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Bounded boxes� Hausdor� distance� and a new proof of an interesting

Helly�type theorem�

Nina Amenta �

The Geometry Center

���� South Second Street

Minneapolis� MN� �����

Abstract

In the �rst part of this paper� we reduce two geometric

optimization problems to convex programming� �nd�

ing the largest axis�aligned box in the intersection of a

family of convex sets� and �nding the translation and

scaling that minimizes the Hausdor� distance between

two polytopes� These reductions imply that important

cases of these problems can be solved in expected linear

time� In the second part of the paper� we use convex

programming to give a new� short proof of an interest�

ing Helly�type theorem� �rst conjectured by Gr�unbaum

and Motzkin�

� Introduction

Linear programming is a popular tool in computa�
tional geometry� A related problem is

Convex Programming

Input� A �nite family H of closed convex sets in
Ed and a convex function f �
Output� The minimum of f over

T
H� the inter�

section of H�

Remember that a function f � Ed � R is convex
when f��a � ��� ��b� � �f�a� � �� � ��f�b�� for
all a� b � Ed and � � � � ��
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�

The elements of the family H are called the con�
straints� Like a linear program� a convex program
has a single global minimum which is determined
by a subfamily of constraints� And under reason�
able computational assumptions on the constraints
and the convex function� 	xed�dimensional convex
programming can be solved in expected linear �in
jH j� time by any of the randomized combinato�
rial linear programming algorithms of 
C���� 
S����

MSW��� These algorithms are combinatorial in
the sense that they operate by searching the sub�
families of constraints for one that de	nes the min�
imum� a more classic example of a combinatorial
LP algorithm the simplex algorithm�

We give two new reductions from geometric op�
timization problems of practical interest to con�
vex programming� The 	rst problem is 	nding the
largest volume axis�aligned box in the intersection
of a family K of convex sets� Like the ubiqui�
tous bounding box� this bounded box can be used in
heuristics to approximate a more complicated vol�
ume� When the dimension is 	xed and the elements
of K are linear halfspaces �or otherwise easy to
compute with�� this reduction implies an expected
O�n� time algorithm� n � jKj� The planar case of
this problem was raised in the context of a heuris�
tic for packing clothing pattern pieces 
DMR����
They give an O�n��n� logn� algorithm to 	nd the
maximum area axis�aligned rectangle in any sim�
ple polygon in E�� Our reduction may be useful
for higher dimensional packing heuristics as well�
and also when objects are to be decomposed into
collections of axis�aligned boxes �eg� in ray tracing�

AK����pp ������

Our second reduction concerns some particu�
lar cases of the much�studied problem of mini�
mizing the Hausdor� distance between two ob�



jects under a group of transformations� The one�
directional Hausdor� distance from a set A to a
set B� �H�A�B�� is the maximum distance from
any point in A to the nearest point in B� The
Hausdor� distance between A and B� H�A�B�� is
maxf �H�A�B�� �H�B�A�g� The Hausdor� distance
is used in pattern recognition and computer vision
as a a measure of the di�erence in shape between
the two sets� typically a family P of critical points
is extracted from an image and compared with a
stored template A� The problem is to choose a
transformation from some family which� when ap�
plied to A� minimizes H�P�A� or �H�P�A��

For convex polytopes A�B we reduce the prob�
lem of 	nding the translation and scaling which
minimizes H�A�B� to a convex program� In the
plane� this convex program can be solved in ex�
pected O�n� time� where n is the total number
of vertices� A similar convex program� motivated
by the scenario above� 	nds the translation which
minimizes the �H�P�A�� where P is a point set
and A is a convex polytope� Again in the pla�
nar case� this convex program requires expected
minfO�mn�� O�n lgn � m�g� time� where n � jP j
and A has m vertices�

There are many results on minimizing the Haus�
dor� distance between various objects under di�er�
ent groups of motions� Most of them solve more dif�
	cult problems and require more time� For planar
point sets P�Q� an algorithm of 
HKS��� 	nds the
translation that minimizes H�P�Q� in O�mn�m�
n� lg�mn�� time� where n � jP j� m � jQj� Allow�
ing rotation as well� an algorithm of 
CGHKKK���
minimizes H�P�Q� in O�m�n��m�n� lg�mn� time�
Algorithms for measuring the Hausdor� distance
for 	xed polygons� allowing no transformations
at all� require O�n lgn� time for simple polygons

ABB���� and O�n� for convex polygons 
A���� The
algorithms implied by our reductions are also com�
paratively simple and implementable�

We turn from these practical issues to a theoreti�
cal question from combinatorial geometry� We give
a new proof of the theorem of 
Mo����

Theorem ��� Let Ck
d be the family of all sets in

Rd consisting of the disjoint union of at most k
closed convex sets� Let Ikd � Ck

d be a subfamily
with the special property that it is closed under in�
tersection� Then the intersection of Ikd is nonempty

if and only if the intersection of J is nonempty� for
all J � Ikd with jJ j � k�d� ���

This is called a Helly�type theorem because of its
combinatorial structure� the whole family of sets
has nonempty intersection if and only if all of
its constant�size subfamilies do� There are many
Helly�type theorems� it is appealing to think that
there is some fundamental topological property un�
derlying them all� This theorem is interesting be�
cause it suggests this fundamental property might
be that the intersection of every subfamily is some�
how homologically of constant complexity�

Gr�unbaum and Motzkin conjectured Theorem
��� 
GM���� and proved the case k � � using a
more general axiomatic structure in place of con�
vexity� The case k � � was proved by Larman

L���� Morris settled the conjecture in his thesis�
His proof� however� is quite long ��� pages� and
involved� and a better proof has been called for

E����

Using convex programming� we give a short and
insightful proof� Our approach is to introduce a
function f � and then show that the problem of min�
imizing f over a family Ikd belongs to the class GLP
�for Generalized Linear Programming�� Informally�
GLP is the class of problems which can be solved
by combinatorial LP algorithms� This is already
interesting� as an example of a problem which is
combinatorially similar to LP although geometri�
cally the intersection of the constraints fails not
only to be convex� but even to be connected� The�
orem ��� follows by applying an easy theorem from

A���� that there is a Helly�type theorem about the
constraint set of every GLP problem�

� Setup

In this section we give some background on con�
vex programming� GLP� and the combinatorial LP
algorithms�

First we give the formal de	nition of GLP� us�
ing an abstract framework due to Sharir and Welzl

SW��� A GLP problem is a pair �H�w�� where
H is a family of constraints� generally sets� and
w � H � � is a function which takes a subfamily
of constraints to an element of a totally ordered
set �� � has a special maximum element �� When



w�G� � �� G is feasible� and otherwise G is infea�
sible�

In convex programming� for example� w�G�� for
G � H � is the minimum of f over

T
G� and ifT

G � �� then w�G� � �� In order to ensure
that w is de	ned on every subfamily of constraints�
we may have to enclose the problem in a compact
�bounding box�� We say that w is the objective
function induced by f �

�H�w� is a GLP problem if

�� For all F � G � H � w�F � � w�G�

� For all F � G � H such that w�F � � w�G� and
for each h � H �
w�F � h� � w�F � if and only if w�G� h� � w�G�
�by F � h� we mean F � fhg�

A basis is a subfamily G � H such that w�G�h� �
w�G�� for all h � G� The combinatorial dimension
of a GLP is the maximum cardinality of any feasi�
ble basis�

Every convex program meets Condition �� since
adding more constraints to a problem can only in�
crease the minimum� It is also well�known that
a d�dimensional convex program has combinatorial
dimension d� there is a formal proof in 
A�����

But notice that it is not the case that every con�
vex program is a GLP problem� since it may fail
to satisfy Condition � Condition  is always sat�
is	ed� however� when the minimum of f over the
intersection of every subfamily G � H is achieved
by exactly one point� This observation implies that
the following cases of convex programming are al�
ways GLP problems of combinatorial dimension d�

A function f � Ed � R is strictly convex when
f��a � �� � ��b� � �f�a� � �� � ��f�b�� for all
a� b � Ed and � � � � ��

Strictly convex programming

Input� A family H of compact convex subsets of
Ed� and a strictly convex function f �
Output� The minimum of f over

T
H�

The minimum is achieved at one unique point since
any point x on the the line segment between any
two feasible points y� z with f�y� � f�z� has f�x� �
f�y� � f�z��

The lexicographic function f � Ed � Rd takes a
point to it�s coordinates x �� x�� � � � � xd �� which
are totally ordered so that x � y if x� � y�� or if
x� � y� and x� � y�� and so on�

Lexicographic convex programming

Input� A family H of compact convex subsets of
Ed� and the lexicographic function f �
Output� The minimum of f over

T
H�

The minimum is certainly achieved at a single
point� since each point has a unique value� But
this is not� strictly speaking� a convex program�
ming problem� since f is not a function into R�
We observe� however� that f is related to the lin�
ear function

g��x� � x� � �x� � ��x� � � � �� �d��xd

for in	nitessimally small �� To make this relation�
ship precise� we adopt the terminology of 
M����
and say that an objective function v is a re�nement
of a function w when� for F�G � H � w�G� � w�F �
implies v�G� � v�F ��
Let w and v� be the objective functions induced

by f and g�� respectively� For any 	nite family H

of constraints� there is some � small enough so that
v� is a re	nement of w� Note that there may be
no � small enough that v��F � � v��G� whenever
w�F � � w�G�� as illustrated in 	gure �� Finally�

a

b

w({a,b})=w({a})

v({a,b})

v({a})

Figure �� Minima are di�erent under v�

we observe that if a function w has some re	ne�
ment v such that �H� v� meets Condition � and has
combinatorial dimension d� then so does �H�w��
So Lexicographic Convex Programming is a GLP
problem of combinatorial dimension d� since �H� v��
is a convex program and so meets Condition � and
has combinatorial dimension d� and �H�w� meets
Condition  as well�
The computational requirement under which any

of the combinatorial LP algorithms can be applied
to any GLP problem is that there is a subroutine
available for the following problem�

Basis computation



Input� A basis G and a constraint h�
Output� A basis G� � G � h such that w�G�� �
w�G� h��

This operation corresponds to a pivot step in the
simplex algorithm� In d�dimensional convex pro�
gramming� a basis computation minimizes f overT
G� where jGj � d � �� When a basis compu�

tation can be done in constant time� then any of

C���� 
S���� 
MSW�� require expected O�n� time�
where n � jH j� All of these algorithms have been
implemented for LP� and the algorithm in 
S��� has
also been applied to the particular convex program
of 	nding the smallest ball enclosing a family of
points in Ed 
W����

� Bounded boxes

In this section we prove

Theorem ��� Finding the largest volume axis�
aligned box in the intersection of a family K of n
convex bodies in Ed is a strictly convex program in
E�d with dn constraints�

Proof sketch� We parameterize an axis�aligned
box by a pair of vectors x� a � Rd� where x�� � � � � xd
are the coe�cients of the lexicographically mini�
mum vertex of the box� and a�� � � � � ad are positive
o�sets in each coordinate direction� This parame�
teriztion de	nes a space of boxes� in which we will
construct a convex program�
For each convex body C � K� we will de	ne d

constraints� one for each box vertex� Note that a
box is contained in a convex body C if and only if
all of its vertices are� Let us label the vertices with
��� vectors in the natural way� so that ��� � � � � �� is
the lexicographic minimum corner of the box� The
set of boxes for which vertex u is contained in C is
h � fx� a j x��u�a� � Cg �here � is coordinate�
wise multiplication� and � is translation�� This is
convex�
To prevent the largest volume box determined

any subproblem from being unbounded� we require
the bounded box to be contained in a very large
bounding box which is guranteed to contain

T
K�

This adds one more convex constraint to the prob�
lem in the space of boxes�
It remains to show that maximizing the volume

of the box corresponds to minimizing some convex

function over
T
H � The volume of a box �x� a��

negated� is given by

g�a� � �
dY

i��

ai

with all the ai constrained to be positive� This is
not a convex function� but

f�a� � � log�
dY

i��

ai� � �
dX

i��

log�ai�

is a strictly convex function� Minimizing f overT
H is a strictly convex programming problem in

E�d�
�

When the elements of K are linear halfspaces� then
the constraints are as well� When the elements of
K are of constant complexity� so that a basis com�
putation requires O��� time for 	xed d� the largest
volume axis�aligned box can be found in expected
O�n� time� Note that f and g are minimized at
the same point� so the basis computation may be
implemented using g�

� Hausdor� distance

Now we consider the problem of 	nding the trans�
lation and scaling which minimize the Hausdor�
distance between two convex polytopes A and B in
Ed� The boundary of the set of points at distance
� from A �that is� the Minkowski sum of A with
the closed disk of radius � centered at the origin�
is called the ��o�set surface� �H�B�A� � � when

Figure � O�set surface

every vertex of B lies within the ��o�set surface of
A�
We can think of the scaling and translation

transformations as being applied to A alone� We
de	ne a �d � ��dimensional transformation space
in which the coordinates of each point represent a



d�dimensional translation vector � to be applied to
A� a scale factor 	 to be applied to A� and an o�set
distance �� For any point b � B� let Hb

������� be the
subset of transformation space such that b is within
the ��o�set surface of the homothet of A scaled by
	 and translated by � � Similarly� let Ha

������� be the
set of translations and scalings of A which put a
point a � A inside the ��o�set surface of B�

Theorem ��� The scaling and translation that
minimizes the Hausdor� distance between two poly�
topes in Ed can be found by a lexicographic convex
program in Ed���

Proof� Let V �A� and V �B� be the vertex sets of
A and B� respectively� Consider a vertex b � V �B��
Fixing 	 � � and � � �� we 	nd that the set of
translations of A which cover b� Hb

�������� is itself a
translate of the convex set �A� Allowing 	 to vary�
we 	nd thatHb

������� is a cone over �A� also convex�
into the direction of the 	 coordinate� Finally� we
allow � to vary as well� Notice that� as � varies�
the set of disks of radius � centered at the origin
forms a convex cone� C� Hb

������� is the Minkowski

sum of Hb
������� with C� This is convex because the

Minkowski sum of convex bodies is convex� Each
vertex of B produces one such convex constraint�

Now consider a vertex a � V �A�� Again Ha
�������

is convex� this time a translate of �B� As 	 varies�
A scales� and vertex a moves in some direction v�
along line a � 	v� So Ha

������� is a convex cylinder
over �B� and Ha

������� is the Minkowski sum of the
cylinder with C�

We use the objective function given by the lexi�
cographic function f on the transformation space�
where � is the most signi	cant coordinate� followed
by 	 and then the d coordinates of the transla�
tion � � The minimum point in the intersection of
the constraintsHa

������� andH
b
�������� with respect to

f � represents a scaling and translation which min�
imizes the Hausdor� distance between A and B�
�

In the plane� the most important case for ex�
isting applications� we can implement this convex
program so that

Theorem ��� The scaling and translation which
minimizes the Hausdor� distance between two poly�

gons in the plane can be found in expected O�n�
time� where n � jV �A�j� jV �B�j�

Proof� We rede	ne each polygon as the intersec�
tion of pieces of constant complexity� and associate
each piece with a subset of the vertices of the other
polygon� Each piece is the in	nite wedge formed
by a vertex of one of the polygons and the rays sup�
porting the adjacent sides� which we shall call an
angle� If every vertex ofA is within the ��o�set sur�
face of every angle from B� and visa versa�H�A�B�
is no greater than �� This gives a GLP with O�n��
constraints� pairing every vertex of A with every
angle from B� and visa versa�

We get a linear number of constraints by noting
that for every angle � from B� all of A is within the
��o�set surface of � if every vertex from a critical
subset of V �A� is� The faces of B divide the cir�

Figure �� Intervals on the circle of normals

cle of normal directions into a family IB of closed
intervals� each interval corresponding to an angle�
A vertex v of A is critical for an angle � if v is
extremal in A for any direction in the interval in�
duced by �� The face normals of A also divide the
circle of normal directions into a family IA of closed
intervals� each corresponding to the set of direc�
tions in which a particular vertex of A is extremal�
When the interval corresponding to a vertex v in�
tersects the interval corresponding to an angle ��
v is extremal for �� The critical subsets for every
angle can be found by merging IA and IB in linear
time� Each of the n intersections of an interval in
IA with an interval in IB gives a vertex�angle pair
which produces a constraint� We also construct the
n constraints induced by angles of A and vertices
of B�

The lexicographic minimum point in the inter�
section of any four constraints can be found in con�
stant time� so we get an expected O�n� time algo�



rithm�
�

We now turn our attention to the problem of
minimizing the one�directional Hausdor� distance
�H�P�A� from a set of P points to a convex poly�
tope A� We can always scale A so that it is large
enough to cover all the points� making �H�P�A�
zero� When the only transformation allowed is
translation� however� we 	nd

Theorem ��� The translation that minimizes the
one�directional Hausdor� distance from a set P
of points to a convex polytope A in Ed can be
found by a lexicographic convex program in Ed���
For d � � we can solve the problem in expected
minfO�mn�� O�n lgn �m�g� time� where n � jP j
and m � jV �A�j�

Proof sketch� If the O�mn� term is less than
the O�n lgn � m� term �few vertices and many
points�� we construct a convex program in which
each point in P produces n constraints of constant
complexity� similar to those in the previous reduc�
tion� If not� we compute the convex hull of P and
use a one�directional� translation�only modi	cation
of the previous construction�
Note that the Hausdor� distance used in this

section can be derived from any metric on Ed� not
just L��

� A new proof of an interesting

Helly�type theorem

In this section we will use an easy but powerful the�
orem from 
A���� which gives us a simple technique
for proving Helly�type theorems�

Theorem ��� Let �H�w� be a GLP problem with
combinatorial dimension d� The intersection of H
is nonempty if and only if the intersection of every
G � H with jGj � d� � is nonempty�

Let Ck
d be the family of all sets in Rd consist�

ing of the disjoint union of at most k closed convex
sets� A family I of sets is intersectional if� for ev�
ery H � I �

T
H � I � Ck

d is not intersectional� But
consider some subfamily Ikd � Ck

d which is intersec�
tional� This may �just happen� to be true� or Idk
may be intersectional for some geometric reason�

For example consider of any family J of sets like
the one in 	gure � where each set is a pair of balls
of diameter 
� separated by a distance of at least 
�
kind of like dumbbells� The family formed by tak�

Figure �� Generating family of Ikd

ing the intersection of every subfamily of J forms
an intersectional family Ikd � since every intersection
consists of at most two convex components�
Morris 
Mo��� proved the following

Theorem ��� Any intersectional family Ikd � Ck
d

has Helly number k�d� ���

We use Theorem ��� to give a new short and intu�
itive proof� Given any 	nite familyH � Ikd � we con�
struct a GLP problem with H as the constraints�
Let f be the lexicographic objective function on
Ed� and de	ne w�G� � minff�x� j x �

T
Gg� for

all G � H � Since minima are identi	ed with points�
we will speak of w�G� as a point and ignore the 	ne
distinction between the point x itself and the value
f�x��

Theorem ��� Finding w�H� is a GLP problem of
combinatorial dimension k�d� ��� ��

Proof� It is easy to see that the problem satis�
	es Condition �� since adding constraints to a sub�
problem can only increase the minimum� And is
satis	es Condition  since every value of w�G� is
identi	ed with a unique point� which is either in or
out of h�
Recall that the combinatorial dimension is the

largest cardinality of any basis B such that
T
B

is nonempty� We will count the constraints in any
basis B by carefully removing selected constraints
one by one� while building up a subfamily S of
�sacred� constraints which may not be removed in
later steps�
We will maintain two invariants� The 	rst is that

w�B � h� � w�B� for all h � B � S� The second
invariant is that for all h � B � S� the minimum



point w�B�h� lies in a di�erent convex component
of
T
�B � h� from the point w�B��

First we choose the subfamily S so that the in�
variants are true initially� Since

T
B 	� �� there

is a minimum point w�B� in some convex compo�
nent of

T
B� Each h � B is the disjoint union

of convex sets� for each h� the point w�B� is con�
tained in exactly one of them� Call this convex set
Ch� and let C � fCh j h � Bg� The pair �C�w�
is a lexicographic convex programming problem� a
GLP problem of combinatorial dimension d� with
w�C� � w�B�� So C must contain a basis BC with
jBC j � d� We set S � fh � B j Ch � BCg�
How does this ensure the invariants� Since B

is a basis� the 	rst invariant holds for any sub�
set S� The second invariant holds because all
the constraints which contributed a convex com�
ponent to BC are in S� and for any h � B � S�
w�B � h� � w�B� � w�BC�� That is� since
the point w�B� is the lowest point in

T
BC � and

w�B � h� is lower than w�B�� the point w�B � h�
cannot be in

T
BC � and hence must be in a di�erent

convex component of
T
�B � h��

Now we turn our attention to selecting a con�
straint to remove from B� We use the fact that all
the points w�B�h� are distinct� for all h � B�S�
This is true because the point w�B � h� 	� h� so
that for any other h� � B� since h � �B � h���
w�B � h� 	�

T
�B � h��� Since the w�B � h� are

distinct� there is some hmax � B � S such that
w�B � hmax� � w�B � h� for all other h � B � S�
So consider removing hmax from B� Since w�B�

h� � w�B � hmax�� for any other h � B � S� cer�
tainly w�B � h � hmax� � w�B � hmax�� So the
	rst invariant is maintained for B � hmax and S�
To re�establish the second invariant� we have to add
more elements to S� We do this in the same way as
before� by 	nding the at most d constraints which
determine the minimum of the convex component
containing w�B�hmax�� We add these constraints
to S� and set B � B � hmax�
We iterate this process� selecting constraints to

remove from B and adding constraints to S� un�
til B � S is empty� that is� B � S� We now
show that each removed constraint h accounts for
at least one convex component Ch in

T
S� Remov�

ing h fromB caused a new minimum point w�B�h�
to be created� This point was the minimum point
in some convex component Ch of

T
�B � h�� We

added the constraints determining w�B � h� to S�
so w�B�h� has to remain the minimum point in its
convex component� throughout the rest of the pro�
cess� This ensures that� although Ch may later be�
come part of some larger component� it will never
become part of a larger component with a lower
minimum point� Each subsequent component cre�
ated by the removal of another constraint from B

will in fact have a lower minimum point� so the
component containing w�B � h� must remain dis�
tinct from all later components� Thus every re�
moved constraint h will account for at least one
distinct component in

T
S�

Since Idk is an intersectional family� no subfamily
of constraints can have more than k convex com�
ponents in its intersection� Since

T
B was initially

nonempty� we started with at least one convex com�
ponent� and at most d constraints in S� No more
than k�� constraints were removed� and each con�
straint removed added at most d constraints to S�
So the total size of jBj � �k����jSj � k�d������

�

Theorems ��� and ��� together imply Theorem
���
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