the sum of the associativities of the caches within a target cache hierarchy.

Unified target caches can be handled by collecting source cache data as

if the target caches were not unified. For example, if there are target IL1, DL1

and UL2 caches then data can be collected using the same source caches as if

there were IL2 and DL2 caches with the same configuration parameters as the

UL2 cache. Merging the contents of two caches into a unified target cache is

straight-forward. The source caches must have a number of cache sets equal to

the LCM of all the possible numbers of cache sets (both instruction and data)

and an associativity at least as large as that of any of the caches. Alternately,

if all of the target cache hierarchy configurations are unified in the same way

then a single source cache with the properties just described can collect all of the

necessary data.

Comparing MHS versus MRRL, we can say that they are equally micro-

architecture-independent. Then MHS traces store all addresses needed to create

the largest and most associative cache size of interest. Similarly, MRRL goes

back in execution history far enough to also capture the working set for the

largest cache of interest. The techniques have different tradeoffs, however: MHS

requires additional memory space compared to MRRL, and MRRL just needs to

store where to start the warming whereas MHS stores a source cache. In terms of

simulation speed, MHS substantially outperforms MRRL as MHS does not need

to simulate instructions to warm the cache as done in MRRL—loading the MHS

36

trace is done very quickly. As simulated cache sizes increase, MHS disk space

requirements increase and MRRL warming times increase.

The techniques discussed in this section can also be extended to warmup

for TLBs and branch predictors. For 1M-instruction simulation points, we only

consider sample architecture warmup for caches. We found that the branch pre-

dictor did not have a significant effect until we used very small 1000-instruction

intervals with SMARTS. When simulating the tiny SMARTS simulation intervals

we checkpointed the state of branch predictor prior to each sample. While we

can modify TLB and cache checkpoints to work with smaller TLBs and caches,

we cannot yet do this for general branch predictors. For experiments requiring

branch predictor checkpoints for varying predictor configurations it is necessary

to simulate several branch predictors concurrently while collecting checkpoints.

Large, complex conditional branch predictors may need to be stored

to disk for each of their possible configurations. If the components of a branch

predictor can be considered separately, it may be possible to look at many con-

figurations with only a few variations saved to disk. Branch target buffers and

return address stacks can be resized, just like caches, so only one large instance

of each needs to be stored. Other branch predictor components may need to be

simulated for each size and algorithm used, but they can be combined with target

buffers and address stacks of any size.

Situations in which separate microarchitectural components affect each

other are more complex to handle. For example, consider an experiment in which

cache sizes are varied and several different prefetchers with internal state are

examined. The prefetchers affect the contents of the cache, so an ideal simu-

lation would simulate the two structures together, storing correlated cache and

prefetcher contents to disk. In the worst case, every combination of two compo-

nents that interfere with each other would need to be stored to disk. In this case,

37

Table III.1: Processor simulation model.

I Cache 8k 2-way set-assoc., 32 byte blocks, 1 cycle latency
D Cache 16k 4-way set-assoc., 32 byte blocks, 2 cycle latency
L2 Cache 1Meg 4-way set-assoc., 32 byte blocks, 20 cycle latency
Memory 150 cycle round trip access

Branch Pred hybrid 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal pre-
dictor

O-O-O Issue up to 8 inst. per cycle, 128 entry re-order buffer

Func Units
8-integer ALU, 4-load/store units, 2-FP adders, 2-integer
MULT/DIV, 2-FP MULT/DIV

our technique to resize the caches is not affected by the existence of prefetched

data from a single prefetcher. Thus, we can store one copy of the MHS for each

prefetcher design even though many cache configurations will be examined. Any

microarchitectural structure that does not interfere with prefetching and cache

contents can have its configurations simulated separately, minimizing the number

of microarchitectural combinations that need to be simulated to create the MHS.

We now evaluate Sample Startup for sampled simulation. After dis-

cussing our methodology, we then present a detailed error analysis of the warmup

and reduced checkpointing techniques. We subsequently evaluate the applicabil-

ity of the reduced checkpointing and warmup techniques for both phase-based

sampling as done in SimPoint and statistical sampling.

III.C.4 Methodology

We use the MRRL-modified SimpleScalar simulator [21], which supports

taking multiple samples interleaved with fast-forwarding and functional warming.

Minor modifications were made to support (reduced) checkpoints. We simulated

SPEC 2000 benchmarks compiled for the Alpha ISA and we used reference inputs

for all of these. The binaries we used in this study and how they were compiled

38

can be found at http://www.simplescalar.com/. The processor model assumed

in our experiments is summarized in Table III.1.

For these results we used SimPoint with an interval size of 1 million and

Max K set to 400. Figure III.3 shows the number of 1M-instruction simulation

points per benchmark. This is also the number of checkpoints per benchmark

since there is one checkpoint needed per simulation point. The number of check-

points per benchmark varies from 15 (crafty) up to 369 (art). In this chapter

we focus on small, 1M-instruction intervals because SimPoint and statistical sam-

pling are most accurate when many (at least 50 to 100) intervals are used. This

is most practical when small (1M instructions or less) intervals are accurately

simulated. However, we found that the reduction in disk space is an important

savings even for 10M and 100M interval sizes when using a reduced load value

trace.

For statistical sampling, we consider 50 1M-instruction sampling units

randomly chosen from the entire benchmark execution. We also experimented

with a larger number of sampling units, however, the results were quite similar.

III.C.5 Error Analysis

Our error analysis covers both phase-based and statistical sampling us-

ing all of the warmup techniques previously discussed; we follow this with a brief

discussion of the effects of wrong-path loads on LVS.

Phase-based Sampling Using SimPoint

We now study the accuracy of the reduced warmup and checkpointing

techniques for phase-based sampling using SimPoint. Figure III.4 shows the

accuracy of SimPoint while assuming perfect sampling startup. The average

error is 1.3%; the maximum error is 4.8% (parser).

39

ammp

applu

apsi

art

bzip2

crafty

eon

equake

fma3d

gcc

gzip

lucas

mcf

mesa

mgrid

parser

swim

vortex

vpr

wupwise

Average

0

10
0

20
0

30
0

40
0

Number of Checkpoints
 N

um
be

r
of

 S
am

pl
es

F
ig

u
re

II
I.
3:

N
u
m

b
er

of
si
m

u
la

ti
on

p
oi

n
t

sa
m

p
le

s
u
se

d
w

it
h

M
ax

K
se

t
to

40
0.

ammp

applu

apsi

art

bzip2

crafty

eon

equake

fma3d

gcc

gzip

lucas

mcf

mesa

mgrid

parser

swim

vortex

vpr

wupwise

Average

012345

Percentage Error

 S
im

P
oi

nt
 E

rr
or

F
ig

u
re

II
I.
4:

A
cc

u
ra

cy
of

S
im

P
oi

n
t

as
su

m
in

g
p
er

-
fe

ct
sa

m
p
li
n
g.

ammp

applu

apsi

art

bzip2

crafty

eon

equake

fma3d

gcc

gzip

lucas

mcf

mesa

mgrid

parser

swim

vortex

vpr

wupwise

Average

010203040 Percentage Error

 N
o

W
ar

m
up

 H
it

on
 C

ol
d

 F
ix

ed
 1

M
 W

ar
m

up
 M

R
R

L
 M

H
S

 M
H

S
+

LV
S

43
.7

41
.9

56
.4

64
.7

70
.6

40
.2

52
.8

46
.5

F
ig

u
re

II
I.
5:

P
er

ce
n
ta

ge
er

ro
r

in
es

ti
m

at
in

g
ov

er
al

l
C

P
I

as
co

m
p
ar

ed
to

S
im

P
oi

n
t

w
it
h

n
o

sa
m

p
li
n
g

er
ro

r.

40

am
m

p

applu

apsi

art

bzip2

crafty

eon

equake

fm
a3d

galgel

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser

sw
im

vortex

vpr

w
upw

ise

A
verage

0

5

10

15

20
P

er
ce

n
ta

g
e

E
rr

o
r

 No Warmup
 Hit on Cold
 Fixed 1M Warmup
 MRRL
 MHS
 MHS+LVS

30.2
26.5

33.9
36.7

40.2
45.8

27.8
58.7

63.7
67.2

36.1
21.5
28.7

43.4
23.6
24.8

45.7
28.7

Figure III.6: Average CPI error: average CPI sample error as a percentage of CPI.

am
m

p

applu

apsi

art

bzip2

crafty

eon

equake

fm
a3d

galgel

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser

sw
im

vortex

vpr

w
upw

ise

A
verage

0

2

4

6

8

10

95
%

 C
o

n
fi

d
en

ce
 In

te
rv

al No Warmup
 Hit on Cold
 Fixed 1M Warmup
 MRRL
 MHS
 MHS+LVS

12.1
14.6
16.8

13.4
18.3

10.0
10.5

11.1

Figure III.7: The 95% confidence interval as a percentage of CPI.

41

Figure III.5 evaluates the CPI error rates for various Sample Startup

techniques as compared to the SimPoint method’s estimate using perfect warmup

— this excludes any error introduced by SimPoint. This graph compares four

sample warmup approaches: no warmup, hit-on-cold, fixed 1M warmup, MRRL

and MHS. The no warmup and hit-on-cold strategies result in high error rates,

16% and 24% on average. For many benchmarks one is dramatically better than

the other, suggesting that an algorithm that intelligently chooses one or the other

might do significantly better. The fixed 1M warmup achieves better accuracy with

an average error of 4%; however the maximum error can be fairly large, see for

example for parser (17%). The error rates obtained from MRRL and MHS are

significantly better. The average error for both approaches is 1%. As such, we

conclude that in terms of accuracy, MRRL and MHS are equally accurate when

used in conjunction with SimPoint.

The error results discussed so far assumed full checkpoints. Considering

a reduced checkpoint technique, namely LVS, in conjunction with MHS increases

the error rates only slightly, from 1% to 1.2%. This is due to the fact that LVS

does not include load values for loads being executed along mispredicted paths.

Statistical Sampling

We first provide a detailed error analysis of our warmup techniques as

well as the reduced checkpointing techniques under statistical sampling.

The average CPI error is the average over all samples of the relative

difference between the CPI through sampled simulation with full warmup, versus

the CPI through sampled simulation with the warmup and reduced checkpoint

techniques proposed in this chapter. Our second metric is the 95% confidence

interval for average CPI error. Techniques that are both accurate and precise

will have low average CPI error and small confidence interval widths.

42

Figures III.6 and III.7 show the average CPI error and the 95% confi-

dence interval, respectively. In both cases they are expressed as a percentage of

the correct CPI. The various bars in these graphs show full SSI checkpointing

along with a number of architectural warmup strategies (no warmup, hit on cold,

fixed 1M warmup, MRRL and MHS), as well as a reduced SSI checkpointing

technique, namely LVS, in conjunction with MHS. We only present data for the

LVS reduced SSI for readability reasons; we obtained similar results for the other

reduced SSI techniques. In terms of error due to warmup, we find that the no-

warmup and hit-on-cold and strategies perform poorly while fixed 1M-instruction

warmup usually (but not always) performs reasonably well. MRRL and MHS on

the other hand, are shown to perform equally well. The average error is less

than a few percent across the benchmarks. Although the per-benchmark results

are not always the same as the results using SimPoint, in most cases they are

comparable and the overall results are nearly identical.

In terms of error due to the starting image, we see the error added due

to the reduced SSI checkpointing is very small. Comparing the MHS bar (MHS

with full checkpointing) versus the MHS+LVS bar, we observe that the error

added is very small, typically less than 1%. These results are similar to those

found with SimPoint.

Wrong-path Loads

The reason for the additional error when using LVS is that under re-

duced SSI checkpointing, load instructions along mispredicted paths might poten-

tially fetch wrong data from memory since the reduced checkpointing techniques

only consider on-path memory references. In order to quantify this we refer to

Figures III.8 and III.9. Figure III.8 shows the percentage of wrong-path load

instructions being issued relative to the total number of issued loads; this figure

43

also shows the percentage of issued wrong-path loads that fetched incorrect data

(compared to a fully checkpointed simulation) relative to the total number of

issued loads. This graph shows that the fraction of wrong-path loads that are

fetching uncheckpointed data is very small, 2.05% on average. Figure III.9 then

quantifies the difference in percentage CPI error due to these wrong-path loads

fetching uncheckpointed data. We compare the CPI under full checkpoint versus

the CPI under reduced checkpoints. The difference between the error rates is

very small, under 1% of the CPI.

III.C.6 Total simulation time

Figure III.10 shows the total simulation time (in minutes) for the various

Sample Startup techniques when simulating all simulation points on a single

machine. This includes fast-forwarding, loading (reduced) checkpoints, loading

the Memory Hierarchy State and warming structures by functional warming or

detailed execution, if appropriate.

The SSI techniques considered here are fast-forwarding, checkpointing,

and reduced checkpointing using the LVS—we obtained similar simulation time

results for the other reduced checkpoint techniques RLVS, TMI and RTMI. These

three SSI techniques are considered in combination with the two most accurate

sample warmup techniques, namely MRRL and MHS. These results show that

MRRL in combination with fast-forwarding and full checkpointing are equally

slow. The average total simulation time is more than 14 hours per benchmark.

If we combine MHS with fast-forwarding, the average total simulation time per

benchmark cuts down to 5 hours. This savings over MRRL is achieved by replac-

ing warming with fast-forwarding and loading the MHS. Combining MHS with

full checkpointing cuts down the total simulation time even further to slightly

less than one hour. Combining the reduced checkpoint LVS approach with MHS

44

am
m

p

applu

apsi

art

bzip2

crafty

eon

equake

fm
a3d

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser

sw
im

vortex

vpr

w
upw

ise

A
verage

0

10

20

30

40

50

P
er

ce
n

ta
g

e
o

f
Is

su
ed

 L
o

ad
s

 Wrong Path Loads
 Erroneus Loads

Figure III.8: Analysis of wrong-path loads while
using LVS.

am
m

p

applu

apsi

art

bzip2

crafty

eon

equake

fm
a3d

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser

sw
im

vortex

vpr

w
upw

ise

A
verage

0.0

0.2

0.4

0.6

0.8

1.0

C
h

an
g

e
in

 P
er

ce
n

ta
g

e
E

rr
o

r

Change in Percentage Error

Figure III.9: Change in percentage error due to
LVS.

am
m

p

applu

apsi

art

bzip2

crafty

eon

equake

fm
a3d

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser

sw
im

vortex

vpr

w
upw

ise

A
verage

0

200

400

600

800

1000

T
o

ta
l T

im
e

to
 S

im
 (

m
in

) MRRL FF
 MHS FF
 MRRL Checkpoint
 MHS Checkpoint
 MHS LVS

2165
2817

2166
2520

1157
1014

2586
3186

1332
1763

Figure III.10: Total time to simulate all samples including fast-forwarding, loading checkpoints, warming and doing
detailed simulation.

45

reduces the average total simulation time per benchmark to 13 minutes. We

obtained similar simulation time results for the other reduced checkpoint tech-

niques.

As such, we conclude that the Sample Startup techniques proposed in

this chapter achieve full detailed per-benchmark performance estimates with the

same accuracy as MRRL. This is achieved in the order of minutes per benchmark

which is a 63X simulation time speedup compared to MRRL in conjunction with

fast-forwarding and checkpointing.

III.C.7 Storage Requirements

Figures III.11 and III.12 show the average and total sizes of the files

(in MB) that need to be stored on disk per benchmark when SimPoint is used

with various Sample Startup approaches: the Full Checkpoint, the Load Value

Sequence (LVS), the Reduced Load Value Sequence (RLVS), the Touched Mem-

ory Image (TMI) and the Memory Hierarchy State (MHS). Clearly, the file sizes

for Full Checkpoint are huge. The average file size per checkpoint is 49.3MB

(see Figure III.11). The average total file size per benchmark is 7.4GB (see Fig-

ure III.12). Storing all full checkpoints for a complete benchmark can take up

to 28.8GB (lucas). The maximum average storage requirements per checkpoint

can be large as well, for example 163.6MB for wupwise. Loading and transferring

over a network such large checkpoints can be costly in terms of simulation time

as well.

The SSI techniques, namely LVS, RLVS, TMI and RTMI, result in a

checkpoint reduction of more than two orders of magnitude, see Figures III.11

and III.12. The results for RTMI are similar to those for TMI. Since TMI contains

at most one value per address and no zeros, size improvements can only come

from situations where the first access to an address is a write and there is a later

46

am
m

p

applu

apsi

art

bzip2

crafty

eon

equake

fm
a3d

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser

sw
im

vortex

vpr

w
upw

ise

A
verage

0

1

2

A
ve

ra
g

e
S

iz
e

(M
B

)
 Full Checkpoint
 LVS
 RLVS
 TMI
 MHS

4.3 119.1 103.5 88.0 15.2 26.8 9.2 93.8 117.5 18.4 26.8 8.5 160.7 12.9 12.4 163.6 49.3

Figure III.11: Average storage requirements per sample.

am
m

p

applu

apsi

art

bzip2

crafty

eon

equake

fm
a3d

gcc

gzip

lucas

m
cf

m
esa

m
grid

parser

sw
im

vortex

vpr

w
upw

ise

A
verage

0

100

200

300

400

T
o

ta
l S

iz
e

(M
B

)

 Full Checkpoint
 LVS
 RLVS
 TMI
 MHS

474.0 19767 7766 709.0 17684 2736 4416 2300 19226 28780 3683 2516 903.0 24754 2675 2385 7361 7417

Figure III.12: Total storage requirements per benchmark.

47

read from that address. This is fairly rare, so the improvements are small.

The average total file sizes per benchmark for LVS, RLVS and TMI are

93.9MB, 57MB and 52.6MB, respectively; the maximum total file sizes for are

341MB, 224MB and 206MB, respectively, for applu. These huge checkpoint file

reductions compared to full checkpoints make checkpointing feasible in terms of

storage cost for sampled simulation. Also, the typical single checkpoint size is

significantly reduced to 661KB, 396KB and 365KB for LVS, RLVS and TMI,

respectively. This makes loading the checkpoints highly efficient.

Memory Hierarchy State (MHS) was the only warmup approach dis-

cussed that requires additional storage. Figures III.11 and III.12 quantify the

additional storage needed for MHS. The total average storage needed per bench-

mark is 40MB. The average storage needed for MHS per checkpoint is 256kB (8

bytes per cache block). Note that this is additional storage that is needed on top

of the storage needed for the checkpoints. However, it can be loaded efficiently

due to its small size.

III.C.8 Using MHS and LVS with SMARTS

The SMARTS infrastructure [65] accurately estimates CPI by taking

large numbers of very small samples and using optimized functional warming

while fast-forwarding between samples. Typical parameters use approximately

10000 samples, each of which is 1000 instructions long and preceded by 2000

instructions of detailed processor warmup. Only 30M instructions are executed

in detail, so simulation time is dominated by the cost of functional warming for

tens or hundreds of billions of instructions.

We improved SMARTS’ performance by replacing functional warming

with our MHS and LVS techniques. Due to the very small sample length there

was insufficient time for the TLB and branch predictor to warm before the end

48

of detailed simulation warmup. Therefore, for SMARTS we enhanced MHS to

include the contents of the TLBs and branch predictor. TLB structures can be

treated just like caches when considering various TLB sizes, but branch predictors

need to be generated for every desired branch predictor configuration. With

these changes we were able to achieve sampling errors comparable to the error

rates presented in section III.C.5 for the 1M-instruction samples. In addition,

the estimated CPI confidence intervals are similar to those obtained through

SMARTS.

Storing the entire memory image in checkpoints for 10000 samples is

infeasible, so we used LVS. Due to the small number of loads in 3000 instructions,

a compressed LVS only required a single 4 kB disk block per sample. The total

disk space per benchmark for the LVS checkpoint is 40 MB. Disk usage however

is dominated by MHS, with total storage requirements of approximately 730 MB

for each benchmark. By comparison, our SimPoint experiments used under 100

MB on average for full LVS, 50 MB for RLVS and 40 MB for MHS. In terms of

disk space, SimPoint thus performs better than SMARTS.

On average, the total simulation time per benchmark for SMARTS with

LVS and MHS is 130 seconds on average. About two-thirds of this time is due to

decompressing the MHS information.

In contrast to the fact that the amount of disk space required is approx-

imately 8 times larger with SMARTS, SMARTS is faster than SimPoint: 130

seconds for SMARTS versus 13 minutes for SimPoint. The reason for this is the

larger of number of simulated instructions for SimPoint than for SMARTS.

Concurrently with our work, the creators of SMARTS have released

TurboSMARTS [62], which takes a similar approach to the one that we have

outlined here. Their documentation for the new version recommends estimating

the number of samples that should be taken when collecting their version of

49

MHS and TMI data. The number of samples is dependent upon the program’s

variability, so for floating-point benchmarks this can greatly reduce the number

of samples, but in other cases more samples will be required. As a result, the

average disk usage is 290 MB per benchmark, but varies from 7 MB (swim) to

1021 MB (vpr). This is still over twice as large than the disk space required for

SimPoint using 1-million instruction intervals.

III.D Summary

Today’s computer architecture research relies heavily on detailed cycle-

by-cycle simulation. Since simulating the complete execution of an industry stan-

dard benchmark can take weeks to months, several researchers have proposed

sampling techniques to speed up this simulation process. Although sampling

yields substantial simulation time speedups, there are two remaining bottlenecks

in these sampling techniques, namely efficiently providing the sample starting

image and sample architecture warmup.

This chapter proposed reduced checkpointing to obtain the sample start-

ing image efficiently. This is done by only storing the words of memory that are

to be accessed in the sample that is to be simulated, or by storing a sequence

of load values as they are loaded from memory in the sample. These reduced

checkpoints result in two orders of magnitude less storage than full checkpointing

and faster simulation than both fast-forwarding and full checkpointing. We show

that our reduced checkpointing techniques are applicable on various sampled sim-

ulation methodologies as we evaluate them for SimPoint, random sampling and

SMARTS.

This chapter also compared four techniques for providing an accurate

hardware state at the beginning of each sample. We conclude that architecture

checkpointing and MRRL perform equally well in terms of accuracy. However,

50

our architecture checkpointing implementation based on the Memory Hierarchy

State is substantially faster than MRRL. The end result for sampled simulation

is that we obtain highly accurate per-benchmark performance estimates (only a

few percent CPI prediction error) in the order of minutes, whereas previously

proposed techniques required multiple hours.

III.E Acknowledgements

This chapter contains material from Efficient Sampling Startup for Sam-

pled Processor Simulation [55], in IEEE Micro Magazine, Michael Van Bies-

brouck, Lieven Eeckhout and Brad Calder. The dissertation author was the

primary investigator and author of this paper. Portions of these chapters are

c©2005 Springer-Verlag Berlin Heidelberg. Free use of this material is permitted

under the German Copyright Law of September 9, 1965, in its current version

(amended 8 May 1998). Non-free uses may require permission from Springer-

Verlag.

This chapter contains material from Efficient Sampling Startup for Sim-

Point [57], in IEEE Micro Magazine, Michael Van Biesbrouck, Lieven Eeckhout

and Brad Calder. The dissertation author was the primary investigator and au-

thor of this paper. Portions of these chapters are c©2006 IEEE. Personal use of

this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works must be obtained from the IEEE.

IV

The Co-phase Matrix

Individual programs exhibit phase behavior in which each phase has

roughly uniform IPC, misprediction rates, data miss rates, and so forth. Some

programs change phase rarely or in predictable ways; others such as gcc fre-

quently change phase in complex ways. On a multithreaded machine, each pro-

gram affects all of the others in ways determined by its current phase behavior.

As a result, the combination of programs can have more complex phase behavior

since it is the product of their individual behaviors. This combined behavior

determines the relative progress of the threads.

This chapter focuses on improving the efficiency of multithreaded work-

load simulation, answering the question “Given a multi-program workload with

each program starting at a specific starting point, how can we accurately and

efficiently estimate performance using sampling?” We focus on an SMT proces-

sor with two hardware contexts, but also briefly examine using four hardware

contexts. Our sampling approach to multithreaded simulation is guided by the

phase behavior found in single-program execution. This relies on finding the

phase-based behavior of each program using SimPoint [48] to classify fixed-size

intervals of execution into phases. For our experiments we selected programs

from the SPEC benchmark suite that show a wide variety of single program

51

52

phase-based behaviors, including many programs with complex structures.

The main contribution of this chapter is the creation of a Co-Phase

Matrix and using it to guide the simulation of an SMT processor for a multi-

program workload. The co-phase matrix represents all of the potential phase

combinations of a multi-program workload to be examined in an architecture

study. Our simulation approach populates the co-phase matrix with samples

during simulation. Once a phase combination has an appropriate sample, we no

longer need to simulate that combination and we can just fast-forward execution

to the next phase combination. The amount to fast-forward is determined by

the performance samples stored in the co-phase matrix. When we don’t have

the sample required to fast-forward execution, we can sample from the current

execution offset. We also examine a method that allows us to sample all co-phase

matrix entries in parallel and then, with no additional simulation, determine the

IPC of the programs from any relative starting offsets.

Our work is not the first to point out that the behavior of one program

running on an SMT processor can be affected by a different program that is sched-

uled to run at the same time. Indeed, both the work of Snavely and Tullsen [51]

and of Parekh, Eggers and Levy [38] demonstrate that not only does this effect

occur, but that it can in some circumstances be exploited for increased schedule

efficiency. However, neither of these approaches make use of phases to perform

optimizations and instead assume that each of the programs have homogeneous

behavior over large time scales. We extend this idea and show that there is thread

interference that happens at the level of phases, and that phases can be used to

perform more accurate performance estimation.

53

IV.A Background

Several methods for evaluating the performance of multithreaded pro-

cessors were discussed in Section II.B. Clearly, methods requiring repeated exe-

cution of entire programs are unsuitable for simulation. We use this section to

explain the complexity of multithreaded execution and show why existing single-

and multithreaded approaches to sampling are either inapplicable to this new

domain or unlikely to get accurate results.

IV.A.1 Sampling Challenge for a Multithreaded Processor

Single-threaded sampling methods assume that sampling points can be

easily determined independently from detailed simulation, either through random

sampling or some heuristic. But on a multithreaded processor, the threads share

the hardware resources, and it is necessary to model the co-execution of the

threads to determine which instructions from the programs will be executed at

the same time.

Figure IV.1 shows how IPC changes over time for each program when

it is run by itself on the baseline SMT processor. The x-axis represents time,

and the numbers on the x-axis represents the percent of execution. The y-axis

is the IPC for each execution interval. The time-varying IPC behavior is shown

for 10 billion instructions, after fast-forwarding for one billion instructions. In

bzip, gcc and vpr we see periodic behavior when these programs are executed

by themselves.

Figure IV.2 shows the time-varying IPC results for all two-program com-

binations of bzip2, gcc and vpr running on an SMT Processor. These figures

show the IPC for each program when co-executing with the others. The per-

program IPC is lower than in Figure IV.1 because now all the programs are

fighting for the resources they once had to themselves. The first thing to note is

54

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

Percent Execution

In
st

ru
ct

io
ns

 P
er

 C
yc

le

gcc bzip vpr

Figure IV.1: IPC Time-varying behavior for each program when it is run by itself
on the SMT processor. The x-axis scale is percentage of execution.

that there is significantly more complex behavior here than was present when the

programs were running as individuals. Upon further inspection, patterns begin

to take shape, showing synchronized changes in behavior.

One result that stands out is that the phased-based behavior seen during

these SMT runs is dominated mainly by bzip in its combinations. The program

vpr provides an interesting baseline for all of these figures as its behavior remains

fairly stable over time. When you compare that behavior to the behavior that

it shows when paired with a program such as gcc, you can clearly see that

the addition of multiple threads greatly complicates the task of estimating the

performance of any one thread, even if that one thread by itself is not that

complex. Indeed, while sometimes the IPC of one program will go up while the

other goes down, at other times they both go up or down together. Invariably,

though, the changes are due to the the existing phase-behavior of one program

or the other.

As can be seen in Figure IV.2, the task of determining the relative exe-

cution rates for several programs will be complex. For a single pair of programs,

such as gcc and bzip2, at times the programs will execute at the same rate

55

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

Percent Execution

In
st

ru
ct

io
ns

 P
er

 C
yc

le gcc
bzip

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Percent Execution

In
st

ru
ct

io
ns

 P
er

 C
yc

le gcc
vpr

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

Percent Execution

In
st

ru
ct

io
ns

 P
er

 C
yc

le

bzip vpr

Figure IV.2: Time Varying IPC when running all the above 2 program combina-
tions at the same time together on a dual hardware context SMT Processor.

56

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

bzip2-gcc bzip2 gcc bzip2-vpr bzip2 vpr gcc-vpr gcc vpr

IP
C

True IPC
Single Simpoint

Samples
Mean +/- stddev

Figure IV.3: Random sampling results.

and at others there is an order of magnitude difference in IPC. It is therefore a

challenge to determine between samples how much to fast-forward each separate

thread in order to arrive at a real sample that would exist in the representative

baseline full simulation.

Capturing the complex behavior seen in these time-varying results is

beyond is beyond the capability of existing methodologies which rely on the

execution of just one interval from each program. Instead, an approach that

takes advantage of the phase behavior of each program is needed to capture this

behavior.

57

IV.A.2 Using Single Simulation Points

A typical sampled simulation methodology that researchers use is to

simulate an SMT processor for 100 to 300 million instructions at a single point

for a given multi-program workload. This only exercises the interaction between

the programs for a couple of different behavior combinations (derived from se-

quentially occurring phases) for each program. To illustrate the problem, we first

examine randomly picking an offset in each program to start executing at and

measure performance. Each offset combination was simulated until a total of 300

million instructions were executed. This is shown in Figure IV.3, where IPCs for

random simulations are shown for the program pairs bzip-gcc, bzip-vpr, and

gcc-vpr; the per thread estimated IPC results are shown next to each program

combination. The random sampling results are shown as plus (+) signs. We

also show the overall and per-program IPCs found when executing the program

combination for 10 billion instruction, and the 300M-instruction samples were

drawn from this 10 billion instruction execution. The results show that arbitrar-

ily taking one sample for a program combination can lead to highly variable IPC

estimates.

Also shown in Figure IV.3 are results that use the best single simulation

point found by the SimPoint algorithm in [48] for each program and co-simulated

those together for 300 million instructions. For a given program/input pair, Sim-

Point profiles the code usage, broken down into 100 million samples, over the

complete execution of the program. It then compares a code profile of the com-

plete execution of the program with the profile from each interval and attempts

to pick the more representative set of 100 million contiguous instructions. The

circle on the graphs represents using the best single SimPoint for each program

when performing an SMT simulation. The results show that for some combina-

tions it has a relatively small error, while for others it can have an overall error

58

of almost 20% (gcc-gzip) or even almost 40% (bzip in bzip2-gcc).

Single simulation points can be fairly representative of the entire pro-

gram execution. They typically capture the transition point between the two

most dominant phases in the run. Vera et al. [60, 61] refined this technique

by repeatedly executing the 300M-instruction intervals to reflect the possible

phase interactions within them, ultimately executing billions of instructions per

program pair. Nonetheless, most programs have many phases and the single sim-

ulation point will have a higher error rate than if samples are taken from each

phase of the program’s execution. Therefore, we focus on obtaining a more accu-

rate picture of the program’s execution by taking samples from all of the phase

combinations seen for a multi-program workload.

IV.B Discussion

In this section we develop the co-phase method in several variations and

evaluate them against each other and simpler techniques. At the end, we revisit

one of them, the static co-phase method, using more refinements for increased

efficiency and accuracy as well as an improved evaluation methodology.

IV.B.1 Guiding Fast-forwarding Using the Last Sample

Figure IV.2 shows complex fine-grain phase behavior, but general trends

of execution are often present for significant intervals. This is caused by the

phase nature of programs, where programs tend to execute in the same phase for

a given period of time before transitioning to a new phase [2, 49]. Therefore the

performance from recent execution can be a reasonable prediction of near future

performance.

Using this observation, as a baseline sampling technique we examine a

straight-forward sampling approach where we assume that the program’s execu-

59

tion will continue to have the same IPC for some time. Then performance from

one sample can be used to guide the amount of per-thread fast-forwarding un-

til the next sample occurs. By periodically resampling we can detect changes in

per-thread behavior, and then correct the fast-forwarding until the next sampling.

Longer samples allow us to ignore high-frequency variation, concentrat-

ing on general performance trends. (A short sample may give results that are not

as representative a longer one.) Shorter resampling periods allow us to detect

brief performance variations, increasing accuracy at the expense of more samples.

If the number of samples is large, the samples may need to be reduced in length

to keep simulation time reasonable.

IV.B.2 Finding Phases to Improve Sampling

The technique discussed in the last section, periodically sampling and

then assuming the behavior will be stable until the next sample, is simple to im-

plement and works reasonably well in many cases. However, with only an incre-

mental amount of complexity, and leveraging existing work in phase analysis, we

can do even better. This new approach anticipates phase changes independently

from sampling, allowing samples to be taken at every new phase combination.

Figure IV.1 shows the repetitive phase behavior of single threads, and even when

two-program combinations are run in Figure IV.2. The per-thread phase behav-

ior is still present in multithreaded execution but the phases are now affected by

competition for resources from other threads. This leads us to propose the use

of phase detection techniques based on phases discovered using our earlier work

on single-threaded program analysis.

For our approach, the phase behavior is represented by a phase-ID trace

representing the complete execution of a single program, where each phase is

represented by a unique ID determined by the SimPoint program. Section II.A

60

explained how SimPoint is used to analyze a program, identifying phases and rep-

resentative simulation points. The phase-ID trace indicates at which instructions

in the program’s execution phase changes occur and the new phase IDs.

IV.B.3 The Co-Phase Matrix

On a multithreaded processor, the state of each thread’s execution can

be represented by the per-program phase-ID it is currently executing in. The key

idea of our technique is that, just as in the single threaded version the overall

behavior does not change within a given phase, in a multithreaded machine the

overall behavior should not change unless at least one thread has a phase change.

Thus we need to keep track of a list of all combinations of phases that have

been seen running together. This combination of phase-IDs, which are executing

together, represent a unique co-phase identifier. We have found that taking a

sample of the simultaneous execution of programs and storing it with its co-

phase identifier accurately represents the multithreaded performance when this

same co-phase combination is seen again in the future. We can then store a list

of the past combinations we have seen, and we term this list the co-phase matrix.

A co-phase matrix represents the combination of all of the phase-IDs

from each program in the workload that can execute simultaneously on the mul-

tithreaded machine, where there is an entry in the matrix for each co-phase

identifier. If each phase combination were simulated, then the table would be

filled with representative samples for all the possible phase combinations in the

program. For each combination of the phases (co-phase) that occurs when co-

executing two or more programs we store into the co-phase matrix the per-thread

IPC found during a sample of detailed simulation.

61

IV.B.4 Guiding Fast-Forwarding

We can estimate the co-execution of multiple programs at a given point

in time if we have two items: the phase-ID trace and the co-phase matrix entry

that corresponds to the phases currently executing. If we have the entry in the co-

phase matrix then we can predict per-thread IPC because we have observed and

recorded this set of phases executing in the past. From SimPoint we obtain the

phase-ID trace, which is used to determine how many instructions each program

must execute before it encounters the next phase change. Using the IPC estimates

from the co-phase matrix and the phase-ID trace we determine how many cycles

it would take for the next phase change to occur for any of the co-executing

threads. This is used to guide how far to fast-forward each thread using the

estimated IPCs from the co-phase matrix. The following is an overview of the

algorithm:

1. Co-Phase Matrix Lookup - The current co-execution thread combination

represents a co-phase identifier, which is looked up in the co-phase matrix.

If a sample exists, retrieve the per-thread IPC for each thread. If a sample

does not exist, then perform detailed simulation for a specified sample size

(see Section IV.B.7), and store the per-thread IPC into the co-phase matrix

to reuse later.

2. Determine Number of Cycles to Fast-Forward - Using each program’s phase-

ID trace, calculate the number of instructions until the next phase change

for each thread. Use this and the per-thread IPC from the co-phase matrix

to calculate the number of cycles to reach that phase change. The thread

with the smallest number of cycles until the next phase change determines

how far to fast-forward.

3. Fast-Forward to Next Phase Change - Take the number of cycles from step 2,

62

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

20M

10M

30M

Co−phase

Real Execution

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �
 � � � �

!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"

a

b

b

x y x xy

10M 20M 30M

a

x

a

y

b

x

b

y

ax

ay

bx

by
a

T
hr

ea
d

0

Thread 1

2.5M cycles

5M cycles

3.75M cycles

2.5M cycles

1.25M cycles

5M cycles

Figure IV.4: Approximating detailed execution with the co-phase matrix.

and multiply this by the per-thread IPC from the co-phase matrix to deter-

mine how many instructions to fast-forward each thread. Fast-forward each

thread that many instructions. This results in a new phase-combination,

and go back to step 1.

A synthetic example of using this approach can be found numerically in

Table IV.1 and graphically in Figure IV.4. The top table shows the per-thread

phase-ID trace. The middle table shows the resulting co-phase matrix built up

using detailed samples during simulation. Finally, the bottom table shows the

results of using the co-phase method.

63

Table IV.1: Phases found in two programs (5M instruction intervals) and a co-
phase matrix. The table on the top shows the phase-ID trace gathered from
SimPoint. The matrix in the middle shows an example final co-phase matrix
from simulating the two threads together. The bottom table shows the results of
co-phase matrix simulation.

Instructions (M) Thread 0 Phase Thread 1 Phase
0–5 a x
5–10 a y
10–15 b x
15–20 b x
20–25 a y
25–30 a x
30–35 b x

Co-Phase Thread 0 IPC Thread 1 IPC
ax 2 1
ay 1 1
bx 2 2
by 1 2

Thread 0 Thread 1 Co-Phase Cycles (M)
Inst (M) Inst (M)
0–10 0–5 ax 5
10–12.5 5–10 by 2.5
12.5–20 10–17.5 bx 3.75
20–25 17.5–20 ax 2.5
25–30 20–25 ay 5
30–32.5 25–27.5 ay 1.25

64

In Figure IV.4, the dashed line on the graph represents the relative

progress of the two threads during a hypothetical real execution while the solid

line is the approximation made using the co-phase method. The phase-ID traces

of the two threads (thread 0 on the y-axis and thread 1 on the x-axis) can be

seen adjacent to the axes. Thread 0 goes through the phase sequence abab with

phase changes at 10M, 20M and 30M instructions, respectively; thread 1 goes

through the phase sequence xyxyx with phase changes at 5M, 10M, 20M and

25M instructions, respectively. Each rectangular section of the graph is shaded

according to the co-phase that will be used while the execution of the two threads

is within the rectangle. For example, the white-shaded rectangles represent the

co-phase ax, where phase a for thread 0 is co-executing with phase x from thread

1; the heaviest shaded rectangles represent the co-phase by, etc. The graphs on

the right of the relative progress graph visually represent the co-phase matrix.

For each co-phase we show a vector indicating the relative progress of the threads.

For co-phase ax, the co-phase matrix shows that phase a in thread 0 makes twice

as fast progress as phase x in thread 1. For by, phase y makes twice as fast

progress as phase b. For co-phases ay and bx, both phases make both equally fast

progress, but ay has half the throughput of co-phase bx.

For this example, we assume that the execution begins at (0, 0), the

start of both programs, but we could apply the same procedure for any other

starting point. In the example, the starting point is in co-phase ax. From the

co-phase matrix entry corresponding to ax, we see that thread 0 progresses twice

as fast as thread 1. Execution continues at that rate until both programs change

phases at (5M, 10M). Thus it takes 5M cycles to exit the first co-phase. The

new co-phase is by with IPCs of 2 and 1 for threads 0 and 1, respectively. After

just 2.5M cycles the horizontal thread leaves phase y at point (10M, 12.5M).

Progress beyond this point will be in co-phase bx. Both threads will now make

65

equal progress, i.e., we assume both threads run at an IPC of 2, until one of the

thread hits a new phase ID (phase change). The next co-phase change will occur

at point (17.5M, 20M) after 3.75M cycles. The new co-phase then is ax, etc. This

process is repeated until our target execution length is achieved, closely following

the real execution of the two threads.

Given a co-phase matrix, the starting points for two threads, and the

phase-ID trace, we quickly estimate the overall IPC for the pair of programs

running on a multithreaded processor using the above approach. Next we examine

two different approaches for guiding simulation using the contents of the co-phase

matrix.

IV.B.5 Estimating Performance with a Dynamic Co-Phase Matrix

The first approach we propose for guiding simulation dynamically popu-

lates the co-phase matrix as we simulate. For this technique, we start a simulation

from a desired initial offset of each program with an empty co-phase matrix. The

start of execution represents the first co-phase matrix entry needed to execute, so

we perform a detailed simulation of that co-phase at the current execution and fill

in the corresponding co-phase matrix entry. From this matrix entry we estimate

how many instructions are going to execute from each program before the next

phase change, using knowledge of how many instructions we have executed from

each individual program and the single program phase-ID trace. We then fast-

forward each program thread by that many instructions, and examine the new

co-phase that the workload is at. If this co-phase is not in our co-phase matrix

(or, for example, is based on too few samples), we perform detailed multithreaded

simulation and fill it in. If it is in our matrix, we use the existing entry to esti-

mate the number of instructions executed for each program and fast-forward each

program. This process is repeated until we have completed simulation. When we

66

are done we have a co-phase matrix filled out with all of the co-phases that were

observed during this workload’s execution, and a weight is assigned to each co-

phase matrix entry corresponding to the fraction of time each co-phase occurred

during this process. The performance results gathered in this co-phase matrix

are then combined to achieve an overall estimated IPC of the combined run, and

a per thread IPC.

The results labeled First Phase, 1% Phase and 5% Phase use this dy-

namic co-phase matrix approach. First Phase uses only the first sample found.

The results labeled 1% and 5% add new samples at regular intervals. To sample

5% of execution, for example, a new sample is taken every 20 times (5 out of 100)

that a specific co-phase matrix entry occurs during simulation.

IV.B.6 Estimating Performance with a Static Co-Phase Matrix

We now describe using a static co-phase matrix to guide simulation. For

each co-phase that could occur in the matrix we simulate the programs together

at representative simulation points. We used the SimPoint algorithm to find

the representative simulation points from each phase. The simulation points

might not actually co-execute during the baseline comparison we are trying to

model, but they embody an average behavior for that co-phase that makes them

representative. For this approach, only a single sample is used for each co-phase

matrix entry from running the SimPoint simulation point combinations together.

To arrive at an overall IPC, the multi-program workload will start its

execution in one of the co-phase matrix entries. Using that co-phase matrix entry

and the individual program phase-ID trace information, we predict how many

cycles until the next phase change and the number of instructions to be executed

from each program. We then advance to a new co-phase simulation matrix entry

and advance each program by its number of estimated instructions executed, and

67

we repeat this process. Once we reach the stopping criteria for our simulation

(e.g., reaching a total number of simulated instructions or a minimum number

from each thread) we have the total number of cycles to execute the workload and

the number of instructions executed per thread. Note, this analytical simulation

is done after we have the co-phase matrix. It requires neither functional nor

detailed simulation after the static matrix has been created. At this point the

analytical simulation is completely driven by the co-phase matrix.

This method is extremely efficient when used with checkpoints. One

set of checkpoints suffices for each combination of programs, and can be used for

every architectural change to be examined. For a particular architecture config-

uration, after simulating each phase combination once for just tens of millions

of instructions, we can then arrive at the estimated performance results for all

possible thread starting offsets. With checkpoints, these simulations may be

done in parallel if there are sufficient resources. Unfortunately, if the number

of threads is large or they have complicated phase behavior, there will be too

many potential co-phase matrix entries to simulate. In this case, the dynamic

approach described above for filling in the co-phase matrix to guide sampling

and fast-forwarding would be preferred. Alternately, the static co-phase matrix

can be collected as each entry is needed during simulation and the partial static

co-phase matrix can be shared and updated by several simulations concurrently.

IV.B.7 Original Methodology

For this research we focus on eight programs to create a representative

workload from the different types of phase behavior we saw in our prior SimPoint

research. We use bzip2, equake, gcc, lucas, gzip, mesa, perl and vpr to ex-

amine multi-program phase-based interactions. The first four programs represent

the most complicated phase-based behavior found in the SPEC benchmark suite,

68

Table IV.2: SMT processor configuration.

I-Cache 64kB 2-way set-associative, 64-byte blocks, 1-cycle latency
D-Cache 64kB 2-way set-associative, 64-byte blocks, 3-cycle latency
Unified L2 1 MB 4-way set-associative, 64-byte blocks, 10-cycle latency
Memory 100-cycle latency

Branch Pred
21264-style hybrid predictor with 13-bit global history in-
dexing a 8k-entry global PHT and 8k-entry choice table; 2k
11-bit local history entries indexing a 2k-entry local PHT

OOO Issue Out-of-order issue, 256-entry re-order buffer
Width 8 instructions per cycle (Fetch, Decode, Issue and Commit)
Func Units 6 Integer, 2 Integer Multiply, 4 FP Add, 2 FP Multiply

and the last four programs the average case phase-based behavior. We examine

running all 28 combinations of the above eight programs in pairs on a two-context

SMT processor. Four groups of four threads are also run on the same processor

configuration, extended to four contexts.

For our multi-program workloads we fast-forwarded each program 1 bil-

lion instructions and then started co-simulating them on the SMT processor

using the ICOUNT fetching heuristic [54]. We terminate simulation of a given

multi-program workload as soon as the first program finishes executing 10 billion

instructions. We use this to denote the end of the multi-program simulation due

to the fact that each SPEC program has a different number of instructions for its

reference input run, and each program executes instructions at different rates. In

addition, we verified that the 10 billion instruction section for this multi-program

workload is fairly representative of the phases seen over the whole program exe-

cution. This also gives us an arbitrary point part way through execution to start

each program.

The M5 SMT simulator [4] from Michigan, based on SimpleScalar3.0c [5],

was used to collect performance and architecture metrics in the simultaneously

multithreaded environment. Although the simulator is capable of full-system

simulation we did not use that capability for this work. The configuration for

69

this simulator is shown in Table V.B.11. It is configured to support an inten-

sive multithreaded workload. Hence the large cache and abundant reservation

stations. We simulated SPEC 2000 benchmarks compiled for the Alpha ISA.

The binaries we used in this study and how they were compiled can be found at

http://www.simplescalar.com/.

All of our results are compared against complete detailed simulation

of the 10 billion instruction interval just described. Each workload is labeled

with thread 0 first and thread 1 second, so thread 0 in gcc-vpr is gcc, and

thread 1 is vpr. We examine both the overall and per-thread IPC. Although the

overall IPC is of importance, it is also critical that the per-thread performance be

accurate so that our simulation model can be used to study throughput, fairness,

perceived user time and scheduling. Additionally, if a simulation method weights

two executing threads differently than would occur in practice, then it may be

effectively simulating a different workload than would occur naturally.

Phase Selection

For each program to be run in the multi-program workloads, we gathered

the Basic Block Vectors for that program and identified the phases and simulation

points as described in [48]. To ensure that fine-grained behavior would be evident

we used 10 million instruction intervals. We used the SimPoint tools to find up

to 20 phases (max K was set to 20) in each program. In Figure IV.5, we show

the number of phases that were actually found for each program.

During the detailed simulation of a two-program workload, in the worst

case, the number of possible co-phases between the two different programs is the

product of the number of simulation points for each program. For example, in

Figure IV.5 we see that gcc had 12 phases and vpr had 7, so the total possible

number of co-phases is 84. Figure IV.6 shows the maximum possible number of

70

bz
ip

2
eq

ua
ke

gc
c

gz
ip

lu
ca

s
m

es
a

pe
rl

vp
r

05101520 Number of Phases

F
ig

u
re

IV
.5

:
N

u
m

b
er

of
p
h
as

es
fo

u
n
d

fo
r

ea
ch

p
ro

gr
am

.

bzip2-equake
bzip2-gzip
bzip2-gcc
bzip2-perl
bzip2-lucas
bzip2-vpr
bzip2-mesa
equake-gzip
equake-gcc
equake-perl
equake-lucas
equake-vpr
equake-mesa
gzip-perl
gzip-lucas
gzip-vpr
gzip-mesa
gcc-gzip
gcc-perl
gcc-lucas
gcc-vpr
gcc-mesa
perl-vpr
lucas-perl
lucas-vpr
lucas-mesa
mesa-perl
mesa-vpr
Average

05010
0

15
0

20
0

Number of Co-phases

 P
os

si
bl

e
 O

bs
er

ve
d

F
ig

u
re

IV
.6

:
N

u
m

b
er

of
p
h
as

e
co

m
b
in

at
io

n
s

th
at

co
u
ld

h
av

e
o
cc

u
rr

ed
an

d
th

e
n
u
m

b
er

th
at

ac
tu

al
ly

o
cc

u
rr

ed
d
u
ri
n
g

d
et

ai
le

d
si
m

u
la

ti
on

.

71

bzip2-equake

bzip2-gzip

bzip2-gcc

bzip2-perl

bzip2-lucas

bzip2-vpr

bzip2-m
esa

equake-gzip

equake-gcc

equake-perl

equake-lucas

equake-vpr

equake-m
esa

gzip-perl

gzip-lucas

gzip-vpr

gzip-m
esa

gcc-gzip

gcc-perl

gcc-lucas

gcc-vpr

gcc-m
esa

perl-vpr

lucas-perl

lucas-vpr

lucas-m
esa

m
esa-perl

m
esa-vpr

A
verage

0

1

2

3

4

5
In

st
ru

ct
io

n
s

P
er

 C
yc

le
 Overall
 Thread 0
 Thread 1

Figure IV.7: IPC statistics for all two-program combinations.

bzip2-gcc bzip2-mesa bzip2-perl bzip2-vpr gcc-mesa gcc-vpr lucas-mesa lucas-vpr mesa-perl Avg - Rest Avg - All0

10

20

30

P
er

ce
n

ta
g

e
E

rr
o

r

 Single
 5% Last
 First Phase
 1% Phase
 5% Phase
 Static

33.78 52.85 63.89

Figure IV.8: Overall IPC error comparing the different sampling techniques.

72

co-phase identifiers for each two-program combination we examined, as well as

the number observed during simulation. Even though gcc-vpr had 84 possible

co-phases, only 51 of the possible pairings occurred during the baseline simulation

we performed. Figure IV.7 shows that the overall and per-thread IPC of each of

the program combination. The pairs varied greatly in performance, with overall

IPC between 2.2 and 4.5 and single-threaded performance between 0.7 and 3.2.

Depending on its partners, a program’s IPC can vary by as much as 1.3.

It is important to note that our fixed offsetting exercises most of the

possible co-phases for most pairs of programs. A notable exception is gcc-lucas,

which uses just under half of the possible co-phases because both programs have

complex phase behavior leading to the largest number of potential co-phases.

The other interesting case is perl which has a simple phase structure and a

low IPC in combination with some other programs; perl does not always leave

its first phase. Reaching most co-phases ensures that our tests will encounter

the same range of circumstances as they would have had we run the pairs from

many different offsets. If only a small fraction of phases occurred in each run

(possibly because there were phases that only occurred at the start or end of

thread execution) then we would have needed to run more tests. Our tests involve

program combinations with significantly varying numbers of co-phases, so the full

range of test complexity is covered.

Sample Collection

For each sample gathered during SMT simulation we used Hit on Cold

warmup to minimize the effects of sample startup on relative thread progress.

We considered three sampling methods. In these sampling techniques, a sample

stops when one of the conditions below is met:

Total 5M: total 5M instructions are committed,

73

First 5M: a single thread commits 5M instructions, or

Both 5M: both threads commit at least 5M instructions.

The Total 5M method performed worst because it executes the fewest instruc-

tions, making warmup to great a fraction of the sample. There is a similar

problem with First 5M, which may be dominated by the best-performing thread.

In cases where one thread significantly outperforms the other this could lead to

unbalanced sampling. Both 5M was the overall best method with only gcc’s

frequent phase changes as notable weakness, so in our dynamic co-phase matrix

experiments we sample long enough that each thread executes at least 5M in-

structions during the sampling. When populating a co-phase matrix entry, it is

not always possible to sample that long before hitting a co-phase change. When

this occurs, we take additional samples when the co-phase re-occurs and combine

them with the earlier sample results. This avoids the problems with frequent

phase changes. With resampling techniques, the additional samples do not need

to contain 5M instructions for each thread.

The experiments with static co-phases matrices do not have the advan-

tage of sampling from multiple locations, so they use Both 10M. The faster thread

can overrun the end of the co-phase but longer samples seem to be an advantage

overall. Experiments with many different ways to terminate a sample (including

all of the 5M methods just mentioned) demonstrated that no technique is best

for all pairs of programs.

IV.B.8 Pairwise Simulation Results

We first examine the error in IPC seen using the dynamic and static

co-phase matrix simulation approaches. Figure IV.9 shows the error in IPC

when guiding simulation dynamically building up the co-phase matrix using 1%

sampling as described in Section IV.B.5. Figure IV.10 shows the error in IPC

74

bzip2-equake

bzip2-gcc

bzip2-gzip

bzip2-lucas

bzip2-mesa

bzip2-perl

bzip2-vpr

equake-gcc

equake-gzip

equake-lucas

equake-mesa

equake-perl

equake-vpr

gcc-gzip

gcc-lucas

gcc-mesa

gcc-perl

gcc-vpr

gzip-lucas

gzip-mesa

gzip-perl

gzip-vpr

lucas-mesa

lucas-perl

lucas-vpr

mesa-perl

mesa-vpr

perl-vpr

Average

0102030 Percentage Error
 O

ve
ra

ll
 T

hr
ea

d
0

 T
hr

ea
d

1

F
ig

u
re

IV
.9

:
E

rr
or

in
IP

C
fo

r
co

-p
h
as

e
m

at
ri
x

si
m

u
la

ti
on

u
si
n
g

th
e

d
y
n
am

ic
co

-p
h
as

e
m

at
ri
x

w
it
h

1%
P

h
as

e
sa

m
p
li
n
g.

bzip2-equake

bzip2-gcc

bzip2-gzip

bzip2-lucas

bzip2-mesa

bzip2-perl

bzip2-vpr

equake-gcc

equake-gzip

equake-lucas

equake-mesa

equake-perl

equake-vpr

gcc-gzip

gcc-lucas

gcc-mesa

gcc-perl

gcc-vpr

gzip-lucas

gzip-mesa

gzip-perl

gzip-vpr

lucas-mesa

lucas-perl

lucas-vpr

mesa-perl

mesa-vpr

perl-vpr

Average

0102030 Percentage Error

 O
ve

ra
ll

 T
hr

ea
d

0
 T

hr
ea

d
1

F
ig

u
re

IV
.1

0:
E

rr
or

in
IP

C
fo

r
co

-p
h
as

e
m

at
ri
x

si
m

u
la

ti
on

u
si
n
g

th
e

S
ta

ti
c

co
-p

h
as

e
m

at
ri
x
.

75

when using the static co-phase matrix to guide simulation. Results are shown for

overall IPC error and per-thread error. Overall, for both techniques, the average

error rate was 4% and the average per-thread error rate was below 8%. In the

worst case (mesa-perl), the overall error was 16%, and the per-thread error was

27%.

Figure IV.8 compares our dynamic and static co-phase matrix approaches

with alternate sampling techniques described earlier, concentrating on overall er-

ror in IPC. The first bar shows the result of co-simulating the best Single sim-

ulation points until one thread executes 100M instructions. 5% Last shows the

estimated performance, where we regularly sample the per-thread IPC to predict

how far to fast-forward each thread to the next sample. Each sample simulates

until both threads execute at least 5M instructions. 5% of the workload has

detailed simulation performed on it, and the rest of execution is skipped via

fast-forwarding.

The next bar, First Phase, shows our dynamic co-phase matrix ap-

proach, where sampling is done for a co-phase matrix entry until a total of 5M

instructions are simulated for each thread. This represents taking the 1st sam-

ple for each co-phase matrix entry, and using that to guide fast-forwarding for

that entry for the rest of the simulation. The N% Phase methods resample each

co-phase, where detailed simulation is performed for 1% or 5% of the workload’s

execution, and the rest is fast-forwarding. For this approach new samples are

combined with the old ones. Finally, Static uses the static co-phase matrix.

The Single SimPoint method produced errors much greater than would

be expected when using Single SimPoint in the single-threaded case. Even though

the intervals are representative of the overall instruction mix, the pairing of single

simulation points cannot capture the complexity of ongoing phase interactions.

The high single-thread errors show that pairings can be quite atypical. In terms

76

of average error rate, phase-based sampling techniques are significantly better

than the Single and 5% Last techniques.

The Static method does poorly in three notable cases: gcc-vpr, lucas-

mesa and mesa-perl. In the first two cases programs with many frequently

changing phases were combined with programs with few phases. In the latter

case perl spends all of its time in one phase due to its simple phase structure

and low IPC. The frequency of phase changes in one program makes each co-

phase short and the dynamic co-phases may not contain all of the interactions

that the longer co-phase sample used by the static method observes. Despite these

problem programs the overall error rate is comparable to the other phase-based

techniques.

‘First’ and ‘1% Phase Sample FF’ use significantly fewer samples than

‘5% Phase Sample FF’; the decreased execution time may make them more ap-

propriate choices than the slightly better-performing ‘5% Phase Sample FF’.

These two methods have similar execution time because few co-phases occur

often enough to be resampled at the 1% rate. Increasing the sampling rate to 5%

is rarely necessary, but it does significantly help bzip2-perl.

Relative Progress Graphs

To better explain and compare the errors seen in Figure IV.8, we now

examine the relative progress of each through execution using a Relative Progress

Graph.

Figures IV.11 and IV.12 compare the baseline execution of program pairs

with the estimated execution derived from sampling. A point plotted at (x, y)

indicates that when thread 0 has executed x instructions, thread 1 has executed

y instructions. The solid line represents the baseline detailed simulation and the

broken lines represent the progress estimated by our various sampling methods.

77

The slope of the line at a point indicates the relative IPCs of the two programs,

but actual IPC values cannot be derived from this graph because it does not

show how many cycles have executed. The graph can be used to verify that the

sampled runs enter the correct co-phases together. The ideal behavior is for the

sampling approach to identically follow the baseline run.

In Figure IV.11 we examine the co-execution of bzip2 and gcc. This

pairing has the most dramatic variation in relative IPCs amongst our test cases,

as can be seen by the nearly horizontal and vertical line segments midway through

execution. Each sharp bend in the graph represents a transition between signifi-

cantly different co-phases. It is immediately obvious that the last sample method

does not track the behavior of the baseline (the top line in the graph). It does a

reasonable job of tracking the sharp bend at 2.5 billion instructions, but because

it has already deviated from the baseline it does not match the nearly horizontal

phase for even a third of its length, an error which cannot be corrected. The

static method (the bottom line in the graph) sampled unfortunately just before

the nearly vertical section, causing it to switch to the horizontal too late and

hence continue in that co-phase too long. Despite this error it manages to track

subsequent phase changes fairly accurately. All of the other methods make better

use of phase knowledge, ensuring that they take samples at the phase combina-

tions. The slight deviation from the baseline is determined by how representative

of the entire phase are the samples. The close tracking of the baseline indicates

that sufficiently many phases were used for both programs.

Figure IV.12 shows a poorly-performing pairing with about 10% error

in the non-static methods. Here the phase behavior settles into an undulating

line after the first billion instructions. Although Last 5% sampling looks the best

here, it can be seen that this is almost an accident. It crosses the baseline many

times but rarely has a similar slope; the frequent variations caused by bzip2

78

0

2

4

6

8

10

0 2 4 6 8 10

gc
c

(in
st

ru
ct

io
ns

)

bzip2 (instructions)

Baseline
1% Phase
5% Phase

Static
5% Last

Figure IV.11: Relative progress for bzip2-gcc.

0

2

4

6

0 2 4 6 8 10

vp
r

(in
st

ru
ct

io
ns

)

bzip2 (instructions)

Baseline
1% Phase
5% Phase

Static
5% Last

Figure IV.12: Relative progress for bzip2-vpr.

79

repeatedly send it back towards the baseline but it does not correct its course

again until it is too late. These errors make its IPC estimate no better than

that of the other techniques. The phase-based techniques track changes in the

baseline admirably, but these runs consistently diverge over time, suggesting that

the samples are slightly off from the average trend. The static method gets an

advantage in this case by not taking the earliest samples, keeping its error in

vpr’s execution much lower.

In each case it is clear that attention to phases provides essential infor-

mation for tracking multithreaded execution behavior. Regular sampling without

phase information succumbs to error for reasonable sampling frequencies. Shorter

samples would allow more frequent sampling but would decrease sample accuracy;

this will only give reasonable results for program pairs with consistent behavior

such as bzip2-vpr, but not for complex combinations such as bzip2-gcc.

The analysis for bzip2-vpr indicates that advanced warmup techniques

may improve our results. Functional warming during fast-forwarding, as used

by Wunderlich et al. [65] is a promising technique. Keeping caches and branch

predictors warm has a modest impact on the performance of fast-forwarding,

so the increased execution time should not outweigh the anticipated benefits to

accuracy. Multithreaded functional warming requires that state updates from

the threads be interleaved, so each thread will need to be fast-forwarded in small

increments according to their estimated relative IPCs.

Variability of Co-phase Samples

We now examine the benefit of using co-phase information to guide

sampling. We find that samples taken from co-phases exhibit less variation than

samples taken across all co-phases during our baseline runs. We break the exe-

cution of an SMT workload into 10M combined instruction intervals. We then

80

bzip2-equake
bzip2-gcc
bzip2-gzip
bzip2-lucas
bzip2-m

esa
bzip2-perl
bzip2-vpr
equake-gcc
equake-gzip
equake-lucas
equake-m

esa
equake-perl
equake-vpr
gcc-gzip
gcc-lucas
gcc-m

esa
gcc-perl
gcc-vpr
gzip-lucas
gzip-m

esa
gzip-perl
gzip-vpr
lucas-m

esa
lucas-perl
lucas-vpr
m

esa-perl
m

esa-vpr
perl-vpr
A

verage

0.0

0.2

0.4

C
o

ef
fi

ci
en

t
o

f
V

ar
ia

ti
o

n

 Overall
 Using Co-phases

Figure IV.13: Coefficient of variation improvements through phase separation.

calculate the Coefficient of Variation (CoV) over all of these intervals of execu-

tion, as shown in Figure IV.13. This represents the variation seen when randomly

sampling over the complete baseline execution of the workload.

Next, we compare this to the variance in samples seen when guiding

sampling with the co-phase matrix. To calculate this, we bin all of the SMT

workload intervals into co-phase matrix entries, and we calculate the CoV of

each co-phase matrix entry. We then weight each CoV based upon the amount

of execution each phase accounted for. These weighted CoVs are then combined

to arrive at an average CoV that would be seen when gathering samples based

upon the co-phase matrix. The co-phase CoV is also shown in Figure IV.13. The

results show that the co-phase sampling always made an improvement, reducing

the variance by one-third on average.

81

1.5

2

2.5

3

3.5

4

4.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Eight Different Processor Configurations

Real - Overall
Phase 5% - Overall

Static - Overall
Real - Thread 0

Phase 5% - Thread 0
Static - Thread 0
Real - Thread 1

Phase 5% - Thread 1
Static - Thread 1

Figure IV.14: Overall and per-thread performance for bzip2-gcc under different
architecture configurations.

IV.B.9 Relative Error

We also verified that the co-phase methods are suitable for comparing

different simulator configurations. We ran different pairs of programs through

eight configurations, varying the size of the L1 caches, the L2 cache and the

branch predictor tables. Timing parameters were changed so that the smaller

structures had lower latency. The bzip2-gcc pair was particularly sensitive to

architectural changes so in Figure IV.14 we show real and estimated overall and

per-thread IPC. The Static Phase method is particularly consistent in its error,

and the magnitude of the error is relatively constant over most of the configu-

rations. It changes at the 5th processor configuration, where the error drops to

nearly zero.

82

Table IV.3: IPC and number of co-phases found for each set of four programs.

Programs Instructions Per Cycle Co-phases
Per Thread

Overall 0 1 2 3 Possible Observed
bzip2-equake-gcc-lucas 5.1 1.4 1.1 1.7 0.9 15552 469
bzip2-gcc-mesa-vpr 4.6 1.2 1.6 1.2 0.5 2688 305
equake-gzip-lucas-perl 4.0 1.0 1.3 1.0 0.8 1944 375
gzip-mesa-perl-vpr 3.6 1.2 1.4 0.6 0.5 336 62

IV.B.10 Four-Context Simulation Results

We also examined applying our co-phase matrix approach to a four-

context SMT processor. Table IV.3 shows the the overall IPC and per-thread IPC

for the four program combinations we examined. The last two columns show the

total possible number of co-phase combinations and the number observed during

simulation.

Figure IV.15 shows the overall IPC error rates for the four program

combinations we examined. We compare the results for Single, 1% Phase, 5%

Phase and Static methods. The results show that when using all four contexts the

machine is completely resource constrained so errors in different threads balance

out, making the overall IPC error negligible.

Figure IV.16 shows the detailed breakdown of per-thread error for one

combination. Results are shown across the different sampling techniques for

the overall error, and per-thread error for equake, gzip, lucas, and perl. As

in the two-threaded case, perl is a significant source of error because of the

limited number of phases found. Static errors are more pronounced than the

other methods, unlike the situation with two threads, because the larger number

of programs produce shorter co-phases, increasing the probability that a the static

sample will not match the dynamic instances of the co-phase. This is similar to

83

bz-eq-gc-lu bz-gc-me-vp eq-gz-lu-pe gz-me-pe-vp Average0

5

10

15

P
er

ce
n

ta
g

e
E

rr
o

r Single
1% Phase
5% Phase
Static

18.84 27.75

Figure IV.15: Overall IPC error rates for four four-threaded combinations.

equake gzip lucas perl Overall0

5

10

15

P
er

ce
n

ta
g

e
E

rr
o

r Single
1% Phase
5% Phase
Static

21.71 18.81 64.22

Figure IV.16: Per-thread IPC accuracy for the equake-gzip-lucas-perl com-
bination.

the problem noted with gcc’s frequent phase changes, but worse. Nonetheless,

the magnitude of the errors is smaller than in many two-threaded cases because

more of the simulated machine’s resources are used at capacity, allowing less

variation in performance.

IV.B.11 Revised Methodology For the Static Co-Phase Method

After our initial work on the co-phase method we were able to improve

both our technique and analysis for the static co-phase method. For the remain-

der of this chapter we present results that take additional simulation resources

84

(allowing us to create more baseline measurements), our experience with reduced

checkpoints, an improved version of SimPoint and refinements on our sampling

technique.

We analyzed the benchmarks using SimPoint 3.0 [19]. The phase anal-

ysis for our results covered all of program execution and used intervals of 5M

instructions. We limited the maximum number of phases found by SimPoint to

30, i.e., Max K set to 30. The fewest number of phases found was mesa with 25

phases. So, all of the benchmarks used between 25 to 30 phases.

For increased accuracy and decreased simulation time, we improved our

handling of warmup. We use the hit-on-cold warmup technique along with the

following strategy to further reduce the impact of cold-start effects. We ignore

the first 1.5M instructions of execution and use the remaining instructions to

calculate the contents of the Co-Phase Matrix. Data collection ends once one

thread commits 3.5M instructions beyond the detailed warmup. This ensures

that we don’t leave the simulation point interval in either thread and discards

simulation data that is tainted by warmup problems.

Figure IV.17 shows the number of co-phases in the static co-phase ma-

trix for the various benchmark pairs. Populating the static co-phase matrix with

performance numbers requires computing performance numbers for all of these

co-phases. The number of co-phases varies from 650 to 870, with 759 co-phases on

average. To efficiently compute these co-phases, we employ the reduced check-

pointing techniques as discussed in Chapter III. These reduced checkpointing

techniques minimize the architectural state that needs to be stored on disk per

simulation point. The shorter simulation period (at most a quarter of the num-

ber of instructions used previously) and smaller checkpoints kept the detailed

simulation time manageable.

85

gcc-gzip
gcc-vpr
bzip2-gcc
bzip2-gzip
bzip2-lucas
bzip2-m

esa
bzip2-vpr
gzip-lucas
gzip-m

esa
gzip-vpr
lucas-m

esa
lucas-vpr
m

esa-vpr
bzip2-equake
equake-gcc
equake-gzip
equake-lucas
equake-m

esa
equake-vpr
gcc-perl
bzip2-perl
gzip-perl
lucas-perl
m

esa-perl
perl-vpr
equake-perl
A

verage

0

200

400

600

800
N

u
m

b
er

 o
f

C
o

-p
h

as
es

 Co-phases

Figure IV.17: Number of co-phases per benchmark pair.

IV.B.12 Single Starting Point Co-Phase Matrix-Driven Simulation

Our first evaluation step was to verify that the new methodology pro-

duced comparable error rates for 2 and 10 billion instructions. Using smaller

evaluation intervals allowed us to evaluate the static co-phase method more com-

prehensively than in our earlier experiments.

Figure IV.18 validates the improved static co-phase matrix approach

with respect to the full detailed simulation runs for 100 starting offset pairs. For

this result we simulated each starting offset for 1 billion detailed instructions to

get the baseline CPI starting at random offsets. We then used the static co-phase

matrix method to determine the estimated CPI until both programs reached 1

billion instructions of estimated execution. This gave us an estimated error for

each pair of starting points. We report the average error across all starting points

in Figure IV.18 for the set of programs as before. For this result, 10 starting offsets

86

bzip2-equake
bzip2-gcc
bzip2-gzip
bzip2-lucas
bzip2-m

esa
bzip2-perl
bzip2-vpr
equake-gcc
equake-gzip
equake-lucas
equake-m

esa
equake-perl
equake-vpr
gcc-gzip
gcc-perl
gcc-vpr
gzip-lucas
gzip-m

esa
gzip-perl
gzip-vpr
lucas-m

esa
lucas-perl
lucas-vpr
m

esa-perl
m

esa-vpr
perl-vpr
A

verage

0

2

4

6

C
P

I P
er

ce
n

ta
g

e
E

rr
o

r CPI Error

Figure IV.18: Error in CPI for static co-phase method simulation.

were chosen randomly for each program, which resulted in 100 simulations for a

benchmark pair.

The results in Figure IV.18 show the average performance prediction

error over those 100 simulation runs. We observe an average error of 1.6% and a

maximum error of 5.1%. The highest error is for equake-gcc; others have error

of at most 3.1%. The benchmark pair equake-gcc presents challenges due to

dramatically different execution rates of the two programs at a particular point,

which can magnify small errors in sampling. We investigate this in more detail

in Chapter V. Additional experiments showed that this combination of programs

benefits from a longer sampling period. Our low error rates validate our changes

to interval size, sampling and phase analysis. They also demonstrate that the

co-phase matrix can be used to accurately estimate performance when running

a combination of programs on a multithreaded processor from a single starting

point.

87

IV.C Summary

Simultaneous Multithreading architectures are appearing in commercial

processors, yet there is still relatively little support for sampling or determining

where to simulate to achieve representative simulation results. The challenge

in creating a sampling approach for multithreaded simulation is in determining

how far to fast-forward each individual thread between samples. This distance

will vary between different architecture configurations and as the threads execute

through different phases of execution.

In this chapter, we presented the co-phase matrix method for sampling

the execution of Simultaneous Multithreading machines. Our simulation ap-

proach builds a co-phase matrix and uses it to guide fast-forwarding between

samples. In performing detailed simulation using the co-phase matrix, we were

able to estimate the IPC for multi-program workloads with an average error of

4% when using the 1% co-phase sampling approach. Our static co-phase method

allows parallel simulation and can estimate workload performance from all pos-

sible thread starting positions with just 4.3% error. Subsequently, we improved

this error rate to 1.6% by using a more precise phase analysis that increased the

number of co-phases but allowed us to simulate them for shorter periods of time.

IV.D Acknowledgement

This chapter contains material from A Co-Phase Matrix to Guide Si-

multaneous Multithreading Simulation [59], in International Symposium on Per-

formance Analysis of Systems and Software (ISPASS), Michael Van Biesbrouck,

Timothy Sherwood and Brad Calder. The dissertation author was the pri-

mary investigator and author of this paper. Portions of these chapters are

c©2004 IEEE. Personal use of this material is permitted. However, permission

88

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

This chapter contains material from Considering All Starting Points

for a Simultaneous Multithreading Simulation Methodology [56], in International

Symposium on Performance Analysis of Systems and Software (ISPASS), Michael

Van Biesbrouck, Lieven Eeckhout and Brad Calder. The dissertation author was

the primary investigator and author of this paper. Portions of these chapters are

c©2006 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

V

Benchmark Suite Performance

The co-phase matrix approach in Chapter IV focused on providing an

accurate simulation assuming a single starting position in each binary being

simulated. In this chapter we show that the architecture behavior and overall

throughput can vary drastically based upon the different starting points within

the different benchmarks. Therefore, to completely evaluate the effect of a multi-

threaded architecture optimization on a workload, we may need to simulate many

or all of the program combinations from different starting offsets. Exhaustively

running all program combinations from many starting offsets is infeasible — even

running single programs to completion is infeasible with modern benchmarks.

This chapter proposes an efficient multithreaded simulation methodol-

ogy that estimates average performance over all starting points when running

multiple programs on a multithreaded processor. This is achieved by populat-

ing the co-phase matrix with performance results for the different co-phases as

was done in Chapter IV. Once this co-phase matrix is populated, we use it to

estimate the average performance over all starting points. This is done by ran-

domly picking a number of starting points and by analytically simulating each

of these co-phase executions with their given starting points. Since the analyti-

cal simulation is done very efficiently, the whole multithreaded simulation for a

89

90

set of starting points completes very quickly, in at most a few minutes. To the

best of our knowledge, this work is the first to propose a multithreaded simula-

tion methodology that estimates average performance for all starting simulation

points. The most similar approaches require real hardware to execute entire

benchmarks repeatedly until performance statics converge [53, 60, 61].

We believe that this is the best way to find the average performance

of a pair of programs and propose a weighted average of the statistics for all

pairs of benchmarks in a benchmark suite as an overall metric of multithreaded

processor performance. The drawback to this technique is that constructing co-

phase matrices for every pair of programs is time-consuming, and the number

of instructions to be simulated for a workload can be more than a researcher

has time to analyze when doing design-space exploration. Analyzing all pairs

of reference inputs for the whole SPEC CPU2000 suite would require about 3.5

trillion instructions to be simulated.

Due to the high cost of our previous metric, we propose an approxima-

tion to the metric that still incorporates co-phase performance and the relative

weight of phases in the benchmarks. First, we determine the most significant

co-phase behaviors in a benchmark suite. To make this possible, we propose

a technique based on Principal Components Analysis (PCA) and Cluster Anal-

ysis for reducing the required number of co-simulation points. The proposed

technique detects similarities in phases from different benchmarks and different

inputs to the same benchmark. Additional savings come from the elimination of

rare behaviors that do not contribute significantly to performance estimates and

by avoiding fine-grain simulation of co-phase behavior. As we also introduce the

use of co-phase interpolation, the number of combinations to simulate can be kept

small. It is possible to use just 50 co-simulation points for two-thread workloads

for SPEC CPU2000 (2.5 billion instructions in total) to accurately estimate the

91

throughput of all benchmark combinations.

Our approach uses long enough samples to avoid most warmup prob-

lems. In addition, we insure that the samples contain homogeneous behavior

relative to the sample size. Homogeneous behavior within a sample allows for

faithful comparisons of simulation results across processor architectures. The

reason is that when comparing performance numbers across multithreaded pro-

cessor architectures, the various threads may have different progress rates. Homo-

geneous behavior allows for stopping the simulation at any point while yielding

representative co-thread performance numbers.

Our final technique is scalable to architectures with many cores and

contexts per core. PCA and improvements to the clustering methodology allow us

to use many threads when identifying thread combinations to simulate, previously

a scaling limitation. In the future, this should allow us to handle large benchmark

suites with more than two threads running at a time while using a limited amount

of simulation time.

V.A Background

This chapter has two contrasting goals, accurate representation of the

diverse of behaviors that exist even within a single benchmark pair and exploit-

ing similar behaviors within pairs of benchmarks to reduce simulation time. In

preparation for this, we examine how differently to programs can behave when

running together if we vary their relative start times and the section of execution

to be simulated. Then we consider how PCA is used to find overlaps within

benchmark suites.

92

10B 10B 10B 1.2

0B 0B 0B 5.1
0B 10B 0B 10B 0B 10B

equake gcc equake-gcc IPC

Figure V.1: The graphs show the IPC when equake and gcc are run together
from various starting offsets. There are graphs for each program’s IPC and their
combined IPC. The shade of gray at (x, y) indicates IPC when simulation starts
with gcc x instructions from the start of its execution and equake y instructions
from the start of its execution. Simulation completed after a total of 10 billion
instructions were committed.

V.A.1 Starting Offset Effects in SMT Simulation

Kihm et al. [26] showed that SMT performance is sensitive to starting

points. They profiled a number of co-program executions with different starting

points and observed that different performance results were obtained. Their study

was done on real hardware, namely on an Intel Pentium 4 processor. Unlike

this dissertation, however, they did not provided a simulation methodology that

allows for capturing the average performance for all starting points. Here we use

detailed simulation and the static co-phase method to demonstrate the effects of

simulation starting points.

Most studies use absolute performance estimates based upon a small

number of simulation runs to predict the effects of microarchitectural changes.

These simulation results are not completely accurate in even the single-threaded

case, so some simulation methodologies focus only on the change in performance

metrics due to microarchitectural changes, not the absolute numbers produced.

93

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10 1.4e+10 1.6e+10

O
ffs

et
 in

 e
qu

ak
e

Offset in gcc

Progress of equake-gcc

Figure V.2: Relative progress of equake and gcc. Each line represents a single
10B-instruction execution of equake-gcc from a different starting offset (either
equake or gcc is always run from the beginning). Each plotted point represents
execution offsets that occur during SMT execution.

We show that both approaches can lead to misleading results when simulating

SMT processors.

Absolute Performance Predictions

A single starting point per thread might not be representative for what

one would observe in a real multithreaded environment. The pitfall of selecting

a single starting point is that the performance results that you obtain may be

very different from those with different starting points. This is illustrated in Fig-

ure V.1. This plot shows the average IPC that is obtained when simulating two

benchmarks, equake and gcc-166, from different starting locations. In each of

94

these experiments, we simulate until the threads execute a total of 10B instruc-

tions. We show results for 441 different relative offsets; adjacent sample points

differ by 500M instructions in one thread’s starting offset. The average (aggre-

gate) IPC numbers are encoded by shades of gray: white means an IPC of 5.1

whereas black means an IPC of 1.2; we provide a scale to estimate intermediate

values. We clearly observe that the overall performance is very sensitive to the

starting points; the overall IPC varies from 1.2 to 5.1. So, the pitfall is that using

a single starting point may impact expected performance results significantly.

To examine the behavior of multiple starting points further, we now

examine the relative progress of execution of several different starting points us-

ing a relative progress graph. Figure V.2 shows the relative progress graph for

equake and gcc. The relative progress for gcc and equake are shown along the

horizontal axis and vertical axis, respectively. For the line that starts at (0, 0), a

point plotted at (x, y) indicates that when thread 0 has executed x instructions,

thread 1 has executed y instructions. The other lines start at different points on

the graph, since they represent either gcc starting at the beginning of execution,

and equake starting simulation at one of the offsets shown on the vertical axis.

Similarly, the lines starting on the horizontal axis represent equake starting sim-

ulation at the beginning and gcc a given number of instructions (shown on the

horizontal axis) into gcc’s execution.

In Figure V.2 we see that adjacent starting offsets usually produce sim-

ilar but not identical executions. The executions that start near (0, 0) are the

ones with the most variety until gcc reaches the 6B-instruction mark. At that

point gcc makes much less relative progress than equake. The reason is that gcc

suffers from a large number of L2 misses at that point. The endings of many exe-

cutions are thus dominated by progress in equake. This extreme phase behavior

also appears very clearly in the gcc graph in Figure V.1 as a sharp increase in

95

IPC for simulations that start gcc at an offset of more than 6B instructions. It is

less obvious in the equake graph because gcc is much more affected than equake.

The sharp change in gcc’s performance is worth additional investiga-

tion as it improves understanding of the interactions between programs on SMT

processors. In Figure V.3 we plot the performance of the programs, measured

in instructions per cycle (IPC). The solid lines show SMT behavior and the

broken lines show single-threaded behavior. The equake lines are marked with

squares and the gcc ones with triangles. The x-axis indicates the proportion of

instructions committed; in the case of the SMT executions this is the combined

number of committed instructions between the two threads, so the SMT execu-

tions are aligned with each other but the single-threaded and SMT executions

of a particular thread are not. The markers are placed every billion instructions

of single-threaded execution to help the reader match up parts of execution be-

tween singled-threaded and SMT runs. The interesting event that occurs 6B

instructions into gcc’s execution is at the 50% mark on both graphs; this point

is easily identified by dramatic changes in gcc. We can see that single-threaded

execution also reaches a low IPC at this point, but for a much briefer period.

The cause is visible in Figure V.4, which uses a log scale to show the average

number of L2 cache misses per single-threaded instruction committed. Here, the

single-threaded gcc briefly misses one cache access per 20 instructions, but the

SMT execution misses one of every four instructions due to the increased cache

contention. The extremely high miss rate allows equake to continue on while

gcc is nearly stalled. Note that while equake often has higher miss rates in SMT

execution than when single-threaded, the absolute frequency of misses is much

lower so there is less of an impact.

96

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Percentage of Committed Instructions

equake (SMT)
equake (single)

gcc (SMT)
gcc (single)

Figure V.3: IPC of equake and gcc running singly and as a pair.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

L2
 C

ac
he

 M
is

se
s

P
er

 In
st

ru
ct

io
n

(lo
g

sc
al

e)

Percentage of Committed Instructions

equake (SMT)
equake (single)

gcc (SMT)
gcc (single)

Figure V.4: L2 cache miss behavior of equake and gcc running singly and as a
pair.

97

Relative Performance Predictions

In many practical circumstances, being able to accurately estimate rel-

ative performance change is more important that absolute performance estima-

tion [15, 39, 59]. In other words, absolute simulator and methodology accuracy

is less important than relative accuracy as long as the relative effects of hardware

changes are faithfully tracked. This is especially the case for early design stage

studies.

In the case of multithreaded simulation, this means that the variation

in performance for different simulation starting points is not important as long

as all of the starting points are equally affected by microarchitectural changes.

To examine this, we simulated 20 pairs of starting offsets each for three pairs of

programs and executed each of these on eight different hardware configurations,

for a total of 480 experiments consisting of 1 billion committed instructions for

each run. The program pairs and machine configurations are the same as those

used to evaluate relative error in Chapter IV. The hardware configurations cover

all combinations of small and large L1 caches, L2 caches and branch predictors.

We expect that for any hardware change, some benchmark pairs will see

performance gains whereas others will not. If we take a single starting point for

a particular benchmark pair, then performance will clearly get better or worse as

the hardware configuration changes. Unfortunately, picking a different starting

offset might give us the opposite result for the same hardware configurations.

To examine this we take all 28 pairs of different hardware configurations, and

we see how the performance for each pair of hardware configurations differ for a

two-program workload examining 20 different starting offsets for that workload.

For a pair of hardware configurations, we take a pair of programs and we vary

the starting offsets for those programs 20 times. The result of each run is a

ranking of the two hardware configurations saying that one has more throughput

98

bzip2-vpr gcc-vpr bzip2-gcc0

20

40

60

P
er

ce
n

ta
g

e
D

is
ag

re
ei

n
g Average

Maximum

Figure V.5: Performance effect disagreement after hardware configuration
change. 0% indicates that all starting offsets improve (or degrade) due the change;
50% indicates that half improve and half degrade, the worst possible result.

than the other. We then calculate for the 20 starting offsets examined with two

hardware configurations, what percentage of time did the ordering of the two

architectures agree versus disagree. If they were always identical, then we would

see 0% disagreement. The worst case result would be 50% disagreement, which

means that 50% of the time the first hardware configuration was said to be better

than the second, and vice-versa and the only cause of this would be using different

starting offsets.

Ideally, we want to see 0% disagreement as a result of the experiment.

With 8 hardware configurations, there are 28 distinct pairs of configurations that

we compare. Figure V.5 shows the percentage of offsets that disagree in the direc-

tion of improvement with the majority of experiments. Since this number varies

over the 28 possible hardware configuration pairings (potential experiments), we

report average and maximum disagreement rates. The possible rates range from

0% (best) to 50% (worst).

We find that bzip2-vpr consistently favors one hardware configuration

over the other in all but a couple possible experiments, whereas the others typi-

99

cally have results divided between the two hardware options. In the architecture

comparison that caused the most disagreement, the average performance change

was over 2% and frequently much higher. For each pair of programs, there are

experiments that would produce misleading results if only a single starting offset

were chosen. For most experiments, we can expect that some starting offsets lead

to improvements but others do not. We conclude that researchers examining rel-

ative performance effects still need to be able to analyze the distribution of the

results over many starting offsets rather than starting execution from a single

offset.

V.A.2 Evaluating Benchmark Suites with PCA

Our work on using PCA with multithreaded workloads uses novel tech-

niques but it is based on past single- and multithreaded PCA workload reduction

research.

Single-Threaded Workload Analysis Through PCA

Eeckhout et al. [14] proposed a workload reduction approach that picks

a number of program-input representatives from a large set of program-input

pairs. They first measure a number of program characteristics of the complete

execution for each program-input pair. They subsequently apply principal com-

ponents analysis (PCA) in order to get rid of the correlation in the data set.

(In section V.B.7 we will discuss why this is important.) As a final step, cluster

analysis (CA) computes the similarities between the various program-input pairs

in the rescaled PCA space. Program-input pairs that are close to each other in

the rescaled PCA space exhibit similar behavior; program-input pairs that are

further away from each other are dissimilar. As such, these similarity metrics can

be used for selecting a reduced workload. For example, there is little benefit in

100

selecting two program-input pairs for inclusion in the reduced workload if both

exhibit similar behavior.

This initial work on workload reduction used microarchitecture-dependent

and microarchitecture-independent characteristics as input to the workload anal-

ysis. The main disadvantage of using microarchitecture-dependent character-

istics is that it is unclear whether the results are directly applicable for other

microarchitectural configurations. Phansalkar et al. [41] made a step forward

by choosing microarchitecture-independent characteristics only. This makes the

reduced workload more robust across different microarchitectures. Eeckhout et

al. [13] further extended this workload analysis approach by looking into sim-

ilarities between program-input pairs at the phase level. Instead of measuring

aggregate microarchitecture-independent metrics over the complete benchmark

execution, they measure those metrics at the phase level. They subsequently

used the PCA/CA workload analysis methodology to identify similarities across

the benchmarks and inputs at the phase level. The end result from their analysis

is a set of representative phases across the various program-input pairs; these

phases along with an appropriate weighting, allow them to make accurate per-

formance estimates of the complete benchmark suite.

All of this prior work focused on finding representative workloads for

single-threaded processor simulation. This chapter uses and extends the PCA/CA

workload analysis methodology based on microarchitecture-independent metrics

to select representative co-phases to be simulated in an accurate multiprogrammed

multithreaded processor simulation methodology.

Multithreaded Simulation Methodologies

Raasch and Reinhardt [42] used an improved SMT simulation method-

ology in their study on how partitioned resources affect SMT performance. They

101

selected a set of diverse co-sample behaviors rather than randomly chosen co-

sample behaviors. First, they find single simulation points using SimPoint [48].

They then run all possible two-context co-phase combinations on a given micro-

processor configuration — in their setup they ran 351 co-phases. For each of those

co-phases, they compute a number of microarchitecture-dependent characteris-

tics such as per-thread IPC, ROB occupancy, issue rate, L1 miss rate, L2 miss

rate, functional unit occupancy, etc. Using the methodology from [14], they then

apply principal components analysis (PCA) and cluster analysis (CA) to come

to a limited number of 15 two-context co-phases. There are at least three pitfalls

with this methodology. First, a single simulation point is chosen per benchmark.

This could give a distorted view for what is being seen in a real system where pro-

grams go through multiple phases. Second, the single simulation points selected

by SimPoint may represent heterogeneous program behavior which makes com-

paring co-phase behavior across processor architectures questionable — different

portions of the workload may be executed under different processor architectures.

To address this issue, we consider multiple simulation points with homogeneous

phases. Third, this approach is driven by microarchitecture-dependent charac-

teristics. As a result, the distinct co-phase behaviors obtained through PCA and

CA will be representative for the processor architecture for which the character-

istics were measured. However, it is questionable whether these co-phases will be

representative when applied to other processor architectures. In this chapter, we

address this pitfall by considering microarchitecture-independent characteristics

for determining representative co-phases.

V.B Discussion

First we develop a method to analyze benchmark pair performance from

all possible simulation starting points and then we reduce the complexity of

102

examining all pairs of benchmarks in a benchmark suite using PCA and improved

clustering techniques.

V.B.1 All Combination Performance

As extensively discussed in Section V.A.1, using a single starting point

in multithreaded simulation could be misleading. This observation argues for

an approach in which all starting points are considered for estimating overall

multithreaded performance. In this section, we now describe how this can be

done using the co-phase matrix described in the previous section.

To generate a performance estimate of all combinations of starting off-

sets, we use the same method for a single pair of starting points as we described

in the previous section, but run it for many starting points. This creates a met-

ric, called the All Combination (AC) performance number, which represents the

average performance of a pair of benchmarks, independent of particular starting

offsets. In this dissertation we only examine the AC in terms of overall CPI, but

any other processor statistic can be collected in the same way. The AC is the

average performance found when executing both programs for one billion instruc-

tions from every combination of possible program offsets. If a program reaches

the end of its execution, it is restarted at the beginning to avoid bias near the

start and the end of programs. Fixing an execution length is necessary to make

averages meaningful and easy to compute. Choosing a long execution length en-

sures that the weighting of co-phases will match that of continuous multithreaded

execution.

Although the static co-phase method for a single combination of starting

addresses is fast, running it for all possible starting points obviously is infeasible.

In our setup, this would require 1023 analytical simulations using the static co-

phase matrix per pair of SPEC benchmarks. Although an analytical simulation

103

using the static co-phase matrix is extremely fast, simulating that many runs

would be impossible to do. Thus we propose to sample the set of possible start-

ing offsets. We examine two sampling strategies, namely random and stratified

sampling. For both approaches, we assume a populated static co-phase matrix

to start from as described in Section IV.B.11.

We use random sampling to pick starting points for both threads. For

each pair of randomly selected starting points, the static co-phase method is

used to estimate performance when executing both threads from the given start-

ing point. By doing this for a sufficiently large number of randomly selected

starting points, called samples, an average performance estimate can be com-

puted for all possible starting points. We always simulate for 1B instructions

of combined execution, so the average CPI over all samples is just the simple

average of all collected CPI rates. (Other metrics may require more complicated

computations.) An interesting property of random sampling is that we can esti-

mate the variability of the samples, which allows us to provide confidence bounds

for average performance estimates. In addition to pure random sampling, we also

consider stratified random sampling to ensure even coverage of possible starting

points.

V.B.2 Convergence of All Combination Performance Estimates

In this section we evaluate our newly proposed multithreaded simula-

tion methodology. Using the improved static co-phase methodology from Sec-

tion IV.B.12, we show that the co-phase matrix can also be used to estimate

multithreaded performance for all starting points.

We now examine the all combination performance for 26 benchmark

pairs using the static co-phase method and two sampling techniques, random

sampling (Figure V.6) and stratified random sampling (Figure V.7). For this

104

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

bzip2-equake
bzip2-gcc

bzip2-gzip
bzip2-lucas
bzip2-mesa

bzip2-perl
bzip2-vpr

equake-gcc
equake-gzip

equake-lucas
equake-mesa

equake-perl
equake-vpr

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

gcc-gzip
gcc-perl
gcc-vpr

gzip-lucas
gzip-mesa

gzip-perl
gzip-vpr

lucas-mesa
lucas-perl
lucas-vpr

mesa-perl
mesa-vpr

perl-vpr

Figure V.6: All combination CPI convergence using random sampling.

105

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

bzip2-equake
bzip2-gcc

bzip2-gzip
bzip2-lucas
bzip2-mesa

bzip2-perl
bzip2-vpr

equake-gcc
equake-gzip

equake-lucas
equake-mesa

equake-perl
equake-vpr

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

gcc-gzip
gcc-perl
gcc-vpr

gzip-lucas
gzip-mesa

gzip-perl
gzip-vpr

lucas-mesa
lucas-perl
lucas-vpr

mesa-perl
mesa-vpr

perl-vpr

Figure V.7: All combination CPI convergence using stratified random sampling.

106

bzip2-equake

bzip2-gcc

bzip2-gzip

bzip2-lucas

bzip2-m
esa

bzip2-perl

bzip2-vpr

equake-gcc

equake-gzip

equake-lucas

equake-m
esa

equake-perl

equake-vpr

gcc-gzip

gcc-perl

gcc-vpr

gzip-lucas

gzip-m
esa

gzip-perl

gzip-vpr

lucas-m
esa

lucas-perl

lucas-vpr

m
esa-perl

m
esa-vpr

perl-vpr

A
verage

0

1

2

3

4

P
er

ce
n

ta
g

e
o

f
A

ve
ra

g
e

C
P

I

 400 Samples
 1000 Samples
 10000 Samples

Figure V.8: Confidence intervals for varying numbers of random samples.

approach, we first fill our static co-phase matrix with estimated CPIs as described

earlier.

For each sample CPI, a starting location is randomly chosen separately

for each program. Then a single run is performed of the static co-phase method

of those starting points for 1 billion instructions using the static co-phase matrix

approach in Section IV.B.11. This is repeated as we collect samples for many

possible starting point combinations. The graphs show the effects on estimated

All Combination CPI as the number of samples is increased. As the results

show, the accumulated samples eventually converge to an All Combination CPI,

however the techniques converge at different rates.

For the results, we did this 1024 times and calculated the cumulative

average at each step. The estimates for most benchmark pairs converged after

about 400 samples. Given a desired confidence level, it is possible to sample

until that confidence level is achieved and report error bounds along with the

estimate. We examined improving the convergence rate of the random sampling

method using stratified random sampling. Each program was divided into four

parts, giving 16 partitions per benchmark pair. We sampled equally from each

of the 16 partitions of possible starting offsets. This had the effect of decreasing

the variation when the number of samples was small (up to 200), but did not

107

provide much help for greater numbers of samples. Note that plotted lines in

Figure V.7 are less noisy because points were plotted every 16 samples (due to

stratification); only the variation in magnitude is important.

Random sampling allows us to adjust the number of samples taken so

that the error due to the limited number of samples has a high probability of being

within a small margin. Figure V.8 shows, with 95% confidence, a bound on the

difference between the actual average CPI of all possible starting combinations

and our estimated CPI when using 400, 1000 and 10000 samples. The difference

between the actual and estimated CPI is represented as an absolute percentage

from the estimated CPI in Figure V.8.

The size of the confidence intervals is dependent upon the natural vari-

ability of the benchmark combinations, the number of samples and the confidence

desired. Although random sampling appears to converge after 400 samples for

most benchmark pairs, the size of the confidence interval is still quite high. The

results show that using 1000 samples and 95% confidence, the real CPI should be

within just 1% of the estimated average CPI. All confidence intervals are under

0.8% of average CPI when using 10000 samples (just 0.34% on average). When

using 10000 random samples, less than five minutes of static co-phase matrix

simulation time per benchmark pair is sufficient to calculate the AC CPI.

V.B.3 Reducing Co-phases Using PCA

We now present our methodology for building a reduced but represen-

tative multiprogrammed workload for driving the simulation of multithreaded

processors. The workload that we start with is a set of benchmarks that the

computer architect considers a viable set of benchmarks. The set of benchmarks

that we consider in the remainder of this chapter is the entire set of reference

inputs for the SPEC CPU 2000 benchmark suite. The overall goal of the method-

108

ology proposed in here is to reduce this workload into a workload that is viable

for simulation purposes while being representative for the multiprogrammed be-

havior that is to be expected with the original workload. Our workload reduction

methodology consists of four steps.

1. The first step determines the prominent phase behaviors for each of the

benchmarks in the original workload. The prominent phase behaviors are

represented by simulation points — a simulation point is represented by a

position in the dynamic instruction stream where the phase behavior starts.

In practice, a simulation point is stored on disk using checkpoints [55]. The

number of simulation points is limited to a few per benchmark. The goal is

for each simulation point to exhibit homogeneous program behavior.

2. For each of these simulation points, we then measure a number of micro-

architecture-independent characteristics. This is done very efficiently through

profiling.

3. Next, principal components analysis (PCA) [24] is applied to a data set

that represents all of the simulation points. The goal of principal compo-

nents analysis is to identify similar phases based on their microarchitecture-

independent behavior.

4. In the final step, cluster analysis (CA) is applied to the results of the PCA

in order to find groups or clusters of co-phases (combinations of simulation

points) that exhibit similar microarchitecture-independent behavior. A rep-

resentative co-phase is then chosen for each cluster and each co-phase is

represented as a weighted sum of neighboring representative co-phases. The

set of representative co-phases and sum of associated weights then constitute

the reduced workload.

109

We now discuss each of these four steps in greater detail in the following

subsections.

V.B.4 Finding Homogeneous Intervals

The first issue we need to address is how we end our multiprogram

simulation samples, since during simulation each program being simulated in a

multiprogrammed workload will have different rates of progress yet we do not

want the nature of the workload to change due to a change in relative rates

of progress when we use a different microarchitecture configuration. Inside the

50M-instruction intervals there will be small-scale repetitive behavior from loops.

If the repetitive behavior is small enough then it is fine to simulate only 10M

instructions from one program’s 50M interval while simulating 40M instructions

from the other interval, even though another microarchitectural configuration

might allow them to progress at the same rate. On the other hand, a 15M-

instruction loop with different behavior in the last 5M instructions would not

provide a workload that is consistent between these two configurations.

To create homogeneous intervals we perform SimPoint phase analysis

at a smaller interval size than the 50M-instruction interval granularity to verify

whether the phase behavior within the 50M instructions is constant. In most

cases, especially for floating-point benchmarks, all of the frequent phases contain

instances that have consistent behavior for at least 50M instructions.

V.B.5 Microarchitecture-Independent Characteristics

In order to be able to identify similarity across simulation points, we

consider microarchitecture-independent characteristics measured over these sim-

ulation points. As mentioned before, the reason we consider microarchitecture-

independent characteristics is that the workload analysis needs to be done only

110

once so that its results can be used multiple times for estimating the performance

of a collection of processor configurations. This is important since we want to run

our analysis once on a benchmark suite and use the co-phases found across all the

different architecture configurations during design space explorations. Table V.1

summarizes the microarchitecture-independent characteristics that we use in the

remainder of this chapter, which we now describe.

The range of microarchitecture-independent characteristics is fairly broad

in order to cover all major program behaviors such as instruction mix, inherent

ILP, working set sizes, memory strides, branch predictability, etc. The results

given our evaluation confirm that this set of characteristics is indeed broad enough

for accurately characterizing cross-program and cross-input similarity. We include

the following characteristics:

Instruction mix. We include the percentage of loads, stores, control

transfers, arithmetic operations, integer multiplies and floating-point operations.

ILP. In order to quantify the amount of instruction-level parallelism

(ILP), we consider an idealized out-of-order processor model in which everything

is idealized or unlimited except for the window size. We measure for a given

window size over a set of 32, 64, 128 and 256 in-flight instructions how many

independent instructions there are within the current window.

Register traffic characteristics. We collect a number of character-

istics concerning registers [16]. Our first characteristic is the average number of

input operands to an instruction. Our second characteristic is the average degree

of use, or the average number of times a register instance is consumed (regis-

ter read) since its production (register write). The third set of characteristics

concerns the register dependency distance. The register dependency distance is

defined as the number of dynamic instructions between writing a register and

reading it.

111

Table V.1: Microarchitecture-independent characteristics.

Category No. Characteristic

Instruction Mix 1 % loads

2 % stores

3 % control transfers

4 % integer operations

5 % floating-point operations

6 % no-operations

7 % software prefetch operations

ILP 8 32-entry window

9 64-entry window

10 128-entry window

11 256-entry window

Register Traffic 12 avg. number of input operands

13 avg. degree of use

14 prob. register dependence = 1

15 prob. register dependence ≤ 2

16 prob. register dependence ≤ 4

17 prob. register dependence ≤ 8

18 prob. register dependence ≤ 16

19 prob. register dependence ≤ 32

20 prob. register dependence ≤ 64

Working Set Size 21 I-stream at the 32B block level

22 I-stream at the 4KB page level

23 D-stream at the 32B block level

24 D-stream at the 4KB-page level

Data Stream Strides 25 prob. local load stride = 0

26 prob. local load stride ≤ 8

27 prob. local load stride ≤ 64

28 prob. local load stride ≤ 512

29 prob. local load stride ≤ 4096

30 prob. local store stride = 0

31 prob. local store stride ≤ 8

32 prob. local store stride ≤ 64

33 prob. local store stride ≤ 512

34 prob. local store stride ≤ 4096

35 prob. global load stride = 0

36 prob. global load stride ≤ 8

37 prob. global load stride ≤ 64

38 prob. global load stride ≤ 512

39 prob. global load stride ≤ 4096

40 prob. global store stride = 0

41 prob. global store stride ≤ 8

42 prob. global store stride ≤ 64

43 prob. global store stride ≤ 512

44 prob. global store stride ≤ 4096

Branch Predictability 45 GAg PPM predictor

46 PAg PPM predictor

47 GAs PPM predictor

48 PAs PPM predictor

112

Working set. We characterize the working set size of the instruction

and data stream. For each interval, we count how many unique 32-byte blocks

were touched and how many unique 4KB pages were touched for both instruction

and data accesses.

Data stream strides. The data stream is characterized with respect

to local and global data strides [29]. A global stride is defined as the difference

in the data memory addresses between temporally adjacent memory accesses. A

local stride is defined identically except that both memory accesses come from

a single instruction—this is done by tracking memory addresses for each mem-

ory operation. When computing the data stream strides we make a distinction

between loads and stores.

Branch predictability. The final characteristic we want to capture

is branch behavior. The most important aspect would be how predictable the

branches are for a given interval of execution. In order to capture branch pre-

dictability in a microarchitecture-independent manner we used the Prediction

by Partial Matching (PPM) predictor proposed by Chen et al. [6], which is a

universal compression/prediction technique.

A PPM predictor is built on the notion of a Markov predictor. A Markov

predictor of order k predicts the next branch outcome based upon k preceding

branch outcomes. Each entry in the Markov predictor records the number of

next branch outcomes for the given history. To predict the next branch outcome,

the Markov predictor outputs the most likely branch direction for the given k-

bit history. An m-order PPM predictor consists of (m + 1) Markov predictors

of orders 0 up to m. The PPM predictor uses the m-bit history to index the

mth-order Markov predictor. If the search succeeds, i.e. the history of branch

outcomes occurred previously, the PPM predictor outputs the prediction by the

mth order Markov predictor. If the search does not succeed, the PPM predictor

113

uses the (m−1)-bit history to index the (m−1)th-order Markov predictor. In case

the search misses again, the PPM predictor indexes the (m − 2)th-order Markov

predictor, etc. Updating the PPM predictor is done by updating the Markov pre-

dictor that makes the prediction and all its higher order Markov predictors. In

this chapter, we consider four variations of the PPM predictor: GAg, PAg, GAs

and PAs. ‘G’ means global branch history whereas ‘P’ stands for per-address or

local branch history; ‘g’ means one global predictor table shared by all branches

and ‘s’ means separate tables per branch. We want to emphasize that these met-

rics for computing the branch predictability are microarchitecture-independent.

The reason is that the PPM predictor is to be viewed as a theoretical basis for

branch prediction rather than an actual predictor that is to be built in hardware.

V.B.6 Workload Characterization

The collected microarchitecture-independent data is useful for research

purposes with minimal further analysis, as PCA reveals important quantitative,

microarchitecture-independent, properties of each interval and simple statistical

techniques reveal the nature of our workload. For each characteristic we can

compare the collected data for all intervals, finding the highest and lowest values

as well as grouping the intervals into quintiles: very low, low, medium, high and

very high. Determining mean values and standard deviation is also possible but

might not be useful for many characteristics since probabilities are unlikely to

be normally distributed. Once we have classified all intervals according to their

characteristics there are three important things that we can do.

First, we can evaluate a processor using combinations of the extreme

behaviors. Researchers can pick intervals with properties appropriate for their

experiments, just as entire benchmarks known to have particular execution prop-

erties are used for single-threaded experiments. For example, we can run only

114

intervals with very low ILP or very high probability of control transfer and low

probabilities for branch predictors. The working set size and data stream predic-

tors can be used to test cache configurations. The highest and lowest values for

a characteristic indicate intervals suitable for studying the limits of processors

without resorting to a synthetic workload. For example, our collection of 50M-

instruction intervals for SPEC CPU 2000 includes one that is mostly stores with

no loads and another that is mostly loads with no stores.

Second, we can identify the most average intervals, those that are never

categorized as very high nor very low and have the most medium categoriza-

tions. Collections of these intervals form a baseline performance model when

investigating the effects of changing workloads on a fixed machine configuration.

Third, after running a number of interval combinations and finding that

some of them do poorly, we can correlate performance with quintiles for each

characteristic. It is easy to determine which characteristics are independent of

problems and focus on the remaining ones. In many cases the characteristics

will suggest which resources, such as functional units or prefetchers, need to be

improved to handle the problematic workloads.

V.B.7 Principal Components Analysis

Principal components analysis (PCA) [24] is a statistical data analysis

technique that presents a different view on a given data set. The two most

important features of PCA are that (i) PCA is a data reduction technique that

reduces the dimensionality of a data set and (ii) PCA removes correlation from

the data set. Both features are important to increase the understandability of

the data set. For one, analyzing a q-dimensional space is obviously easier than

analyzing a p-dimensional space in case q � p. Second, analyzing correlated data

might give a distorted view; non-correlated data does not have that problem. The

115

reason is that a distance measure in a correlated space gives too much weight to

correlated variables — these correlated variables result from the same underlying

program characteristic; the underlying characteristic would thus have too much

weight in the overall distance measure.

The input to PCA is a matrix in which the rows are the cases and

the columns are the variables. In this chapter, each row represents a single

50-million instruction interval. The columns represent the 48 microarchitecture-

independent characteristics presented in the previous subsection for each of the

phases in a co-phase.

PCA computes new variables, called principal components, which are

linear combinations of the original variables, such that all principal components

are uncorrelated. PCA transforms the p variables X1, X2, . . . , Xp into p principal

components Z1, Z2, . . . , Zp with Zi =
∑p

j=1 aijXj. This transformation has the

properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥ V ar[Zp] — this means Z1 contains

the most information and Zp the least; and (ii) Cov[Zi, Zj] = 0, ∀i 6= j — this

means there is no information overlap between the principal components. Note

that the total variance in the data (variables) remains the same before and after

the transformation, namely
∑p

i=1 V ar[Xi] =
∑p

i=1 V ar[Zi]. In this chapter, Xi is

the ith microarchitecture-independent characteristic; Zi then is the ith principal

component after PCA. V ar[Xi] is the variance of the original microarchitecture-

independent characteristic Xi computed over all intervals. Likewise, V ar[Zi] is

the variance of the principal component Zi over all intervals.

As stated in the first property in the previous paragraph, some of the

principal components will have a high variance while others will have a small

variance. By removing the principal components with the lowest variance from

the analysis, we can reduce the dimensionality of the data while controlling the

amount of information that is thrown away.

116

We retain q principal components which is a significant information

reduction since q � p in most cases. To measure the fraction of information

retained in this q-dimensional space, we use the amount of variance

(
∑q

i=1 V ar[Zi])/(
∑p

i=1 V ar[Xi]) accounted for by these q principal components.

For example, criteria such as ‘70%, 80% or 90% of the total variance should be

explained by the retained principal components’ could be used for data reduc-

tion. An alternative criterion is to retain all principal components for which the

individual retained principal component explains a fraction of the total variance

that is at least as large as the minimum variance of the original variables.

By examining the most important q principal components, which are

linear combinations of the original variables (Zi =
∑p

j=1 aijXj, i = 1, . . . , q),

meaningful interpretations can be given to these principal components in terms

of the original microarchitecture-independent characteristics. A coefficient aij

that is close to +1 or -1 implies a strong impact of the original characteristic Xj

on the principal component Zi. A coefficient aij that is close to 0 on the other

hand, implies no impact.

In principal components analysis, one can either work with normalized

or non-normalized data — the data is normalized when the mean of each variable

is zero and its variance is one. In the case of non-normalized data, a higher weight

is given in the analysis to variables with a higher variance. In our experiments, we

have used normalized data because of our heterogeneous data; e.g., the variance

of the ILP is orders of magnitude larger than the variance of the instruction mix.

The output obtained from PCA is a matrix in which the rows are the

50M phases and the columns are the retained principal components. Before we

proceed to the next step we make sure we normalize the principal components,

i.e., we rescale the principal components to unit variance. The reason is that a

non-unit variance of a principal component is a consequence of the correlation as

117

observed in the original data set. And since our next step in the data analysis

uses a distance measure to compute the similarity between cases, we make sure

correlation does not give a higher weight to correlated variables.

V.B.8 Cluster Analysis

The next step in our workload reduction methodology is to perform

cluster analysis (CA) [24] on co-phases. There exist two commonly used strategies

for applying cluster analysis, namely linkage clustering and k-means clustering.

Since k-means clustering is less compute-intensive than linkage clustering and a

component of SimPoint, we use k-means in this chapter.

The input to the cluster analysis is a matrix in which the rows are all

possible co-phases and the columns are the retained principal components for

each phase in the co-phase. Cluster analysis thus finds a number of groups or

clusters of co-phases that exhibit similar microarchitecture-independent behavior.

We only include distinct co-phases in the matrix: if A and B are phases, then

co-phases AB and BA are considered identical.

Our definition of distinct co-phases causes a problem for clustering. If A

and D are phases with similar properties and so are B and C, then we would like

the co-phases AB and CD to be similar. The normal Euclidean distance metric

would consider the rows of statistics representing these co-phases to be far apart

unless all of the phases were similar. The co-phases AB and DC would be close

together, however. We avoid this problem by using a different distance metric. In

this metric, the distance between two co-phases is the minimum of the Euclidean

distances between the first co-phase and the two orderings of the second one.

Some of the remaining clusters have very low weight. To decrease the

number of simulations required, we can eliminate clusters with a weight below

a given threshold, such as 0.5% (reweighting all remaining clusters accordingly).

118

This can significantly decrease the number of co-simulation points with negligible

effect on the accuracy of collected statistics.

V.B.9 Interpolation of Cluster Centers

In standard SimPoint, the co-phase that is closest to each cluster’s cen-

troid is called the representative co-phase. The weight assigned to this represen-

tative co-phase, referred to as the co-simulation point is the sum of the weights of

the co-phases that are members of the given cluster divided by the total weight

of all co-phases. Only the representative simulation points need to be simulated

when we estimate performance numbers.

To improve our accuracy without increasing simulation time, we observe

that points that are between other points should have in-between performance.

In a Euclidean metric space we could choose cluster centers that form a convex

hull around the target point and use geometry to determine the weight of each

selected center. This is much more challenging in our metric, so we use a simpler

scheme. Each point is computed as a weighted average of its n nearest neighbors.

If the closest neighbor is at distance d0, then each point has relative weight e
−c d

d0 .

Appropriate choices for n and c depend upon both the number of cluster centers

and each other — a large c will compensate for an overly-large n by discounting

faraway neighbors; a small c requires a small n so that faraway points are not

included).

V.B.10 Weighting Average Throughput

To simplify comparisons between techniques to reduce the number co-

simulation points, we propose a single weighted average throughput metric. We

consider two types of weights, the weight of a pair of benchmarks and the weight

of co-phases for each pair of benchmarks.

119

Each benchmark consists of a program and its input. Programs have

from one to five inputs, but a program with many inputs is not necessarily more

significant than a program with a single input. Thus, we consider each program

equally important, as is every pairing of programs. Each input is equally impor-

tant as any other for the same program. In this scheme, the weight of lucas and

mesa is 25 times that of gcc-166 and gzip-program since gcc and gzip each

have 5 inputs.

For a given pair of benchmarks, we must subdivide the weights between

co-phases. Unlike programs and inputs, the co-phases clearly should have distinct

weights because the phases that compose them are known to have particular

weights. Some phases represent less than 5% of a benchmark whereas others

represent over 90% of benchmark. The weight that we give to a co-phase is

equal to the product of the weights of the constituent phases. Thus if one phase

represents 20% of a benchmark and the other 30%, the weight of the co-phase is

6% that of the pair of benchmarks.

When the number of threads is large there may be too many co-phases

to estimate their performance efficiently. Random sampling allows the weighted

average to be estimated efficiently at any desired level of accuracy. Our analysis

procedures allow the average weighted throughput to be estimated using detailed

simulation of only a small number co-simulation points.

V.B.11 Baseline Simulator

We use the M5 simulator [4] from the University of Michigan, which is

based on SimpleScalar3.0c [5] as our SMT simulation environment. The config-

urations used for this simulator are shown in Table V.B.11. It is configured to

support an intensive multithreaded workload; hence the abundant reorder buffer

and processor width. The memory hierarchy is based on current-generation pro-

120

Table V.2: SMT processor configurations.

I-Cache
32kB 2-way set-associative, 64-byte blocks, 1-cycle latency or
64kB 2-way set-associative, 64-byte blocks, 1-cycle latency

D-Cache
32kB 8-way set-associative, 64-byte blocks, 3-cycle latency or
64kB 8-way set-associative, 64-byte blocks, 3-cycle latency

Unified L2
1 MB 8-way set-associative, 128-byte blocks, 10-cycle latency or
4 MB 16-way set-associative, 128-byte blocks, 14-cycle latency

Memory 250-cycle latency

Branch Pred

21264-style hybrid predictor with 13-bit global history indexing
a 8k-entry global PHT and 8k-entry choice table;
2k 11-bit local history entries indexing a 2k-entry local PHT

A: 4kB, 4-way set-associative BTB;
3-cycle misprediction recovery or

B: 4kB, 2-way set-associative BTB;
2-cycle misprediction recovery

OOO Issue out-of-order issue, 256-entry re-order buffer
Width 8 instructions per cycle (Fetch, Decode, Issue and Commit)
Func Units 6 Integer, 2 Integer Multiply, 4 FP Add, 2 FP Multiply

cessors. For the L1 caches, unified L2 cache and branch predictor we considered

two design points each, for eight possible combinations. We simulated SPEC

CPU2000 benchmarks compiled for the Alpha ISA.

Each co-phase was executed until a combined 50M instructions were

committed by both threads. Since our target workload (all co-phases) is constant

and each phase is homogeneous, we calculate performance using throughput in

instructions per cycle. Due to the long simulation period, warmup effects corre-

spond to less than 0.5% variation in throughput. Nonetheless, we ignore the first

5M combined instructions to remove error due to warmup effects.

121

V.B.12 Cluster and Principal Components Analysis

We analyzed the benchmarks and microarchitecture-independent co-

phase features using SimPoint 3.0 [19]. When analyzing benchmarks with Sim-

Point we found up to 10 phases per benchmark. We selected an average of 5

phases per program by removing phases that corresponded to less than 2.5% of

program execution.

The microarchitecture-independent analysis was performed using a mod-

ified version of SimpleScalar. We analyzed each of the 50M-instruction simulation

points found in the previous step.

From the PCA step we selected the 4 most-significant dimensions, which

were sufficient to explain over 44% of the variance. Thus clustered 8-dimensional

data. Increasing the number of dimensions used leads to poorer cluster analysis

as clustering treats all of the dimensions as equally significant — this leads to

the curse of dimensionality problem.

V.B.13 Homogeneous Intervals

The accuracy of our simulations depends on homogeneous behavior

within each 50M-instruction interval. If the pattern of execution for one pro-

gram deviated significantly near the end of the simulation interval, this would

affect simulations that execute the different code, but some simulations might

make faster progress with the second program and thus never execute the differ-

ent code. It would be misleading to compare the results of the two experiments.

Thus, we need to verify that the intervals contain homogeneous behavior. To

do this, we examine the execution of all co-phases on our baseline processor and

observe the effects of varying the length of simulation between 45M and 50M

instructions, in 0.5M instruction increments. At each increment we compare the

IPC with the IPC prior to the increment and determine the relative difference

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

C
ha

ng
e

in
 M

ar
gi

na
l I

P
C

Cumulative Percentage of Samples

32k 1M A
32k 1M B
32k 4M A
32k 4M B
64k 1M A
64k 1M B
64k 4M A
64k 4M B

Figure V.9: Cumulative distributive function for marginal change in IPC.

caused by the slightly longer execution. We plot these values in Figure V.9 as a

cumulative distributive function (CDF) for eight microarchitectures. For 80% of

samples the variation in throughput is at most 0.3% and less than 1% of samples

cause a variation of more than 1.2%. Thus we can expect that our simulations will

provide stable, reliable results that are not sensitive to the exact point at which

simulation terminates. Furthermore, the error rate is not particularly sensitive

to the machine configuration.

Variation in the middle of a simulation could also lead to incomparable

executions provided that both programs have significant variation, as we demon-

strated in our previous work [56, 59]. For the homogeneous intervals in this

chapter, the degree of variation in the middle of the intervals is similar to that at

the end of the execution intervals. The use of 50M-instruction intervals ensures

123

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

E
rr

or

Number of Neighbors (n)

c = 1
c = 2
c = 3
c = 4
c = 5

Figure V.10: Error using different interpolation parameters (configuration 32k
4M A).

that the natural fine-grain program variation is insignificant on the scale that we

sample.

V.B.14 Interpolation

In Figure V.10 we examine the effects on estimating throughput that

changing the parameters to the interpolation algorithm has, as described in Sec-

tion V.B.9. For each combination of parameters we use 50 representative points.

We use one line for each choice for constant c. The x-axis is the number of neigh-

bors used to compute throughput, n. Two values of n are of particular note.

When n = 1 the algorithm is equivalent to the standard SimPoint algorithm

that selects a single representative simulation point (thus c has no effect). Al-

124

 0

 0.5

 1

 1.5

 2

 2.5

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

P
er

ce
nt

ag
e

E
rr

or

Constant c (n=inf)

32k 1M A
32k 1M B
32k 4M A
32k 4M B
64k 1M A
64k 1M B
64k 4M A
64k 4M B

Figure V.11: Error varying c using all configurations.

though this method is reasonably accurate (3.2% error), it performs worse than

any other combination of parameters. At n = 50, all representative points are

used. Their weights are dependent upon their distances and c. The larger values

of c lead to more accurate results because they give negligible weight to distant

representative points. Small values of c and n combine to get excellent results

but the sharp inflection points indicate the need for fine-tuning. All methods

give excellent results (under 2% relative error) as long as at least 5 neighbors are

used, but using all the points is the most robust option.

In Figure V.11 we examine the effects on error of using different values

of c with all eight microarchitecture configurations. We see that the error rates

are low in all cases, but different depending on machine configuration. The

configurations with 4M L2 caches have similar changes in error rates for all c.

125

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Co-Simulation Point (Sorted by IPC for "32k 1M A")

32k 1M A
64k 1M A
32k 4M A
64k 4M A

Figure V.12: Effects of configuration choice on co-simulation point performance.

The remaining configurations are also distinguishable by L1 cache size. Since the

error rates are low, any value of c in this range can be used to accurately compare

different microarchitectural configurations.

V.B.15 Summarizing Benchmark Suite Performance

In Figure V.12 we examine the sampled performance for each of the 50

co-simulation points, looking at the four microarchitectural configurations that

use branch predictor A. (The results for branch predictor B are too similar to A

to show at the same time.) The co-simulation points are ordered according to the

performance of the configuration with 32k L1 caches and 4M of L2 cache. For

the configurations with 4M of cache, it is never worse to use 64k L1 caches than

32k caches. For all other pairs of configurations there are points favoring either

126

configuration. In particular, it is hard to determine whether the configuration

with 32k L1 caches and a 4M L2 cache is better than the configuration with 64k

L1 caches and a 1M L2 cache. This reinforces the point that it is important to

look at many diverse program interactions and to weight them appropriately.

The co-simulation point weights used for two sets of interpolation pa-

rameters can be seen in Figure V.13. Most points have similar weights using both

sets of parameters despite the significant differences in interpolation techniques,

so results using either set of parameters should be similar. The ratio of weights

between the least and most significant co-simulations points is roughly 200:1.

These weights are applied to CPI samples, which can range in theory from about

0.125 (fetch constrained) to 250 (long sequences of dependent loads) on our test

architecture so the least-weighted points could theoretically contribute more to

CPI than the greatest-weighted ones. The heaviest point weights are not so great

as to dominate the benchmark suite.

In Figure V.14 we show the actual overall performance numbers that

were calculated using all eight microarchitectural configurations and both sets of

interpolation parameters. The greatest difference in estimated performance is just

2.5%, which is in line with our error calculations in Figure V.10 and Figure V.11.

Both interpolation parameters order the eight configurations identically. All else

being equal, the B branch predictor has a minuscule performance advantage over

the A branch predictor. We can see that using the 4M L2 cache is the most

important performance improvement that can be made and that 64k L1 caches

are better than 32k L1 caches. In Figure V.12 it is difficult to tell if 32k L1

caches and a 4M L2 cache is better than 64k L1 caches and a 1M L2 cache, but

the weighted average provides a balanced comparison between the configurations.

127

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 500

2

4

6

P
er

ce
n

ta
g

e
W

ei
g

h
t

c=1 n=10
c=5 n=50

Figure V.13: Weights used for each co-simulation point using two interpolation parameters.

32k 1M A 32k 1M B 64k 1M A 64k 1M B 32k 4M A 32k 4M B 64k 4M A 64k 4M B0

1

2

3

4

In
st

ru
ct

io
n

s
P

er
 C

yc
le

c=1 n=10
c=5 n=50

Figure V.14: Overall average IPC using two interpolation parameters.

128

V.B.16 Clustering Using More Than Two Threads

Ultimately, we would like our clustering technique to scale to large num-

bers of cores and threads so that it can handle processors such as the POWER5

and Niagara2. There are two problems to consider. First, there is the larger

number of threads to consider; looking at all permutations of threads could have

exponential cost. Second, interchanging threads between contexts, cores on a die,

chips in a package and packages on a motherboard are all different in effect.

In the simplest case of a single multithreaded core or several single-

threaded cores, we just consider all permutations of threads to be identical. For

dies with multiple multithreaded cores, each group of threads on a core may be

reordered and the cores may be reordered without making a distinctly different co-

phase, but intermixing the threads of two cores will produce a distinct co-phase.

It is easy to tell if two co-phases are distinct. Sort the threads in each core and

the sort the cores in lexicographic order. The resulting structures will be identical

if the co-phases are equivalent (not distinct). We can easily generate distinct co-

phases randomly or exhaustively using this canonical form. The process extends

naturally to any hierarchy of symmetrical components.

This definition of distinct co-phases minimizes the number of inputs

to the clustering and results in the best possible results for a given number of

clusters. Unfortunately, it results in different simulation points for different core

and SMT context configurations even when the total number of threads are the

same. If this is undesirable, then the clustering can be done using a chip layout

that requires a superset of the reordering restrictions of all of the relevant chip

configurations. For example, 1 × 8, 8 × 1, 4 × 2 and 2 × 4 chip layouts can be

approximated by a 2 × 2 × 2 chip layout. This ensures that if two threads are

distinct in one of the original configurations then they will be distinct in the new

configuration.

129

Calculating this distance metric näıvely would be an expensive operation

because it requires n! distance computations for n threads. For example, for 8

threads, we would need to compute 8! = 40320 distances. Fortunately, this

number assumes a lot of repeated work. Each time the distance between a pair

of phases is calculated there are 4 dimensions to consider (each a subtraction

followed by a multiplication). There are only 64 pairs of phases, so the distances

between the phases in each pair need only be calculated once. Each of the 8!

distances between co-phases is reduced to the summation of 8 table lookups, and

an obvious stack-based algorithm will average under 3 table lookups and additions

per distance calculated. These optimizations alone reduces the slowdown to a

factor of about 1700 on a machine with fast multiplies (better on other machines).

If each core has two threads the normal distance metric will take twice as long.

The 64-entry table will take four times as long to generate (twice as many columns

and two orders), but the 8! part of the algorithm will run at the same speed, so

the slowdown is nearly halved. Memoization can reduce the slowdown to 30–40

times for both 8-core configurations using a table with only 28 entries. Each entry

in the table represents the minimum cost of mapping a subset of the 8 cores in

the permuted co-phase to the initial cores of the other co-phase.

The number of co-phases for an 8-core SMT machine would cause the

clustering algorithm a much greater slowdown than the distance metric — there

are about 1029 distinct co-phases that can be formed from our 50-million instruc-

tion intervals. When we use more than two cores or threads we use a random

sample of co-phases. Weighting the probability of selection of a co-phase accord-

ing to the product of the weights of the component phases ensures that the chosen

centers will be near to the co-phases with greatest weight.

Using these optimizations, a careful implementation of our distance met-

ric and random sampling of co-phases, we can analyze multithreaded workloads

130

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 40 42 44 46 48 50 52 54 56 58

P
er

ce
nt

ag
e

E
rr

or

Number of Representative Points (k)

c = 2, n = 5
c = 5, n = inf

Figure V.15: Error using different numbers of randomly chosen representative
points (configuration 32k 4M A).

consisting of large numbers of threads. This analysis will allow us to simulate just

a few representative instances, vastly reducing analysis time for modern computer

architectures.

V.B.17 Random Representative Points

We also investigated using random selection of representative points

rather than cluster centers. Without interpolation, the results were significantly

worse than using clustering. Interpolation, however, leads to similar results

whether centers are chosen randomly or by using clustering. The main differ-

ence that we found were slightly higher error rates and a preference for slightly

fewer neighbors. As we can see in Figure V.15, we consistently get at most 2.5%

131

error when using varying numbers of randomly chosen cluster centers. Since we

can get accurate results despite randomly selecting centers, we can scale the al-

gorithm to large numbers of cores and threads. Randomly sampling the set of

possible co-phases and clustering the results should give good results even though

the ‘best’ cluster centers might not be in the sample sets. Clustering ideally uses

thousands of iterations of cluster center movement with distance comparisons to

all points in every step. Should our distance metric be too expensive for huge

numbers of cores or threads, the random center results suggest that we could

reasonably reduce the number of iterations during clustering to compensate for

distance metric costs, or even eliminate clustering altogether.

V.C Summary

In this chapter we showed that it is important to consider multiple

starting points in order to obtain a reliable multithreaded performance number.

Moreover, we presented an efficient multithreaded simulation methodology for

achieving this. By building up a co-phase matrix that summarizes the perfor-

mance of all the co-phase executions, we are able to quickly estimate the average

performance for all possible starting points. This is done by sampling over all

possible starting points and by analytically simulating those randomly selected

starting points over the co-phase matrix. Due to the use of the static co-phase

method we were able to show an average sample collection bias of under 1.6%.

We evaluated two sampling approaches, random sampling and stratified

random sampling. We observed that both sampling strategies resulted in around

400 starting points that need to be simulated in order to get stable performance

estimates, but using 1000 or more samples allows strong confidence bounds. Since

each sample can be collected in a fraction of a second, and a confidence interval on

sampling error below 0.8% can be obtained in just a few minutes. The end result

132

is a multithreaded simulation methodology that estimates average multithreaded

performance over all combinations of starting points in the order of minutes once

the co-phase matrix is populated with samples.

Additionally, architecture studies of multithreaded processor need to

balance the performance requirements of every combination of benchmarks. Sim-

ulating all of the benchmark combinations is excessively time-consuming, even

when using sampling techniques such as the co-phase matrix. We demonstrate a

technique for analyzing a benchmark suite and finding all of the distinct co-phase

behaviors that can occur when pairs of benchmarks run together. By clustering

the co-phases behaviors we are able to find representative co-simulation points

that can be simulated as substitute for simulating all of the co-phases. We demon-

strate that less than 50 co-simulation points provide results differing by less than

2.5% from simulating all co-phases.

This set of co-simulation points can be used to compare the performance

of different microarchitectural configurations by executing 2.5 billion instructions

per configuration. Our simulation point selection technique simplifies the sim-

ulation procedure by ensuring that each co-simulation point has homogeneous

behavior.

V.D Acknowledgements

This chapter contains material from Considering All Starting Points

for a Simultaneous Multithreading Simulation Methodology [56], in International

Symposium on Performance Analysis of Systems and Software (ISPASS), Michael

Van Biesbrouck, Lieven Eeckhout and Brad Calder. The dissertation author was

the primary investigator and author of this paper. Portions of these chapters are

c©2006 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

133

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

This chapter contains material from Representative Multiprogram Work-

loads for Multithreaded Processor Simulation [58], in IEEE International Sympo-

sium on Workload Characterization (IISWC), Michael Van Biesbrouck, Lieven

Eeckhout and Brad Calder. The dissertation author was the primary investigator

and author of this paper. Portions of these chapters are c©2007 IEEE. Personal

use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective

works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

VI

Conclusion

This dissertation demonstrates that simulation must be conducted care-

fully, with care taken for simulator warmup, representing program phase behavior

during multithreaded simulation and the variation in multithreaded performance

that comes from starting simulation at different points in benchmarks.

More significantly, we provide solutions for these problems that are not

only accurate, but efficient – both in time and disk resources. We showed that

storing simulator state to disk could replace lengthy simulator warming and op-

timized the size of checkpoints. As a result, researchers can quickly evaluate pro-

cessor performance from a wide variety of checkpoints without sacrificing either

accuracy or disk space; this is desirable for any sampled simulation environment.

A small number of checkpoints per benchmark can be used to model

all of the different interactions between benchmarks running on a simulated mul-

tithreaded processor. The results of simulating these interactions forms the co-

phase matrix. Our co-phase method of approximating multithreaded execution

starts at any given point of co-execution and joining together per-program phase

information using the co-phase matrix to instantly predict subsequent execution.

The ability of the co-phase method to instantly evaluate execution from

any starting offset allows us to efficiently randomly sample the space of all possible

134

135

simulation starting offsets. This allows us to summarize the average performance

of a pair of programs without missing any interesting interactions.

Finally, we have begun to use principle components and clustering anal-

ysis to find similarities between phases in different benchmarks. Currently, this

allows us to use a modest amount of simulation time to create a performance

metric that comprehensively covers the iterations between all benchmarks in a

benchmark suite. In the future, this method may allow us to dramatically reduce

the number of co-phases that need to be sampled for fine-grain results using the

co-phase method. Ultimately, that could allow the co-phase method to scale to

much larger numbers of concurrently executing threads.

Bibliography

[1] A. R. Alameldeen and D. A. Wood. Variability in architectural simulations of
multi-threaded commercial workloads. In Annual International Symposium
on High Performance Computer Architecture (HPCA-9), 2003.

[2] J. E. S. Ashutosh S. Dhodapkar. Comparing program phase detection tech-
niques. In 36th International Symposium on Microarchitecture. ACM, Dec.
2003.

[3] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic. Accelerating multiprocessor
simulation with a memory timestamp record. In Proceedings of the 2005
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS-2005), Mar. 2005.

[4] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-oriented full-
system simulation using M5. In Sixth Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW), Feb. 2003.

[5] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison, June
1997.

[6] I. K. Chen, J. T. Coffey, and T. N. Mudge. Analysis of branch prediction
via data compression. In Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS VII), pages 128–137, Oct. 1996.

[7] T. M. Conte, M. A. Hirsch, and W. W. Hwu. Combining trace sampling
with single pass methods for efficient cache simulation. IEEE Transactions
on Computers, 47(6):714–720, June 1998.

[8] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for
effective trace sampling of superscalar processors. In Proceedings of the 1996
International Conference on Computer Design (ICCD), Oct. 1996.

136

137

[9] M. Durbhakula, V. S. Pai, and S. Adve. Improving the accuracy vs. speed
tradeoff for simulating shared-memory multiprocessors with ILP processors.
In Proceedings of the Fifth International Symposium on High-Performance
Computer Architecture, Jan. 1999.

[10] L. Eeckhout and K. De Bosschere. Efficient simulation of trace samples on
parallel machines. Parallel Computing, 30:317–335, 2004.

[11] L. Eeckhout, S. Eyerman, B. Callens, and K. De Bosschere. Accurately
warmed-up trace samples for the evaluation of cache memories. In Pro-
ceedings of the 2003 High Performance Computing Symposium (HPC-2003),
pages 267–274, Apr. 2003.

[12] L. Eeckhout, Y. Luo, K. De Bosschere, and L. K. John. BLRL: Accurate and
efficient warmup for sampled processor simulation. The Computer Journal,
48(4):451–459, 5 2005.

[13] L. Eeckhout, J. Sampson, and B. Calder. Exploiting program microarchitec-
ture independent characteristics and phase behavior for reduced benchmark
suite simulation. In Proceedings of the 2005 IEEE International Symposium
on Workload Characterization (IISWC), pages 2–12, Oct. 2005.

[14] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload design:
Selecting representative program-input pairs. In Proceedings of the 2002
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 83–94, Sept. 2002.

[15] M. Ekman and P. Stenström. Enhancing multiprocessor architecture simula-
tion speed using matched-pair comparison. In Proceedings of the 2005 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 89–99, Mar. 2005.

[16] M. Franklin and G. S. Sohi. Register traffic analysis for streamlining inter-
operation communication in fine-grain parallel processors. In Proceedings of
the 22nd Annual International Symposium on Microarchitecture (MICRO-
22), pages 236–245, Dec. 1992.

[17] R. M. Fujimoto and W. B. Campbell. Direct execution models of processor
behavior and performance. In Proceedings of the 1987 Winter Simulation
Conference, pages 751–758, Dec. 1987.

[18] S. Girbal, G. Mouchard, A. Cohen, and O. Temam. DiST: A simple, reliable
and scalable method to significantly reduce processor architecture simulation
time. In SIGMETRICS’03, June 2003.

138

[19] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster and
more flexible program analysis. In Workshop on Modeling, Benchmarking
and Simulation, June 2005.

[20] J. Haskins and K. Skadron. Minimal subset evaluation: Rapid warm-up for
simulated hardware state. In Proceedings of the 2001 International Confer-
ence on Computer Design, Sept. 2001.

[21] J. Haskins and K. Skadron. Memory reference reuse latency: Accelerated
sampled microarchitecture simulation. In Proceedings of the 2003 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software,
Mar. 2003.

[22] J. Haskins and K. Skadron. Accelerated warmup for sampled microarchitec-
ture simulation. ACM Transactions on Architecture and Code Optimization
(TACO), 2(1):78–108, Mar. 2005.

[23] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel. The microarchitecture of the pentium 4 processor. Intel Tech-
nology Journal, 5(1), 2001.

[24] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis.
Prentice Hall, fifth edition, 2002.

[25] R. E. Kessler, M. D. Hill, and D. A. Wood. A comparison of trace-sampling
techniques for multi-megabyte caches. IEEE Transactions on Computers,
43(6):664–675, June 1994.

[26] J. L. Kihm, T. Moseley, and D. A. Connors. A mathematical model for
accurately balancing co-phase effects in simulated multithreaded systems.
In Workshop on Modeling, Benchmarking and Simulation (MoBS) held in
conjunction with ISCA, June 2005.

[27] T. Lafage and A. Seznec. Choosing representative slices of program execution
for microarchitecture simulations: A preliminary application to the data
stream. In Workload Characterization of Emerging Applications, Kluwer
Academic Publishers, Sept. 2000.

[28] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost methods for perfor-
mance evaluation of cache memory systems. IEEE Transactions on Com-
puters, 37(11):1325–1336, Nov. 1988.

[29] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classifica-
tion. In Proceedings of the 2004 International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 57–67, Mar. 2004.

139

[30] G. Lauterbach. Accelerating architectural simulation by parallel execution
of trace samples. In Hawaii International Conference on System Sciences,
Jan. 1994.

[31] Y. Luo, L. K. John, and L. Eeckhout. Self-monitored adaptive cache warm-
up for microprocessor simulation. In SBAC-PAD’04, pages 10–17, Oct. 2004.

[32] D. Marr, F. Binns, D. Hill, G. Hinto, D. Koufaty, J. Miller, and M. Upton.
Hyper-threading technology architecture and microarchitecture: A hypertext
history. Intel Technology Journal, 6(1), 2002.

[33] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), Apr. 1965.

[34] S. S. Mukherjee, S. K. Reinhardt, M. L. B. Falsafi, S. Huss-Lederman, M. D.
Hill, J. R. Larus, and D. A. Wood. Wisconsin wind tunnel ii: A fast and
portable parallel architecture simulator. In Workshop on Performance Anal-
ysis and Its Impact on Design (PAID), June 1997.

[35] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously recording
program execution for deterministic replay debugging. In ISCA, June 2005.

[36] A.-T. Nguyen, P. Bose, K. Ekanadham, A. Nanda, and M. Michael. Accuracy
and speed-up of parallel trace-driven architectural simulation. In Proceedings
of the 11th International Parallel Processing Symposium (IPPS’97), pages
39–44, Apr. 1997.

[37] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A. Hoffmann.
A universal technique for fast and flexible instruction-set architecture simu-
lation. In DAC-41, June 2002.

[38] S. Parekh, S. Eggers, and H. Levy. Thread-sensitive scheduling for SMT
processors. Technical report, University of Washington, 2000.

[39] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and early
simulation points. In PACT’03, pages 244–256, Sept. 2003.

[40] E. Perelman, M. Polito, J.-Y. Bouget, J. Sampson, B. Calder, and T. Sher-
wood. Detecting phases in parallel applications on shared memory architec-
tures. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, Apr. 2006.

[41] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measuring program
similarity: Experiments with SPEC CPU benchmark suites. In Proceed-
ings of the 2005 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS’05), pages 10–20, Mar. 2005.

140

[42] S. E. Raasch and S. K. Reinhardt. The impact of resource partitioning on
SMT processors. In International Conference on Parallel Architectures and
Compilation Techniques (PACT), Sept. 2003.

[43] M. Reshadi, P. Mishra, and N. Dutt. Instruction set compiled simulation: A
technique for fast and flexible instruction set simulation. In DAC-40, June
2003.

[44] J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge. Intrinsic checkpointing:
A methodology for decreasing simulation time through binary modification.
In Proceedings of the 2005 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS-2005), Mar. 2005.

[45] R. R. Schaller. Moore’s law: Past, present and future. IEEE Spectrum,
34(6):52–59, June 1997.

[46] E. Schnarr and J. R. Larus. Fast out-of-order processor simulation using
memoization. In ASPLOS-VIII. Eighth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages
283–294, Oct. 1998.

[47] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In Inter-
national Conference on Parallel Architectures and Compilation Techniques,
Sept. 2001.

[48] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char-
acterizing large scale program behavior. In 10th International Conference
on Architectural Support for Programming, Oct. 2002.

[49] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In 30th
Annual International Symposium on Computer Architecture, pages 336–349.
ACM, June 2003.

[50] R. Shrout. Intel next generation cpu technology - penryn and nehalem.
http://www.pcper.com/article.php?aid=382&type=expert, Mar. 2007.

[51] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous
multithreading processor. In Architectural Support for Programming Lan-
guages and Operating Systems, pages 234–244, 2000.

[52] P. K. Szwed, D. Marques, R. M. Buels, S. A. McKee, and M. Schulz. Sim-
Snap: Fast-forwarding via native execution and application-level checkpoint-
ing. In Proceedings of the 8th Annual Workshop on Interaction between
Compilers and Computer Architectures (INTERACT-8), Feb. 2004.

141

[53] N. Tuck and D. M. Tullsen. Initial observations of the simultaneous mul-
tithreading pentium 4 processor. In International Conference on Parallel
Architectures and Compilation Techniques (PACT), Sept. 2003.

[54] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L.
Stamm. Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In ISCA, pages 191–202, 1996.

[55] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Efficient sampling startup
for sampled processor simulation. In 2005 International Conference on High
Performance Embedded Architectures and Compilation (HiPEAC), pages 47–
67, Nov. 2005.

[56] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Considering all starting
points for simultaneous multithreading simulation. In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 143–153, Mar. 2006.

[57] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Sampling startup for sim-
point. IEEE Mazazine, 2006.

[58] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Representative multipro-
gram workloads for multithreaded processor simulation. In Proceedings of
the IEEE International Symposium on Workload Characterization (IISWC),
Sept. 2007.

[59] M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to guide
simultaneous multithreading simulation. In Proceedings of the 2004 IEEE
International Symposium on Performanc e Analysis of Systems and Software
(ISPASS’04), Mar. 2004.

[60] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and
M. Valero. A novel evaluation methodology to obtain fair measurements
in multithreaded architectures. Workshop on Modeling, Benchmarking and
Simulation, 2006.

[61] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and
M. Valero. Measuring the performance of multithreaded processors. 2007
SPEC Benchmark Workshop, 2007.

[62] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. TurboSMARTS:
Accurate microarchitecture simulation sampling in minutes. In SIGMET-
RICS, June 2005.

[63] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation.
In SIGMETRICS’96, pages 68–79, May 1996.

142

[64] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for estimating trace-
sample miss ratios. In Proceedings of the 1991 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 79–89, May 1991.

[65] R. E. Wunderlich, T. F. Wenish, B. Falsafi, and J. C. Hoe. SMARTS: Ac-
celerating microarchitecture simulation via rigorous statistical sampling. In
Proceedings of the 30th Annual International Symposium on Computer Ar-
chitecture (ISCA-30), June 2003.

