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Abstract: In this work we introduce a modified form of laser speckle imaging (LSI) referred 
to as affixed transmission speckle analysis (ATSA) that uses a single coherent light source to 
probe two physiological signals: one related to pulsatile vascular expansion (classically 
known as the photoplethysmographic (PPG) waveform) and one related to pulsatile vascular 
blood flow (named here the speckle plethysmographic (SPG) waveform). The PPG signal is 
determined by recording intensity fluctuations, and the SPG signal is determined via the LSI 
dynamic light scattering technique. These two co-registered signals are obtained by 
transilluminating a single digit (e.g. finger) which produces quasi-periodic waveforms derived 
from the cardiac cycle. Because PPG and SPG waveforms probe vascular expansion and 
flow, respectively, in cm-thick tissue, these complementary phenomena are offset in time and 
have rich dynamic features. We characterize the timing offset and harmonic content of the 
waveforms in 16 human subjects and demonstrate physiologic relevance for assessing 
microvascular flow and resistance. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.0170) Medical optics and biotechnology; (170.3890) Medical optics instrumentation; (230.0230) 
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1. Introduction 

Photoplethysmography is a well-established technique in which light is transmitted through 
tissue in order to interrogate vascular fluctuations caused by the cardiac cycle [1, 2]. These 
fluctuations are due to volumetric expansion of blood caused by variations in pressure which 
ultimately modulate the attenuation of transmitted light [3, 4]. Analyzing the 
Photoplethysmographic (PPG) cardiac waveforms has been used extensively as a means for 
hemodynamic characterization [5–8]. One successful example is pulse oximetry in which the 
AC components of the PPG waveform at multiple optical wavelengths are used to calculate 
arterial hemoglobin oxygen saturation [5]. However, PPG has failed to achieve wide-spread 
clinical adoption in other important applications such as continuous noninvasive arterial 
pressure, arterial stiffness characterization, and noninvasive cardiac output monitoring [7, 8]. 
One reason for this is the tendency of the PPG waveform to deteriorate in situations of low 
peripheral blood flow such as hypovolemia or thermoregulatory vasoconstriction [1]. In 
addition, PPG may lack sufficient information content to properly characterize the 
cardiovascular system. 

Laser Speckle Imaging (LSI) is a non-contact imaging modality capable of measuring 
relative perfusion by utilizing a coherent light source and a CMOS or CCD detector [9–22]. 
Scattered coherent light generates a speckle interference pattern on the detector which can be 
analyzed computationally to measure the speed of the light-scattering particles [23–30]. 
Relative blood flow can be determined with this image by measuring the fluctuations in the 
speckle pattern and the overall blurring of the individual speckles [31–42]. This technique is 
typically performed in reflectance geometry with the light source and the camera on the same 
side of the sample. In this configuration the depth penetrance is typically on the order of 500 
– 1000 microns [43, 44]. Although LSI is very useful for measuring relative perfusion in a 
given area of tissue, it requires an optical system that can be cumbersome in a clinical 
environment and is susceptible to motion artifacts [45–48]. 

Affixed Transmission Speckle Analysis (ATSA) addresses some of the shortcomings of 
LSI by utilizing transmission geometry. One format that ATSA can be performed in is a 
miniaturized form factor attached to a digit, similar to a conventional pulse-oximeter. In this 
setup, the highly diffuse photons probe the full thickness of tissue and provide a high-SNR 
signal that can be used to determine average flow. The clip-on design further improves signal 
quality by reducing motion artifacts. Importantly, ATSA is also capable of detecting 
fluctuations in laser coherence due to the cardiac cycle. We refer to the methodology of 
obtaining this signal as speckle plethysmography (SPG). Additionally, this instrument is 
sensitive to the PPG waveform; volumetric vessel changes associated with cardiac pulsatility 
modulate light intensity. Thus, ATSA ultimately provides simultaneous, co-registered SPG-
PPG output. 

In this work we introduce ATSA and validate its sensitivity to flow in finger-like tissue 
phantoms. In a series of human volunteers, we demonstrate the process by which the SPG and 
PPG waveforms can be extracted from the same raw data and provide a physiological 
mechanism for the origin of both signals. We show that SPG and PPG signals are offset in 
time, and evaluate the harmonic content of the dynamic, temporally varying SPG waveform. 
Time-delay and frequency content signal decomposition strategies are applied to in vivo 
measurements in 16 volunteers and used to evaluate correlations between SPG-PPG 
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parameters and age. We assess sensitivity to vascular tone (the degree of constriction or 
resistance in blood vessels [49]) by measuring four subjects undergoing two controlled 
physiologic perturbations: exercise and cold pressor challenges. To evaluate repeatability in 
this same context, a single patient was followed for seven measurements for each 
physiological perturbation. Our results clearly highlight the sensitivity of the time-delay and 
waveform features in response to these challenges, and underscore how this new approach 
can be used to assess important vascular parameters: microvascular perfusion, vascular tone 
and vessel resistance. In a broader context, these fundamental parameters are critical to 
understanding derived metrics such as blood pressure, cardiac output and fluid status. 

2. Materials and methods 

2.1 Instrumental assembly 

The ATSA instrument lends itself particularly well to being incorporated in a compact finger-
clip. We obtained a commercially available ATSA device (Flowmet, LAS, Inc., Irvine, CA). 
This instrument takes advantage of highly diffuse speckle signals that have penetrated the 
skin at least several mm. The light source consists of a 785 nm laser diode while the detector 
consists of a 752-pixel x 480-pixel CMOS array. An aperture is placed in front of the detector 
to selectively filter the coherent signal from ambient light. The source and detector are placed 
opposite one another in a form factor practically identical to a commercially available pulse-
oximeter. 

To clarify nomenclature, ATSA refers to the specific instrument setup used in this 
manuscript, while SPG refers the process of obtaining pulsatile speckle fluctuations due to the 
cardiac cycle. The signal directly recovered using SPG will be referred to as the SPG 
waveform or SPG signal, keeping with the same convention as PPG. 

2.2 Theory 

Figure 1 shows how the SPG and PPG signals are extracted from raw data. Within the ATSA 
device there is a 785 nm laser diode placed opposite to a 752-pixel x 480-pixel CMOS 
camera. The camera acquires images of the diffuse speckle interference pattern at 
approximately 200 frames per second. On a frame-by-frame basis, a 7-pixel x 7-pixel sliding 
window filter is used to extract the mean intensity <I> and the standard deviation <σ> of the 
raw images. The single black and red squares underneath the <I> and <σ> signify that the 7-
pixel by 7-pixel sliding window array is condensed into single values. This data is used to 
construct the average intensity and the speckle contrast (K) matrices. K is the ratio of the 
standard deviation to the mean intensity. At this point, the average intensity array is used 
produce the PPG signal array using the following PPG equation: Ψ 1/ ( )PPG ln I= < > , where 

ΨPPG is the PPG signal [31, 50]. The average of the entire PPG array yields to the single PPG 
signal timepoint. At the same time the speckle contrast is used to produce the SPG signal 
array using the equation shown in Fig. 1. This equation has been validated experimentally to 
produce a metric that is linear with respect to volumetric flow [51]. Finally, this array is 
averaged to produce a single SPG signal timepoint. This process is repeated for each frame to 
construct the SPG and PPG time-series – all from the same raw data. 
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Fig. 1. ATSA signal processing diagram. The schematic shows the core algorithmic steps from 
acquisition of raw data to the final SPG and PPG waveforms. 

Figure 2 demonstrates how the SPG and PPG signals are related to vascular physiology. 
Figure 2(a) depicts how the sample, typically a digit on the subject’s hands or feet, is placed 
within the finger clip such that it falls between the source and detector. As demonstrated in 
Fig. 2(b), light from the coherent source enters the tissue and is dispersed randomly by a 
combination of static and dynamic scatterers [52, 53]. Static scatterers are comprised of 
matrix materials (e.g. collagen) and membranes belonging to stationary cells and organelles 
[53]. Dynamic scatterers consist of the membranes belonging to moving red blood cells [52]. 
Light passing through the tissue is also attenuated by absorbers contained in the tissue; the 
most important of these is hemoglobin, the oxygen-transporting molecule confined in the 
cytoplasm of red blood cells [53]. Dynamic scattering modulates the speckle pattern incident 
on the CMOS detector, producing the SPG signal (Fig. 2(c)). Likewise, attenuation due to 
absorbers modulates light intensity, producing the PPG signal (Fig. 2(d)). The pulsatile nature 
of blood pressure within the arteries and arterioles is well-established, but this pulsatility 
wanes downstream in the capillary and venous plexuses [49]. Therefore, it is likely that 
pulsatility in both attenuation and coherence originates from the arterial side of the 
vasculature. Pulsatility in the SPG waveform is due to variation in dynamic scattering related 
to volumetric flow, whereas pulsatility in the PPG waveform is due to variation in the 
concentration of absorbers caused by vessel expansion [1]. Thus, the SPG and PPG 
waveforms embody two pulsatile signals originating from different electromagnetic 
properties and are related to distinct physiological processes. 

The SPG waveform in the black dotted box on the right side of Fig. 2(c) contains arrows 
indicating components of the cardiac cycle referenced later. The thick red arrow points to the 
systolic upstroke in which ejection of blood through the aorta rapidly increases. The black 
dotted arrow shows the systolic peak, the apex of blood flow. Lastly, the solid black arrow 
designates a secondary reflection, a reverberation caused by refractive index mismatches at 
vessel branch-points. 
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2.5 Physiological challenges 

2.5.1 Post-occlusive reactive hyperemia 

The post-occlusive reactive hyperemia (PORH) challenge consisted of occluding a subject’s 
upper arm for three minutes using a pneumatic cuff pressurized to 215 mmHg [55, 56]. The 
occlusion leads to a buildup of metabolic byproducts which vasodilate the arm causing a 
significantly increased blood flow when the cuff is depressurized. The state of relatively 
increased blood flow in PORH amplifies the PPG waveform. It should be noted that PORH 
was not used for its usual intended purpose of comparing the hyperemic state to baseline 
measurements for measuring endothelial function [57]. In this work, 16 subjects aged 23 to 81 
(11 females and five males) were each measured with ATSA using a protocol consisting of a 
5-minute baseline, 3-minute occlusion, and 5-minute post-release period. Intervals within the 
baseline and post-release periods were analyzed to obtain the physiological parameters 
discussed above. 

2.5.2 Cold pressor challenge 

The cold pressor challenge consisted of a subject submerging one hand in ice water for 30 to 
90 seconds inducing peripheral vasoconstriction along with a slight increase in heart rate and 
blood pressure [58]. In this work, the ATSA device was attached to the subject’s left index 
finger while a baseline measurement was acquired for two to three minutes. At this point the 
subject inserted his contralateral hand (right hand in this case) into ice water for as long as 
tolerable – usually 30 to 90 seconds – while data continued to be acquired on the non-
submerged hand. This data was processed to calculate TD. In order to assess repeatability, 
this process was repeated on one subject seven times. In order to assess the effects in general, 
this test was performed on four subjects aged 25 – 35; there were three males and one female. 
The study was carried out under a UC Irvine IRB approved protocol and informed consent 
was obtained (HS #2004-3626). 

2.5.3 Exercise challenge 

The exercise challenge consisted of 10 minutes of cardiovascular exercise on a stationary 
bicycle. The left index finger was measured with the ATSA for two minutes before and two 
minutes following the challenge. Cardiovascular exercise is known to decrease peripheral 
vasoconstriction especially in the superficial vascular beds [59]. It also increases blood 
pressure and cardiac output by increasing the heartrate and stroke volume. The decreased 
peripheral vasoconstriction is required to vent excess heat and the increased cardiac output is 
necessary to supply working muscle with oxygen and nutrients needed for heightened 
metabolic activity. Like the cold pressor challenge, repeatability was assessed with seven 
repeat measurements on one subject, and general effect was assessed with one measurement 
on four subjects. 

3. Results 

3.1 Validation 

Figure 5 shows an illustration of the in vitro test setup and a plot of ATSA recordings for a 
range of volumetric blood flow. The ATSA instrument depicted in Fig. 5(a) produced flow 
index 1/(2TK2) values between (1-150) over the volumetric flow range (0-20) mL/min. The 
relationship between measured flow index and known volumetric flow is plotted in Fig. 5(b), 
where the ATSA instrument shows significant linearity (R2 = 0.98). For each 10-second 
measurement, the standard deviation of the flow index was less 0.5%. The specified flow 
range encompasses values observed in prior literature and in healthy subjects [60–63]. This 
suggests the ATSA output is linearly proportional to the volumetric flow rate in the 
physiological range of interest. 
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3.3 Change 
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Fig. 9. SPG-PPG parameters vs. age. (a) Linear regression of TD onto age. (b) Linear 
regression of THR onto age. The solid red line is the linear best fit of the data. The curved 
dotted red lines are the 95% confidence intervals. The blue tick marks indicate the individual 
data points. 

3.4 Cold pressor and exercise challenges 

Figure 10 presents SPG-PPG data obtained from a 29-year-old healthy male subject 
undergoing cold pressor and exercise challenges. Figure 10(a) contains a dual-axis plot of the 
SPG (blue) and PPG (red) waveforms during 5 seconds of a 2-minute baseline measurement. 
Figure 10(b) contains a 5-second interval of the cold pressor challenge. Compared with the 
baseline condition in Fig. 10(a), the PPG waveform in this example is more rounded and 
contains a steeper systolic upshot. This observation potentially explains why TD is increased 
in the cold condition. It is also noteworthy that systolic upshot the SPG-signal (blue) in Fig. 
10(b) retains its steep slope. 

 

Fig. 10. SPG and PPG signals from each of the physiological challenges. (a) Baseline data. (b) 
Cold pressor data. (c) Post-exercise data. In each panel, the SPG waveform is blue and the 
PPG waveform is red, both in arbitrary units. 

Figure 10(c) shows a five-second interval acquired after 10 minutes of exercise. The post-
exercise PPG waveform has a more pronounced and narrow systolic peak and more closely 
resembles the SPG waveform than the baseline PPG waveform. In contrast, the baseline PPG 
waveform has a rounded-off plateau region near the apex. Thus, the location of the PPG peak 
at baseline is subtler and relatively delayed compared to post-exercise. 

Figure 11(a) summarizes repeatability testing of TD on a single subject performing 
exercise and cold pressor challenges. Each box represents seven repetitions/measurements, 
and each measurement is an average over approximately 60 heartbeats. For the box marked 
cold, each measurement consists of average TD at baseline subtracted from average TD 
during cold-shock (TD cold – TD baseline). Similarly, the box marked exercise contains 
measurements of baseline subtracted from post-exercise (TD post-exercise – TD baseline). 
Finally, the box marked baseline is derived from two sequential baseline measurements – one 
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subtracted from the other (TD baseline 1 – TD baseline 2). This was done to emphasize 
sensitivity to dynamic changes associated with cold and exercise, and to minimize variability 
in TD among different measurements. The average increase in TD for the cold challenge was 
found to be 0.044 seconds, with a range of 0.031 to 0.068 seconds. The average change in TD 
post-exercise was −0.0578 seconds, with a range of - 0.0110 to - 0.1334 seconds. Notably, the 
differences between each pair of the three distributions (i.e., cold, exercise and baseline) are 
statistically significant according to Student’s t-test. The p-value for the difference between 
the cold and exercise distributions is 0.0013, the p-value for the difference between cold and 
baseline distributions is 0.0031, and the p-value for the difference between exercise and 
baseline distributions was 0.0286. 

 

Fig. 11. Changes from baseline in the cold-pressor and exercise challenges. (a) Repeatability 
testing on a single subject performing seven tandem measurements. Each box plot depicts the 
range of changes during the cold pressor, exercise and baseline conditions. (b) Changes from 
baseline obtained from individual measurements performed on four subjects. 

Figure 11(b) summarizes the results from four subjects performing the exercise and cold-
pressor challenges. As in Fig. 11(a), each box shows how TD changes from baseline for each 
of the challenge among the individuals. As before, the box labeled “baseline” is the difference 
between paired 2-minute baseline measurements. The average increase in TD for the cold 
challenge was found to be 0.0294 seconds, with a range of 0.0051 to 0.0671 second. The 
average decrease in TD for the exercise challenge was found to be 0.0430 seconds, with a 
range of 0.0238 to 0.0654 seconds. 

4. Discussion 

This work introduces methods for extracting physiological parameters from the SPG-PPG 
signal obtained with ATSA. We demonstrate how the dual SPG-PPG signal is derived from 
the same raw data obtained with an instrument consisting of a CMOS camera and coherent 
light source with the SPG originating from flow pulsatility and the PPG originating from 
volumetric pulsatility. We demonstrate that both waveforms are offset in time and introduce 
an algorithm characterizing time delay between the systolic peaks. Additionally, we introduce 
a framework for analyzing SPG structure by calculating harmonic content on a pulse-by-pulse 
basis. Two signal decomposition methods (time delay and harmonic content) are applied to in 
vivo measurements to demonstrate physiological significance, with our analysis revealing age 
correlations for both. We proceed to demonstrate changes in time delay associated with 
exercise (decreased time delay) and cold pressor challenges (increased time delay). 

The correlation between age and extracted SPG-PPG parameters suggest that these 
methods are sensitive to arterial stiffness and vascular aging. Aging arteries undergo 
mechanical changes resulting in decreased compliance, referred to as arterial stiffening. Thus, 
the correlations between SPG-PPG signal parameters and age indicate potential sensitivity to 
these mechanical changes. This implies the methods introduced in this work may be used for 
noninvasive vascular assessment at early ages as a predictive measure of arterial health 

                                                                       Vol. 9, No. 8 | 1 Aug 2018 | BIOMEDICAL OPTICS EXPRESS 3950 



outcomes. We observe that the age-related time delay increases are due to pulse-shape 
changes in the PPG signal caused by decreased arterial compliance. In fact, these changes in 
PPG signal shape have been previously observed in the field and reported as an increase in 
crest time [1, 64]. Our work presents this phenomenon in a new light using the SPG 
waveform as the reference signal, rather than relying on the PPG waveform which is often 
subject to artifacts and low signal to noise ratio (Fig. 6) [65, 66]. The mechanism for changes 
in SPG signal and harmonic content comes from a distinct aspect of vascular physiology. 
Refractive index mismatch at vessel bifurcations increases with atherosclerosis [67]. This 
results in the reflection of high-frequency harmonic components as the pulse propagates down 
the arterial network explaining why there is less harmonic content seen in the older 
individuals. Our analysis methods could potentiate a noninvasive means of characterizing 
vascular age for cardiovascular risk stratification. Additionally, it could be applied to early 
detection of atherosclerosis for early medical and lifestyle interventions. 

In this work, harmonic content was characterized using THR rather than other harmonic 
ratios for two main reasons. First, preliminary analysis demonstrated THR magnitude 
corresponds with the amount of pulsatile structure; if there are numerous or prominent 
secondary reflections then THR tends to be larger. Second, the regression of THR onto 
subject age showed a much stronger correlation than other harmonic ratios. Because of these 
characteristics, THR was used exclusively in this work to interrogate harmonic content. 

The changes in TD caused by cold pressor and exercise challenges indicate a completely 
different functionality related to vascular tone. Decreased temperature enhances vascular tone 
to preserve thermal homeostasis by retaining heat in the body’s core, whereas increased 
temperature decreases vascular tone to shed excess heat in peripheral circulation. Overall, the 
changes in time delay observed in the post-exercise and cold pressor conditions demonstrate 
that this parameter is sensitive to vascular tone. This is particularly important because 
vascular resistance is a confounding factor in calculating blood pressure, cardiac output and 
fluid status [68] meaning that this technique could provide solutions for these medical 
applications. 

This study only partially elucidates the implications of information embedded in the dual 
SPG-PPG signal. The cardiac pulse is progressively modified by mechanical properties of the 
underlying vasculature as it propagates down the arterial network. As light transmitted from a 
single coherent source interacts with the tissue, the pulsatile characteristics of the underlying 
cardiovascular system are ultimately contained in the SPG-PPG signal. We only present two 
ways of processing these signals, but there are many other methods that have not yet been 
explored. Examples include analyzing systolic upstroke time, dicrotic notch prominence, and 
other harmonic content ratios. Further, almost every processing technique applied to PPG 
alone could be applied to this new framework. The SPG-PPG signal therefore constitutes a 
promising technology for continued research. 

Overall, this study provides initial data to support the potential clinical significance of the 
SPG-PPG waveform. The SPG is distinct and possibly more robust than the PPG alone, as 
shown by the fact that the PPG waveform becomes weak and distorted with vascular 
constriction, while under these conditions the SPG signal retains its strength and pulsatility 
(Fig. 6). This may be important because medical applications such as non-invasive cardiac 
output monitoring have failed due to issues with the PPG signal quality. We have also shown 
that the SPG and PPG signals provide different and complementary information, specifically 
flow speed pulsatility from the SPG and vascular expansion pulsatility from the PPG signal. 
The TD and pulse-shape characteristics of the SPG and PPG waveforms are evidence that 
they provide unique information, which is further supported by their differential response to 
contrasting physiological challenges. We conclude that wearable, affixed transmission LSI 
sensors can generate highly complementary SPG and PPG signals. They potentially provide a 
single, non-invasive platform for assessing vascular dynamics. Because of their relative 
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simplicity and ease-of-use, ATSA devices may create new possibilities for non-invasive 
diagnostics and therapeutic guidance in circulatory diseases. 
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