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Abstract. We prove, under the strong RSA assumption, that the group of invert-
ible integers modulo the product of two safe primes is pseudo-free. More specifically,
no polynomial-time algorithm can output (with non negligible probability) an unsat-
isfiable system of equations over the free Abelian group generated by the symbols
g1, . . . , gn, together with a solution modulo the product of two randomly chosen safe
primes when g1, . . . , gn are instantiated to randomly chosen quadratic residues. Ours is
the first provably secure construction of pseudo-free Abelian groups under a standard
cryptographic assumption and resolves a conjecture of Rivest (Theory of Cryptography
Conference—Proceedings of TCC 2004, LNCS, vol. 2951, pp. 505–521, 2004).

Key words. Cryptographic assumptions, Pseudo-free Abelian group, Strong RSA
problem, Safe primes.

1. Introduction

Informally, the notion of “pseudo-free group,” put forward by Hohenberger [11] and
subsequently refined by Rivest [22], describes a finite computational group (i.e., a group
that admits an efficient algorithmic implementation) with the security property that it is
computationally hard to find solutions to any nontrivial equation over the group. More
specifically, Rivest [22] defines pseudo-free (Abelian) groups as computational (com-
mutative) groups such that no polynomial-time adversary, given random group elements
g1, . . . , gn (chosen using an appropriate sampling procedure), can output (with non-
negligible probability) an equation which is unsatisfiable over the free Abelian group
generated by the symbols g1, . . . , gn, together with a solution to the equation in the com-
putational group. As shown in [22], pseudo-freeness is a very strong assumption, and
it implies many other computational assumptions typically used in cryptography, like
the hardness of computing discrete logarithms and the RSA assumption in its standard

∗ A preliminary version of this work appeared in Advances in Cryptology, Proceedings of EUROCRYPT
2005, LNCS, vol. 3494, pp. 387–493, Springer.
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and strong version. Each of these computational assumptions corresponds to a specific
class of equations, e.g., the strong RSA assumption asserts that it is computationally in-
feasible to come up with an equation of the form xe = g (which is unsatisfiable over the
free group {gi : i ∈ Z} for e > 1) together with a solution x = h such that he = g in the
multiplicative group Z

∗
N of the invertible integers modulo the product N = PQ of two

large primes.
Free groups are widely used in computer science, and most modern cryptography

relies on the hardness of computational problems over finite groups. So, as argued in
[22], pseudo-free groups are a very interesting notion from a cryptographic perspective.
Moreover, (non-Abelian) free groups are used in the so-called Dolev–Yao model [7] for
the symbolic analysis of public-key cryptographic protocols. In the last few years, there
have been several efforts to bridge the gap between the symbolic model of [7] (typically
used in the area of formal methods for the analysis of security protocols) and the stan-
dard computational model used in cryptography (see, for example, [1,3,10,12,17–20])
with the goal of proving computational soundness results for symbolic analysis meth-
ods. An interesting question is whether pseudo-free groups can be used to extend (in a
computationally sound way) the Dolev–Yao security model (in which encryption and
decryption are viewed as black-box operations with no algebraic properties) with richer
data structures and cryptographic functions (e.g., homomorphic encryption schemes)
that make fundamental use of computational groups. Other motivations for studying
pseudo-free groups mentioned in [22] are the following:

– Using a stronger assumption (that subsumes many other common cryptographic
assumptions, like the hardness of computing discrete logarithms and the strong
RSA assumption) may make proofs easier.

– As the strong RSA assumption has been very useful in the construction of many
cryptographic functions [4,6,8] which are not known to be secure under the stan-
dard version of the RSA assumption, assuming that a group is pseudo-free may
allow an even wider range of applications.

– Pseudo-freeness has been linked [11] to the construction of specific cryptographic
primitives, like directed transitive signature schemes, for which no solution is cur-
rently known. (See [21] for a recent work in this area.)

The main question left open by Rivest in [22] is: do pseudo-free groups exist?
In [22] Rivest suggested the RSA group Z

∗
N (where N = PQ is the product of two

large primes) as a possible candidate pseudo-free Abelian group and nicknamed the
corresponding conjecture the super-strong RSA assumption. In this paper we resolve
Rivest’s conjecture and prove that Z

∗
N is pseudo-free under the strong RSA assumption,

at least when N = PQ is the product of two “safe primes” (i.e., odd primes such that
p = (P − 1)/2 and q = (Q − 1)/2 are also prime1), a special class of prime numbers
widely used in cryptography. In other words, we prove that if the strong RSA assump-
tion holds true, then the super-strong RSA assumption also holds. Our result is the first
example of provably secure pseudo-free group based on a standard cryptographic as-
sumption. In fact, we prove that the RSA group satisfies an even stronger version of

1 Equivalently, using more standard mathematical terminology, P = 2p + 1 and Q = 2q + 1 where p and
q are Sophie Germain primes.
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the pseudo-freeness property than the one defined in [22]: we show that no adversary
can efficiently compute an unsatisfiable system of equations (as opposed to a single
equation) together with a solution in the given computational group.

Our proof is based on a rewriting process that, starting from an arbitrary equation (or
system of equations), yields simpler and simpler equations with the following proper-
ties:

– Unsatisfiable equations over the free group are mapped to unsatisfiable equations
over the free group, and

– Solutions to the original equations (over a computational group) can be effi-
ciently mapped to solutions to the resulting equations (over the same computational
group).

Some of our transformations work for arbitrary groups and might be of independent
interest. For example, we show how to transform systems of equations into a single
equation (Theorem 3) and how to map equations in several variables to univariate equa-
tions (Lemma 3).

Organization The rest of the paper is organized as follows. In Sect. 2 we introduce
basic definitions and notation for equations and groups. In Sect. 3 we prove that the RSA
group satisfies the basic definition of pseudo-free group (involving a single equation).
In Sect. 4 we extend the result to systems of equations. Section 5 concludes with a
discussion of open problems.

2. Preliminaries

In this section we give some background about the mathematical structures studied in
this paper. A function f is negligible if it decreases faster than any inverse polynomial,
i.e., for any c > 0, there is an n0 such that |f (n)| ≤ 1/nc for all n > n0. For any two
positive integers a and b, the greatest common divisor of a and b is denoted gcd(a, b).

2.1. Computational Groups

A group is an algebraic structure with a binary associative operation ◦, a unary operation
()−1 (inverse), and a constant 1 (identity) satisfying the equational axioms

(x ◦ y) ◦ z = x ◦ (y ◦ z),

x ◦ 1 = 1 ◦ x = x,

x ◦ (x)−1 = (x)−1 ◦ x = 1.

A group is Abelian if the operation ◦ is commutative, i.e., it also satisfies

x ◦ y = y ◦ x.

An Abelian group G is free if there is a subset of group elements A ⊂ G such that any
g ∈ G can be uniquely expressed as a product g = ∏

a∈A ada , where da ∈ Z for all a ∈
A. It easily follows that for any set of symbols A, the free Abelian group generated by
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A (denoted F (A)) is isomorphic to the additive group Z
|A| of |A|-dimensional integer

vectors.
In this paper we are interested in computational groups, i.e., groups that admit an

efficient algorithmic implementation. In order to properly formalize the notion of com-
putational group in the asymptotic computational setting, one needs to consider either
infinite groups or infinite families G = {GN }N∈N of finite groups. In this paper we focus
on families of finite groups, as these are the groups most commonly used in cryptog-
raphy, and for which the definition of pseudo-free group is nontrivial. (The free group
itself is a trivial example of infinite pseudo-free group.)

Definition 1. Let G = {GN }N∈N be a family of finite groups indexed by N ∈ N ⊆
{0,1}∗. A computational group family (associated to G ) is defined by a collection of
representation functions 〈·〉N :GN → {0,1}∗ (for N ∈ N ) such that the following oper-
ations can be performed in (probabilistic) polynomial (in the bit-size of N ) time:

– Test membership in a group: given N ∈ N and x ∈ {0,1}∗, determine if x = 〈y〉N
is the representation of a group element y ∈ GN .

– Compute the group operation: given N ∈ N , 〈x〉N and 〈y〉N (for any x, y ∈ GN )
compute 〈x ◦ y〉N .

– Invert group elements: given N ∈ N and 〈x〉N (for some x ∈ GN ), compute
〈x−1〉N .

– Compute the representation of the group identity element: given N ∈ N , output
〈1〉N , where 1 is the identity element of GN .

– Sample group elements: on input N ∈ N , output the representation 〈x〉 of a ran-
domly chosen group element x ∈ 〈G〉 (with not necessarily uniform probability
distribution).

In the definition above, we focused on computational groups in which each group
element has a unique representation, as all the computational groups studied in this pa-
per have this property. (The definition of computational group can be easily extended
to cases where group elements may have multiple representations, by introducing an
efficiently computable equivalence relation on group representations.) For the groups
considered in this paper, all operations (except sampling) can be performed in deter-
ministic polynomial time, but this is not required by the definition of computational
group. The requirement that membership in 〈GN 〉N be efficiently decidable is also not
strictly necessary, but convenient, and all computational groups studied in this paper
have this property. Also, sometimes the definition of computational group requires the
distribution output by the sampling algorithm 〈x〉N ∈ 〈GN 〉N to be uniform over GN ,
while other times no sampling algorithm is required at all. In this paper 〈x〉N ∈ 〈GN 〉N
is an arbitrary sampling procedure, which is used to generate nontrivial group elements.

Throughout the paper, whenever a computational group family is clear from the con-
text, we use the expression “computational group” to refer to a specific group GN and
associated representation function 〈〉N in the family. Also, for brevity, we identify the
computational group 〈GN 〉N with the underlying mathematical group, and write x ◦ y,
x−1, etc., to denote the corresponding operation on the representations of the group el-
ements. We use multiplicative notation xy for the group binary operation x ◦ y and use
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exponential notation xn to denote the n-fold composition of x with itself. Formally, xn

is defined inductively by the rules x0 = 1, xn+1 = x ◦ xn. The notation is extended to
negative exponents in the obvious way x−n = (xn)−1.

2.2. Pseudo-free Groups

Let X and A be two disjoint finite sets of variable and constant symbols. We define
X−1 = {x−1:x ∈ X} and A−1 = {a−1:a ∈ A}. A group equation over variables X and
constants A is a pair E = (w1,w2), usually written as E : w1 = w2, where w1 and
w2 are words over the alphabets (X ∪ X−1)∗ and (A ∪ A−1)∗, respectively. (Many
other equivalent definitions are possible, e.g., one can allow w1 and w2 to be arbitrary
words over the alphabet X ∪X−1 ∪A∪A−1 and also restrict the definition to equations
of the form w = 1. Any equation can be easily rewritten in any of these forms using
the commutativity and associativity properties of Abelian groups.) Unless otherwise
specified, we interpret E as an equation over the free group F (A). A solution to E :
w1 = w2 (over the free group F (A)) is a function σ :X → F (A) such that σ(w1) = w2

(in F (A)), where σ is extended to words over X∪X−1 homomorphically in the obvious
way. We say that an equation E : w1 = w2 is satisfiable (over the free group) if it admits
a solution. We say that it is unsatisfiable otherwise.

Let G be a (computational) group. A group equation over G (denoted Eα) is de-
fined by an equation E over variables X and constants A, and a function α:A → G.
A solution to equation Eα : w1 = w2 is a function ξ : X → G such that ξ(w1) = α(w2).

For computational purposes, we assume that equations E : w1 = w2 are given using
compact notation for expressions of the form ai with the exponent i represented in
binary, so that exponentially large exponents can be stored in polynomial space. This
is easily seen to be equivalent to many other formalisms to compactly represent terms
w1,w2, like, for example, the straight-line programs used in [11].

Intuitively, a computational group is pseudo-free if no efficient algorithm can find a
nontrivial relation among randomly chosen group elements, i.e., an equation (or sys-
tem of equations) which is unsatisfiable over the free group, together with a solution
over the computational group. Since for any finite group G, the equation x|G|+1 = a

is unsatisfiable over the free group F ({a}) but has solution x = a over G, in order to
properly define pseudo-free groups, we need to consider families of groups {GN } where
N is chosen at random. In particular, given a randomly chosen N , the order of the group
o(GN) = |GN | should be hard to compute. Technically, we assume that the set of in-
dexes N is endowed with a sequence of probability distributions (Nk)k such that Nk

can be sampled in (expected) polynomial (in k) time. Typically, Nk is the uniform dis-
tribution over all strings in N of length k, but other distributions are possible. The set
of indexes N , together with the polynomial-time sampling algorithm and associated
probability distributions Nk , is called a probability ensemble.

Definition 2. A family of computational groups G = {GN }N∈N is pseudo-free (with
respect to a probability ensemble N ) if for any set A of polynomial size |A| = p(k)

(where k is a security parameter) and probabilistic polynomial (in k) time algorithm A,
the following holds. Let N ∈ Nk be a randomly chosen group index, and α:A → GN a
function defining |A| group elements chosen independently at random according to the
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computational group sampling procedure. Then, the probability that A(N,α) = (E, ξ)

outputs an unsatisfiable equation E (over variables X and constants A) together with a
solution ξ :X → GN to Eα over GN is a negligible function in k.

2.3. The RSA group

In this paper, we study the group Z
∗
N of invertible integers modulo N . This is a com-

putational group, with the usual representation of each group element as an integer in
{0, . . . ,N − 1}. Membership g ∈ Z

∗
N can be easily tested by computing the gcd(g,N)

and checking that gcd(g,N) = 1. The group Z
∗
N can be efficiently sampled uniformly

at random by picking an integer g ∈ {0, . . . ,N − 1} with uniform distribution, and
checking if g ∈ Z

∗
N . However, in this paper, it is more convenient to consider the com-

putational group Z
∗
N together with a different sampling procedure that chooses g at

random from a subgroup of Z
∗
N . An element g ∈ Z

∗
N is called a quadratic residue if

g = h2 mod N for some h ∈ Z
∗
N . The set of quadratic residues modulo N is denoted

QRN , and it is a subgroup of Z
∗
N . The subgroup QRN can be efficiently sampled by

picking h ∈ Z
∗
N uniformly at random and setting g = h2 mod N . Unless otherwise spec-

ified, in this paper we always consider the computational group Z
∗
N with this sampling

procedure that selects g uniformly at random from QRN .
When N = P · Q is the product of two prime numbers, Z

∗
N is commonly called an

RSA group, after the encryption function of Rivest, Shamir, and Adleman [23], which
started a widespread use of these groups in cryptography. In this paper we are interested
in RSA groups where P and Q are primes of special form. A prime number p is called
a Sophie Germain prime if 2p + 1 is also prime. In the cryptographic literature, the
number 2p + 1 (where p is a Sophie Germain prime) is usually called a safe prime. In
other words, a safe prime P = 2p + 1 is an odd prime number such that p = (P − 1)/2
is also prime. Safe primes are relatively easy to find in practice (e.g., by choosing p at
random and testing p and 2p + 1 for primality), although there is no known mathemat-
ical proof showing that there are infinitely many of them. Safe primes are widely used
in cryptography. For example, the RSA group Z

∗
N where N = P · Q is the product of

two safe primes has been used in [6,8,9].
We say that a computational problem (parameterized by an integer k) is asymptoti-

cally hard if for every probabilistic polynomial (in k) time algorithm, the probability
that the algorithm solves the problem (computed over the random choice of the input
and the internal randomness of the algorithm) is a negligible function in k. For any
k ≥ 1, let Nk be the set of all safe prime products of bit-size bounded by k. We assume
some standard probability distribution on Nk , as typically used in cryptographic appli-
cations. For example, one can choose N ∈ Nk as the product of two safe primes selected
independently and uniformly at random among all (k/2)-bit safe primes. The following
computational problems are conjectured to be asymptotically hard and have been used
as the basis for many cryptographic applications:

– Factoring problem: given a random integer N ∈ Nk , compute prime factors P,Q

such that N = P · Q.
– RSA problem [23]: given a random integer N ∈ Nk , an integer e relatively prime

with φ(N) = (P − 1)(Q − 1), and a randomly chosen group element γ ∈ Z
∗
N ,

compute a ξ ∈ Z
∗
N such that ξe = γ mod N .
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– Strong RSA problem [4]: given a random integer N ∈ Nk and a randomly chosen
group element γ ∈ Z

∗
N , output an integer e > 1 and a group element ξ ∈ Z

∗
N such

that ξe = γ mod N .

In this paper we are primarily interested in the strong RSA problem and its relation to
pseudo-freeness. It is convenient to consider the following variant of the strong RSA
problem where the input γ is chosen as a random quadratic residue:

– Strong QR-RSA problem [6]: given a random integer N ∈ Nk and a randomly
chosen quadratic residue γ ∈ QRN , output an integer e > 1 and a group element
ξ ∈ Z

∗
N such that ξe = γ mod N .

It can be easily shown [6] that this variant is not any easier than the standard strong
RSA problem.

Theorem 1 (See [6], Sect. 4). If the strong RSA problem modulo safe prime products
N is asymptotically hard, then the strong QR-RSA problem is also asymptotically hard
(with respect to the same distribution ensemble Nk).

For any prime product N = P · Q, the group Z
∗
N has cardinality o(Z∗

N) = φ(N) =
(P − 1)(Q − 1), and it is isomorphic to Z

∗
P × Z

∗
Q, with isomorphism given by ξ →

(ξ mod P, ξ mod Q). If P = 2p + 1 and Q = 2q + 1 are safe primes, the group Z
∗
N

has order 4pq , and the subgroup QRN ⊂ Z
∗
N has order o(QRN) = pq . In particular, all

elements in QRN have order2 1,p, q , or pq .

2.4. Statistical Distance

Let X and Y be two discrete random variables over a (countable) set A. The statistical
distance between X and Y is the quantity

�(X,Y ) = 1

2

∑

a∈A

∣
∣Pr{X = a} − Pr{Y = a}∣∣.

In this paper we use the fact that for any two random variables X and Y over set A, and
predicate p:A → {0,1},

∣
∣Pr

[
p(X) = 1

] − Pr
[
p(Y ) = 1

]∣
∣ ≤ �(X,Y ).

In particular, if p(X) happens with nonnegligible probability, and �(X,Y ) is negligible,
then also p(Y ) happens with nonnegligible probability.

3. The RSA Group is Pseudo-Free

In this section we prove, under the strong RSA assumption, that the RSA group Z
∗
N

(where N is the product of two safe primes, and elements are sampled uniformly at
random from QRN ) is pseudo-free.

2 The order of an element γ in a group G is the smallest positive integer o(γ ) ≥ 1 such that γ o(γ ) = 1.
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Theorem 2. Assume that the strong RSA problem is asymptotically hard with respect
to a distribution ensemble N over safe prime products. Then the computational group
family Z

∗
N of invertible integers modulo N ∈ N (with the modular multiplication group

operation and uniform sampling procedure over QRN ) is pseudo-free with respect to
the same distribution ensemble N .

Proof. Assume that Z
∗
N is not pseudo-free, i.e., there is a probabilistic polynomial-

time algorithm A that on input a randomly chosen N ∈ Nk and random group elements
α:A → QRN (for some polynomial-sized set A), outputs an unsatisfiable equation
E:w1 = w2 (over constants A and variables X) together with a solution ξ :X → Z

∗
N

to Eα over the group Z
∗
N . We use A to solve the strong QR-RSA problem for the

same distribution of the modulus N . Namely, given a randomly chosen N ∈ Nk and
γ ∈ QRN , we compute an integer e > 1 and group element ξ ∈ Z

∗
N such that ξe = γ .

By Theorem 1 this also implies an algorithm to solve the standard strong RSA problem.
The reduction works as follows. Let (N,γ ) be an instance of the strong QR-RSA

problem. We begin by checking if γ is a generator for QRN . This can be easily done
using the following lemma. We remark that here is where we use the assumption that γ

is a quadratic residue. (This assumption will be explicitly used again only towards the
end of the proof.) �

Lemma 1. Let N = P · Q be the product of two distinct safe primes, and γ ∈ QRN a
quadratic residue. Then γ is a generator for QRN if and only if gcd(γ − 1,N) = 1.

Proof. Let P = 2p + 1 and Q = 2q + 1, where p and q are distinct primes. By the
Chinese remainder theorem QRN is isomorphic to QRP × QRQ with isomorphism

γ → (γp, γq) = (γ mod P,γ mod Q).

Let o(γp) and o(γq) be the orders of γp and γq in QRP and QRQ, respectively. Since
γp ∈ QRP , we have o(γp) | o(QRP ) = p, i.e., o(γp) ∈ {1,p}. Similarly, o(γq) ∈ {1, q}
and o(γ ) = o(γp) · o(γq) ∈ {1,p, q,pq}. Notice that γ is a generator for QRN if and
only if o(γ ) = pq , or, equivalently, o(γp) = p and o(γq) = q . Let g = gcd(γ − 1,N).
Since g divides N , it must be g ∈ {1,P ,Q,PQ}. We want to prove that o(γ ) = pq if
and only if g = 1.

First assume that g �= 1, or, equivalently, g is divisible by either P or Q (or both).
Assume without loss of generality that P divides g. Then P also divides γ − 1, and
γp = 1. This proves that o(γp) = 1 and o(γ ) = o(γp) · o(γq) �= pq .

Now assume o(γ ) �= pq , i.e., either o(γp) = 1 or o(γq) = 1. Assume without loss of
generality that o(γp) = 1. Then γ = 1 (modP) and P |gcd(γ − 1,N). So, g = gcd(γ −
1,N) �= 1. �

If γ is not a generator for QRN , then we can easily solve the strong QR-RSA problem
instance (N,γ ) as described below. Given N and γ ∈ QRN , we compute g = gcd(γ −
1,N). Since N = PQ, it must be g ∈ {1,P ,Q,PQ}. We distinguish three cases.

– If g = PQ = N , then N divides γ − 1, and γ = 1 (modN). So, we can im-
mediately output a solution to the strong QR-RSA input problem (N,γ ), e.g.,
(ξ, e) = (1,3).
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– If g /∈ {1,N}, then it must be g ∈ {P,Q}, and we can easily compute φ(N) =
(P − 1) · (Q− 1) = (g − 1)((N/g)− 1). This also easily yields a solution (ξ, e) =
(γ,φ(N) + 1) to the strong QR-RSA problem (N,γ ).

– If g = 1, then by Lemma 1 γ is a generator for QRN , and we proceed as follows.

In the rest of the proof we assume that γ is a generator of QRN . We use γ to sample
the group elements α(a) ∈ QRN and generate an input instance (N,α) for algorithm A.
Since A works only with nonnegligible probability, we need the input values α(a) to be
distributed (almost) uniformly at random over QRN . The following lemma shows that
γ can be used to sample QRN almost uniformly at random.

Lemma 2. For any cyclic group G and generator γ ∈ G, if v is chosen uniformly at
random from {0, . . . ,B − 1}, then the statistical distance between γ v and the uniform
distribution over G is at most |G|/2B .

Proof. Let v be chosen in the interval {0, . . . ,B −1}. Notice that for any γ i ∈ G (with
i ∈ {0, . . . , |G| − 1}), γ v = γ i if and only if v = i (mod |G|). Therefore, the probability
that γ v = γ i is

Pr{γ v = γ i} = Pr
{
v = i

(
mod|G|)} = ⌈

(B − i)/|G|⌉/B.

In particular, this probability deviates from the uniform distribution by at most
∣
∣
∣
∣Pr

{
γ v = γ i

} − 1

|G|
∣
∣
∣
∣ =

∣
∣
∣
∣

1

B

⌈
B − i

|G|
⌉

− 1

|G|
∣
∣
∣
∣

= max

{
1

B

⌈
B

|G|
⌉

− 1

|G| ,
1

|G| − 1

B

⌈
B − (|G| − 1)

|G|
⌉}

<
1

B
.

So, the statistical distance between γ i and the uniform distribution is at most

1

2

|G|−1∑

i=0

∣
∣
∣
∣Pr

{
γ v = γ i

} − 1

|G|
∣
∣
∣
∣ <

|G|
2B

,

as claimed. �

For any a ∈ A, choose va ∈ {0, . . . ,N · |A| · K − 1} uniformly at random for some
super-polynomial function K(k) = kω(1), and set α(a) = γ va . By Lemma 2, the sta-
tistical distance between α(a) and the uniform distribution over QRN is at most
|QRN |/2N |A|K ≤ 1/2|A|K . Since the values α(a) are independently chosen, the sta-
tistical distance between α and a uniformly chosen assignment is at most 1/2K =
k−ω(1).

Invoke algorithm A on input (N,α). We know that when α is distributed uniformly at
random, algorithm A is successful with nonnegligible probability δ(k) = k−O(1). Since
α is within negligible statistical distance 1/K(k) from uniform, A succeeds on input
α at least with nonnegligible probability δ(k) − 1/K(k). In the rest of the proof, we
assume that A is successful, and we consider the conditional success probability of the
reduction. We will show that the conditional success probability is at least 3/8.
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Fix the value of N , generator γ ∈ QRN , and input (N,α) passed to algorithm A. Let
E : w1 = w2 and ξ be the equation and solution to Eα returned by A. Remember that,
for every a ∈ A, α(a) equals γ va for a randomly chosen va ∈ {0, . . . ,N · |A| · K − 1}.
For any a ∈ A, let wa = va mod pq and za = (va − wa)/pq . We remark that although
the values va are known, and wa, za are uniquely determined by va , the values wa and
za cannot be easily computed from va because the product pq is not known. Therefore,
the values wa and za cannot be used in the reduction process. We will use wa and za

only in the analysis of the reduction.
Notice that, given wa , the conditional distribution of za is uniform over a set

Sa =
{

0, . . . ,

⌊
N |A|K − 1 − wa

pq

⌋}

(1)

of size at least

|Sa| ≥ 1 +
⌊

N |A|K − 1 − wa

pq

⌋

≥
⌊

N |A|K
pq

⌋

≥ 4|A|K ≥ 4,

where we have used wa ≤ pq − 1 and N > 4pq . Also, given wa , the value of
α(a) = γ va = γ wa is uniquely determined, and za is uniformly distributed over the
set Sa independently from α, E, and ξ . In particular, the integers za ∈ Sa are distributed
independently from the entire view (and success) of algorithm A.

Assume that A is successful, i.e., E is unsatisfiable over F (A), and ξ :X → Z
∗
N is

a valid solution to Eα . We use equation E and solution ξ to solve the original strong
QR-RSA problem (N,γ ). This is done in two steps. First, we transform equation E and
solution ξ to Eα , into a new unsatisfiable equation E′ and solution ξ ′ to E′

α containing
only one variable symbol. Then, E′ and ξ ′ are used to solve the strong QR-RSA problem
(N,γ ).

The equation and solution (E, ξ) are transformed into a univariate equation and so-
lution (E′, ξ ′) using the following lemma.

Lemma 3. For any computational group family G , there is a polynomial-time algo-
rithm that on input an equation E over constants A and variables X, a group G from
G , and a variable assignment ξ : X → G, outputs a univariate equation E′ and value
ξ ′ ∈ G such that

– If E is unsatisfiable over the free group F (A), then E′ is also unsatisfiable over
F (A); and

– For any assignment α : A → G, if ξ is a solution to Eα , then ξ ′ is a solution to E′
α .

Proof. Fix the input equation E : ∏
x∈X xex = ∏

a∈A ada and assignment ξ :X → G

from the variables X to a computational group G. Using the extended Euclidean algo-
rithm, we compute e = gcd(ex : x ∈ X) and integers e′

x (x ∈ X) such that
∑

x exe
′
x = e.

The output equation is E′ : xe = ∏
a∈A ada , with solution ξ ′ = ∏

x∈X ξ(x)ex/e. We need
to prove that this output has the desired properties.

Assume that E′ has a solution over the free group F (A). We want to prove that also E

has a solution over F (A). Let ξ ′ ∈ F (A) be a solution to E′, i.e., (ξ ′)e = ∏
a∈A ada . For
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any x ∈ X, define ξ(x) = (ξ ′)e′
x . The variable assignment ξ is a solution to E because

∏

x

ξ(x)ex = (ξ ′)
∑

x exe′
x = (ξ ′)e =

∏

a

ada .

This shows that E is satisfiable over the free group F (A) too and proves the first prop-
erty.

Now, fix an assignment α : A → G, and assume that ξ : X → G is a solution to Eα ,
i.e.,

∏
x ξ(x)ex = ∏

a α(a)da in G. Then

(ξ ′)e =
(∏

x

ξ(x)ex/e

)e

=
∏

x

ξ(x)ex =
∏

a

α(a)da ,

i.e., ξ ′ is a solution to E′
α over G. �

At this point we have an unsatisfiable equation of the form E′ : xe = ∏
a ada and a

solution ξ ′ ∈ Z
∗
N to E′

α . Notice that E′ is satisfiable over the free group F (A) if and
only if e|gcd(da : a ∈ A). So, it must be e � gcd(da : a ∈ A). Also, from the definition of
α(a) we know that

(ξ ′)e =
∏

a

α(a)da = γ
∑

a vada . (2)

In the rest of the proof we distinguish various cases, depending on the value of
gcd(e,pq).

– If gcd(e,pq) = pq and e �= 0, then we can immediately output the solution
(γ, |e| + 1) to the strong QR-RSA problem (N,γ ) because o(γ ) = pq and
γ |e|+1 = γ · γ ±e = γ (modN). We remark that, although we cannot compute
gcd(e,pq) (or even check if gcd(e,pq) = pq) because pq is not known, we can
guess that this is the case and simply check if (γ, |e|+1) is indeed a solution to the
given strong QR-RSA problem. Similar remarks apply to the other cases below.

– If gcd(e,pq) ∈ {p,q}, then o(γ e) = pq/gcd(e,pq) ∈ {p,q}. In particular, γ e

is not a generator of QRN , and, by Lemma 1, gcd(γ e − 1,N) �= 1. Since
γ e �= 1 (modN), we also have gcd(γ e − 1,N) �= N . Therefore, it must be g =
gcd(γ e − 1,N) ∈ {P,Q}. So, we can compute φ(N) = (P − 1)(Q − 1) = (g −
1)((N/g) − 1) and output the solution (γ,φ(N) + 1) to the strong QR-RSA prob-
lem (N,γ ).

– The remaining cases are where e = 0 or gcd(e,pq) = 1 and are described below.

If e = 0, Lemma 4 below shows that d = ∑
a vada = 0 with probability at most 1/4.

It follows that with probability at least 3/4, (γ, |d| + 1) is a solution to the strong QR-
RSA problem (N,γ ) because |d| + 1 > |d| ≥ 1 and

γ |d|+1 = γ · γ ±d = γ · ξ±0 = γ.

So, the conditional success probability of the reduction is at least 3/4 > 3/8.

Lemma 4. The conditional probability (given α, e = 0, and {da : a ∈ A} such that
e � gcd{da : a ∈ A}) that d = ∑

a vada �= 0 is at least 3/4.
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Proof. We know that va = wa + pqza , where each za ∈ Sa is chosen indepen-
dently and uniformly at random from a set of size |Sa| ≥ 4. Since e does not divide
gcd(da : a ∈ A), there exists an â ∈ A such that dâ �= 0. Fix the value of va for all
a �= â. Since d = 0 for at most one value of zâ ∈ Sâ , and zâ is independent of A’s view
(α, e, {da}a∈A), the conditional probability that d = 0 is at most 1/|Sâ| ≤ 1/4. �

The last case to consider is where gcd(e,pq) = 1 and e �= 0. This time, we first show
that e � d with probability at least 3/8.

Lemma 5. The conditional probability (given α, gcd(e,pq) = 1, and {da : a ∈ A}
such that e � gcd{da : a ∈ A}) that e does not divide d = ∑

a vada is at least 3/8.

Proof. Since e does not divide gcd(da : a ∈ A), e does not divide dâ for some â ∈ A.
Remember that va = wa + pqza , where the conditional distribution of za (given wa) is
uniform over the set Sa . Moreover, since gcd(e,pq) = 1, pq is invertible modulo e. We
want to bound the probability that e divides d , or equivalently, d = 0 (mod e). Solving
d = 0 (mod e) for zâ , we get zâ = −(

∑
a �=â vada + wâ)/pq (mod e). Since zâ is chosen

uniformly at random in the interval Sâ , this happens with probability at most

�|Sâ|/e�
|Sâ| ≤ |Sâ| + e − 1

e · |Sâ| = 1

e
+ 1

|Sâ| − 1

e · |Sâ| ≤ 5/8,

where we have used the fact that |Sâ| ≥ 4 and e ≥ 2 are integers. So, e � d with proba-
bility at least 3/8. �

Let e′ = e/t and d ′ = d/t where t = gcd(e, d). Assuming that e � d (which,
by Lemma 5, happens with probability at least 3/8), we have t �= e, and con-
sequently e′ = e/t > 1. Notice that from gcd(e,pq) = 1 and t |e we get also
gcd(t, o(QRN)) = gcd(t,pq) = 1. Therefore the congruence ξe′t = γ d ′t (modN) im-
plies ξ2e′ = γ 2d ′

(modN). (Notice that ξe′ = γ d ′
(modN) does not necessarily follow

from ξe′t = γ d ′t (modN) because ξ may not be a quadratic residue, and gcd(t, o(Z∗
N))

may equal 2. However, if we square both terms, we get that ξ2e′
, γ 2d ′ ∈ QRN , and

gcd(t, o(QRN)) = 1 is enough to conclude that ξ2e′ = ξ2e/t = γ 2d/t = γ 2d ′
(modN ).)

At this point, we have (γ, ξ, e′, d ′) such that ξ2e′ = γ 2d ′
(modN), e′ > 1, and

gcd(e′, d ′) = 1. We know that N divides ξ2e′ − γ 2d ′ = (ξe′ − γ d ′
)(ξ e′ + γ d ′

). If ξe′ �=
±γ d ′

, then we can compute the factorization {P,Q} = {gcd(N, ξe′ −γ d ′
),gcd(N, ξe′ +

γ d ′
)} of N = PQ and φ(N) = (P − 1)(Q − 1), which immediately yields a solution

(γ,φ(N) + 1) to the strong QR-RSA problem (N,γ ).
So, assume that ξe′ = ±γ d ′

. If ξe′ = γ d ′
, we can use the Euclidean algorithm to

compute two integers e′′ and d ′′ such that e′e′′ + d ′d ′′ = gcd(e′, d ′) = 1, and output

(ξd ′′
γ e′′

, e′). This is a valid solution to the strong QR-RSA problem (N,γ ) because
e′ > 1 (as a consequence of Lemma 5) and

(ξd ′′
γ e′′

)e
′ = ξe′d ′′

γ e′e′′ = γ d ′d ′′+e′e′′ = γ.
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Finally, we observe that if ξe′ = −γ d ′
, then e′ must necessarily be odd (this is so because

(−γ d ′
)pq = −1, and therefore ξe′ = −γ d ′

is not a quadratic residue), and consequently
(−ξe′

) = −ξe′ = γ d ′
. So, the last case ξe′ = −γ d ′

immediately reduces to the previous
one ξe′ = γ d ′

by replacing ξ with −ξ .

4. Systems of Equations

The intuition behind the definition of pseudo-free group is that no polynomial-time ad-
versary can “prove” that the given computational group is not free. The “proofs” implicit
in Definition 2 consist of a single equation which is unsatisfiable over the free group but
satisfiable over the computational group. This choice is motivated by the fact that un-
satisfiability of equations over free groups and satisfiability over computational groups
can be efficiently demonstrated. (Specifically, unsatisfiability over free Abelian groups
is decidable in polynomial time, and satisfiability over arbitrary computational groups
can be proved by giving a satisfying assignment.) An immediate extension that comes
to mind is to consider systems of equations. Satisfiability for systems of equations is
defined in the obvious way: a variable assignment satisfies a system of equations if it
simultaneously satisfies all the equations in the system. As observed in [22], for the case
of non-Abelian free groups, the results in [14] (see also [13, Lemma 3 and Corollaries 2
and 3]) allow one to combine systems of equations into a single equation. Specifically,
the method is based on showing that the two equations x = 1 and y = 1 are equivalent
to the single equation x2ax2a−1 = (ybyb−1)2, and it allows us to transform any finite
system of equations into a single equation with exactly the same set of solutions. Unfor-
tunately, the same is not true for Abelian groups, and the set of solutions to a system of
equations cannot in general be represented by a single equation. Consider, for example,
the equations x = 1 and y = 1. The solution to this system is clearly unique. However,
no single equation in two variables can have a unique solution. (Any bivariate equation
has always either zero or infinitely many solutions over the free group.)

In this section we show that in the case of Abelian groups, it is still possible to trans-
form systems of equations into a single equation which is equivalent to the system, but
in a weaker sense than having exactly the same set of solutions. The transformation
maps any system of equations to a single equation whose solution set is a superset of
the solutions to the system. However, if the system is unsatisfiable, then also the single
equation is guaranteed to be unsatisfiable. This weaker notion of equivalence is enough
to prove that Definition 2 is equivalent to the following seemingly stronger definition.

Definition 3. A family of computational groups G = {GN }N∈N is pseudo-free if (with
the notation of Definition 2) the probability that A(N,α) = ({Ei}i∈I , ξ) outputs an
unsatisfiable system of equations {Ei}i∈I (over variables X and constants A) together
with a solution ξ :X → GN to {Ei

α}i∈I over GN is a negligible function in k.

The transformation from systems of equations to single equations is described in the
following theorem.

Theorem 3. There is a polynomial-time algorithm that on input a system of equations
{Ei}i∈I over constants A and variables X, outputs a single equation E over the same
sets of constants A and variables X such that the following holds:
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– If {Ei}i∈I is unsatisfiable (over the free Abelian group generated by A), then E is
also unsatisfiable; and

– For any computational group G and assignment α:A → G, any solution ξ :X → G

to {Ei
α}i∈I is also a solution to Eα .

The proof of the theorem is based on elementary lattice techniques. For a detailed
introduction to lattices and their computational complexity, the reader is referred to
[16]. Here we briefly recall the basic definitions and simple facts about lattices used in
the proof of Theorem 3. For any matrix M with rational entries, the lattice generated by
a matrix M = [ �m1, . . . , �mn] is the set L(M) = {∑i xi �mi :xi ∈ Z for i = 1, . . . , n} of all
integer linear combinations of the columns of M. There is a polynomial-time algorithm
that on input two rational matrices M and M′, determines if L(M) ⊆ L(M′), and if not,
finds a vector �u ∈ L(M) \ L(M′). The dual of a lattice L(M) is the set of all vectors �u
in the linear span of the columns of M that have integer scalar product with all lattice
vectors in L(M). The dual of a lattice is a lattice, and the dual of the dual of a lattice
equals the original lattice. The dual of a lattice L(M) is denoted L̂(M). Moreover, there
is a polynomial-time algorithm that on input a rational matrix M outputs a rational
matrix M′ such that L(M′) = L̂(M). It immediately follows from the definition of dual
lattice that L(M) is a sub-lattice of L(M′) (i.e., L(M) ⊆ L(M′)) if and only if L̂(M′) is
a sub-lattice of L̂(M) (i.e., L̂(M′) ⊆ L̂(M)). We are now ready to prove Theorem 3.

Proof. Let {Ei}i∈I be a system of equations over the set of constant symbols A and
variables X, and let σ :X → F (A) be a generic variable assignment. Write each equa-
tion Ei and the assignment σ(x) as

Ei :
∏

x∈X

xei,x =
∏

a∈A

adi,a ,

σ (x) =
∏

a∈A

asx,a ,

where the ei,x , di,a , and sx,a are integers for all i ∈ I , x ∈ X, and a ∈ A. We use no-
tation e∗,∗ to denote the matrix with |I | rows and |X| columns with integer entries
(ei,x)i∈I,x∈X , and ei,∗ and e∗,x to denote the rows and columns of matrix e∗,∗. The ma-
trices d∗,∗, s∗,∗ and vectors di,∗, d∗,a , sx,∗, s∗,a are defined similarly. Notice that σ is a
solution to the system of equations over the free group if and only if

∑

x∈X

ei,xsx,a = di,a

for all i ∈ I and a ∈ A, or, equivalently, in matrix notation, e∗,∗s∗,∗ = d∗,∗. So, the
system of equations is solvable over the free group if and only if the integer lattice
L(e∗,∗) contains L(d∗,∗) as a sub-lattice. Moreover, the two lattices satisfy L(e∗,∗) ⊇
L(d∗,∗) if and only if their duals satisfy the reverse inclusion L̂(e∗,∗) ⊆ L̂(d∗,∗). The
inclusion L̂(e∗,∗) ⊆ L̂(d∗,∗) can be checked using standard techniques, and if it is not
satisfied, one can efficiently find a vector (ui)i∈I ∈ L̂(e∗,∗) such that (ui)i∈I /∈ L̂(d∗,∗).
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If L̂(e∗,∗) ⊆ L̂(d∗,∗), then the system of equations {Ei}i∈I is satisfiable over the free
group, and the algorithm can simply output an arbitrary equation E = Ei from the
system. Clearly, any solution to the system is also a solution to E. Moreover, the other
condition in the theorem is vacuously satisfied because {Ei}i∈I is satisfiable over the
free group.

So, let us assume that L̂(e∗,∗) �⊆ L̂(d∗,∗), and let u∗ = (ui)i∈I be a vector such that
(ui)i∈I ∈ L̂(e∗,∗) \ L̂(d∗,∗). We know that

∑
i uiei,x is an integer for all x ∈ X because

u∗ belongs to the dual lattice L̂(e∗,∗). Moreover, since L(e∗,∗) is an integer lattice, all
entries ui are rational numbers. It follows that for any a ∈ A,

∑
i uidi,a is a rational

number, but
∑

i uidi,a is not an integer for some a ∈ A. Let c be the smallest integer
such that c · ∑

i uidi,a is an integer for all a ∈ A. In other words, let c be the least
common multiple of the denominators of the fractions

∑
i uidi,a for all a ∈ A. The

output of the algorithm is the equation

E:
∏

x∈X

xc·∑i uiei,x =
∏

a∈A

ac·∑i uidi,a .

We need to show that this equation satisfies the two properties in the theorem.
Let α:A → GN and ξ :X → GN be two assignments such that ξ is a solution to the

system {Ei
α}i∈I over computational group GN , i.e.,

∏
x∈X ξ(x)ei,x = ∏

a∈A α(a)di,a for
all i ∈ I . It follows that

ξ

( ∏

x∈X

xc·∑i uiei,x

)

=
∏

i∈I

( ∏

x∈X

ξ(x)ei,x

)cui

=
∏

i∈I

( ∏

a∈A

α(a)di,a

)cui

= α

( ∏

a∈A

ac·∑i uidi,a

)

,

i.e., ξ is also a solution to equation Eα . This proves the second property. For the first
property, since the system is unsatisfiable, we need to prove that E is also unsatisfiable
over the free group F (A). Assume for contradiction that E is satisfiable over the free
group and let σ(x) = ∏

a∈A asx,a be a solution, i.e.,

∏

x∈X

( ∏

a∈A

asx,a

)c·∑i uiei,x

=
∏

a∈A

ac·∑i uidi,a .

Since the group F (A) is free, this is true if and only if

c
∑

x∈X

sx,a

∑

i∈I

uiei,x = c ·
∑

i∈I

uidi,a

for all a ∈ A. Since
∑

x∈X sx,a

∑
i∈I uiei,x is an integer, the left-hand side of the last

equation is a multiple of c. So, the right-hand side is also a multiple of c, and
∑

i uidi,a
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is an integer for all a ∈ A. But this is a contradiction because by construction (namely,
by the choice of (ui)i∈I ) there exists an a ∈ A such that

∑
i uidi,a is not an integer. �

Corollary 1. A family of computational groups {GN }N∈N satisfies Definition 2 if and
only if it satisfies Definition 3.

Proof. If a group family is pseudo-free in the sense of Definition 3, then it satisfies De-
finition 2 as well because single equations are a special case of systems containing only
one equation. Conversely, assume that a group family does not satisfies Definition 3, i.e.,
there exists an adversary A that on input a group index N ∈ N and random assignment
α:A → GN , outputs an unsatisfiable system of equations {Ei}i∈I over constants A and
variables X, together with a solution ξ :X → GN to the system over the computational
group GN . Then, using Theorem 3, A can be easily converted into an adversary A′, con-
tradicting Definition 2. Namely, on input group index N ∈ N and random assignment
α : A → GN , adversary A′ invokes A on input (N,α) to get an unsatisfiable system of
equations {Ei}i∈I together with a solution ξ over the computational group GN . Finally,
A′ transforms {Ei}i∈I into a single equation E using Theorem 3 and outputs E,ξ . By
Theorem 3, equation E is unsatisfiable over the free group, and ξ is a solution to Eα

over GN , proving that the group family does not satisfies Definition 2. �

The following corollary immediately follows from Theorem 2 and Corollary 1.

Corollary 2. Let N be a distribution ensemble over safe prime products such that the
strong RSA problem modulo N ∈ N is hard. Then the family of computational groups
Z

∗
N of invertible integers modulo N ∈ N (with the modular multiplication group opera-

tion and uniform sampling procedure over QRN ) satisfies Definition 3, i.e., it is pseudo-
free with respect to systems of equations.

5. Conclusion

We have given the first example of provably secure pseudo-free group under standard
cryptographic assumptions. In particular, we proved that the RSA group Z

∗
N where N is

the product of two safe primes is pseudo-free, assuming the hardness of the strong RSA
problem. Many open problems remain. In this section we illustrate some of them.

Our proof uses the fact that N is the product of two safe primes, and elements are
sampled uniformly at random from the subgroup QRN of quadratic residues. A nat-
ural question is whether Z

∗
N is pseudo-free even when N is the product of two arbi-

trary primes, and elements are sampled uniformly at random from the whole group Z
∗
N .

Another open problem is to relax the hypothesis of Theorem 2 and prove that Z
∗
N is

pseudo-free assuming that factoring N is hard. Notice that this last problem is prob-
ably very hard, as it would imply that inverting the RSA function is at least as hard
as factoring, a long standing open problem in cryptography. However, there are many
other cryptographic problems that have been proved at least as hard as factoring, like the
discrete logarithm problem [2], the Diffie-Hellman problem [15], and the generalized
Diffie-Hellman problem [5] modulo Blum integers. We remark that while computing



The RSA Group is Pseudo-Free 185

discrete logarithms in pseudo-free groups is provably hard [22], no relation between
pseudo-freeness and the Diffie-Hellman problem is currently known. An interesting
open question, already posed in [22], is to show that the Diffie–Hellman problem in
pseudo-free groups is computationally hard.

Another interesting problem is to find other examples of pseudo-free groups, beside
Z

∗
N , and possibly proving their security based on standard cryptographic assumptions.

Of particular interest would be to find a good candidate of non-Abelian pseudo-free
group. Generalizing the notion of pseudo-free group even further, one can consider
other standard algebraic structures (e.g., pseudo-free rings), or structures defined by an
arbitrary set of equational axioms.

Finally, it would be nice to find applications of pseudo-free groups, as those men-
tioned in [22] and in the introduction, to demonstrate the usefulness of the notion of
pseudo-free group. It might be the case that some applications require even stronger
notions of pseudo-freeness than the one defined in [22]. In Sect. 4 we already consid-
ered extending the definition to systems of equations and proved that pseudo-freeness
with respect to systems of equations (Definition 3) is equivalent to the basic definition
of pseudo-free group. Another possible extension is to consider more general Boolean
combinations of equations, e.g., one can consider systems of equations w1 = w2 and in-
equations w1 �= w2. For example, x2 = 1 and x �= 1 cannot be simultaneously satisfied
over the free group but admit a solution x = N −1 in Z

∗
N for any N �= 2. We remark that

the satisfiability problem over free Abelian groups for arbitrary Boolean combinations
of equations is NP-hard. (For example, 3SAT can be immediately reduced to such a for-
mula mapping each Boolean variable x to a corresponding equation x = 1.) So, some
unsatisfiable formula do not have short (polynomial-size) proofs of unsatisfiability, un-
less NP = coNP. Extensions of the notion of pseudo-free group to general Boolean
combinations of formulas should require the adversary to output not only an unsatisfi-
able formula over the free group (together with a solution over the computational group)
but also a short and easily verifiable proof that the formula is indeed unsatisfiable.
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