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Bounded boxes, Hausdorff distance, and a new proof of an interesting

Helly-type theorem.

Nina Amenta *
The Geometry Center
1300 South Second Street
Minneapolis, MN. 55454

Abstract

In the first part of this paper, we reduce two geometric
optimization problems to convex programming: find-
ing the largest axis-aligned box in the intersection of a
family of convex sets, and finding the translation and
scaling that minimizes the Hausdorff distance between
two polytopes. These reductions imply that important
cases of these problems can be solved in expected linear
time. In the second part of the paper, we use convex
programming to give a new, short proof of an interest-
ing Helly-type theorem, first conjectured by Grunbaum
and Motzkin.

1 Introduction

Linear programming is a popular tool in computa-
tional geometry. A related problem is

Convex Programming

Input: A finite family H of closed convex sets in
E4 and a convez function f.

Output: The minimum of [ over (| H, the inter-
section of H.

Remember that a function f : EY — R is convex
when f(Aa+ (1 - \)b) < Af(a) + (1~ A)f(b), for
all a,b€ E4and 0 < A < 1.

&mail: nina@geom.umn.edu. Most of this work was
done at the University of California, Berkeley, where the au-
thor was supported by a U.C. Presidents Dissertation Year

Fellowship and an AT&T Graduate Research Program for
Women Grant.

The elements of the family H are called the con-
straints. Like a linear program, a convex program
has a single global minimum which is determined
by a subfamily of constraints. And under reason-
able computational assumptions on the constraints
and the convex function, fixed-dimensional convex
programming can be solved in expected linear (in
|H|) time by any of the randomized combinato-
rial linear programming algorithms of [C90], [S90],
[MSW92]. These algorithms are combinatorial in
the sense that they operate by searching the sub-
families of constraints for one that defines the min-
imum; a more classic example of a combinatorial
LP algorithm the simplex algorithm.

We give two new reductions from geometric op-
timization problems of practical interest to con-
vex programming. The first problem is finding the
largest volume axis-aligned box in the intersection
of a family K of convex sets. Like the ubiqui-
tous bounding box, this bounded box can be used in
heuristics to approximate a more complicated vol-
ume. When the dimension is fixed and the elements
of K are linear halfspaces (or otherwise easy to
compute with), this reduction implies an expected
O(n) time algorithm, n = |K|. The planar case of
this problem was raised in the context of a heuris-
tic for packing clothing pattern pieces [DMR93].
They give an O(na(n)logn) algorithm to find the
maximum area axis-aligned rectangle in any sim-
ple polygon in E2. Our reduction may be useful
for higher dimensional packing heuristics as well,
and also when objects are to be decomposed into
collections of axis-aligned boxes (eg. in ray tracing,
[AK89],pp 219-23).

Our second reduction concerns some particu-
lar cases of the much-studied problem of mini-
mizing the Hausdorfl distance between two ob-



jects under a group of transformations. The one-
directional Hausdorff distance from a set A to a
set B, ﬁ(A,B), is the maximum distance from
any point in A to the nearest point in B. The
Hausdorff distance between A and B, H(A, B), is
max{H (A, B), H(B, A)}. The Hausdorff distance
is used in pattern recognition and computer vision
as a a measure of the difference in shape between
the two sets; typically a family P of critical points
is extracted from an image and compared with a
stored template A. The problem is to choose a
transformation from some family which, when ap-
plied to A, minimizes H(P, A) or H(P, A).

For convex polytopes A, B we reduce the prob-
lem of finding the translation and scaling which
minimizes H(A, B) to a convex program. In the
plane, this convex program can be solved in ex-
pected O(n) time, where n is the total number
of vertices. A similar convex program, motivated
by the scenario above, finds the translation which
minimizes the ﬁ(P, A), where P is a point set
and A is a convex polytope. Again in the pla-
nar case, this convex program requires expected
min{O(mn),0(nlgn + m)}) time, where n = |P|
and A has m vertices.

There are many results on minimizing the Haus-
dorff distance between various objects under differ-
ent groups of motions. Most of them solve more dif-
ficult problems and require more time. For planar
point sets P, (), an algorithm of [HKS91] finds the
translation that minimizes H (P, Q) in O(mn(m +
n)lg(mn)) time, where n = |P|,m = |Q]. Allow-
ing rotation as well, an algorithm of [CGHKKK94]
minimizes H(P,Q)in O(m*n?(m+n)lg? mn) time.
Algorithms for measuring the Hausdorff' distance
for fixed polygons, allowing no transformations
at all, require O(nlgn) time for simple polygons
[ABBO91], and O(n) for convex polygons [A83]. The
algorithms implied by our reductions are also com-
paratively simple and implementable.

We turn from these practical issues to a theoreti-
cal question from combinatorial geometry. We give
a new proof of the theorem of [Mo73]:

Theorem 1.1 Let 05 be the family of all sets in
R? consisting of the disjoint union of at most k
closed convex sets. Let IZ; C 05 be a subfamily
with the special property that it is closed under in-
tersection. Then the intersection ofIC’; s nonempty

if and only if the intersection of J is nonempty, for

all J C I with |J| < k(d +1).

This is called a Helly-type theorem because of its
combinatorial structure: the whole family of sets
has nonempty intersection if and only if all of
its constant-size subfamilies do. There are many
Helly-type theorems; it is appealing to think that
there is some fundamental topological property un-
derlying them all. This theorem is interesting be-
cause it suggests this fundamental property might
be that the intersection of every subfamily is some-
how homologically of constant complexity.

Griinbaum and Motzkin conjectured Theorem
0.1 [GM61], and proved the case k = 2, using a
more general axiomatic structure in place of con-
vexity. The case &k = 3 was proved by Larman
[L68]. Morris settled the conjecture in his thesis.
His proof, however, is quite long (69 pages) and
involved, and a better proof has been called for
[E93].

Using convex programming, we give a short and
insightful proof. Qur approach is to introduce a
function f, and then show that the problem of min-
imizing f over a family IZ; belongs to the class GLP
(for Generalized Linear Programming). Informally,
GLP is the class of problems which can be solved
by combinatorial LP algorithms. This is already
interesting, as an example of a problem which is
combinatorially similar to LP although geometri-
cally the intersection of the constraints fails not
only to be convex, but even to be connected. The-
orem 0.1 follows by applying an easy theorem from
[A93], that there is a Helly-type theorem about the
constraint set of every GLP problem.

2 Setup

In this section we give some background on con-
vex programming, GLP, and the combinatorial LP
algorithms.

First we give the formal definition of GLP, us-
ing an abstract framework due to Sharir and Welzl
[SW92]. A GLP problem is a pair (H,w), where
H is a family of constraints, generally sets, and
w: 2" — Ais a function which takes a subfamily
of constraints to an element of a totally ordered
set A. A has a special maximum element . When



w(G) < Q, G is feasible, and otherwise G is infea-
sible.

In convex programming, for example, w((G), for
G C H, is the minimum of f over (G, and if
NG = 0, then w(G) = Q.
that w is defined on every subfamily of constraints,
we may have to enclose the problem in a compact
“bounding box”. We say that w is the objective
function induced by f.

(H,w)is a GLP problem if

1. Forall FCG C H: w(l) <w(G)

2. For all ' C G C H such that w(F) = w(G) and
for each h € H:
w(F + h) > w(F)if and only if w(G + h) > w(G)
(by £+ h, we mean F'U {h})
A basisis a subfamily G C H such that w(G—h) <
w(G), for all b € . The combinatorial dimension
of a GLP is the maximum cardinality of any feasi-
ble basis.

Every convex program meets Condition 1, since
adding more constraints to a problem can only in-
crease the minimum. It is also well-known that

In order to ensure

a d-dimensional convex program has combinatorial
dimension d; there is a formal proof in [A937].

But notice that it is not the case that every con-
vex program is a GLP problem, since it may fail
to satisfy Condition 2. Condition 2 is always sat-
isfied, however, when the minimum of f over the
intersection of every subfamily G C H is achieved
by exactly one point. This observation implies that
the following cases of convex programming are al-
ways GLP problems of combinatorial dimension d.

A function f : E? — R is strictly convexr when
Ff(Aa + (1 = X)) < Af(a) 4+ (1 — A)f(b), for all
a,be E%and 0 < A\ < 1.

Strictly convex programming

Input: A family H of compact convex subsets of
E?, and a strictly convex function f.

Output: The minimum of f over (| H.

The minimum is achieved at one unique point since
any point z on the the line segment between any
two feasible points y, z with f(y) = f(z) has f(2) <
fy) = f(2).

The lexicographic function f : E¢ — R takes a
point to it’s coordinates z =< x1,...,2x4 >, which
are totally ordered so that « > y if 1 > yy, or if
x1 = 1y and x9 > yo, and so on.

Lexicographic convex programming

Input: A family H of compact convex subsets of
E?, and the lexzicographic function f.

Output: The minimum of f over (| H.

The minimum is certainly achieved at a single
point, since each point has a unique value. But
this is not, strictly speaking, a convex program-
ming problem, since f is not a function into R.
We observe, however, that f is related to the lin-
ear function

g(z) =21+ exa + Ergt+ .+,

for infinitessimally small ¢. To make this relation-
ship precise, we adopt the terminology of [M94],
and say that an objective function v is a refinement
of a function w when, for F,G C H, w(G) > w(F)
implies v(G) > v(F).

Let w and v, be the objective functions induced
by f and g., respectively. For any finite family H
of constraints, there is some ¢ small enough so that
ve is a refinement of w. Note that there may be
no ¢ small enough that v (F) = v.(G) whenever
w(F') = w(G), as illustrated in figure 1. Finally,

v({ab})

w({ab})=w({a})

Figure 1: Minima are different under v,

we observe that if a function w has some refine-
ment v such that (4, v) meets Condition 1 and has
combinatorial dimension d, then so does (H,w).
So Lexicographic Convex Programming is a GLP
problem of combinatorial dimension d, since (H, v.)
is a convex program and so meets Condition 1 and
has combinatorial dimension d, and (H,w) meets
Condition 2 as well.

The computational requirement under which any
of the combinatorial LP algorithms can be applied
to any GLP problem is that there is a subroutine
available for the following problem:

Basis computation



Input: A basis G and a constraint h.
Output: A basis G' C G + h such that w(G') =
w(G + h).

This operation corresponds to a pivot step in the
simplex algorithm. In d-dimensional convex pro-
gramming, a basis computation minimizes f over
NG, where |G| < d 4 1. When a basis compu-
tation can be done in constant time, then any of
[C90], [S90], [MSW92] require expected O(n) time,
where n = |H|. All of these algorithms have been
implemented for LP, and the algorithm in [S90] has
also been applied to the particular convex program
of finding the smallest ball enclosing a family of
points in K7 [W91].

3 Bounded boxes

In this section we prove

Theorem 3.1 Finding the largest volume axis-
aligned box in the intersection of a family K of n
convez bodies in E¢ is a strictly convex program in
B2 with 2%n constraints.

Proof sketch: We parameterize an axis-aligned
box by a pair of vectors x,a € R, where 21,...,24
are the coeflicients of the lexicographically mini-
mum vertex of the box, and a4, ..
offsets in each coordinate direction. This parame-
teriztion defines a space of boxes, in which we will
construct a convex program.

For each convex body €' € K, we will define 2¢
constraints, one for each box vertex. Note that a
box is contained in a convex body C'if and only if
all of its vertices are. Let us label the vertices with
0-1 vectors in the natural way, so that (0,...,0) is
the lexicographic minimum corner of the box. The
set of boxes for which vertex u is contained in C' is
h={x,a|x+(u®@a) € C} (here @ is coordinate-
wise multiplication, and 4+ is translation). This is
convex.

., Gg are positive

To prevent the largest volume box determined
any subproblem from being unbounded, we require
the bounded box to be contained in a very large
bounding box which is guranteed to contain () K.
This adds one more convex constraint to the prob-
lem in the space of boxes.

It remains to show that maximizing the volume
of the box corresponds to minimizing some convex

function over (VH. The volume of a box (z,a),
negated, is given by

d
g(a) = - 1:[(12'

with all the a; constrained to be positive. This is
not a convex function, but

d d
fla)= - 10g(]:[ a;) = — Zlog(ai)

s a strictly convex function. Minimizing f over
( H is a strictly convex programming problem in
E?,

O

When the elements of K are linear halfspaces, then
the constraints are as well. When the elements of
K are of constant complexity, so that a basis com-
putation requires O(1) time for fixed d, the largest
volume axis-aligned box can be found in expected
O(n) time. Note that f and g are minimized at
the same point, so the basis computation may be
implemented using g.

4 Hausdorff distance

Now we consider the problem of finding the trans-
lation and scaling which minimize the Hausdorfl
distance between two convex polytopes A and B in
E4. The boundary of the set of points at distance
A from A (that is, the Minkowski sum of A with
the closed disk of radius A centered at the origin)
is called the A-offset surface. ﬁ(B,A) < A when

Figure 2: Offset surface

every vertex of B lies within the A-offset surface of
A.

We can think of the scaling and translation
transformations as being applied to A alone. We
define a (d + 2)-dimensional transformation space
in which the coordinates of each point represent a



d-dimensional translation vector 7 to be applied to
A, a scale factor ¢ to be applied to A, and an offset
distance A. For any point b € B, let H(T N be the
subset of transformation space such that b is within
the A-offset surface of the homothet of A scaled by
o and translated by 7. Similarly, let H(T o) be the
set of translations and scalings of A which put a
point a € A inside the A-offset surface of B.

Theorem 4.1 The scaling and translation that
minimizes the Hausdorff distance between two poly-
topes in E® can be found by a lexicographic convex
program in 42,

Proof: Let V(A) and V(B) be the vertex sets of
A and B, respectively. Consider a vertex b € V(B).
Fixing ¢ = 1 and A = 0, we find that the set of
translations of A which cover b, H(T,l,o) is itself a
translate of the convex set —A. Allowing o to vary,
we find that H( .0)
into the dlrectlon of the ¢ coordinate. Finally, we
allow A to vary as well. Notice that, as A varies,
the set of disks of radius A centered at the origin
forms a convex cone, (. H(T,U,A) is the Minkowski

is a cone over — A, also convex,

sum of H( .0,0) with C'. This is convex because the
Minkowski sum of convex bodies is convex. Fach
vertex of B produces one such convex constraint.

Now consider a vertex a € V/(A). Again HE |
is convex, this time a translate of —B. As ¢ varies,
A scales, and vertex ¢ moves in some direction v,
along hne a+ov. So H( .0) is a convex cylinder
over — B, and H( ) 1S the Minkowski sum of the
cylinder Wlth C.

We use the objective function given by the lexi-
cographic function f on the transformation space,
where A is the most significant coordinate, followed
by ¢ and then the d coordinates of the transla-
tion 7. The minimum point in the intersection of
the constraints H(ﬂ N and H(T ) with respect to
f, represents a scahng and translation which min-
imizes the Hausdorff distance between A and B.
O

In the plane, the most important case for ex-
isting applications, we can implement this convex
program so that

Theorem 4.2 The scaling and translation which
minimizes the Hausdorff distance between two poly-

gons in the plane can be found in expected O(n)
time, where n = |V (A)| + |V(B)|.

Proof: We redefine each polygon as the intersec-
tion of pieces of constant complexity, and associate
each piece with a subset of the vertices of the other
polygon. Fach piece is the infinite wedge formed
by a vertex of one of the polygons and the rays sup-
porting the adjacent sides, which we shall call an
angle. If every vertex of A is within the A-offset sur-
face of every angle from B, and visa versa, H(A, B)
is no greater than A. This gives a GLP with O(n?)
constraints, pairing every vertex of A with every
angle from B, and visa versa.

We get a linear number of constraints by noting
that for every angle a from B, all of A is within the
A-offset surface of « if every vertex from a critical

subset of V(A) is. The faces of B divide the cir-

Figure 3: Intervals on the circle of normals

cle of normal directions into a family Ig of closed
intervals, each interval corresponding to an angle.
A vertex v of A is critical for an angle a if v is
extremal in A for any direction in the interval in-
duced by a. The face normals of A also divide the
circle of normal directions into a family 4 of closed
intervals, each corresponding to the set of direc-
tions in which a particular vertex of A is extremal.
When the interval corresponding to a vertex v in-
tersects the interval corresponding to an angle a,
v is extremal for . The critical subsets for every
angle can be found by merging I4 and I in linear
time. Fach of the n intersections of an interval in
I4 with an interval in Ip gives a vertex-angle pair
which produces a constraint. We also construct the
n constraints induced by angles of A and vertices
of B.

The lexicographic minimum point in the inter-
section of any four constraints can be found in con-
stant time, so we get an expected O(n) time algo-



rithm.

We now turn our attention to the problem of
minimizing the one-directional Hausdorff distance
ﬁ(P, A) from a set of P points to a convex poly-
tope A. We can always scale A so that it is large
enough to cover all the points, making ﬁ(P, A)
zero. When the only transformation allowed is

translation, however, we find

Theorem 4.3 The translation that minimizes the
one-directional Hausdorff distance from a set P
of points to a convex polytope A in E% can be
found by a lexicographic convex program in E4TT,
For d = 2, we can solve the problem in expected
min{O(mn),0(nlgn + m)}) time, where n = |P|
and m = |V (A)|.

Proof sketch: If the O(mn) term is less than
the O(nlgn + m) term (few vertices and many
points), we construct a convex program in which
each point in P produces n constraints of constant
complexity, similar to those in the previous reduc-
tion. If not, we compute the convex hull of P and
use a one-directional, translation-only modification
of the previous construction.

Note that the Hausdor{l distance used in this
section can be derived from any metric on E¢, not
just L2

5 A new proof of an interesting
Helly-type theorem

In this section we will use an easy but powerful the-
orem from [A93], which gives us a simple technique
for proving Helly-type theorems.

Theorem 5.1 Let (H,w) be a GLP problem with
combinatorial dimension d. The intersection of H
1s nonempty if and only if the intersection of every
G C H with |G| < d+ 1 is nonempty.

Let 05 be the family of all sets in R? consist-
ing of the disjoint union of at most k& closed convex
sets. A family I of sets is intersectional if, for ev-
ety HC I, (H €1 05 is not intersectional. But
consider some subfamily IZ; C 05 which isintersec-
tional. This may “just happen” to be true, or I,f
may be intersectional for some geometric reason.

For example consider of any family J of sets like
the one in figure 4 where each set is a pair of balls
of diameter ¢, separated by a distance of at least 8,

kind of like dumbbells. The family formed by tak-

®®®®
© @

Figure 4: Generating family of IZ;

ing the intersection of every subfamily of J forms

an intersectional family IC’;, since every intersection

consists of at most two convex components.
Morris [Mo73] proved the following

Theorem 5.2 Any intersectional family IZ; C 05
has Helly number k(d + 1).

We use Theorem 4.1 to give a new short and intu-
itive proof. Given any finite family H C IC’;, we con-
struct a GLP problem with H as the constraints.
Let f be the lexicographic objective function on
E? and define w(G) = min{f(z) | = € NG}, for
all G C H. Since minima are identified with points,
we will speak of w((G') as a point and ignore the fine
distinction between the point x itself and the value

f(z).

Theorem 5.3 Finding w(H) is a GLP problem of
combinatorial dimension k(d+ 1) — 1.

Proof: It is easy to see that the problem satis-
fies Condition 1, since adding constraints to a sub-
problem can only increase the minimum. And is
satisfies Condition 2 since every value of w(G) is
identified with a unique point, which is either in or
out of h.

Recall that the combinatorial dimension is the
largest cardinality of any basis B such that B
is nonempty. We will count the constraints in any
basis B by carefully removing selected constraints
one by one, while building up a subfamily 5 of
“sacred” constraints which may not be removed in
later steps.

We will maintain two invariants. The first is that
w(B —h) < w(B) for all h € B — 5. The second

invariant is that for all A € B — 5, the minimum



point w(B —h) lies in a different convex component
of (B — h) from the point w(B).

First we choose the subfamily S so that the in-
variants are true initially. Since (B # (), there
is a minimum point w(B) in some convex compo-
nent of (\B. Each h € B is the disjoint union
of convex sets; for each h, the point w(B) is con-
tained in exactly one of them. Call this convex set
Ch, and let ¢ = {C} | h € B}. The pair (C,w)
is a lexicographic convex programming problem, a
GLP problem of combinatorial dimension d, with
w(C) = w(B). So C must contain a basis B¢ with
|Bo| <d. Weset S ={he€B|C),¢€ Bc}.

How does this ensure the invariants? Since B
is a basis, the first invariant holds for any sub-
set S. The second invariant holds because all
the constraints which contributed a convex com-
ponent to Bg are in S, and for any h € B — 5,
w(B — h) < w(B) = w(Bg). That is, since
the point w(B) is the lowest point in (| B¢, and
w(B — h) is lower than w(B), the point w(B — h)
cannot be in (] B¢, and hence must be in a different
convex component of (B — h).

Now we turn our attention to selecting a con-
straint to remove from B. We use the fact that all
the points w(B — h) are distinct, for all h € B — 5.
This is true because the point w(B — h) & h, so
that for any other A’ € B, since h € (B — k'),
w(B —h) € (B —1R'). Since the w(B — h) are
distinct, there is some h,. € B — 5 such that
wW(B — hypgy) > w(B — h) for all other h € B — 5.

So consider removing f,,,; from B. Since w(B —
h) < w(B — hpay), for any other h € B — 5, cer-
tainly w(B — h — hpas) < W(B — hpas). So the
first invariant is maintained for B — h,,4, and 5.
To re-establish the second invariant, we have to add
more elements to 5. We do this in the same way as
before, by finding the at most d constraints which
determine the minimum of the convex component
containing w( B — huqe. ). We add these constraints
to 5, and set B = B — hyu-

We iterate this process, selecting constraints to
remove from B and adding constraints to 5, un-
til B — 5 is empty, that is, B = 5. We now
show that each removed constraint & accounts for
at least one convex component C( in (1.5, Remov-
ing h from B caused a new minimum point w(B—h)
to be created. This point was the minimum point
in some convex component C; of (\(B — h). We

added the constraints determining w(B — h) to 5,
so w(B—h) has to remain the minimum point in its
convex component, throughout the rest of the pro-
cess. This ensures that, although C; may later be-
come part of some larger component, it will never
become part of a larger component with a lower
minimum point. Each subsequent component cre-
ated by the removal of another constraint from B
will in fact have a lower minimum point, so the
component containing w(B — h) must remain dis-
tinct from all later components. Thus every re-
moved constraint  will account for at least one
distinct component in (.5

Since I,f is an intersectional family, no subfamily
of constraints can have more than k convex com-
ponents in its intersection. Since (| B was initially
nonempty, we started with at least one convex com-
ponent, and at most d constraints in 5. No more
than k& — 1 constraints were removed, and each con-
straint removed added at most d constraints to 5.

So the total size of |B| < (k—1)+|5| < k(d+1)—1.
a

Theorems 4.1 and 4.3 together imply Theorem
4.2.
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