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Abstract

Coexpression networks and gene regulatory networks (GRNs) are emerging as important tools for 

predicting functional roles of individual genes at a system-wide scale. To enable network 

reconstructions, we built a large-scale gene expression atlas composed of 62,547 messenger RNAs 

(mRNAs), 17,862 nonmodified proteins, and 6227 phosphoproteins harboring 31,595 

phosphorylation sites quantified across maize development. Networks in which nodes are genes 

connected on the basis of highly correlated expression patterns of mRNAs were very different 

from networks that were based on coexpression of proteins. Roughly 85% of highly 

interconnected hubs were not conserved in expression between RNA and protein networks. 

However, networks from either data type were enriched in similar ontological categories and were 

effective in predicting known regulatory relationships. Integration of mRNA, protein, and 

phosphoprotein data sets greatly improved the predictive power of GRNs.

Predicting the functional roles of individual genes at a system-wide scale is a complex 

challenge in biology. Transcriptome data have been used to generate genome-wide gene 

regulatory networks (GRNs) (1–4) and coexpression networks (5–7), the design of which 

was based on the presumption that mRNA measurements are a proxy for protein abundance 

measurements. However, genome-wide correlations between the levels of proteins and 

mRNAs are weakly positive (8–15), which indicates that cellular networks built solely on 

transcriptome data may be enhanced by integration with proteomics data. We generated an 

integrated developmental atlas of the transcriptome, proteome, and phosphoproteome of the 
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model organism Zea mays (maize) and then used these three different cellular descriptions to 

generate transcriptome- and proteome-based networks.

We profiled 23 tissues spanning vegetative and reproductive stages of maize development to 

generate a comprehensive and integrated gene expression atlas. Specifically, transcriptome 

profiling by mRNA sequencing (mRNA-seq) (three biological replicates, 23 tissues) was 

carried out on a subset of the samples used for proteome profiling (three to seven biological 

replicates, 33 tissues) by electrospray ionization tandem mass spectrometry (14, 16–19) 

(tables S1 to S3). We assessed reproducibility of the biological replicates by calculating 

Pearson correlations and found an average of 0.9, 0.84, and 0.7 for the transcriptome, 

proteome, and phosphoproteome data sets, respectively (table S4). Transcripts were 

observed from 62,547 genes. Proteins and phosphoproteins were observed from 16,946 and 

5587 genes, respectively. The RNA-seq data were bimodal, as reported for mouse and 

human (20, 21), with nearly all proteins and phosphoproteins arising from the 34,455 

transcripts in the high-abundance population (right peak), with an average FPKM (fragments 

per kilobase of exon per million fragments mapped) greater than 1 (Fig. 1A). Proteins were 

observed from 46% of these transcripts (right peak). To determine whether coverage of the 

transcriptome by the proteome was constrained by the diversity of tissues sampled, we 

generated proteomics data from an additional 10 tissue types yielding proteins from a total 

of 18,522 genes (proteins from 17,862 genes and phosphoproteins from 6185 genes), but this 

only increased coverage of the high-abundance transcriptome to 48%.

There are a variety of possible technical and biological explanations for why we detect 

proteins from less than half of the high-abundance transcript-producing genes and why we 

do not observe corresponding mRNA for 245 quantified proteins. Previously, we found 

evidence for multiple mechanisms that may explain the detection of proteins but not mRNA. 

These mechanisms include (i) differential stability of mRNA and proteins; (ii) transport of 

proteins between tissues; and (iii) diurnal, out-of-phase accumulation of mRNAs and 

cognate proteins (14). The heightened sensitivity of transcriptomics relative to proteomics 

likely provides a partial explanation for why we detect proteins corresponding to less than 

half of the transcript-producing genes. Additionally, we observed a greater percentage of 

proteins arising from the annotated filtered gene set, which consists of 39,656 high-

confidence gene models that exclude transposons, pseudogenes, and other low-confidence 

members present in the working gene set (Fig. 1B). Furthermore, a higher proportion of 

proteins than transcripts arise from genes annotated as protein coding (Fig. 1C), which 

suggests that transcripts from many genes may not produce proteins. Genes conserved at 

syntenic orthologous locations between maize and sorghum exhibited a unimodal, high-

expression pattern, in contrast to genes in nonsyntenic locales (Fig. 1A). Considering all 

genes that expressed mRNAs, syntenic genes were nine times more likely than nonsyntenic 

genes to express proteins (Fig. 1D). To show that this observation is not due to the higher 

average transcript expression level of syntenic genes, we examined a range of transcript 

abundance cutoffs and obtained similar results, even when looking at the highest-abundance 

syntenic and nonsyntenic transcripts (fig. S1). A greater frequency of protein expression is a 

possible mechanistic explanation for the eightfold enrichment of genes responsible for 

visible mutant phenotypes among syntenically conserved genes in maize (22).
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We next examined how genes and biological processes change throughout development. 

Initially, we focused on transcription factors (TFs), as they are key regulators of 

development, growth, and cell fate. Of the 2732 annotated TFs and transcriptional co-

regulators, we detected 2627 as mRNA (23 tissues), 1026 as protein (33 tissues), and 559 as 

phosphoprotein (33 tissues). We used hierarchical clustering to identify 712 (mRNA), 469 

(protein), and 419 (phosphoprotein) TFs that exhibited tissue-specific enrichment (figs. S2 to 

S4 and table S5). We also examined expression trends at the TF family level. First, we used 

traditional overrepresentation analysis to identify TF families whose members are detected 

in a given tissue at a greater frequency than chance (figs. S5A, S6A, and S7A). To augment 

the overrepresentation analysis, we also examined TF family-level expression profiles by 

quantifying the total amount of each TF family's mRNA, protein, and/or phosphoprotein 

present in given tissue (figs. S5B, S6B, and S7B). Taken together, these data describe the 

spatiotemporal expression pattern of individual TFs and TF families across development.

We expanded our analyses to examine the patterns of all gene types across maize 

development. We used the weighted gene coexpression network analysis (WGCNA) R 

package (23) to group similarly expressed genes—detected as mRNA (23 tissues), protein 

(33 tissues), or phosphoprotein (33 tissues) in at least four tissues—into modules (clusters). 

This approach enabled us to group 31,447 mRNAs, 13,175 proteins, and 4267 

phosphoproteins into coexpression modules (fig. S8 and table S6). We next plotted the 

eigengene profile for each module in order to assign the tissue(s) in which each module is 

highly expressed (figs. S9 to S12). We observed that 36 well-characterized genes required 

for maize development—including the homeobox TFs Knotted1 [KN1, Maize Genetics and 

Genomics Database (MGGD) accession number GRMZM2G017087] (24) and Rough 

Sheath 1 (RS1, MGGD accession number GRMZM2G028041) (25), as well as the 

transcriptional co-repressor Ramosa1 Enhancer Locus2 (REL2, MGGD accession number 

GRMZM2G042992) (26) (table S6)—are present in mRNA, protein, and phosphoprotein 

modules that correspond to dividing and meristematic tissues. The phosphorylation pattern 

of these proteins is similar to their mRNA profile and occurs in tissues known to have 

altered developmental phenotypes in mutant plants, which suggests that phosphorylation of 

these proteins might positively regulate their function. Finally, we determined 

overrepresentation of MapMan functional categories in each module (table S6). As expected, 

we found that genes involved in photosynthetic light reactions have mRNA and protein that 

are enriched predominantly in the mature leaf. We did not detect an enrichment of light-

reaction phosphoproteins in the mature leaf module, which suggests that phosphorylation is 

not a major regulator of the light reactions (fig. S11 and table S6).

Biological networks can be constructed based on many different types of data and serve to 

elucidate the structure underlying complex systems. Typically, transcript profiling data are 

used to generate various types of gene expression networks. However, we observed a weakly 

positive correlation between mRNA and protein levels in our data set (supplementary text, 

figs. S13 to S17, and table S7), in agreement with research done in a range of organisms (8–

15). Although the modest correlation between mRNA and protein levels is well documented, 

a major outstanding question is whether transcriptome-based networks predict the same 

relationships as proteome-based networks. Given our extensive developmental gene 

expression atlas, we addressed this question by generating two different types of networks: 
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coexpression networks and GRNs. We first generated coexpression networks (table S8), 

which are undirected networks where nodes are genes connected on the basis of highly 

correlated expression patterns (Fig. 2A) (5–7). For these network reconstructions, we used 

10,979 genes that were detected as both transcripts and proteins in at least 5 of the 23 

developmental gene expression atlas tissues in which we profiled both mRNA and protein. 

Pairwise mRNA-to-mRNA and protein-to-protein coexpression networks were built with 

Spearman correlations using WGCNA (fig. S18 and table S8). The biweight midcorrelation 

yielded similar results (figs. S19 and S20). To directly compare the mRNA- and protein-

based coexpression networks and compile a high-confidence coexpression data set, each 

network was constrained to include only edges with a correlation score >0.75 (top 1 million 

edges), which is a frequently used correlation threshold for coexpression networks (table 

S8). As a measure of similarity, we calculated edge conservation by dividing the set intersect 

by the union (known as the Jaccard index) and reported this as a percentage. We found that 

122,029 of the combined 2 million edges (6.1%) were conserved in both networks (Fig. 2B). 

Though this edge overlap is greater than the 0.8% expected by chance (P value = 0), the 

majority of relationships between genes were specific to each network, even when we 

expanded the network size to 10 million edges (fig. S20).

To examine whether the lack of edge overlap was due to experimental noise, we used single 

biological replicates (three mRNA and three protein networks) to create six new co-

expression networks. Pairwise comparisons revealed a similar low level of edge conservation 

(5%) between the mRNA and protein coexpression networks. However, 46% of mRNA-to-

mRNA edges and 36% of protein-to-protein edges were conserved between replicate 

coexpression networks (fig. S21). These data suggest that biological phenomena underpin 

the observed lack of edge conservation between transcriptome- and proteome-derived 

coexpression networks.

A key feature of scale-free networks is a small number of highly interconnected hubs. 

Because hubs are more likely than nonhubs to be required for network integrity and 

organism survival, the identification of so-called “hub genes” is of interest (23,27–30). We 

therefore determined the highly interconnected hub genes in each coexpression network, 

which we categorized as nodes in the top 10th percentile for most edges (Fig. 2C and fig. 

S22A). When we compared the hub genes from each network, we found that the majority 

(85%) were not shared between the mRNA and protein coexpression networks (Fig. 2C and 

fig. S22).

Groups of coexpressed genes (modules) were derived from the two networks. Each module 

was examined for over- or underrepresentation of MapMan categories (table S9). The 

majority of modules from each network (mRNA: 17 of 19; protein: 18 of 25) showed 

significant enrichment for one or more categories (adjusted P value < 0.05). Overall, we 

observed similar enrichment of categories between the two coexpression networks (fig. 

S23). Whereas the overall degree of enrichment was very similar for most categories in both 

coexpression networks, the actual genes that accounted for the significantly enriched 

categories were mostly specific to one network (35% protein-specific, 27% mRNA-specific, 

and 38% shared) (Fig. 3). Taken together, these results demonstrate that transcript- and 

protein-based coexpression networks yield differing predictions of gene relatedness and 
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function. Presumably, the discrepancy between transcriptome and proteome coexpression 

networks arises from the limited correlation between mRNA and protein abundance, which 

has been attributed to a range of factors that include differing stabilities of mRNA and 

protein, translational control, and protein movement from the tissue of synthesis (8, 14, 31).

To further explore the regulatory patterns of gene expression across maize development, we 

generated GRNs, which are directed networks of TFs and their target genes (Fig. 4A) (1). 

Unsupervised GRNs were created using GENIE3, which takes advantage of the random 

forest machine learning algorithm and was the top-performing method in the DREAM4 and 

-5 GRN reconstruction challenges (32, 33). Three independent GRNs were generated from 

the 23 tissues in which we profiled both mRNA and protein. To construct these networks, we 

varied whether the TFs (termed “regulators”) were quantified as mRNAs (2200 TFs), 

proteins (545 TFs), or phosphopeptides (441 TFs) and used a common set of 41,021 

quantified mRNAs (termed “target genes”) (table S10). We evaluated the GRNs by using 

published data for two classical maize TFs, the homeobox TF KN1 and the bZIP TF 

Opaque2 (O2). These TFs were chosen as benchmarks because they have been the subject of 

high-quality RNA-seq and chromatin immunoprecipitation (ChIP)–seq studies in both wild-

type and null mutant backgrounds, and they represent two distinct types of TFs with key 

developmental roles (24, 34). Target genes are bound by their TF in a ChIP-seq assay, and 

their mRNA levels change when their TF is knocked out. Using the published direct targets 

of KN1 and O2, we generated receiver operating characteristic (ROC) and precision-versus-

recall curves, which are two methods commonly used to evaluate the power of a predictive 

model (35). These curves showed that the overall qualities of all three GRNs were similar 

(fig. S24). However, when we looked at the top 500 scoring GENIE3 predictions for KN1 

and O2 in each GRN, we observed a performance advantage for the two protein-based 

GRNs in accurately predicting target genes (Fig. 4B and fig. S25A). Specifically, the KN1 

subnetworks accurately predicted 108 (mRNA), 129 (protein), and 125 (phosphopeptide) 

targets, with the O2 subnetworks performing similarly. Additionally, 44% (KN1) and 31% 

(O2) of all correctly predicted targets were specific to a single type of GRN (Fig. 4B and fig. 

S25A). These results indicated that predictions made by all three GRNs were largely 

complementary to each other.

We expanded our analyses to examine all TFs in the three GRNs. Again, we found that there 

was low edge conservation between the GRNs, with the vast majority of edges being present 

in a single GRN (fig. S26). Specifically, when considering one million edges, 93% were 

present in a single GRN (Fig. 4C). This amount increased to 96% for the 200,000 highest-

confidence predictions, which we determined using KN1 precision data as the cutoff (fig. 

S25, B and C). This finding illustrates that the different accumulation patterns of mRNA, 

protein, and phosphorylation for a given TF (fig. S27) result in disparate GRN predictions.

The three preceding GRNs were constructed using different-sized sets of TF regulators, 

which complicated direct comparisons of networks constructed using TF abundance 

measurements at the mRNA or protein level. Therefore, we used 539 TFs quantified as both 

mRNAs and proteins to reconstruct GRNs. Evaluation of these GRNs using the KN1 and O2 

data indicated quality and accuracy similar to those of the full-sized networks (fig. S28). We 

still observed a performance advantage for the protein GRN, as well as limited edge 
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conservation between the mRNA- and protein-based GRNs, with only 6% of the top 200,000 

edges being shared (figs. S28 and S29). We examined several possible features of the TF 

regulators to help further our understanding of the limited overlap in TF target predictions. 

The TFs connected by edges that were present only in the transcript GRN had lower and 

more variable protein abundance than the TFs connected by edges that were shared with or 

specific to the protein GRN (fig. S30, A to D). As expected, the mRNA-to-protein 

correlations were higher for targets of edges present in both GRNs (fig. S30E).

To further validate GRN predictions and test whether network relationships were consistent 

between different maize varieties, we took advantage of natural variation in regulator 

abundance arising from the natural genetic variation present in another inbred line, Mo17. 

Specifically, we compared mRNA and protein abundance in primary roots of Mo17 to B73. 

Whereas most TFs and target genes were expressed at similar levels in B73 and Mo17, we 

identified 149 (mRNA), 26 (protein), and 16 (phosphopeptide) regulatory TFs that were 

expressed at significantly different levels. We found, with high confidence, that for many of 

these differentially expressed TFs, their GRN predicted target groups were also significantly 

enriched for differentially expressed transcripts (figs. S31 to S33). Thus, elements of the 

GRN structure were preserved, and quantitative changes in regulator abundance levels are 

associated with altered network output and gene expression patterns. Additionally, these 

findings validated the GRN approaches used in this study and demonstrated the utility of 

applying this method to examine dynamics of gene regulation.

After analyzing separate mRNA- and protein-based GRNs, we considered integrating the 

data sets to determine whether the resulting single GRN would have improved inference 

over the individual GRNs. Specifically, we constructed four additional GRNs, each 

consisting of combinations of TF regulators quantified as mRNA, protein, and/or 

phosphopeptides (table S10). Details of how the combined mRNA, protein, and 

phosphopeptide GRNs were made are described in the supplementary materials. We 

examined the performance of the resulting networks using the validation set of KN1 and O2 

published targets (Fig. 4 and fig. S24). All GRNs reconstructed with combinations of TF 

regulators performed better than single-input GRNs. This finding demonstrates that 

integrating readouts of gene expression quantified at different levels results in improved 

GRN inference. Our use of TF mRNA levels to infer TF activity had provided good GRN 

predictive power. The area under the ROC curve (AUC) was 0.657, compared with 0.500 for 

random predictions. When the mRNA measurements were combined with protein abundance 

and phosphorylation levels to infer TF activity, the AUC increased to 0.717. Thus, if an 

investigator wished to use network predictions with a false-positive rate of 20%, the mRNA-

only network would predict 40% of the true positives, compared with 50% for the combined 

network (Fig. 4D and fig. S24A). Likewise, examination of Fig. 4E and fig. S24B reveals 

that if an investigator wished to use network predictions with a precision of 0.021 (which is 

three times higher than expected at random), then 16% of the true positives would be 

recalled from the mRNA-only network versus 41% for the combined network.

By quantitatively measuring mRNAs, proteins, and phosphoproteins in parallel in a tissue-

specific manner, we discovered unexpected relationships among these cellular readouts 

across maize development. In particular, our comparison of transcriptome- to proteome-
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based dendrograms and coexpression networks showed little overlap at the gene level, even 

though the samples were classified similarly and had similar ontological enrichments. The 

discovery that most protein-expressing genes are conserved and syntenic also was 

unexpected. The coexpression networks and GRNs provide a conceptual framework for 

future detailed studies in a model organism that is central to food security and bioenergy. 

Our findings highlight the importance of studying gene regulation at multiple levels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Comparison of transcriptome and proteome data sets
(A) FPKM distribution of mRNA abundance (red). FPKM values of transcripts 

corresponding to quantified proteins (blue), phosphopeptides (green), syntenic genes 

conserved between maize and sorghum (gray), and nonsyntenic genes (black) are shown. 

Data are the average expression from the 23 tissues profiled. (B) Percentage of quantified 

mRNA and proteins in the annotated filtered (high-confidence gene models) and working 

(all gene models) gene sets. (C) Breakdown of detected mRNA and proteins, based on 

annotations. (D) Percentages of all annotated genes that are transcribed and percentages of 

all transcribed genes that are translated, for both the syntenic and nonsyntenic gene sets.
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Fig. 2. Coexpression network analyses
(A) Hypothetical undirected coexpression subnetwork showing conserved (solid lines) and 

nonconserved (dotted lines) coexpression edges between mRNA and protein networks. (B) 

Venn diagram depicting edge conservation (solid lines in Fig. 2A) between the two 

coexpression networks. (C) Number of edges a given gene (node) has in the protein (x axis) 

and mRNA (y axis) coexpression networks. Nodes above the 90th percentile for the number 

of edges are considered hubs and are colored according to whether they are hubs in the 

protein (blue) or mRNA (red) network or both (green). Black dots represent non-hub nodes.
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Fig. 3. Categorical enrichment analysis of coexpression modules
Coexpression modules were determined by WGCNA and functionally annotated using 

MapMan categories. Categories enriched (Benjamini-Hochberg adjusted P value ≤ 0.05) in 

one or more modules are represented by vertical bars and labeled with the bin number and 

name. For each category, the genes accounting for the enrichment were extracted separately 

from mRNA and protein modules. Only functional categories with at least 20 genes are 

shown. Colored bars represent the proportion of genes in each enriched category that are 

specific to one network (mRNA, red; protein, blue) or shared between the networks (green).
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Fig. 4. Unsupervised GRN analyses
(A) Hypothetical GRN subnetwork depicting a TF regulator (square) and potential target 

genes (circle) quantified as mRNA (red) or protein (blue). GRN-specific and -conserved 

predictions are depicted by dotted and solid lines, respectively. (B) Overlap of the true-

positive predictions from the top 500 true GRN predictions for KN1 quantified as mRNA, 

protein, or phosphopeptide. True KN1 targets were identified by Bolduc et al. (24). (C) 

Overlap of the top 1 million TF target predictions between the GRNs reconstructed using TF 

abundance quantified at the mRNA, protein, or phosphopeptide level. (D) ROC curves and 

(E) precision-recall curves generated using known Kn1 and O2 target genes for a mRNA-

only GRN (red) and a fully integrated GRN built by combining mRNA, protein, and 

phospho-protein data into a single GRN (blue).
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