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ABSTRACT OF THE DISSERTATION

Statistical Inference over Large Domains

by

Ananda Theertha Suresh

Doctor of Philosophy in Electrical Engineering (Communication Theory and
Systems)

University of California, San Diego, 2016

Professor Alon Orlitsky, Chair

Motivated by diverse applications in ecology, genetics, and language model-

ing, researchers in learning, computer science, and information theory have recently

studied several fundamental statistical questions in the large domain regime, where

the domain size is large relative to the number of samples.

We study three such basic problems with rich history and wide applications.

In the course of analyzing these problems, we also provide provable guarantees for

several existing practical estimators and propose estimators with better guarantees.

Competitive distribution estimation and classification: Existing

theory does not explain why absolute-discounting, Good-Turing, and related es-

timators outperform the asymptotically min-max optimal estimators in practice.

xv



We explain their performance by showing that a variant of Good-Turing estimators

performs near optimally for all distributions. Specifically, for distributions over k

symbols and n samples, we show that a simple variant of Good-Turing estimator is

always within KL divergence of (3 + on(1))/n1/3 from a genie-aided estimator that

knows the underlying distribution up to a permutation, and that a more involved

estimator is within Õn(min(k/n, 1/
√
n)). We extend these results to classification,

where the goal is to classify a test sample based on two training samples of length

n each.

Estimating the number of unseen species: We study species estima-

tion, where given n independent samples from an unknown species distribution, we

would like to estimate the number of new species that will be observed among the

next t · n samples. Existing algorithms provide guarantees only for the prediction

range t ≤ 1. We significantly extend the range of predictability and prove that

a class of estimators including Efron-Thisted accurately predicts the number of

unseen species for t ∝ log n. Conversely, we show that no estimator is accurate for

t = Ω(log n).

Learning Gaussian mixtures: We derive the first sample-efficient

polynomial-time estimator for high-dimensional spherical Gaussian mixtures. It es-

timates mixtures of k spherical Gaussians in d-dimensions to within `1 distance ε

using O(dk9(log2 d)/ε4) samples and Ok,ε(d3 log5 d) computation time. Conversely,

we show that any estimator requires Ω
(
dk/ε2

)
samples, hence the algorithm’s sam-

ple complexity is nearly optimal in the number of dimensions. We also construct a

simple estimator for one-dimensional Gaussian mixtures that uses Õ(k/ε2) samples

and Õ((k/ε)3k+1) computation time.

xvi



Chapter 1

Introduction

Most processes in modern day engineering and science are inferred via prob-

abilistic models. For example, in natural language processing the words are often

modeled according to a Markov distribution, in speech processing Gaussian mix-

tures are employed, and in genetics Bernoulli-product models are used. Hence,

inferring properties of these probabilistic processes, often refered to as statistical

inference, is one of the most fundamental problems of modern day science and

engineering.

Given the applicability of statistical inference, it has been studied exten-

sively over the last century. Traditionally, most of the statistical inference has been

studied in the asymptotic regime where the the number of samples far exceeds the

domain size. For example, in natural language processing, this translates to having

observed a lot of words compared to the vocabulary size.

While such assumptions are true for many classical examples, modern ap-

plications often require us to draw inference in the opposite regime, where the

underlying domain size is comparable to or far exceeds the number of samples.

Even if the number of samples is comparable to the domain size, we do not even

observe all the underlying symbols even once! For example, in genetics every sam-

ple is a human DNA, hence the number of all possible samples is far less than the

number of all possible human DNAs.

Even if data is plentiful, the number of possible models can be very large,

thus rendering traditional methods computationally inefficient. For example, in

1
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speech processing Gaussian mixtures are often used, and the number of possible

Gaussian mixtures scales exponentially with the number of dimensions, thus one

cannot use traditional approaches to provably infer the underlying mixture.

Thus there is an inherent need for inference algorithms that are both data-

efficient and computation-efficient. Focusing on these goals, in this dissertation,

we study three fundamental problems in the large domain regime. Our objective

is to (i) formulate relevant and basic questions for each problem, (ii) determine

the fundamental limit: minimum amount of data required, (iii) provide theoretical

justification for existing efficient algorithms and if possible improve upon them,

(iv) derive such algorithms when they do not exist.

We start with the most basic question in the large domain regime: how

well can one estimate a discrete distribution? Surprisingly, even after decades of

research, it is not well understood why practical estimators such as Good-Turing

work better than min-max optimal estimators.

1.1 How well can one estimate?

Estimating distributions over large alphabets is a fundamental machine-

learning tenet. In its simplest form, given n independent samples from an unknown

discrete distribution over k symbols, it asks for an estimate of the underlying dis-

tribution. An obvious and intuitive estimator is the empirical frequency estimator

that assigns to each symbol a probability proportional to the number of times it

appears. For example, if we toss a coin 5 times and observe 3 heads and 2 tails,

the empirical estimate assigns probability 3/5 = 0.6 to heads and 2/5 = 0.4 to

tails.

While this empirical estimator is intuitive, it performs poorly in practice for

a variety of reasons. For example, the empirical estimate always assigns probability

0 to unseen symbols. This might be accurate for large number of samples, but it

is often inaccurate for small number of samples. .

To overcome these shortcomings with empirical estimators, distribution es-

timation has been studied extensively starting with Laplace. Yet no method is



3

known to estimate all distributions well. For example, add-constant estimators

are nearly min-max optimal but often perform poorly in practice, and practical

estimators such as absolute discounting, Jelinek-Mercer, and Good-Turing are not

known to be near optimal for essentially any distribution.

Instead of the well studied min-max approach, we propose to study distri-

bution estimation in a competitive setting. Specifically, for every discrete distri-

bution, we construct estimators that are provably nearly the best in the following

two competitive ways. First they estimate every distribution nearly as well as the

best estimator designed with prior knowledge of the distribution up to a permuta-

tion. Second, they estimate every distribution nearly as well as the best estimator

designed with prior knowledge of the exact distribution, but as all natural estima-

tors, restricted to assign the same probability to all symbols appearing the same

number of times.

Specifically, for distributions over k symbols and n samples, we show that

for both comparisons, a simple variant of Good-Turing estimator is always within

KL divergence of
3 + on(1)

n1/3

from the best estimator, and that a more involved estimator is within

Õn
(

min

(
k

n
,

1√
n

))
.

Notice that the above results are independent of the domain size k and hence

is particularly useful for large domain settings. Conversely, we show that any

estimator must have a KL divergence at least Ω̃n(min(k/n, 1/n2/3)) over the best

estimator for the first comparison, and at least Ω̃n(min(k/n, 1/
√
n)) for the second.

We modify the estimator to derive a linear-complexity classifier that takes

two length-n training sequences, one distributed i.i.d. according to a distribution

p and one according to q, and classifies a single test sample generated by p or q,

with error at most Õn(n−1/5) higher than that achievable by the best classifier that

knows p and q up to a permutation. We also show an Ω̃n(n−1/3) lower bound on

this additional error for any classifier.

Our main proof technique is to relate the problem of competitive distribu-

tion estimation to that of combined-probability mass estimation and then provide
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uniform bounds on the estimation of combined probability masses.

1.2 How far can one predict?

Population estimation is an important problem in many scientific endeav-

ors. Its most popular formulation, introduced by Fisher, uses n samples to predict

U , the number of hitherto unseen elements that will be observed among t · n new

samples. In 1956, Good and Toulmin [1] approximated U by a fascinating esti-

mator that has since intrigued statisticians and mathematicians [2]. For example,

in Stanford University’s Statistics Department’s brochure published in the early

90’s [3], and slightly abbreviated in Figure 1.1, Bradley Efron credited the problem

and its elegant solution with kindling his interest in statistics.

The Good-Toulmin estimator fails to predict further due to its high vari-

ance. Later Efron and Thisted showed empirically that a variation of this estimator

approximates U even for some t > 1, but no theoretical guarantees are known.

We derive a class of estimators that provably predict U not just for constant

t > 1, but all the way up to

t ∝ log n,

with a normalized mean squared error of

O
(

1

n1/t

)
.

This shows that the number of species can be estimated for a population log n

times larger than that observed, a factor that grows arbitrarily large as n increases.

We also show that this range is the best possible and that the estimators’ mean-

square error is optimal up to constants for any t. Our approach yields the first

provable guarantee for the Efron-Thisted estimator and, in addition, a variant

which achieves stronger theoretical and experimental performance than existing

methodologies on a variety of synthetic and real datasets.
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From the time I was a little boy until my senior year in college I wanted to be

a mathematician. Then I learned that I really wanted to be a 19th century

mathematician, the kind who does a little theory, a lot of computation, and

some consulting with real scientists. The field of statistics has allowed me

to do all three things, in whatever proportions I desired. Here is an example

of the three faces of statistics, done in the early 1940’s.

In the early 1940’s, naturalist Corbet had spent two years trapping butterflies

in Malaya. At the end of that time he constructed a table to show how many

times he had trapped the various butterfly species. For example, 118 species

were so rare that Corbet had trapped only one specimen of each, 74 species

had been trapped twice each, etc.

Frequency 1 2 3 4 5 6 7 8 9 10 11 . . .

Species 118 74 44 24 29 22 20 19 20 15 12 . . .

Corbet returned to England with his table, and asked R.A. Fisher, the great-

est of all statisticians, how many new species he would see if he returned to

Malaya for another two years of trapping. This question seems impossible to

answer, since it refers to a column of Corbet’s table that doesn’t exist, the

“0” column. Fisher provided an interesting answer to the question, which

was later improved on, the number of new species you can expect to see in

two years of additional trapping is

118− 74 + 44− 24 + . . .− 12 + 6 = 75.

Figure 1.1: Excerpt from Efron’s comments in the Stanford statistics brochure
from early 2000’s.

The estimators we derive are simple linear estimators that are computable

in time proportional to n. The performance guarantees hold uniformly for all

distributions, and apply to all four standard sampling models commonly used

across various scientific disciplines: multinomial, Poisson, hypergeometric, and

Bernoulli product.



6

1.3 How efficiently can one learn in high dimen-

sions?

Meaningful information often resides in high-dimensional spaces: voice sig-

nals are expressed in many frequency bands, credit ratings are influenced by multi-

ple parameters, and document topics are manifested in the prevalence of numerous

words. Some applications, such as topic modeling and genomic analysis consider

data in over 1000 dimensions, [4, 5].

Typically, information can be generated by different types of sources: voice

is spoken by men or women, credit parameters correspond to wealthy or poor

individuals, and documents address topics such as sports or politics. In such cases

the overall data follow a mixture distribution [6, 7, 8].

Mixtures of high-dimensional distributions are therefore central to the un-

derstanding and processing of many natural phenomena. Methods for recovering

the mixture components from the data have consequently been extensively studied

by statisticians, engineers, and computer scientists.

We learn Gaussian mixtures in the PAC learning framework, where the goal

is to output a mixture that is at a `1 distance at most ε to the underlying one. We

provide the first sample-efficient polynomial-time estimator for high-dimensional

spherical Gaussian mixtures.

For mixtures of any k d-dimensional spherical Gaussians, we derive an in-

tuitive spectral-estimator that uses

Ok
(
d log2 d

ε4

)
samples and runs in time

Ok,ε(d3 log5 d),

to output a mixture that is ε close to the underlying mixture in `1 distance. Our

sample and time complexities are significantly lower than previously known. The

constant factor Ok is polynomial for sample complexity and is exponential for the

time complexity, again much smaller than what was previously known. Further-

more, the results are independent of any parameters of the Gaussian mixture.
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We also show that Ωk

(
d
ε2

)
samples are needed for any algorithm. Hence the

sample complexity is near-optimal in the number of dimensions. We also derive a

simple estimator for k-component one-dimensional mixtures that uses

O

(
k log k

ε

ε2

)

samples and runs in time

Õ

((
k

ε

)3k+1
)
.

1.4 Thesis organization

The rest of the thesis is organized as follows.

Part I: How well can one estimate?

Chapter 2: We describe competitive distribution estimation and relate it to

min-max combined-probability estimation.

Chapter 3: We study the problem of combined-probability estimation and pro-

vide guarantees for Good-Turing type estimators.

Chapter 4: We extend the estimation results to competitive classification and

provide classifiers that are uniformly close to the genie-aided classifier that

knows the distributions up to a permutation.

Part II: How far can one predict?

Chapter 5: We study the unseen species estimation problem and provide linear

estimators that are extend the predictability range to O(n log n) under the

Poisson sampling model.

Chapter 6: We extend the results to other three popular models: multinomial,

hypergeometric, and Bernoulli-product. We then prove that the performance
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of proposed learning estimators are near-optimal for multinomial and Pois-

son sampling models.

Part III: How efficiently can one learn in high dimensions?

Chapter 7: We propose an algorithm to learn spherical Gaussian mixtures whose

sample complexity is near-optimal in the number of dimensions.



Part I

How well can one estimate?

9



Chapter 2

Competitive distribution

estimation

2.1 Introduction

2.1.1 Background

Many learning applications, ranging from language-processing staples such

as speech recognition and machine translation to biological studies in virology and

bioinformatics, call for estimating large discrete distributions from their samples.

Probability estimation over large alphabets has therefore long been the subject of

extensive research, both by practitioners deriving practical estimators [9, 10], and

by theorists searching for optimal estimators [11].

Yet even after all this work, provably-optimal estimators remain elusive.

The add-constant estimators frequently analyzed by theoreticians are nearly min-

max optimal, yet perform poorly for many practical distributions, while common

practical estimators, such as absolute discounting [12], Jelinek-Mercer [13], and

Good-Turing [14], are not well understood and lack provable performance guaran-

tees.

To understand the terminology and approach a solution we need a few

definitions. A probability distribution over a discrete set X is a mapping p : X →
[0, 1] such that

∑
x∈X px = 1. A distribution estimator over a support set X

10
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associates with any observed sample sequence x∗ ∈ X ∗ a distribution q(x∗) over

X . The performance of an estimator q for an underlying distribution p is typically

evaluated in terms of the Kullback-Leibler (KL) divergence [15],

D(p||q) def
=
∑
x

px log
px
qx
,

reflecting the expected increase in the ambiguity about the outcome of p when it

is approximated by q. KL divergence is also the increase in the number of bits

over the entropy that q uses to compress the output of p, and is also the log-

loss of estimating p by q. It is therefore of interest to construct estimators that

approximate a large class of distributions to within small KL divergence. We now

describe one of the problem’s simplest formulations.

2.1.2 Min-max loss

Given n samples Xn def
= X1, X2, . . . ,Xn, generated independently according

to a distribution p over X , the expected KL loss of the estimator q is

rn(q, p) = E
Xn∼pn

[D(p||q(Xn))].

Let P be a known collection of distributions over a discrete set X . The worst-case

loss of an estimator q over all distributions in P is

rn(q,P)
def
= max

p∈P
rn(q, p), (2.1)

and the lowest worst-case loss for P , achieved by the best estimator, is the min-max

loss

rn(P)
def
= min

q
rn(q,P) = min

q
max
p∈P

rn(q, p). (2.2)

Min-max performance can be viewed as regret relative to an oracle that knows the

underlying distribution. Hence from here on we refer to it as regret.

The most natural and important collection of distributions, and the one we

study here, is the set of all discrete distributions over an alphabet of some size k,
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which without loss of generality we assume to be [k] = {1, 2, . . . k}. Hence the set

of all distributions is the simplex in k dimensions,

∆k
def
=
{

(p1, . . . ,pk) : pi ≥ 0 and
∑

pi = 1
}
.

Following [16], researchers have studied rn(∆k) and related quantities [17]. We

outline some of the results derived.

2.1.3 Add-constant estimators

The add-β estimator assigns to a symbol that appeared t times a probability

proportional to t + β. For example, if three coin tosses yield one heads and two

tails, the add-1/2 estimator assigns probability 1.5/(1.5 + 2.5) = 3/8 to heads,

and 2.5/(1.5 + 2.5) = 5/8 to tails. [18] showed that as for every k, as n→∞, an

estimator related to add-3/4 is near optimal and achieves

rn(∆k) =
k − 1

2n
· (1 + o(1)). (2.3)

The more challenging, and practical, regime is where the sample size n is

not overwhelmingly larger than the alphabet size k. For example in English text

processing, we need to estimate the distribution of words following a context. But

the number of times a context appears in a corpus may not be much larger than

the vocabulary size. Several results are known for other regimes as well. When

the sample size n is linear in the alphabet size k, rn(∆k) can be shown to be a

constant, and [11] showed that as k/n→∞, add-constant estimators achieve the

optimal

rn(∆k) = log
k

n
· (1 + o(1)), (2.4)

While add-constant estimators are nearly min-max optimal, the distributions at-

taining the min-max regret are near uniform. In practice, large-alphabet distri-

butions are rarely uniform, and instead, tend to follow a power-law. For these

distributions, add-constant estimators under-perform the estimators described in

the next subsection.
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2.1.4 Practical estimators

For real applications, practitioners tend to use more sophisticated estima-

tors, with better empirical performance. These include the Jelinek-Mercer estima-

tor that cross-validates the sample to find the best fit for the observed data. Or

the absolute-discounting estimators that rather than add a positive constant to

each count, do the opposite, and subtract a positive constant.

Perhaps the most popular and enduring have been the Good-Turing esti-

mator [14] and some of its variations. Let nx
def
= nx(x

n) be the number of times a

symbol x appears in xn and let ϕt
def
= ϕt(x

n) be the number of symbols appearing

t times in xn. The basic Good-Turing estimator posits that if nx = t,

qx(x
n) =

ϕt+1

ϕt
· t+ 1

n
,

surprisingly relating the probability of an element not just to the number of times

it was observed, but also to the number other elements appearing as many, and one

more, times. It is easy to see that this basic version of the estimator may not work

well, as for example it assigns any element appearing ≥ n/2 times 0 probability.

Hence in practice the estimator is modified, for example, using empirical frequency

to elements appearing many times.

The Good-Turing Estimator was published in 1953, and quickly adapted for

language-modeling use, but for half a century no proofs of its performance were

known. Following [19], several papers, e.g., [20, 21], showed that Good-Turing

variants estimate the combined probability of symbols appearing any given number

of times with accuracy that does not depend on the alphabet size, and [22] showed

that a different variation of Good-Turing similarly estimates the probabilities of

each previously-observed symbol, and all unseen symbols combined.

However, these results do not explain why Good-Turing estimators work

well for the actual probability estimation problem, that of estimating the prob-

ability of each element, not of the combination of elements appearing a certain

number of times. To define and derive uniformly-optimal estimators, we take a

different, competitive, approach.
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2.2 Competitive optimality

2.2.1 Overview

To evaluate an estimator, we compare its performance to the best possible

performance of two estimators designed with some prior knowledge of the underly-

ing distribution. The first estimator is designed with knowledge of the underlying

distribution up to a permutation of the probabilities, namely knowledge of the

probability multiset, e.g., {.5, .3, .2}, but not of the association between probabil-

ities and symbols. The second estimator is designed with exact knowledge of the

distribution, but like all natural estimators, forced to assign the same probabilities

to symbols appearing the same number of times. For example, upon observing the

sample a, b, c, a, b, d, e, the estimator must assign the same probability to a and b,

and the same probability to c, d, and e.

These estimators cannot be implemented in practice as in reality we do not

have prior knowledge of the estimated distribution. But the prior information is

chosen to allow us to determine the best performance of any estimator designed

with that information, which in turn is better than the performance of any data-

driven estimator designed without prior information. We then show that certain

variations of the Good-Turing estimators, designed without any prior knowledge,

approach the performance of both prior-knowledge estimators for every underlying

distribution.

2.2.2 Competing with near full information

We first define the performance of an oracle-aided estimator, designed with

some knowledge of the underlying distribution. Suppose that the estimator is

designed with the aid of an oracle that knows the value of f(p) for some given

function f over the class ∆k of distributions.

The function f partitions ∆k into subsets, each corresponding to one pos-

sible value of f . We denote the subsets by P , and the partition by P, and as

before, denote the individual distributions by p. Then the oracle knows the unique

partition part P such that p ∈ P ∈ P. For example, if f(p) is the multiset of p,



15

then each subset P corresponds to set of distributions with the same probability

multiset, and the oracle knows the multiset of probabilities.

For every partition part P ∈ P, an estimator q incurs the worst-case regret

in (2.1),

rn(q, P ) = max
p∈P

rn(q, p).

The oracle, knowing the unique partition part P , incurs the least worst-case re-

gret (2.2),

rn(P ) = min
q
rn(q, P ).

The competitive regret of q over the oracle, for all distributions in P is

rn(q, P )− rn(P ),

the competitive regret over all partition parts and all distributions in each is

rPn(q,∆k)
def
= max

P∈P
(rn(q, P )− rn(P )),

and the best possible competitive regret is

rPn(∆k)
def
= min

q
rPn(q,∆k).

Consolidating the intermediate definitions,

rPn(∆k) = min
q

max
P∈P

(
max
p∈P

rn(q, p)− rn(P )

)
.

Namely, an oracle-aided estimator who knows the partition part incurs a worst-case

regret rn(P ) over each part P , and the competitive regret rPn(∆k) of data-driven

estimators is the least overall increase in the part-wise regret due to not knowing

P . The following examples evaluate rPn(∆k) for the two simplest partitions.

Example 2.1. The singleton partition consists of |∆k| parts, each a single distri-

bution in ∆k,

P|∆k|
def
= {{p} : p ∈ ∆k}.
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An oracle-aided estimator that knows the part containing p knows p. The com-

petitive regret of data-driven estimators is therefore the min-max regret,

r
P|∆k|
n (∆k) = min

q
max
p∈∆k

(rn(q, {p})− rn({p}))

= min
q

max
p∈∆k

rn(q, p)

= rn(∆k),

where the middle equality follows as rn(q, {p}) = rn(q, p), and rn({p}) = 0.

Example 2.2. The whole-collection partition has only one part, the whole collec-

tion ∆k,

P1
def
= {∆k}.

An estimator aided by an oracle that knows the part containing p has no additional

information, hence no advantage over a data-driven estimator, and the competitive

regret is 0,

rP1
n (∆k) = min

q
max
P∈{∆k}

(
max
p∈P

rn(q, p)− rn(P )

)
= min

q

(
max
p∈∆k

rn(q, p)− rn(∆k)

)
= min

q
max
p∈∆k

(rn(q, p))− rn(∆k)

= rn(∆k)− rn(∆k)

= 0.

The examples show that for the coarsest partition of ∆k, into a single part,

the competitive regret is the lowest possible, 0, while for the finest partition, into

singletons, the competitive regret is the highest possible, rn(∆k).

A partition P′ refines a partition P if every part in P is partitioned by some

parts in P′. For example {{a, b}, {c}, {d, e}} refines {{a, b, c}, {d, e}}. We show

that if P′ refines P then for every q, rP
′
n (q,∆k) ≥ rPn(q,∆k).

Lemma 2.3. If P′ refines P then for any q,

rP
′

n (q,∆k) ≥ rPn(q,∆k). (2.5)
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Proof. The definition implies that if P ′ ⊆ P then rn(P ′) ≤ rn(P ), for every distri-

bution class P and P ′. Hence for every q,

rP
′

n (q,∆k) = max
P ′∈P′

(rn(q, P ′)− rn(P ′))

= max
P∈P

max
P⊇P ′∈P′

(rn(q, P ′)− rn(P ′))

≥ max
P∈P

max
P⊇P ′∈P′

(rn(q, P ′)− rn(P ))

= max
P∈P

(
max

P⊇P ′∈P′
rn(q, P ′)− rn(P )

)
= max

P∈P
(rn(q, P )− rn(P ))

= rPn(q,∆k).

Considering the collection ∆k of all distributions over [k], it follows that as

we start with single-part partition {∆k} and keep refining it till the oracle knows

p, the competitive regret of estimators will increase from 0 to rn(q,∆k). A natural

question is therefore how much information can the oracle have and still keep the

competitive regret low? We show that the oracle can know the distribution exactly

up to permutation, and still the regret will be very small.

Two distributions p and p′ permutation equivalent if for some permutation

σ of [k],

p′σ(i) = pi,

for all 1 ≤ i ≤ k. For example, (0.5, 0.3, 0.2) and (0.3, 0.5, 0.2) are permutation

equivalent. Permutation equivalence is clearly an equivalence relation, and hence

partitions the collection of distributions over [k] into equivalence classes. Let Pσ
be the corresponding partition. We construct estimators q that uniformly bound

rPσn (q,∆k), thus the same estimator uniformly bounds rPn(q,∆k) for any coarser par-

tition of ∆k, such as partitions into classes of distributions with the same support

size, or entropy. Note that the partition Pσ corresponds to knowing the underlying

distribution up to permutation, hence rPσn (∆k) is the additional KL loss compared

to an estimator designed with knowledge of the underlying distribution up to per-

mutation.
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This notion of competitiveness has appeared in several contexts. In data

compression it is called twice-redundancy [23, 24, 25, 26], while in statistics it is

often called adaptive or local min-max [27, 28, 29, 30, 31], and recently in property

testing it is referred as competitive [32, 33, 34] or instance-by-instance [35]. Sub-

sequent to this work, [36] studied competitive estimation in `1 distance, however

their regret is poly(1/ log n), compared to our Õ(1/
√
n).

2.2.3 Competing with natural estimators

Our second comparison is with an estimator designed with exact knowledge

of p, but forced to be natural, namely, to assign the same probability to all symbols

appearing the same number of times in the sample. For example, for the observed

sample a, b, c, a, b, d, e, the same probability must be assigned to a and b, and

the same probability to c, d, and e. Since data-driven estimators derive all their

knowledge of the distribution from the data, we expect them to be natural.

We compare the regret of data-driven estimators to that of natural oracle-

aided estimators. Let Qnat be the set of all natural estimators. For a distribution

p, the lowest regret of a natural estimator, designed with prior knowledge of p is

rnat

n (p)
def
= min

q∈Qnat
rn(q, p).

The regret of an estimator q relative to the least-regret natural-estimator is

rnat

n (q, p) = rn(q, p)− rnat

n (p).

The regret of data-driven estimators relative to natural estimators over ∆k is there-

fore,

rnat

n (∆k) = min
q

max
p∈∆k

rnat

n (q, p).

In the next section we state the results, showing in particular that rnat
n (∆k)

is uniformly bounded. In Section 2.4 we describe experiments comparing the per-

formance of competitive estimators to that of min-max motivated estimators and

in Section 2.5 we provide the proofs. Finally in Section 2.6 we prove the lower

bound.
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2.3 Results

Recall that ϕt denotes the number of symbols appearing t times. For a

sequence xn, let the combined prbability mass St
def
= St(x

n) denote the total prob-

ability of symbols appearing t times. For notational convenience, we use St to

denote both St(x
n) and St(X

n) and the usage becomes clear in the context. Sim-

ilar to KL divergence between distributions, we define KL divergence between S

and their estimates Ŝ as

D(S||Ŝ) =
n∑
t=0

St log
St

Ŝt
,

and the `1 distance between S and Ŝ as∣∣∣∣∣∣S − Ŝ∣∣∣∣∣∣
1

=
n∑
t=0

|St − Ŝt|.

Our main result relates the two competitive formulations and further relate them

to the min-max estimation of the combined probability mass St.

Theorem 2.4. For a natural estimator q, let Ŝt =
∑

x:Nx=t qx, then

rnat

n (q,∆k) = max
p∈∆k

E[D(S||Ŝ)].

Furthermore,

rPσn (∆k) ≤ rnat

n (∆k) = min
Ŝ

max
p∈∆k

E[D(S||Ŝ)].

The above result relates the competitive regret of distribution estimation to

the min-max regret for the combined-probability mass estimation. Good-Turing

estimators are often used in conjunction with empirical frequency, where Good-

Turing estimates low probabilities and empirical frequency estimates large proba-

bilities. If nx = t,

q′x =
Ct
ϕt
,

where Ct is a variation of the God-Turing estimate

Ct =


t·ϕt
N

if t ≥ t0,

(ϕt+1 + 1) · t+1
N

else,
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In the next chapter, we first show that even this simple Good-Turing version C

estimates combined-probability mass well and hence is uniformly optimal for all

distributions. For simplicity we prove the result when the number of samples

is n′ ∼ poi(n), a Poisson random variable with mean n. A similar result holds

with exactly n samples, but the proof is more involved as the multiplicities are

dependent. Specifically in Theorem 3.1 we show that for any k and n, upon

observing n′ ∼ poi(n) samples,

max
p∈∆k

E[D(S||C)] ≤ 3 + on(1)

n1/3
, ∗

Furthermore, we show that this bound is tight for any simple combination of Good-

Turing and empirical estimators is optimal up to logarithmic factors in Lemma 3.2.

We then show that a more complex a more complex variant of the Good-Turing

estimator for the combined probability mass, denoted F ′, achieves a faster con-

vergence rate in Theorem 3.3. Namely, for every distribution p and every n, F ′

satisfies, with probability at least 1− 1/n,

D(S||F ′) = Õn
(

min

(
1

n1/2
,
k

n

))
,

and hence by Pinsker’s inequality, with probability at least 1− 1/n,

||F ′ − S||1 = Õn

(
min

(
1

n1/4
,

√
k√
n

))
.

Where Õn, and below also Ω̃n and Θ̃n hide multiplicative logarithmic factors in

n. The above result holds with probability at least 1 − 1/n. Using the fact that

F ′t ≥ 1/n2, one can easily convert it to a result on expectation and show that

max
p∈∆k

E[D(S||F ′)] = Õn
(

min

(
1

n1/2
,
k

n

))
,

and

max
p∈∆k

E[||F ′ − S||1] = Õn

(
min

(
1

n1/4
,

√
k√
n

))
.

Furthermore, we show that matching information theoretic lower bound for

estimating the combined probability mass S in Theorem 3.4.

∗an = on(1), means lim supn→∞ an = 0.
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Fano’s inequality usually yields lower bounds on KL loss, not regret. By

carefully constructing distribution classes, we lower bound the regret.

Theorem 2.5. For any k and n,

rPσn (∆k) ≥ Ω̃n

(
min

(
1

n2/3
,
k

n

))
.

To summarize, we have proved that

Ω̃n

(
min

(
1

n2/3
,
k

n

))
≤ rPσn (∆k) ≤ rnat

n (∆k) = Θ̃n

(
min

(
1√
n
,
k

n

))
.

2.3.1 Illustration and implications

Figure 2.1 demonstrates some of the results. The horizontal axis reflects the

set ∆k of distributions illustrated on one dimension. The vertical axis indicates

the KL loss, or absolute regret, for clarity, shown for k � n. The blue line is

the previously-known min-max upper bound on the regret, which by (2.4) is very

high for this regime, log(k/n). The red line is the regret of the estimator designed

with prior knowledge of the probability multiset. Observe that while for some

probability multisets the regret approaches the log(k/n) min-max upper bound,

for other probability multisets it is much lower, and for some, such as uniform over

1 or over k symbols, where the probability multiset determines the distribution it is

even 0. For many practically relevant distributions, such as power-law distributions

and sparse distributions, the regret is small compared to log(k/n). The green line

is an upper bound on the absolute regret of the data-driven proposed estimator q′′.

By Theorem 3.3, it is always at most 1/
√
n larger than the red line. It follows that

for many distributions, possibly for distributions with more structure, such as those

occurring in nature, the regret of q′′ is significantly smaller than the pessimistic

min-max bound implies.

We observe a few consequences of these results.

• Theorems 3.1 and 3.3 establish two uniformly-optimal estimators q′ and q′′.

Their relative regrets diminish to zero at least as fast as 1/n1/3, and 1/
√
n

respectively, independent of how large the alphabet size k is.
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rn(∆k) = log k
n

Uniform distribution

KL loss

Distributions

≤ Õ
(

min(
(

1√
n
, k
n

))

Figure 2.1: Qualitative behavior of the KL loss as a function of distributions in
different formulations.

• Although the results are for relative regret, as shown in Figure 2.1, they

lead to estimator with smaller absolute regret, namely, the expected KL

divergence.

• The same regret upper bounds hold for all coarser partitions of ∆k i.e., where

instead of knowing the multiset, the oracle knows some property of multiset

such as entropy.

2.4 Experiments

Recall that for a sequence xn, nx denotes the number of times a symbol x

appears and ϕt denotes the number of symbols appearing t times. For small values

of n and k, the near-optimal estimator q′′ proposed in the next chapter simplifies to

a combination of Good-Turing and empirical estimators. By Lemmas 3.17 and 3.18

(stated in the next chapter), for symbols appearing t times, if ϕt+1 ≥ Ω̃(t), then

the Good-Turing estimate is close to the underlying combined-probability mass,

otherwise the empirical estimate is closer. Hence, for a symbol appearing t times,

if ϕt+1 ≥ t we use the Good-Turing estimator, otherwise we use the empirical
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estimator. If nx = t,

qx =


t
N

if t > ϕt+1,

ϕt+1+1
ϕt
· t+1
N

else,

where N is a normalization factor. Note that we have replaced ϕt+1 in the Good-

Turing estimator by ϕt+1 + 1 to ensure that every symbol is assigned a non-zero

probability.

We compare the performance of this estimator to four estimators: three

popular add-β estimators and the optimal natural estimator. An add-beta estima-

tor Ŝ has the form

qŜx =
nx + βŜnx
N(Ŝ)

,

where N(Ŝ) is a normalization factor to ensure that the probabilities add up to

1. The Laplace estimator, βLt = 1∀ t, minimizes the expected loss when the

underlying distribution is generated by a uniform prior over ∆k. The Krichevsky-

Trofimov estimator, βKTt = 1/2∀ t, is asymptotically min-max optimal for the

cumulative regret, and minimizes the expected loss when the underlying distribu-

tion is generated according to a Dirichlet-1/2 prior. The Braess-Sauer estimator,

βBS0 = 1/2, βBS1 = 1, βBSt = 3/4 ∀ t > 1, is asymptotically min-max optimal for

rn(∆k). Finally, as shown in Lemma 2.9, the optimal estimator qx = Snx
ϕnx

achieves

the lowest loss of any natural estimator designed with knowledge of the underlying

distribution.

We compare the performance of the proposed estimator to that of the four

estimators above. We consider six distributions: uniform distribution, step dis-

tribution with half the symbols having probability 1/2k and the other half have

probability 3/2k, Zipf distribution with parameter 1 (pi ∝ i−1), Zipf distribution

with parameter 1.5 (pi ∝ i−1.5), a distribution generated by the uniform prior on

∆k, and a distribution generated from Dirichlet-1/2 prior. All distributions have

support size k = 10000 and n ≤ 50000 samples. Results are averaged over 200

trials. Figure 2.2 shows the results. Observe that the proposed estimator performs

similarly to the best natural estimator for all six distributions. It also significantly

outperforms the other estimators for Zipf, uniform, and step distributions.
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(a) Uniform
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(b) Step
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(c) Zipf with parameter 1
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(d) Zipf with parameter 1.5
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(e) Uniform prior (Dirichlet 1)
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(f) Dirichlet 1/2 prior

Figure 2.2: Simulation results for support 10000, number of samples ranging from
1000 to 50000, averaged over 200 trials.
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The performance of other estimators depends on the underlying distribu-

tion. For example, since Laplace is the optimal estimator when the underlying

distribution is generated from the uniform prior, it performs well in Figure 2.2(e),

however performs poorly on other distributions.

Furthermore, even though for distributions generated by Dirichlet priors,

all the estimators have similar looking regrets (Figures 2.2(e), 2.2(f)), the proposed

estimator performs better than estimators which are not designed specifically for

that prior.

2.5 Relating the two competitive formulations

Our goal is to show that every estimator q, rPσn (q,∆k) ≤ rnat
n (q,∆k) and

then upper bound rnat
n (q,∆k) by the min-max regrets in estimating the combined

probability mass. To that end, we first prove the following result.

Lemma 2.6. For every class P ∈ Pσ, rn(P ) ≥ maxp∈P r
nat
n (p).

Proof. We first show that there is an optimal estimator q that is natural. In

particular, let

q′′y(x
n) =

∑
p∈P p(x

ny)∑
p′∈P p

′(xn)
.

We show that q′′y(x
n) is an optimal estimator for P . Since q′′y(x

n) = q′′σ(y)(σ(xn))

for any permutation σ, the estimator achieves the same loss for every p ∈ P ,

max
p∈P

rn(q′′, p) =
1

k!

∑
p∈P

rn(q′′, p′). (2.6)
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For any estimator q,

max
p∈P

E[D(p||q)]
(a)

≥ 1

k!

∑
p∈P

Ep[D(p||q)]

(b)
=

1

k!

∑
p∈P

∑
xn∈Xn

∑
y∈X

p(xny) log
1

qy(xn)
−H(p)

=
1

k!

∑
xn∈Xn

∑
y∈X

∑
p∈P

p(xny) log
1

qy(xn)
−H(p)

(c)

≥ 1

k!

∑
xn∈Xn

∑
y∈X

∑
p∈P

p(xny) log

∑
p′∈P p

′(xn)∑
p′′∈P p

′′(xny)
−H(p)

=
1

k!

∑
p∈P

∑
xn∈Xn

∑
y∈X

p(xny) log
1

q′′y(x
n)
−H(p)

(d)
=

1

k!

∑
p∈P

rn(q′′, p).

(a) follows from the fact that maximum is larger than the average. (b) follows from

the fact that every distribution in P has the same entropy. Non-negativity of KL

divergence implies (c). All distributions in P has the same entropy and hence (d).

Hence together with Equation (2.6)

rn(P ) = min
q

max
p∈P

E[D(p||q)]

≥ 1

k!

∑
p∈P

rn(q′′, p′)

= max
p∈P

rn(q′′, p).

Hence q′′ is an optimal estimator. Recall that ny denote the number of times symbol

y appears in the sequence. q′′ is natural as if ny = ny′ , then q′′y(x
n) = q′′y′(x

n).

Since there is a natural estimator that achieves minimum in rn(P ),

rn(P ) = min
q

max
p∈P

E[D(p||q)]

= min
q∈Qnat

max
p∈P

E[D(p||q)]

≥ max
p∈P

min
q∈Qnat

E[D(p||q)]

= max
p∈P

rnat

n (p),
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where the last inequality follows from the fact that min-max is bigger than max-

min.

Lemma 2.7. For every estimator q,

rPσn (q,∆k) ≤ rnat

n (q,∆k).

Proof.

rPσn (q,∆k) = max
P∈Pσ

(
max
p∈P

E[D(p||q)]− rn(P )

)
(a)

≤ max
P∈Pσ

(
max
p∈P

E[D(p||q)]−max
p∈P

rnat

n (p)

)
(b)

≤ max
P∈Pσ

max
p∈P

(E[D(p||q)]− rnat

n (p))

= max
p∈∆k

(E[D(p||q)]− rnat

n (p))

= rnat

n (q,∆k).

Lemma 2.6 implies (a). Difference of maximums is smaller than maximum of

differences, hence (b).

2.5.1 Relation between rnat

n (q,∆k) and combined-probability

estimation

We now relate the regret in estimating distribution to that of estimating the

combined probability mass. Since the natural estimator assigns same probability

to symbols that appear the same number of times, estimating probabilities is same

as estimating the total probability of symbols appearing a given number of times.

We formalize it in the next lemma.

Lemma 2.8. For a natural estimator q let Ŝt =
∑

x:Nx=t qx, then

rnat

n (q, p) = E[D(S||Ŝ)].

The proof uses the following lemma which computes the best natural esti-

mator. For a random sequence Xn, let Φt
def
= ϕt(X

n).
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Lemma 2.9. Let q∗x(x
n)= Snx

ϕnx
, then

q∗ = arg min
q∈Qnat

rn(q, p)

and

rnat

n (p) = E

[
n∑
t=0

St log
Φt
St

]
−H(p). (2.7)

Proof. For a natural estimator q, if ny = ny′ , then qy(x
n) = qy′(x

n) . Hence, with

a slight abuse of notation let qny(x
n) = qy(x

n). For a sequence xn and estimator q,

∑
y∈X

py log
1

qy(xn)
−

n∑
t=0

St log
ϕt
St

=
n∑
t=0

∑
y:ny=t

py log
1

qy(xn)
−

n∑
t=0

St log
ϕt
St

=
n∑
t=0

St log
1

qt(xn)
−

n∑
t=0

St log
ϕt
St

=
n∑
t=0

St log
St

ϕtqt(xn)

≥ 0,

where the last inequality follows from the fact that
∑n

t=0 St =
∑n

t=0 ϕtqt(x
n) = 1

and KL divergence is non-negative. Furthermore, equality is achieved only by the

estimator that assigns q∗x = Snx
ϕnx

. Hence,

rnat

n (p) = min
q∈Qnat

E

[∑
y∈X

py log
py

qy(Xn)

]
= −H(p) + E

[
n∑
t=0

St log
Φt
St

]
.

Proof of Lemma 2.8. As before, with a slight abuse of notation let qny(x
n) = qy(x

n)

for natural estimators q. For any natural estimator q and sequence xn,

∑
y∈X

py log
1

qy(xn)
=

n∑
t=0

∑
y:ny=t

py log
1

qy(xn)

=
n∑
t=0

St log
St

ϕtqt(xn)
+

n∑
t=0

St log
ϕt
St

=
n∑
t=0

St log
St

Ŝt
+

n∑
t=0

St log
ϕt
St
.
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Thus by Lemma 2.9,

rnat

n (q, p) = −H(p) + E

[
n∑
t=0

St log
St

Ŝt
+

n∑
t=0

St log
Φt
St

]
+H(p)− E

[
n∑
t=0

St log
Φt
St

]

= E

[
n∑
t=0

St log
St

Ŝt

]
= E[D(S||Ŝ)].

We now show that exist natural estimators that achieve rnat
n (∆k) and rPσn (∆k).

Lemma 2.10. The exists a natural estimator q′′ such that

rnat

n (q′′,∆k) = rnat

n (∆k).

Similar there exists a natural estimator q′ such that

rPσn (q′,∆k) = rPσn (∆k).

Proof. We prove the result for rnat
n (∆k). The result for rPσn (∆k) is similar and

omitted. Let profile ϕ̄ of a sequence xn be the vector of its prevalences i.e., ϕ̄(xn)
def
=

(ϕ0(xn), ϕ1(xn), ϕ2(xn), . . . ϕn(xn)). For any optimal estimator q and sequence xny

such that ϕ̄(xn) = ϕ̄n and ny(x
n) = t , let

q′′y(x
n) =

∑
wnz:ϕ̄(wn)=ϕ̄n,nz=t qz(w

n)∑
unv:ϕ̄(un)=ϕ̄n,nv=t 1

.

q′′ is a natural estimator as if for any sequence xn, ny(x
n) = ny′(x

n), then q′′y(x
n) =

q′′y′(x
n). We show that q′′ is an optimal estimator. Observe that for any P ∈ Pσ

rn(q, P )
(a)

≥ 1

k!

∑
p∈P

rn(q, p)
(b)

≥ 1

k!

∑
p∈P

rn(q′′, p)
(c)
= rn(q′′, P ). (2.8)

Maximum is larger than average and hence (a). Every distribution in P has the
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same KL loss for q′′ and hence (c). To prove (b), observe that∑
p∈P

rn(q, p) =
∑
p∈P

∑
xn∈Xn

∑
y∈X

p(xny) log
1

qy(xn)
−H(p)

=
∑
xn∈Xn

∑
y∈X

∑
p∈P

p(xny) log
1

qy(xn)
−H(p)

=
∑
ϕ̄n,t

∑
xn:ϕ̄(xn)=ϕ̄n

∑
y:ny=t

∑
p∈P

p(xny) log
1

qy(xn)
−H(p)

(d)

≥
∑
ϕ̄n,t

∑
xn:ϕ̄(xn)=ϕ̄n

∑
y:ny=t

∑
p∈P

p(xny) log

∑
un,v:ϕ̄(un)=ϕ̄n,nv=t 1∑

wn,z:ϕ̄(wn)=ϕ̄n,nz=t qz(w
n)
−H(p)

=
∑
ϕ̄n,t

∑
xn:ϕ̄(xn)=ϕ̄n

∑
y:ny=t

∑
p∈P

p(xny) log
1

q′′y(x
n)
−H(p)

=
∑
p∈P

rn(q′′, p),

For all sequences xny with the same ϕ̄(xn) and ny(x
n),
∑

p∈P p(x
ny) is the same.

Hence, applying log-sum inequality results in (d). By Lemma 2.9, every p ∈ P

has the same rnat
n (p), hence subtracting rnat

n (p) from both sides of Equation (2.8)

results in

max
p∈P

(rn(q, p)− rnat

n (p)) ≥ max
p∈P

(rn(q′′, p)− rnat

n (p)).

Hence for the optimal estimator q,

rnat

n (∆k) = max
p∈∆k

(rn(q, p)− rnat

n (p))

= max
P∈Pσ

(
max
p∈P

(rn(q, p)− rnat

n (p))

)
≥ max

P∈Pσ

(
max
p∈P

(rn(q′′, p)− rnat

n (p))

)
= max

p∈∆k

(rn(q′′, p)− rnat

n (p))

= rn(q′′,∆k).

Thus q′′ is an optimal estimator and furthermore it is natural, hence the lemma.

Thus there is an optimal estimator that achieves rnat
n (∆k) and is natural.

In Equation (2.7), taking maximum over all distributions p and minimum over all

estimators q results in
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Lemma 2.11. For a natural estimator q let Ŝt =
∑

x:Nx=t qx, then

rnat

n (q,∆k) = max
p∈∆k

E[D(S||Ŝ)].

Furthermore,

rnat

n (∆k) = min
Ŝ

max
p∈∆k

E[D(S||Ŝ)].

Lemmas 2.7, 2.10, and 2.11 yield Theorem 2.4.

2.6 Lower bounds

To lower bound rPσn (∆k) it is sufficient to lower bound rPσn (P) for any subset

P ⊆ ∆k. We construct a subset P by considering a set of distributions {pv : v ∈
{−1, 1}m−1} and all their possible permutations. The lower bound argument uses

Fano’s inequality and Gilbert Varshamov bounds.

We choose P to be the set of distributions whose probability multiset are

close to that of a distribution p0, where p0 is defined as follows.

Let c be a sufficiently large constant. Let m be the largest odd number less

than min(k, (n/(c2 log2 n))1/3). Let p0 be the following distribution. For 1 ≤ i ≤
m− 1,

p0
i =

log n

6n

√
c2n

m

(√
n

c2m log2 n
+ i

)
and p0

m = 1−
∑m−1

i=1 p0
i . Observe that for all 1 ≤ i ≤ m−1, 1/(6m) ≤ p0

i ≤ 1/(3m)

and p0
m ≥ 2/3.

We choose the close-by distributions as follows. Let ε =
√

c∗

mn
, where c∗ is

some sufficiently small constant. For a binary vector v ∈ {−1, 1}m−1, let pv be the

distribution such that pvi = p0
i + viε for 1 ≤ i ≤ m− 1 and pv(m) = 1−

∑m−1
i=1 pvi .

Note that by the properties of p0 and ε, pv is a valid distribution for every v. Let

C be the largest subset of {−1, 1}m−1 such that for every v ∈ C,
∑

i vi = 0 and for

every pair v,v′ ∈ C,
∑

i |vi − v′i| ≥ c′(m− 1) for some constant c′. The following

variation of Gilbert Varshamov lemma lower bounds size of C.

Lemma 2.12. There exists a set of vectors C over {−1, 1}m−1 of size 2c
′′·(m−1) such

that the minimum hamming distance between any two vectors is ≥ c′(m − 1) for

some universal constants c′ > 0, c′′ > 0 and
∑

i vi = 0 for all v ∈ C.
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Let P ′ = {pv : v ∈ C} and Pv = {pv(σ(·)) : σ ∈ Σm−1} be the set of all

permutations of a distribution pv, i.e., all distributions with the same multiset as

pv. Let

P = ∪v∈CPv.

We first bound the regret of the induced permutation class Pv that contains all

permutations of a distribution pv.

Lemma 2.13. For every induced permutation class Pv,

rn(Pv) ≤ 1

n
.

Proof. We prove the bound by constructing an estimator q. Consider the estimator

q which sorts the multiplicities and assigns the ith-frequently occurred symbol

probability pvi . Since this is a natural estimator, it occurs the same loss for all

distributions in Pv and hence,

rn(Pv) ≤ max
p∈Pv

E[D(p||q)]

= E[D(pv||q)]
(a)

≤ Pr(∃i, j : Ni > Nj, p
v
i < pvj ) log n

(b)

≤
(
m

2

)
e−2 logn log n

≤ 1

n
.

(a) follows from the fact that the estimator makes an error only if two multiplicities

cross over and if it does make an error, the maximum KL divergence is at most

log(pmax/pmin) ≤ log n. Since probabilities for any two symbols i and j differ by at

least logn
6n
·
√

c2n
m

and the probabilities themselves lie between 1/(6m) and 1/(3m),

by choosing a sufficiently large c, the cross over probability can be bounded by

e−2 logn using the Chernoff bound and hence (b).

We now lower bound the KL divergence between pv and pv
′

for every pair

of vectors v and v′. Let the Hamming distance between two vectors v and v′ be

||v − v′||1 =
∑m−1

i=1 |vi − v′i|.
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Lemma 2.14. For two distributions pv and pv
′

in P ′,

1

8

(
c′
√
mc∗

n

)2

≤ 1

2

∣∣∣∣∣∣pv − pv′∣∣∣∣∣∣2
1
≤ D(pv||pv′) ≤ 48mc∗

n
.

Proof.

D(pv||pv′)
(a)

≤
m∑
i=1

(pvi − pvi ′)2

pvi
′

(b)

≤ 2
m∑
i=1

(pvi − pvi ′)2

p0
i

≤ 2
m−1∑
i=1

(vi − v′i)
2(
√
c∗/nm)2

1/(6m)

≤ 12
m−1∑
i=1

(vi − v′i)
2c∗

n

≤ 24
m−1∑
i=1

|vi − v′i|c∗

n

=
24 ||v − v′||1 c∗

n

≤ 48mc∗

n
.

(a) follows from bounding the KL divergence by the Chi-squared distance and (b)

follows from the fact that ε� 1/m. For the lower bound,

D(pv||pv′)
(a)

≥ 1

2

∣∣∣∣∣∣pv − pv′∣∣∣∣∣∣2
1

=
1

2

(
||v − v′||1

√
c∗√

mn

)2

(b)

≥ 1

2

(
c′(m− 1)

√
c∗√

mn

)2

(c)

≥ 1

8

(
c′
√
mc∗

n

)2

,

where (a) follows from Pinsker’s inequality, (b) follows by construction, and m−1 ≥
2 and hence (c).

We now state Fano’s inequality for distribution estimation.
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Lemma 2.15. Let p1, p2, . . . pr+1 be distributions such that D(pi||pj) ≤ β and

||pi − pj||1 ≥ α, for all i, j. For any estimator q,

sup
i

Ei[
∣∣∣∣pi − q∣∣∣∣

1
] ≥ α

2

(
1− nβ + log 2

log r

)
.

We now have all the tools for the lower bound.

Proof of Theorem 2.5. For every permutation subclass Pv in P , by Lemma 2.13

rn(Pv) ≤ 1

n
.

Thus,

rPσn (P) = min
q

max
v

(
max
p∈Pv

rn(q, p)− rn(Pv)
)

≥ min
q

max
v

(
max
p∈Pv

rn(q, p)− 1

n

)
= min

q
max
p∈P

rn(q, p)− 1

n

= min
q

max
p∈P

E[D(p||q)]− 1

n
(a)

≥ min
q

max
p∈P ′

E[D(p||q)]− 1

n

(b)

≥ min
q

max
p∈P ′

E

[
||p− q||21

2

]
− 1

n

(c)

≥ min
q

max
p∈P ′

1

2
E [||p− q||1]2 − 1

n
(d)

≥ Ω
(m
n

)
− 1

n

≥ Ω
(m
n

)
.

P ′ ⊂ P , hence (a). (b) follows from Pinsker’s inequality and (c) follows from

convexity. By construction, for every pair of distributions in P ′, β = D(p||p′) ≤
48c∗m/n and α = ||p− p′||1 ≥ Ω(

√
m/n) (Lemma 2.14). Furthermore by

Lemma 2.12, P ′ has r + 1 = 2c
′′(m−1) distributions. Setting c∗ to be a sufficiently

small constant and applying Lemma 2.15 to P ′ with the above values of α, β, and

r results in (d). Substituting the value of m in the above equation results in the

Theorem.
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Chapter 3

Combined-probability mass

estimation

3.1 Introduction

In the last chapter, we related the problem of competitive distribution es-

timation to the problem of min-max combined-probability estimation, where the

combined probability mass

St
def
= St(X

n)
def
=
∑
x:Nx=t

px

is the sum of probabilities of symbols appearing t times. For instance, if pa = .3,

pb = .1, pn = .35, ps = .15, and the sum of all other letter probabilities is .1,

then for b, a, n, a, n, a, s, S1 = pb + ps = .25, S2 = pn = .35, S3 = pa = .3, and

S0 = pc + pd + . . .+ pz = .1.

In this chapter we compute the min-max combined-probability estimation

and provide a linear estimator that achieves it. We also discuss its implications to

the problem of pattern prediction.

3.2 Previous results

The problem of combined-probability mass estimation was first studied by

[14], who noted that reasonable estimators assign the same probability to all sym-

36
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bols appearing the same number of times in a sample. Let 1Nx=t be the indicator

function that is 1 iff Nx = t. Recall that Φt denotes the number of symbols ap-

pearing t times in a sample of size n. The most natural estimator for St is the

empirical frequency estimator that estimates St by

Et =
t

n
· Φt.

The Good-Turing estimator proposed in [14], estimates St by

Gt
def
=
t+ 1

n
· Φt+1. (3.1)

The Good-Turing estimator is an important tool in a number of language process-

ing applications,e.g., [10]. However for several decades it defied rigorous analysis,

partly because of the dependencies between Nx for different x’s. First theoretical

results were provided by [19]. Using McDiarmid’s inequality [38], they showed that

for all 0, with probability ≥ 1− δ,

|Gt − St| = O

(√
log(3/δ)

n

(
t+ 1 + log

n

δ

))
.

Note that this bound, like all subsequent ones in this chapter, holds uniformly,

namely applies to all support sets X and all distributions p over X .

To express this and subsequent results more succinctly, we will use several

abbreviations. Recall that Õ and Ω̃ hide poly-logarithmic factors in n and 1/δ.

For a random variable X, we will use

X =
δ
Õ(α) to abbreviate Pr

(
X 6= Õ(α)

)
≤ δ,

and similarly X =
δ

Ω̃(α) for Pr
(
X 6= Ω̃(α)

)
< δ. For example, the above bound

becomes

|Gt − St| =
δ
Õ
(
t+ 1√
n

)
.

As could be expected, most applications require simultaneous approxima-

tion of St over a wide range of t’s. For example, as shown in Section 4.1, clas-

sification requires approximating S0, . . . ,Sn to within a small `1 distance, while

prediction requires approximation to within a small KL-Divergence.
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[20] improved the Good-Turing bound and combined it with the empirical

estimator to obtain an estimator G′ with `∞ convergence,

||G′ − S||∞
def
= max

0≤t≤n
|G′t − St| =

δ
Õ
(

1

n0.4

)
.

Subsequently, [39] considered `1 convergence for a subclass of distributions

where all symbols probabilities are proportional to 1/n, namely for some constants

c1, c2, all probabilities px are in the range [c1/n, c2/n]. Recently, [40] showed that

the Good-Turing estimator is not uniformly multiplicatively consistent over all

distributions, and described a class of distributions for which it is.

3.3 New results

In practice, often the Good-Turing estimator is used for small multiplicities

and empirical estimators are used for large multiplicities. We analyze this estimator

and bound its regret. For a symbol appearing t times in a random sequence Xn,

we assign probability Ct/Φt,

Ct =

Φt ·
t
nN

if t ≥ t0,

(Φt+1 + 1) · t+1
nN

else,

where N is the normalization factor to ensure that
∑∞

t=0Ct = 1 and We set t0 ∝
n1/3 later. Similar to our experiments, we have modified the Good-Turing estimator

to (Φt+1 + 1) · t+1
n

, thus ensuring that we never assign a non-zero probability.

However, unlike our experiments, where we decided between empirical and Good-

Turing estimators depending on if Φt+1 ≥ t, for our proofs we just decide it based on

t for convenience. We remark that in our experiments the estimator in Section 5.6

performed better than the one above. For this estimator, we prove that

Theorem 3.1. For any k and n, upon observing n′ ∼ poi(n) samples,

max
p∈∆k

E[D(S||C)] ≤ 3 + on(1)

n1/3
,

and hence by Pinsker’s inequality,

max
p∈∆k

E[||S − C||1] ≤
√

6 + on(1)

n1/6
.
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We then show that the above bound are tight in that no simple combination

of Gt and the empirical estimator Et can approximate St better. The proof is

provided in Section 3.5.3.

Lemma 3.2. For every n, there is a distribution such that
n∑
t=0

min (|Et − St|, |Gt − St|) =
1/n

Ω̃

(
1

n1/6

)
.

In Subsections 3.6.1–3.6.3, we construct a new estimator F ′t and show that it

estimates St better than Gt and essentially as well as any other estimator. A closer

inspection of Good and Turing’s intuition in [9] shows that the average probability

of a symbol appearing t times is

St
Φt
≈ t+ 1

n
· E[Φt+1]

E[Φt]
. (3.2)

If we were given the values of the E[Φt]’s, we could use this equation to estimate

the St’s. Since we are not given these values, Good-Turing (3.1) approximates

the expectation ratio by just Φt+1/Φt. However, while Φt and Φt+1 are by defini-

tion unbiased estimators of their expectations E[Φt] and E[Φt+1] respectively, their

variance is high, leading to a probability estimation Gt that may be far from St.

In Section 3.6.2 of E[Φt] by expressing it as a linear combination of the

values of Φt′ for t′ near t. Lemma 3.22 shows that an appropriate choice of the

smoothing coefficients yields an estimate Ê[Φt] that approximates E[Φt] well.

Incorporating this estimate into Equation (3.2), yields a new estimator Ft.

Combining it with the empirical and Good-Turing estimators for different ranges

of t and Φt, we obtain a modified estimator F ′t that has a small KL divergence

from St, and hence by Pinsker’s inequality, also small `1 distance uniformly over

all distributions.

Theorem 3.3. For every distribution and every n, the proposed estimator F ′

satisfies

D(S||F ′) =
1/n
Õn
(

min

(
1

n1/2
,
k

n

))
,

and hence by Pinsker’s inequality,

||F ′ − S||1 =
1/n
Õn

(
min

(
1

n1/4
,

√
k√
n

))
.
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In Section 3.6.5 we show that the proposed estimator is optimal. An estima-

tor is label-invariant, often called canonical, if its estimate of St remains unchanged

under all permutations of the symbol labels. For example, its estimate of S1 will

be the same for the sample a, a, b, b, c as it is for u, u, v, v, w. Clearly all reasonable

estimators are label-invariant.

Theorem 3.4. For any label-invariant estimator Ŝ, there is a distribution such

that

D(S||Ŝ) =
1/n

Ω̃

(
1

n1/2

)
hence by Pinsker’s inequality,

||Ŝ − S||1 =
1/n

Ω̃

(
1

n1/4

)
.

Finally we note that the estimator F ′t can be computed in time linear in n.

Also, observe that while the difference between `1 distance of 1/n1/6 and 1/n1/4

may seem small, an equivalent formulation of the results would ask for the number

of samples needed to estimate within a `1 distance ε. Good-Turing and empirical

frequency would require (1/ε)6 samples, while the estimator we construct needs

(1/ε)4 samples. For ε = 1%, the difference between the two is a factor of 10,000.

The rest of the chapter is organized as follows: In Section 3.4, we introduce

Poisson sampling, a tool that simplifies the analysis and present some preliminary

results. In Section 3.5, we analyze the performance of the simple combination of

Good-Turing and empirical estimators. In Section 3.6 we motivate and propose the

improved estimator and in Section 3.7 we present its analysis. We Finally remark

that Theorem 3.3 implies a faster algorithm for pattern prediction which we define

and prove in Section 3.8.

3.4 Poisson sampling and preliminaries

The analysis of combined-probability estimators rely on computing the vari-

ances and expectations of prevalences. A standard tool to simplify the analysis is

Poisson sampling.
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In the standard sampling method, where a distribution is sampled n times,

the multiplicities are dependent. Analysis of functions of dependent random vari-

ables requires various concentration inequalities, which often complicates the proofs.

A useful approach to make them independent and hence simplify the analysis is

to do Poisson sampling. The distribution is sampled a random n′ times, where n′

is a Poisson random variable with parameter n.

The following fact, mentioned without proof states that the multiplicities

are independent under Poisson sampling.

Lemma 3.5 ([41]). If a distribution p is sampled i.i.d. poi(n) times, then the

number of times symbol x appears is an independent Poisson random variable

with mean npx, namely, Pr(Nx = t) = e−npx (npx)t

t!
.

We first show the following lemma, which shows that proving properties for

poi(n) sampling implies properties for sampling the distribution exactly n times.

Hence in the rest of the chapter, we prove the properties of an estimator under

Poisson sampling.

Lemma 3.6 ([41]). If when a distribution is sampled poi(n) times, a certain prop-

erty holds with probability ≥ 1− δ, then when the distribution is sampled exactly

n times, the property holds with probability ≥ 1− δ · e
√
n.

Proof. If a distribution is sampled n′ = poi(n) times, with probability e−n n
n

n!
≥

1
e
√
n
, n′ = n. Conditioned on the fact that n′ = n, Poisson sampling is same as

sampling the distribution exactly n times. Therefore, if P fails with probability

> δ · e
√
n with exactly n samples, then P fails with probability > δ when sampled

poi(n) times.

To illustrate the advantages of Poisson sampling, we first show that Good-

Turing estimator is unbiased under Poisson sampling. We use this fact to get a

better understanding of the proposed estimator.

Lemma 3.7. For every distribution p and every t,

E[Gt] =
t+ 1

n
E[Φt+1] = E[St].
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Proof. The proof follows from the fact that each multiplicity is a Poisson random

variable under Poisson sampling.

E[St] = E
[∑

x

px · 1Nx=t

]
=
∑
x

px · e−npx
(npx)

t

t!

=
t+ 1

n

∑
x

e−npx
(npx)

t+1

(t+ 1)!
=
t+ 1

n
E[Φt+1].

The next lemma bounds the variance of any linear estimator in terms of its

coefficients.

Lemma 3.8. For every distribution p,

Var

(∑
x

∑
t

1Nx=tf(x, t)

)
≤
∑
x

∑
t

E[1Nx=t]f
2(x, t).

Proof. By Poisson sampling, the multiplicities are independent. Furthermore the

variance of sum of independent random variables is the sum of their variances.

Hence,

Var

(∑
x

∑
t

1Nx=tf(x, t)

)
=
∑
x

Var

(∑
t

1Nx=tf(x, t)

)

≤
∑
x

E
[(∑

t

1Nx=tf(x, t)

)2]
(a)
=
∑
x

E
[∑

t

(1Nx=tf(x, t))2

]
(b)
=
∑
x

∑
t

E[1Nx=t]f
2(x, t).

For t 6= t′, E[1Nx=t1Nx=t′ ] = 0 and hence (a). (b) uses the fact that 1Nx=t is an

indicator random variable.

The above two lemmas immediately imply that for any n and t.

Var(St) ≤
(t+ 1)(t+ 2)

n2
· E[Φt+2]. (3.3)

E

[(
St −

(t+ 1)Φt+1

n

)2
]
≤ (t+ 1)(t+ 2)E[Φt+2]

n2
+

(t+ 1)2E[Φt+1]

n2
. (3.4)
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3.5 Regret bound on the Good-Turing estimator

We now prove the performance of the simple Good-Turing estimator under

Poisson sampling. We first relate the KL regret to a chi-squared like distance

between the combined probability mass S and the un-normalized estimate.

Lemma 3.9. For any distribution p ∈ ∆k,

E[D(S||C)] ≤
t0−1∑
t=0

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
+
∞∑
t=t0

E
[

(St − tΦt/n)2

Φtt/n

]
.

Proof. Let C ′t = CtN . Since log(1 + y) ≤ y,
∑∞

t=0Ct = 1, and
∑∞

t=0C
′
t = N ,

D(S||C) =
∞∑
t=0

St log
St
Ct

=
∞∑
t=0

St log
NSt
C ′t

=
∞∑
t=0

St log
St
C ′t

+
∞∑
t=0

St logN

=
∞∑
t=0

St log

(
1 +

St − C ′t
C ′t

)
+ logN

≤
∞∑
t=0

St

(
St − C ′t
C ′t

)
+ logN

=
∞∑
t=0

(St − C ′t)
(
St − C ′t
C ′t

)
+
∞∑
t=0

C ′t

(
St − C ′t
C ′t

)
+ logN

=
∞∑
t=0

(St − C ′t)
(
St − C ′t
C ′t

)
+
∞∑
t=0

(St − C ′t) + logN

=
∞∑
t=0

(St − C ′t)2

C ′t
+ 1−N + logN

≤
∞∑
t=0

(St − C ′t)2

C ′t

=

t0−1∑
t=0

(St − C ′t)2

C ′t
+
∞∑
t=t0

(St − C ′t)2

C ′t
.

Taking expectations on both sides and substituting C ′t results in the lemma.
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3.5.1 Empirical estimators

All of our results including the next lemma hold for all distributions in ∆k

and hence stated without any condition on the underlying distribution.

Lemma 3.10. For any n and t0,

∞∑
t=t0

E
[

(St − tΦt/n)2

Φtt/n

]
≤ 1

t0
.

Proof.

∞∑
t=t0

(St − tΦt/n)2

Φtt/n
≤

∞∑
t=t0

(St − tΦt/n)2

Φtt0/n

(a)

≤
∞∑
t=t0

∑
x

1Nx=t
(px − t/n)2

t0/n

=
∑
x

∞∑
t=t0

1Nx=t
(px − t/n)2

t0/n

≤
∑
x

∞∑
t=0

1Nx=t
(px − t/n)2

t0/n
.

(a) follows from the fact that
(
∑m
x=1 ax)2

m
≤
∑m

i=1 a
2
x for ax = 1Nx=t(px − t/n) and

m = Φt. Taking expectations on both sides,

∞∑
t=t0

E
[

(St − tΦt/n)2]

Φtt/n

]
≤
∑
x

E[
∑∞

t=0 1Nx=t(px − t/n)2]

t0/n

≤
∑
x

px/n

t0/n

=
1

t0
,

where the second inequality follows from observing that E[
∑∞

t=0 1Nx=t(px − t/n)2]

is the variance of a Binomial random variable with parameters n and px.

3.5.2 Good-Turing estimators

To bound the regret corresponding to the Good-Turing estimator, we need

few auxiliary results. The next lemma relates E[Φt+1] to E[Φt].
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Lemma 3.11. For any n and t ≥ 1,

E[Φt+1] ≤ E[Φt]

(
2

t
log n+

t

t+ 1

)
+

1

t+ 1
.

Proof. Let r ≥ t
t+1

.

E[Φt+1] = E

[∑
x

1Nx=t+1

]

=
∑
x

e−npx
(npx)

t+1

(t+ 1)!

=
∑
x

n

t+ 1
· e−npx (npx)

t

t!
px

=
∑

x:npx≤r(t+1)

n

t+ 1
· e−npx (npx)

t

t!
px +

∑
x:npx>r(t+1)

n

t+ 1
· e−npx (npx)

t

t!
px

(a)

≤ r
∑

x:npx≤r(t+1)

e−npx
(npx)

t

t!
+

∑
x:npx>r(t+1)

n

t+ 1
e−r(t+1) (r(t+ 1))t

t!
px

≤ r
∑
x

e−npx
(npx)

t

t!
+
∑
x

n

t+ 1
e−r(t+1) (r(t+ 1))t

t!
px

(b)

≤ r
∑
x

e−npx
(npx)

t

t!
+
∑
x

n

t+ 1
e−rt/2px

≤ rE[Φt] +
n

t+ 1
e−

rt
2 .

(a) follows from the fact that second term is a decreasing as a function of npx in

the range [r(t+ 1),∞). (b) follows from the fact that

e−r(t+1) (r(t+ 1))t

t!
= e−rtrt · e−t (t+ 1)t

t!
≤ e−rtrt ≤ e−rt/2.

Choosing r = 2
t

log n+ t
t+1
, yields

E[Φt+1] ≤ E[Φt]

(
2

t
log n+

t

t+ 1

)
+

1

t+ 1
.

The final auxiliary lemma bounds the inverse moment of Poisson binomial

distributions.
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Lemma 3.12. Let Xi for 1 ≤ i ≤ n be Bernoulli random variables, then

E
[

1∑n
i=1 Xi + 1

]
≤ 1∑n

i=1 E[Xi]
.

Proof. Let ri = E[Xi]. We show that of all tuples r1, r2, . . . , rn such that
∑n

i=1 ri =

nr, the one that maximizes the expectation is ri = r,∀i. Suppose for some i, j,

ri > rj, we show that if we decrease ri and increase rj keeping the sum same, then

the expectation increases. Let Y = 1+
∑

k/∈{i,j}Xk. For any instance of Xn, taking

expectation with respect to only Xi and Xj.

E
[

1

Xi +Xj + Y

]
=

(1− ri)(1− rj)
Y

+
ri(1− rj) + (1− ri)rj

Y + 1
+

rirj
Y + 2

=
1

Y
+ (ri + rj)

(
1

Y + 1
− 1

Y

)
+ rirj

2

Y (Y + 1)(Y + 2)
.

Thus if we decrease ri and increase rj (keeping ri + rj fixed), then rirj increases

and hence the expectation increases. Hence the maximum occurs when ri = rj for

all i, j and

E
[

1∑n
i=1Xi + 1

]
≤ E

[
1

Z + 1

]
,

where Z is a binomial random variable with parameters n and r =
∑n

i=1 E[Xi]/n.

The expectation can be bounded as

E
[

1

Z + 1

]
=

n∑
j=0

1

j + 1

(
n

j

)
rj(1− r)n−j

=
1

(n+ 1)r

n∑
j=0

(
n+ 1

j + 1

)
rj+1(1− r)n+1−(j+1)

≤ 1

(n+ 1)r

≤ 1

nr

=
1∑n

i=1 E[Xi]
.

Using the above lemma, we first bound the expectation of St
2/(Φt+1 + 1).
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Lemma 3.13. For any n and t, if E[Φt+1] > 2, then

E
[

St
2

Φt+1 + 1

]
≤ E[St

2]

E[Φt+1]− 1
.

Proof. We first observe that for any x,

E[1Nx=t+1] = e−npx
(npx)

t+1

(t+ 1)!
≤ e−t−1 (t+ 1)t+1

(t+ 1)!
≤ 1

e
. (3.5)

Since St =
∑

x px1Nx=t and Φt+1 =
∑

x 1Nx=t+1,

St
2

Φt+1 + 1
=

∑
x

∑
y pxpy1Nx=t1Ny=t∑
z 1Nz=t+1 + 1

=
∑
x

∑
y

pxpy1Nx=t1Ny=t∑
z:z 6=x,z 6=y 1Nz=t+1 + 1

,

where the equality follows from the fact that symbol cannot appear both t and

t+ 1 times thus only one of 1Nx=t and 1Nx=t+1 can be 1. The numerator and the

denominator of the terms on RHS are independent of each other, hence

E
[
pxpy1Nx=t1Ny=t∑

z 1Nz=t+1 + 1

]
= E

[
pxpy1Nx=t1Ny=t∑
z:z 6=x,z 6=y 1Nz=t+1 + 1

]

= E
[
pxpy1Nx=t1Ny=t

]
E

[
1∑

z:z 6=x,z 6=y 1Nz=t+1 + 1

]
(a)

≤
E
[
pxpy1Nx=t1Ny=t

]∑
z:z 6=x,z 6=y E[1Nz=t+1]

(b)

≤
E
[
pxpy1Nx=t1(Ny=t)

]
E[Φt+1 − 1]

,

(a) follows from Lemma 3.12 and (b) follows from Equation (3.5) as∑
z:z 6=x,z 6=y

E[1Nz=t+1] =
∑
z

E[1Nz=t+1]− E[1Nx=t+1]− E[1Ny=t+1] ≥ E[Φt+1]− 1.

Summing over x and y results in the lemma.

We now have all the tools to bound the error of the Good-Turing estimator.

We divide the set of values into two groups, depending on the value of E[Φt+1].

Lemma 3.14. For any n and t if E[Φt+1] ≤ 2, then

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.



48

Proof. Let Z = St − (t+ 1)Φt+1/n.

E

[(
Z − t+ 1

n

)2
]

(a)
= E[Z2] +

(t+ 1)2

n2

(b)

≤ (t+ 1)(t+ 2)E[Φt+2]

n2
+

(t+ 1)2E[Φt+1]

n2
+

(t+ 1)2

n2

(c)

≤ 2
(t+ 1)(t+ 2)

n2
·
(

2 log n

t+ 1
+
t+ 1

t+ 2

)
+

(t+ 1)(t+ 2)

n2(t+ 2)
+

3(t+ 1)2

n2
.

Lemma 3.7 implies Z is a zero mean random variable and hence (a). Equation (3.4)

implies (b) and (c) follows by Lemma 3.11 and the fact that E[Φt+1] ≤ 2. Hence,

E
[

(Z − (t+ 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ E[(Z − (t+ 1)/n)2]

(t+ 1)/n

≤ 2(t+ 2)

n
·
(

2 log n

t+ 1
+
t+ 1

t+ 2

)
+

1

n
+

3(t+ 1)

n

=
5t

n
+

4 log n(t+ 2)

n(t+ 1)
+

6

n
.

Lemma 3.15. For any n and t if E[Φt+1] > 2, then

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.

Proof.

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n
=

St
2

(Φt+1 + 1)(t+ 1)/n
+

(t+ 1)(Φt+1 + 1)

n
− 2St.

Thus by Lemma 3.7,

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
= E

[
St

2

(Φt+1 + 1)(t+ 1)/n

]
− (t+ 1)(E[Φt+1]− 1)

n
.

(3.6)

By Lemmas 3.13, 3.7, and Equation (3.3),

E
[

St
2

(Φt+1 + 1)(t+ 1)/n

]
≤ E[St

2]

E[Φt+1 − 1](t+ 1)/n

≤ t+ 1

n

E[Φt+1]2

E[Φt+1 − 1]
+
t+ 2

n

E[Φt+2]

E[Φt+1 − 1]
.
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Substituting the above equation in Equation (3.6) and simplifying,

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ (t+ 1)E[Φt+1] + (t+ 2)E[Φt+2]

nE[Φt+1 − 1]
+
t+ 1

n
(a)

≤ 2
(t+ 1)E[Φt+1] + (t+ 2)E[Φt+2]

nE[Φt+1]
+
t+ 1

n
(b)

≤ 2

(
t+ 1

n
+
t+ 2

n

(
2 log n

t+ 1
+
t+ 1

t+ 2
+

1

2(t+ 2)

))
+
t+ 1

n

=
5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.

Since E[Φt+1] ≥ 2, E[Φt+1] − 1 ≥ E[Φt+1]/2 and hence (a). Lemma 3.11 implies

(b).

Combining the above two lemmas results in

Lemma 3.16. For any t0 ≥ 1,

t0−1∑
t=0

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t20

2n
+

4 log n

n
(t0 + log t0 + 1) +

7t0
2n
.

Proof. By Lemmas 3.14 and 3.15, regardless of the value of E[Φt+1],

E
[

(St − (t+ 1)(Φt+1 + 1)/n)2

(Φt+1 + 1)(t+ 1)/n

]
≤ 5t

n
+

4 log n

n

(
t+ 2

t+ 1

)
+

6

n
.

Summing the above expression for 0 ≤ t ≤ t0 − 1 results in the lemma.

Substituting the results from Lemmas 3.10 and 3.16 in Lemma 3.9,

E[D(S||Ŝ)] ≤ 1

t0
+

5t20
2n

+
4 log n

n
(t0 + log t0 + 1) +

7t0
2n
.

Substituting t0 = n1/3/51/3 results in Theorem 3.1.

rnat

poi(n)(q
′,∆k) ≤ max

p∈∆k

E[D(S||Ŝ)]

≤ 2.6

n1/3
+

2.4 log n(n1/3 + log n+ 1)

n
+

2.1

n2/3

≤ 3 + on(1)

n1/3
.
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3.5.3 Limitations of Good-Turing and empirical estimators

To understand the limitations of Good-Turing and empirical estimators, we

first prove an upper bound on the estimation error of Good-Turing and empirical

estimators. We then provide a simple example to see why these upper bounds are

tight. Finally, we outline a proof sketch for the lower bound on the performance

of Good-Turing and empirical estimators.

We now state two simple upper bounds on the estimation error of Good-

Turing and empirical estimators. Proofs of variations of these lemmas are in [20].

We give simple proofs in Section 3.7.2 and 3.7.3 using Bernstein’s inequality and

Chernoff bound.

Lemma 3.17 (Empirical estimator). For every distribution p and every t ≥ 1,

|St − Et| =
δ
O

(
Φt

√
t+ 1 log n

δ

n

)
.

Lemma 3.18 (Good-Turing estimator). For every distribution p and every t, if

E[Φt] ≥ 1, then

|St −Gt| =
δ
O

(√
E[Φt+1] + 1

(t+ 1) log2 n
δ

n

)
.

The next sample shows the tightness of these results.

Example 3.19. Let U [k] be the uniform distribution over k symbols, and let the

sample size be n � k. The expected multiplicity of each symbol is n
k
, and by

properties of binomial distributions, the multiplicity of any symbol is > n
k

+
√

n
k

with probability ≥ 0.1. Also, for every multiplicity t, St = Φt/k.

• The empirical estimate Et = Φt
t
n
. For t ≥ n

k
+
√

n
k
, the error is Φt

√
1
nk
≈

Φt
√
t
n

.

• The Good-Turing estimate Gt = Φt+1
t+1
n

and it does not depend on Φt.

Therefore, if two sequences have same Φt+1, but different Φt then Good-

Turing makes an error in at least one of the sequences. It can be shown that,

the typical error is
√

E[Φt]
1
k
≈
√

E[Φt]
t
n
, as the standard deviation of Φt is√

E[Φt].
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The errors in the above example are very close to the upper bounds in

Lemma 3.17 and Lemma 3.18. It can be shown that the following p achieves

the lower bound in Lemma 3.2. Let p be a distribution with
√
n

log3 n
symbols with

probability pi
def
= n1/3 log3 n

cn
+ in

1/6 log3 n
cn

for 1 ≤ i ≤ n1/6. c is chosen such that

the sum of probabilities adds up to 1. It can be shown that p has the following

properties.

• Let R def
= ∪n1/6

i=1 [npi + n1/6, npi + 2n1/6]. For every t ∈ R, E[Φt] = Θ̃(n1/3).

• Since the probabilities are Θ̃
(
n1/3

n

)
, symbols occur with multiplicity Θ̃(n1/3)

with high probability.

• The distribution is chosen such that both empirical and Good-Turing bounds

in Lemmas 3.17 and 3.18 are tight.

Hence for each t ∈ R, both the Good-Turing and empirical estimators

makes an error of

Ω̃

(
t
√
E[Φt]

n

)
= Ω̃

(√
tE[Φt]

n

)
= Ω̃

(√
n1/3n1/3

n

)
= Ω̃

(
1

n1/2

)
.

Number of multiplicities in the range R is n1/6 · n1/6 = n1/3. Adding the error

over all the multiplicities yields an total error of Ω̃
(

1
n1/2

)
·n1/3 = Ω̃

(
1

n1/6

)
. Adding

over all the multiplicities yields the desired result. Adding this error over all

multiplicities yields the result.

3.6 Analysis outline for the improved estimator

3.6.1 A genie-aided estimator

To motivate the proposed estimator we first describe an intermediate genie-

aided estimator. In the next section, we remove the genie assumption. Although

by Lemma 3.7 Good-Turing estimator is unbiased, it has a large variance. It does

not use the fact that Φt symbols appear t times, as illustrated in Example 3.19.
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To overcome these limitations, imagine for a short while that a genie gives

us the values of E[Φt] for all t. We can then define the genie-aided estimator,

Ŝt = Φt
t+ 1

n

E[Φt+1]

E[Φt]
.

We observe few properties of Ŝt. By Lemma 3.7

E[Ŝt] = E[Gt] = E[St],

and hence Ŝt is an unbiased estimator of St. It is linear in Φt and hence shields

against the variance of Φt+1. For a uniform distribution with support size k, it is

easy to see that Ŝt = Φt
1
k

= St. For a general distribution, we quantify the error

of this estimator in the next lemma, whose proof is given in Section 3.7.4.

Lemma 3.20 (Genie-aided estimator). For every distribution p and every t ≥ 1,

if E(Φt) ≥ 1, then∣∣∣∣St − Φt t+ 1

n

E[Φt+1]

E[Φt]

∣∣∣∣ =
δ
O

(√
E[Φt]t log2 n

δ

n

)
.

Recall that the error of Et and Gt are Õ
(√

tΦt
n

)
and Õ

(√
E[Φt+1]t

n

)
, re-

spectively. In Section A we show that E[Φt+1] = Õ(E[Φt]). Hence errors of both

Good-Turing and empirical estimators are linear in one of t and Φt and sub-linear

in the other. By comparison, the genie-aided estimator achieves the smaller expo-

nent of both estimators, and has smaller error than both. It is advantageous to

use such an estimator when both t and Φt are ≥ polylog(n/δ). In the next section,

we replace the genie assumption by a good estimate of E[Φt+1]
E[Φt]

.

3.6.2 Estimating the ratio of expected values

We now develop estimator for the ratio E[Φt+1]
E[Φt]

from the observed sequence.

Let Ê[Φt+1], Ê[Φt] be the estimates of E[Φt+1] and E[Φt] respectively. A natural

choice for the estimator Ê[Φt] is a linear estimator of the form
∑

t htΦt. One can

use tools from approximation theory such as Bernstein polynomials [42] to find

such a linear approximation. However a naive application of these tools is not

sufficient, and instead, we exploit properties of Poisson functionals.
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If we can approximate E[Φt] and E[Φt+1] to a multiplicative factor of 1± δ1

and 1± δ2, respectively, then a naive combination of the two yields an approxima-

tion of the ratio to a multiplicative factor of 1± (|δ1|+ |δ2|). However, as is evident

from the proofs in Section 3.7.6, if we choose different estimators for the numer-

ator and the denominator, we can estimate the ratio accurately. Therefore, the

estimates of E[Φt], while calculating St and St−1, are different. For ease of notation

we use Ê[Φt] for both the cases. The usage becomes clear from the context.

We estimate E[Φt0 ] as a linear combination
∑r

i=−r γr(i)Φt0+i of the 2r + 1

nearest Φt’s. The coefficients γr(i) are chosen to minimize to estimator’s variance

and bias. We show that if maxi |γr(i)| is small, then the variance is small, and that

for a low bias the coefficients γr(i) need to be symmetric, namely γr(−i) = γr(i),

and the following function should be small when x ∼ 1,

Br(x)
def
= γr(0) +

r∑
i=1

γr(i)
(
xi + x−i

)
− 1.

To satisfy these requirements, we choose the coefficients according to the polyno-

mial

γr(i) =
r2 − rαr|i| − βri2

r2 + 2
∑r

j=1(r2 − rαr|j| − βrj2)
,

where αr and βr are chosen so that
∑r

i=1 γr(i)i
2 = 0 and γr(r) = 0.

The next lemma bounds Br(x) for the estimator with co-efficients γr and

is used to prove that the bias of the proposed estimator is small. It is proved in

Section 3.7.5.

Lemma 3.21. If r|(x− 1)| ≤ min(1, x), then

|Br(x)| = O(r(x− 1))4.

The estimators for E[Φt0 ] and E[Φt0+1] are as follows. Let

rt0 =

⌊ √
t0

logn(Φt0

√
t0 )1/11

⌋
. Let St0r = {t | |t− t0| ≤ r}. Then,

Ê[Φt0+1] =
∑

t∈S
t0+1
rt0

γrt0 (|t0 + 1− t|) t0a
t0
t

t0 + 1
Φt,

Ê[Φt0 ] =
∑
t∈S

t0
rt0

γrt0 (|t0 − t|)a
t0
t Φt.
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where, a
t0
t = t!

t0 !
t
t0−t
0 and is used for simplifying the analysis. Note that Ê[Φt] used

to calculate St and St−1 are different. rt0 is chosen to minimize the bias variance

trade-off. The following lemma quantifies the quality of approximation of the ratio

of E[Φt0+1] and E[Φt0 ]. The proof is involved and uses Lemma 3.21. It is given in

Section 3.7.6.

Lemma 3.22. For every distribution p, if t0 ≥ log2 n and 1
logn

(
t0

log2 n

)5

≥ E[Φt0 ] ≥
log2 n

δ
, then ∣∣∣∣∣Ê[Φt0+1]

Ê[Φt0 ]
−

E[Φt0+1]

E[Φt0 ]

∣∣∣∣∣ =
δ
O

(
log2 n

δ√
t0(E[Φt0 ]

√
t0)4/11

)
,

and if E[Φt0 ] > 1
logn

(
t0

log2 n

)5

then,

∣∣∣∣∣ Ê[Φt0+1]

Ê[Φt0 ]
−

E[Φt0+1]

E[Φt0 ]

∣∣∣∣∣ =
δ
O

 log2 n
δ√

E[Φt0 ]

 .

3.6.3 Proposed estimator

Substituting the estimators for E[Φt] and E[Φt+1] in the genie-aided estima-

tor we get the proposed estimator as

Ft = Φt
t+ 1

n

Ê[Φt+1]

Ê[Φt]
.

As mentioned before, for small values of Φt, empirical estimator performs well, and

for small values of t Good-Turing performs well. Therefore, we propose the follow-

ing (unnormalized) estimator that uses estimator Ft for t and Φt ≥ polylog(n).

F ′un
t =



max
(
G0,

1
n

)
if t = 0,

Et if Φt ≤ log2 n,

max
(
Gt,

1
n

)
if t ≤ log2 n andΦt > log2 n,

min
(
max

(
Ft,

1
n3

)
, 1
)

otherwise.

Letting N
def
=
∑n

t=0 F
′un
t , the normalized estimator is then F ′t

def
= 1

N
F ′un
t . Note

that the Good-Turing and Ft may assign 0 probability to St even though Φt 6= 0.
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To avoid infinite log loss and KL Divergence between the distribution and the

estimate, both estimators are slightly modified by taking max
(
Gt,

1
n

)
instead of Gt

and min
(
max

(
Ft,

1
n3

)
, 1
)

instead of Ft so as not to assign 0 or∞ probability mass

to any multiplicity. Such modifications are common in prediction and compression,

e.g., [43].

3.6.4 Proof sketch of Theorem 3.3

To prove Theorem 3.3, we will analyze the unnormalized estimator F ′un
t

and prove that |N − 1| =
10n−2

Õ(n−1/4) and use that to prove the desired result for

the normalized estimator F ′t . We first show that the estimation error for every

multiplicity is small. The proof is in Section 3.7.7.

Lemma 3.23. For every distribution p, |S0 − F ′un
0 | =

4n−3
O
(

log2 n√
n

)
, and for all

t ≥ 1,

|St − F ′un
t | =

4n−3
O

(
min(

√
Φt(t+ 1), Φ

7/11
t

√
t+ 1)

n log−3 n

)
.

The error probability in the above equation is 4n−3 can be generalized to

any poly(1/n). We have chosen the above error to achieve the over all error in

Theorem 3.3 to be n−1. Note that the error of F ′t is smaller than both Good-

Turing and empirical estimators up to polylog(n) factors. Using Lemma 3.23, we

show that N ≈ 1 in the following lemma. It is proved in Section 3.7.8.

Lemma 3.24. For every distribution p,

|N − 1| =
10n−2

Õ

(
min

(
1

n1/4
,

√
k√
n

))
.

Using the bounds on N − 1 in Lemma 3.24 and bounds on |St − F ′un
t | in

Lemma 3.23 and maximizing the KL divergence, we prove Theorem 3.3 in Sec-

tion 3.7.9.

3.6.5 Lower bounds on estimation

We now lower bound the rate of convergence. We construct an explicit

distribution such that with probability ≥ 1 − n−1 the total variation distance is
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Ω̃(n−1/4). By Pinsker’s inequality, this implies that the KL divergence is Ω̃(n−1/2).

Note that since distance is Ω̃(n−1/4) with probability close to 1, the expected

distance is also Ω̃(n−1/4).

Let p be a distribution with ni
def
=
√

π
2
i log1.5 n symbols with probability

pi
def
= bi2 log3 nc

n
, and ni symbols with probability pi + i

n
, for c1

n1/4

log9/8 n
≤ i ≤ c2

n1/4

log9/8 n
.

c1 and c2 are constants such that the sum of probabilities is 1. We sketch the proof

here.

Proof sketch of Theorem 3.4. The distribution p has the following properties.

• Let R = ∪i{npi, npi + 1 . . . npi + i} for c1
n1/4

log9/8 n
≤ i ≤ c2

n1/4

log9/8 n
. For every

t ∈ R, Pr(Φt = 1) ≥ 1/3.

• If Φt = 1, then the symbol that has appeared t times has probability pi or

pi + i
n

with almost equal probability.

• Label-invariant estimators cannot distinguish between the two cases, and

hence incur an error of Ω̃(i/n) = Ω̃(n−3/4) for a constant fraction of multi-

plicities t ∈ R.

The total number of multiplicities in R is n1/4 · n1/4 = n1/2. Multiplying by the

error for each multiplicity yields the bound Ω̃(n−1/4).

3.7 Proofs for the improved estimator

3.7.1 Bounds on linear estimators

In this section, we prove error bounds for linear estimators that are used to

simplify other proofs in the chapter. We first show that the difference of expected

values of consecutive Φt’s is bounded.

Lemma 3.25. For every distribution p and every t,

|E[Φt]− E[Φt+1]| = O

(
E[Φt] max

(
log n

t+ 1
,

√
log n

t+ 1

))
+

1

n
.
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Proof. We consider the two cases t + 1 ≥ log n and t + 1 < log n separately.

Consider the case when t+ 1 ≥ log n. We first show that

|E[1Nx=t]− E[1Nx=t+1]| = e−npx
(npx)

t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣ ≤ 5e−npx
(npx)

t

t!

√
log n

t+ 1
+

2

n3
.

(3.7)

The first equality follows by substituting E[1Nx=t] = e−npx(npx)
t/t!. For the in-

equality, note that if |npx − t − 1|2 ≤ 25(t + 1) log n, then the inequality follows.

If not, then by the Chernoff bound

E[1Nx=t] = Pr(tx = t) ≤ n−3

and hence

|E[1Nx=t]− E[1Nx=t+1]| ≤ E[1Nx=t] + E[1Nx=t+1] ≤ 2/n3.

By definition,

E[Φt]− E[Φt+1] =
∑
x

E[1Nx=t]− E[1Nx=t+1].

Substituting,

|E[Φt]− E[Φt+1]| ≤
∑
x

|E[1Nx=t]− E[1Nx=t+1]|

(a)
=
∑
x

e−npx
(npx)

t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣
=

∑
x:npx≤1

e−npx
(npx)

t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣+
∑

x:npx>1

e−npx
(npx)

t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣
(b)

≤
∑

x:npx≤1

npx
t!

+
∑

x:npx>1

5e−npx
(npx)

t

t!

√
log n

t+ 1
+

2

n3

≤ 1

n2
+O

(
E[Φt]

√
log n

t+ 1

)
+

2n

n3
≤ O

(
E[Φt]

√
log n

t+ 1

)
+

1

n
.

where (a) follows from the fact that E[1Nx=t] = e−npx(npx)
t/t!. (b) follows from

the fact that npx ≤ 1 in the first summation and Equation (3.7). The proof for

the case t+ 1 < log n is similar and hence omitted.

Next we prove a concentration inequality for any linear estimator f .
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Lemma 3.26. Let r ≤
√

t0
logn

, t0 ≥ log n, and f =
∑

t∈S
t0
r
ctΦt. For every distri-

bution p if E[Φt0 ] ≥ log 1
δ
, then

|f − E[f ]| =
δ
O

(
max
t∈S

t0
r

|ct|
√

E[Φt0 ](2r + 1) log
1

δ

)
.

Proof. By Lemma 3.8,

Var(f) ≤
∑
t∈S

t0
r

∑
x

c2
tE[1Nx=t]

≤

(
max
t∈S

t0
r

ct

)2 ∑
t∈S

t0
r

∑
x

E[1Nx=t]

(a)
=

(
max
t∈S

t0
r

ct

)2 ∑
t∈S

t0
r

E[Φt]

= O

(max
t∈S

t0
r

ct

)2

(2r + 1)E[Φt0 ]

 .

Substituting
∑

x E[1Nx=t] = E[Φt] results in (a). The last equality follows by

repeatedly applying Lemma 3.25. Changing one of the multiplicities changes f by

at-most max
t∈S

t0
r
|ct|. Applying Bernstein’s inequality with the above calculated

bounds on variance, M = max
t∈S

t0
r
|ct|, and

∑
i εi = 0 yields the lemma.

Next we prove a concentration bound for Φt in the next lemma.

Lemma 3.27. For every distribution p and every multiplicity t, if E[Φt] ≥ log 1
δ
,

then

|Φt − E[Φt]| =
δ
O
(√

E[Φt] log
1

δ

)
.

Proof. Since Φt =
∑

x 1Nx=t, by Lemma 3.8, Var(Φt) ≤ E[Φt]. Furthermore

|1Nx=t − E(1Nx=t)| ≤ 1. Applying Bernstein’s inequality with M = 1, Var(Φt) ≤
E[Φt], and

∑
i εi = 0 proves the lemma.

3.7.2 Proof of Lemma 3.17

Let ε =
20
√
t+1 log n

δ

n
. Since ϕt =

∑
x 1Nx=t and St =

∑
x px1Nx=t,

Pr

(∣∣∣∣St − Φt tn
∣∣∣∣ ≥ Φtε

)
≤ Pr

(
∃x s.t.

∣∣∣∣px − t

n

∣∣∣∣ > ε,1Nx=t = 1

)
.
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If px ≥ t
n

+ ε, then by the Chernoff bound Pr(1Nx=t = 1) ≤ δ/2n. Therefore by

the union bound,

Pr

(
∃ x s.t. px −

t

n
> ε,1Nx=t = 1

)
≤ n

δ

2n
≤ δ

2
.

Now consider the set of symbols such that px ≤ t
n
− ε. Since px ≥ 0, we have

t ≥ 20
√
t+ 1 log n

δ
. Group symbols x with probability ≤ 1/4n in to smallest

number of groups such that Pr(g) ≤ 1/n for each group g. By Poisson sampling,

for each group g, Ng =
∑

x∈gNx and Ng is a Poisson random variable with mean

Pr(g). Observe that for any two (or more) symbols x and x′,

Pr(Nx ≥ t ∨Nx′ ≥ t) ≤ Pr(Nx +Nx′ ≥ t).

Therefore

Pr

(
∃ x s.t.

t

n
− px > ε,1Nx=t = 1

)
≤ Pr

(
∃ x s.t. Nx ≥ t, px ≤

t

n
− ε
)

≤ Pr

(
∃ g s.t. Ng ≥ t ∨ ∃x s.t. Nx ≥ t,

1

4n
≤ px ≤

t

n
− ε
)
.

It is easy to see that the number of groups and the number of symbols with

probabilities ≥ 1/4n is at most n+1+4n ≤ 6n. Therefore by the union bound and

the Chernoff bound the above probability is ≤ δ/2. Adding the error probabilities

for cases px ≥ t
n

+ ε and px ≤ t
n
− ε results in the lemma. �

3.7.3 Proof of Lemma 3.18

By Lemma 3.7, E
[
St − Φt+1

t+1
n

]
= 0. Recall that St =

∑
x px1Nx=t and

Φt+1 =
∑

x 1Nx=t+1. Hence by Lemma 3.8 (stated and proved in Section 3.7),

Var

(
St − Φt+1

t+ 1

n

)
≤
∑
x

E[1Nx=t]p
2
x + E[1Nx=t+1]

(t+ 1)2

n2

(a)
=
∑
x

E[1Nx=t+2]
(t+ 1(t+ 2)

n2
+ E[1Nx=t+1]

(t+ 1)2

n2

(b)
= O

(
(E[Φt+1] + 1)(t+ 1)2 log n

n2

)
.
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E[1Nx=t] = e−npx(npx)
t/t! and E[1t+2

x ] = e−npx(npx)
t+2/t + 2!, and hence (a). (b)

follows from Lemma 3.25 (stated and proved in Section 3.7) and the fact that∑
x E[1Nx=t+2] = E[Φt+2]. By the proof of Lemma 3.17,

Pr

(
∃x s.t.

∣∣∣∣px − t

n

∣∣∣∣ > 20
√
t+ 1 log n

δ′

n
,1Nx=t = 1

)
≤ δ′.

Choosing δ′ = δ/2 we get ∀x,∣∣∣∣1Nx=tpx − 1Nx=t+1
t+ 1

n

∣∣∣∣ = O

(√
t+ 1 log n

δ

n
+
t+ 1

n

)

with probability 1−δ/2. The lemma follows from Bernstein’s inequality with M =

O
(√

t+1 log n
δ

n
+ t+1

n

)
,
∑

i εi = δ/2, and above calculated bound on the variance. �

3.7.4 Proof of Lemma 3.20

By Lemma 3.7,

E[St]− E[Φt]
t+ 1

n

E[Φt+1]

E[Φt]
= 0.

We now bound the variance. By definition, St =
∑

x px1Nx=t and Φt+1 =
∑

x 1Nx=t+1.

Using Lemma 3.8,

Var

(
St −

(t+ 1)Φt
n

E[Φt+1]

E[Φt]

)
≤
∑
x

E[1Nx=t]

(
px −

(t+ 1)E[Φt+1]

nE[Φt]

)2

=
∑
x

E[1Nx=t]

(
px −

t+ 1

n
+

(t+ 1)(E[Φt]− E[Φt+1])

nE[Φt]

)2

(a)

≤
∑
x

2E[1Nx=t]

(
px −

t+ 1

n

)2

+ 2E[1Nx=t]

(
(E[(Φt+1]− E[Φt])(t+ 1)

nE[Φt]

)2

(b)
= O

(
E[Φt]t log2 n

n2

)
,

where (a) follows from the fact that (x + y)2 ≤ 2x2 + 2y2. Similar to the proof

of Lemma 3.25, one can show that the first term in (a) is O
(

E[Φt]t log2 n
n2

)
. The

second term can be bounded by O
(

E[Φt]t log2 n
n2

)
using Lemma 3.25, hence (b). We
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now bound the maximum value of each individual term in the summation. By the

proof of Lemma 3.17,

Pr

(
∃x s.t.

∣∣∣∣px − t

n

∣∣∣∣ > c
√
t+ 1 log n

δ′

n
,1Nx=t = 1

)
≤ δ′ (3.8)

Choosing δ′ = δ/2 we get that with probability 1− δ/2, ∀x

1Nx=t

∣∣∣∣px − (t+ 1)E[Φt+1]

nE[Φt]

∣∣∣∣ ≤ 1Nx=t

∣∣∣∣px − t+ 1

n

∣∣∣∣+

∣∣∣∣(t+ 1)E[Φt+1]− E[Φt]

nE[Φt]

∣∣∣∣
(a)
= O

(√
t+ 1 log n

δ

n
+

(t+ 1) log n

n

)

= O
(

(t+ 1) log n
δ

n

)
.

where the (a) follows from Lemma 3.25 and Equation (3.8). The lemma follows

from Bernstein’s inequality with the calculated variance, M = O
(

(t+1) log n
δ

n

)
, and∑

i εi = δ/2. �

3.7.5 Proof of Lemma 3.21

By assumption, |r(x − 1)| ≤ min(1, x). Hence |r lnx| < 2|r(x − 1)| and

|r lnx| ≤ 1. Therefore

|Br(x)| =

∣∣∣∣∣1− γr(0)−
r∑
i=1

γr(i)2 cosh(i lnx)

∣∣∣∣∣
=

∣∣∣∣∣1− γr(0)− 2
r∑
i=1

γr(i)
(

1 +
(i lnx)2

2!
+

(i lnx)4

4!
+

(i lnx)6

6!
+ · · ·

)∣∣∣∣∣
(a)
=
∣∣∣2 r∑

i=1

γr(i)
((i lnx)4

4!
+

(i lnx)6

6!
+ · · ·

)∣∣∣
(b)

≤ 2
r∑
i=1

∣∣∣γr(i)∣∣∣2(i lnx)4

4!
,

where in (a) we use that γr(0) + 2
∑r

i=1 γr(i) = 1 and
∑r

i=1 γr(i)i
2 = 0. (b) follows

from the fact that |r lnx| ≤ 1. Now using r| ln(x)| ≤ 2r|x−1|, and |γr(i)| = O
(

1
r+1

)
(can be shown), the result follows. �
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3.7.6 Proof of Lemma 3.22

The proof is technically involved and we prove it in steps. We first observe

the following property of a
t0
t . The proof follows from the definition.

Lemma 3.28. For every distribution p and multiplicities t, t0 ,

a
t0
t E[1Nx=t] = E[1Nx=t0 ]

(
npx
t0

)t−t0
.

Next we bound Ê[Φt]−E[Φt]. The proposed estimators for E[Φt] and E[Φt+1]

have positive bias. Hence we analyze Ê[Φt] − Ê[Φt+1] to prove tighter bounds for

the ratio.

Lemma 3.29. Let r ≤
√
t0

logn
and t0 ≥ log n. For every distribution p, if E[Φt0 ] ≥

log 1
δ
, then

∣∣∣Ê[Φt0 ]− E[Φt0 ]
∣∣∣ =
δ
O

r4 log2 nE[Φt0 ]

t20
+

√
E[Φt0 ] log 1

δ

r + 1

 ,

and

∣∣∣Ê[Φt0 ]− Ê[Φt0+1]− E[Φt0 − Φt0+1]
∣∣∣ =
δ
O

r4E[Φt0 ] log2.5 n

t2.50

+

√
E[Φt0 ] log 1

δ

(r + 1)1.5

 .

Proof. By triangle inequality,∣∣∣Ê[Φt0 ]− E[Φt0 ]
∣∣∣ ≤ |Ê[Φt0 ]− E[Ê[Φt0 ]]|+

∣∣∣E[Φt0 ]− E[Ê[Φt0 ]]
∣∣∣ .

We first bound |Ê[Φt0 ]− E[Ê[Φt0 ]]|.
Since r ≤

√
t0 it can show that a

t0
t ≤ e and |γr(|t − t0|)| = O((r + 1)−1).

Therefore each coefficient in Ê[Φt0 ] is O((r+ 1)−1). Hence by Lemma 3.26 (stated

and proved in Section 3.7),

∣∣∣Ê[Φt0 ]− E[Ê[Φt0 ]]
∣∣∣ =
δ
O

√E[Φt0 ] log 1
δ

r + 1

 .
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Next we bound the bias, i.e.,
∣∣∣E[Φt0 ]− E[Ê[Φt0 ]]

∣∣∣. Recall that a
t0
t E[1Nx=t] =

E[1Nx=t0 ]
(
npx
t0

)t−t0
. Therefore by the linearity of expectation and the definition

of Br(x),

E[Ê[Φt0 ]]− E[Φt0 ] =
∑
x

E[1Nx=t0 ]Br

(
npx
t0

)
.

For r = 0, the bias is 0. For r ≥ 1, by the Chernoff bound and the grouping

argument similar to that in the proof of empirical estimator 3.17, it can be shown

that there is a constant c such that if |npx − t0| ≥ c
√
t0 log n, then∑

x∈X

E[1Nx=t0 ]Br

(
npx
t0

)
≤ 1

n3
.

If not, then by Lemma 3.21,

Br

(
npx
t0

)
= O

(
r4 log2 n

t20

)
.

Bounding E[1Nx=t0 ]Br

(
npx
t0

)
for each alphabet x and using the fact that E[Φt0 ] ≥

log 1
δ
, we get∣∣∣ E[Ê[Φt0 ]]− E[Φt0 ]

∣∣∣ =
∑
x

E[1Nx=t0 ]O
(
r4 log2 n

t20

)
+

1

n3
= O

(
E[Φt0 ]

r4 log2 n

t20

)
.

The first part of the lemma follows by the union bound. The proof of the second

part is similar. We will prove the concentration of Ê[Φt0 ]−Ê[Φt0+1] and then quan-

tify the bias. We first bound the coefficients in Ê[Φt0 ] − Ê[Φt0+1]. The coefficient

of Φt is bounded by

a
t0
t

|γr(|t0 + 1− t|)|
t0 + 1

+ a
t0
t |γr(|t0 + 1− t|)− γr(|t0 − t|)| = O

(
1

(r + 1)2

)
.

Applying Lemma 3.26, we get

∣∣∣Ê[Φt0 ]− Ê[Φt0+1]− E[Ê[Φt0 ]− Ê[Φt0+1]]
∣∣∣ =
δ
O


√
E[Φt0 ] log 1

δ

(r + 1)1.5

 .

Next we bound the bias.

E[Ê[Φt0 ]− Ê[Φt0+1]]− E[Φt0 − Φt0+1] =
∑
x

E[1Nx=t0 ]

(
1− npx

t0 + 1

)
Br

(
npx
t0

)
.

As before, bounding E[1Nx=t0 ]
(

1− npx
t0+1

)
Br

(
npx
t0

)
for each x yields the lemma.
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Now we have all the tools to prove Lemma 3.22.

Proof of Lemma 3.22. If |∆b| ≤ 0.9b, then

|a+ ∆a

b+ ∆b
− a

b
| ≤ O(∆b)a

b2
+
O(∆a)

b
.

Let b = E[Φt0 ], a = E[Φt0+1 − Φt0 ], ∆b = Ê[Φt0+1] − E[Φt0 ] and ∆a = Ê[Φt0 ] −
Ê[Φt0+1] − E[Φt0 − Φt0+1]. By Lemma 3.29, if E[Φt0 ] ≥ log2 n

δ
and t0 ≥ r2 log1.5 n,

then |∆b| ≤ 0.9b. Therefore by Lemma 3.29, Lemma 3.25, and the union bound,∣∣∣∣∣ Ê[Φt0+1]

Ê[Φt0 ]
−

E[Φt0+1]

E[Φt0 ]

∣∣∣∣∣ =
2δ′
O

r4 log2.5 n

t2.50

+
log0.5 n

δ′

(r + 1)1.5
√

E[Φt0 ]

 . (3.9)

By Lemma 3.27 (stated and proved in Section 3.7), if E[Φt0 ] ≥ log2 n
δ
, then with

probability 1− δ/2, Φt0 ∈ [0.5E[Φt0 ], 2E[Φt0 ]]. Hence,

rt0 ∈ R
def
=

[⌊ √
t0

(2E[Φt0 ]
√
t0)1/11 log n

⌋
,

⌊ √
t0

(0.5E[Φt0 ]
√
t0)1/11 log n

⌋]
.

Therefore if we prove the concentration bounds for all r ∈ R, the lemma would

follow by the union bound. If maxrR < 1, then substituting r = 0 in Equa-

tion (3.9) yields the result for the case E[Φt0 ] ≥ 2
logn

(
t0

log2 n

)5

. If minrR ≥ 1, then

substituting r = Θ

(
√
t

(E[Φt0 ]
√
t0 )1/11 logn

)
in Equation (3.9) yields the result for the

case E[Φt0 ] ≤ 0.5
logn

(
t0

log2 n

)5

. A similar analysis proves the result for the case 1 ∈ R.

Choosing δ′ = δ/2 in Equation (3.9) and using the union bound we get the total

error probability ≤ δ.

3.7.7 Proof of Lemma 3.23

The proof uses the bound on the error of Ft, which is given below.

Lemma 3.30. For every distribution p and t ≥ log2 n, if 1
logn

(
t

log2 n

)5

≥ E[Φt] ≥
log2 n

δ
, then

|St − Ft| =
2δ
O

(
(E[Φt]

√
t)7/11 log2 n

δ

n
+

√
E[Φt]t log2 n

δ

n

)
,
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and if E[Φt] ≥ 1
logn

(
t

log2 n

)5

, then

|St − Ft| =
2δ
O

(
t
√
E[Φt] log2 n

δ

n
+

√
E[Φt]t log2 n

δ

n

)
.

Proof. is a simple application of triangle inequality and the union bound. It follows

from Lemmas 3.20 and 3.22.

Lemma 3.23. We first show that E[Φt] and E[Φt+1] in the bounds of Lemmas 3.30

and 3.18 can be replaced by Φt. By Lemma 3.25, if E[Φt+1] ≥ 1,

|E[Φt]− E[Φt+1]| = O

(
E[Φt] max

(
log n

t+ 1
,

√
log n

t+ 1

))
+

1

n
= O (E[Φt] log n) .

Hence E[Φt+1] = O(E[Φt] log n). Hence by Lemma 3.18, for E[Φt] ≥ 1,

|St −Gt| =
0.5n−3

O
(√

E[Φt+1] + 1
(t+ 1) log2 n

n

)
= O

(√
E[Φt]

(t+ 1) log3 n

n

)
.

Furthermore by Lemma 3.27, if E[Φt] ≤ 0.5 log2 n, then Φt ≤ log2 n with probability

≥ 1 − 0.5n−3, and we use the empirical estimator. Therefore with probability

≥ 1−0.5n−3, Ft andGt are used only if E[Φt] ≥ 0.5 log2 n. If E[Φt] ≥ 0.5 log2 n, then

by Lemma 3.27 E[Φt] =
0.5n−3

O(Φt). Therefore by the union bound, if Φt ≥ log2 n,

then

|St −Gt| =
n−3
O
(√

Φt
(t+ 1) log3 n

n

)
.

Similarly by Lemma 3.30, for t ≥ log2 n and Φt ≥ log2 n, if 1
logn

(
t

log2 n

)5

≥ E[Φt] ≥
log2 n, then

|St − Ft| =
0.5n−3

O

(
(E[Φt]

√
t)7/11 log2 n

n
+

√
E[Φt]t log2 n

n

)
=
n−3
O

(
Φ

7/11
t

√
t log2 n

n

)
,

and if E[Φt] ≥ 1
logn

(
t

log2 n

)5

, then

|St − Ft| =
0.5n−3

O

(
t
√

E[Φt] log2 n

n
+

√
E[Φt]t log2 n

n

)
=
n−3
O
(
t
√
Φt log2 n

n

)
.

Using the above mentioned modified versions of Lemmas 3.18, 3.30 and Lemma 3.17,

it can be easily shown that the lemma is true for t ≥ 1. By Lemma 3.18,

|F ′un
0 − S0| =

n−3
Õ
(√

Φ1

n

)
.
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By the Chernoff bound with probability ≥ 1− e−n/4, Φ1 ≤ n′ ≤ 2n. Hence,

|F ′un
0 − S0| =

4n−3
Õ
(

1√
n

)
.

Note that the error probabilities are not optimized.

3.7.8 Proof of Lemma 3.24

By triangle inequality, |N − 1| = |
∑

t F
′un
t − St| ≤

∑
t |F ′un

t − St|. By

Lemma 3.23, for t = 0, |S0 − F ′un
0 | =

4n−3
Õ
(
n−1/2

)
. We now use Lemma 3.23 to

bound |F ′un
t − St| for t ≥ 1. Since

∑
t tΦt = n′ is a Poisson random variable with

mean n, Pr(
∑

t tΦt ≤ 2n) ≥ 1 − e−n/4. For t ≥ 1, applying Cauchy Schwarz

inequality repeatedly with the above constraints we get

|N − 1| =
10n−2

2n∑
t=1

O

(
min

(
Φ

7/11
t

√
t

n
,

√
Φtt

n

)
polylog(n)

)

=
2n∑
t=1

Õ
(√

t

n
Φ

7/11
t

)

= Õ


√√√√ 2n∑

t=1

tΦt
n

2n∑
t=1

Φ
3/11
t

n

 (a)
= Õ


√√√√ 2n∑

t=1

Φ
1/2
t

n



= Õ

min


√√√√√
√√√√ 2n∑

t=1

Φtt

n

2n∑
t=1

1

nt
,

√
k√
n




= Õ

(
min

(
1

n1/4
,

√
k√
n

))
.

Φt takes only integer values, hence (a). Note that by the union bound, the error

probability is bounded by

Pr

(∑
t

tΦt > 2n

)
+

2n∑
t=0

Pr

(
|St − F ′un

t | 6= Õ

(
min

(
Φ

7/11
t

√
t

n
,

√
Φtt

n

)))
.

By the concentration of Poisson random variables (discussed above) the first term is

≤ e−n/4. By Lemma 3.23, the second term is 2n(4n−3). Hence the error probability

is bounded by e−n/4 + 2n(4n−3) ≤ 10n−2.
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3.7.9 Proof of Theorem 3.3

It is easy to show that if Φt > log2 n, with probability ≥ 1− n−3,

max(Gt, 1/n) = Gt and min(max(Ft, n
−3)1) = Ft. For the clarity of proofs we

ignore these modifications and add an additional error probability of n−3.

Recall that F ′t =
F ′un
t

N
. By Jensen’s inequality,

∑
t

St log
St
F ′t
≤ log

∑
t

M2
t

F ′t
.

Furthermore ∑
t

M2
t

F ′t
= 1 +

(St − F ′t)2

F ′t
.

Substituting F ′t = F ′un
t /N and rearranging, we get∑

t

(St − F ′t)2

F ′t
≤ 2(N − 1)2 +

∑
t

2N
(St − F ′un

t )2

F ′un
t

.

By Lemma 3.24, N = 1 + Õ(n−1/4). Therefore,∑
t

(St − F ′t)2

F ′t
= Õ

(
min

(
1

n1/2
,
k

n

))
+
∑
t

O
(

(St − F ′un
t )2

F ′un
t

)
.

To bound the second term in the above equation, we bound |F ′un
t − St| and F ′un

t

separately. We first show that F ′un
t =

n−3
Ω̃
(
tΦt
n

)
.

If empirical estimator is used for estimation, then F ′un
t = Φt

t
n
. If Good-

Turing or Ft is used, then Φt ≥ log2 n. If E[Φt] ≤ 0.5 log2 n, then Pr(Φt ≥ log2 n) ≤
0.5n−3. If E[Φt] ≥ 0.5 log2 n, then using Lemma 3.25 and Lemma 3.22 it can be

shown that F ′un
t =

0.5n−3
Ω̃
(
tΦt
n

)
. By the union bound, F ′un

t =
n−3

Ω̃
(
tΦt
n

)
.

Now using bounds on |F ′un
t −St| from Lemma 3.23 and the fact that F ′un

t =

Ω̃(Φtt/n), we bound the KL divergence. Observe that
∑

t tΦt = n′ is a Poisson

random variable with mean n, therefore

Pr(
∑
t

tΦt ≤ 2n) ≥ 1− e−n/4.

Applying Cauchy Schwarz inequality repeatedly with the above constraint and
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using bounds on |F ′un
t − St| (Lemma 3.23) and F ′t we get

2n∑
t=1

(St − F ′un
t )2

F ′un
t

=
2n(4n−3+n−3)

2n∑
t=1

O

(
min

(
t

n
,
Φ

3/11
t

n

)
polylog(n)

)

=
2n∑
t=1

Õ

(
Φ

1/2
t

n

)

= Õ

min


√√√√ 2n∑

t=1

Φtt

n

2n∑
t=1

1

nt
,
k

n


= Õ

(
min

(
1

n1/2
,
k

n

))
.

For t = 0, by Lemma 3.18, (S0 − F ′un
0 )2 =

n−3
O
(
Φ1polylog(n)

n2 + polylog(n)
n2

)
and hence,

(S0 − F ′un
0 )2

F ′un
0

=
n−3
Õ
(

1

n

)
.

Similar to the proof of Lemma 3.24, by the union bound the error probability is

at most

e−n/4 + 10n−2 + 2n(4n−3 + n−3) + n−3 + n−3 ≤ 22n−2 ≤ e−1n−1.5

for n ≥ 4000. Hence with poi(n) samples, error probability is ≤ e−1n−1.5 . There-

fore by Lemma 3.6, with exactly n samples, error probability is ≤ n−1.

3.8 Prediction

3.8.1 Background

Probability estimation can be naturally applied to prediction and compres-

sion. Upon observing a sequence X i def
= X1, . . . ,Xi generated i.i.d. according to

some distribution p ∈ DX , we would like to form an estimate q(x|xi) of p(x) to

minimize a cumulative loss
∑n

i=1 fp(q(Xi+1|X i), Xi+1) see for example [44, 45].

The most commonly used loss is log-loss,

fp(q(xi+1|xi), xi+1) = log(q(xi+1|xi)/p(xi+1)).
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Its numerous applications include compression, e.g., [45], MDL principle, e.g., [46],

and learning theory, e.g., [47]. Its expected value is the KL-divergence between

the underlying distribution p and the prediction q.

Again we consider label-invariant predictors that use only ordering and

frequency of symbols, not the specific labels. Following [22], after observing n

samples, we assign probability to each of the previously-observed symbols, and to

observing a new symbol new. For example, if after three samples, the sequence

observed is aba, we assign the probabilities q(a|aba), q(b|aba), and q(new|aba) that

reflects the probability at which we think a symbol other than a or b will appear.

These three probabilities must add to 1. Furthermore, if the sequence is bcb, then

the probability we assign to b must be the same as the probability we previously

assigned to a.

Equivalently, [22] defined the pattern of a sequence to be the sequence of

integers, where the ith new symbol appearing in the original sequence is replaced

by the integer i. For example, the pattern of aba is 121. We use Ψn and to denote

a length-n pattern, and Ψi to denote its ith element.

The prediction problem is now that of estimating Pr(Ψn+1|Ψn), where if

Ψn consists of m distinct symbols then the distribution is over [m+ 1], and m+ 1

reflects a new symbol. For example, after observing 121, we assign probabilities to

1, 2, and 3.

3.8.2 Previous results

[22] proved that the Good-Turing estimator achieves constant per-symbol

worst-case log-loss, and constructed two sequential estimators with diminishing

worst-case log-loss: a computationally efficient estimator with log-loss O(n−1/3),

and a high complexity estimator with log-loss O(n−1/2). [48] constructed a low-

complexity block estimator for patterns with worst-case per-symbol log-loss of

O(n−1/2). For expected log-loss, [49] improved this bound to O(n−3/5) and [50]

further improved it to Õ(n−2/3), but their estimators are computationally ineffi-

cient.
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3.8.3 New results

Using Theorem 3.3, we obtain a computationally efficient predictor q that

achieves expected log-loss of Õ(n−1/2). Let F ′t be the estimator proposed in Sec-

tion 3.6.3. Let q(Ψn+1|Ψn) =
F ′t
Φt

if Ψn+1 appears t times in Ψn, and F ′0, if it is Ψn+1

is a new symbol. The following corollary bounds the predictor’s performance.

Corollary 3.31. For every distribution p,

Ep[D(p(Ψn+1|Ψn)||q(Ψn+1|Ψn)] = Õ
(

1

n1/2

)
.

Proof. By definition Pr(Ψn)
def
=
∑

xn|Ψ(xn)=Ψn Pr(xn). Let ψ appear t times in Ψn.

Using the fact that sampling is i.i.d., and the definition of pattern, each of the Φt

integers (in the pattern) are equally likely to appear as Ψn+1. This leads to,

P (Ψn+1,Ψn+1 = ψ) =
∑

xn|Ψ(xn)=Ψn

Pr(xn)
St(x

n)

Φt
,

and hence

Pr(Ψn+1|Ψn) =

∑
xn|Ψ(xn)=Ψn Pr(xn)St(x

n)
Φt∑

xn|Ψ(xn)=Ψn Pr(xn)
.

Any label-invariant estimator including the proposed estimator assigns identical

values for F ′t to all sequences with the same pattern. Hence

E

[∑
t

St log
St
F ′t

]

=
∑
xn

p(xn)
∑
t

St(x
n) log

St(x
n)

F ′t(x
n)

=
∑
Ψn

∑
t

∑
xn|Ψ(xn)=Ψn

p(xn)St(x
n) log

p(xn)St(x
n)

p(xn)F ′t(x
n)

(a)

≥
∑
Ψn

∑
t

( ∑
xn|Ψ(xn)=Ψn

p(xn)St(x
n)
)

log

(∑
xn|Ψ(xn)=Ψn p(x

n)St(x
n)
)

(
(
∑

xn|Ψ(xn)=Ψn p(x
n))F ′t(x

n)
)

=
∑
Ψn

∑
t

(
P (Ψn)P (Ψn+1|Ψn)

)
log

P (Ψn+1)

P (Ψn)F ′t

= EΨn∼P

[ m+1∑
Ψn+1=1

P (Ψn+1|Ψn) log

(
P (Ψn+1|Ψn)

q(Ψn+1|Ψn)

)]
,
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where in (a) we used the log-sum inequality and the fact that our estimator F ′t is

identical for all sequences with the same pattern.
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Chapter 4

Competitive classification

4.1 Introduction

4.1.1 Background

Classification is one of the most studied problems in machine learning and

statistics [51]. Given two training sequences Xn and Y n, drawn i.i.d. according

to two distributions p and q respectively, we would like to associate a new test

sequence Zm drawn i.i.d. according to one of p and q with the training sequence

that was generated by the same distribution.

It can be argued that natural classification algorithms are label invariant,

namely, their decisions remain the same under all one-one symbol relabellings,

e.g., [52]. For example, if given training sequences abb and cbc, and a classifier

associates b with abb, then given utt and gtg, it must associate t with utt.

Our objective is to derive a competitive classifier whose error is close to the

best possible by any label-invariant classifier, uniformly over all (p, q). Namely, a

single classifier whose error probability differs from that of the best classifier for

the given (p, q) by a quantity that diminishes to 0 at a rate determined by the

sample size n alone, and is independent of p and q.

72
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4.1.2 Previous results

A number of classifiers have been studied in the past, including the likelihood-

ratio, generalized-likelihood, and Chi-Square tests. However while they perform

well when the number of samples is large, none of them is uniformly competitive

with all label-invariant classifiers.

When m = Θ(n), classification can be related to the problem of closeness

testing that asks whether two sequences Xn and Y n are generated by the same or

different distributions. Over the last decade, closeness testing has been considered

by a number of researchers. [53] showed that testing if the distributions generating

Xn and Y n are identical or are at least δ apart in `1 distance requires n = Õ(k2/3)

samples where the constant depends on δ. [32] took a competitive view of closeness

testing and derived a test whose error is ≤ εeO(n2/3) where ε is the error of the best

label-invariant protocol for this problem, designed in general with knowledge of p

and q.

Their result shows that if the optimal closeness test requires n samples to

achieve an error ≤ ε, then the proposed test achieves the same error with Õ(n3)

samples. [33] improved it to Õ(n3/2) and proved a lower bound of Ω̃(n7/6) samples.

4.1.3 New results

We consider the case where m = 1, namely the test data is a single sample.

Many machine-learning problems are defined in this regime, for example, we are

given the DNA sequences of several individuals and need to decide whether or not

they are susceptible to a certain disease e.g., [54].

It may seem that when m = 1, the best classifier is a simple majority

classifier that associates Z with the sequence Xn or Y n where Z appears more

times. Perhaps surprisingly, the next example shows that this is not the case.

Example 4.1. Let p = U [n] and q = U [2n] be the uniform distributions over

{1, . . . ,n} and {1, . . . ,2n}, and let the test symbol Z be generated according to

U [n] or U [2n] with equal probability. We show that the empirical classifier, that

associates Z with the sample in which it appeared more times, entails a constant



74

additional error more than the best achievable.

The probability that Z appears in both Xn and Y n is a constant. And in

all these cases, the optimal label-invariant test that knows p and q assigns Z to

U [n], namely Xn, because p(Z) = 1/n > 1/2n = q(Z). However, with constant

probability, Z appears more times in Y n than in Xn, and then the empirical

classifier associates Z with the wrong training sample, incurring a constant error

above that of the optimal classifier.

Using probability-estimation techniques, we derive a uniformly competitive

classifier. Before stating our results we formally define the quantities involved.

Recall that Xn ∼ p and Y n ∼ q. A classifier S is a mapping S : X ∗ × X ∗ × X →
{x, y}, where S(x, y, z) indicates whether z is generated by the same distribution

as x or y. For simplicity we assume that Z ∼ p or q with equal probability, but

this assumption can be easily relaxed. The error probability of a classifier S with

n samples is

ES
p,q

(n) =
1

2
Pr (S(Xn, Y n, Z) = y|Z ∼ p) +

1

2
Pr (S(Xn, Y n, Z) = x|Z ∼ q).

Let S be the collection of label-invariant classifiers. For every p, q, let ESp,q
p,q

(n) =

minS∈S ESp,q(n) be the lowest error achieved for (p, q) by any label-invariant clas-

sifier, where the classifier Sp,q achieving ESp,q
p,q

(n) is typically designed with prior

knowledge of (p, q).

We construct a linear-time label-invariant classifier S whose error is close

to ESp,q
p,q

(n). We first extend the ideas developed in the previous section to pairs of

sequences and develop an estimator F ′pt,t′ , and then use this estimator to construct

a classifier whose extra error is Õ(n−1/5).

Theorem 4.2. For all (p, q), there exists a classifier S such that

ES
p,q

(n) = ESp,q
p,q

(n) + Õ
(

1

n1/5

)
.

In Section 4.2 we state the classifier that has extra error Õ(n−1/5) and

prove Theorem 4.2. In Section 4.2.6 we also provide a non-tight lower bound

for the problem and show that for any classifier S, there exist (p, q), such that

ES
p,q

(n) = ESp,q
p,q

(n) + Ω̃
(
n−1/3

)
.
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4.2 Label-invariant classification

In this section, we extend the combined-probability estimator to joint-

sequences and propose a competitive classifier. First introduce profiles, a sufficient

statistic for label-invariant classifiers. Then we relate the problem of classification

to that of estimation in joint sequences. Motivated by the techniques in probabil-

ity estimation, we then develop a joint-sequence probability estimator and prove

its convergence rate, thus proving an upper bound on the error of the proposed

classifier. Finally we prove a non-tight lower bound of Ω̃(n−1/3).

4.2.1 Joint-profiles

Let the training sequences be Xn and Y n and the test sequence be Z1. It is

easy to see that a sufficient statistic for label invariant classifiers is the joint profile

ϕ of Xn, Y n, Z1, that counts how many elements appeared any given number of

times in the three sequences [32]. For example, for X = aabcd, Y = bacde and

Z = a, the profiles are ϕ(X,Y ) = {(2, 1), (1, 1), (1, 1), (0, 1)} and

ϕ(X,Y , Z) = {(2, 1, 1), (1, 1, 0), (1, 1, 0), (1, 1, 0), (0, 1, 0)}. ϕ(X,Y ) indicates that

there is one symbol appearing twice in first sequence and once in second, two

symbols appearing once in both and so on. The profiles for three sequences can

be understood similarly. Any label invariant test is only a function of the joint

profile.

By definition, the probability of a profile is the sum of the probabilities of

all sequences with that profile i.e., for profiles of (x, y, z),

Pr(ϕ) =
∑

x,y,z|ϕ(x,y,z)

Pr(x, y, z).

Pr(ϕ) is difficult to compute due to the permutations involved. Various techniques

to compute profile probabilities are studied in [55]. Still the proposed classifier we

derive runs in linear time.
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4.2.2 Classification via estimation

Let nx(x, y) denote the number of multiplicities symbol x in (x, y). Let

Spt,t′(x, y)
def
=

∑
x:nx(x,y)=(t,t′)

px

be the sum of the probabilities of all elements in p such that nx(x, y) = (t, t′).

Sqt,t′(x, y) is defined similarly.

Let ϕ = ϕ(x, y) be the joint profile of (x, y). If z is generated according

to p, then the probability of observing the joint profile ϕ(x, y, z), where z is an

element appearing t and t′ times respectively in x and y is

Pr p(ϕ(x, y, z)) =
∑

x,y|ϕ(x,y)=ϕ

P (x)Q(y)Spt,t′(x, y),

= Pr(ϕ(x, y))Eϕ[Spt,t′ ],

where Eϕ[Spt,t′ ]
def
= E[Spt,t′ |Φ = ϕ] is the expected value of Spt,t′ given that ϕ is the

profile.

When the two distributions are known and the observed joint profile is

ϕ(x, y, z), then the classification problem becomes a hypothesis testing problem.

The optimal solution to the hypothesis testing when both hypotheses are equally

likely is the one that assigns higher probability to the observation (joint profile in

our case). So the optimal classifier is

Pr p(ϕ(x, y, z))
p

q

>< Pr q(ϕ(x, y, z))

⇒ Eϕ[Spt,t′ ]
p

q

>< Eϕ[Sqt,t′ ].

We will develop variants of F ′t for joint profiles, denoted by F ′pt,t′ , and F ′qt,t′ .

We use these estimators in place of the expected values. Our classifier S assigns

z to x if F ′pt,t′ > F ′qt,t′ and to y if F ′pt,t′ < F ′qt,t′ . Ties are broken at random. There

is an additional error in classification with respect to the optimal label-invariant

classifier when Eϕ[Spt,t′ ] < Eϕ[Sqt,t′ ] but F ′pt,t′ ≥ F ′qt,t′ or vice versa.

Let 1εt,t′ be an indicator random variable that is 1 if

|Eϕ[Spt,t′ ]− Eϕ[Sqt,t′ ]| ≤
∑

s∈{p,q}

|F ′st,t′ − Eϕ[Sst,t′ ]|. (4.1)
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It is easy to see that if there is an additional error, then 1εt,t′ = 1. Using these

conditions the following lemma provides a bound on the additional error with

respect to the optimal.

Lemma 4.3 (Classification via estimation). For every (p, q) and every classifier

S,

ES
p,q

(n) ≤ ESp,q
p,q

(n) +
∑
t,t′

∑
t∈{p,q}

E[1εt,t′|F ′tt,t′ − Stt,t′ |].

Proof. For a joint profile ϕ, S assigns z to the wrong hypothesis, if F ′pt,t′ > F ′qt,t′ and

Eϕ[Spt,t′ ] < Eϕ[Sqt,t′ ] or vice versa. Hence 1εt,t′ = 1. If 1εt,t′ = 1, then the increase in

error is Pr(ϕ)1εt,t′ |Eϕ[Spt,t′ ]− Eϕ[Sqt,t′ ]|. Using Equation (4.1) and summing over all

profiles results in the lemma.

In the next section we develop estimators for Spt,t′ and Sqt,t′ .

4.2.3 Conventional estimation and the proposed approach

Empirical and Good-Turing estimators can be naturally extended to joint

sequences as Ep
t,t′

def
= Φt,t′

t
n

and Gp
t,t′

def
= Φt+1,t′

t+1
n

. As with probability estimation, it

is easy to come up with examples where the rate of convergence of these estimates

is not optimal. The rate of convergence of Good-Turing and empirical estimators

are quantified in the next lemma.

Lemma 4.4 (Empirical and Good-Turing for joint sequences). For every (p, q)

and t and t′,

∣∣Spt,t′ −Gp
t,t′

∣∣ =
n−4
O
(√

E[Φt+1,t′ ] + 1
(t+ 1) log2 n

n

)
,

and if max(t, t′) > 0, then

∣∣Spt,t′ − Ep
t,t′

∣∣ =
n−4
O
(
Φt,t′

√
t+ 1 log n

n

)
.

Similar results hold for Sqt,t′ .

The proof of the above lemma is similar to those of Lemmas 3.17 and 3.18

and hence omitted. Note that the error probability in the above lemma can be
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any polynomial in 1/n. n−4 has been chosen to simplify the analysis. Motivated

by combined-probability estimation, we propose F p
t0 ,t
′
0

for joint sequences as

F p
t0 ,t
′
0

= Φt0 ,t′0
t0 + 1

n

̂E[Φt0+1,t′
0
]

Ê[Φt0 ,t′0 ]
,

where Ê[Φt0 ,t′0 ] and ̂E[Φt0+1,t′
0
] are estimators for E[Φt0 ,t′0 ] and E[Φt0+1,t′

0
] respec-

tively. Let St0 ,t
′
0

r = {(t, t′) | |t− t0| ≤ r, |t′ − t′
0
| ≤ r} and rt0 =

⌊ √
t0

(t0Φt0 ,t
′
0

)1/12 logn

⌋
.

The estimators Ê[Φt0 ,t′0 ] and ̂E[Φt0+1,t′
0
] are given by

Ê[Φt0 ,t′0 ] =
∑

t,t′∈S
t0 ,t
′
0

rt0

ct,t′Φt,t′ , and ̂E[Φt0+1,t′
0
] =

∑
t,t′∈S

t0+1,t′
0

rt0

dt,t′Φt,t′ ,

where

ct,t′ = γrt0 (|t− t0|)γrt0 (|t′ − t′
0
|)at0t a

t′
0

t′

and

dt,t′ = γrt0 (|t− t0 − 1|)γrt0 (|t′ − t′
0
|) t0
t0 + 1

a
t0
t a

t′
0

t′ .

γr and a
t0
t are defined in Section 3.6. The estimatorF q

t0 ,t
′
0

can be obtained similarly.

The next lemma shows that the estimate for the ratio of E[Φt0+1,t′
0
] and

E[Φt0 ,t′0 ] is close to the actual ratio. The proof is similar to that of Lemma 3.22

and hence omitted.

Lemma 4.5. For every (p, q) and every t0 ≥ log2 n, if 1
t0

(
t0

log2 n

)6

≥ E[Φt0 ,t′0 ] ≥
log2 n, then ∣∣∣∣∣∣

̂E[Φt0+1,t′
0
]

Ê[Φt0 ,t′0 ]
−

E[Φt0+1,t′
0
]

E[Φt0 ,t′0 ]

∣∣∣∣∣∣ =
n−4
O

(
log3 n√

t0(E[Φt0 ,t′0 ]t0)1/3

)
,

and if E[Φt0 ,t′0 ] ≥ 1
t0

(
t0

log2 n

)6

, then∣∣∣∣∣∣
̂E[Φt0+1,t′

0
]

Ê[Φt0 ,t′0 ]
−

E[Φt0+1,t′
0
]

E[Φt0 ,t′0 ]

∣∣∣∣∣∣ =
n−4
O

 log3 n√
E[Φt0 ,t′0 ]

 .
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Using the previous lemma, we bound the error of F p
t,t′ in the next lemma.

The proof is similar to that of Lemma 3.30 and hence omitted.

Lemma 4.6. For every (p, q) and t ≥ log2 n, if 1
t

(
t

log2 n

)6

≥ E[Φt,t′ ] ≥ log2 n, then

∣∣Spt,t′ − F p
t,t′

∣∣ =
2n−4
O

(
(E[Φt,t′ ]

2/3t1/6 log3 n

n
+

√
E[Φt,t′ ]t log2 n

n

)
,

and if E[Φt,t′ ] >
1
t

(
t

log3 n

)6

, then

∣∣Spt,t′ − F p
t,t′

∣∣ =
2n−4
O

(
t
√

E[Φt,t′ ] log3 n

n
+

√
E[Φt,t′ ]t log2 n

n

)
.

Similar results hold for Sqt,t′ .

4.2.4 Competitive classifier

The proposed classifier is given below. It estimates Spt,t′ (call it F ′pt,t′) and

Sqt,t′ (call it F ′qt,t′) and assigns z to the hypothesis that has the higher estimate.

Let t and t′ be the multiplicities of the z in x and y respectively. If |t − t′| ≥
√
t+ t′ log2 n, then the classifier uses empirical estimates. Since t and t′ are far

apart, by the Chernoff bound such an estimate provides us good bounds for the

purposes of classification. In other cases, it uses the estimate with the lowest error

bounds, given by Lemma 4.4 for Ep
t,t′ , G

p
t,t′ , and Lemma 4.6 for F p

t,t′ . We also set

F ′pt,t′ = min(F ′pt,t′ , 1) and F ′qt,t′ = min(F ′qt,t′ , 1), to help in the analysis and ensure that

the estimates are always ≤ 1.
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Classifier S(x, y, z)

Input: Two sequences x and y and a symbol z.

Output: x or y.

1. Let t = tz(x) and t′ = tz(y).

2. If max(t, t′) = 0, then F ′pt,t′ = Gp
t,t′ and F ′qt,t′ = Gq

t,t′ .

3. If max(t, t′) > 0 and |t− t′| ≥
√
t+ t′ log2 n or Φt,t′ ≤ log2 n, then F ′pt,t′ =

Ep
t,t′ and F ′qt,t′ = Eq

t,t′ .

4. If max(t, t′) > 0, |t− t′| <
√
t+ t′ log2 n, and Φt,t′ > log2 n, then

(a) If t ≥ 4 log4 n, then F ′pt,t′ = F p
t,t′ and F ′qt,t′ = F q

t,t′ .

(b) If t < 4 log4 n, then F ′pt,t′ = Gp
t,t′ and F ′qt,t′ = Gq

t,t′ .

5. Set F ′pt,t′ = min(F ′pt,t′ , 1) and F ′qt,t′ = min(F ′qt,t′ , 1).

6. If F ′pt,t′ > F ′qt,t′ , then return x. If F ′pt,t′ < F ′qt,t′ , then return y. If F ′pt,t′ = F ′qt,t′

return x or y with equal probability.

4.2.5 Proof of Theorem 4.2

The analysis of the classifier is similar to that of the combined-probability

estimation, and we outline few key steps. The error in estimating Spt,t′ (and Sqt,t′)

is quantified in the following lemma.

Lemma 4.7. For every (p, q), |Sp0,0 − F ′p0,0| =
10n−3

Õ
(

1√
n

)
and for (t, t′) 6= (0, 0)

and |t− t′| ≤
√
t+ t′ log2 n,

|Spt,t′ − F
′p
t,t′ | =

10n−3
Õ

min
(
Φ

2/3
t,t′

√
t+ 1, Φ

1/2
t,t′ (t+ 1)

)
n

 .

Similar results hold for Sqt,t′ .

The analysis of the lemma is similar to that of Lemma 3.23 and hence

omitted. We now prove Theorem 4.2 using the above set of results.
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Proof of Theorem 4.2. Let R = {(t, t′) | |t− t′| ≤
√
t+ t′ log2 n}. By Lemma 4.3,

ES
p,q

(n) is at most

ESp,q
p,q

(n) + 2 max
p

 ∑
(t,t′)∈R

E[1εt,t′ |F
′p
t,t′ − S

p
t,t′|] +

∑
(t,t′)∈Rc

E[1εt,t′ |F
′p
t,t′ − S

p
t,t′ |]

 .

We first show that the second term is O(n−1.5). By Lemma 4.4,

|Spt,t′ − E
p
t,t′ | =

n−4
O
(
Φt,t′
√
t log n

n

)
and |Sqt,t′ − E

q
t,t′| =

n−4
O

(
Φt,t′
√
t′ log n

n

)
.

If |t− t′| ≥
√
t+ t′ log2 n, then

|Spt,t′ − S
q
t,t′| ≥

Φt,t′
√
t+ t′ log2 n

n
.

Hence 1εt,t′ =
2n−4

0. Since with poi(n) samples, the bounds hold with probability

1 − O(n−4), by Lemma 3.6, with exactly n samples, they hold with probability

1 − O(n−3.5). Observe that (t, t′) takes at most n · n = n2 values. Therefore, by

the union bound Pr(1εt,t′ = 1) ≤ O(n−1.5). Hence

max
p

∑
(t,t′)∈Rc

E[|F ′pt,t′ − S
p
t,t′ |] = O(n−1.5).

We now consider the case (t, t′) ∈ R. In Lemma 4.7, the bounds on |F ′pt,t′ − S
p
t,t′ |

hold with probability ≥ 1−O(n−3), with poi(n) samples. Therefore by Lemma 3.6,

with exactly n samples, they hold with probability ≥ 1−O(n−2.5), i.e.,

|F ′pt,t′ − S
p
t,t′ | =

O(n−2.5)
Õ

(
Φ

2/3
t,t′ (t+ t′)1/2

n

)
.

Observe that (t, t′) takes at most n · n = n2 values, hence by the union bound, the

probability that the above bound holds for all (t, t′) ∈ R is at least 1−O(n−0.5).

Since |F ′pt,t′ − S
p
t,t′ | ≤ 1, we get

max
p

∑
(t,t′)∈R

E[|F ′pt,t′ − S
p
t,t′|] ≤

∑
(t,t′)∈R

Õ

(
Φ

2/3
t,t′ (t+ t′)1/2

n

)
+O

(
1

n1/2

)
.

Using techniques similar to those in the proofs Lemma 3.24 and Theorem 3.3, it

can be shown that the above quantity is ≤ Õ(n−1/5), thus proving the theorem.
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4.2.6 Lower bound for classification

We show a non-tight converse for the additional error in this section.

Theorem 4.8. For any classifier S there exists (p, q) such that

ES
p,q

(n) = ESp,q
p,q

(n) + Ω̃

(
1

n1/3

)
.

We construct a distribution q and a collection of distributions P such that

for any distribution p ∈ P , the optimal label-invariant classification error for (p, q)

is 1
2
− Θ

(
1

n1/3 logn

)
. We then show that any label-invariant classifier incurs an

additional error of Ω̃(n−1/3) for at least one pair (p′, q), where p′ ∈ P . Similar

arguments have been used in [56, 57].

Let q be a distribution over i = 1, 2, . . . , n
1/3

logn
such that qi = 3i2 log3 n

cn
, and

c ≤ 2 is the normalization factor.

Let P to be a collection of 2
n1/3

2 logn distributions. For every p ∈ P , for all

odd i, pi = qi ± i logn
n

and pi+1 = qi+1 ∓ i logn
n

, such that, pi + pi+1 = qi + qi+1.

For every p ∈ P . ||p − q||1 = Θ
(

1
n1/3 logn

)
. The next lemma states that every

distribution p ∈ P and q can be classified by a label-invariant classifier with error

1
2
−Θ

(
1

n1/3 logn

)
.

Lemma 4.9. For every p ∈ P and q,

ESp,q
p,q

(n) =
1

2
−Θ

(
1

n1/3 log n

)
.

Proof sketch of Theorem 4.8. We show that for any classifier S,

max
p∈P
ES
p,q

(n) = ESp,q
p,q

(n) + Ω̃(n−1/3)

for some p ∈ P , thus proving the theorem. Since extra information reduces the

error probability, we aid the classifier with a genie that associates the multiplicity

with the probability of the symbol. Using ideas similar to [56, 50], one can show

that the worst error probability of any classifier between q and the set of distri-

bution P is lower bounded by error probability between q and any mixture on P .

We choose the mixture p0 such that each p ∈ P is chosen uniformly at random.

Therefore for any classifier S,

max
p
ES
p,q

(n) ≥
∑
x,y,z

min (q(x)p0(y, z), p0(y)q(x, z))

2
.
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Using techniques similar to [50], it can be shown that difference between above

error and ESp,q
p,q

(n) is Ω̃(n−1/3). The proof is similar to the lower bounds in the

previous chapter and hence omitted.
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Chapter 5

Estimating the unseen

5.1 Introduction

Species estimation is an important problem in numerous scientific disci-

plines. Initially used to estimate ecological diversity [58, 59, 60, 61], it was subse-

quently applied to assess vocabulary size [62, 63], database attribute variation [64],

and password innovation [65]. Recently it has found a number of bio-science ap-

plications including estimation of bacterial and microbial diversity [66, 67, 68, 69],

immune receptor diversity [70], and unseen genetic variations [71].

All approaches to the problem incorporate a statistical model, with the

most popular being the extrapolation model introduced by Fisher, Corbet, and

Williams [72] in 1943. It assumes that n independent samples Xn def
= X1, . . . ,Xn

were collected from an unknown distribution p, and calls for estimating

U
def
= U (Xn, Xn+m

n+1 )
def
=
∣∣{Xn+m

n+1 }\{Xn}
∣∣ ,

the number of hitherto unseen symbols that would be observed if m additional

samples Xn+m
n+1

def
= Xn+1, . . . ,Xn+m, were collected from the same distribution.

In 1956, Good and Toulmin [1] predicted U by a fascinating estimator that

has since intrigued statisticians and a broad range of scientists alike [2]. To

describe the Good-Toulmin estimator we need only a modicum of nomenclature.

The prevalence Φi
def
= Φi(X

n) of an integer i ≥ 0 in Xn is the number of

symbols appearing i times in Xn. For example, for X7=bananas, Φ1 = 2 and

85
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Figure 5.1: GT estimate as a function of t for two realizations random samples
of size n = 5000 generated by a Zipf distribution pi ∝ 1/(i+10) for 1 ≤ i ≤ 10000.

Φ2 = Φ3 = 1, and in Corbet’s table, Φ1 = 118 and Φ2 = 74. Let t
def
= m

n
be the

ratio of the number of future and past samples so that m = tn. Good and Toulmin

estimated U by the surprisingly simple formula

UGT def
= UGT(Xn, t)

def
= −

∞∑
i=1

(−t)iΦi. (5.1)

They showed that for all t ≤ 1, UGT is nearly unbiased, and that while U can be

as high as nt,∗

E(UGT − U)2 . nt2,

hence in expectation, UGT approximates U to within just
√
nt. Figure 5.1 shows

that for the ubiquitous Zipf distribution, UGT indeed approximates U well for all

t < 1. Naturally, we would like to estimate U for as large a t as possible. However,

as t > 1 increases, UGT grows as (−t)iΦi for the largest i such that Φi > 0.

Hence whenever any symbol appears more than once, UGT grows super-linearly in

t, eventually far exceeding U that grows at most linearly in t. Figure 5.1 also shows

that for the same Zipf distribution, for t > 1 indeed UGT does not approximate U

at all.

To predict U for t > 1, Good and Toulmin [1] suggested using the Euler

transform [73] that converts an alternating series into another series with the same

∗For a, b > 0, denote a . b or b & a if a
b ≤ c for some universal constant c. Denote a � b if

both a . b and a & b.
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sum, and heuristically often converges faster. Interestingly, Efron and Thisted [62]

showed that when the Euler transform of UGT is truncated after v terms, it can be

expressed as another simple linear estimator,

UET def
=

n∑
i=1

hET
i · Φi,

where

hET
i

def
= −(−t)i · Pr

(
Bin
(
v,

1

1 + t

)
≥ i

)
,

and

Pr

(
Bin

(
v,

1

1 + t

)
≥ i

)
=


∑v

j=i

(
v
j

)
tv−j

(1+t)v
i ≤ v,

0 i > v,

is the binomial tail probability that decays with i, thereby moderating the rapid

growth of (−t)i.
Over the years, UET has been used by numerous researchers in a variety

of scenarios and a multitude of applications. Yet despite its wide-spread use and

robust empirical results, no provable guarantees have been established for its per-

formance or that of any related estimator when t > 1. The lack of theoretical

understanding, has also precluded clear guidelines for choosing the parameter v in

UET.

5.2 Approach and results

We construct a family of estimators that provably predict U optimally not

just for constant t > 1, but all the way up to t ∝ log n. This shows that per each

observed sample, we can infer properties of log n yet unseen samples. The proof

technique is general and provides a disciplined guideline for choosing the parameter

v for UET and, in addition, a modification that outperforms UET.

5.2.1 Smoothed Good-Toulmin (SGT) estimator

To obtain a new class of estimators, we too start with UGT, but unlike UET

that was derived from UGT via analytical considerations aimed at improving the
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convergence rate, we take a probabilistic view that controls the bias and variance

of UGT and balances the two to obtain a more efficient estimator.

Note that what renders UGT inaccurate when t > 1 is not its bias but mainly

its high variance due to the exponential growth of the coefficients (−t)i in (5.1);

in fact UGT is the unique unbiased estimator for all t and n in the closely related

Poisson sampling model (see Section 5.3). Therefore it is tempting to truncate the

series (5.1) at the `th term and use the partial sum as an estimator:

U ` def
= −

∑̀
i=1

(−t)iΦi. (5.2)

However, for t > 1, it can be shown that for certain distributions most of the

symbols typically appear ` times and hence the last term in (5.2) dominates, re-

sulting in a large bias and inaccurate estimates regardless of the choice of ` (see

Section 5.5.1 for a rigorous justification).

To resolve this problem, we truncate the Good-Toulmin estimator at a

random location, denoted by an independent random nonnegative integer L, and

average over the distribution of L, which yields the following estimator:

UL = EL

[
−

L∑
i=1

(−t)iΦi

]
. (5.3)

The key insight is that since the bias of U ` typically alternates signs as ` grows,

averaging over different cutoff locations takes advantage of the cancellation and

dramatically reduces the bias. Furthermore, the estimator (5.3) can be expressed

simply as a linear combination of prevalences:

UL = EL

[
−
∑
i≥1

(−t)iΦi1i≤L

]
= −

∑
i≥1

(−t)i Pr (L ≥ i)Φi. (5.4)

We shall refer to estimators of the form (5.4) Smoothed Good-Toulmin (SGT)

estimators and the distribution of L the smoothing distribution.

Choosing different smoothing distributions results a variety of linear esti-

mators, where the tail probability Pr (L ≥ i) compensates the exponential growth

of (−t)i thereby stabilizing the variance. Surprisingly, though the motivation and

approach are quite different, SGT estimators include UET in (5.1) as a special case
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which corresponds to the binomial smoothing L ∼ Bin(v, 1
1+t

). This provides an

intuitive probabilistic interpretation of UET, which was originally derived via Eu-

ler’s transform and analytic considerations. As we show in the next section, this

interpretation leads to the first theoretical guarantee for UET as well as improved

estimators that are provably optimal.

5.2.2 Main results

Since U takes in values between 0 and nt, we measure the performance of

an estimator UE by the worst-case normalized mean-square error (NMSE),

En,t(UE)
def
= max

p
Ep
(
UE − U
nt

)2

.

Observe that this criterion conservatively evaluates the performance of the estima-

tor for the worst possible distribution. The trivial estimator that always predicts

nt/2 new elements has NMSE equal to 1/4, and we would like to construct estima-

tors with vanishing NMSE, which can estimate U up to an error that diminishes

with n, regardless of the data-generating distribution; in particular, we are inter-

ested in the largest t for which this is possible.

Relating the bias and variance of UL to the expectation of tL and another

functional we obtain the following performance guarantee for SGT estimators with

appropriately chosen smoothing distributions.

Theorem 5.1. For Poisson or binomially distributed L with the parameters given

in Table 5.1, for all t ≥ 1 and n ∈ N,

En,t(UL) .
1

n1/t
.

Theorem 5.1 provides a principled way for choosing the parameter v for

UET and the first provable guarantee for its performance, shown in Table 5.1.

Furthermore, the result shows that a modification of UET with q = 2
t+2

enjoys

even faster convergence rate and, as experimentally demonstrated in Section 5.6,

outperforms the original version of Efron-Thisted as well as other state-of-the-art

estimators.
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Table 5.1: NMSE of SGT estimators for three smoothing distributions. Since
for any t ≥ 1, log3(1 + 2/t) ≥ log2(1 + 1/t) ≥ 1/t, binomial smoothing with
q = 2/(2 + t) yields the best convergence rate.

Smoothing distribution Parameters En,t(UL) .

Poisson (r) r = 1
2t

loge
n(t+1)2

t−1
n−1/t

Binomial (v, q) v =
⌈

1
2

log2
nt2

t−1

⌉
, q = 1

t+1
n− log2(1+1/t)

Binomial (v, q) v =
⌈

1
2

log3
nt2

t−1

⌉
, q = 2

t+2
n− log3(1+2/t)

Furthermore, SGT estimators are essentially optimal as witnessed by the

following matching minimax lower bound.

Theorem 5.2. There exist universal constant c, c′ such that for any t ≥ c, any

n ∈ N, and any estimator UE

En,t(UE) &
1

nc′/t
.

Theorems 5.1 and 5.2 determine the limit of predictability up to a constant

multiple.

Corollary 5.3. For any δ > 0,

lim
n→∞

max {t : En,t(UE) < δ for some UE}
log n

� 1

log 1
δ

.

The rest of the chapter is organized as follows: In Section 5.3, we de-

scribe the four statistical models commonly used across various scientific disci-

plines, namely, the multinomial, Poisson, hypergeometric, and Bernoulli product

models. Among the four models Poisson is the simplest to analyze and hence in

Sections 5.4 and 5.5, we first prove Theorem 5.1 for the Poisson model. Finally,

in Section 5.6 we demonstrate the efficiency and practicality of our estimators on

a variety of synthetic and data sets. In the next chapter, we prove similar results

for the other three statistical models and prove lower bound for the multinomial

and Poisson models.
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5.3 Statistical models

The extrapolation paradigm has been applied to several statistical models.

In all of them, an initial sample of size related to n is collected, resulting in a

set Sold of observed elements. We consider collecting a new sample of size related

to m, that would result in a yet unknown set Snew of observed elements, and we

would like to estimate

|Snew\Sold|,

the number of unseen symbols that will appear in the new sample. For example,

for the observed sample bananas and future sample sonatas, Sold = {a, b, n, s},
Snew = {a, n, o, s, t}, and |Snew\Sold| = |{o, t}| = 2.

Four statistical models have been commonly used in the literature (cf. sur-

vey [60] and [61]), and our results apply to all of them. The first three statistical

models are also referred as the abundance models and the last one is often referred

to as the incidence model in ecology [61].

Multinomial: This is Good and Toulmin’s original model where the samples are

independently and identically distributed (i.i.d.), and the initial and new

samples consist of exactly n and m elements respectively. Formally, Xn+m =

X1, . . . ,Xn+m are generated independently according to an unknown discrete

distribution of finite or even infinite support, Sold = {Xn}, and Snew =

{Xn+m
n+1 }.

Hypergeometric: This model corresponds to a sampling-without-replacement

variant of the multinomial model. Specifically, Xn+m are drawn uniformly

without replacement from an unknown collection of symbols that may contain

repetitions, for example, an urn with some white and black balls. Again,

Sold = {Xn} and Snew = {Xn+m
n+1 }.

Poisson: As in the multinomial model, the samples are also i.i.d., but the sample

sizes, instead of being fixed, are Poisson distributed. Formally, N ∼ poi(n),

M ∼ poi(m), XN+M are generated independently according to an unknown

discrete distribution, Sold = {XN}, and Snew = {XN+M
N+1 }.
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Bernoulli-product: In this model we observe signals from a collection of in-

dependent processes over subset of an unknown set X . Every x ∈ X is

associated with an unknown probability 0 ≤ px ≤ 1, where the probabilities

do not necessarily sum to 1. Each sample Xi is a subset of X where symbol

x ∈ X appears with probability px and is absent with probability 1 − px,

independently of all other symbols. Sold = ∪ni=1Xi and Snew = ∪n+m
i=n+1Xi.

For theoretical analysis in Sections 5.4 and 5.5 we use the Poisson sampling

model as the leading example due to its simplicity. Later in the next chapter, we

show that very similar results continue to hold for the other three models.

We close this section by discussing two problems that are closely related

to the extrapolation model, namely, support size estimation and missing mass

estimation, which correspond to m = ∞ and m = 1 respectively. Indeed, the

probability that the next sample is new is precisely the expected value of U for

m = 1, which is the goal in the basic Good-Turing problem [14, 74, 19, 37] discussed

in the previous two chapters. On the other hand, any estimator UE for U can be

converted to a (not necessarily good) support size estimator by adding the number

of observed symbols. Estimating the support size of an underlying distribution

has been studied by both ecologists [58, 59, 60] and theoreticians [75, 76, 77, 78];

however, to make the problem non-trivial, all statistical models impose a lower

bound on the minimum non-zero probability of each symbol, which is assumed to

be known to the statistician. We discuss these estimators and their differences to

our results in Section 5.4.3.

5.4 Preliminaries and the Poisson model

Throughout the chapter, we use standard asymptotic notation, e.g., for any

positive sequences {an} and {bn}, denote an = Θ(bn) or an � bn if 1/c ≤ an/bn ≤ c

for some universal constant c > 0. Let 1A denote the indicator random variable

of an event A. Let Bin(n, p) denote the binomial distribution with n trials and

success probability p and let poi(λ) denote the Poisson distribution with mean λ.

All logarithms are with respect to the natural base unless otherwise specified.
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Let p be a probability distribution over a discrete set X , namely px ≥ 0 for

all x ∈ X and
∑

x∈X px = 1. Recall that the sample sizes are Poisson distributed:

N ∼ poi(n), M ∼ poi(m), and t = m
n

. We abbreviate the number of unseen

symbols by

U
def
= U (XN , XN+M

N+1 ),

and we denote an estimator by UE def
= UE(XN , t).

Let Nx and Nx
′ denote the multiplicity of a symbol x in the current samples

and future samples, respectively. Let λx
def
= npx. Then a symbol x appears Nx ∼

poi(npx) = poi(λx) times, and for any i ≥ 0,

E[1Nx=i] = e−λx
λix
i!
.

Hence

E[Φi] = E

[∑
x

1Nx=i

]
=
∑
x

e−λx
λix
i!
.

A helpful property of Poisson sampling is that the multiplicities of different symbols

are independent of each other. Therefore, for any function f(x, i),

Var

(∑
x

f(x,Nx)

)
=
∑
x

Var(f(x,Nx)).

Many of our derivations rely on these three equations. For example,

E[U ] =
∑
x

E[1Nx=0] · E[1Nx′>0] =
∑
x

e−λx · (1− e−tλx),

and

Var(U) = Var

(∑
x

1Nx=0 · 1Nx′>0

)
=
∑
x

Var(1Nx=0 · 1Nx′>0)

≤
∑
x

E [1Nx=0 · 1Nx′>0] = E [U ] .

Note that these equations imply that the standard deviation of U is at most√
E[U ] � E[U ], hence U highly concentrates around its expectation, and esti-

mating U and E[U ] are essentially the same.
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5.4.1 The Good-Toulmin estimator

Before proceeding with general estimators, we prove a few properties of

UGT. Under the Poisson model, UGT is in fact the unique unbiased estimator for

U .

Lemma 5.4 ([62]). For any distribution,

E[U ] = E[UGT].

Proof.

E[U ] = E

[∑
x

1Nx=0 · 1Nx>0

]
=
∑
x

e−λx ·
(
1− e−tλx

)
= −

∑
x

e−λx ·
∞∑
i=1

(−tλx)i

i!
= −

∞∑
i=1

(−t)i ·
∑
x

e−λx
λix
i!

= −
∞∑
i=1

(−t)i · E[Φi] = E[UGT].

Even though UGT is unbiased for all t, for t > 1 it has high variance and

hence does not estimate U well even for the simplest distributions.

Lemma 5.5. For any t > 1,

lim
n→∞

En,t(UGT) =∞.

Proof. Let p be the uniform distribution over two symbols a and b, namely, pa =

pb = 1/2. First consider even n. Since (UGT − U)2 is always nonnegative,

E[(UGT − U)2] ≥ Pr(Na = Nb = n/2)(2(−t)n/2)2 =

(
e−n/2

(n/2)n/2

(n/2)!

)2

4tn ≥ 4tn

e2n
,

where we used the fact that k! ≤ (k
e
)k
√
ke. Hence for t > 1,

lim
n→∞

E[(UGT − U)2]

(nt)2
≥ lim

n→∞

4tn

e2n(nt)2
=∞.

The case of odd n can be shown similarly by considering the eventNa = bn/2c, Nb =

dn/2e.
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5.4.2 General linear estimators

Following [62], we consider general linear estimators of the form

U h =
∞∑
i=1

Φi · hi, (5.5)

which can be identified with a formal power series h(y) =
∑∞

i=1
hiy

i

i!
. For example,

UGT in (5.1) corresponds to the function h(y) = 1− e−yt. The next lemma bounds

the bias and variance of any linear estimator U h using properties of the function

h. In Section 5.5.2 we apply this result to the SGT estimator whose coefficients

are of the specific form:

hi = −(−t)i · Pr (L ≥ i) .

Let Φ+
def
=
∑∞

i=1 Φi denote the number of observed symbols.

Lemma 5.6. The bias of U h is

E[U h − U ] =
∑
x

e−λx
(
h(λx)− (1− e−tλx)

)
,

and the variance satisfies

Var(U h − U) ≤ E[Φ+] · sup
i≥1

h2
i + E[U ].

Proof. Note that

U h − U =
∞∑
i=1

Φihi −
∑
x

1Nx=0 · 1Nx′>0

=
∞∑
i=1

∑
x

1Nx=i · hi −
∑
x

1Nx=0 · 1Nx′>0

=
∑
x

(
∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1Nx′>0

)
.

For every symbol x,

E

[
∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1Nx′>0

]
=
∞∑
i=1

e−λx
λix
i!
· hi − e−λx · (1− e−tλx)

= e−λx

(
∞∑
i=1

λixhi
i!
− (1− e−tλx)

)
= e−λx

(
h(λx)− (1− e−tλx)

)
,
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from which (5.6) follows. For the variance, observe that for every symbol x,

Var

(
∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1Nx′>0

)
≤ E

( ∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1Nx′>0

)2


(a)
= E

[
∞∑
i=1

1Nx=ih
2
i

]
+ E[1Nx=0] · E[1Nx′>0]

=
∞∑
i=1

E[1Nx=i] · h2
i + E[1Nx=0] · E[1Nx′>0],

where (a) follows as for every i 6= j, E[1Nx=i1Nx=j] = 0. Since the variance of a

sum of independent random variables is the sum of variances,

Var(U h − U) ≤
∑
x

∞∑
i=1

E[1Nx=i]h
2
i +

∑
x

E[1Nx=0] · E[1Nx′>0]

=
∞∑
i=1

E[Φi] · h2
i + E[U ]

≤ E[Φ+] · sup
i≥1

h2
i + E[U ].

Lemma 5.6 enables us to reduce the estimation problem to a task on ap-

proximating functions. Specifically, in view of (5.6), the goal is to approximate

1− e−yt by a function h(y) whose derivatives at zero all have small magnitude.

5.4.3 Estimation via polynomial approximation and sup-

port size estimation

Approximation-theoretic techniques for estimating norms and other prop-

erties such as support size and entropy have been successfully used in the statistics

literature. For example, estimating the Lp norms in Gaussian models [79, 80] and

estimating entropy [78, 81] and support size [82] of discrete distributions. Among

the aforementioned problems, support size estimation is closest to ours. Hence, we

now discuss the difference between the approximation technique we use and the

those used for support size estimation.

The support size of a discrete distribution p is

Supp(p) =
∑
x

1px>0. (5.6)
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At the first glance, estimating Supp(p) may appear similar to species estimation

problem as one can convert a support size estimator ˆSupp to Û by

Û = ˆSupp−
∞∑
i=1

Φi.

However, without any assumption on the distribution it is impossible to estimate

the support size. For example, regardless how many samples are collected, there

could be infinitely many symbols with arbitrarily small probabilities that will never

be observed. A common assumption is therefore that the minimum non-zero prob-

ability of the underlying distribution p, denoted by p+
min, is at least 1/k, for some

known k. Under this assumption [76] used a linear programming estimator similar

to the one in [62], to estimate the support size within an additive error of kε with

constant probability using Ω( k
log k

1
ε2

) samples. Based on best polynomial approx-

imations recently [82] showed that the minimax risk of support size estimation

satisfies

min
ˆSupp

max
p:p+

min≥1/k
Ep[( ˆSupp− Supp(p))2] = k2 exp

(
−Θ

(
max

{√
k log k

n
,
k

n
, 1

}))
and that the optimal sample complexity of for estimating Supp(p) within an ad-

ditive error of kε with constant probability is in fact Θ( k
log k

log2 1
ε
). Note that the

assumption p+
min ≥ 1/k is crucial for this result to hold for otherwise estimation is

impossible; in contrast, as we show later, for species estimation no such assump-

tions are necessary. The intuition is that if there exist a large number of very

improbable symbols, most likely they will not appear in the new samples anyway.

To estimate the support size, in view of (5.6) and the assumption p+
min ≥

1/k, the technique of [82] is to approximate the indicator function y 7→ 1y≥1/k in

the range {0} ∪ [1/k, log k/n] using Chebyshev polynomials. Since by assumption

no px lies in (0, 1
k
), the approximation error in this interval is irrelevant. For

example, in Figure 5.2(a), the red curve is a useful approximation for the support

size, even though it behaves badly over (0, 1/k). To estimate the average number

of unseen symbols U , in view of (5.6), we need to approximate y 7→ 1− e−yt over

the entire [0,∞) as in, e.g., Figure 5.2(b). Concurrent to our work, [36] proposed

a linear programming algorithm to estimate U . However, their NMSE is O( t
logn

)
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Figure 5.2: (a) a good approximation for support size; (b) a good approximation
for species estimation.

compared to the optimal resultO(n−1/t) in Theorem 5.1, thus exponentially weaker

for t = o(log n). Furthermore, the computational cost far exceeds those of our

linear estimators.

5.5 Results for the Poisson model

In this section, we provide the performance guarantee for SGT estimators

under the Poisson sampling model. We first show that the truncated GT estima-

tors incurs a high bias. We then introduce the class of smoothed GT estimators

obtained by averaging several truncated GT estimators and bound their mean

squared error in Theorem 5.11 for an arbitrary smoothing distribution. We then

apply this result to obtain NMSE bounds for Poisson and Binomial smoothing in

Corollaries 5.12 and 5.13 respectively, which imply the main result (Theorem 5.1)

announced in Section 5.2.2 for the Poisson model.

5.5.1 Why truncated Good-Toulmin does not work

Before we discuss the SGT estimator, we first show that the naive approach

of truncating the GT estimator described in Section 5.2.1 leads to bad performance
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Figure 5.3: (a) Taylor approximation for t = 2, (b) Averages of 10 and 11 term
Taylor approximation for t = 2.

when t > 1. Recall from Lemma 5.6 that designing a good linear estimator boils

to approximating 1 − e−yt by an analytic function h(y) =
∑

i≥1
hi
i!
yi such that all

its derivatives at zero are small, namely, supi≥1 |hi| is small. The GT estimator

corresponds to the perfect approximation

hGT(y) = 1− e−yt;

however, supi≥1 |hi| = max(t, t∞), which is infinity if t > 1 and leads to large

variance. To avoid this situation, a natural approach is to use use the `-term

Taylor expansion of 1− e−yt at 0, namely,

h`(y) = −
∑̀
i=1

(−yt)i

i!
, (5.7)

which corresponds to the estimator U ` defined in (5.2). Then supi≥1 |hi| = t`

and, by Lemma 5.6, the variance is at most n(t` + t). Hence if ` ≤ logtm, the

variance is at most n(m+ t). However, note that the `-term Taylor approximation

is a degree-` polynomial which eventually diverges and deviates from 1− e−yt as y

increases, thereby incurring a large bias. Figure 5.3(a) illustrates this phenomenon

by plotting the function 1−e−yt and its Taylor expansion with 5, 10, and 20 terms.

Indeed, the next result rigorously shows that the NMSE of truncated GT estimator

never vanishes:
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Lemma 5.7. There exist a constant c > 0 such that for any ` ≥ 0, any t > 1 and

any n ∈ N,

En,t(U `) ≥ c(t− 1)5

t4
.

Proof. To rigorously prove an impossibility result for the truncated GT estimator,

we demonstrate a particular distribution under which the bias is large. Consider

the uniform distribution over n/(`+1) symbols, where ` is a non-zero even integer.

By Lemma 5.6, for this distribution the bias is

E[U − U `] =
∑
x

e−λx(1− e−λxt − h(λx))

=
n

`+ 1
e−(`+1)

(
1− e−(`+1)t +

∑̀
i=1

(−(`+ 1)t)i

i!

)

≥ n

`+ 1
e−(`+1)

(∑̀
i=1

(−(`+ 1)t)i

i!

)
(a)

≥ n

`+ 1
e−(`+1)

(
((`+ 1)t)`

`!
− ((`+ 1)t)`−1

(`− 1)!

)
≥ n

(`+ 1)
e−(`+1) ((`+ 1)t)`

`!
· (t− 1)

t

≥ n

3(`+ 1)3/2
t`

(t− 1)

t
≥ n

3 · 23/2

t`

`3/2

(t− 1)

t
,

where (a) follows from the fact that (−(`+1)t)i

i!
for i = 1, . . . , ` is an alternating series

with increasing magnitude of terms. Hence

E[U − U `] ≥ n

3 · 23/2

(t− 1)

t
min

`∈{2,4,...}

t`

`3/2
.

For t ≥ 2, the above minimum occurs at ` = 2 and hence min`∈{2,4,...}
t`

`3/2
≥ (t−1)3/2

23/2 .

For 1 < t < 2, using the fact that ey ≥ ey for y > 0 and log t ≥ (t − 1) log 2 for

1 < t < 2, we have min`∈{2,4,...}
t`

`3/2
≥ (2e log t

3
)3/2 ≥ (2e log 2(t−1)

3
)3/2. Thus for any

even value of ` > 0,

E[U − U `] ≥ n(t− 1)5/2

6.05t
.

A similar argument holds for odd values of ` and ` = 0, showing that |E[U−U `]| &
n(t−1)5/2

t
and hence the desired NMSE bound.
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5.5.2 Smoothing by random truncation

As we saw in the previous section, the `-term Taylor approximation, where

all the coefficients after the `th term are set to zero results in large bias. Instead,

one can choose a weighted average of several Taylor series approximations, whose

biases cancel each other leading to significant bias reduction. For example, in

Figure 5.3(b), we plot

wh10 + (1− w)h11

for various values of w ∈ [0, 1]. Notice that the weight w = 0.6 leads to better

approximation of 1− e−yt than both h10 and h11.

A natural generalization of the above argument entails taking the weighted

average of various Taylor approximations with respect to a given probability dis-

tribution over Z+
def
= {0, 1, 2, . . .}. For a Z+-valued random variable L, consider

the power series

hL(y) =
∞∑
`=0

Pr(L = `) · h`(y),

where h` is defined in (5.7). Rearranging terms, we have

hL(y) =
∞∑
`=0

Pr(L = `)
∑̀
i=1

−(−yt)i

i!
= −

∞∑
i=1

(−yt)i

i!
Pr(L ≥ i).

Thus, the linear estimator with coefficients

hL

i = −(−t)i Pr (L ≥ i) , (5.8)

is precisely the SGT estimator UL defined in (5.4). Special cases of smoothing

distributions include:

• L = ∞: This corresponds to the original Good-Toulmin estimator (5.1)

without smoothing;

• L = ` deterministically: This leads to the estimator U ` in (5.2) corresponding

to the `-term Taylor approximation;

• L ∼ Bin(v, 1/(1+t)): This recovers the Efron-Thisted estimator (5.1), where

v is a tuning parameter to be chosen.
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Figure 5.4: Comparisons of approximations of hL(·) with E[L] = 2 and t = 2. (a)
e−y(1− e−yt − hL(y)) as a function of y. (b) Coefficients hL

i as a function of index
i.

We study the performance of linear estimators corresponding to the Poisson smooth-

ing and the Binomial smoothing. To this end, we first systematically upper bound

the bias and variance for any probability smoothing L. We plot the error that cor-

responds to each smoothing in Figure 5.4(a). Notice that the Poisson and binomial

smoothings have significantly small error compared to the Taylor series approxi-

mation. The coefficients of the resulting estimator is plotted in Figure 5.4(b). It

is easy so see that the maximum absolute value of the coefficient is higher for the

Taylor series approximation compared to the Poisson or binomial smoothings.

Lemma 5.8. For a random variable L over Z+ and t ≥ 1,

Var(UL − U) ≤ E[Φ+] · E2[tL] + E[U ].

Proof. By Lemma 5.6, to bound the variance it suffices to bound the highest

coefficient in hL.

|hL

i | ≤ ti Pr(L ≥ i) = ti
∞∑
j=i

Pr(L = j) ≤
∞∑
j=i

Pr(L = j)tj ≤ E[tL]. (5.9)

The above bound together with Lemma 5.6 yields the result.

To bound the bias, we need few definitions. Let

g(y)
def
= −

∞∑
i=1

Pr (L ≥ i)

i!
(−y)i. (5.10)
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Under this definition, hL(y) = g(yt). We use the following auxiliary lemma to

bound the bias.

Lemma 5.9. For any random variable L over Z+,

g(y)− (1− e−y) = −e−y
∫ y

0

E
[

(−s)L

L!

]
esds.

Proof. Subtracting (5.10) from the Taylor series expansion of 1− e−y ,

g(y)− (1− e−y) =
∞∑
i=1

Pr (L < i)

i!
(−y)i

=
∞∑
i=1

i−1∑
j=0

(−y)i

i!
Pr (L = j)

=
∞∑
j=0

(
∞∑

i=j+1

(−y)i

i!

)
Pr (L = j) .

Note that
∑∞

i=j+1
zi

i!
can be expressed (via incomplete Gamma function) as

∞∑
i=j+1

zi

i!
=
ez

j!

∫ z

0

τ je−τdτ.

Thus by Fubini’s theorem,

g(y)− (1− e−y) =
∞∑
j=0

e−y

j!

∫ −y
0

τ je−τdτ Pr (L = j)

= e−y
∫ −y

0

e−τdτ

(
∞∑
j=0

τ j

j!
Pr (L = j)

)

= − e−y
∫ y

0

esds

(
∞∑
j=0

(−s)j

j!
Pr (L = j)

)

= − e−y
∫ y

0

E
[

(−s)L

L!

]
esds.

To bound the bias, we need one more definition. For a random variable L

over Z+, let

ξL(t)
def
= max

0≤s<∞

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ e−s/t,
Lemma 5.10. For a random variable L over Z+,

|E[UL − U ]| ≤ (E[Φ+] + E[U ]) · ξL(t).
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Proof. By Lemma 5.9,

|g(y)− (1− e−y)| ≤ e−y
∫ y

0

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ esds
≤ max

s≤y

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ e−y ∫ y

0

esds

= max
s≤y

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ (1− e−y).
For a symbol x,

e−λx
(
hL(λx)− (1− e−λxt)

)
= e−λx

(
g(λxt)− (1− e−λxt)

)
.

Hence,

|e−λx
(
hL(λx)− 1− e−λxt

)
| ≤ (1− e−λxt) max

0≤y≤∞
e−y max

0≤s≤yt

∣∣∣∣E [(−s)L

L!

]∣∣∣∣
≤ (1− e−λxt) max

0≤s≤∞

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ e−s/t.
The lemma follows by summing over all the symbols and substituting

∑
x 1 −

e−λxt ≤
∑

x 1− e−λx(t+1) = E[Φ+] + E[U ].

The above two lemmas yield our main result.

Theorem 5.11. For any random variable L over Z+ and t ≥ 1,

E[(UL − U)2] ≤ E[Φ+] · E2[tL] + E[U ] + (E[Φ+] + E[U ])2ξL(t)2.

We have therefore reduced the problem of computing mean-squared loss, to

that of computing expectation of certain function of the random variable. We now

apply the above theorem for Binomial and Poisson smoothings. Notice that the

above bound is distribution dependent and can be used to obtain stronger results

for certain distributions. However, in the rest of the chapter, we concentrate on

obtaining minimax guarantees.

5.5.3 Poisson smoothing

Corollary 5.12. For t ≥ 1, L ∼ poi(r) with r = 1
2t

log
(
n(t+1)2

t−1

)
,

En,t(UL) ≤ ct
n1/t

,

where 0 ≤ ct ≤ 3 and limt→∞ ct = 1.
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Proof. For L ∼ poi(r),

E[tL] = e−r
∞∑
`=0

(rt)`

`!
= er(t−1). (5.11)

Furthermore,

E
[

(−s)L

L!

]
= e−r

∞∑
j=0

(−sr)j

(j!)2
= e−rJ0(2

√
sr),

where J0 is the Bessel function of first order which takes values in [−1, 1] cf. [73,

9.1.60]. Therefore

ξL(t) ≤ e−r. (5.12)

Equations (5.11) and (5.12) together with Theorem 5.11 yields

E[(UL − U)2] ≤ E[Φ+] · e2r(t−1) + E[U ] + (E[Φ+] + E[U ])2 · e−2r.

Since E[Φ+] ≤ n and E[U ] ≤ nt,

E[(UL − U)2] ≤ ne2r(t−1) + nt+ (n+ nt)2e−2r.

Choosing r = 1
2t

log n(t+1)2

t−1
yields

En,t(UL) ≤ 1

(nt)1/t
·
(
t(t− 1)

(t+ 1)2

) 1−t
t

+
1

nt
,

and the lemma with ct
def
= 1

t1/t
·
(
t(t−1)
(t+1)2

) 1−t
t

+ 1
t
.

5.5.4 Binomial smoothing

We now prove the results when L ∼ Bin(v, q). Our analysis holds for all

q ∈ [0, 2/(2 + t)] and in this range, the performance of the estimator improves as q

increases, and hence the NMSE bounds are strongest for q = 2/(2 + t). Therefore,

we consider binomial smoothing for two cases: the Efron-Thisted suggested value

q = 1/(1 + t) and the optimized value q = 2/(2 + t).

Corollary 5.13. For t ≥ 1 and L ∼ Bin(v, q), if v =
⌈

1
2

log2
nt2

t−1

⌉
and q = 1

t+1
,

then

En,t(UL) ≤ ct
nlog2(1+1/t)

,
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where ct satisfies 0 ≤ ct ≤ 6 and limt→∞ ct = 1; if v =
⌈

1
2

log3
nt2

t−1

⌉
and q = 2

t+2
,

then

En,t(UL) ≤ c′t
(nt)log3(1+2/t)

,

where c′t satisfies 0 ≤ c′t ≤ 6 and limt→∞ c
′
t = 1.

Proof. If L ∼ Bin(v, q),

E[tL] =
v∑
`=0

(
v

`

)
(tq)`(1− q)v−` = (1 + q(t− 1))v.

Furthermore,

E
[

(−s)L

L!

]
=

v∑
j=0

(−s)j

j!

(
v

j

)
(q)j(1− q)v−j = (1− q)vLv

(
qs

1− q

)
,

where

Lv(y) =
v∑
j=0

(−y)j

j!

(
v

j

)
(5.13)

is the Laguerre polynomial of degree v. If tq
2(1−q) ≤ 1, for any s ≥ 0,

e−
s
t

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ ≤ (1− q)ve−
s
t e

qs
2(1−q) ≤ (1− q)v,

where the second inequality follows from the fact cf. [73, 22.14.12] that for all y ≥ 0

and all v ≥ 0,

|Lv(y)| ≤ ey/2. (5.14)

Hence for q ≤ 2/(t+ 2),

E[(UL − U)2] ≤ E[Φ+] · (1 + q(t− 1))2v + E[U ] + (E[Φ+] + E[U ])2 · (1− q)2v.

Since E[U ] ≤ nt and E[Φ+] ≤ n,

E[(UL − U)2] ≤ n · (1 + q(t− 1))2v + nt+ (nt+ n)2 · (1− q)2v. (5.15)

Substituting the Efron-Thisted suggested q = 1
t+1

results in

En,t(UL) ≤
(

22v

nt2
+

(t+ 1)2

t2

)(
t

t+ 1

)2v

+
1

nt
.
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Choosing v =
⌈

1
2

log2
nt2

t−1

⌉
yields the first result with

ct
def
=

(
4

t− 1
+

(
t+ 1

t

)2
)
·
(
t− 1

t2

)log2(1+1/t)

+
1

t
.

For the second result, substituting q = 2
t+2

in (5.15) results in

En,t(UL) ≤
(

32v

nt2
+

(t+ 1)2

t2

)(
t

t+ 2

)2v

+
1

nt
.

Choosing v =
⌈

1
2

log3
nt2

t−1

⌉
yields the result with

c′t
def
=

(
9

t− 1
+

(t+ 1)2

t2

)
·
(
t− 1

t2

)log3(1+2/t)

+
1

t
.

In terms of the exponent, the result is strongest for L ∼ Bin(v, 2/(t + 2)).

Hence, we state the following asymptotic result, which is a direct consequence of

Corollary 5.13:

Corollary 5.14. For L ∼ Bin(v, q), q = 2
t+2

,v = dlog3( nt
2

t−1
)e, and any fixed δ, the

maximum t till which UL incurs a NMSE of δ is

lim
n→∞

max {t : En,t(UL) < δ}
log n

≥ 2

log 3 · log 1
δ

.

Proof. By Corollary 5.13, if t→∞, then

En,t(UL) ≤ (1 + o(1))n−
2+o(1)
t log 3 .

where o(1) = ot(1) is uniform in n. Consequently, if t = (α + o(1)) log n and

n→∞, then

lim sup
n→∞

En,t(UL) ≤ e−
2

α log 3 .

Thus for any fixed δ, the maximum t till which UL incurs a NMSE of δ is

lim
n→∞

max {t : En,t(UL) < δ}
log n

≥ 2

log 3 · log 1
δ

.

Corollaries 5.12 and 5.13 imply Theorem 5.1 for the Poisson model.
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5.6 Experiments

We demonstrate the efficacy of our estimators by comparing their per-

formance with that of several state-of-the-art support-size estimators currently

used by ecologists: Chao-Lee estimator [58, 59], Abundance Coverage Estimator

(ACE) [83], and the jackknife estimator [84], combined with the Shen-Chao-Lin

unseen-species estimator [85]. We consider various natural synthetic distributions

and established datasets. Starting with the former, Figure 5.5 shows the species

discovery curve, the prediction of U as a function of t of several predictors for

various distributions.

The true value is shown in black, and the other estimators are color coded,

with the solid line representing their mean estimate, and the shaded area corre-

sponding to one standard deviation. Note that the Chao-Lee and ACE estimators

are designed specifically for uniform distributions, hence in Figure 5.5(a) they co-

incide with the true value, but for all other distributions, our proposed smoothed

Good-Toulmin estimators outperform the existing ones.

Of the proposed estimators, the binomial-smoothing estimator with param-

eter q = 2
2+t

has a stronger theoretical guarantee and performs slightly better than

the others. Hence when considering real data we plot only its performance and

compare it with the other state-of-the art estimators. We test the estimators on

three real datasets taken from various scientific applications where the samples size

n ranges from few hundreds to a million. For all these date sets, our estimator

outperforms the existing procedures.

Figure 5.6(a) shows the first real-data experiment, predicting vocabulary

size based on partial text. Shakespeare’s play Hamlet consists of ntotal = 31999

words, of which 4804 are distinct. We randomly select n of the ntotal words without

replacement, predict the number of unseen words in ntotal − n new ones, and add

it to those observed. The results shown are averaged over 100 trials. Observe

that the new estimator outperforms existing ones and that as little as 20% of the

data already yields an accurate estimate of the total number of distinct words.

Figure 5.6(b) repeats the experiment but instead of random sampling, uses the

first n consecutive words, with similar conclusions.
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Figure 5.5: Comparisons of the estimated number of unseen species as a function
of t. All experiments have distribution support size 106, n = 5 · 105, and are
averaged over 100 iterations.
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Figure 5.6: Estimates for number of: (a) distinct words in Hamlet with random
sampling (b) distinct words in Hamlet with consecutive sampling (c) SLOTUs on
human skin (d) last names.
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Figure 5.6(c) estimates the number of bacterial species on the human skin.

[69] considered forearm skin biota of six subjects. They identified ntotal = 1221

clones consisting of 182 different species-level operational taxonomic units (SLO-

TUs). As before, we select n out of the ntotal clones without replacement and

predict the number of distinct SLOTUs found. Again the estimates are more ac-

curate than those of existing estimators and are reasonably accurate already with

20% of the data.

Finally, Figure 5.6(d) considers the 2000 United States Census [86], which

lists all U.S. last names corresponding to at least 100 individuals. With these many

repetitions, even just a small fraction of the data will cover all names, hence we

first subsampled the data ntotal = 106 and obtained a list of 100328 distinct last

names. As before we estimate for this number using n randomly chosen names,

again with similar conclusions.
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Chapter 6

Extensions and lower bounds

In the previous chapters, we proved the performance of our estimators un-

der the Poisson model. In this chapter we extend them to the multinomial model

(fixed sample size), the Bernoulli-product model, and the hypergeometric model

(sampling without replacement) [60], for which upper bounds of NMSE for general

smoothing distributions that are analogous to Theorem 5.11 are presented in The-

orem 6.3, 6.5 and 6.11, respectively. Using these results, we obtain the NMSE for

Poisson and Binomial smoothings similar to Corollaries 5.12 and 5.13. We remark

that up to multiplicative constants, the NMSE under multinomial and Bernoulli-

product model are similar to those of Poisson model; however, the NMSE under

hypergeometric model is slightly larger. Finally, we also prove lower bounds on the

performance any estimator for the multinomial and Poisson models in Section 6.4.

6.1 The multinomial model

The multinomial model corresponds to the setting described in Section 5.1,

where upon observing n i.i.d. samples, the objective is to estimate the expected

number of new symbols U (Xn, Xn+m
n+1 ) that would be observed if we took m more

samples. We can write the expected number of new symbols as

U (Xn, Xn+m
n+1 ) =

∑
x

1Nx=0 · 1Nx′>0.

112
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As before we abbreviate

U
def
= U (Xn, Xn+m

n+1 )

and similarly UE def
= UE(Xn, t) for any estimator E. The difficulty in handling

multinomial distributions is that, unlike the Poisson model, the number of occur-

rences of symbols are correlated; in particular, they sum up to n. This dependence

renders the analysis cumbersome. In the multinomial setting each symbol is dis-

tributed according to Bin(n, px) and hence

E[1Nx=i] =

(
n

i

)
pix(1− px)n−i.

As an immediate consequence,

E[Φi] = E

[∑
x

1Nx=i

]
=
∑
x

(
n

i

)
pix(1− px)n−i.

We now bound the bias and variance of an arbitrary linear estimator U h. We first

show that the bias E[U h − U ] under the multinomial model is close to that under

the Poisson model, which is
∑

x e
−λx(h(λx)− (1− e−tλx)) as given in (5.6).

Lemma 6.1. The bias of U h =
∑∞

i=1 Φihi satisfies∣∣∣∣∣E[U h − U ]−
∑
x

e−λx
(
h(λx)− (1− e−tλx)

)∣∣∣∣∣ ≤ 2 sup
i
|hi|+ 2.

Proof. First we recall a result on Poisson approximation: For X ∼ Bin(n, p) and

Y ∼ poi(np),

|E[f(X)]− E[f(Y )]| ≤ 2p sup
i
|f(i)|, (6.1)

which follows from the total variation bound dTV(Bin(n, p), poi(np)) ≤ p [88, The-

orem 1] and the fact that dTV(µ, ν) = 1
2

sup‖f‖∞≤1

∫
fdµ −

∫
fdν. In particular,

taking f(x) = 1x=0 gives

0 ≤ e−np − (1− p)n ≤ 2p.

Note that the linear estimator can be expressed as U h =
∑

x hNx . Under the

multinomial model,

E[U h − U ] =
∑
x

ENx∼Bin(n,px)[hNx ]−
∑
x

(1− px)n(1− (1− px)m).
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Under the Poisson model,∑
x

e−λx
(
h(λx)− (1− e−tλx)

)
=
∑
x

ENx∼poi(npx)[hNx ]−
∑
x

e−npx(1− e−mpx).

Then∣∣∣∣∣∑
x

ENx∼Bin(n,px)[hNx ]−
∑
x

ENx∼poi(npx)[hNx ]

∣∣∣∣∣ (6.1)

≤ 2 sup
i
|hi|
∑
x

px = 2 sup
i
|hi|.

Furthermore, ∑
x

(1− px)n(1− (1− px)m)−
∑
x

e−npx(1− e−mpx)

≤
∑
x

e−npx(e−mpx − (1− px)m)
(6.7)

≤
∑
x

e−npx2px ≤ 2.

Similarly,
∑

x(1 − px)n(1 − (1 − px)m) −
∑

x e
−npx(1 − e−mpx) ≥ −2. Assembling

the above proves the lemma.

The next result bounds the variance.

Lemma 6.2. For any linear estimator U h,

Var(U h − U) ≤ 8nmax

{
sup
i≥1

h2
i , 1

}
+ 8m.

Proof. Recognizing that U h − U is a function of n+m independent random vari-

ables, namely, X1, . . . , Xn+m drawn i.i.d. from p, we apply Steele’s variance in-

equality [89] to bound its variance. Similar to (6.1),

U h − U =
∑
x

hNx + 1Nx=01Nx′>0

Changing the value of any one of the first n samples changes the multiplici-

ties of two symbols, and hence the value of U h − U can change by at most

4 max(maxi≥1 |hi|, 1). Similarly, changing any one of the last m samples changes

the value of U h − U by at most four. Applying Steele’s inequality gives the

lemma.

Lemmas 6.1 and 6.2 are analogous to Lemma 5.6. Together with (5.9) and

Lemma 5.10, we obtain the main result for the multinomial model.
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Theorem 6.3. For t ≥ 1 and any random variable L over Z+,

E[(UL − U)2] ≤ 8nE2[tL] + 8m+
(
(n(t+ 1)ξL(t) + 2E[tL] + 2

)2
.

Similar to Corollaries 5.12 and 5.13, one can compute the NMSE for Bino-

mial and Poisson smoothings. We remark that up to multiplicative constants the

results are identical to those for the Poisson model.

6.2 The Bernoulli-product model

Consider the following species assemblage model. There are k distinct

species and each one can be found in one of n independent sampling units. Thus

every species can be present in multiple sampling units simultaneously and each

sampling unit can capture multiple species. For example species x can be found

in sampling units 1, 3 and 5 and species y can be found in units 2, 3, and 4. Given

the data collected from n sampling units, the objective is to estimate the expected

number of new species that would be observed if we placed m more units.

The aforementioned problem is typically modeled as by the Bernoulli-

product model. Since, in this model each sample only has presence-absence data,

it is often referred to as incidence model [61]. For notational simplicity, we use the

same notation as the other three models. In Bernoulli-product model, for a symbol

x, Nx denotes the number of sampling units in which x appears and Φi denotes

the number of symbols that appeared in i sampling units. Given a set of distinct

symbols (potentially infinite), each symbol x is observed in each sampling unit in-

dependently with probability px and the observations from each sampling unit are

independent of each other. To distinguish from the multinomial and Poisson sam-

pling models where each sample can be only one symbol, we refer to samples here

as sampling units. Given the results of n sampling units, the goal is to estimate

the expected number of new symbols that would appear in the next m sampling

units. Let p
S

=
∑

x px. Note that p
S

is also the expected number of symbols that

we observe for each sampling unit and need not sum to 1. For example, in the

species application, probability of catching bumble bee can be 0.5 and honey bee

be 0.7.
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This model is significantly different from the multinomial model in two

ways. Firstly, here given n sampling units the number of occurrences of symbols

are independent of each other. Secondly, p
S

def
=
∑

x px need not be 1. In the

Bernoulli-product model, the probability observing each symbol at a particular

sample is px and hence in n samples, the number of occurrences is distributed

Bin(n, px). Therefore the probability that x is be observed in i sampling units is

E[1Nx=i] =

(
n

i

)
pix(1− px)n−i,

and an immediate consequence on the number of distinct symbols that appear i

sampling units is

E[Φi] = E

[∑
x

1Nx=i

]
=
∑
x

(
n

i

)
pix(1− px)n−i.

Furthermore, the expected total number of symbols is np
S

and hence

n∑
i=1

E[Φi]i = np
S
.

Under the Bernoulli-product model the objective is to estimate the number of new

symbols that we observe in m more sampling units and is

U (Xn, Xn+m
n+1 ) =

∑
x

1Nx=0 · 1Nx′>0.

As before, we abbreviate

U
def
= U (Xn, Xn+m

n+1 )

and similarly UE def
= UE(Xn, t) for any estimator E. Since the probabilities need

not add up to 1, we redefine our definition of En,t(UE) as

En,t(UE)
def
= maxEp

(
U − UE

ntp
S

)2

.

Under this model, the SGT estimator satisfy similar results to that of Corollar-

ies 5.12 and 5.13, up to multiplicative constants. The main ingredient is to bound

the bias and variance (like Lemma 5.6). We note that since the marginal of Nx is

Bin(n, px) under both the multinomial and the Bernoulli-product model, the bias

bound follows entirely analogously as in Lemma 6.1. The proof of variance bound

is very similar to that of Lemma 5.6 and hence is omitted.
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Lemma 6.4. The bias of the linear estimator U h is∣∣∣∣∣E[U h − U ]−
∑
x

e−λx
(
h(λx)− (1− e−tλx)

)∣∣∣∣∣ ≤ 2p
S

(
sup
i
|hi|+ 1

)
,

and the variance

Var(U h − U) ≤ np
S
·
(
t+ sup

i≥1
h2
i

)
.

The above lemma together with (5.9) and Lemma 5.10 yields the main

result for the Bernoulli-product model.

Theorem 6.5. For any random variable L over Z+ and t ≥ 1,

E[(UL − U)2] ≤ np
S
·
(
t+ E2[tL]

)
+ (n(t+ 1)p

S
ξL(t) + 2p

S
(E[tL] + 1))2.

Similar to Corollaries 5.12 and 5.13, one can compute the normalized mean

squared loss for Binomial and Poisson smoothings. We remark that up to multi-

plicative constants the results would be similar to that for the Poisson model.

6.3 The hypergeometric model

The hypergeometric model considers the population estimation problem

with samples drawn without replacement. Given n samples drawn uniformly at

random, without replacement from a set {y1, . . . , yR} of R symbols, the objective is

to estimate the number of new symbols that would be observed if we had access to

m more random samples without replacement, where n+m ≤ R. Unlike the Pois-

son, multinomial, and Bernoulli-product models we have considered so far, where

the samples are independently and identically distributed, in the hypergeometric

model the samples are dependent hence a modified analysis is needed.

Let rx
def
=
∑R

i=1 1yi=x be the number of occurrences of symbol x in the R

symbols, which satisfies
∑

x rx = R. Denote by Nx the number of times x appears

in the n samples drawn without replacements, which is distributed according to

the hypergeometric distribution Hyp(R, rx, n) with the following probability mass

function:∗

Pr(Nx = i) =

(
rx
i

)(
R−rx
n−i

)(
R
n

) .

∗We adopt the convention that
(
n
k

)
= 0 for all k < 0 and k > n throughout.
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We also denote the joint distribution of {Nx}, which is multivariate hypergeomet-

ric, by Hyp({rx}, n). Consequently,

E[Φi] =
∑
x

Pr(Nx = i) =
∑
x

(
rx
i

)(
R−rx
n−i

)(
R
n

) .

Furthermore, conditioned on Nx = 0, Nx
′ is distributed as Hyp(R − n, rx,m) and

hence

E[U ] =
∑
x

E[1Nx=0] · E[1Nx′>0|1Nx=0] =
∑
x

(
R−rx
n

)(
R
n

) ·(1−
(
R−n−rx

m

)(
R−n
m

) )
. (6.2)

As before, we abbreviate

U
def
= U (Xn, Xn+m

n+1 )

which we want to estimate and similarly for any estimator UE def
= UE(Xn, t). We

now bound the variance and bias of a linear estimator U h under the hypergeometric

model.

Lemma 6.6. For any linear estimator U h,

Var(U h − U) ≤ 12n sup
i
h2
i + 6n+ 3m.

Proof. We first note that for a random variable Y that lies in the interval [a, b],

Var(Y ) ≤ (a− b)2

4
.

For notational convenience define h0 = 0. Then U h =
∑

x hNx . Let Z =∑
1Nx=0 and Z ′ =

∑
1Nx=N ′x=0 denote the number of unobserved symbols in the

first n samples and the total n+m samples, respectively. Then U = Z−′Z. Since

the collection of random variables 1Nx=0 indexed by x are negatively correlated,

we have

Var
(
Z) ≤

∑
x

Var(1Nx=0

)
=
∑
x

E[1Nx=0(1− 1Nx=0)] ≤
∑
x

E [1Nx>0] ≤ n.

Analogously, Var(Z ′) ≤ n+m and hence

Var(U h − U) = Var(U h − Z + Z ′)

≤ 3Var(U h) + 3Var(Z ′) + 3Var(Z)

≤ 3Var(U h) + 6n+ 3m.
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Thus it remains to show

Var(U h) ≤ 4n sup
i
h2
i . (6.3)

By induction on n, we show that for any n ∈ N, any set of nonnegative integers

{rx} and any function (x, k) 7→ f(x, k) with k ∈ Z+ satisfying f(x, 0) = 0,

Var

(∑
x

f(x,Nx)

)
≤ 4n‖f‖2

∞, (6.4)

where {Nx} ∼ Hyp({rx}, n) and ‖f‖∞ = supx,k |f(x, k)|. Then the desired Equa-

tion (6.3) follows from (6.4) with f(x, k) = hk.

We first prove (6.4) for n = 1, in which case exactly one of Nx’s is one and

the rest are zero. Hence, |
∑

x f(x,Nx)| ≤ ‖f‖∞ and Var(
∑

x f(x,Nx)) ≤ ‖f‖2
∞.

Next assume the induction hypothesis holds for n − 1. Let X1 denote the

first sample and let Ñx denote the number of occurrences of symbol x in samples

X2, . . . , Xn. Then Nx = Ñx + 1X1=x. Furthermore, conditioned on X1 = y,

{Ñx} ∼ Hyp({r̃x}, n− 1), where r̃x = rx − 1x=y. By the law of total variance, we

have

Var

(∑
x

f(x,Nx)

)
= E [V (X1)] + Var (g(X1)) . (6.5)

where

V (y)
def
= Var

(∑
x

f(x,Nx)

∣∣∣∣∣X1 = y

)
, g(y)

def
= E

[∑
x

f(x,Nx)

∣∣∣∣∣X1 = y

]

For the first term in (6.5), note that

V (y) = Var

(∑
x

f(x, Ñx + 1x=y)

∣∣∣∣∣X1 = y

)
= Var

(∑
x

fy(x, Ñx)

∣∣∣∣∣X1 = y

)
.

where we defined fy(x, k)
def
= f(x, k + 1x=y). Hence, by the induction hypothesis,

V (y) ≤ 4(n− 1)‖fy‖2
∞ ≤ 4(n− 1)‖f‖2

∞ and E [V (X1)] ≤ 4(n− 1)||f ||2∞.

For the second term in (6.5), observe that for any y 6= z

g(y) = E[f(y, Ñy + 1)|X1 = y] + E[f(z, Ñz)|X1 = y] + E

[∑
x 6=y,z

f(x, Ñx)

∣∣∣∣∣X1 = y

]
,
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and

g(z) = E[f(z, Ñz + 1)|X1 = z] + E[f(y, Ñy)|X1 = z] + E

[∑
x 6=y,z

f(x, Ñx)

∣∣∣∣∣X1 = z

]
,

Observe that {Nx}x 6=y,z have the same joint distribution conditioned on eitherX1 =

y or X1 = z and hence E[
∑

x 6=y,z f(x, Ñx)|X1 = y] = E[
∑

x 6=y,z f(x, Ñx)|X1 = z].

Therefore |g(y) − g(z)| ≤ 4‖f‖∞ for any y 6= z. This implies that the function

g takes values in an interval of length at most 4‖f‖∞. Therefore Var(g(X1)) ≤
1
4
(4‖f‖∞)2 = 4‖f‖2

∞. This completes the proof of (6.4) and hence the lemma.

Let

B(h, rx)
def
=

rx∑
i=1

(
rx
i

)( n
R

)i (
1− n

R

)rx−i
hi −

(
1− n

R

)rx (
1−

(
1− m

R− n

)rx)
.

To bound the bias, we first prove an auxiliary result.

Lemma 6.7. For any linear estimator U h,∣∣∣∣∣E[U h − U ]−
∑
x

B(h, rx)

∣∣∣∣∣ ≤ 4 max

(
sup
i
|hi|, 1

)
+

2R

R− n
.

Proof. Recall that Nx ∼ Hyp(R, rx, n). Let Ñx be a random variable distributed

as Bin(rx, n/R). Since Hyp(R, rx, n) coincides with Hyp(R, n, rx), we have

dTV(Bin(rx, n/R),Hyp(R, rx, n)) = dTV(Bin(rx, n/R),Hyp(R, n, rx)) ≤
2rx
R
,

where the last inequality follows from [90, Theorem 4]. Since

dTV(µ, ν) =
1

2
sup
‖f‖∞≤1

∫
fdµ−

∫
fdν = sup

E
µ(E)− ν(E),

we have ∣∣∣E[f(Nx)]− E[f(Ñx)]
∣∣∣ ≤ 4rx

R
sup
i
|f(i)|, (6.6)

and∣∣∣∣∣
(
R−n−rx

m

)(
R−n
m

) − (1− m

R− n

)rx∣∣∣∣∣ ≤ dTV(Bin(rx,m/(R− n)),Hyp(R− n,m, rx))

≤ 2rx
R− n

. (6.7)
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Define fx(i) = hi − 1i=0

(
1−

(
1− m

R−n

)rx)
. In view of (6.2) and the fact that∑

rx = R, we have ∣∣∣∣∣E[U h − U ]−
∑
x

E[fx(Nx)]

∣∣∣∣∣ ≤ 2R

R− n
.

Applying (6.6) yields∑
x

∣∣∣E[fx(Ñx)]− E [fx(Nx)]
∣∣∣ ≤ 4 sup

i
|fx(i)| ≤ 4 max

(
sup
i
|hi|, 1

)
.

The above equation together with (6.7) results in the lemma since B(h, rx) =

E[fx(Ñx)].

Note that to upper bound the bias, we need to bound
∑

xB(h, rx). It is

easy to verify for the GT coefficients hGT
i = − (−t)i with t = m/n, B(hGT, rx) = 0.

Therefore, if we choose h = hL based on the tail of random variable L with hL
i =

hGT
i Pr (L ≥ i) as defined in (5.8), we have

B(hL, rx) =
rx∑
i=1

(
rx
i

)( n
R

)i (
1− n

R

)rx−i
(−t)i Pr(L < i)

=
(

1− n

R

)rx rx∑
i=1

(
rx
i

)(
− m

R− n

)i
Pr(L < i). (6.8)

Similar to Lemma 5.9, our strategy is to find an integral presentation of the

bias. This is done in the following lemma.

Lemma 6.8. For any y ≥ 0 and any k ∈ N,

k∑
i=1

(
k

i

)
(−y)i Pr(L < i) = −k(1−y)k

∫ y

0

E
[(
k − 1

L

)
(−s)L

]
(1−s)−k−1ds. (6.9)

Remark 6.9. For the special case of y = 1, (6.9) is understood in the limiting

sense: Letting δ = 1− y and β = 1−s
δ

, we can rewrite the right-hand side as

−k
∫ 1/δ

1

E
[(
k − 1

L

)
(βδ − 1)L

]
kβ−k−1dβ.

For all |δ| ≤ 1 and hence 0 ≤ 1− βδ ≤ 2, we have∣∣∣∣E [(k − 1

L

)
(βδ − 1)L

]∣∣∣∣ =
∣∣∣E [(k − 1

L

)
(βδ − 1)L1L<k

] ∣∣∣ ≤ 4k.
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By dominated convergence theorem, as δ → 0, the right-hand side converges to

−E
[(
k−1
L

)
(−1)L

]
and coincides with the left-hand side, which can be easily ob-

tained by applying
(
k
i

)
=
(
k−1
i

)
+
(
k−1
i−1

)
.

Proof. Denote the left-hand side of (6.9) by F (y). Using i
(
k
i

)
= k
(
k−1
i−1

)
, we have

F ′(y)

=
k∑
i=1

(
k

i

)
(−i)(−y)i−1 Pr(L < i) = −k

k∑
i=1

(
k − 1

i− 1

)
(−y)i−1 Pr(L < i)

= − k
k∑
i=1

(
k − 1

i− 1

)
(−y)i−1 Pr(L < i− 1)− k

k∑
i=1

(
k − 1

i− 1

)
(−y)i−1 Pr(L = i− 1).

(6.10)

The second term is simply −kE
[(
k−1
L

)
(−y)L

] def
= G(y). For the first term, since

L ≥ 0 almost surely and
(
k
i

)
=
(
k−1
i

)
+
(
k−1
i−1

)
, we have

k
k∑
i=1

(
k − 1

i− 1

)
(−y)i−1 Pr(L < i− 1)

= k
k∑
i=1

(
k − 1

i

)
(−y)i Pr(L < i)

= k
k∑
i=1

(
k

i

)
(−y)i Pr(L < i)− k

k∑
i=1

(
k − 1

i− 1

)
(−y)i Pr(L < i)

= kF (y)− yF ′(y). (6.11)

Combining (6.10) and (6.11) yields the following ordinary differential equation:

F ′(y)(1− y) + kF (y) = G(y), F (0) = 0,

whose solution is readily obtained as F (y) = (1 − y)k
∫ y

0
(1 − s)−k−1G(s)ds, i.e.,

the desired Equation (6.9).

Combining Lemma 6.7–6.8 yields the following bias bound:

Lemma 6.10. For any random variable L over Z+ and t = m/n ≥ 1,

|E[UL − U ]| ≤ nt · max
0≤s≤1

∣∣∣∣E [(rx − 1

L

)
(−s)L

]∣∣∣∣+ 4E[tL] +
2R

R− n
.
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Proof. Recall the coefficient bound (5.9) that supi |hi| ≤ E[tL]. By Lemma 6.7 and

the assumption that t ≥ 1,∣∣∣∣∣E[U h − U ]−
∑
x

B(hL, rx)

∣∣∣∣∣ ≤ 4E[tL] +
2R

R− n
.

Thus it suffices to bound
∑

xB(hL, rx). For every x, using (6.8) and applying

Lemma 6.8 with y = m
R−n and k = rx, we obtain

B(hL, rx) = −
(

1− n+m

R

)rx ∫ m
R−n

0

E
[(
rx − 1

L

)
(−s)L

]
rx(1− s)−rx−1ds.

Since 0 ≤ m
R−n ≤ 1, letting K = max0≤s≤1

∣∣E[(rx−1
L

)
(−s)L

]∣∣, we have

|B(hL, rx)| ≤
(

1− n+m

R

)rx
K

∫ m
R−n

0

rx(1− s)−rx−1ds.

= K

((
1− n

R

)rx
−
(

1− n+m

R

)rx)
≤ K

(
1− n

R

)rx−1 mrx
R

,

where the last inequality follows from the convexity of x 7→ (1 − x)rx . Summing

over all symbols x results in the lemma.

Combining Lemma 6.10 and Lemma 6.6 gives the following NMSE bound:

Theorem 6.11. Under the assumption of Lemma 6.10, E[(UL − U)2] is at most

12(n+ 1)E2[tL] + 6n+ 3m+
12R2

(R− n)2
+ 3m2 max

1≥α>0

∣∣∣∣E [(rx − 1

L

)
(−α)L

]∣∣∣∣2 .
As before, we can choose various smoothing distribution and obtain upper

bounds on the mean squared error.

Corollary 6.12. If L ∼ poi(r) and R− n ≥ m ≥ n, then

E[(UL − U)2] ≤ 12(n+ 1)e2r(t−1) + 3m2e−r + 9m+ 48.

Furthermore, if r = 1
2t−1
· log(nt2),

En,t(UL) ≤ 27

(nt2)
1

2t−1

+
9nt+ 48

(nt)2
.
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Proof. For L ∼ poi(r), E[tL] = er(t−1) and

max
0≤α≤1

∣∣∣∣E [(rx − 1

L

)
(−α)L

]∣∣∣∣ = e−r max
0≤α≤1

|Lrx−1 (αr) | ≤ e−r/2,

where Lrx−1 is the Laguerre polynomial of degree rx − 1 defined in (5.13) and the

last equality follows the bound (5.14). Furthermore, R/(R−n) = 1 +n/(R−n) ≤
1 + n/m ≤ 2 and n ≤ m, and hence the first part of the lemma. The second part

follows by substituting the value of r.

6.4 Lower bounds

Under the multinomial model (i.i.d. sampling), we lower bound the risk

En,t(UE) for any estimator UE using the support size estimation lower bound in [82].

Since the lower bound in [82] also holds for the Poisson model, so does our lower

bound.

Recall that for a discrete distribution p, Supp(p) =
∑

x 1px>0 denotes its

support size. It is shown that given n i.i.d. samples drawn from a distribution

p whose minimum non-zero mass p+
min is at least 1/k, the minimax mean-square

error for estimating Supp(p) satisfies

min
ˆSupp

max
p:p+

min≥1/k
E[( ˆSupp− Supp(p))2] ≥ c′k2 · exp

(
−cmax

(√
n log k

k
,
n

k

))
.

(6.12)

where c, c′ are universal positive constants with c > 1. We prove Theorem 5.2

under the multinomial model with c being the universal constant from (6.12).

Suppose we have an estimator Û for U that can accurately predict the

number of new symbols arising in the next m samples, we can then produce an

estimator for the support size by adding the number of symbols observed, Φ+, in

the current n samples, namely,

ˆSupp = Û + Φ+. (6.13)

Note that U =
∑

x 1Nx=01N ′x>0. When m = ∞, U is the total number of unseen

symbols and we have Supp(p) = U + Φ+. Consequently, if Û can foresee too far
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into the future (i.e., for too large an m), then (6.13) will constitute a support size

estimator that is too good to be true.

Combining Theorem 5.2 with the positive result (Corollary 5.12 or 5.13)

yields the following characterization of the minimax risk:

Corollary 6.13. For all t ≥ c, we have

inf
UE
En,t(UE) = exp

(
−Θ

(
max

{
log n

t
, 1

}))
Consequently, as n → ∞, the minimax risk infUE En,t(UE) → 0 if and only if

t = o(log n).

Proof of Theorem 5.2. Recall that m = nt. Let Û be an arbitrary estimator for

U . For the support size estimator ˆSupp = Û + Φ+ defined in (6.13), it must obey

the lower bound (6.12). Hence there exists some p satisfying p+
min ≥ 1/k, such that

E[(Supp(p)− ˆSupp)2] ≥ c′k2 · exp

(
−cmax

(√
n log k

k
,
n

k

))
. (6.14)

Let S = Supp(p) denote the support size, which is at most k. Let Ũ
def
= EXn+m

n+1
[U ]

be the expectation of U over the unseen samples Xn+m
n+1 conditioned on the avail-

able samples Xn
1 . Then Ũ =

∑
x 1Nx=0 (1− (1− px)nt). Since the estimator Û is

independent of Xn+m
n+1 , by convexity,

EXn+m
1

[(U − Û)2] ≥ EXn
1
[(EXn+m

n+1
[U − Û ])2] = E[(Ũ − Û)2]. (6.15)

Notice that with probability one,

|S − Ũ − Φ+| ≤ Se−nt/k ≤ ke−nt/k, (6.16)

which follows from

Ũ + Φ+ =
∑
x:px>0

1Nx=0

(
1− (1− px)nt

)
+ 1Nx>0 ≤ S,

and, on the other hand,

Ũ + Φ+

=
∑

x:px≥1/k

1Nx=0

(
1− (1− px)nt

)
+ 1Nx>0

≥
∑
x

1Nx=0

(
1− (1− 1/k)nt

)
+ 1Nx>0 ≥ S(1− (1− 1/k)nt) ≥ S(1− e−nt/k).
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Expanding the left hand side of (6.14),

E[(S − ˆSupp)2]

= E
[(
S − Ũ − Φ+ + Ũ − Û

)2
]
≤ 2E[(S − Ũ − Φ+)2] + 2E[(Ũ − Û))2]

(6.16)

≤ 2k2e−2nt/k + 2E[(Ũ − Û))2]
(6.15)

≤ 2k2e−2nt/k + 2E[(U − Û))2]

Let

k = min

{
nt2

c2 log nt2

c2

,
nt

log 4
c′

}
,

which ensures that

c′k2 · exp

(
−cmax

{√
n log k

k
,
n

k

})
≥ 4k2e−2nt/k. (6.17)

Then

E[(U − Û)2] ≥ k2e−2nt/k,

establishes the following lower bound with α
def
= c′2

4 log2(4/c′)
and β

def
= c2:

min
E
En,t(UE) ≥ min

{
α,

4t2

β2 log2 nt2

β

(
β

nt2

)2β/t
}
.

To verify (6.17), since t ≥ c by assumption, we have exp(2tn
k
− cn

k
) ≥ exp(nt

k
) ≥ 4

c′
.

Similarly, since k log k ≤ nt2

c2
by definition, we have 2nt

k
≥ 2c′

√
n log k
k

and hence

exp
(

2tn
k
− c
√

n log k
k

)
≥ exp(nt

k
) ≥ 4

c′
, completing the proof of (6.17).

Thus we have shown that there exist universal positive constants α, β such

that

min
E
En,t(UE) ≥ min

{
α,

4t2

β2 log2 nt2

β

(
β

nt2

)2β/t
}
.

Let y =
(
nt2

β

)2β/t

, then

min
E
En,t(UE) ≥ min

{
α, 16

1

y log2 y

}
.
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Since y > 1, y3 ≥ y log2 y and hence for some constants c1, c2 > 0,

min
E
En,t(UE) ≥ min

{
α, 16

1

y3

}
≥ min

{
α,

(
β

nt2

)6β/t
}

≥ c1 min

{
1,

(
1

n

)c2/t}
≥ c1

nc2/t
.
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Chapter 7

Learning Gaussian mixtures

7.1 Introduction

7.1.1 Background

Meaningful information often resides in high-dimensional spaces: voice sig-

nals are expressed in many frequency bands, credit ratings are influenced by multi-

ple parameters, and document topics are manifested in the prevalence of numerous

words. Some applications, such as topic modeling and genomic analysis consider

data in over 1000 dimensions, [4, 5].

Typically, information can be generated by different types of sources: voice

is spoken by men or women, credit parameters correspond to wealthy or poor

individuals, and documents address topics such as sports or politics. In such cases

the overall data follow a mixture distribution [6, 7, 8].

Mixtures of high-dimensional distributions are therefore central to the un-

derstanding and processing of many natural phenomena. Methods for recovering

the mixture components from the data have consequently been extensively studied

by statisticians, engineers, and computer scientists.

Initially, heuristic methods such as expectation-maximization were devel-

oped [91, 92]. Over the past decade, rigorous algorithms were derived to recover

mixtures of d-dimensional spherical Gaussians [93, 94, 95, 96, 97] and general

Gaussians [98, 99, 100, 101, 102, 103]. Many of these algorithms consider mix-
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tures where the `1 distance between the mixture components is 2− od(1), namely

approaches the maximum of 2 as d increases. They identify the distribution com-

ponents in time and samples that grow polynomially in d. Recently, [100, 101, 102]

showed that the parameters of any k-component d-dimensional Gaussian mixture

can be recovered in time and samples that grow as a high-degree polynomial in d

and exponentially in k.

A different approach that avoids the large component-distance requirement

and the high time and sample complexity, considers a slightly relaxed notion of

approximation, sometimes called PAC learning [104], or proper learning, that does

not approximate each mixture component, but instead derives a mixture distribu-

tion that is close to the original one. Specifically, given a distance bound ε > 0,

error probability δ > 0, and samples from the underlying mixture f , where we use

boldface letters for d-dimensional objects, PAC learning seeks a mixture estimate

f̂ with at most k components such that D(f , f̂) ≤ ε with probability ≥ 1−δ, where

D(·, ·) is some given distance measure, for example `1 distance or KL divergence.

An important and extensively studied special case of Gaussian mixtures is

mixture of spherical-Gaussians [93, 94, 95, 96, 97], where for each component the d

coordinates are distributed independently with the same variance, though possibly

with different means. Note that different components can have different variances.

Due to their simple structure, spherical-Gaussian mixtures are easier to analyze

and under a minimum-separation assumption have provably-practical algorithms

for clustering and parameter estimation. We consider spherical-Gaussian mixtures

as they are important on their own and form a natural first step towards learning

general Gaussian mixtures.

7.1.2 Sample complexity

Reducing the number of samples required for learning is of great practical

significance. For example, in topic modeling every sample is a whole document,

in credit analysis every sample is a person’s credit history, and in genetics, every

sample is a human DNA. Hence samples can be very scarce and obtaining them

can be very costly. By contrast, current CPUs run at several Giga Hertz, hence
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samples are typically much more scarce of a resource than time.

For one-dimensional distributions, the need for sample-efficient algorithms

has been broadly recognized. The sample complexity of many problems is known

quite accurately, often to within a constant factor. For example, for discrete

distributions over {1, . . . ,s}, an approach was proposed in [105] and its modifi-

cations were used in [76] to estimate the probability multiset using Θ(s/ log s)

samples. Learning one-dimensional m-modal distributions over {1, . . . ,s} requires

Θ(m log(s/m)/ε3) samples [106]. Similarly, one-dimensional mixtures of k struc-

tured distributions (logconcave, monotone hazard rate, and unimodal) over

{1, . . . ,s} can be learned with O(k/ε4), O(k log(s/ε)/ε4), and O(k log(s)/ε4) sam-

ples, respectively, and these bounds are tight up to a factor of ε [107].

Unlike the one-dimensional case, in high dimensions, sample complexity

bounds are quite weak. For example, to learn a mixture of k = 2 spherical Gaus-

sians, existing estimators use O(d12) samples, and this number increases exponen-

tially with k [108]. We close this gap by constructing estimators with near-linear

sample complexity.

7.1.3 Previous and new results

Our main contribution is PAC learning d-dimensional spherical Gaussian

mixtures with near-linear samples. In the process of deriving these results we also

prove results for learning one-dimensional Gaussians.

d-dimensional Gaussian mixtures

Several papers considered PAC learning of discrete- and Gaussian-product

mixtures. [109] considered mixtures of two d-dimensional Bernoulli products where

all probabilities are bounded away from 0. They showed that this class of mix-

tures is PAC learnable in Õ(d2/ε4) time and samples, where the Õ notation hides

logarithmic factors. [110] eliminated the probability constraints and generalized

the results from binary to arbitrary discrete alphabets and from 2 to k mixture

components, showing that these mixtures are PAC learnable in Õ
(
(d/ε)2k2(k+1)

)
time. Although they did not explicitly mention sample complexity, their algo-
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rithm uses Õ
(
(d/ε)4(k+1)

)
samples. [108] generalized these results to Gaussian

products and showed that mixtures of k Gaussians, where the difference between

the means is bounded by B times the standard deviation, are PAC learnable in

Õ
(
(dB/ε)2k2(k+1)

)
time, and can be shown to use Õ

(
(dB/ε)4(k+1)

)
samples. These

algorithms consider the KL divergence between the distribution and its estimate,

but it can be shown that the `1 distance would result in similar complexities. It

can also be shown that these algorithms or their simple modifications have similar

time and sample complexities for spherical Gaussians as well.

Our main contribution for this problem is to provide an algorithm that

PAC learns mixtures of spherical-Gaussians in `1 distance with number of samples

nearly-linear, and running time polynomial in the dimension d. Specifically, in

Theorem 7.12 we show that mixtures of k spherical-Gaussian distributions can be

learned using

n = O
(
dk9

ε4
log2 d

δ

)
= Ok,ε

(
d log2 d

δ

)
samples and in time

O
(
n2d log n+ d

(k7

ε3
log2 d

δ

) k2

2
)

= Õk,ε(d3).

Recall that for similar problems, previous algorithms used Õ
(
(d/ε)4(k+1)

)
samples.

Furthermore, recent algorithms typically construct the covariance matrix [97, 108],

hence require ≥ nd2 time. In that sense, for small k, the time complexity we derive

is comparable to the best such algorithms one can hope for. Additionally, the

exponential dependence on k in the time complexity is d(k
7

ε3
log2 d

δ
)k

2/2, significantly

lower than the dO(k3) dependence in previous results.

Conversely, Theorem 7.2 shows that any algorithm for PAC learning a mix-

ture of k spherical Gaussians requires Ω(dk/ε2) samples, hence our algorithms

are nearly sample optimal in the dimension. In addition, their time complexity

significantly improves on previously known ones.

One-dimensional Gaussian mixtures

We also construct a simple estimator that learns k-component

one-dimensional Gaussian mixtures using Õ(kε−2) samples and in Õ((k/ε)3k+1)
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time. We note that independently and concurrently with this work [111] showed

that mixtures of two one-dimensional Gaussians can be learnt with Õ(ε−2) samples

and in time O(ε−5). Combining with some of the techniques in this thesis, they

extend their algorithm to mixtures of k Gaussians, and reduce the exponent to

3k − 1.

7.1.4 The approach and technical contributions

Let d(f ,F) be the smallest `1 distance between a distribution f and any

distribution in a collection F . The popular Scheffe estimator [112] takes a

surprisingly small O(log |F|) independent samples from an unknown distribution

f and time O(|F|2) to find a distribution in F whose distance from f is at most a

constant factor larger than d(f ,F). Recently [113] modified the algorithm to lower

the time complexity of the Scheffe algorithm from O(|F|2) time to O(|F|). We use

this modified version thus reducing the time complexity of our algorithms.

Given the above, our goal is to construct a small class of distributions such

that one of them is ε-close to the underlying distribution.

Consider for example mixtures of k components in one dimension with

means and variances bounded by B. Take the collection of all mixtures derived

by quantizing the means and variances of all components to εm accuracy, and

quantizing the weights to εw accuracy. It can be shown that if εm, εw ≤ ε/k2

then one of these candidate mixtures would be O(ε)-close to any mixture, and

hence to the underlying one. There are at most (B/εm)2k · (1/εw)k = (B/ε)Õ(k)

candidates and running Scheffe on these mixtures would lead to an estimate.

However, this approach requires a bound on the means and variances. We remove

this requirement on the bound, by selecting the quantizations based on samples

and we describe it in Section 7.3.

In d dimensions, consider spherical Gaussians with the same variance and

means bounded by B. Again, take the collection of all distributions derived by

quantizing the means of all components in all coordinates to εm accuracy, and

quantizing the weights to εw accuracy. It can be shown that for d-dimensional

Gaussian to get distance ε from the underlying distribution, it suffices to take
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εm, εw ≤ ε2/poly(dk). There are at most (B/εm)dk · (1/εw)k = 2Õε(dk) possible

combinations of the k mean vectors and weights. Hence Scheffe implies an

exponential-time algorithm with sample complexity Õ(dk). To reduce the depen-

dence on d, one can approximate the span of the k mean vectors. This reduces

the problem from d to k dimensions, allowing us to consider a distribution col-

lection of size 2O(k2), with Scheffe sample complexity of just O(k2). [110, 108]

constructs the sample correlation matrix and uses k of its columns to approximate

the span of mean vectors. This approach requires the k columns of the sample

correlation matrix to be very close to the actual correlation matrix, requiring a lot

more samples.

We derive a spectral algorithm that approximates the span of the k mean

vectors using the top k eigenvectors of the sample covariance matrix. Since we

use the entire covariance matrix instead of just k columns, a weaker concentration

suffices and the sample complexity can be reduced.

Using recent tools from non-asymptotic random matrix theory [114, 115,

116] we show that the span of the means can be approximated with Õ(d) samples.

This result allows us to address most “reasonable” distributions, but still there

are some “corner cases” that need to be analyzed separately. To address them,

we modify some known clustering algorithms such as single-linkage, and spectral

projections. While the basic algorithms were known before, our contribution here,

which takes a fair bit of effort and space, is to show that judicious modifications of

the algorithms and rigorous statistical analysis yield polynomial time algorithms

with near-linear sample complexity. We provide a simple and practical spectral

algorithm that estimates all such mixtures in Ok,ε(d log2 d) samples.

The rest of the chapter is organized as follows. In Section 7.2, we introduce

notations and state a lower bound. In Section 7.3 we show a simple learning

algorithm for one-dimensional Gaussian mixtures. In Section 7.4, we motivate

and present the algorithm for d-dimensional Gaussian mixtures. We then provide

guarantees for the proposed algorithm in Sections 7.5, 7.6, 7.7. Finally, we prove

lower bounds on the sample complexity in Section 7.8.
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7.2 Preliminaries

7.2.1 Notation

For arbitrary product distributions p1, . . . ,pk over a d dimensional space

let pj,i be the distribution of pj over coordinate i, and let µ̂j,i and σj,i be the mean

and variance of pj,i respectively. Let f = (w1, . . . , wk,p1, . . . ,pk) be the mixture

of these distributions with mixing weights w1, . . . , wk. We denote estimates of a

quantity x by x̂. It can be empirical mean or a more complex estimate. ||·|| denotes

the spectral norm of a matrix and ||·||2 is the `2 norm of a vector. We use D(·, ·)
to denote the `1 distance between two distributions.

7.2.2 Selection from a pool of distributions

Many algorithms for learning mixtures over the domain X first obtain a

small collection F of mixtures and then perform Maximum Likelihood test using

the samples to output a distribution [110, 109]. Our algorithm also obtains a

set of distributions containing at least one that is close to the underlying in `1

distance. The estimation problem now reduces to the following. Given a class F
of distributions and samples from an unknown distribution f , find a distribution

in F that is close to f . Let D(f ,F)
def
= minfi∈F D(f , fi).

The well-known Scheffe’s method [112] uses O(ε−2 log |F|) samples from the

underlying distribution f , and in time O(ε−2|F|2T log |F|) outputs a distribution

in F with `1 distance of at most 9.1 · max(D(f ,F), ε) from f , where T is the

time required to compute the probability of an x ∈ X by a distribution in F .

A naive application of this algorithm requires time quadratic in the number of

distributions in F . Recently [113] proposed a variant of Scheffe’s method called

Modified Scheffe that works in near linear time, albeit requiring slightly more

samples. More precisely,

Lemma 7.1 ([113]). Let ε > 0. For some constant c, given c
ε2

log
( |F|
δ

)
independent

samples from a distribution f , with probability ≥ 1− δ, the output f̂ of modified

scheffe D(f̂ , f) ≤ 1000 max(ε,D(f ,F)). Furthermore, the algorithm runs in time
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O
( |F|T log(|F|/δ)

ε2

)
.

For our problem of estimating k component mixtures in d-dimensions, T =

O(dk) and |F| = Õk,ε(d2).

7.2.3 Lower bound

Using Fano’s inequality, we show an information theoretic lower bound of

Ω(dk/ε2) samples to learn k-component d-dimensional spherical Gaussian mixtures

for any algorithm. More precisely,

Theorem 7.2 (Section 7.8). Any algorithm that learns all k-component

d-dimensional spherical Gaussian mixtures up to `1 distance ε with probability

≥ 1/2 requires at least Ω(dk
ε2

) samples.

7.3 One-dimensional mixtures

Over the past decade estimation of one dimensional distributions has gained

significant attention [11, 76, 106, 107, 111, 117]. We provide a simple estimator

for learning one dimensional Gaussian mixtures using the Modified Scheffe

estimator. Formally, given samples from f , a mixture of Gaussian distributions

pi
def
= N(µi, σ

2
i ) with weights w1, w2, . . . wk, our goal is to find a mixture f̂ =

(ŵ1, ŵ2, . . . ŵk, p̂1, p̂2, . . . p̂k) such that D(f, f̂) ≤ ε. We make no assumption on

the weights, means or the variances of the components. While we do not use the

one dimensional algorithm in the d-dimensional setting, it provides insight to the

usage of the Modified Scheffe estimator and may be of independent interest.

As stated in before, our quantizations are based on samples and is an immediate

consequence of the following observation for samples from a Gaussian distribution.

Lemma 7.3. Given n independent samples x1, . . . , xn from N(µ, σ2), with prob-

ability ≥ 1 − δ there are two samples xj, xk such that |xj − µ| ≤ σ 7 log 2/δ
2n

and

|xj − xk − σ| ≤ 2σ 7 log 2/δ
2n

.

Proof. The density of N(µ, σ2) is ≥ (7σ)−1 in the interval [µ −
√

2σ, µ +
√

2σ].

Therefore, the probability that a sample occurs in the interval µ − εσ, µ + εσ is
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≥ 2ε/7. Hence, the probability that none of the n samples occurs in [µ−εσ, µ+εσ]

is ≤ (1 − 2ε/7)n ≤ e−2nε/7. If ε ≥ 7 log 2/δ
2n

, then the probability that none of the

samples occur in the interval is ≤ δ/2. A similar argument shows that there is a

sample within interval, [µ+ σ − εσ, µ+ σ + εσ], proving the lemma.

The above lemma states that given samples from a Gaussian distribution,

there would be a sample close to the mean and there would be two samples that

are about a standard deviation apart. Hence, if we consider the set of all Gaussians

N(xj, (xj − xk)2) : 1 ≤ j, k ≤ n, then that set would contain a Gaussian close to

the underlying one. The same holds for mixtures and for a Gaussian mixture and

we can create the set of candidate mixtures as follows.

Lemma 7.4. Given n ≥ 120k log(4k/δ)
ε

samples from a mixture f of k Gaussians.

Let S = {N(xj, (xj − xk)2) : 1 ≤ j, k ≤ n} and W = {0, ε
2k
, 2ε

2k
. . . , 1} be a set of

weights. Let

F def
= {(ŵ1, ŵ2, . . . , ŵk, p̂1, p̂2, . . . p̂k) :

p̂i ∈ S, ∀1 ≤ i ≤ k − 1, ŵi ∈ W, ŵk = 1− (ŵ1 + . . . ŵk−1) ≥ 0}

be a set of n2k(2k/ε)k−1 ≤ n3k−1 candidate distributions. There exists f̂ ∈ F such

that D(f, f̂) ≤ ε.

Proof. Let f = (w1, w2, . . . wk, p1, p2, . . . pk). For

f̂ = (ŵ1, ŵ2, . . . , ŵk−1, 1−
∑k−1

i=1 ŵi, p̂1, p̂2, . . . p̂k), by the triangle inequality,

D(f, f̂) ≤
k−1∑
i=1

2|ŵi − wi|+
k∑
i=1

wiD(pi, p̂i).

We show that there is a distribution in f̂ ∈ F such that the sum above is bounded

by ε. Since we quantize the grids as multiples of ε/2k, we consider distributions in

F such that each |ŵi − wi| ≤ ε/4k, and therefore
∑

i |ŵi − wi| ≤
ε
2
.

We now show that for each pi there is a p̂i such that wiD(pi, p̂i) ≤ ε
2k

,

thus proving that D(f, f̂) ≤ ε. If wi ≤ ε
4k

, then wiD(pi, p̂i) ≤ ε
2k

. Otherwise,

let w′i >
ε

4k
be the fraction of samples from pi. By Lemma 7.3 and 7.15, with
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probability ≥ 1− δ/2k,

D(pi, p̂i)
2 ≤ 2

(µi − µ′i)2

σ2
i

+ 16
(σi − σ′i)2

σ2
i

≤
25 log2 4k

δ

(nw′i)
2

+
800 log2 4k

δ

(nw′i)
2

≤
825 log2 4k

δ

(nw′i)
2

.

Therefore,

wiD(pi, p̂i) ≤
30wi log 4k

δ

nw′i
.

Since wi > ε/4k, with probability ≥ 1 − δ/2k, wi ≤ 2w′i. By the union bound

with probability ≥ 1 − δ/k, wiD(pi, p̂i) ≤
60 log 4k

δ

n
. Hence if n ≥ 120k log 4k

δ

ε
, the

above quantity is less than ε/2k. The total error probability is ≤ δ by the union

bound.

Running the Modified Scheffe algorithm on the above set of candidates

F yields a mixture that is close to the underlying one. By Lemma 7.1 and the

above lemma we obtain

Corollary 7.5. Let n ≥ c · k
ε2

log k
εδ

for some constant c. There is an algorithm

that runs in time O
((

k log(k/εδ)
ε

)3k−1
k2 log(k/εδ)

ε2

)
, and returns a mixture f̂ such

that D(f, f̂) ≤ 1000ε with probability ≥ 1− 2δ.

Proof. Use n′
def
=

120k log 4k
δ

ε
samples to generate a set of at most n′3k−1 candidate

distributions as stated in Lemma 7.4. With probability≥ 1−δ, one of the candidate

distributions is ε-close to the underlying one. Run Modified Scheffe on this set

of candidate distributions to obtain a 1000ε-close estimate of f with probability

≥ 1 − δ (Lemma 7.1). The run time is dominated by the run time of Modified

Scheffe which is O
(
|F|T log

|F|
δ

ε2

)
, where |F| = n′3k−1 and T = k. The total error

probability is ≤ 2δ by the union bound.

Remark 7.6. [111] considered the one dimensional Gaussian mixture problem for

two component mixtures. While the process of identifying the candidate means

is same for both the results, the process of identifying the variances and proof

techniques are different.
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7.4 d-dimensional mixtures

Algorithm Learn k-Sphere learns mixtures of k spherical Gaussians using

near-linear samples. For clarity and simplicity of proofs, we first prove the result

when all components have the same variance σ2, i.e., pi = N(µi, σ
2Id) for 1 ≤ i ≤

k. A modification of this algorithm works for components with different variances.

The core ideas are same and we discuss the changes in Section 7.4.3. The algorithm

starts out by estimating σ2 and we discuss this step later. We estimate the means

in three steps, a coarse single-linkage clustering, recursive spectral clustering and

search over span of means. We now discuss the necessity of these steps.

7.4.1 Estimating the span of means

A simple modification of the one dimensional algorithm can be used to learn

mixtures in d dimensions, however, the number of candidate mixtures would be

exponential in d, the number of dimensions. As stated in before, given the span of

the mean vectors µi, we can grid the k dimensional span to the required accuracy

εg and use Modified Scheffe, to obtain a polynomial time algorithm. One of

the natural and well-used methods to estimate the span of mean vectors is using

the correlation matrix [97]. Consider the correlation-type matrix,

S =
1

n

n∑
i=1

X(i)X(i)t − σ2Id.

For a sample X from a particular component j, E[XXt] = σ2Id + µjµj
t, and the

expected fraction of samples from pj is wj. Hence

E[S] =
k∑
j=1

wjµjµj
t.

Therefore, as n → ∞, S converges to
∑k

j=1 wjµjµj
t, and its top k eigenvectors

span the means.

While the above intuition is well understood, the number of samples neces-

sary for convergence is not well studied. We wish Õ(d) samples to be sufficient for

the convergence irrespective of the values of the means. However this is not true
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when the means are far apart. In the following example we demonstrate that the

convergence of averages can depend on their separation.

Example 7.7. Consider the special case, d = 1, k = 2, σ2 = 1, w1 = w2 = 1/2,

and mean differences |µ1 − µ2| = L � 1. Given this prior information, one can

estimate the average of the mixture, that yields (µ1 + µ2)/2. Solving equations

obtained by µ1 +µ2 and µ1−µ2 = L yields µ1 and µ2. The variance of the mixture

is 1 + L2/4 > L2/4. With additional Chernoff type bounds, one can show that

given n samples the error in estimating the average is

|µ1 + µ2 − µ̂1 − µ̂2| ≈ Θ
(
L/
√
n
)
.

Hence, estimating the means to high precision requires n ≥ L2, i.e., the higher

separation, the more samples are necessary if we use the sample mean.

A similar phenomenon happens in the convergence of the correlation matri-

ces, where the variances of quantities of interest increase with separation. In other

words, for the span to be accurate the number of samples necessary increases with

the separation. To overcome this, a natural idea is to cluster the Gaussians such

that the component means in the same cluster are close and then estimate the

span of means, and apply scheffe on the span within each cluster.

For clustering, we use another spectral algorithm. Even though spectral

clustering algorithms are studied in [97, 99], they assume that the weights are

strictly bounded away from 0, which does not hold here. We use a simple recur-

sive clustering algorithm that takes a cluster C with average µ(C). If there is a

component in the cluster such that
√
wi ||µi − µ(C)||2 is Ω(log(n/δ)σ), then the al-

gorithm divides the cluster into two nonempty clusters without any mis-clustering.

For technical reasons similar to the above example, we first use a coarse clustering

algorithm that ensures that the mean separation of any two components within

each cluster is Õ(d1/4σ).

Our algorithm thus comprises of (i) variance estimation (ii) a coarse cluster-

ing ensuring that means are within Õ(d1/4σ) of each other in each cluster (iii) a re-

cursive spectral clustering that reduces the mean separation to O(
√
k3 log(n/δ)σ)
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(iv) estimating the span of mean within each cluster, and (v) quantizing the means

and running Modified Scheffe on the resulting candidate mixtures.

Algorithm Learn k-Sphere

Input: n samples x(1),x(2), . . . ,x(n) from f and ε.

1. Sample variance: σ̂2 = mina6=b:a,b∈[k+1] ||x(a)− x(b)||22 /2d.

2. Coarse single-linkage clustering: Start with each sample as a cluster,

• While ∃ two clusters with squared-distance ≤ 2dσ̂2 +

23σ̂2
√
d log(n2/δ), merge them.

3. Recursive spectral-clustering: While there is a cluster C with |C| ≥
nε/5k and spectral norm of its sample covariance matrix≥ 12k2σ̂2 log n3/δ,

• Use nε/8k2 of the samples to find the largest eigenvector and discard

these samples.

• Project the remaining samples on the largest eigenvector.

• Perform single-linkage in the projected space (as before) till the dis-

tance between clusters is > 3σ̂
√

log(n2k/δ) creating new clusters.

4. Exhaustive search: Let εg = ε/(16k3/2), L = 200
√
k4ε−1 log n2

δ
,

L′ =
32k
√

logn2/δ

ε
, and G = {−L, . . . ,−εg, 0, εg, 2εg, . . . L}. Let W =

{0, ε/(4k), 2ε/(4k), . . . 1} and Σ
def
= {σ2 : σ2 = σ̂2(1 + iε/d

√
128dk2),∀ −

L′ < i ≤ L′}.

• For each cluster C find its top k − 1 eigenvectors u1, . . .uk−1. Let

Span(C) = {µ̂(C) +
∑k−1

i=1 giσ̂ui : gi ∈ G}.

• Let Span = ∪C:|C|≥nε
5k

Span(C).

• For all w′i ∈ W , σ′2 ∈ Σ, µ̂i ∈ Span,

add {(w′1, . . . , w′k−1, 1−
∑k−1

i=1 w
′
i, N(µ̂1, σ

′2), . . . , N(µ̂k, σ
′2)} to F .

5. Run modified scheffe on F and output the resulting distribution.
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7.4.2 Sketch of correctness

We now describe the steps stating the performance of each step of Algorithm

Learn k-Sphere. To simplify the bounds and expressions, we assume that d >

1000 and δ ≥ min(2n2e−d/10, 1/3). For smaller values of δ, we run the algorithm

with error 1/3 and repeat it O(log 1
δ
) times to choose a set of candidate mixtures

Fδ. By the Chernoff-bound with error ≤ δ, Fδ contains a mixture ε-close to f .

Finally, we run modified scheffe on Fδ to obtain a mixture that is close to f .

By the union bound and Lemma 7.1, the error of the new algorithm is ≤ 2δ.

Variance estimation: Let σ̂ be the variance estimate from step 1. If

X(1) and X(2) are two samples from the components i and j respectively, then

X(1)−X(2) is distributed N(µi − µj, 2σ
2Id). Hence for large d, ||X(1)−X(2)||22

concentrates around 2dσ2 +
∣∣∣∣µi − µj

∣∣∣∣2
2
. By the pigeon-hole principle, given k+ 1

samples, two of them are from the same component. Therefore, the minimum

pairwise distance between k + 1 samples is close to 2dσ2. This is made precise in

the next lemma which states that σ̂2 is a good estimate of the variance.

Lemma 7.8 (Section 7.6.1). Given n samples from the k-component mixture, with

probability 1− 2δ, |σ̂2 − σ2| ≤ 2.5σ2
√

log(n2/δ)/d.

Coarse single-linkage clustering: The second step is a single-linkage

routine that clusters mixture components with far means. Single-linkage is a

simple clustering scheme that starts out with each data point as a cluster, and at

each step merges the two nearest clusters to form a larger cluster. The algorithm

stops when the distance between clusters is larger than a pre-specified threshold.

Suppose the samples are generated by a one-dimensional mixture of k com-

ponents that are far, then with high probability, when the algorithm generates k

clusters all the samples within a cluster are generated by a single component. More

precisely, if ∀i, j ∈ [k], |µi − µj| = Ω(σ log n), then all the n samples concentrate

around their respective means and the separation between any two samples from

different components would be larger than the largest separation between any two

samples from the same component. Hence for a suitable value of threshold, single-

linkage correctly identifies the clusters. For d-dimensional Gaussian mixtures a

similar property holds, with minimum separation Ω((d log n
δ
)1/4σ). More precisely,
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Lemma 7.9 (Section 7.6.2). After Step 2 of Learn k-Sphere, with probability

≥ 1−2δ, all samples from each component will be in the same cluster and the max-

imum distance between two components within each cluster is ≤ 10kσ
(
d log n2

δ

)1/4
.

Recursive spectral-clustering: The clusters formed at the beginning of

this step consist of components with mean separation O(σd1/4 log n
δ
). We now

recursively zoom into the clusters formed and show that it is possible to cluster

the components with much smaller mean separation. Note that since the matrix

is symmetric, the largest magnitude of the eigenvalue is the same as the spectral

norm. We first find the largest eigenvector of

S(C)
def
=

1

|C|

(∑
x∈C

(x− µ̂(C))(x− µ̂(C))t
)
− σ̂2Id,

which is the sample covariance matrix with its diagonal term reduced by σ̂2. We

then project our samples to this vector and if there are two components with means

far apart, then using single-linkage we divide the cluster into two. The following

lemma shows that this step performs accurate clustering of components with well

separated means.

Lemma 7.10 (Section 7.6.3). Let n ≥ c · dk4

ε
log n3

δ
. After recursive clustering,

with probability ≥ 1 − 4δ, the samples are divided into clusters such that for

each component i within a cluster C,
√
wi ||µi − µ(C)||2 ≤ 25σ

√
k3 log(n3/δ) .

Furthermore, all the samples from one component remain in a single cluster.

Exhaustive search and Scheffe: After step 3, all clusters have a small

weighted radius
√
wi ||µi − µ(C)||2 ≤ 25σ

√
k3 log n3

δ
. It can be shown that the

eigenvectors give an accurate estimate of the span of µi−µ(C) within each cluster.

More precisely,

Lemma 7.11 (Section 7.6.4). Let n ≥ c · dk9

ε4
log2 d

δ
for some constant c. After

step 3, with probability ≥ 1 − 7δ, if |C| ≥ nε/5k, then the projection of [µi −
µ(C)]/ ||µi − µ(C)||2 on the space orthogonal to the span of top k−1 eigenvectors

has magnitude ≤ εσ
8
√

2k
√
wi||µi−µ(C)||2

.
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We now have accurate estimates of the spans of the cluster means and each

cluster has components with close means. It is now possible to grid the set of

possibilities in each cluster to obtain a set of distributions such that one of them is

close to the underlying. There is a trade-off between a dense grid to obtain a good

estimation and the computation time required. The final step takes the sparsest

grid possible to ensure an error ≤ ε. This is quantized below.

Theorem 7.12 (Section 7.6.5). Let n ≥ c · dk9

ε4
log2 d

δ
for some constant c. Then

Algorithm Learn k-Sphere, with probability ≥ 1− 9δ, outputs a distribution f̂

such that D(f̂ , f) ≤ 1000ε. Furthermore, the algorithm runs in time

O
(
n2d log n+ d

(k7

ε3
log2 d

δ

) k2

2
)
.

Note that the run time is calculated based on an efficient implementation

of single-linkage clustering and the exponential term is not optimized.

7.4.3 Mixtures with unequal variances

We generalize the results to mixtures with components having different vari-

ances. Let pi = N(µi,σ
2
i Id) be the ith component. The key differences between

Learn k-Sphere and the algorithm for learning mixtures with unequal variances

are:

1. In Learn k-Sphere, we first estimated the component variance σ and di-

vided the samples into clusters such that within each cluster the means are

separated by Õ(d1/4σ). We modify this step such that the samples are clus-

tered such that within each cluster the components not only have mean

separation O(d1/4σ), but variances are also a factor at most 1 + Õ
(
1/
√
d
)

apart.

2. Once the variances in each cluster are within a multiplicative factor of 1 +

Õ
(
1/
√
d
)

of each other, it can be shown that the performance of the recursive

spectral clustering step does not change more than constants.
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3. After obtaining clusters with similar means and variances, the exhaustive

search algorithm follows, though instead of having a single σ′ for all clusters,

we can have a different σ′ for each cluster, which is estimated using the

average pair wise distance between samples in the cluster.

The changes in the recursive clustering step and the exhaustive search step are

easy to see and we omit them. The coarse clustering step requires additional tools

and we describe them in Section 7.7.

7.5 Preliminaries

7.5.1 Bounds on `1 distance

For two d dimensional product distributions p1 and p2, if we bound the `1

distance on each coordinate by ε, then by triangle inequality D(p1,p2) ≤ dε. How-

ever this bound is often weak. One way to obtain a stronger bound is to relate `1

distance to Bhattacharyya parameter, which is defined as follows: Bhattacharyya

parameter B(p1, p2) between two distributions p1 and p2 is

B(p1, p2) =

∫
x∈X

√
p1(x)p2(x)dx.

The `1 distance between p1 and p2 can be bounded in terms of B(p1, p2) as follows.

Lemma 7.13. For distributions p1 and p2,

D(p1, p2)2 ≤ 8(1−B(p1, p2)).

Proof. Since
∫
x∈X p1(x)dx =

∫
x∈X p2(x)dx = 1,∫

x∈X

(√
p1(x)−

√
p2(x)

)2

dx = 2(1−B(p1, p2)).

Moreover since (a+ b)2 ≤ 2a2 + 2b2,∫
x∈X

(√
p1(x) +

√
p2(x)

)2

dx ≤ 4
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These bounds along with the following Cauchy-Schwarz inequality yields the lemma.∫
x∈X

(√
p1(x) +

√
p2(x)

)2

dx ·
∫
x∈X

(√
p1(x)−

√
p2(x)

)2

dx

≥
(∫

x∈X
|p1(x)− p2(x)|dx

)2

= D(p1, p2)2.

By the definition of Bhattacharyya distance, it is multiplicative for prod-

uct distributions, namely for two product distributions p1 and p2, B(p1,p2) =∏d
i=1 B(p1,i, p2,i). We use this with the previous lemma to bound the `1 distance

of Gaussian mixtures.

We first bound Bhattacharyya parameter for two one-dimensional Gaussian

distributions.

Lemma 7.14. The Bhattacharyya parameter for two one dimensional Gaussian

distributions p1 = N(µ1, σ
2
1) and p2 = N(µ2, σ

2
2) is

B(p1, p2) ≥ 1− (µ1 − µ2)2

4(σ2
1 + σ2

2)
− (σ2

1 − σ2
2)2

(σ2
1 + σ2

2)2
.

Proof. For Gaussian distributions a straight-forward computation shows that

B(p1, p2) = ye−x, where x = (µ1−µ2)2)

4(σ2
1+σ2

2)
and y =

√
2σ1σ2

σ2
1+σ2

2
. Observe that

y =

√
2σ1σ2

σ2
1 + σ2

2

=

√
1− (σ1 − σ2)2

σ2
1 + σ2

2

≥ 1− (σ1 − σ2)2

σ2
1 + σ2

2

≥ 1− (σ2
1 − σ2

2)2

(σ2
1 + σ2

2)2
.

Hence,

B(p1, p2) = ye−x ≥ y(1− x) ≥ (1− x)

(
1− (σ2

1 − σ2
2)2

(σ2
1 + σ2

2)2

)
≥ 1− x− (σ2

1 − σ2
2)2

(σ2
1 + σ2

2)2
.

Substituting the value of x results in the lemma.

Therefore,

B(p1,p2) =
d∏
i=1

B(p1,i, p2,i)

≥
d∏
i=1

[
1−

(µ̂1,i − µ̂2,i)
2

4(σ2
1,i + σ2

2,i)
−

(σ2
1,i − σ2

2,i)
2

(σ2
1,i + σ2

2,i)
2

]

≥ 1−
d∑
i=1

[
(µ̂1,i − µ̂2,i)

2

4(σ2
1,i + σ2

2,i)
+

(σ2
1,i − σ2

2,i)
2

(σ2
1,i + σ2

2,i)
2

]
,
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where the last step uses
∏

(1− xi) ≥ 1−
∑

i xi for xi ∈ (0, 1).

Using this with Lemma 7.13,

Lemma 7.15. For any two Gaussian product distributions p1 and p2,

D(p1,p2)2 ≤
d∑
i=1

2
(µ̂1,i − µ̂2,i)

2

σ2
1,i + σ2

2,i

+ 8
(σ2

1,i − σ2
2,i)

2

(σ2
1,i + σ2

2,i)
2
.

7.5.2 Matrix eigenvalues

We now state few simple lemmas on the eigenvalues of perturbed matrices.

Lemma 7.16. Let λA1 ≥ λA ≥ . . . λAd ≥ 0 and λB1 ≥ λB ≥ . . . λBd ≥ 0 be the

eigenvalues of two symmetric matrices A and B respectively. If ||A−B|| ≤ ε,

then ∀ i, |λAi − λBi | ≤ ε.

Proof. Let u1,u2, . . .ud be a set of eigenvectors of A that corresponds to

λA1 , λ
A
2 , . . . λ

A
d . Similarly let v1,v2, . . .vd be eigenvectors of B Consider the first

eigenvalue of B,

λB1 = ||B|| = ||A+ (B − A)|| ≥ ||A|| − ||B − A|| ≥ λA1 − ε.

Now consider an i > 1. If λBi < λAi − ε, then by definition of eigenvalues

max
v:∀j≤i−1,v·vj=0

||Bv||2 < λAi − ε.

Now consider a unit vector
∑i

j=1 αjuj in the span of u1, . . .ui, that is orthogonal

to v1, . . .vi−1. For this vector,∣∣∣∣∣
∣∣∣∣∣B

i∑
j=1

αjuj

∣∣∣∣∣
∣∣∣∣∣
2

≥

∣∣∣∣∣
∣∣∣∣∣A

i∑
j=1

αjuj

∣∣∣∣∣
∣∣∣∣∣
2

−

∣∣∣∣∣
∣∣∣∣∣(A−B)

i∑
j=1

αjuj

∣∣∣∣∣
∣∣∣∣∣
2

≥

√√√√ i∑
j=1

α2
j (λ

A
j )2 − ε

≥ λAi − ε,

a contradiction. Hence, ∀i ≤ d, λBi ≥ λAi − ε. The proof in the other direction is

similar and omitted.
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Lemma 7.17. Let A =
∑k

i=1 η
2
i uiu

t
i be a positive semidefinite symmetric matrix

for k ≤ d. Let u1,u2, . . .uk span a k − 1 dimensional space. Let B = A + R,

where ||R|| ≤ ε. Let v1,v2, . . .vk−1 be the top k − 1 eigenvectors of B. Then the

projection of ui in space orthogonal to v1,v2, . . .vk−1 is ≤ 2
√
ε

ηi
.

Proof. Let λBi be the ith largest eigenvalue of B. Observe that B+ εId is a positive

semidefinite matrix as for any vector v, vt(A + R + εId)v ≥ 0. Furthermore

||A+R + εId − A|| ≤ 2ε. Since eigenvalues of B + εId is λB + ε, by Lemma 7.16,

for all i ≤ d, |λAi − λBi − ε| ≤ 2ε. Therefore, |λBi | for i ≥ k is ≤ 3ε.

Let ui =
∑k−1

j=1 αi,jvj +
√

1−
∑k−1

j=1 α
2
i,ju

′, for a vector u′ orthogonal to

v1,v2, . . .vk−1. We compute u′tAu′ in two ways. Since A = B −R,

|u′t(B −R)u′| ≤ |u′tBu′|+ |u′tRu′| ≤ ||Bu′||2 + ||R|| .

Since u′ is orthogonal to first k eigenvectors, we have ||Bu′||2 ≤ 3ε and hence

|u′(B −R)u′| ≤ 4ε.

u′tAu′ ≥ η2
i

(
1−

k−1∑
j=1

α2
i,j

)
.

We have shown that the above quantity is ≤ 4ε. Therefore
(
1 −

∑k−1
j=1 α

2
i,j

)1/2 ≤
2
√
ε/ηi.

7.6 Proofs for Learn k-Sphere

We first state a simple concentration result that helps us in other proofs.

Lemma 7.18. Given n samples from a set of Gaussian distributions, with proba-

bility ≥ 1 − 2δ, for every pair of samples X ∼ N(µ1, σ
2Id) and Y ∼ N(µ2, σ

2Id),
||X−Y||22 is at most

2dσ2 + 4σ2

√
d log

n2

δ
+ ||µ1 − µ2||

2
2 + 4σ ||µ1 − µ2||2

√
log

n2

δ
+ 4σ2 log

n2

δ
. (7.1)

and

||X−Y||22 ≥ 2dσ2−4σ2

√
d log

n2

δ
+ ||µ1 − µ2||

2
2−4σ ||µ1 − µ2||2

√
log

n2

δ
. (7.2)
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Proof. We prove the lower bound, the proof for the upper bound is similar and

omitted. Since X and Y are Gaussians, X−Y is distributed as N(µ1 −µ2, 2σ
2).

Rewriting ||X−Y||2

||X−Y||22 = ||X−Y − (µ1 − µ2)||22+||µ1 − µ2||
2
2+2(µ1−µ2)·(X−Y−(µ1−µ2)).

Let Z = X − Y − (µ1 − µ2), then Z ∼ N(0, 2σ2Id). Therefore by Lemma A.5,

with probability 1− δ/n2,

||Z||22 ≥ 2dσ2 − 4σ2

√
d log

n2

δ
.

Furthermore (µ1 − µ2) · Z is sum of Gaussians and hence a Gaussian distribu-

tion. It has mean 0 and variance 2σ2 ||µ1 − µ2||
2
2. Therefore, by Lemma A.4 with

probability 1− δ/n2,

(µ1 − µ2) · Z ≥ −2σ ||µ1 − µ2||2

√
log

n2

δ
.

By the union bound with probability 1− 2δ/n2,

||X−Y||22 ≥ 2dσ2 − 4σ2

√
d log

n2

δ
+ ||µ1 − µ2||

2
2 − 4σ ||µ1 − µ2||2

√
log

n2

δ
.

There are
(
n
2

)
pairs and the lemma follows by the union bound.

7.6.1 Proof of Lemma 7.8

We show that if Equations (7.1) and (7.2) are satisfied, then the lemma

holds. The error probability is that of Lemma 7.18 and is ≤ 2δ. Since the minimum

is over k+ 1 indices, at least two samples are from the same component. Applying

Equations (7.1) and (7.2) for these two samples

2dσ̂2 ≤ 2dσ2 + 4σ2

√
d log

n2

δ
+ 4σ2 log

n2

δ
.

Similarly by Equations (7.1) and (7.2) for any two samples X(a),X(b) in [k + 1],

||X(a)−X(b)||22 ≥ 2dσ2 − 4σ2

√
d log

n2

δ
+
∣∣∣∣µi − µj

∣∣∣∣2
2
− 4σ

∣∣∣∣µi − µj

∣∣∣∣
2

√
log

n2

δ

≥ 2dσ2 − 4σ2

√
d log

n2

δ
− 4σ2 log

n2

δ
,

where the last inequality follows from the fact that α2 − 4αβ ≥ −4β2. The result

follows from the assumption that d > 20 log n2/δ.
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7.6.2 Proof of Lemma 7.9

We show that if Equations (7.1) and (7.2) are satisfied, then the lemma

holds. The error probability is that of Lemma 7.18 and is ≤ 2δ. Since Equa-

tions (7.1) and (7.2) are satisfied, by the proof of Lemma 7.8,

|σ̂2 − σ2| ≤ 2.5σ2

√
log(n2/δ)

d
.

If two samples X(a) and X(b) are from the same component, by Lemma 7.18,

||X(a)−X(b)||22 ≤ 2dσ2 + 4σ2

√
d log

n2

δ
+ 4σ2 log

n2

δ

≤ 2dσ2 + 5σ2

√
d log

n2

δ
.

By Lemma 7.8, the above quantity is less than 2dσ̂2 + 23σ̂2
√
d log n2

δ
. Hence all

the samples from the same component are in a single cluster.

Suppose there are two samples from different components in a cluster, then

by Equations (7.1) and (7.2),

2dσ̂2 + 23σ̂2

√
d log

n2

δ

≥ 2dσ2 − 4σ2

√
d log

n2

δ
+
∣∣∣∣µi − µj

∣∣∣∣2
2
− 4σ

∣∣∣∣µi − µj

∣∣∣∣
2

√
log

n2

δ
.

Relating σ̂2 and σ2 using Lemma 7.8,

2dσ2 + 40σ2

√
d log

n2

δ

≥ 2dσ2 − 4σ2

√
d log

n2

δ
+
∣∣∣∣µi − µj

∣∣∣∣2
2
− 4σ

∣∣∣∣µi − µj

∣∣∣∣
2

√
log

n2

δ
.

Hence
∣∣∣∣µi − µj

∣∣∣∣
2
≤ 10σ

(
d log n2

δ

)1/4
. There are at most k components; therefore,

any two components within the same cluster are at a distance ≤ 10kσ
(
d log n2

δ

)1/4
.

7.6.3 Proof of Lemma 7.10

The proof is involved and we show it in steps. We first show few concentra-

tion bounds which we use later to argue that the samples are clusterable when the
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sample covariance matrix has a large eigenvalue. Let ŵi be the fraction of samples

from component i. Let µ̂i be the empirical average of samples from pi. Let µ̂(C)

be the empirical average of samples in cluster C. If C is the entire set of samples

we use µ̂ instead of µ̂(C). We first show a concentration inequality that we use in

rest of the calculations.

Lemma 7.19. Given n samples from a k-component Gaussian mixture with prob-

ability ≥ 1− 2δ, for every component i

||µ̂i − µi||
2
2 ≤

(
d+ 3

√
d log

2k

δ

)
σ2

nŵi
and |ŵi − wi| ≤

√
2wi log 2k

δ

n
+

2

3

log 2k
δ

n
.

(7.3)

Proof. Since µ̂i−µi is distributed N(0, σ2Id/nŵi), by Lemma A.5 with probability

≥ 1− δ/k,

||µ̂i − µi||
2
2 ≤

(
d+ 2

√
d log

2k

δ
+ 2 log

2k

δ

)
σ2

nŵi
≤
(
d+ 3

√
d log

2k

δ

)
σ2

nŵi
.

The second inequality uses the fact that d ≥ 20 log n2/δ. For bounding the weights,

observe that by Lemma A.3 with probability ≥ 1− δ/k,

|ŵi − wi| ≤
√

2wi log 2k/δ

n
+

2

3

log 2k/δ

n
.

By the union bound the error probability is ≤ 2kδ/2k = δ.

A simple application of triangle inequality yields the following lemma.

Lemma 7.20. Given n samples from a k-component Gaussian mixture if Equa-

tion (7.3) holds, then∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

ŵi(µ̂i − µi)(µ̂i − µi)
t

∣∣∣∣∣
∣∣∣∣∣ ≤

(
d+ 3

√
d log

2k

δ

)
kσ2

n
.

Lemma 7.21. Given n samples from a k-component Gaussian mixture, if Equa-

tion (7.3) holds and the maximum distance between two components is at most

10kσ
(
d log n2

δ

)1/4
, then

∣∣∣∣µ̂− µ)
∣∣∣∣

2
≤ cσ

√
dk log n2

δ

n
, for a constant c.
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Proof. Observe that

µ̂− µ =
k∑
i=1

ŵiµ̂i − wiµi

=
k∑
i=1

ŵi(µ̂i − µi) + (ŵi − wi)µi

=
k∑
i=1

ŵi(µ̂i − µi) + (ŵi − wi)(µi − µ). (7.4)

Hence by Equation (7.3) and the fact that the maximum distance between two

components is at most 10kσ
(
d log n2

δ

)1/4
,

∣∣∣∣µ̂− µ
∣∣∣∣

2
≤

k∑
i=1

ŵi

√(
d+ 3

√
d log

2k

δ

)
σ√
nŵi

+

(√
2wi log 2k/δ

n
+

2

3

log 2k/δ

n

)
10k

(
d log

n2

δ

)1/4

σ.

For n ≥ d ≥ max(k4, 20 log n2/δ, 1000), we get the above term is ≤ c
√

kd logn2/δ
n

σ,

for some constant c.

We now make a simple observation on covariance matrices.

Lemma 7.22. Given n samples from a k-component mixture,∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)t −
k∑
i=1

ŵi(µi − µ)(µi − µ)t

∣∣∣∣∣
∣∣∣∣∣

≤ 2
∣∣∣∣µ̂− µ

∣∣∣∣2
2

+
k∑
i=1

2ŵi ||µ̂i − µi||
2
2

+ 2

(
√
k
∣∣∣∣µ̂− µ

∣∣∣∣
2

+
k∑
i=1

√
ŵi ||µ̂i − µi||2

)
max
j

√
ŵj
∣∣∣∣µj − µ

∣∣∣∣
2
.

Proof. Observe that for any two vectors u and v,

uut − vvt = u(ut − vt) + (u− v)vt = (u− v)(u− v)t + v(u− v)t + (u− v)vt.

Hence by triangle inequality,∣∣∣∣uut − vvt
∣∣∣∣ ≤ ||u− v||22 + 2 ||v||2 ||u− v||2 .



153

Applying the above observation to u = µ̂i − µ̂ and v = µi − µ, we get

k∑
i=1

ŵi
∣∣∣∣(µ̂i − µ̂)(µ̂i − µ̂)t − (µi − µ)(µi − µ)t

∣∣∣∣
≤

k∑
i=1

(
ŵi
∣∣∣∣µ̂i − µ̂− µi − µ

∣∣∣∣2
2

+ 2
√
ŵi ||µi − µ||2

√
ŵi
∣∣∣∣µ̂i − µ̂− µi − µ

∣∣∣∣
2

)
≤

k∑
i=1

(
2ŵi ||µ̂i − µi||

2
2 + 2ŵi

∣∣∣∣µ̂− µ
∣∣∣∣2

2

)
+

k∑
i=1

(
2 max

j

√
ŵj
∣∣∣∣µj − µ

∣∣∣∣
2

(√
ŵi ||µ̂i − µi||2 +

√
ŵi
∣∣∣∣µ̂− µ

∣∣∣∣
2

))

≤ 2
∣∣∣∣µ̂− µ

∣∣∣∣2
2

+
k∑
i=1

2ŵi ||µ̂i − µi||
2
2

+ 2

(
√
k
∣∣∣∣µ̂− µ

∣∣∣∣
2

+
k∑
i=1

√
ŵi ||µ̂i − µi||2

)
max
j

√
ŵj
∣∣∣∣µj − µ

∣∣∣∣
2
.

The lemma follows from triangle inequality.

The following lemma immediately follows from Lemmas 7.21 and 7.22.

Lemma 7.23. Given n samples from a k-component Gaussian mixture, if Equa-

tion (7.3) and the maximum distance between two components is at most

10kσ
(
d log n2

δ

)1/4
, then∣∣∣∣∣

∣∣∣∣∣
k∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)t −
k∑
i=1

ŵi(µi − µ)(µi − µ)t

∣∣∣∣∣
∣∣∣∣∣

≤
cσ2dk2 log n2

δ

n
+ cσ

√
dk2 log n2

δ

n
max
i

√
ŵi ||µi − µ||2 ,

for a constant c.

Lemma 7.24. For a set of samples X(1), . . .X(n) from a k-component mixture,

n∑
i=1

(X(i)− µ̂)(X(i)− µ̂)t

n
=

k∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)t − ŵi(µ̂i − µi)(µ̂i − µi)
t

+
∑

j|X(j)∼pi

(X(j)− µi)(X(j)− µi)
t

n
.

where ŵi and µ̂i are the empirical weights and averages of components i and

µ̂ = 1
n

∑n
i=1 Xi.
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Proof. The given expression can be rewritten as

1

n

n∑
i=1

(X(i)− µ̂)(X(i)− µ̂)t =
k∑
i=1

ŵi
∑

j|X(j)∼pi

1

nŵi
X(j)− µ̂)(X(j)− µ̂)t.

First observe that for any set of points xi and their average x̂ and any value a,∑
i

(xi − a)2 =
∑
i

(xi − x̂)2 + (x̂− a)2.

Hence for samples from a component i,∑
j|X(j)∼pi

1

nŵi
(X(j)− µ̂)(X(j)− µ̂)t

=
∑

j|X(j)∼pi

1

nŵi
(µ̂i − µ̂)(µ̂i − µ̂)t +

∑
j|X(j)∼pi

1

nŵi
(X(j)− µ̂i)(X(j)− µ̂i)

t

= (µ̂i − µ̂)(µ̂i − µ̂)t +
∑

j|X(j)∼pi

1

nŵi
(X(j)− µ̂i)(X(j)− µ̂i)

t

= (µ̂i − µ̂)(µ̂i − µ̂)t

+
∑

j|X(j)∼pi

1

nŵi
(X(j)− µi)(X(j)− µi)

t − (µ̂i − µi)(µ̂i − µi)
t.

Summing over all components results in the lemma.

We now bound the error in estimating the eigenvalue of the covariance

matrix.

Lemma 7.25. Given X(1), . . .X(n), n samples from a k-component Gaussian

mixture, if Equations (7.1), (7.2), and (7.3) hold, then with probability ≥ 1− 2δ,∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

(X(i)− µ̂)(X(i)− µ̂)t − σ̂2Id −
k∑
i=1

ŵi(µi − µ)(µi − µ)t

∣∣∣∣∣
∣∣∣∣∣

≤ c(n)
def
= cσ2

√
d log n2

δ

n
+ cσ2dk

2 log n2

δ

n
+ cσ

√
dk2 log n2

δ

n
max
i

√
ŵi ||µi − µ||2 ,

(7.5)

for a constant c.



155

Proof. Since Equations (7.1), (7.2), and (7.3) hold, conditions in Lemmas 7.21

and 7.23 are satisfied. By Lemma 7.23,∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)t −
k∑
i=1

ŵi(µi − µ)(µi − µ)t

∣∣∣∣∣
∣∣∣∣∣

= O

σ2dk
2 log n2

δ

n
+ σ

√
dk2 log n2

δ

n
max
i

√
ŵi ||µi − µ||2

 .

Hence it remains to show,∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

(X(i)− µ̂)(X(i)− µ̂)t −
k∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)t

∣∣∣∣∣
∣∣∣∣∣ = O

√kd log 5k2

δ

n
σ2

 .

By Lemma 7.24, the covariance matrix can be rewritten as

k∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)t − ŵi(µ̂i − µi)(µ̂i − µi)
t

+
k∑
i=1

∑
j|X(j)∼pi

1

n
(X(j)− µi)(X(j)− µi)

t − σ̂2Id. (7.6)

We now bound the norms of second and third terms in the above equation. Con-

sider the third term,
∑k

i=1

∑
j|X(j)∼pi

1
n
(X(j)−µi)(X(j)−µi)

t. Conditioned on the

fact that X(j) ∼ pi, X(j)− µi is distributed N(0, σ2Id), therefore by Lemma A.7

and Lemma 7.8 ,with probability ≥ 1− 2δ,∣∣∣∣∣∣
∣∣∣∣∣∣
k∑
i=1

∑
j|X(j)∼pi

1

n
(X(j)− µi)(X(j)− µi)

t − σ̂2Id

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ c′

√
d log 2d

δ

n
σ2 + 2.5σ2

√
log n2

δ

d
.

The second term in Equation (7.6) is bounded by Lemma 7.20. Hence together

with the fact that d ≥ 20 log n2/δ we get that with probability ≥ 1−2δ, the second

and third terms are bounded by O
(
σ2
√

dk
n

log n2

δ

)
.

Lemma 7.26. Let u be the largest eigenvector of the sample covariance matrix

and n ≥ c ·dk2 log n2

δ
. If maxi

√
ŵi ||µi − µ||2 = ασ and Equation (7.5) holds, then

there exists i such that |u · (µi − µ)| ≥ σ(α− 1− 1/α)/
√
k.
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Proof. Observe that
∣∣∣∣∣∣∑j wjvjv

t
j

∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∑j wjvjv
t
j

vi
||vi||

∣∣∣∣∣∣
2
≥ wi ||vi||22. Therefore∣∣∣∣∣

∣∣∣∣∣
k∑
i=1

ŵi(µi − µ)(µi − µ)t

∣∣∣∣∣
∣∣∣∣∣ ≥

∣∣∣∣∣
∣∣∣∣∣
k∑
j=1

ŵj(µj − µ)(µj − µ)t(µi − µ)/ ||µi − µ||

∣∣∣∣∣
∣∣∣∣∣
2

≥ α2σ2.

Hence by Lemma 7.25 and the triangle inequality, the largest eigenvalue of the

sample-covariance matrix is ≥ α2σ2 − c(n). Similarly by applying Lemma 7.25

again we get,
∣∣∣∣∣∣∑k

i=1 ŵi(µi − µ)(µi − µ)tu
∣∣∣∣∣∣

2
≥ α2σ2−2c(n). By triangle inequality

and Cauchy-Schwartz inequality,∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

ŵi(µi − µ)(µi − µ)tu

∣∣∣∣∣
∣∣∣∣∣
2

≤
k∑
i=1

∣∣∣∣ŵi(µi − µ)(µi − µ)tu
∣∣∣∣

2

≤
k∑
i=1

ŵi ||(µi − µ)||2 max
j
|(µj − µ) · u|

≤

√√√√ k∑
i=1

ŵi ||(µi − µ)||22 max
j
|(µj − µ) · u|

≤
√
kασmax

j
|(µj − µ) · u|.

Hence
√
kασmaxi |(µi−µ) ·u| ≥ α2σ2−2c(n). The lemma follows by substituting

the bound on n in c(n).

We now make a simple observation on Gaussian mixtures.

Lemma 7.27. The samples from a subset of components A of the Gaussian mix-

ture are distributed according to a Gaussian mixture of components A with weights

being w′i = wi/(
∑

j∈Awj).

We now prove Lemma 7.10.

Proof of Lemma 7.10. Observe that we run the recursive clustering at most n

times. At every step, the underlying distribution within a cluster is a Gaussian

mixture. Let Equations (7.1), (7.2) hold with probability 1 − 2δ. Let Equa-

tions (7.3) (7.5) all hold with probability ≥ 1 − δ′, where δ′ = δ/2n at each of n
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steps. By the union bound the total error is ≤ 2δ + δ′ · 2n ≤ 3δ. Since Equa-

tions (7.1), (7.2) holds, the conditions of Lemmas 7.8 and 7.9 hold. Furthermore it

can be shown that discarding at most nε/4k samples at each step does not affect

the calculations.

We first show that if
√
wi ||µi − µ(C)||2 ≥ 25

√
k3 log(n3/δ)σ, then the

algorithm gets into the loop. Let w′i be the weight of the component within

the cluster and n′ ≥ nε/5k be the number of samples in the cluster. Let α =

25
√
k3 log(n3/δ). By Fact 7.27, the components in cluster C have weight w′i ≥

wi. Hence
√
w′i ||µi − µ(C)||2 ≥ ασ. Since

√
w′i ||µi − µ(C)||2 ≥ ασ, and by

Lemma 7.9 ||µi − µ(C)|| ≤ 10kσ(d log n2/δ)1/4, we have

w′i ≥ α2/(100k2
√
d log n2/δ).

Hence by lemma 7.19, w′i ≥ wi/2 and
√
ŵ′i ||µi − µ(C)||2 ≥ ασ/

√
2. Hence by

Lemma 7.25 and triangle inequality the largest eigenvalue of S(C) is at least

α2σ2/2− c(n′) ≥ α2σ2/4 ≥ α2σ̂2/8 ≥ 12σ̂2k3 log n2/δ′ = 12σ̂2k3 log n3/δ.

Therefore the algorithm gets into the loop.

If n′ ≥ nε/8k2 ≥ c·dk2 log n3

δ
, then by Lemma 7.26, there exists a component

i such that

|u · (µi − µ(C))| ≥ σ(α/
√

2− 1−
√

2/α)/
√
k,

where u is the top eigenvector of the first nε/4k2 samples.

Observe that
∑

i∈C wiu · (µi − µ(C)) = 0 and

max
i
|u · (µi − µ(C))| ≥ σ(α/

√
2− 1−

√
2/α)/

√
k.

Let µi be sorted according to their values of u · (µi − µ(C)), then

max
i
|u · (µi − µi+1)| ≥ σ

α/
√

2− 1−
√

2/α

k3/2

≥ 12σ

√
log

n3

δ

≥ 9σ̂

√
log

n3

δ
,
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where the last inequality follows from Lemma 7.8 and the fact that d ≥ 20 log n2/δ.

For a sample from component pi, similar to the proof of Lemma 7.9, by Lemma A.4,

with probability ≥ 1− δ/n2k,

||u · (X(i)− µi)|| ≤ σ
√

2 log(n2k/δ)2 ≤ 2σ̂
√

log(n2k/δ),

where the second inequality follows from Lemma 7.8. Since there are two compo-

nents that are far apart by ≥ 9σ̂
√

log n2

δ
σ̂ and the maximum distance between a

sample and its mean is ≤ 2σ̂
√

log(n2k/δ) and the algorithm divides into at-least

two non-empty clusters such that no two samples from the same distribution are

clustered into two clusters.

For the second part observe that by the above concentration on u, no two

samples from the same component are clustered differently irrespective of the mean

separation. Note that we are using the fact that each sample is clustered at most

2k times to get the bound on the error probability. The total error probability by

the union bound is ≤ 4δ.

7.6.4 Proof of Lemma 7.11

We show that if the conclusions in Lemmas 7.10 and 7.19 holds, then the

lemma is satisfied. We also assume that the conclusions in Lemma 7.25 holds for

all the clusters with error probability δ′ = δ/k. By the union bound the total error

probability is ≤ 7δ.

By Lemma 7.10 all the components within each cluster satisfy

√
wi ||µi − µ(C)||2 ≤ 25σ

√
k3 log(n3/δ).

Let n ≥ c · dk9ε−4 log2 d/δ. For notational convenience let

S(C) =
1

|C|

|C|∑
i=1

(X(i)− µ(C))(X(i)− µ(C))t − σ̂2Id.

Therefore by Lemma 7.25 for large enough c,∣∣∣∣∣
∣∣∣∣∣S(C)− n

|C|
∑
i∈C

ŵi(µi − µ(C))(µi − µ(C))t

∣∣∣∣∣
∣∣∣∣∣ ≤ ε2σ2

1000k2

n

|C|
.
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Let v1,v2, . . .vk−1 be the top eigenvectors of 1
|C|
∑

i∈C wi(µi−µ(C))(µi−µ(C))t.

Let

ηi =
√
ŵ′i ||µi − µ(C)||2 =

√
ŵi

√
n

|C|
||µi − µ(C)||2 ,

and ∆i = µi−µ(C))
||(µi−µ(C))||2

. Therefore,∑
i∈C

n

|C|
∑
i∈C

ŵi(µi − µ(C))(µi − µ(C))t =
∑
i∈C

η2
i∆i∆

t
i.

Hence by Lemma 7.17, the projection of ∆i on the space orthogonal to top k − 1

eigenvectors of S(C) is at most√
ε2σ2

1000k2

n

|C|
1

ηi
≤ εσ

16
√
ŵi ||µi − µ(C)||2 k

≤ εσ

8
√

2
√
wi ||µi − µ(C)||2 k

.

The last inequality follows from the bound on ŵi in Lemma 7.19.

7.6.5 Proof of Theorem 7.12

We show that the theorem holds if the conclusions in Lemmas 7.11 and 7.21

holds with error probability δ′ = δ/k. Since in the proof of Lemma 7.11, the

probability that Lemma 7.10 holds is included, Lemma 7.10 also holds with the

same probability. Since there are at most k clusters, by the union bound the total

error probability is ≤ 9δ.

For every component i, we show that there is a choice of mean vector and

weight in the search step such that wiD(pi, p̂i) ≤ ε/2k and |wi− ŵi| ≤ ε/4k. That

would imply that there is a f̂ during the search such that

D(f , f̂) ≤
∑
C

∑
i∈C

wiD(pi, p̂i) + 2
k−1∑
i=1

|wi − ŵi| ≤
ε

2k
+

ε

2k
= ε.

Since the weights are gridded by ε/4k, there exists a ŵi such that |wi− ŵi| ≤ ε/4k.

We now show that there exists a choice of mean vector such that wiD(pi, p̂i) ≤
ε/2k. Note that if a component has weight ≤ ε/4k, the above inequality follows

immediately. Therefore we only look at those components with wi ≥ ε/4k, by

Lemma 7.19, for such components ŵi ≥ ε/5k and therefore we only look at clusters
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such that |C| ≥ nε/5k. By Lemmas 7.15 and for any i,

D(pi, p̂i)
2 ≤ 2

d∑
j=1

(µ̂i,j − µ̂i,j)
2

σ2
+ 8d

(σ2 − σ̂2)2

σ4
.

Note that since we are discarding at most nε/8k2 random samples at each step. A

total number of ≤ nε/8k random samples are discarded. It can be shown that this

does not affect our calculations and we ignore it in this proof. By Lemma 7.8, the

first estimate of σ2 satisfies |σ̂2− σ2| ≤ 2.5σ2

√
logn2/δ

d
. Hence while searching over

values of σ̂2, there exist one such that |σ′2 − σ2| ≤ εσ2/
√

64dk2. Hence,

D(pi, p̂i)
2 ≤ 2

||µi − µ̂i||
2
2

σ2
+

ε2

8k2
.

Therefore if we show that there is a mean vector µ̂i during the search such that

||µi − µ̂i||2 ≤ εσ/
√

16k2ŵi, that would prove the Lemma. By triangle inequality,

||µi − µ̂i||2 ≤
∣∣∣∣µ(C)− µ̂(C)

∣∣∣∣
2

+
∣∣∣∣µi − µ(C)− (µ̂i − µ̂(C))

∣∣∣∣
2
.

By Lemma 7.21 for large enough n,

∣∣∣∣µ(C)− µ̂(C)
∣∣∣∣

2
≤ cσ

√
dk log2 n2/δ

|C|
≤ εσ

8k
√
wi
.

The second inequality follows from the bound on n and the fact that |C| ≥ nŵi.

Since wi ≥ ε/4k, by Lemma 7.19, ŵi ≥ wi/2, we have

||µi − µ̂i||2 ≤
∣∣∣∣µi − µ(C)− (µ̂i − µ̂(C))

∣∣∣∣
2

+
εσ

8k
√
wi
.

Let u1 . . .uk−1 are the top eigenvectors the sample covariance matrix of cluster C.

We now prove that during the search, there is a vector of the form
∑k−1

j=1 gjεgσ̂uj

such that ∣∣∣∣∣
∣∣∣∣∣µi − µ(C)−

k−1∑
j=1

gjεgσ̂uj

∣∣∣∣∣
∣∣∣∣∣
2

≤ εσ

8k
√
wi
,

during the search, thus proving the lemma. Let ηi =
√
wi ||µi − µ(C)||2. By

Lemma 7.11, there are set of coefficients αi such that

µi − µ(C)

||µi − µ(C)||2
=

k−1∑
j=1

αjuj +

√
1− ||α||2u′,
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where u′ is perpendicular to u1 . . .uk−1 and
√

1− ||α||2 ≤ εσ/(8
√

2ηik). Hence,

we have

µi − µ(C) =
k−1∑
j=1

||µi − µ(C)||2 αjuj + ||µi − µ(C)||2
√

1− ||α||22u
′,

Since wi ≥ ε/4k and by Lemma 7.10, ηi ≤ 25
√
k3σ log(n3/δ), and ||µi − µ(C)||2 ≤

100
√
k4ε−1σ log(n3/δ). Therefore ∃gj such that |gjσ̂−αj| ≤ εgσ̂ on each eigenvec-

tor. Hence,

wi

∣∣∣∣∣
∣∣∣∣∣µi − µ(C)−

k−1∑
i=1

gjεgσ̂uj

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ wikε
2
gσ̂

2 + wi ||µi − µ(C)||22 (1− ||α||2)

≤ kε2gσ̂
2 + η2

i

ε2σ2

128η2
i k

2

≤ ε2σ2

128k2
+

ε2σ2

128k2
≤ ε2σ2

64k2
.

The last inequality follows by Lemma 7.8 and the fact that εg ≤ ε/16k3/2, and

hence the theorem. The run time can be easily computed by retracing the steps

of the algorithm and using an efficient implementation of single-linkage.

7.7 Proofs for mixtures with unequal variances

In this section, we outline the analysis for the case when the components

have different variances.

The main difference would be the coarse clustering algorithm which we

describe now. The algorithm repeatedly finds components with smallest variances

and clusters samples such that within each cluster the variances differ by a factor

of 1 + Õ
(
1/
√
d
)

and the means are close-by. However, two subtleties arise.

Randomized thresholding: Suppose we fix a threshold for clustering in step

3 of the coarse clustering algorithm, then there might be a component whose

average distance from x(a) or x(b) is exactly the threshold and due to randomness

in samples, few samples can lie in one cluster and few can lie on the other. We

overcome this, by choosing a random threshold, thus making it unlikely that there

is a component with average distance at the threshold.
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Components with single sample: If two samples are from the same component

i, then their squared-distance concentrates around 2dσ2
i . We can use this fact to

estimate the variance. However if there is only one sample from a component,

we cannot estimate its variance and moreover it can affect the calculations of

other components. Hence in Step 4, we find such components and discard the

corresponding samples.

Generalized coarse clustering: Let α = 4
√

log(n2/δ)/d. Initialize C to the

set of all samples. Repeat the following k times.

1. Find threshold t = mina6=b,a,b∈C ||x(a)− x(b)||2. Let a and b be the indices

that achieve this minimum.

2. Let r be a uniform random variable between 10 and 4000k2.

3. Find the set of samples C1 that are at a distance ≤ t
√

(1 + αr) from either

x(a) or x(b).

4. If the maxc,d∈C1 ||x(c)− x(d)||22 > t
√

(1 + 50αr), discard x(a), x(b) and

the samples that achieve the maximum, else declare C1 as a new cluster

and remove samples in C1 from C.

The rest of the analysis is similar to the case with equal variances. We now

outline analysis for Generalized coarse clustering. We first show an auxiliary

concentration inequality that helps us prove the rest of the results.

Lemma 7.28. Given n samples from a set of Gaussian distributions, with proba-

bility ≥ 1− 2δ, for every pair of samples X ∼ N(µ1,σ
2
1Id) and Y ∼ N(µ2,σ

2
2Id),

1− 4

√
log n2

δ

d
≤ ||X−Y||22
d(σ2

1 + σ2
2) + ||µ1 − µ2||

2
2

≤ 1 + 4

√
log n2

δ

d
. (7.7)

Proof. Since X and Y are Gaussians, X−Y is distributed N(µ1−µ2, (σ
2
1+σ2

2)Id).
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Therefore substituting t = log n2

δ
in Lemma A.6, with probability 1− 4δ/n2,

||X−Y||22 ≥ d(σ2
1 + σ2

2)− 2(σ2
1 + σ2

2)

√
d log

n2

δ

+ ||µ1 − µ2||
2
2 − 2

√
σ2

1 + σ2
2 ||µ1 − µ2||2

√
log

n2

δ
.

and

||X−Y||22 ≤ d(σ2
1 + σ2

2) + 2(σ2
1 + σ2

2)

√
d log

n2

δ
+ ||µ1 − µ2||

2
2

+ 2
√

σ2
1 + σ2

2 ||µ1 − µ2||2

√
log

n2

δ
+ 2(σ2

1 + σ2
2) log

n2

δ
.

There are
(
n
2

)
pairs and the error probability follows by the union bound. Dividing

the bounds by d(σ2
1 +σ2

2) + ||µ1 − µ2||
2
2 and using the arithmetic-geometric mean

inequality we get

1− 3

√
log n2

δ

d
≤ ||X−Y||22
d(σ2

1 + σ2
2) + ||µ1 − µ2||

2
2

≤ 1 + 3

√
log n2

δ

d
+ 2

log n2

δ

d
.

Using d ≥ 20 log n2

δ
proves the lemma.

We now show a few properties of Coarse clustering. In particular, we show

that

• There is no mis-clustering.

• After k steps of iteration, all the samples would be clustered.

• The means and variances of all components within any cluster are close to

each other.

Let α
def
= 4

√
log n2

δ

d
. For the rest of the proof we assume that d ≥ 4000 log(n2/δ),

thus α ≤ 1/10. We first show that the probability of mis-clustering is ≤ 1/100.

Lemma 7.29. If Equation (7.7) holds, then after coarse clustering algorithm, with

probability ≥ 99/100, all the samples from each component will be in the same

cluster.



164

Proof. Without loss of generality, let x(a) be from component 1 and x(b) be from

component 2. If for all components i and j ∈ {1, 2} if(
d(σ2

j + σ2
i ) +

∣∣∣∣µj − µi

∣∣∣∣2
2

)
(1 + α) < t2(1 + αr)

or (
d(σ2

j + σ2
i ) +

∣∣∣∣µj − µi

∣∣∣∣2
2

)
(1− α) > t2(1 + αr),

then by Equation (7.7) the pairwise distances concentrate and all the samples

would be clustered without any error. Hence the error probability is the probability

there exists i, j such that t2(1 + αr) belongs to the set[(
d(σ2

j + σ2
i ) +

∣∣∣∣µj − µi

∣∣∣∣2
2

)
(1− α) ,

(
d(σ2

j + σ2
i ) +

∣∣∣∣µj − µi

∣∣∣∣2
2

)
(1 + α)

]
.

For a given i, j, this probability is at most

2

4000t2k2 − 10

(
d(σ2

j + σ2
i ) +

∣∣∣∣µj − µi

∣∣∣∣2
2

)
× 1

((
d(σ2

j + σ2
i ) +

∣∣∣∣µj − µi

∣∣∣∣2
2

)
(1− α) ≤ t2(1 + 4000k2α)

)
.

Since d ≥ c · k4 log n2

δ
for a large enough constant c, we have 1 + 4000k2α ≤ 2.

Hence, the above probability is ≤ 4
3990(1−α)k2 ≤ 1

997(1−α)k2 . Since α ≤ 1/10, this is

≤ 1
200k2 . By the union bound over all possible components i, j, the error probability

is ≤ 1
100k

. Since we run the algorithm k times, by the union bound the total error

probability is ≤ 1
100

.

Lemma 7.30. If Equation (7.7) holds and there is no mis-clustering, and a cluster

is created at any of the k steps , then for each pair of components i, j in that cluster

with ŵi, ŵj ≥ 2/n, 2dσ2
i ∈ [t2(1−α), t2(1 + 56αr)] and

∣∣∣∣µi − µj

∣∣∣∣2
2
≤ c · k2t2α for

some constant c. Furthermore, for every other component l, ||µi − µl||
2
2+σ2

i ≤ c·t2.

Proof. The square of the maximum separation between any two samples in a cluster

is ≤ t2(1 + 50αr) and the points are clustered correctly. Let i be a component

such that ŵi ≥ 2/n. Let x(g) and x(h) be two samples from component i, then

2dσ2
i (1− α) ≤ ||x(g)− x(h)||22

≤ t2(1 + 50αr),
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where the first inequality follows from Equation (7.7). Hence, 2dσ2
i ≤ t2(1 +

50αr)/(1 − α) ≤ t2(1 + 56αr). Furthermore, since x(g) and x(h) has pairwise

distance ≥ t, by Equation (7.7),

2dσ2
i (1 + α) ≥ ||x(g)− x(h)||22 ≥ t2,

and hence 2dσ2
i ≥ t2(1− α).

For two samples x(g) and x(h) generated by components i and j, we have,

t2(1 + 50αr)
(a)

≥ ||x(g)− x(h)||22
(b)

≥
(
d(σ2

i + σ2
j) +

∣∣∣∣µi − µj

∣∣∣∣2
2

)
(1− α)

(c)

≥ t2(1− 2α) +
∣∣∣∣µi − µj

∣∣∣∣2
2

(1− α),

where (a) follows from the fact that the maximum separation between two samples

is ≤ t2(1 + 50αr), Equation (7.7) implies (b), and (c) follows from first part of the

lemma. Hence, we have
∣∣∣∣µi − µj

∣∣∣∣2
2
≤ t2(50αr + 2α)/(1− α) ≤ t2(3 · 106αk2).

Let x(g) and x(h) be from components i and l respectively. Similar to

the first two parts of the lemma we have, maximum separation between any two

samples is

t2(1 + 50αr) ≥ ||x(g)− x(h)||22
≥
(
d(σ2

i + σ2
l ) + ||µi − µl||

2
2

)
(1− α)

≥
(
dσ2

l + ||µi − µl||
2
2

)
(1− α).

Hence dσ2
l + ||µi − µl||

2
2 ≤ t2(1 + 50αr)/(1−α) ≤ c · t2, for some constant c. The

last part follows from the assumption that d = Ω(k4 log n2

δ
).

Lemma 7.31. If Equation (7.7) holds and there is no mis-clustering, at end of the

generalized coarse clustering |C| = 0.

Proof. We show that if C is non-empty, at each iteration the number of components

in C decreases by at least one. Since there is no mis-clustering, if we create a

cluster at a particular iteration, it would contain all the samples from at least

one component and hence the number of components in C reduces by one. We
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now show that if we discard four samples, at least one of them would be a unique

sample from its component (ŵi = 1/n) and hence discarding it would reduce the

number of components by one.

Let x(a),x(b) be the two samples that attain the minimum and without

loss of generality let the corresponding components be 1 and 2. Let x(c),x(d)

be the two samples that achieve the maximum and i, j be their corresponding

components. We now show that if min(ŵ1, ŵ2, ŵi, ŵj) ≥ 2/n, then the samples

would not be discarded thus proving our claim. By Equation (7.7),

d(σ2
1 + σ2

2) + ||µ1 − µ2||
2
2 ≤
||x(a)− x(b)||22

1− α
≤ t2(1 + 3α),

and since two samples from component 1 or 2 did not achieve the minimum, 2dσ2
2 ≥

t2(1−α) and 2dσ2
1 ≥ t2(1−α). Rearranging and substituting in the three equations

we get, ||µ1 − µ2||
2
2 ≤ 4t2α, 2dσ2

1 ≤ t2(1 + 7α) and 2dσ2
2 ≤ t2(1 + 7α) . Without

loss of generality, let x(c) be included in C1 because x(c) was close to x(a).

d(σ2
1 + σ2

i ) + ||µ1 − µi||
2
2 ≤
||x(a)− x(c)||22

1− α
≤ t2(1 + 3αr),

and furthermore two samples from components i or 1 did not achieve minimum and

hence, 2dσ2
i ≥ t2(1−α) and 2dσ2

1 ≥ t2(1−α). Solving, we get 2dσ2
i ≤ t2(1+7αr)

and ||µ1 − µi||
2
2 ≤ 4t2αr. Similarly, 2dσ2

j ≤ t2(1 + 7αr) and
∣∣∣∣µl − µj

∣∣∣∣2
2
≤ 4t2αr,

for some l ∈ {1, 2}. We now have all the inequalities necessary to show that

||x(c)− x(d)||22 ≤ t2(1 + 50αr) and hence would not be discarded.

||x(c)− x(d)||22
(a)

≤
(
d(σ2

i + σ2
j) +

∣∣∣∣µi − µj

∣∣∣∣2
2

)
(1 + α)

(b)

≤ t2(1 + 7αr) +
∣∣∣∣µi − µ1 + µ1 − µl + µl − µj

∣∣∣∣2
2

(c)

≤ t2(1 + 7αr) + 3(||µi − µ1||
2
2 + ||µ1 − µl||

2
2 +

∣∣∣∣µl − µj

∣∣∣∣2
2
)

(d)

≤ t2(1 + 50αr).

(a) follows from Equation (7.7). (b) follows from the bounds on σ2
i and σ2

j . (c)

follows from Cauchy-Schwarz inequality and (d) the bounds on the difference of

means which we have shown implies (d).
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The above four lemmas immediately yields,

Lemma 7.32. After coarse clustering, the algorithm divides the samples into

clusters such that with probability ≥ 99/100− 2δ,

• There is no mis-clustering.

• For any pair of components i, j within a cluster with ŵi, ŵj ≥ 2/n, the

variances lie within a factor of 1±56αr around t2 and
∣∣∣∣µi − µj

∣∣∣∣2
2
≤ O(t2α2).

• For every component i within a cluster C, ||µi − µ(C)||22 + dσ2
i ≤ O(t2).

It can be shown that once the conclusions in Lemma 7.32 holds, then the

performance of recursive clustering algorithm would be same as Lemma 7.10 up to

constants. The only modification is the computation of σ̂2(C) which is given by

σ̂2(C) =
1

|C|(|C| − 1)

∑
a,b∈C

1

2d
||x(a)− x(b)||22 .

By Lemma 7.32, out of
(|C|

2

)
pairs at most k|C| would have distances away from

t2. It can be shown that this does not affect the analysis.

Finally for the exhaustive search, instead of just substituting a single σ′,

we try out all possible combinations of σ′(C) for each cluster C, where

σ′(C) ∈ σ̂2(1 + iε/d
√

128dk2), ∀ − L′ < i ≤ L′},

where L′ =
32k
√

logn2/δ

ε
. Note that since we are searching over k different variances

instead of just one, the number of candidate mixtures increases by and hence the

time complexity. The time complexity for unequal variances can be shown to be

O

(
n2d log n+ d

(k7

ε3
log2 d

δ

) k2

2
(k√log d/δ

ε

)k)
.

Note that even though our error probability is 1/100 + 2δ, and is not arbitrarily

close to 0, we can repeat the entire algorithm O(log 1
δ′

) times and run Scheffe

on the resulting components to find the closest one. By the Chernoff bound, the

error probability of this new estimator would be ≤ δ′.
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7.8 Lower bounds

We first show a lower bound for a single Gaussian distribution and generalize

it to mixtures.

7.8.1 Single Gaussian distribution

The proof is an application of the following version of Fano’s inequality (see

Lemma 2.15), which states that we cannot simultaneously estimate all distributions

in a class using n samples if they satisfy certain conditions.

We consider d−dimensional spherical Gaussians with identity covariance

matrix, with means along any coordinate restricted to ± cε√
d
. The KL divergence

between two spherical Gaussians with identity covariance matrix is the squared

distance between their means. Therefore, any two distributions we consider have

KL distance at most

β =
d∑
i=1

(
2
cε√
d

)2

= 4c2ε2,

We now consider a subset of these 2d distributions to obtain a lower bound on α.

By the Gilbert-Varshamov bound, there exists a binary code with≥ 2d/8 codewords

of length d and minimum distance d/8. Consider one such code. Now for each

codeword, map 1 → cε√
d

and 0 → − cε√
d

to obtain a distribution in our class. We

consider this subset of ≥ 2d/8 distributions as our fi’s.

Consider any two fi’s. Their means differ in at least d/8 coordinates. We

show that the `1 distance between them is ≥ cε/4. Without loss of generality, let

the means differ in the first d/8 coordinates, and furthermore, one of the distribu-

tions has means cε/
√
d and the other has −cε/

√
d in the first d/8 coordinates. The

sum of the first d/8 coordinates is N(cε
√
d/8, d/8) and N(−cε

√
d/8, d/8). The `1

distance between these normal random variables is a lower bound on the `1 dis-

tance of the original random variables. For small values of cε the distance between

the two Gaussians is at least ≥ cε/4. This serves as our α.

Applying the Fano’s Inequality, the `1 error on the worst distribution is at
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least
cε

8

(
1− n4c2ε2 + log 2

d/8

)
,

which for c = 16 and n < d
214ε2

is at least ε. In other words, the smallest n to

approximate all spherical normal distributions to `1 distance at most ε is > d
214ε2

.

7.8.2 Mixtures of k Gaussians

We now provide a lower bound on the sample complexity of learning mix-

tures of k Gaussians in d dimensions. We extend the construction for learning

a single spherical Gaussian to mixtures of k Gaussians and show a lower bound

of Ω(kd/ε2) samples. We will again use Fano’s inequality over a class of 2kd/64

distributions as described next.

To prove the lower bound on the sample complexity of learning spherical

Gaussians, we designed a class of 2d/8 distributions around the origin. Let P def
=

{p1, . . . ,pT}, where T = 2d/8, be this class. Recall that each pi is a spherical

Gaussian with unit variance. For a distribution p over Rd and µ ∈ Rd, let p + µ

be the distribution p shifted by µ.

We now choose µ1, . . . ,µk’s extremely well-separated. The class of distribu-

tions we consider will be a mixture of k components, where the jth component is

a distribution from P shifted by µj. Since the µ’s will be well separated, we will

use the results from last section over each component.

For i ∈ [T ], and j ∈ [k], pij
def
= pi +µj. Each (i1, . . . , ik) ∈ [T ]k corresponds

to the mixture
1

k
(pi11 + pi22 + . . .+ pikk)

of k spherical Gaussians. We consider this class of T k = 2kd/8 distributions. By

the Gilbert-Varshamov bound, for any T ≥ 2, there is a T -ary codes of length

k, with minimum distance ≥ k/8 and number of codewords ≥ 2k/8. This implies

that among the T k = 2dk/8 distributions, there are 2kd/64 distributions such that

any two tuples (i1, . . . , ik) and (i′1, . . . , i
′
k) corresponding to different distributions

differ in at least k/8 locations.
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If we choose the µ’s well separated, the components of any mixture distri-

bution have very little overlap. For simplicity, we choose µj’s satisfying

min
j1 6=j2
||µj1 − µj2||2 ≥

(
2kd

ε

)100

.

This implies that for j 6= l, ||pij − pi′l||1 < (ε/2dk)10. Therefore, for two

different mixture distributions,∣∣∣∣∣∣∣∣1k (pi11 + pi22 + . . .+ pikk)−
1

k
(pi′11 + pi′22 + . . .+ pi′kk)

∣∣∣∣∣∣∣∣
1

(a)

≥ 1

k

∑
j∈[k],ij ,i′j∈[T ]

|pijj − pi′jj| − k
2(ε/2dk)10

(b)

≥1

8

cε

4
− k2(ε/2dk)10.

where (a) follows form the fact that two mixtures have overlap only in the corre-

sponding components, (b) uses the fact that at least in k/8 components ij 6= i′j,

and then uses the lower bound from the previous section.

Therefore, the `1 distance between any two of the 2kd/64 distributions is

≥ c1ε/32 for c1 slightly smaller than c. We take this as α.

Now, to upper bound the KL divergence, we simply use the convexity,

namely for any distributions p1 . . .pk and q1 . . .qk, let p̄ and q̄ be the mean

distributions. Then,

D(p̄||q̄) ≤ 1

k

k∑
i=1

D(pi||qi).

By the construction and from the previous section, for any j,

D(pijj||pi′jj) = D(pi||pi′) ≤ 4c2ε2.

Therefore, we can take β = 4c2ε2.

Therefore by the Fano’s inequality, the `1 error on the worst distribution is

at least
c1ε

64

(
1− n4c2ε2 + log 2

dk/64

)
,

which for c1 = 128, c = 128.1 and n < dk
88ε2

is at least ε.
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Appendix A

Concentration inequalities

We use the following concentration inequalities for Poisson, Gaussian, Chi-

Square, and sum of Bernoulli random variables in the dissertation.

Lemma A.1 (Poisson Chernoff bound). If X ∼ poi(λ), then for x ≥ λ,

Pr(X ≥ x) ≤ exp

(
−(x− λ)2

2x

)
,

and for x < λ,

Pr(X ≤ x) ≤ exp

(
−(x− λ)2

2λ

)
.

Lemma A.2 (Variation of Bernstein’s Inequality). Let X1, X2, . . . Xn be n inde-

pendent zero mean random variables such that with probability ≥ 1−εi, |Xi| < M ,

then

Pr(|
∑
i

Xi| ≥ t) ≤ 2 exp

(
− t2∑

i E[X2
i ] +Mt/3

)
+

n∑
i=1

εi.

If t =
√

2 (
∑

i E[X2
i ]) log 1

δ
+ 2

3
M log 1

δ
, then

Pr

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥
√√√√2

(∑
i

E[X2
i ]

)
log

1

δ
+

2

3
M log

1

δ

 ≤ 2δ +
n∑
i=1

εi.

To prove the concentration of estimators, we bound the variance and show

that with high probability the absolute value of each Xi is bounded by M and use

Bernstein’s inequality with t =
√

2 (
∑

i E[X2
i ]) log 1

δ
+ 2

3
M log 1

δ
. For example,
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Lemma A.3 (Binomial Chernoff bound). If X1, X2 . . . Xn are distributed accord-

ing to Bernoulli p, then with probability 1− δ,∣∣∣∣∑n
i=1Xi

n
− p
∣∣∣∣ ≤

√
2p(1− p)

n
log

2

δ
+

2

3

log 2
δ

n
.

Lemma A.4 (Gaussian tail bound). For a Gaussian random variable X with mean

µ and variance σ2,

Pr(|X − µ| ≥ tσ) ≤ e−t
2/2.

Lemma A.5 ([119]). If Y1, Y2, . . . Yn be n i.i.d. Gaussian variables with mean 0

and variance σ2, then

Pr

( n∑
i=1

Y 2
i − nσ2 ≥ 2(

√
nt+ t)σ2

)
≤ e−t,

and

Pr

( n∑
i=1

Y 2
i − nσ2 ≤ −2

√
ntσ2

)
≤ e−t.

Furthermore for a fixed vector a,

Pr

(∣∣∣∣∣
n∑
i=1

ai(Y
2
i − 1)

∣∣∣∣∣ ≤ 2(||a||2
√
t+ ||a||∞ t)σ

2

)
≤ 2e−t.

A simple combination of the above two results proves the following.

Lemma A.6. If X is distributed according to N(µ, σ2Id) then,

Pr
(
−2
√
dtσ2 − 2 ||µ||2 tσ ≥ ||X||

2
2 − ||µ||

2
2 − dσ

2 ≥ 2(
√
dt+ t)σ2 + 2 ||µ||2 tσ

)
is at most 2e−t + e−t

2/2.

We now state a non-asymptotic concentration inequality for random matri-

ces that helps us bound errors in spectral algorithms.

Lemma A.7 ([114] Remark 5.51). Let y(1),y(2), . . . ,y(n) be generated according

to N(0,Σ). For every ε ∈ (0, 1) and t ≥ 1, if n ≥ c′d
(
t
ε

)2
for some constant c′,

then with probability ≥ 1− 2e−t
2n,∣∣∣∣∣

∣∣∣∣∣
n∑
i=1

1

n
y(i)yt(i)− Σ

∣∣∣∣∣
∣∣∣∣∣ ≤ ε ||Σ|| .
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[25] Dominique Bontemps, Stéphane Boucheron, and Elisabeth Gassiat. About
adaptive coding on countable alphabets. IEEE Transactions on Information
Theory, 60(2):808–821, 2014.
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