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Abstract

Coagulation and fragmentation (CF) is a fundamental process in which smaller particles attach 

to each other to form larger clusters while existing clusters break up into smaller particles . It is 

a ubiquitous process that plays important roles in many physical and biological phenomena. CF 

is typically a stochastic process that often occurs in confined spaces with a limited number of 

available particles . Here, we study the CF process formulated with the discrete Chemical Master 

Equation (dCME). Using the newly developed Accurate Chemical Master Equation (ACME) 

method, we examine the time-dependent behavior of the CF system. We investigate the effects 

of a number of important factors that influence the overall behavior of the system, including 

the dimensionality, the ratio of attachment to detachment rates among clusters, and the initial 

conditions. By comparing CF in one and three dimensions, we conclude that systems in three 

dimensions are more likely to form large clusters. We also demonstrate how the ratio of the 

attachment to detachment rates affects the dynamics and the steady-state of the system. Finally, we 

demonstrate the relationship between the formation of large clusters and the initial condition.

1 Introduction

Coagulation and fragmentation (CF) is a fundamental process in which particles attach 

to each other to form larger clusters which can also break down into smaller ones. The 

general mechanism presents itself in physical processes such as spray and aerosol [1, 2, 3], 

biological processes such as filament formation and capsid protein nucleation [4, 5], and 

biomedical phenomena such as blood clotting [6, 7, 8, 9, 10].

The CF problem has been the focus of numerous theoretical and experimental studies [12, 

13, 7, 11]. Smolukowski’s equation and the mass-action based Becker-Döring (BD) equation 

have been the basis of many studies [19, 20, 21, 13]. Solving these equations usually 

requires an assumption of infinite system size. However, CF often occurs in confined spaces 

with limited numbers of molecules [13]. The behavior of CF in such small systems is also 

intrinsically stochastic and the effects of the discreteness in particle and cluster numbers is 

significant.

‡To whom correspondence should be addressed, Professor. Jie Liang: jliang@uic.edu. 

HHS Public Access
Author manuscript
Commun Inf Syst. Author manuscript; available in PMC 2021 August 20.

Published in final edited form as:
Commun Inf Syst. 2019 ; 19(1): 37–55. doi:10.4310/cis.2019.v19.n1.a3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, the CF process lies at the heart of the blood clotting phenomenon [14]. The 

full coagulation cascade involves many molecular species and numerous reactions, often 

requiring complex models such as the ordinary differential equation (ODE) model of Hockin 

et al. (with 34 species and 42 rates) [15], or an even more complex platlet-plasma model of 

[16]. However, key steps involving the formation cluster of fibrin particles can be regarded 

as a CF process [17], similar to the subject of this study.

Hockin-Mann reaction network model and classic Becker-Döring-type models do not 

incorporate discreteness and stochasticity of the CF process, when it happens in confined 

space [22, 13]. However, the Chemical Master Equation (CME) approach is widely used to 

address discreteness and stochasticity [23, 24, 25]. Solving the CME provides an evolving 

landscape in state space while the discrete form of the CME (dCME) can account for finite 

size effects [26, 27, 28].

Monte Carlo (MC) simulation is commonly used to solve the discrete CME [29, 30, 31, 

32]. Studies based on MC simulations can incorporate both attachment and detachment 

reactions, discreteness, and stochasticity of the processes. However, they are limited by the 

efficiency of sampling and only provide trajectories obeying the dCME. To the best of our 

knowledge, there is no MC-based approach that can easily simulate the CF across all ranges 

of the attachment and detachment rates, in various dimensions, and with different initial 

conditions.

An alternative approach is to obtain an exact solution to the dCME. This is made possible 

only by using the newly developed Accurate Chemical Master Equation (ACME) algorithm 

[33]. Using ACME, we first enumerate all the microstates reachable by the CF process 

given a specific initial condition [34]. We then find the transition matrix connecting 

these microstates which will be used to determine the time-evolution and steady state 

of the probability distribution of the system. Using this approach, we will analyze how 

dimensionality of the system, the ratio of attachment to detachment rates among clusters, 

and initial conditions affect on the CF process.

2 Method

We describe the CF process using the discrete Chemical Master Equation (dCME) [35]. 

In our CF problem, there exists N molecular species n1, n2, …, nN and m reactions with 

reaction rate constants r1, r2, …, rm. The k-th reaction is represented as

c1, kn1 + c2, kn2 + … + cN, knN
rk c1, k′ n1 + c2, k′ n2 + … + cN, k′ nN (1)

We assume the fixed-volume system is well-mixed.

The microstate of the system at time t can be represented with a vector of the copy number 

of each species: x(t) = x1(t), x2(t), …, xN(t) ∈ ℝN. The union of all possible microstates of 

the system across all times forms the state space of the system S.

The rate of the k-th reaction which causes the transition of the system from microstate j to 

microstate i is defined as
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Ak xi, xj ≡ rk ∏
z = 1

N xz
cz, k

(2)

Using the definitions above, the discrete Chemical Master Equation can be written as

∂p(x, t)
∂t = ∑ A x, x′ p x′, t − A x′, x p(x, t) (3)

Here, p(x, t) is the probability of the microstate x, and A(x, x′) is the transition rate from 

microstate x′ to microstate x. We can compute the probability p(x, t) from Eq. (3) using the 

Accurate Chemical Master Equation (ACME) method [33].

In our finite-sized system, we assume there is a source reservoir of particles with a 

maximum capacity of M. Individual particles in the system can be generated through a 

reaction that produces clusters of size 1. Clusters of size 1 can also be removed through 

a degradation reaction, which deposits one particle back into the source. Furthermore, a 

cluster of size i and a cluster of size j can attach to each other and form a new cluster of size 

(i + j), while (i + j) cannot exceed a maximum cluster size of N. Clusters of size (i + j) can 

also degrade into two clusters of size i and j via detachment reaction (see Fig. 1). Thus, we 

have four reactions of attachment, detachment, synthesis, and degradation (Eq. (4–7)) in our 

CF system

Xi + Xj
ai,j Xi + j, Aatt, ij =

ai . j ⋅ ni ⋅ nj − 1 /2,  if i = j
ai . j ⋅ ni ⋅ nj,  if i ≠ j (4)

Xi + j
di,j Xi + Xj, Adet, ij = di . j ⋅ ni + j (5)

ϕ
ks X1, As = ks (6)

X1
kd ϕ, Ad = kd ⋅ n1 (7)

Here, Xi represents a cluster of size i, ϕ the source of the system, ni the copy number of 

clusters of size i, and ai,j and di,j the attachment and detachment rate constants, respectively. 

For one-dimensional (1D) systems, the clusters are linear chains of particles and the 

attachment and detachment of particles occur only at the ends of the cluster. Thus, the 

attachment and detachment rates are independent of the length of the cluster and will 

be taken to be constants. However, in two or three dimensions, both the attachment and 

detachment rates depend on the size of the clusters involved in the reaction. A simple model 

may be that these rates depend on the perimeter and surface area of the clusters: ai,j, di,j ∝ 
(i·j)1/2 for 2D systems, and ai,j,di,j ∝ (i · j)2/3 for 3D systems [20].
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To illustrate, we give a simple example in which we have the maximum cluster size N = 3 

and the maximum total mass of the system M = 4. We assume that the system starts from 

the initial condition where there are 4 particles in the source and there is no cluster present 

in the system. In this simple system, we can have three different types of clusters, those of 

size 1, 2, and 3, respectively. Thus, each microstate of the system can be indexed with four 

integers, the first indicating the number of particles in the source; the second, third, and forth 

integers indicating the number of clusters with size 1, 2, and 3, respectively. Eq. (8–10) are 

the reactions in this simple system and the state space of the system is illustrated in Fig. 2.

ϕ X1 (8)

2X1 X2 (9)

X1 + X2 X3 (10)

We can then find the rate matrix and compute the probability of each microstate (Table 1). 

From the probability of each microstate, we can then find the expected number and the 

probability of each cluster (Eq. (11) and (12), respectively)

ni = ∑
l

Pl ⋅ ni (11)

Pni = ∑
l

Pl ni = 0 (12)

where l is the microstate index (Table 1), 〈ni〉 the expected number, and Pni the probability 

of observing a cluster of size i.

In our study, we shall restrict ourselves to a system with total mass M = 48 and a maximum 

possible cluster size N = 16, which are much larger than the parameters in previous studies 

(M = 32, N = 8) [30]. To describe the CF system, our state space includes > 700, 000 

microstates. For our calculations, we use a machine with a 20-core Xeon E5–2670 CPU 

of 2.5GHz, with a cache size of 20MB and 128GB Ram. Computing the steady state 

distribution at a specific ratio of the attachment to detachment rates (ai,j/di,j) takes about 38 

minutes. Computing the time-evolving probability distribution takes between 2,729 min and 

3,292 min. Table 2 provides details on the computational cost.

3 Results

Our results are organized as follows. We first examine the effect of dimensionality on 

the formation of the largest cluster in the system. We then study the effect of different 

attachment/detachment rate ratios on the formation of clusters and their steady-state 

distributions. Finally, we examine the effect of different initial conditions on CF dynamics.
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3.1 Effects of Dimensionality

For 1D systems, the attachment rate ai,j and the detachment rate di,j are independent of the 

size of clusters. For 2D and 3D systems, we will assume ai,j&di,j ∝ (i · j)1/2 and ai,j&di,j ∝ (i 
· j)2/3, respectively [20]. Fig. 3 compares probability of the largest clusters at different time 

when ai,j/di,j = 1 in systems with different dimensionality. There is significant difference 

between the 1D system and 2D/3D systems. At long times, the probability of forming largest 

clusters in 3D is approximately twice of that in 1D. Since the difference in the large-cluster 

formation probabilities is negligible between 2D and 3D systems, we will use the 3D results 

for the rest of this paper.

3.2 Steady State Distributions

Expected number of clusters.—Fig. 4A–D shows the expected number of clusters of 

different sizes for four different values of ai,j/di,j: 0.1, 1, 10, and 1000. The inset shows the 

distribution of clusters of different sizes at the steady state. When ai,j/di,j ≪ 1, all clusters 

are singletons. When ai,j/di,j increases, larger clusters form. When ai,j/di,j ≈ 1000, all clusters 

are at their maximum allowed size. The expected number of all clusters at different ratios of 

attachment to detachment rates is shown in Fig.4E.

Probability of forming clusters of different sizes.—The formation of large clusters 

is an important issue in CF processes. Without loss of generality, we set a critical probability 

of having the largest cluster (p16) to be 0.3. Fig. 5 shows the steady state probabilities of 

different clusters with different ai,j/di,j. When ai,j/di,j < 3.0, p16 is less than the probability 

of other clusters (p1 − p15)(Fig.5A). When this ratio is around 3, the probabilities for all 

clusters are almost equal. Thus, for the assumed threshold, ai,j/di,j = 3.0 is the critical ratio of 

attachment to detachment rate. Below this value, forming the largest cluster is unlikely.

3.3 Dynamical Behavior of the CF System

The time a CF system needs to reach the critical probability of p16 is a quantity of interest. 

We therefore examine the dynamics of the system to understand the time-dependence of 

forming large clusters. Fig.6A shows how p16 grows for different ratios of attachment to 

detachment rates. When ai,j/di,j < 3, the probability of forming the largest cluster is less 

than 0.3, regardless of how much time has past. Fig.6B shows the critical time at which 

the probability of forming the largest cluster reaches 0.3 (white region). Before this critical 

time, formation of large clusters is unlikely to occur (blue region). A system containing large 

clusters are more likely after this critical time (red region). In extreme cases when ai,j/di,j 

> 1000, it is highly probable that large clusters will form in the system within 40 minutes. 

In contrast, when ai,j/di,j ≈ 3.0, it takes about 150 minutes for the system to form, with 

appreciable probability > 0.3, a maximum-size cluster (Fig.6B).

We examined the convergence behavior in reaching the steady state distribution. Table. 3 

lists the distance to the steady state measured as |p16(∞) − p16(t)| at different time and with 

different ai,j/di,j. Larger ai,j/di,j leads to faster convergence.

Following [5], we analyzed the elasticity and sensitivity of parameters of the CF system for 

a subset of clusters present at different ratio of ai,J/di,J. Here, we use sensitivity to examine 
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the response of the expected number of different clusters to changes in ai,J/di,J. We use 

elasticity to examine the relative changes in the expected number of different clusters with 

respect to the relative changes in ai,J/di,J. Following [5], the sensitivity Se and the elasticity 

El of forming a cluster of size i are calculated as

Se = ∂ ni
∂ ai, j/di, j

(13)

El =

∂ ni
ni

∂ ai, j/di, j
ai, j/di, j

= ai, j/di, j
ni

⋅ Se (14)

Fig. 7 shows Se and El for formation of 4 clusters of sizes 4, 8, 12, and 16 at 3 different 

ai,J/di,J of 5, 20, and 50. When ai,J/di,J increases, Se and El decreases for forming clusters of 

different sizes. In addition, we found that smaller clusters have higher Se and El.

3.4 Dependence on Initial Conditions

In the examples above, we assumed 48 particles are initially in the source which can be 

transported into the system through synthesis reactions. We now examine the effect of 

different initial conditions on the formation of the maximum-sized clusters and the time it 

takes for the system to approach steady state.

We start with different initial conditions constrained to having the same initial mean size 

(IMS) of clusters. Fig. 8 shows the evolutions of the probability of formation of the largest 

cluster for four different initial conditions: 12 clusters of size 4 (12 · n4), 6 clusters of size 3 

and 6 clusters of size 5 (6·n3+6·n5), 6 clusters of size 2 and 6 clusters of size 6 (6·n2+6·n6), 

6 monomers and 6 clusters of size 7 (6·n1 +6·n7). All these initial conditions have the same 

mean cluster size of 4. When the IMSs are the same, systems with different initial conditions 

show very similar dynamics. Fig.8 shows the behavior of the system in formation of local 

clusters when the initial conditions have same mean size of clusters.

For systems with different IMSs, the dynamics on the “distance” of the IMS from the steady 

state mean cluster size distribution (shown in Fig.4E). Figs.9A–B show the time-dependent 

behavior of the probability of forming the largest cluster under initial conditions with 

different IMSs and ai,j/di,j = 3.0 and ai,j/di,j = 5.0, respectively. When ai,j/di,j = 3.0 and 5, 

the mean size of clusters at the steady state is about 8 and 9, respectively (Fig.4E). Figs. 

9A–B show the time required for the system to approach steady state for different IMSs. 

Not surprisingly, the time to approach the steady-state distribution for values of IMS that are 

closer to the steady-state mean cluster sizes is less.

Figs.9C–D show the time required for the system to reach the steady state for ai,j/di,j = 3.0 

and ai,j/di,j = 5.0, respectively. Our results show that the closer the mean size of clusters at 

the initial condition is to that of the steady state, the less time it takes for the system to 

approach the stationary distribution. However, we observe that, qualitatively, systems started 
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at IMSs greater than the mean sizes at steady state take longer to relax than those started at 

IMSs smaller than that at steady state.

When the IMS is larger than the steady state mean size of clusters, larger detachment rates 

are required for the system to reach the steady state rapidly. However, we have ai,j/di,j > 
1. Thus, we observe asymmetry on different side of the steady state (Fig.9C and D). The 

asymmetry becomes even larger when ai,j/di,j increases. As a result, the time required for 

reaching the steady state increases dramatically when IMS become more than the steady 

state mean size of clusters.

4 Summary and Conclusions

The coagulation and fragmentation is a fundamental mechanism that plays a critical role 

in many physical and biological processes. Here we studied the general properties of the 

CF process using the Accurate Chemical Master Equation (ACME) method [33], which 

can provide accurate solutions to the discrete Chemical Master Equation (dCME) and can 

account for the stochasticity and the discreteness of the CF process.

We examined how the dimensionality of the clusters affects its behaviors given the 

same intrinsic attachment and detachment rates. Three-dimensional systems exhibit faster 

dynamics compared to systems in 1D or 2D. The dimensionality of the clusters affects the 

effective rates of attachment and detachment, which will determine the speed of particle 

attachmment and detachment in a cluster.

Steady-state probability distributions of cluster sizes were also studied under varying 

attachment/detachment rate ratios. For a given critical probability of emergence of 

maximum-sized clusters, we are able to determine the critical ratio between the attachment 

and detachment rates. Below this critical ratio, the large cluster of interest is unlikely to form 

regardless of time. For systems with ratio larger than the critical one, we are able to calculate 

the time required for the system to form maximum-sized cluster with high probability [36, 

37].

We further studied how different initial conditions affect the behavior of the system and find 

the initial mean size of the clusters is one of the most important factors that govern CF 

dynamics. We find that the dynamics of systems started with different initial configurations 

with the same initial mean cluster sizes are similar. Further investigation shows that the 

dynamics towards steady state are controlled by the deviation of the mean initial cluster size 

from the mean cluster size at steady state.

Future studies include analysis of various processes of self-assemblies of different molecular 

and mesoscopic-particles that occur in small closed systems, with supply of limited number 

of particles. Systems with different binding mode and binding geometry can be explored 

in details. An example is the HIV-1 viral capsid nucleation process [5]. In addition, 

critical steps of the blood-clotting processes involving fibrin and other molecules in the 

blood-clotting process [17] can also be studied.
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Figure 1: 
Schematic of a CF process system showing how particles attach and detach.

Manuchehrfar et al. Page 10

Commun Inf Syst. Author manuscript; available in PMC 2021 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
The state space of a system with a maximum cluster size N = 3 and total mass M = 4.
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Figure 3: 
The probability of formation of the largest cluster at different times in different dimensions 

when attachment/detachment rates ratio is equal to 1. In 2D/3D systems, this probability is 

twice of that in 1D while the difference between 2D and 3D systems are negligible.
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Figure 4: 
Expected number of clusters for different ai,j/di,j at steady state, (A) ai,j/di,j = 0.1, (B) ai,j/di,j 

= 1, (C) ai,j/di,j = 10, (D) ai,j/di,j = 1000. When ai,j/di,j increases, expected number of large 

particles in the system increases. (E) Expected number of clusters of all sizes in the system.
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Figure 5: 
Probability of local clusters with size i at steady state for different ratios of the attachment to 

detachment rates.The probability of cluster with size 16 become more than the probability of 

other clusters when attachment/detachment rate ratio > 3 while it is less than the probability 

of other clusters when attachment/detachment rate ration < 3
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Figure 6: 
Time-dependence of the probability to form maximum-size clusters for different ratios r of 

the attachment to detachment rates. (A): Probability of formation of largest cluster grows 

when r increases. When ai,j/di,j = 3, probability of formation of largest cluster becomes equal 

to the critical probability of 0.3, after the system reaches the steady state. (B): Critical time 

(white region) at which the probability of forming the largest cluster reaches 0.3. Before this 

critical time (blue region), formation of the largest cluster is unlikely and after this critical 

time (red region), it is high probable that system contains largest cluster
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Figure 7: 
Sensitivity and elasticity of clusters of size N = 4, 8, 12, 16 in response to the ratio r of the 

attachment to detachment rate r = 5, 20, 50: when the size of cluster increase, sensitivity and 

elasticity of the cluster decrease.
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Figure 8: 
Probability of formation of largest cluster for different initial conditions where initial 

conditions have same mean cluster size. When IMSs are the same, different initial conditions 

show very similar dynamics
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Figure 9: 
A–B: Probability of forming maximum-sized clusters for different initial conditions with 

different initial mean size of clusters at ai,j/di,j = 3 and ai,j/di,j = 5, respectively; C–D: Time 

that requires for CF system to reach steady state at for different initial conditions at ai,j/di,j = 

3 and ai,j/di,j = 5, respectively.
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Table 1:

Probability of each micro state for our sample example

State index (i) Prob. (ACME Results) State (Source, n1, n2, n3)

1 P1 = 1.97 × 10−1 (4,0,0,0)

2 P2 = 1.97 × 10−1 (3,1,0,0)

3 P3 = 9.84 × 10−2 (2,2,0,0)

4 P4 = 3.28 × 10−2 (2,0,1,0)

5 P5 = 8.20 × 10−3 (1,3,0,0)

6 P6 = 4.92 × 10−2 (1,1,1,0)

7 P7 = 9.84 × 10−2 (1,0,0,1)

8 P8 = 9.84 × 10−2 (0,4,0,0)

9 P9 = 9.84 × 10−2 (0,2,1,0)

10 P10 = 9.84 × 10−2 (0,0,2,0)

11 P11 = 2.46 × 10−2 (0,1,0,1)
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Table 2:

Computational cost for solving the steady state and the time-evolving dynamics of the system

aij/dij Steady state cost (min) Time-evolving cost (min)

3.0 38 3, 474

4.0 38 3, 292

5.0 38 3, 152

10.0 38 3, 044

20.0 38 2, 913

30.0 38 2, 808

40.0 38 2, 756

50.0 38 2, 729
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Table 3:

The convergence behavior of the system at different time steps at different ratios of the attachment to 

detachment rates

ai,j/di,j

|p16(∞)-p16(t)|
p16(∞)

t=20 t=40 t=60 t=80 t=100 t=120 t=140

2.0 0.244 0.229 0.196 0.160 0.121 0.084 0.050 0.248

3.0 0.292 0.254 0.196 0.135 0.075 0.035 0.012 0.298

4.0 0.321 0.262 0.185 0.110 0.047 0.014 0.000 0.331

5.0 0.343 0.266 0.183 0.095 0.035 0.010 0.000 0.358

10.0 0.402 0.277 0.158 0.056 0.008 0.000 0.000 0.429

20.0 0.453 0.296 0.140 0.034 0.000 0.000 0.000 0.492

30.0 0.115 0.306 0.135 0.023 0.000 0.000 0.000 0.525

40.0 0.125 0.318 0.130 0.019 0.000 0.000 0.000 0.550

50.0 0.136 0.327 0.140 0.019 0.000 0.000 0.000 0.571
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