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Abstract

The Long-Term Outcomes of Double White Dwarf Mergers

by

Josiah Schwab

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Eliot Quataert, Chair

In double white dwarf (WD) systems with sufficiently short initial orbital periods, an-
gular momentum losses from gravitational wave radiation shrink the orbit and can lead to
the merger of the WDs. Simulations of the merger show that the less massive WD is tidally
disrupted, forming a disk around the more massive WD. Beginning with output from WD
merger simulations, I study the subsequent viscous evolution using multi-dimensional hy-
drodynamical simulations. I find that the remnants evolve towards a spherical end-state,
where the rotationally-supported disk has been converted into a hot, thermally-supported
envelope. I then map these results into a stellar evolution code and evolve them over ther-
mal and nuclear timescales. This is a necessary procedure to self-consistently study the
long-term outcomes of WD mergers. I apply this to the merger of two carbon-oxygen WDs
with a total mass in excess of the Chandrasekhar mass. My work follows the evolution of
the remnants for longer than previous calculations and finds alternating episodes of fusion
and contraction can lead to the formation and subsequent collapse of an iron core. I also
characterize the observable properties of the remnant during this evolution. Additionally, I
develop a framework to compute weak reaction rates that are essential in the evolution of
massive, accreting WDs. I apply these results to understand the evolution of oxygen-neon
WDs towards accretion-induced collapse to a neutron star.
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Chapter 1

Introduction

1.1 Background
White dwarfs (WDs) are the end product of the stellar evolution of low mass stars

(M . 8M�). Significant mass loss occurs over the star’s lifetime, resulting in the formation
of objects below the maximummass (≈ 1.4M�) that can be supported by electron degeneracy
pressure (Chandrasekhar 1931). More massive WDs come from more massive stars and as a
result, the composition of a WD is also related to its mass, reflecting the additional stages
of fusion that occurred. The lowest mass WDs (MWD . 0.5M�) are composed primarily
of helium (He WDs); intermediate mass WDs (0.5M� . MWD . 1.1M�) of carbon and
oxygen (CO WDs); the highest mass WDs (1.1M� . MWD) are of oxygen and neon (ONe
WDs). The characteristic radii of these objects is ∼ 10−2 R�. Left undisturbed, a WD will
peacefully cool for the age of the universe (e.g. Hansen & Liebert 2003).

However, star formation produces many stars in binary systems (e.g., Duchêne & Kraus
2013). When the two stars are close enough that they are able to transfer mass during their
evolution, processes such as the formation and ejection of a common envelope can shrink the
orbit, producing close binary systems consisting of two WDs (e.g., Iben & Livio 1993). When
the WD binary has a sufficiently short orbital period (. 10 hr), the angular momentum losses
from gravitational wave radiation will shrink the orbit on a timescale shorter than the age
of the universe, causing the WDs to interact. The gravitational waves radiated by these
compact binaries are important sources for space-based interferometers capable of detecting
mHz gravitational waves (e.g., Evans et al. 1987; Nelemans et al. 2001; Ruiter et al. 2010).
The expectation that close WD binaries should exist (e.g., Paczyński 1967; Webbink 1979)
developed well in advance of the first secure detection of a detached double WD with a
period less than a day (Marsh 1995).

Ongoing observational efforts have since discovered many more close double degenerate
systems. The SPY survey (Napiwotzki et al. 2001b) has discovered some of the most massive
known double WD binaries (Napiwotzki et al. 2001a, 2002; Karl et al. 2003; Nelemans et al.
2005; Geier et al. 2010, 2011). Spectra from the Sloan Digital Sky Survey (SDSS: York
et al. 2000) enabled the SWARMS survey (Badenes et al. 2009) and its discovery of a system
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that will merge within 100 Myr (Mullally et al. 2009). Taken together, the SDSS spectra
also provided constrains on the merger rate of binary WDs in the Milky Way disk (Badenes
& Maoz 2012; Maoz et al. 2012). Searching for extremely low mass WDs—which cannot
have formed via single star evolution in the age of the universe—has also proved to be an
extremely fruitful avenue. The ELM survey (Brown et al. 2010; Kilic et al. 2011a; Brown
et al. 2012; Kilic et al. 2012; Brown et al. 2013; Gianninas et al. 2015; Brown et al. 2016) has
led to the detection of 76 new double degenerate binaries containing a low mass WD. This
includes 4 with merger timescales less than 25 Myr (Brown et al. 2011; Kilic et al. 2011b,c,
2014).

Understanding the orbital evolution of double WDs continues to be an active area of
research. The rate at which gravitational waves remove angular momentum from the system
is known, but the effects of other processes that influence the orbital evolution are not as
well understood. Tidal forces are thought to synchronize the spin and orbital periods of
the WDs by the time that the WDs are close enough to begin transferring mass (Fuller &
Lai 2012a; Burkart et al. 2013). During mass transfer, the orbital evolution depends on
whether material is accreted via direct impact or through a disk; it is also sensitive to the
prescriptions used to model the transfer of angular momentum between the WD spins and
the orbit (Marsh et al. 2004; Gokhale et al. 2007; Sepinsky & Kalogera 2014; Kremer et al.
2015). The transferred mass can lead to nova explosions on the surface of the accretor and
Shen (2015) has suggested that dynamical friction with the novae ejecta may cause all WD
binaries to merge.

For those double WD systems that do merge, the final outcome is primarily controlled
by the masses of the two WDs (which can alternatively be parameterized as the mass ratio
and the total mass). Work by Iben & Tutukov (1984a) and Webbink (1984) roughly mapped
out the outcomes as follows:

• The merger of two He WDs is thought to be a channel for producing single sub-dwarf
B and O stars. These are blue, core He fusing stars that cannot be produced from the
stellar evolution of a single star (Heber 2009).

• The merger of a He WD and a CO WD likely produces the R Coronae Borealis stars
(Clayton 2012). These are cool, giant stars powered by shell He fusion; dust formation
episodes in their atmospheres make them highly variable. They are also observed to
have peculiar chemical compositions—extremely overabundant in 18O (Clayton et al.
2007).

• The merger of two CO WDs with a total mass in excess of the Chandrasekhar mass
was suggested as the progenitor of a Type Ia supernovae; however, see Nomoto & Iben
(1985), Saio & Nomoto (1985), and Chapter 3 for arguments that these mergers lead
to the formation of a neutron star.

This is an incomplete accounting. For two recent schematic views of the cornucopia of
outcomes see Figure 1 in Dan et al. (2014) or Figure 3 in Shen (2015).
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Beginning with the first results of Benz et al. (1990), numerical hydrodynamics calcu-
lations have been deployed to study the merging process, from the onset of dynamically
unstable mass transfer through the disruption of one or both of the WDs. Over the past
decade, work in this area has continued with the addition of new input physics, more accu-
rate initial conditions, higher resolution and more sophisticated numerical techniques (e.g.,
Lorén-Aguilar et al. 2009; Dan et al. 2011; Raskin et al. 2012; Pakmor et al. 2012a; Sato
et al. 2015; Katz et al. 2016). Several studies have found that some mergers can lead to a
detonation (e.g., Guillochon et al. 2010; Pakmor et al. 2010; Dan et al. 2012; Moll et al. 2014),
and substantial effort has been and continues to be invested in quantifying the properties of
these explosions and comparing them to observed thermonuclear supernovae

However, the focus of this thesis is on double WD systems in which the merger does not
lead to its catastrophic destruction. Instead, I focus on “long-term” outcomes, which occur
as the structure of the WD merger remnant cools and adjusts to its new state created during
the energetic merger. In what follows, I describe the arc of my research, deferring a detailed
discussion of prior work to the individual chapters.

1.2 Overview of Research and Chapter Context
Viewed broadly, my work makes two key contributions. First, in Chapters 2 and 3,

I develop the formalism necessary to take output from WD merger simulations, study the
viscous evolution using multi-dimensional hydrodynamical simulations, and then map the re-
sults into a stellar evolution code. This is a necessary procedure to self-consistently study the
long-term outcomes of WD mergers. Second, I develop a framework to compute weak reac-
tion rates that are essential in the evolution of massive, accreting WDs. In Chapters 4 and 5,
I apply these results to understand the evolution of ONe WDs towards accretion-induced
collapse (AIC) to a neutron star.

1.2.1 Chapters 2 & 3 and Related Work

Simulations of the merger of two WDs (e.g., Dan et al. 2011) show that the less massive
WD is tidally disrupted, forming a disk around the more massive WD. For some systems,
the merger process is sufficiently violent to ignite runaway nuclear burning that leads to
the destruction of the remaining WD. But in the many cases where this does not occur, the
remnant disk, unstable to the magneto-rotational instability, evolves viscously on a timescale
of hours (Shen et al. 2012). In Chapter 2, based on Schwab et al. (2012), I modify the ZEUS-
MP2 hydrodynamics code—adding an appropriate equation of state and an α-viscosity—and
perform the first multidimensional hydrodynamics simulations of the evolution of the viscous
disks formed by WD mergers. This work finds a key new result: the remnants evolve towards
a spherical end-state, where the rotationally-supported disk has been converted into a hot,
thermally-supported envelope. This is contrary to decades of work which modeled the long-
term evolution as the accretion of the low mass WD onto the massive WD. My results show
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that this formulation of the problem is incorrect and that the post-merger evolution is instead
a stellar evolution problem driven by the internal redistribution of heat and momentum and
not by the external accretion of mass.

My numerical simulations also show that in some cases, viscous heating could potentially
trigger a nuclear runaway in the remnant. This detonation might then trigger a thermonu-
clear supernova explosion. If this were to occur while there was still a significant amount of
mass in the disk, the disk would have a substantial viewing-angle dependent effect on the
observed properties of the supernova explosion. Raskin et al. (2014) generated light curves
and spectra for explosions in which such a disk was present, in part using models I created.

The results of Schwab et al. (2012) are important input into calculations that follow
the structure of the WD merger remnant as it cools and adjusts to the new state created
during the energetic merger. A major thread of my ongoing work is exploring the variety of
outcomes that can occur depending on the masses and compositions of the merging WDs.

Chapter 3 studies the merger of two massive COWDs. I find that this event likely leads to
the formation of a neutron star instead of a thermonuclear supernova, a result in in agreement
with Nomoto & Iben (1985) and Saio & Nomoto (1985). Before the core can be compressed
enough to cause an explosion, the initially off-center carbon fusion migrates inward to the
core, converting the object to an oxygen-neon composition. My work, which follows the
evolution of the remnants for longer than previous calculations, suggests alternating episodes
of fusion and contraction can lead to the formation and subsequent collapse of an iron core.
The presence of an iron core is a new and unexpected result, not part of standard AIC
scenarios. This work also describes the observable properties of the remnant during this
evolution, which previous approaches have been unable to address.

The burning fronts formed in these calculations take the form of convectively-bounded
deflagration. Denissenkov et al. (2013) has suggested that convection can induce efficient
mixing across these interfaces leading to disruption of the flame. In Lecoanet et al. (2016)
I contributed to a set of 3D hydrodynamic simulations that quantified the mixing at these
boundaries and found that mixing was unable to substantially affect the flame propagation.

1.2.2 Chapters 4 & 5 and Related Work

The thermal and compositional evolution of the central part of massive ONe WDs that
are undergoing compression is largely driven by weak reactions. Such objects can arise in
several contexts: the late stages of evolution for super asymptotic giant branch (SAGB)
stars (e.g. Miyaji & Nomoto 1987), where the compression is caused by the deposition of
material from exterior shell-burning; in a binary system with a massive ONe white dwarf
(e.g. Nomoto & Kondo 1991), where the compression is caused by accretion from a non-
degenerate companion; or as the remnant of a WD-WD merger, where the compression is
caused by the cooling of the outer layers (e.g. Saio & Nomoto 1985). In these electron-
degenerate conditions, the rates of electron-capture and beta-decay reactions are sufficiently
sensitive to density and temperature that existing tabulations of weak rates are no longer
suitable (e.g., Toki et al. 2013). I developed a capability for the MESA stellar evolution code
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(Modules for Experiments in Stellar Astrophysics; Paxton et al. 2011, 2013) that calculates
weak reaction rates on-the-fly from input nuclear data (Paxton et al. 2015). I have applied
this feature in two studies of accreting ONe WDs.

In Chapter 4, based on Schwab et al. (2015), I focus on WDs composed of 16O, 20Ne, and
24Mg. I confirm previous work (e.g. Miyaji & Nomoto 1987) that demonstrated the role that
the A = 20 and 24 isotopes play in reducing the electron fraction and heating the core. I
demonstrate the presence of a thermal runaway in the core triggered by the temperature and
density sensitivity of the 20Ne electron-capture reactions. Both analytics and numerics show
that this thermal runaway does not trigger core convection, but rather launches an oxygen
deflagration wave from the center of the star. The ability of MESA to perform extremely
small spatial zoning allowed the models to reach length-scales that, for the first time, directly
connect full-star simulations to studies of oxygen deflagrations performed using micro-zoned
hydrodynamics codes (Timmes & Woosley 1992). I perform a parameter study that quanti-
fies the influence of the 24Mg mass fraction, the central temperature, the compression rate,
and uncertainties in the electron-capture reaction rates on the ONe WD evolution. This es-
tablishes a lower limit on the central density at which the oxygen deflagration wave initiates.
Based on previous work and order-of-magnitude calculations, objects which ignite oxygen at
or above these densities will collapse and form a neutron star.

Chapter 5 focuses on the effects of the presence of the carbon-burning products 23Na and
25Mg. I demonstrated that these isotopes lead to substantial cooling of the WD via A = 23
and 25 Urca pairs. I derived an analytic formula for the peak Urca-process cooling rate and
obtained a simple expression for the temperature to which the Urca process cools the WD, a
result of significant utility for future work. For example, in Martínez-Rodríguez et al. (2016)
I applied this understanding of weak reactions in dense plasmas to the evolution of accreting
CO WDs—likely progenitors of Type Ia supernovae—before and during the simmering phase
present in single degenerate progenitor models.

The calculations in Chapters 4 & 5 are important steps in producing more realistic
progenitor models for studies of the signature of accretion-induced collapse (AIC). They
provide key input physics and establish an analytic framework in which to understand more
realistic models. In Brooks et al. (2016a), I applied the understanding of the balance between
compressional heating and neutrino cooling that sets the core temperature of accreting WDs.
This is important for determining whether an accreting WD will experience core or shell
ignition. In Brooks et al. (2016b), I am applying this understanding to the evolution of
binary systems consisting of a helium star and an ONe WD. This will be the first calculation
of the evolution towards AIC in which both stars and their orbit are self-consistently modeled.
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Chapter 2

The viscous evolution of white dwarf
merger remnants

An earlier version of this chapter was previously published as Schwab, J., Shen, K. J.,
Quataert, E., Dan, M., & Rosswog, S. 2012, MNRAS, 427, 190.

Abstract
The merger of two white dwarfs (WDs) creates a differentially rotating remnant which

is unstable to magnetohydrodynamic instabilities. These instabilities can lead to viscous
evolution on a time-scale short compared to the thermal evolution of the remnant. We present
multi-dimensional hydrodynamic simulations of the evolution of WD merger remnants under
the action of an α-viscosity. We initialize our calculations using the output of eight WD
merger simulations from Dan et al. (2011), which span a range of mass ratios and total
masses. We generically find that the merger remnants evolve towards spherical states on
time-scales of hours, even though a significant fraction of the mass is initially rotationally
supported. The viscous evolution unbinds only a very small amount of mass (. 10−5M�).
Viscous heating causes some of the systems we study with He WD secondaries to reach
conditions of nearly dynamical burning. It is thus possible that the post-merger viscous
phase triggers detonation of the He envelope in some WD mergers, potentially producing a
Type Ia supernova via a double detonation scenario. Our calculations provide the proper
initial conditions for studying the long-term thermal evolution of WD merger remnants. This
is important for understanding WD mergers as progenitors of Type Ia supernovae, neutron
stars, R Coronae Borealis stars and other phenomena.

2.1 Introduction
Systems consisting of two white dwarfs (WDs) are natural outcomes of binary stellar

evolution. These binaries are not static; absent any other torques the loss of angular mo-

http://dx.doi.org/10.1111/j.1365-2966.2012.21993.x
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mentum via gravitational wave (GW) emission will drive the binary together. Programs such
as the SWARMS survey (Mullally et al. 2009) and the ELM survey (Brown et al. 2010) have
dramatically increased the number of known WD binaries, including some systems that will
merge within a Hubble time (Kilic et al. 2012). The Galactic population of WD binaries is
expected to be a source of unresolved GW foregrounds at mHz frequencies, though only a
handful of presently known systems would be individually detectable by a space-based GW
interferometer mission (Nelemans 2009).

Details of the inspiral, in particular whether tidal torques cause the binary to be syn-
chronized and the location of the tidal heating, are active areas of inquiry that can have a
significant impact on the dynamics of the binary and the thermal state of the WDs (Fuller
& Lai 2012b). As the orbital separation shrinks, the less massive (and hence larger) WD
will eventually overflow its Roche lobe and begin transferring mass to the companion. The
stability of this mass transfer depends on e.g., whether the material forms a disc or flows
directly onto the companion, which in turn depends on the mass ratio (q) and total mass
(Mtot) of the binary (e.g. Marsh et al. 2004).

Those systems that do undergo unstable mass transfer and subsequently merge have
been of substantial theoretical interest. In particular, such systems have received attention
as the possible progenitors of Type Ia supernovae (Iben & Tutukov 1984a; Webbink 1984).
Considerable work exists exploring this “double degenerate” scenario and recent observational
results have begun to favor it (e.g. Bloom et al. 2012; Schaefer & Pagnotta 2012). Another
possibility is that double white dwarf binaries with total masses exceeding the Chandrasekhar
mass undergo accretion induced collapse to form a neutron star (e.g. Saio & Nomoto 1985).
Less massive double degenerate systems are likely to have non-explosive outcomes and have
been invoked to explain objects like the R Coronae Borealis stars and extreme helium stars
(Webbink 1984; Saio & Jeffery 2000; Clayton et al. 2007).

An accurate simulation of the merger process requires a 3D code without prescribed
geometry and with good numerical conservation properties. For these reasons, the pioneering
study of Benz et al. (1990) used smoothed particle hydrodynamics (SPH). More recent studies
(e.g. Dan et al. 2011; Raskin et al. 2012; Pakmor et al. 2012b) have improved on these first
results by contributing additional physics, more accurate initial conditions, higher resolution
and more sophisticated numerical techniques. These simulations follow the evolution of the
binary through the tidal disruption of one of the components. In some cases the merger
is sufficiently violent that an explosion may result (Pakmor et al. 2010; Dan et al. 2012).
When the merger itself does not trigger an explosion, some material from the disrupted lower
mass WD forms a shock-heated layer at the surface of the primary WD while the rest of the
material forms a thick disc at larger radii.

The evolution of such systems has frequently been treated in the literature as a long-lived
(∼ 105 yr) phase of accretion from a disc at the Eddington limit (e.g. Nomoto & Iben 1985).
This picture was improved by Yoon et al. (2007), who considered accretion at a similar
rate but onto a hot envelope, and by van Kerkwijk et al. (2010a), who made simple α-disc
estimates of the accretion time-scale and found it to be far more rapid (∼ hours) than the
time-scale for accretion at the Eddington limit.
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Recently, Shen et al. (2012) provided a new model of the different evolutionary phases
of WD merger remnants. They argued that the evolution is much more “star-like” than the
accretion disc oriented models that have dominated the literature. More concretely, Shen
et al. (2012) showed that the rapid dynamical evolution of the merger (∼ 102 s) gives way
to a longer lived viscous phase driven by magnetohydrodynamic instabilities (∼ 104 − 108

s) before the onset of a long (∼ 104 yr) thermal phase. In contrast with previous work, this
implies that the long term evolution of a white dwarf merger remnant is not determined
by accretion, but rather by the internal redistribution of heat/momentum and the external
cooling rate of the viscously heated, nearly shear-free remnant.

In Shen et al. (2012), the viscous evolution was calculated in 1D using a γ-law equation
of state. The goal of this work is to refine the understanding of the outcome of the viscous
evolution of WD merger remnants using higher dimensional numerical simulations. In addi-
tion, we consider a wider variety of WD+WD systems than Shen et al. (2012), who focused
on roughly Chandrasekhar mass CO+CO mergers.

In §2 we outline the numerical methods we use, including how we construct our initial
conditions from simulations by Dan et al. (2011). In §3 we present the results of each of our
calculations. §4 provides a discussion of the end states of the calculations. In §5 we state
our conclusions and propose avenues for future work. In an Appendix, we show various test
calculations that confirm the results we focus on in the main text.

2.2 Numerical Methods
We perform our calculations using the ZEUS-MP2 (Hayes et al. 2006) code, a massively

parallel implementation of the algorithms used in the ZEUS family of codes. These codes
solve the fluid equations using finite differences on a staggered mesh. The internals of ZEUS
are well-documented in the literature (for example, Stone & Norman 1992). While there
have been other, more modern developments in astrophysical fluid codes, we chose to use
ZEUS-MP2 because of its supported features (e.g. spherical coordinates, non-ideal equations
of state) and because its structure allows for the relatively easy addition of new features.

Our calculations are done in spherical coordinates, anticipating the evolution of the rem-
nant to a quasi-spherical end state. In order to minimize the computational demands, we
primarily perform 2.5D simulations, in which vector quantities can have a φ component, but
its value does not vary along the φ direction. In general, we also assume reflection symmetry
about θ = π/2. In the Appendix, we briefly report additional calculations which confirmed
the validity of these simplifications.

Our typical computational domain is characterized by the grid spacing in the r and θ
directions and by the radius of the inner boundary. Unless otherwise specified, we adopt a
logarithmic radial grid with Nr = 64 points per decade. The angular grid is uniform from
[0, π/2] with Nθ = 48 angular zones. These values give a grid in which individual cells are
roughly equal in radial and θ extent. We choose an inner radius such that only 0.1 per
cent of the mass lies interior to that radius and then place the outer boundary at 104 rinner.
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We perform higher resolution simulations to confirm that our simulations are converged (see
§2.A.1).

We make several modifications to ZEUS-MP2 (based off of v2.12) in order to perform
our calculations; we describe these modifications in the rest of this section.

2.2.1 Equation of State

The existing equation of state (EoS) options in ZEUS-MP2 are a gamma-law EoS and an
isothermal EoS. Neither of these choices are suitable for simulating a WD merger, which has
material over a range of thermodynamic conditions, including both cold, electron-degeneracy-
pressure dominated material and hot, radiation-pressure dominated material. We modify the
code by the addition of the “Helmholtz” EoS (Timmes & Swesty 2000), which is the EoS
of fully-ionized material consisting of an ideal gas of ions, blackbody radiation, and a non-
interacting Fermi gas of electron and positrons. Importantly, this is the same EoS used in
the SPH simulations of the WD merger, which simplifies the remapping procedure reported
in Section 2.2.4; it is also the EoS used in MESA for material under similar conditions, which
will prove important in later calculations (see Section 3.A and 4.B.1 for details).

The “Helmholtz” equation of state is so-named because it is constructed in a Helmholtz
free energy basis, meaning that temperature (T ) and density (ρ) are the natural thermo-
dynamic variables. ZEUS-MP2 evolves the internal energy (E) and density. Therefore, in
order to obtain the pressure (P ) and any other thermodynamic quantities of interest, we
must solve for T given ρ, E, and the composition. We implement a routine that finds the
value of T corresponding to a value of E (given ρ and the composition), using a simple
Newton-Raphson iteration scheme. With the addition of the EoS routines, one small al-
gorithmic change is made: as suggested in Stone & Norman (1992), a predictor-corrector
method is used to improve energy conservation during the calculation of the compressional
heating term.

2.2.2 Shear Viscosity

In order to approximate the effects of magnetic stresses, we add shear stress terms to the
hydrodynamic equations. That is, we are solving the equations

Dtρ+ ρ∂jvj = 0 (2.1)
ρDtvi = −∂iP − ρ∂iΦ + ∂jTij (2.2)

ρDt(e/ρ) = −P∂ivi + TijTij/(ρν) (2.3)

whereDt = ∂t+vi∂i is the convective derivative and we observe the usual Einstein summation
conventions. The pressure is denoted by P , and the mass and internal energy densities are
represented by ρ and e respectively. The velocity vector is vi. The anomalous stress tensor
Tij is defined as

Tij = ρν (∂ivj + ∂jvi) (2.4)
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where ν is the dynamic viscosity.
A very similar modification of the ZEUS-2D code was made by Stone et al. (1999). We

benefited from inspecting the source code that was used to perform the calculations reported
in that work. We also used the results reported in Stone et al. (1999) as a reference against
which to test our own implementation.

The viscous terms are evaluated using an operator split method and are updated during
the source step (Stone & Norman 1992). To ensure numerical stability, the time step ∆t
must be chosen to be less than ∆tvisc ∼ min((∆r)2/ν), where the minimum is evaluated over
the computational domain.

As a dimensionally motivated form for the dynamic viscosity coefficient, we adopt

ν(r, θ) = α
c2
s(r, θ)

Ωk(r)
(2.5)

where cs is the local sound speed and Ωk is the Keplerian angular velocity calculated using
the mass enclosed at a given spherical radius. Portions of the merger remnant (see Fig.
2.1) are unstable to the magneto-rotational instability (MRI; Balbus & Hawley 1991) and
the Tayler-Spruit dynamo (Tayler 1973; Spruit 2002). These processes may generate viscous
stresses corresponding to α in the range 10−4 − 10−1; for order of magnitude estimates, see
Shen et al. (2012). We adopt a fiducial value of α = 3 × 10−2, though we confirm that the
results of our calculations are not sensitive to this choice (see §2.A.2).

As one moves to small r, (the origin being at the centre of the surviving WD; see §2.2.4),
cs and Ωk approach constant values. We are using a logarithmic grid, so ∆r ∝ r and
therefore ∆tvisc ∝ r2. The timestep constraint imposed by the Courant-Friedrichs-Lewy
(CFL) condition depends linearly on ∆r, so ∆tCFL ∝ r. At sufficiently small radii, the
viscous timestep becomes much less than the timestep required by the CFL condition. In
practice, this occurs at a radius that is in our computational domain. In order to evolve the
remnant over many viscous times, we apply the following ad hoc prescription. Within some
radius rν we suppress the viscosity by a factor of 1/r such that the ratio of tvisc/tCFL remains
constant. In order to make the cutoff smooth, the exact prescription is

ν ′(r, θ) = ν(r, θ)

(
1

1 + (r/rν)β

)1/β

(2.6)

where β = 4 and rν is approximately the half-mass radius of the inner WD. As shown in the
Appendix, we have verified that our results are insensitive to the details of this prescription.
Physically, we would not expect the viscosity prescription in Equation 2.5 to hold as r → 0
because this region within the WD is in approximate solid body rotation and is not MHD
unstable.

Local numerical simulations of the MRI in accretion discs indicate that the azimuthal
components of the stress-tensor, Trφ and Tθφ, are roughly a factor of 10 larger than the other
components (e.g. Hawley et al. 1995; Stone et al. 1996). Our default assumption then is to
evolve with only these components in the stress tensor being non-zero. In §2.A.3, we test
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the effect of including all components and find some quantitative, though not qualitative,
differences between the two choices.

2.2.3 Nuclear Burning

In several of the model systems the temperatures reached are sufficiently high that the
energy release from fusion is not negligible on the viscous time-scale. However, the condi-
tions are not such that the local burning time-scale ever falls below ∆tCFL. Therefore, in
order to minimize the computational load associated with calculating the burning, we im-
plement an extremely simple 5 isotope nuclear network which is explicitly integrated at the
hydrodynamic timestep. This captures the bulk of the energy release.

The 5 species we track are He, C, O, Ne, Mg (these are the 5 isotopes present in the
initial compositions). These isotopes are connected by 4 processes, the triple-α process
and α capture on each of C, O, and Ne. The rates of these processes were taken from
the JINA REACLIB database (Cyburt et al. 2010). We neglect additional physics such as
screening corrections because the burning primarily occurs at densities where such effects
are unimportant. We refer to our own burning implementation as HeCONe.

As a test of both our own implementation and the assumptions that motivate it, we
also coupled the 13 isotope α-chain network aprox13 to the code (Timmes & Swesty 2000).
The results were virtually identical, confirming the validity of our approach. See §2.A.6 for
quantitative comparisons of the results of these tests.

ZEUS-MP2 provides the ability to advect scalar quantities; we use this feature to track
the mass fractions of the isotopes in our network. The algorithms do not guarantee the sum
of the mass fractions remains equal to one after the advection step. Methods to restore this
constraint in fluid codes have been reported in the literature (for example, Plewa & Müller
1999). However, for the sake of simplicity, immediately before evaluating the energy release
from nuclear burning, we enforce the constraint

∑
Xi = 1 by appropriately adjusting the

mass fraction of the most abundant isotope.

2.2.4 Construction of Initial Conditions

Our starting point is the results of SPH simulations of double white dwarfs performed by
Dan et al. (2011). The simulations were notable for their use of a more accurate initialization
of the binary system at the onset of mass transfer than had been used in previous work.
We calculate the viscous evolution of the merger remnants formed in each of their eight
production runs, the parameters of which are summarized in Table 2.1. Throughout the rest
of this paper, when we refer to “initial conditions,” this refers to the matter configurations
at the end of these SPH simulations.

In order to map between the output of the SPH calculations and the staggered mesh
of ZEUS-MP2 we adopt the following procedure. In SPH, the value of a quantity f at a
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ID M2 M1 Mtot q tend C2 C1

P1 0.2 0.8 1.0 0.25 95.0 He CO
P2 0.3 1.1 1.4 0.27 62.0 He CO
P3 0.5 1.2 1.7 0.42 35.0 He ONeMg
P4 0.3 0.6 0.9 0.50 50.0 He CO
P5 0.6 0.9 1.5 0.67 35.7 CO CO
P6 0.2 0.3 0.5 0.67 30.0 He He
P7 0.3 0.4 0.7 0.75 18.0 He He
P8 0.9 1.2 2.1 0.75 30.0 CO CO

Table 2.1 : A summary of the systems simulated by Dan et al. (2011). ID is their run number.
M2 is the mass (in M�) of the secondary, the less massive of the two WD; M1 is the mass of the
more massive primary. Mtot is the total mass of the system and q = M2/M1 is the mass ratio.
tend is the duration of the SPH simulation in terms of the initial orbital period. C1 and C2 are the
compositions of the primary and the secondary WDs. See Table 1 in Dan et al. (2011) for more
details.

position ~x is given by

f(~x) =
n∑

i=1

mi

ρi
fiW (|~x− ~xi|, hi) (2.7)

whereW is the kernel function. The quantity of interest associated with the i-th SPH particle
is denoted fi. The SPH particle has mass, density, position and smoothing length mi, ρi,
~xi and hi respectively (e.g. Monaghan 1992). The sum runs over the total number of SPH
particles, n.

Schematically, we construct our grid-based initial conditions by evaluating the five quan-
tities that ZEUS-MP2 evolves (mass density ρ, internal energy density e and velocity ~v) at
each grid point. In our standard 2D simulations, we construct initial conditions that are ex-
plicitly invariant in the φ direction and are reflection-symmetric about θ = π/2. Given these
conditions, the total linear momentum of the remnant is guaranteed to be zero. Therefore,
we choose the origin of our simulation coordinate system to be at the point of peak density,
corresponding to the centre of the more massive (surviving) WD.

Explicitly, in order to calculate the value of a density (e or ρ) at a grid point with
coordinates (ri, θj) we evaluate

ρij =
1

2Nφ

Nφ∑

k=1

[ρSPH(ri, θj, φk) + ρSPH(ri, π − θj, φk)] (2.8)

where Nφ is the number (typically Nφ = 32) of equally-spaced points used to cover the
interval φ ∈ [0, 2π). Now and throughout this section, the subscript SPH indicates a quantity
extracted from the SPH simulation by the evaluation of Eq. 2.7.

Constructing the initial velocity vector requires slightly more complicated φ averaging.
From the SPH data, we first construct the full velocity vector (with the components rep-
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resented in Cartesian coordinates) at each of the grid locations where a component of the
velocity will be defined. The staggered mesh employed by ZEUS-MP2 means that each
velocity component is defined at a different spatial point (for details see Stone & Norman
1992). We take this into account, though we do not manifestly indicate it in the formulae
below for the sake of compactness.

It is not simultaneously possible to conserve the kinetic energy of the fluid and its linear
and angular momentum when performing the φ-averaging. (This is simply a statement of the
fact that in a non-uniform field, 〈v2〉 6= 〈v〉2.) Given that we are interested in investigating
the angular momentum evolution of the remnant, we choose to conserve momentum. In
practice, the difference is relatively small; for the fiducial remnant, this averaging procedure
changes the total kinetic energy by 1 per cent.

Therefore, to obtain the value of a component of the velocity ~v, defined at a point (ri, θj)
we calculate

vij =
1

2Nφ

1

ρij

Nφ∑

k=1

[~pSPH(ri, θj, φk) · êij(φk)

+ ~pSPH(ri, π − θj, φk) · êij(φk)]
(2.9)

where ~p is the momentum vector and êij is the unit vector of the velocity component of
interest at the point.

2.3 Results
We expect that systems with similar mass ratios (q) and total masses (Mtot) will undergo

similar evolution. Since the composition of a WD maps to a relatively well-defined mass
range, we organize our discussion by the composition of the merging WDs. First, we discuss
our fiducial 0.6+0.9 M� CO+CO system. The outcomes of He+He, He+CO and He+ONeMg
mergers are discussed on a more limited basis, emphasizing only the notable differences
between these systems and our fiducial one. See Table 2.2 for a summary of the properties
of our primary simulations. As shown in Table 2.1, Dan et al. (2011) label their simulations
with a short identifier of the form Pn, where P represents production and n in an integer.
For our own short IDs (shown in Table 2.2), we simply prepend Z (representing “ZEUS”) to
the ID of the Dan et al. (2011) simulation that was used as the initial conditions.

In order to easily visualize our multi-D simulations, we will plot spherically averaged
quantities against spherical radius. To calculate densities we perform a volume average, e.g.

ρ(r) =
1

2

∫ π

0

dθ sin(θ)ρ(r, θ) (2.10)

so that the appropriate quantity (e.g. mass) is conserved. To calculate other thermodynamic
quantities such as temperature, we first calculate the spherically averaged mass and energy
densities and then apply the equation of state. To calculate angular velocities, we restrict
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ID M2 + M1 rinner [cm] Network tend [s]
ZP1 0.2 + 0.8 3.6 ×107 HeCONe 3.0 ×104

ZP2 0.3 + 1.1 2.2 ×107 HeCONe 3.0 ×104

ZP3 0.5 + 1.2 1.9 ×107 HeCONe 1.5 ×104

ZP4 0.3 + 0.6 4.4 ×107 HeCONe 4.0 ×104

ZP5∗ 0.6 + 0.9 2.9 ×107 None 3.0 ×104

ZP6 0.2 + 0.3 6.6 ×107 HeCONe 4.0 ×104

ZP7 0.3 + 0.4 5.7 ×107 HeCONe 4.0 ×104

ZP8† 0.9 + 1.2 1.9 ×107 aprox13 1.0 ×104

Table 2.2 : Details of the viscous evolution calculations discussed in this paper. As an ID, we simply
prepend Z (representing “ZEUS”) to the ID of the Dan et al. (2011) simulation that was used as the
initial conditions. M2 +M1 is the mass of the secondary + primary in M�. We will sometimes refer
to systems by this sum. rinner is the location of the inner boundary of our computational domain.
Network indicates which nuclear network was used in the calculation. tend is the end time of the
simulation. All of the simulation parameters which were held fixed across all runs are discussed in
the text. ∗ fiducial model discussed in the most detail in the main text (in §2.3.1) † this simulation
had a lower resolution, Nr, Nθ = 48,32.

the average to a 45◦ wedge centred on the equator. As our simulations evolve toward a
spherical end state, these 1D averages become an increasingly complete summary of the 2D
structure of the remnant.

2.3.1 CO+CO systems

Our fiducial system (ZP5) is a super-Chandrasekhar CO+CO merger withMtot = 1.5M�
and q = 2/3. We simulate this system for 3 × 104s, which is ∼ 5 × 107 timesteps of the
hydrodynamics code. The simulation conserves mass to 1 part in 104, energy to 0.5 per cent
and angular momentum to one part in 103. The evolution of an identical system was discussed
in Shen et al. (2012), who performed a simple 1D calculation of the viscous evolution. Our
multidimensional calculations confirm the schematic picture presented therein.

At the end of the SPH simulation, the primary white dwarf is relatively undisturbed and
is surrounded by the remnants of the disrupted secondary. More than half of the disrupted
material has primarily rotational support; the remainder was shock-heated in the merger
and has thermal support. (A small amount ∼ 10−3M� is unbound in a tidal tail.) The
merger remnant is in quasi-hydrostatic equilibrium, which we confirm by evolving these
initial conditions without the action of viscous torques for many dynamical times, observing
little change.

The black lines in Fig. 2.1 show the initial rotation profile. The primary WD is rotating
rigidly; exterior to that is the disrupted secondary which is in Keplerian rotation. This hot,
fully ionized material is unstable to magnetohydrodynamic instabilities such as the MRI.
The turbulence generated by the saturation of the MRI leads to an enhanced viscosity and
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concomitant transport of angular momentum to larger radii (Balbus & Hawley 1991; Balbus
2003). As described in §2.2.2 we model this using an α-viscosity.

The viscosity also liberates energy present in the φ-velocity shear. Fig. 2.2 shows the
evolution of the temperature and specific entropy profiles during the viscous evolution. Fig.
2.3 shows the final ρ−T distribution and the evolution of the temperature peak in the ρ−T
plane during the viscous evolution. The viscous heating causes the peak temperature in the
remnant to increase over the duration of the viscous phase by a factor of ∼ 2, to ∼ 8× 108

K. The temperature peak is at a density of ∼ 5 × 105g cm−3 and at those conditions the
energy released from carbon burning exceeds neutrino losses and the burning becomes self-
sustaining.

The carbon burning in our fiducial model is an unimportant energy source on the viscous
time-scale, so the viscous evolution is not directly affected. However, the fact that carbon
burning begins during the viscous evolution means that a convective carbon burning shell
will develop in ∼ 106 s. One consequence of this is that we expect the material exterior
to the temperature peak at the end of the viscous evolution to quickly form a convective
envelope. Future work will investigate the structure of this envelope, which is important
for understanding the thermal evolution of the remnant and characterizing its observational
properties.

One of the most striking results of our multi-D simulation is that the merger remnant
evolves towards a final quasi-spherical steady state. (Given that there is rotation, the final
state will actually be oblate, though in practice, the rotational velocities we find imply that
it is quite spherical.) To quantify this, we define a simple “aspect ratio” as follows: draw
an isodensity contour and take the ratio of the distance from the origin at the equator to
that at the pole. As a rule of thumb, we find that the aspect ratio associated with a given
radius approaches unity after about 10 viscous times have passed at that radius. The bottom
panel of Fig. 2.4 shows this convergence clearly. The primary WD ends up with a thermally
supported, nearly spherical envelope. The top panel of Fig. 2.4 shows the mass enclosed as
a function of radius which illustrates how the outer thermally supported envelope expands
to larger radii during the viscous evolution.

Our multi-dimensional simulations also allow us to capture processes like convection. We
find that the viscous heating causes the remnant to evolve towards a convectively unstable
state. Recently, García-Berro et al. (2012) discussed how convectively generated magnetic
fields in merger remnants could potentially explain the origin of high-field WDs. They
noted that the conditions at the end of their own SPH simulations were unstable by the
Schwarzchild criterion. However, given that this system has substantial rotational support
and that we are evolving it in axisymmetry, a more appropriate test is the Høiland criterion.
Our initial conditions are not unstable by the Høiland criterion and do not to evolve towards
an unstable state without the action of the viscous stresses.1

Fig. 2.5 shows the 2D evolution of the fiducial system. In addition to the entropy and
temperature, we plot two energy densities which are helpful in interpreting the evolution.

1The physical initial conditions are of course unstable in MHD, as it is the MRI that is giving rise to the
effective viscosity.
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Figure 2.1 : The evolution of the rotation profile of the fiducial 0.6+0.9 M� CO+CO remnant. The
solid lines are the angular velocity Ω and the dashed lines are its ratio to the Keplerian angular
velocity, Ω/Ωk. (The angular velocity is calculated using the material in a 45◦ wedge centred on
the equator.) In the initial profiles (black), most of the material from the disrupted secondary
(Mr > 0.9) is rotationally-supported with an angular velocity profile unstable to the MRI. The
action of viscosity drives more of the remnant to solid body rotation and the accompanying heating
leads to more of the remnant being thermally supported. We set α = 0.03 for all the results in the
main text. The Appendix shows that our results are nearly independent of α.
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Figure 2.2 : The evolution of the temperature (top) and specific entropy (bottom) profiles of the
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One is the free energy available in the φ-velocity shear

KEφ−shear =
1

4
ρ

(
R

dΩ

d logR

)2

, (2.11)

which shows the energy available for viscous heating. The other is the kinetic energy density
in non-azimuthal motions

KEr,θ =
1

2
ρ
(
v2
r + v2

θ

)
, (2.12)

which is related to the kinetic energy associated with convective motions. Fig. 2.5 also plots
isodensity contours, which emphasize the approach of the remnant to a spherical state.

Given previous work on viscous, geometrically thick accretion flows, one might expect
that material would outflow along the poles during the viscous evolution. When the viscous
time is much less than the cooling time and the mass inflow is assumed to be conservative
(that is, mass does not leave the system), the transport of energy and the release of grav-
itational potential energy are such that material has a positive Bernoulli parameter (Be)
(Narayan & Yi 1994; Blandford & Begelman 1999). Therefore, solutions in which the mass
flow is not conservative may be more physical. Non-radiative accretion flows are also pre-
dicted to be convectively unstable. Models based on these ideas (e.g Blandford & Begelman
2004) developed solutions with prominent outflows. Hydrodynamic numerical simulations
such as those by Stone et al. (1999) exhibited the slow outflow of marginally bound material
in the polar direction. MHD simulations such as those by Stone & Pringle (2001) found
somewhat more prominent outflows than in the hydrodynamic simulations.

We do not observe outflows in our simulations. Fig. 2.6 shows the fraction of mass on
our grid with positive Be ≡ fBe>0. Initially fBe>0 ∼ 3× 10−3, corresponding to the unbound
material in the tidal tail. This material flows out of the outflow boundary and afterwards
there is little unbound mass (fBe>0 ∼ 10−5). In order to isolate the effects of viscosity on the
unbound material, we ran a simulation without the viscosity and calculated fBe>0 (dotted
blue line). The orange line in Fig. 2.6 shows the integrated difference in the mass that
flowed through the outer boundary with Be > 0 in simulations with and without viscosity.
This difference is very small < 10−5M�. We do not claim that this specific value is robust,
but the conclusion that the viscous evolution of WD merger remnants unbinds a only a very
small amount of mass appears to be.

The initial conditions of our simulations are rather different than the initial conditions
of most radiatively inefficient accretion simulations. Such simulations typically allow the
material to move through several orders of magnitude in radius before reaching an inflow
boundary representing a black hole. By contrast, the radial dynamic range between the
surface of the primary WD and the bulk of the material in the initial rotationally-supported
disc is small, a factor of ∼ 5. The presence of a “hard surface” (the primary WD) means
that as material accretes, the radius where material is pressure-supported moves outward,
further suppressing the dynamic range between the effective inner boundary and the disc.

In order to understand the results of our WD merger remnant simulations in the context
of accretion tori simulations, we generate accretion tori like those in Stone et al. (1999)
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Figure 2.5 : A visual overview of the 2D evolution of the fiducial 0.6+0.9 M� CO+CO merger
remnant. Within each panel, the top two subpanels are thermodynamic quantities (s, T ) and the
bottom two subpanels are kinetic energy densities (non-azimuthal, φ-shear). The black contours
are density, spaced one per decade. The dashed contour is ρ = 103 g cm−3. The main panels are
snapshots of the simulation at the indicated times. Top Panel : The initial conditions, note the
large “free” energy apparent in the shearing, Keplerian disc. Middle Panel : The action of viscosity
has dissipated some of the shear and heated the material. The remnant has become convectively
unstable as can be seen in the striation of the non-azimuthal KE. Bottom Panel : The remnant has
settled down into a quasi-spherical steady state.
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Figure 2.6 : Viscously unbound material. The left (blue) scale indicates the fraction of mass with
positive Bernoulli constant at a given time in the evolution of the fiducial 0.6+0.9 M� CO+CO
merger remnant. The dominant contribution is the tidal tail; the large decrease in fBe>0 over the
first 5000 s is this material flowing out of the simulation domain. The solid (dotted) line is the
mass fraction with Be > 0 in a simulation with (without) viscosity. The right (orange) scale is
the integrated amount of mass that has flowed out of the simulation domain with positive Be due
to the influence of viscosity. This is the integrated difference between the two blue curves. Little
additional material (≤ 10−5M�) is unbound by the viscous evolution .
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and adjusted the inner boundary condition (reflecting vs. inflow) and the dynamic range
between the initial torus and the inner boundary. We run the simulations for several orbits
and calculate the resulting amount of unbound material fBe>0. At a radial dynamic range
between the initial torus and the inner boundary of 100 and with an inflow boundary, we
find fBe>0 ∼ 4 × 10−2, much larger than in our WD merger remnant calculations (see Fig.
2.6). Decreasing the dynamic range to 10 results in fBe>0 ∼ 4 × 10−3. At this dynamic
range, changing the inner boundary condition to reflecting causes fBe>0 to peak ∼ 10−4

and then fall as the simulation continues. These results support our conclusion that only a
very small amount of mass is unbound during the viscous evolution of WD merger remnants
(fBe>0 . 10−5) .

In addition to our fiducial 0.6+0.9 M� CO+CO system, we also simulate a very super-
Chandra 0.9+1.2 M� system (ZP8). This system quickly starts C+C burning, although the
burning does not become dynamical (see Section 2.4.2). While the energy release from the
burning on the viscous time is locally non-negligible, the mass outflow is not affected by the
presence of nuclear energy generation. As shown in the Appendix, the energy release is not
significant enough to affect the global behavior of the remnant.

2.3.2 He+He systems

The evolution of He+He merger remnants is broadly similar to our fiducial CO+CO case.
The larger size and lower mass of the He WDs mean that the temperatures reached at the
end of the SPH calculations are not as high. However, these temperatures are still high
enough that we elect to track the energy release from He burning in our simulations. We do
this using the simple nuclear network described in Section 2.2.3.

Fig. 2.7 shows the evolution of the temperature and rotation rate for a 0.2+0.3 M�
system (ZP6). This has the same mass ratio q = 2/3 as the fiducial system, but with a
total mass 3 times lower. The initial temperature and rotation profiles look qualitatively
similar to our fiducial system. Appropriately scaling these values by the total mass, they
are even quantitatively similar. However, the final state appears somewhat different, most
conspicuously because of the narrow temperature peak that forms at an enclosed mass of
∼ 0.38M�.

This qualitative difference in evolution is most clear in Fig. 2.8, which shows the evolution
of the temperature maximum and the corresponding density. The temperature maximum
evolves to lower density during the viscous phase, unlike in CO+CO mergers where it evolves
to higher density (see Fig. 2.3). This effect is unrelated to the presence of fusion, as the
time-scale for burning is still relatively long. This difference in evolution is also not a
qualitative difference in the merger outcome or the viscous evolution, but rather is due to
the different contribution of gas and radiation pressure in the merger remnants. The grey
dash dot line in Figs. 2.3 and 2.8 shows where Pgas = Prad. The He+He case remains gas
pressure dominated, so the location of the peak temperature corresponds to the location of
the viscous heating. Lower densities, which are at larger radii and have corresponding longer
viscous time-scales, are heated at later times. In the CO+CO case, radiation pressure has a
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larger relative contribution initially and once material has been heated such that radiation
pressure begins to become important, additional heating is no longer as effective in raising
the temperature. Therefore, larger relative increases in T occur at higher densities where
gas pressure continues to dominate, and thus the peak T moves to higher densities.

2.3.3 He+CO systems

In the He+CO systems, the primary is more massive and hence more compact than in the
He+He mergers. This leads to higher temperatures during the merger. The lower temper-
atures required for He burning (versus C burning) mean that the effects of nuclear burning
are more pronounced in these systems. Fig. 2.9 shows the evolution of the temperature peak
in these simulations.

The 0.3+0.6 M� He+CO system (ZP4) is the only one of the systems we simulate in which
the final state deviates significantly from approximate spherical symmetry. The remnant
itself is spherical, but at the interface between the material from the He and CO WDs
the composition varies between the equator and pole. This explains why the final peak
temperature does not lie on the final spherically-averaged ρ − T profile shown in Fig. 2.9.
This system has the highest mass ratio of any mixed composition system we simulated and
at higher mass ratios the secondary more strongly affects the primary. However, because
the efficiency of mixing likely depends on dimensionality and angular momentum transport
(α-viscosity vs MHD), we do not expect our work to provide a robust prediction of the details
of such mixing.

2.3.4 He+ONeMg

One system in our study is composed of a 0.5M� He WD and a 1.2M� ONeMg WD. Its
evolution is very similar to the systems previously discussed. Notably, the high primary WD
mass means that the He (from the secondary) reaches quite high temperatures. The burning
time in this system is thus quite short, less than the viscous time, though not less than the
dynamical time (see §2.4.2).

2.4 Discussion

2.4.1 Fitting Formulas

The end states of our simulations will be useful as a starting point for future work
concerning the thermal evolution of WD merger remnants. To aid such work, we provide
fitting formulae that allow one to easily construct a physical state that is in rough quantitative
agreement with our results.

The 1D profiles we extract at the end of our calculations have the following schematic
form. At the centre is a core of cold, degenerate material. This is surrounded by a hot
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Figure 2.7 : A 1D summary of the 0.2+0.3 M� He+He remnant evolution. The temperature (top
panel) and rotation (bottom panel) profile at beginning, intermediate and final times. The tem-
perature evolution appears qualitatively different than our fiducial model; as explained in the text,
this is due to this lower mass remnant remaining gas pressure dominated. The rotation evolution
is qualitatively the same as the fiducial model.
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Figure 2.8 : The evolution of the temperature peak for the He+He merger remnants. The dotted
line labeled tburn,He = 104 s indicates the region where the time-scale for energy release by He fusion
is equal to the time-scale of the simulation. The filled square (circle) is the peak temperature and
corresponding density at the start (end) of the simulation, and the dashed line that connects them
traces its evolution. The solid line is the full 1D ρ− T profile of the quasi-spherical end state. The
grey dash-dot line indicates where gas and radiation pressure are equal.
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Figure 2.9 : The evolution of the temperature peak for the He+CO remnants. The dotted line
labeled εCC = εν indicates the break-even point where the energy release from carbon burning is
equal to neutrino losses. The dotted line labeled tburn,He = 104 s indicates the region where the time-
scale for energy release by He fusion is equal to the time-scale of the simulation. The filled square
(circle) is the peak temperature and corresponding density at the start (end) of the simulation, and
the dashed line that connects them traces its evolution. The solid line is the full 1D ρ−T profile of
the quasi-spherical end state. The red dotted section shows where the helium mass fraction exceeds
50 per cent. The grey dash-dot line indicates where gas and radiation pressure are equal. The peak
temperature in the 0.3+0.6 ρ−T profile does not correspond to the final peak temperature indicated
by the solid circle. At the spherical radius of the temperature peak, the chemical composition varies
from pole to equator and hence the averaged temperature at that point is not equal to the 2D peak.
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envelope, the outer portion of which was convective and so has an entropy that is roughly
spatially constant.

This picture allows a simple, post hoc model of the end state of our simulations. We write
down a piecewise equation of state in which there is a central mass (Mc) described by a zero-
temperature equation of state. This is surrounded by an isothermal region corresponding
to the temperature peak which has mass Mtp. The rest of the external material has a
polytropic equation of state. Empirically the polytropic index of n = 3 provides a good fit
to all of our simulations. For systems at high temperatures, such as our 0.3+1.1 M� He+CO
merger, this is unsurprising as the material in the convective region is nearly radiation
dominated, implying an adiabatic index near γ = 4/3. For systems such as low total mass
He+He mergers (ZP6 & ZP7), the matter is gas pressure dominated, which would imply an
adiabatic index of 5/3. However these systems have larger residual entropy gradients, such
that the relationship P ∝ ρ4/3 roughly holds. Since we can provide satisfactory fits without
introducing an additional parameter, we choose n = 3 for all our fits.

Quantitatively

P (ρ) =





PZT(ρ) if Mr < Mc

K1ρ if Mc < Mr < Mc +Mtp

K2ρ
1+1/n if Mc +Mtp < Mr

(2.13)

where PZT is the pressure of a zero temperature Fermi gas with µe = 2 (e.g Shapiro &
Teukolsky 1983). K1 and K2 are set by the condition that ρ, P are continuous at the
transitions between regimes.

In combination with the equations of hydrostatic equilibrium and mass conservation in
1D spherical coordinates

dMr

dr
= 4πr2ρ (2.14)

dP

dr
= −GMrρ

r2
(2.15)

and a central boundary condition ρ(rinner) = ρc, this is sufficient to fully specify a 1D model.
We set ρc to be the value of the central density at the end of our simulations.

For each of our simulations we fit for the two masses Mc and Mtp. Table 2.3 reports the
results of these fits. Fig. 2.10 shows the results of the fit to our fiducial model. The fit
reproduces the observed quantities to within ∼ 30 per cent. The fit is worst in the region
described by the isothermal equation of state, which is unsurprising since this is the least
physically motivated part of our effective equation of state.

Our fitting procedure does not use or provide any spatial information about the chem-
ical composition. As a rough approximation, one can simply retain the initial Lagrangian
composition of the system with the secondary outside of the primary. In the mergers where
the chemical compositions of the WDs were initially identical, this is a good approximation
because nuclear reactions do not significantly alter the composition (for the set of mergers
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panel shows the relative error between the fit and the simulation. The vertical grey lines show the
position of the transitions in the piecewise equation of state.
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ID ρc [g cm−3] Mc Mtp

ZP1† 8.8×106 0.71 0.10
ZP2† 4.7×107 0.98 0.12
ZP3† 9.5×107 1.05 0.16
ZP4† 3.8×106 0.53 0.13
ZP5 2.8×107 0.84 0.20
ZP6 6.4×105 0.28 0.08
ZP7 1.5×106 0.38 0.12
ZP8 3.3×108 1.11 0.24

Table 2.3 : The parameters from our fits (see Equations 2.13-2.15 and surrounding discussion). ID
is the run ID. ρc is the central density extracted from the end of our simulations. Mc is the amount
of mass (in M�) in the zero-temperature degenerate core. Mtp is the amount of mass (in M�) in
the isothermal region, loosely corresponding to the temperature peak. †marks those systems which
have a mixed chemical composition.

we considered). For mergers where the WDs had different compositions (which are marked
in Table 2.3), the assumption that the composition is conserved in a Lagrangian sense is sub-
stantially more crude because of mixing and the effects of nuclear burning. In those cases,
these simple fits would be inappropriate for work in which inaccuracies in the chemical
composition could have a large effect.

2.4.2 Burning Time

Recently there has been considerable interest in the possibility of central carbon deto-
nations triggered by the detonation of a helium layer on the surface of a CO WD. During
a WD merger, conditions for detonations may be reached in instabilities in the accretion
stream (Guillochon et al. 2010) or at surface contact (e.g. Dan et al. 2012). The systems
we consider did not reach detonation conditions during the SPH simulations (though those
could not resolve accretion stream instabilities).

During the phase of evolution that we simulate, viscous heating does increase the tem-
perature and either initiate or increase the rate of burning. Fig. 2.11 shows the minimum
burning times and corresponding temperatures for the eight systems we simulate. We calcu-
late the minimum nuclear burning time as tburn = cPT/εnuc, where cP is the specific heat at
constant pressure, T is the temperature and εnuc is the specific energy generation rate from
nuclear reactions.

The minimum burning time is not necessarily located at the location of peak temperature,
as differences in the chemical composition (for example, the presence of helium) may make
the rate of energy release greater at a different location. In general, the viscous heating causes
a monotonic increase in the temperature. Therefore, initially the burning time drops. Then,
in cases where the burning time is less than the viscous time, changes in the composition
(such as the depletion of helium) begin to shift the minimum burning time to slightly lower
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temperatures where more material remains to burn.
In the case of the 0.5+1.2 M� merger, the burning time, which is∼ 40tdyn at the beginning

of the simulation, decreases to as low as ∼ 2tdyn, where the dynamical time is calculated as
tdyn = P/(ρgcs). The ratio tburn/tdyn . 1 provides a rough criterion for possible detonation.
Detailed conditions for detonations are still a topic of current research and almost certainly
require resolving smaller length scales than our current simulations can do (for example, see
discussion in §3.2 of Woosley & Kasen 2011).

Using the value of tburn/tdyn as a guide, viscous heating does not cause any of the remnants
that we simulated to experience dynamical burning. However, with the low value of tburn/tdyn

for the 0.5+1.2 M� system and the temperature sensitivity of nuclear reactions, we expect
that systems only slightly more massive would experience dynamical burning. Furthermore,
if there are stochastic fluctuations, it is even possible that this particular system could
experience dynamical burning.

Dan et al. (2012) surveyed the parameter space of primary/secondary WD mass and
mapped out regions where they found conditions during contact that could lead to detona-
tion. In general, these conditions happen at a “hot spot”. If the system does not detonate,
the subsequent evolution toward an axisymmetric state causes the peak temperature to fall.
Heating during the viscous evolution reverses this trend and creates a hot shell, which, as dis-
cussed previously, may reach conditions of dynamical burning. Some simple estimates based
on figure 8 of Dan et al. (2012) suggest that the region of parameter space where systems
would not reach conditions of dynamical burning at contact but would reach such conditions
later on during the viscous evolution is relatively small. Future work will quantitatively
address this question by simulating a wider range of merger remnants. However, if contact
detonations (or other earlier detonation mechanisms such as accretion stream instabilities)
do not prove to be robust, viscous heating could potentially ensure that a wide range of WD
mergers trigger a surface detonation.

2.5 Conclusions
The merger remnants of binary white dwarfs are differentially rotating and unstable to

MHD instabilities like the MRI. As outlined by Shen et al. (2012), MHD stresses give rise
to a viscous phase of evolution which occurs on a time-scale much less than the thermal
time. To investigate the outcome of this viscous evolution, we perform multi-dimensional
hydrodynamic calculations of the evolution of WD binary remnants under the action of an α-
viscosity. The initial conditions for these calculations are the SPH simulations by Dan et al.
(2011). We find that these remnants evolve towards spherical states on time-scales of hours.
This confirms the arguments in Shen et al. (2012) that the post-merger evolution of WD
merger remnants is via viscous redistribution of angular momentum that leads to nearly solid
body rotation. The transport of angular momentum outwards removes rotational support
from the majority of the mass leading to a nearly spherical remnant. The dynamics during
this phase is not consistent with accretion at the Eddington limit, as in previous models of
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Figure 2.11 : The shortest burning time (top panel) and corresponding temperature (bottom panel)
for each of our simulated systems. The x-axis is the mass of the primary WD. Two systems have
the same primary mass of 1.2 M� and are slightly offset on the x-axis for visual clarity (ZP3 to
the left and ZP8 to the right). In the top panel, the circle represents the shortest burning time
reached overall, that is at any point during the simulation; the cross represents the burning time at
the end of the simulation. They are connected by a dashed line to guide the eye and indicate that
intermediate values are achieved. The same symbols in the bottom panel show the temperatures at
the corresponding locations. Because of varying chemical composition, the temperature associated
with the shortest burning time is not necessarily the global peak temperature. The right axis of
the top panel and the orange circles show the ratio tburn/tdyn (as defined in the text) at conditions
corresponding to the black circles. In no case does the burning time ever reach the dynamical time,
though in ZP3 it is within a factor of two.
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WD merger remnants (e.g. Nomoto & Iben 1985; Saio & Nomoto 1998, 2004; Piersanti et al.
2003b,a). Instead, the viscous evolution of WD merger remnants is much more analogous to
that of a differentially rotating star.

Viscous heating associated with the approach to solid body rotation unbinds only a very
small amount of mass (. 10−5M� in our fiducial calculation). This is in contrast to some of
the intuition developed in the context of radiatively inefficient accretion flows, which predict
outflows. To understand this, we perform simple accretion tori calculations which indicate
that the relatively small radius difference between the disc and the surface of the WD can
explain why only a small amount of mass becomes unbound (see §2.3.1).

Viscous heating causes one of the systems we simulate to reach conditions of nearly
dynamical He burning, so it is possible that the post-merger viscous evolution triggers a
detonation in some cases. Recently Dan et al. (2012) presented a suite of more than 200 WD
merger simulations which more thoroughly populate the q-Mtot plane. They found that many
of these systems reached the conditions for detonation during the merger (see for example
their figures 6 & 8). In our calculations, min(tburn/tdyn) decreases by a factor of ∼ 10 during
the viscous phase (see §4.2). We speculate that systems that have tburn/tdyn . 10 at the
merger may reach conditions for detonation during the subsequent viscous phase. However,
we estimate that the number of systems which would satisfy this condition but have not
reached min(tburn/tdyn) < 1 during the dynamical phases of the merger is likely to be small.
If other earlier detonation mechanisms do not prove to be robust, viscous heating could
potentially trigger a surface detonation after the merger, causing either a .Ia supernovae
(Bildsten et al. 2007) or a Type Ia supernova via a double detonation scenario.

Our purely hydrodynamic simulations cannot address the effects of magnetic fields. MHD
simulations resolving the action of the MRI would allow a more realistic treatment of the
viscous stresses than an α-viscosity2, though the quantitative insensitivity of our results to
the value of α leads us to think that our conclusions are robust. Converting our fiducial value
of α to a magnetic field strength gives |B| ∼

√
4παρc2

S ∼ 1010G. The implications of this
estimate for the subsequent evolution of the merger remnant depend on the structure of the
field. The generation of a large-scale field could lead to the formation of a strongly magnetized
WD, which would be rapidly rotating and would quickly spin down via a magnetized wind.
The presence of a strong magnetic field would also affect the conduction of heat in the
interior of the WD. Alternatively, it is possible that the strong field is relatively small scale
and so efficiently redistributes angular momentum in the interior of the remnant but does
not significantly affect its global properties.

The end states of our calculations provide a starting point for investigations of the long-
term thermal evolution of WD merger remnants. In our fiducial case, we expect that the
luminosity from the nuclear burning will drive convection, establishing an extended convec-

2It is worth noting that MHD simulations which capture the evolution of the entire remnant promise
to be quite challenging. The instabilities in regions where dΩ/dr > 0 are likely to be short wavelength
non-axisymmetric modes that have a different time-scale and spatial scale than the MRI modes that operate
where dΩ/dr < 0. Correctly capturing the physics both inside and outside the rotation peak will be extremely
difficult.
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tive envelope with its base at slightly larger radii than the temperature peak. The object
will likely grow to have a radius comparable to that of a giant star and correspondingly a
relatively cool effective temperature like the models presented in Shen et al. (2012). There
are clear opportunities for future work in the self-consistent thermal evolution of these ob-
jects and their consequences for Type Ia supernovae, neutron stars, R Coronae Borealis stars
and other phenomena.
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2.A Verification Tests
We perform a number of tests to confirm that our results are insensitive to the details

of our approximations and numerical methods. A summary of these test runs is shown in
Table 2.4. Each run has an ID, which begins ZTn, where ZT represents “ZEUS testing” and
n is an integer, indicating that SPH simulation Pn of Dan et al. (2011) was used to generate
the initial conditions. The results of these tests are discussed in the following sections.

2.A.1 Resolution

We confirm that our solutions are numerically converged by performing runs at different
resolutions. We perform runs with 2/3 and 4/3 the linear resolution of the fiducial calcu-
lation. Fig. 2.12 shows 1D profiles from each of these runs after 104 s. There is only a
small variation between the fiducial run (ZP5) and the high resolution run (ZT5-HR). The
lower resolution run (ZT5-LR) also agrees quite well; the visible variation is in the interior
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ID Parameter Value
ZT5-LR Nr, Nθ 48,32
ZT5-HR Nr, Nθ 96,64
ZT5-alpha-m α 10−2

ZT5-alpha-p α 10−1

ZT5-hydro α-viscosity Off
ZT5-visc-full α-viscosity All components
ZT2-burn-ap13† Network aprox13
ZT2-burn-heco† Network HeCONe
ZT2-burn-off† Network No Burning
ZT5-IC1 tend,SPH 35 P0

ZT5-IC2 tend,SPH 35.6 P0

ZT5c-rnu-m rν 2.5× 108 cm
ZT5c-rnu-p rν 5.0× 108 cm

Table 2.4 : Details of the test runs discussed in this appendix. ID is the run ID: ZT represents
“ZEUS testing” and the number indicates which initial conditions are being simulated. The string
following the first dash briefly describes the parameter being changed. Parameter is a description
of the aspect of the run that was varied. Value is its value. †this simulation had a lower resolution,
Nr, Nθ = 48,32

of the surviving WD, not the viscously evolving exterior. These results demonstrate that
our simulations are converged in the quantities of interest.

2.A.2 Independence of α

We expect our simulations to be insensitive to the exact value of α so long as the hierarchy
of time-scales in the problem remains unchanged. Specifically, α must not be so small that
energy transport by radiation (or energy release from nuclear reactions) becomes important
and not so large that the viscous time becomes less than the orbital time. Fig. 2.13 shows that
we observe only weak variation in our results with α in the range 0.01−0.1. The simulations
are compared after a constant number of viscous times, such that αtend = 3× 102 s.

2.A.3 Viscosity Tensor

Motivated by numerical simulations of the MRI we choose a prescription in which only the
azimuthal components of the viscous shear tensor were retained. We relax this assumption
and explore the effects of retaining all components of the tensor. This choice has virtually
no effect on the evolution of the material near the temperature peak, as the large initial φ
velocity shear means that the non-azimuthal components of the tensor are small in compar-
ison anyways. In the outer regions where azimuthal shear is not always so dominant, this
choice can have an effect. In the fiducial case the evolution of the outer ∼ 0.2M� of material
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Figure 2.12 : The convergence of our simulations of the fiducial remnant with numerical resolution.
The top panel shows 1D temperature and entropy profiles and the bottom panel shows the ratio of
the angular velocity to the Keplerian angular velocity. The overlap of the fiducial run (ZP5) and
the high resolution run (ZT5-HR) indicate our simulations are converged in these quantities.



2.A. VERIFICATION TESTS 37
T

[1
08

K
]

0
2

4
6

8

s
[e

rg
g
−
1
K

−
1
]

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

1
0
.0

r [cm]

Ω
/Ω

k

108 109 1010 1011

0
.0

0
.6

ZT5-alpha-m (α = 10−2)

ZP5 (α = 3 × 10−2)

ZT5-alpha-p (α = 10−1)

Figure 2.13 : The variation of our simulations of the fiducial remnant with different values of α. The
top panel shows 1D temperature and entropy profiles and the bottom panel shows the ratio of the
angular velocity to the Keplerian angular velocity. The profiles are shown after the same number
of viscous times, at αtend = 3 × 102 s. While there are small variations between runs, we see no
significant change in our results for values of α spanning an order of magnitude.
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shows some minor differences. However, none of our conclusions are based on the detailed
structure of the outer material, so this does not alter any of our conclusions.

2.A.4 Initial Conditions

In order to confirm that our results are independent of small details of the initial con-
ditions, we initialize our simulations with output from the same SPH calculation taken at
three different times. By default, we start from the end of the SPH calculation, which for the
fiducial model was after 35.7 initial orbital periods had elapsed. (The secondary was tidally
disrupted after 29 orbits.) The results we obtain with initial conditions from output taken
0.1 and 0.7 initial orbital periods before the end of the calculation are virtually identical.
The outcome of our calculation is insensitive to the duration of the SPH simulation, so long
as the remnant has had sufficient time to evolve towards axisymmetry.

2.A.5 Viscosity Cutoff

As expected, we confirm that out results are insensitive to the location of the cutoff
radius defined in Equation 2.6 and the surrounding discussion.

2.A.6 Nuclear Network

As discussed in Section 2.2.3 we implement a simple 5 isotope (He,C,O,Ne,Mg) nuclear
network. We confirm that this simple nuclear network reproduces the results of the more
sophisticated aprox13 network. Because of the high computational cost of the full network,
we perform these test calculations at a lower resolution. We perform these tests on the
0.3 + 1.1 He+CO system (ZP2) as it has the shortest burning time of any of the He+CO
mergers we consider. Fig. 2.14 shows that the two networks give identical results. We
also show the effect of omitting the nuclear burning, which does change the values of the
thermodynamic quantities near the temperature peak, but does not alter the overall structure
of the remnant.

2.A.7 3D

Moving to 3D makes the viscous evolution substantially more computationally demanding
because of the strong timestep constraint imposed by our explicit evolution of the viscous
terms, ∆tvisc ∼ min((∆r)2/ν). A zone near the pole (θ ≈ π/(4Nθ)) has size ∆r = 2πrθ/Nφ,
where Nφ is the number of φ zones. The means that at the same r, θ resolution, a 3D
calculation will require evolving approximately Nφ as many zones at timestep smaller by a
factor of N2

φ. This issue can be helped somewhat by subcycling, that is advancing the viscous
terms at ∆tvisc but integrating the rest of the hydrodynamics at ∆tCFL.

In light of these issues, the simulation we perform is a simple one in which we initialize
the same azimuthally symmetric initial conditions used in 2D on a lower resolution 3D grid
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Figure 2.14 : The variation of our simulations of the 0.3 + 1.1M� remnant with different nuclear
networks. The top panel shows 1D temperature and entropy profiles and the bottom panel shows
the ratio of the angular velocity to the Keplerian angular velocity. The results of our simple network
(HeCONe) and the aprox13 network are almost indistinguishable. We show the results of omitting
the network entirely to illustrate the small impact of nuclear burning on the remnant structure over
the viscous time-scales of interest.
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(Nr = 48, Nθ = 32, Nφ = 32). We evolve the system for a substantially shorter time, only
1 × 102 s. Over that limited time, we observe no qualitative differences which would affect
our conclusions.
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Chapter 3

The Evolution of Super-Chandrasekhar
Mass White Dwarf Merger Remnants

Abstract
We present stellar evolution calculations of the remnant of the merger of two carbon-

oxygen white dwarfs (CO WDs). We focus on cases that have a total mass in excess of
the Chandrasekhar mass. After the merger, the remnant manifests as an L ∼ 3× 104 L�
source for ∼ 104 yr. A dusty wind may develop, leading these sources to be self-obscured
and to appear similar to extreme AGB stars. Roughly ∼ 10 such objects should exist
in the Milky Way and M31 at any time. As found in previous work, off-center carbon
fusion is ignited within the merger remnant and propagates inward via a carbon flame,
converting the WD to an oxygen-neon (ONe) composition. By following the evolution for
longer than previous calculations, we demonstrate that after carbon-burning reaches the
center, neutrino-cooled Kelvin-Helmholtz contraction leads to off-center neon ignition in
remnants with masses ≥ 1.35M�. The resulting Ne flame converts the core to a silicon
WD. Thus, super-Chandrasekhar WD merger remnants do not undergo electron-capture
induced collapse as traditionally assumed. Instead, if the remnant mass remains above the
Chandrasekhar mass, we expect that it will form a low-mass iron core and collapse to form
a neutron star. Remnants that lose sufficient mass will end up as massive, isolated ONe or
Si WDs.

3.1 Introduction
In double WD systems with sufficiently short initial orbital periods, angular momentum

losses from gravitational wave radiation shrink the orbit and can lead to a merger of the
WDs. The outcome of such a merger is strongly dependent on the mass of the individual
WDs and their mass ratio. For recent summaries of the many possible outcomes, see fig. 1
in Dan et al. (2014) or fig. 3 in Shen (2015).
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Iben & Tutukov (1984b) andWebbink (1984) proposed that mergers of two carbon-oxygen
(CO) WDs whose total mass was in excess of the Chandrasekhar mass would lead to the
central ignition of carbon fusion and hence to a Type Ia supernova. It was quickly pointed out
by Saio & Nomoto (1985) and by Nomoto & Iben (1985) that the rapid mass transfer in such
an event would lead to the off-center ignition of carbon, triggering the quiescent conversion
of the remnant to an oxygen-neon (ONe) composition. Standard models conclude that
subsequently, electron-capture reactions cause the ONe core to collapse and form a neutron
star (Miyaji et al. 1980; Schwab et al. 2015).

Saio & Nomoto (1985) and Nomoto & Iben (1985) approximated the effects of the WD
merger as the accretion of material on to the more massive WD. They studied constant ac-
cretion rates Ṁ . 10−5 M� yr−1, motivated by the assumption that the material is accreting
from a disc at a rate bounded by the Eddington limit. Since this early work, smoothed-
particle hydrodynamics (SPH) simulations (e.g., Benz et al. 1990; Dan et al. 2011) of double
WD systems have been used to investigate the dynamics of the merger. Schematically, the
primary (more massive) WD remains relatively undisturbed and the secondary (less massive)
WD is tidally disrupted. Some material from the disrupted WD is shock-heated, forming
a thermally-supported layer at the surface of the primary WD; the rest of the material is
rotationally-supported, forming a thick disc at larger radii.1

Motivated by these results, Shen et al. (2012) and Schwab et al. (2012) studied the post-
merger evolution of these systems in more detail. They showed that the transport of angular
momentum occurs on a time-scale (∼ 104 s) far shorter than the time-scale on which the
remnant cools (∼ 104 yr). One of the key conclusions of Shen et al. (2012) and Schwab et al.
(2012) was thus that the viscous evolution should be taken into account before exploring the
long-term thermal evolution of the merger remnant.

In this work, we follow the long-term evolution of the merger of two CO WDs. The
initial conditions for these calculations are generated self-consistently, beginning from SPH
simulations of the dynamical merger of the two WDs (Dan et al. 2011; Raskin et al. 2014)
and explicitly modeling the subsequent phase of viscous evolution as in Schwab et al. (2012).
We then use the MESA stellar evolution code (Paxton et al. 2011, 2013, 2015) to follow the
evolution of these merger remnants over thermal and nuclear time-scales.

In Section 3.2 we discuss our initial models along with the key options and input physics
that enable our MESA calculations. In Section 3.3 we discuss the ignition and propagation
of a carbon flame. In Section 3.4 we discuss the ignition of a neon flame and then in
Section 3.5 outline how subsequent evolution may lead to the formation of a neutron star.
In Section 3.6 we discuss the observational properties of the remnant. In Section 3.7 we
conclude, presenting a schematic overview of our results and suggesting avenues for future
work. Fig. 3.12 summarizes the possible end states of super-Chandrasekhar WD mergers.

1Exceptions to this picture include WD collisions (e.g., Raskin et al. 2009) or cases where the mass ratio
is nearly unity (e.g., van Kerkwijk et al. 2010b).
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ID SPH Ref. M2 M1 Viscous Ref. Mtot

M15 Dan11 0.60 0.90 Schwab12 1.486
M16 Raskin14 0.64 0.96 Raskin14 1.586

Table 3.1 : A summary of the two merger systems studied in this work. The ID reflects the total
mass of the system. “SPH ref.” indicates the primary reference containing the details of the SPH
calculation of the merger (Dan11: Dan et al. 2011, Raskin14: Raskin et al. 2014). M2 is the mass
(in M�) of the secondary, the less massive of the two WDs; M1 is the mass of the more massive
primary. “Viscous ref.” refers to the primary reference containing the details of the subsequent
viscous evolution (Schwab12: Schwab et al. 2012, Raskin14: Raskin et al. 2014). Mtot is the total
mass of the system (in M�) at the end of the viscous phase simulation, and hence the initial mass
of the MESA model.

3.2 Setup of MESA Calculations

3.2.1 Initial Models

As discussed in the introduction, SPH simulations of WD mergers show that at the end
of the dynamical phase of the merger, the primary white dwarf remains mostly undisturbed.
It is now surrounded by the tidally disrupted secondary, which includes a significant amount
of material in a rotationally-supported disc. In Schwab et al. (2012), we took the output of
SPH merger calculations, mapped them into a grid-based hydrodynamics code, and followed
the evolution of these remnants under the action of an α-viscosity. We found that the viscous
stresses transformed the disc material into a spherical, thermally-supported envelope on a
time-scale of hours.

In this work, we focus on two super-Chandrasekhar WDmerger remnants, one with a total
mass of approximately 1.5M� (model M15) and another with total mass of approximately
1.6M� (model M16). Both remnants are the result of a merger with mass ratio q = 2/3 and
have a composition of 50 per cent carbon and 50 per cent oxygen by mass. Table 3.1 contains
a summary of these models, including references to the papers in which the simulations of
the dynamical and viscous phases were first reported.

The initial conditions for the thermal evolution calculations in this work are the end
states of our viscous evolution calculations. In Appendix 3.A, we discuss the details of how
we transfer the output of our hydrodynamic simulations into MESA. In Fig. 3.2, we show
the density-temperature profiles of our initial MESA models. We define the burning time
as tburn = cpT/εnuc, where cp is the specific heat at constant pressure, T is the temperature
and εnuc is the specific energy generation rate from nuclear reactions. At the temperature
peaks of both models, tburn & 104 s, the approximate duration of the viscous evolution. This
demonstrates that substantial nuclear energy was not liberated during the viscous phase.



3.2. SETUP OF MESA CALCULATIONS 44

M
15

M
16

P g
as
=
P r

ad

tburn = 10 4
s

ε
nuc =

ε
ν

1 2 3 4 5 6 7 8 9

7.
8

8.
0

8.
2

8.
4

8.
6

8.
8

9.
0

9.
2

log(ρ/g cm−3)

lo
g
(T
/
K
)

Figure 3.1 : The initial density-temperature profiles of our MESA models M15 and M16, taken from
the end state of simulations of the viscous phase of WD merger remnants (see Appendix 3.A). The
dotted line shows where the energy release from nuclear burning is equal to the neutrino losses. The
dashed line shows where the burning time-scale tburn = 104 s. The dash-dot line indicates where gas
and radiation pressure are equal. Both models reached carbon ignition conditions during the viscous
evolution, but the duration of the viscous phase was not long enough to allow significant nuclear
burning to occur. Since the structure of the 1.6M� model is so similar to that of the 1.5M� model,
its evolution and outcomes are similar (aside from the possible effects of mass loss; see Section 3.4).
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Figure 3.2 : The initial pressure-temperature profiles of our MESA models M15 and M16, taken
from the end state of simulations of the viscous phase of WD merger remnants (see Appendix 3.A).
The dash-dot line indicates the slope corresponding to the pressure-temperature relationship for
blackbody radiation.
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3.2.2 MESA Version and Important Options

The calculations performed in this paper use MESA version r6596 (released 2014-06-08).
As required by the MESA manifesto, the inlists necessary to reproduce our calculations will
be posted on http://mesastar.org.

We use approx21.net, a 21-isotope α-chain nuclear network. In order to avoid spurious
flashes, it is important to resolve the burning fronts in the convectively-bounded deflagrations
that develop in our models (e.g., Saio & Nomoto 1998). We use the options selected by
Farmer et al. (2015) in their study of carbon flames in super-AGB stars. In particular, we
use the controls

mesh_dlog_burn_c_dlogP_extra = 0.10
mesh_dlog_cc_dlogP_extra = 0.10
mesh_dlog_co_dlogP_extra = 0.10

which add additional spatial resolution in regions where carbon burning is occurring. This
ensures that that flame is well-resolved. We use analogous controls to ensure that the neon-
burning flames in our models are also well-resolved.

3.2.3 Input Physics

The initial composition of the model is pure carbon and oxygen. We use the OPAL
radiative opacities for carbon and oxygen-rich mixtures (Iglesias & Rogers 1993, 1996). These
are referred to as OPAL “Type 2” tables in MESA. We select a base metallicity using the
control Zbase = 0.02. The lower temperature boundary of these tabulations is log(T/K) =
3.75.

As we show in Section 3.6, when the outer layers of the remnant expand, they reach
temperatures below this threshold. MESA does not provide low-temperature opacities that
include separate carbon and oxygen enhancements. As a result, MESA is usually forced to
fall back to opacity tabulations which assume a different composition. Thus, when blending
between the OPAL tables and any of the included low-temperature tables, there are dramatic
and unphysical changes in opacity at the location of the blend.

In order to ensure that the composition assumed by the opacities approximately matches
the composition of the model, we generate a new opacity table. These calculations and
their results are briefly described in Appendix 3.B. We consider only a single composition:
XC = 0.49, XO = 0.49, Z = 0.02, where the relative metal abundances are drawn from
Grevesse & Sauval (1998). We do not consider the effects of molecular opacities in these
calculations, putting a rough lower limit on their validity of log(T/K) & 3.5. Using these
tables, our models obey log(Teff/K) > 3.6 and so do not violate this assumption. We will
discuss the role of molecule and dust formation in these objects in Section 3.6.

http://mesastar.org
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3.3 Carbon Flame
In each of the initial models shown in Fig. 3.2, the rate of energy release from nuclear

reactions exceeds the rate of energy loss from neutrino cooling at the initial temperature
peak. As described in Schwab et al. (2012), this is because heating by viscous dissipation
leads to off-center ignition of self-sustaining carbon fusion within hours of the merger.2 When
we begin our MESA calculation, there is thus immediately off-center carbon burning in the
remnant. The energy release in this carbon-burning shell quickly leads to the formation of
a convection zone. Heat from the burning region is conducted into the degenerate interior,
giving rise to a deflagration wave that begins propagate towards the center of the remnant.
We refer to this deflagration as the “carbon flame”. Fig. 3.3 shows the evolution of this flame
in our MESA calculations of model M15. After an initial transient phase with a duration
of . 100 years (t = 0 to point 1), the deflagration forms and propagates to the center over
≈ 20 kyr (point 1 to point 4). Because the structure of the 1.6M� model is so similar to
that of the 1.5M� model (see Fig. 3.2) its evolution and outcomes are similar; for simplicity,
we will primarily discuss model M15.

It is important to note that the carbon flame, while off-center, is still deep in the interior.
The convective zone outside the burning region satisfies a “balanced power” condition, where
the total luminosity of thermal neutrino emission from the zone is approximately equal to
the rate of energy release from fusion at its base (Timmes et al. 1994). This neutrino-cooled
convective zone has a radial extent of order the pressure scale height, and its upper boundary
is sufficiently deep that the time-scale for radiative diffusion to transport the energy to the
surface is longer than the evolutionary time-scale of the remnant. Thus, while key to the final
fate of the remnant, the energy release of the carbon flame is not coupled to the surface, and
does not power the luminosity of the remnant. Instead, the behavior of the surface layers—
which we discuss in more detail in Section 3.6—is driven by the thermal energy generated
during the merger.

A snapshot of the carbon flame structure is shown in Fig. 3.4. At this time, the flame is
at a density ρ ≈ 4× 105 g cm−3 and temperature T ≈ 7× 108 K, with a carbon mass fraction
XC ≈ 0.5. At these conditions, the flame width is ≈ 2 × 107 cm and the flame speed is
≈ 4× 10−4 cm s−1. While this exact density, temperature, and composition are not present
in Timmes et al. (1994), the flame speed and thickness we observe are consistent with their
tabulated results.

Denissenkov et al. (2013) suggested that efficient mixing at the convective boundary can
quench inwardly propagating carbon flames in super-AGB stars. If a similar phenomenon
were to occur here, the death of the carbon flame would lead to qualitatively different

2This is in contrast to calculations that model the merger as Eddington-limited accretion, in which carbon
ignition does not occur for & 104 yr, until sufficient material has accreted to adiabatically compress the base
of the shell to higher temperatures. In a lower mass merger, say Mtot ≈ 1.4M�, we find that carbon fusion
does not ignite during the viscous evolution. In this case, there is a similar time delay, as carbon ignition
must wait for the cooling envelope to compress material at its base. An example of such evolution is shown
in Shen et al. (2012).
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Figure 3.3 : The propagation of the carbon flame in model M15 with no convective boundary mixing.
The x-axis shows time, as measured from the beginning of the MESA calculation; effectively this
is the time since merger. The y-axis shows the Lagrangian mass coordinate. The extent of the
convective region associated with the flame is shaded. The location of maximum nuclear energy
release, a proxy for the location of the flame, is indicated by the thick red line at the bottom of this
region. After approximately 20 kyr, the flame reaches the center. The numbered triangles at the
top of the plot indicate times in the evolution that will be referenced in Figs. 3.5 and 3.11.
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Figure 3.4 : Structure of a carbon-burning flame. The shaded grey region marks the convection zone.
The temperature (T/109 K), density (ρ/106 g cm−3), energy generation rate (εnuc/107 erg s−1 g−1),
and 12C mass fraction are shown as function of radius. The thickness of the flame is ∼ 107 cm. This
profile from our MESA calculation is from a time slightly before point 2, as marked in Fig. 3.3.
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results, as it would create a “hybrid” WD with a CO core and an ONe mantle. We include
this possibility in the flow chart presented in Section 3.7. However, Lecoanet et al. (2016)
find that convective plumes fail to induce sufficient mixing to lead to flame disruption and
conclude that these “hybrid” WDs are not a typical product of stellar evolution.

3.4 Kelvin-Helmholtz Contraction and Neon Ignition
When the carbon flame reaches the center, it lifts the degeneracy of the material. This

is illustrated in Fig. 3.5, where the dash-dot line (labeled point 4) shows the temperature-
density profile of the model at the time of central carbon exhaustion. The newly non-
degenerate core will now Kelvin-Helmholtz (KH) contract. The core is sufficiently hot and
dense that it cools through thermal neutrino losses. As a result, it will develop an off-center
temperature peak. We note that the evolution of the central density and temperature is
similar to that observed in intermediate mass stars, as these objects also develop degenerate
cores with similar masses (e.g., Jones et al. 2013, 2014).

As discussed by Nomoto (1984), there is a critical core mass for off-center neon ignition.
Nomoto demonstrated this by means of a simple calculation in which stellar models of pure
neon were constructed and allowed to KH contract. Neon ignition occurred only in models
with a mass above 1.37M�. We repeated this calculation and find a slightly lower critical
mass of 1.35M� for pure 20Ne models (see Appendix 3.C). We use the results of these pure
neon models to guide our interpretation of the central evolution of the WD merger remnants.

Fig. 3.6 shows a Kippenhahn diagram of model M15 from the time the carbon flame
reaches the center until neon ignition. Initially carbon is being burned in the core, but
over the first ≈ 1 kyr, the central convection zone shrinks and vanishes as the carbon in the
center is exhausted. As the star KH contracts, a series of off-center carbon flashes occur.
Additionally, an off-center temperature peak develops. Its mass coordinate is indicated by
the black dotted line.

Fig. 3.7 shows the evolution of the temperature and density at both the center (solid
black line) and the off-center temperature peak (dashed black line) in model M15 during
the KH contraction phase. The “wiggles” in the evolution of the center are manifestations of
changes to the stellar structure due to the off-center carbon flashes shown in Fig. 3.6. The
grey lines show the analogous temperature and density evolution of a 1.385M� pure neon
model. The qualitative agreement between the two models is good.

The agreement between our full remnant models and our simple pure neon calculations
demonstrates that the off-center neon ignition is a simple consequence of the mass of the
remnant. Once ignited, the neon burning will propagate to the center in a manner similar
to the carbon burning, converting the object to silicon-group elements. (See Section 3.5 for
more discussion of this process and the subsequent evolution.) Because the critical mass for
neon ignition (1.35M�) is less than the critical mass needed to trigger the collapse of an ONe
core (1.38M�; Schwab et al. 2015), we conclude that is is difficult to produce an ONe core
with a sufficient mass to undergo AIC in a WD merger.
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Figure 3.5 : The evolution of the core of model M15 in temperature-density space as the carbon
flame propagates inward. Each line corresponds to one of the times indicated in Fig. 3.3; point 3
is omitted because it appears extremely similar to point 2. The location of the flame corresponds
to the location of maximum temperature in each line. The dashed grey line marks the degeneracy
condition (above/left is non-degenerate; below/right is degenerate). Early in the evolution (point
1) the center has log(ρ/g cm−3) > 7. As the flame lifts the degeneracy, the central density decreases
(point 2). Once the flame reaches the center (point 4), is lifts the degeneracy throughout the star.
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Off-center neon ignition does not appear to have been observed in previous studies of CO
WD merger remnants. The salient difference between this work and previous work appears
to be that we evolved the remnants for longer. Saio & Nomoto (1985) halted their calculation
when the carbon flame was at a mass coordinate of Mr = 0.005M� because it had become
too computationally costly to continue. Later work by the same authors (Saio & Nomoto
1998) allowed the flame to reach the center, but did not continue the evolution beyond this
point. Other work on the long-term evolution of CO WD merger remnants has focused on
avoiding off-center ignition (e.g., Yoon et al. 2007).

As an illustration of the effects of mass loss on the core, we run a version of model M15
with a mass loss rates drawn from Bloecker (1995). That is, we use the MESA options

AGB_wind_scheme = ’Blocker’
Blocker_wind_eta = 0.1d0

The Bloecker (1995) mass loss rates were motivated by atmosphere calculations of Mira-like
stars and thus they are not directly applicable to this problem. However, we simply want to
remove some mass when the object is cool and luminous, and so this a suitable heuristic.

Fig. 3.8 shows the same quantities as Fig. 3.7, but for a model in which the remnant shed
approximately 0.2M� of material during the phase while the carbon flame was propagating
to the center. As the object contracts, an off-center temperature peak develops, but it fails
to reach temperatures where neon burning exceeds thermal neutrino losses. Instead, the
core becomes supported by electron degeneracy pressure, halting the KH contraction. As a
result, the peak temperature reaches a maximum and then begins to decrease. The remnant
will retain its ONe composition and cool to become a massive WD.

3.5 Neon Flame and Subsequent Evolution
The phase beginning with off-center neon ignition is relatively unexplored. We are unable

to self-consistently evolve the remnants all the way to their final fate, but the likely outcome
is formation of a neutron star via an iron core collapse. Analogous phases of evolution
in single intermediate mass stars (Jones et al. 2014; Woosley & Heger 2015) and in ultra-
stripped binary systems (i.e., ones that form helium cores 2.5-3.5 M�; Tauris et al. 2013,
2015) continue to be active areas of research. Future results in these areas can be applied to
the evolution of super-Chandrasekhar mass WD merger remnants.

3.5.1 Neon Flame

In model M15, off-center neon ignition occurs at a mass coordinate Mr ≈ 0.6M�. This
quickly forms a convectively-bounded neon-burning deflagration front which begins to prop-
agate inwards towards the center of the star. Fig. 3.9 shows the location of the flame and
its accompanying convection zone during this phase. In our MESA calculations, we assume
that there is no additional mixing at the convective boundary.
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Figure 3.6 : A Kippenhahn diagram of model M15 from the time the carbon flame reaches the center
until off-center neon ignition. The x-axis shows time, as measured from the time when the carbon
flame reached the center. The y-axis shows the Lagrangian mass coordinate. Convective regions
are shaded grey and the locations of carbon burning (with εnuc > 107 ergs s−1 g−1) are marked in
red. The dotted black line indicates the location of the local maximum in the temperature profile
that is closest to the center.
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Figure 3.7 : The evolution of temperature and density at the center of model M15 (solid black line)
and at the temperature peak (dashed black line) during the KH contraction shown in Fig. 3.6. The
total mass of the remnant is ≈ 1.5M�. For visual clarity, the line for the temperature peak is
shown only after the central density reaches log(ρ/g cm−3) ≈ 7.25, which is marked by the black
circle. The grey lines show the evolution of a contracting 1.385M� pure neon model; the solid grey
line shows conditions at the center and the dashed grey line shows conditions at the temperature
peak, which due to neutrino cooling, develops off-center. The black dotted line shows approximately
where the energy release from neon burning is equal to the energy loss rate from thermal neutrinos.
Off-center neon ignition occurs in this model.
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Figure 3.8 : Same as Fig. 3.7, but for the version of model M15 with mass loss during the cool giant
phase (see Section 3.4). The remnant shed ≈ 0.2M� and now has a total mass of ≈ 1.3M�. The
grey lines show the evolution of a contracting 1.30M� pure neon model. Neon ignition does not
occur and the core instead becomes supported by electron degeneracy pressure. The remnant will
cool to form an ONe WD.
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As can be shown from the analytic estimates given in Timmes et al. (1994) and as dis-
cussed in Woosley & Heger (2015), oxygen-neon-burning flames are much faster (though still
extremely subsonic) and thinner than carbon-burning flames. Fig. 3.10 shows the structure
of the neon-burning flame in our MESA model; note that the flame thickness is ∼ 103 cm
and the flame velocity is ∼ 0.1 cm s−1.

In our MESA calculation we are directly resolving the flame, which is extremely com-
putationally inefficient.3 Future work will benefit from a sub-grid model such as that used
in Woosley & Heger (2015), where the flame is not resolved in the full-star simulation, but
tabulated velocities from resolved, micro-zoned flame calculations are used to propagate a
model for the flame.

3.5.2 Silicon Burning and Core Collapse

As neon-burning migrates to the center, it leaves behind silicon-group ashes. The degen-
eracy of these ashes is also lifted and it seems likely that the cycle of KH contraction and
subsequent off-center ignition will continue. In Appendix 3.C we find a critical mass for Si
ignition of ≈ 1.43M�. This suggests that in a narrow range of WD mergers (remnants with
masses 1.35M� . M . 1.43M�, accounting for mass loss), the final merger remnant could
be a WD with a Si-group composition.

Recently, Woosley & Heger (2015) discussed the presence of Si-flashes in the evolution
of 9 − 11M� stars. They found Si-deflagrations beginning in models with CO core masses
of ≈ 1.4M�, with increasingly intense Si-burning flashes as the mass increased. We do not
explore this phase in our MESA models. It is difficult to map our remnants on to any
particular model in the Woosley & Heger (2015) results, but it does appear that we are
in the regime where this unstable Si-burning may play a role. Future work will clarify its
importance.

For now, we assume that Si-burning in remnants withM ≥ 1.43M� (accounting for mass
loss) quiescently leads to the formation of an Fe-core and that subsequently this low mass Fe
core will collapse to form a neutron star. Thus, while we have revised the evolutionary story
for super-Chandrasekhar WD mergers, we think they are still likely to produce a population
of single, low-mass neutron stars.

3.6 Observational Properties of the Merger Remnant
In this section we describe the observational properties of super-Chandra WD merger

remnants, focusing on the time between the merger and the final collapse to form a neutron
star. As described in Sections 3.3 and 3.5.1, the energy released by fusion during the carbon
and neon flames does not reach the surface. It is instead lost primarily to neutrino cooling
deep in the stellar interior, at sufficiently high optical depths that the existence of the flame

3The calculation shown in Fig. 3.9 required approximately 3× 107 timesteps and two wall-clock months
on a pair of Intel Xeon E5-2670 v2 processors.
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Figure 3.9 : The propagation of the neon flame in model M15 with no convective boundary mixing.
The x-axis shows time, as measured from the beginning of neon burning. Note that the neon flame
propigates to the center ∼ 100 times more quickly than the carbon flame shown in Fig. 3.3. The
y-axis shows the Lagrangian mass coordinate. The extent of the convective region associated with
the flame is shaded. The outer extent of the convection zone varies significantly from timestep-to-
timestep, so for visual clarity, this has been smoothed. The location of maximum nuclear energy
release, a proxy for the location of the flame, is indicated by the red thick line at the bottom of this
region. The triangle at the top of the plot marks the point at which the flame structure is shown
in Fig. 3.10.
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Figure 3.10 : Structure of a neon-burning flame. The shaded grey region marks the convection zone.
The temperature (T/109 K), density (ρ/107 g cm−3), energy generation rate (εnuc/1014 erg s−1 g−1),
and 20Ne mass fraction are shown as function of radius. This illustrates that the thickness of
the flame is ∼ 103 cm which makes directly resolving the propagation of the neon-burning flame
computationally costly. This profile from our MESA calculation is from the time marked by the
black triangle in Fig. 3.9.
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does not modify the observational properties of the WD merger remnant. The latter are
instead governed by the heat released during the merger.

The outer envelope of the remnant responds to the energy deposited during the merger
and begins to radiate away this energy. Fig. 3.11 shows the location of model M15 in the
HR diagram during our MESA calculation, over the phase in which the carbon flame is
propagating to the center. The remnant radiates at the Eddington luminosity for a solar
mass object with an effective temperature ≈ 4000− 5000 K for ≈ 5 kyr, and then evolves to
the blue, spending ≈ 10 kyr with Teff & 105 K.

The track shown in Fig. 3.11 for the remnant resembles that of a star evolving from the
AGB to the planetary nebula stage (e.g., Kwok 1993). In some ways, the merger has formed
an object similar to the core of an intermediate mass star. However, the lack of hydrogen-
and helium-burning shells means that thermal pulses will be absent. Near the end of the
AGB phase, stars are seen to exhibit extreme (Ṁ & 104 M� yr−1) mass loss rates (e.g., van
Loon et al. 1999). The track shown in Fig. 3.11 does not include the effects of mass loss.
The inclusion of mass loss has two primary effects: (1) it alters the observational properties
of the remnant, likely obscuring it in an dusty wind and (2) it reduces the mass of the
remnant, potentially influencing the final outcome. In particular, with Ṁ ≈ 10−4 M� yr−1,
over the duration of the cool giant phase, the remnant would shed ∆M ≈ 0.1M�, sufficient to
change a model with total mass ≈ 1.5M� from super-to-sub Chandrasekhar (see Section 3.4).
However, we note that our model M16 displays similar evolution as M15, but with its higher
total mass ≈ 1.6M�, it can shed ∆M ≈ 0.1M� and remain super-Chandrasekhar.

In Fig. 3.11 the lowest effective temperature (Teff ≈ 4000 − 5000 K) reflects the steep
decline in the opacities at these temperatures—see Section 3.2.3 and Appendix 3.B. The R
Coronae Borealis stars are giants with similar effective temperatures (4000 − 7000 K) with
He-dominated, C-enhanced atmospheres (e.g., Clayton 1996). These objects exhibit high-
amplitude dimming events (≈ 10 mag in the optical) which are understood to be the result of
dust formation events outside the photosphere. It is possible that the super-Chandrasekhar
WD merger remnants would exhibit similar variability.

Given their cool photospheres between points 1 and 2 in Fig. 3.11 and their almost pure
carbon and oxygen composition, it seems likely that these remnants would form copious
amounts of dust. The mass loss rate is then set by the dust formation rate near the stellar
photosphere. Reprocessing by this dust makes obscured objects bright infrared (IR) sources,
though because the remnants are hydrogen-free, such an object should not exhibit any OH-
maser emission, as seen in the OH/IR stars (Wilson & Barrett 1968). The properties of
the dust also depends on the C/O ratio and as such, the remnants could manifest either
as C-rich or O-rich objects. We expect that the surface C/O ratio will be set largely by
the C/O ratio of the disrupted WD. This quantity is likely not universal—depending on the
mass of the disrupted WD, for example—and from a modeling perspective, this depends on
still-uncertain input physics such as the 12C(α, γ)16O reaction rate (e.g., Fields et al. 2016).

If these objects are obscured by a dusty wind, then they may appear in the same
luminosity-color cuts used to identify extreme AGB stars (see e.g., Thompson et al. 2009;
approximately 9 of their sources are coincident with the luminosities of our objects). In the
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Figure 3.11 : Evolution of model M15 in the HR diagram. Grey lines of constant radius are shown
in the background. The numbered circles each correspond to one of the times indicated in Fig. 3.3.
The approximate elapsed time between adjacent circles is indicated. The KH contraction phase
(Section 3.4) occurs after point 4, with the Ne flame phase (Section 3.5.1) corresponding to the end
of the track. The total duration of evolution is ≈ 25 kyr. As we discuss in Section 3.6, the presence
of a dusty wind around these objects may modify their appearance.
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wind, τ(r) ≈ Ṁκ/(4πrv), where τ is the optical depth, κ is the opacity, and v is the wind
velocity. Since τ(rph) ≈ 1,

rph ∼
Ṁκ

4πv
∼ 1.5× 1015 cm

(
Ṁ

10−4 M� yr−1

)(
κ

10 cm2 g−1

)( v

30 km s−1

)−1

. (3.1)

Given the luminosity of our sources, this radius would imply an effective temperature

Teff = 500 K

(
L

104.5L�

)1/4 ( rph

100 AU

)−1/2

(3.2)

which is consistent with extreme AGB stars.
We can make a rough estimate of the number of merger remnants in this cool giant or

self-obscured phase at a given time. The specific rate of super-Chandrasekhar double WD
mergers estimated by Badenes & Maoz (2012) is 1.0+1.6

−0.6× 10−14 yr−1 M−1
� . This implies that

the number of sources active in a galaxy is

Nactive ≈ 1×
(

merger rate
10−14 yr−1 M−1

�

)(
stellar mass

1010 M�

)(
lifetime
104 yr

)
(3.3)

meaning that roughly one of these remnants will be currently active in M33 and 20 in
M31.4 However, we have no reason to expect sub- and super-Chandrasekhar models to be
observationally distinguishable during this phase.5 Thus, the number of objects in this phase
may be a factor of few higher, since sub-Chandrasekhar total mass mergers include lower
mass CO WDs closer to the peak of the individual WD mass distribution (Kepler et al.
2007).

Around point 2, in Fig. 3.11, we expect the extreme mass loss to end and the dusty
envelope to detach from the photosphere. The evolution from point 2 to point 3, taking
≈ 1 kyr, is similar to a proto-planetary nebula phase (e.g., Kwok 1993). This transitions
into a planetary nebula phase as the temperature of the central object rises to Teff & 105 K,
making it a bright extreme ultraviolet / soft X-ray source. This emission will begin to
ionize material shed during the earlier phase, forming a planetary nebula with composition
dominated by C and O.

Depending on the amount of dust formed, the remnant could continue to remain obscured
through these later phases. The dust surface density is roughly

Σd ∼ 10−5 g cm−2

(
fdust

1.0

)(
Mwind

0.1M�

)( v

30 km s−1

)−2
(

∆t

104 yr

)−2

(3.4)

where Mwind is the total amount of material ejected in the wind and fdust is the fraction of
this material that forms dust. Approximating the cross-section for EUV photons (λ ≈ 10−

4The stellar mass of M33 is M? ≈ 3 − 6 × 109 M� (Corbelli 2003); the stellar mass of M31 is M? ≈
10− 15× 1010 M� (Tamm et al. 2012).

5A lower total mass merger will not yet have ignited carbon, but recall that the luminous giant phase is
powered by thermal energy release during the merger, not carbon burning.
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100 nm) as geometric, the dust opacity for a grain size a is κdust ≈ 105 cm2 g−1 (a/10−5 cm)
−1,

which is roughly appropriate when a > λ. Given Eq. (3.4), the dust optical depth could be
∼ 1 even 104 yr after merger. However, the hard radiation from the central object may also
destroy some of the dust; the efficiency of this process will depend on both the composition
and grain size (e.g., Waxman & Draine 2000). Whether or not they remain completely
obscured, it seems likely that these objects would continue to display significant infrared
excesses.

During the Ne flame and later phases of evolution (see Sections 3.4 and 3.5), the remnant
remains in the vicinity of point 4 (in Fig. 3.11). This evolution is relatively rapid (≈ 5 kyr)
and so the object does not yet begin to move down the WD cooling track if the mass remains
above the Chandrasekhar mass. However, if the object has shed enough mass that it is below
the mass that will lead to neon ignition, then it will begin to cool. Continuing the analogy
to existing systems, these objects may then resemble helium-free versions of GW Vir. Such
objects would likely also exhibit g-mode pulsations, as these are driven by ionization of
carbon and oxygen (Quirion et al. 2007). As the objects continue to cool, merger remnants
that remain below the Chandrasekhar mass may later appear as carbon (DQ) WDs (Dufour
et al. 2007, 2008).

3.7 Conclusions
We have presented stellar evolution calculations that follow the evolution of the remnant

of the merger of two CO WDs. We focused on systems with a total mass in excess of the
Chandrasekhar mass; our fiducial system is the merger of an 0.6 M� WD and a 0.9 M�
WD (model M15 in Table 3.1), but we find similar results for a system with a total mass
of 1.6M� (model M16). Our calculations use the results of SPH simulations of the merger
(Dan et al. 2011; Raskin et al. 2014) to set the initial properties of the remnant. Its post-
merger viscous evolution was then followed as in Schwab et al. (2012) and the results of these
simulations form the initial conditions for our MESA calculations. Thus, our results do not
apply to the case in which a merger may lead to the detonation of the primary WD, as may
occur for particularly massive CO+CO WD mergers (Pakmor et al. 2012c). The flowchart
shown in Fig. 3.12 summarizes the potential final fates of these systems, indicating relevant
uncertainties in our models.

Our study has focused on two major questions. First, what is the post-merger observa-
tional appearance of super-Chandrasekhar WD merger remnants? Second, what is the fate
of such objects? The viscous evolution converts the thick, rotationally-supported disc into
a spherical, thermally-supported envelope. Our calculations self-consistently include this
material, as opposed to approximating its effects by imposing an Eddington-limited accre-
tion rate at the outer boundary. We can thus better address the emission from WD merger
remnants. We find a post-merger phase, powered by thermal energy deposited during the
merger, in which the remnant manifests as an Eddington-luminosity (L ∼ 3×104 L�) source
for ∼ 104 yr. This is consistent, in luminosity and lifetime, with the signature suggested by



3.7. CONCLUSIONS 63

Merger of two CO
WDs with super-

Chandrasekhar total mass

Does the merger
lead to a

detonation?

Type Ia
yes

Remnant evolves viscously

no

Remnant expands and
enters cool, giant phase

Off-center carbon-
burning ignited

coreenvelope

Does the carbon
flame reach the

center?

Hybrid Ia

no

Does mass loss
make the remnant

sub-Chandra?

Massive WD

yes

Off-center neon-
burning ignited

yesno

Neon flame prop-
agates to center

Subsequent silicon
burning leads to for-

mation of an iron core

Low-mass NS

1Figure 3.12 : A summary of the final fates of super-Chandrasekhar WD merger remnants. Dashed
lines indicate phases not explored in this work. Detonations of CO WDs during merger likely
requires total masses ≥ 2.0M� (Dan et al. 2014; Sato et al. 2015), so this is a rare channel. Hybrid
Ias are unlikely according to Lecoanet et al. (2016). Thus, most super-Chandrasekhar mergers will
produce a single massive WD or a low mass NS, with the relative rates depending on the uncertain
role of mass loss.
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Shen et al. (2012) who also constructed related stellar evolution models. We improve upon
these models by drawing our initial conditions from multi-dimensional viscous simulations
and by incorporating more realistic opacities.

The effective temperature in our models during the giant phase is ≈ 4000 − 5000 K.
However, the mass loss properties of these carbon and oxygen dominated envelopes are
uncertain. It seems likely that a dusty wind could develop, leading these sources to be
self-obscured and to appear similar to extreme AGB stars. The mass loss during the post-
merger phase can also influence the later stages of evolution, leaving an initially super-
Chandrasekhar remnant with a sub-Chandrasekhar mass (see Figs. 3.8 and 3.12). Based on
the observed WD merger rates, we estimate that tens (few) of remnants are presently in
this giant phase in the nearby galaxies M31 (M33). As the giant phase ends, the central
source evolves, likely producing proto-planetary nebula and planetary nebula phases in which
the surrounding nebula would lack hydrogen or helium. These sources might remain dust-
obscured throughout, depending on the amount of dust produced and its properties.

In the massive mergers we consider, off-center carbon fusion is robustly ignited within
the remnant. Most of the fusion energy released is lost to neutrinos, and that which is
not, fails to reach the surface in the evolutionary time-scale. Thus, the surface emission is
powered solely by the thermal energy release during the merger. As found previously (Saio &
Nomoto 1985; Nomoto & Iben 1985; Saio & Nomoto 1998), the carbon-burning quiescently
propagates inward, converting the WD to an oxygen-neon composition. However, we follow
the evolution of these remnants for longer than previous calculations and demonstrate that
when carbon-burning reaches the center it lifts the degeneracy of the remnant.

As the non-degenerate oxygen-neon core undergoes a phase of neutrino-cooled KH con-
traction, the remnant can ignite off-center neon burning. There is a critical mass for a “hot”
(i.e., non-degenerate) ONe core,MNe,hot ≈ 1.35M�, above which off-center neon ignition will
occur (Nomoto 1984; see also Appendix 3.C); this is set by the rate of neon fusion and the
rate of thermal neutrino losses. There is also a critical mass for electron-capture-initiated
central ignition in a “cold” (i.e., degenerate) ONe core, MNe,cold ≈ 1.38M�; this is set by
the electron Fermi energy needed to favor electron captures on 20Ne (Schwab et al. 2015).
The off-center carbon burning ignited in the merger remnant leads to the production of a
“hot” ONe core. Because MNe,hot < MNe,cold, we therefore conclude that lower mass merger
remnants (M < MNe,hot) will form massive ONe WDs which will then quiescently cool, while
higher mass objects (M > MNe,hot) will be processed to compositions beyond neon. Thus,
contrary to standard models, it is difficult to produce an oxygen-neon core with a sufficient
mass to undergo accretion-induced collapse in a WD merger. We emphasize that our con-
clusions apply to WD mergers and do not affect standard single degenerate AIC scenarios.
In the single degenerate case, an ONe core below MNe,hot forms in an intermediate mass star
and cools. Subsequently, it accretes material and grows to a mass in excess of MNe,cold at
which point it collapses.

One of the major uncertainties in our calculation is the extent of mass loss during the
∼ 104 yr post-merger thermal evolution. In addition to our fiducial model, we also evolved a
remnant with a total mass ≈ 1.6M�. Both models had similar initial profiles (Fig. 3.2) and
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underwent a qualitatively similar course of evolution. We suspect that yet higher masses
would behave similarly, up to the point where carbon detonations are likely to occur during
the merger. The results of both Dan et al. (2014) and Sato et al. (2015) suggest that the
threshold for carbon detonations is around a total mass & 2M� for CO+CO WD mergers.
Since this threshold is significantly super-Chandrasekhar, this suggests that even in the
presence of significant mass loss (≈ 0.2M�) both the massive WD and the low mass NS
fates in Fig. 3.12 are realized. However, the exact mapping of merger masses to outcome is
uncertain.

If the remnant mass remains super-Chandrasekhar and experiences off-center neon ig-
nition, we expect that it will ultimately collapse to form a neutron star. The neon flame
propagates to the center converting the remnant to silicon-group elements (Figs. 3.9 and
3.10). Computational limitations prevent us from continuing our calculations beyond the
point at which the neon flame reaches the center. However, we then argue, based on the
work of Jones et al. (2013, 2014) and Woosley & Heger (2015) that Si-burning leads to the
formation of an iron core, which will then collapse. Future work in this area will be im-
portant in understanding the role of violent Si-burning and examining the structure of the
remnant at the time of core infall. The low mass core, with steep density gradients near its
edge, means that this progenitor will likely produce a neutrino-driven explosion a short time
after core bounce, as is seen in core-collapse calculations involving ONe cores (Kitaura et al.
2006; Janka et al. 2008). A shorter time between core bounce and explosion suggests that
there is less time for instabilities to grow, leading to less asymmetry and lower neutron star
kicks (e.g., Wongwathanarat et al. 2013).

Our calculations assume that the bounding convection zone does not induce significant
mixing in either the carbon flame or the neon flame. The results of Lecoanet et al. (2016),
which we invoked to justify this assumption in the case of the carbon flame do not strictly
apply to the neon flame. The neon flame self-crossing time (which is equivalent to the
burning time-scale) is much shorter, ∼ 104 s, on the order of the convective turnover time
in the zone behind the flame. This invalidates the assumption that the flame is effectively
stationary over a convective turnover time that was made in the calculations of Lecoanet
et al. (2016). Naïvely, however, it seems likely that fewer convective turnover times make it
even less likely that convection will disrupt the flame, as convective perturbations will not
be able to accumulate because the flame moves away.

Because the duration of the giant phase is shorter than the time for the carbon flame
to reach the center, our results indicate that at the time of neutron star formation the
remnant is likely in a compact configuration (Fig. 3.11), implying minimal signatures due
to interaction or shock breakout. At late times after the SN explosion (∼ 10 yr), the ejecta
from the explosion (with v ∼ 104 km s−1) will catch up to the wind generated during the
giant phase (with v ∼ 10 km s−1); however the low densities at this time makes it unlikely
that this interaction will be radiatively efficient.

Future work should continue to explore the variety of final outcomes shown in Fig. 3.12
and work to clarify further differences between neutron stars formed via single-degenerate
accretion-induced collapse and those formed in WD mergers.
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3.A Importing Models into MESA

Mapping results from one simulation code into another can be a difficult process. Dif-
ferences in the input microphysics, the equations being solved, and the numerical solution
techniques mean that output of one code is rarely immediately suitable for input into an-
other code. Each approach is problem-specific: one must identify the important parts of
the solution and design a mapping that preserves them. Our goal is to use the output of a
2D Eulerian code (ZEUS-MP2, which solves the viscous fluid equations) as input to a 1D
Lagrangian code (MESA, which solves the stellar structure equations).

At the end of our hydrodynamic simulations of the viscous phase of evolution, most of the
merger remnant is slowly rotating and in hydrostatic equilibrium and thus quite spherical
(e.g., fig. 5 in Schwab et al. 2012). We make the choice to study the non-rotating case
and thus do not initialize or evolve a rotational velocity variable. Under the assumption of
spherical hydrostatic equilibrium, the complete structure of an object can be specified by
its specific entropy, s(Mr), and composition, Xi(Mr), as a function of Lagrangian mass, Mr.
Therefore, the first step is to spherically average our multi-D simulations and calculate these
quantities.
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We perform volume averages6,

ρ(r) =
1

2

∫ π

0

dθ sin(θ)ρ(r, θ) (3.5)

e(r) =
1

2

∫ π

0

dθ sin(θ)e(r, θ) (3.6)

ρ(r)Xi(r) =
1

2

∫ π

0

dθ sin(θ)ρ(r, θ)Xi(r, θ) (3.7)

so that the appropriate quantities (e.g. mass, energy) are conserved. Assuming full ioniza-
tion, it is simple to calculate Ā (the average mass per ion) and Z̄ (the average charge per ion)
from the mass fractions Xi. Given ρ, e, Ā, and Z̄, we use the Helmholtz (Timmes & Swesty
2000) equation of state, which is used by both our ZEUS-MP2 simulations and MESA (for
ρ & 3× 102 g cm−3), to calculate the specific entropy s(r). The Lagrangian mass is

Mr =

∫ r

0

dr′4πr′2ρ(r′) (3.8)

and we record a 1D approximation to our 2D simulation consisting of the values of Mr, s(r),
and Xi(r) for each radial grid point in the computational domain.

We want to create a MESA model which matches this profile. Instead of trying to create
a MESA model file and then reading it in, we begin with a model unlike what we want,
but slowly reshape it into our desired profile. The steps in this procedure were arrived at
by trial-and-error. There is nothing inherently correct about many of the particulars of this
approach; we demonstrate at the end that this stellar engineering gives us the desired result.

First, we create a pre-main sequence model with the mass of the remnant. We evolve
this model, with nuclear reactions turned off, until the central density is equal to 103 g cm−3.
Then we resume the evolution, using the built-in capability of MESA to relax our model to
a specified composition. With the composition relaxation complete, we evolve this model,
with nuclear reactions and mixing turned off, until the central density reaches 105 g cm−3.

Again, we resume the evolution, this time making use of a custom routine in run_star_extras.f
which relaxes the model to the desired thermodynamic profile. We take advantage of the
other_energy routine, which allows us to add an additional term to the energy equation,
and set

Qextra,k = −cv,kTk
to

αk (3.9)

where cv is the specific heat at constant volume and T is the temperature. The subscripts k
indicate that these quantities are evaluated on a per-cell basis. The values of αk were chosen
to drive the model towards the desired profile. We chose a heating/cooling time-scale, t0,
which is short compared to the thermal time of the star and is comparable to the total
duration of our viscous evolution calculations, typically t0 = 103 s.

6We write these averages as integrals, but because we are operating on the output of a grid-based code,
these integral quantities represent the appropriate discretized sums.
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To determine αk, we read in the spherically-averaged entropy profile from ZEUS and
use built-in MESA interpolation routines to sample it such that we have a target entropy
function, s̃(q), where q = Mr/Mtot. In the inner part of the model, which corresponds to
the cold, undisturbed primary WD, we will ignore the entropy profile and instead relax
the profile to an isothermal one. This approach requires three additional parameters: the
isothermal temperature, T̃ , the region which should be isothermal, q̃, and the width of a
region in which we blend between these, ∆. At each point in the MESA model, we evaluate

δ1 = 1− s̃(qk)/sk (3.10)

δ2 = 1− T̃ /Tk (3.11)
δk = fkδ1 + (1− fk)δ2 (3.12)

where
fk =

1

2

[
tanh

(
qk − q̃

∆

)
+ 1

]
(3.13)

From these quantities, we locally calculate

αk = δk tanh(|δk|) (3.14)

and in order to check whether the profile matches, calculate a global quantity

ε =
nz∑

k=1

|δk|dqk (3.15)

We consider our relaxation complete when ε < 3 × 10−4. Empirically, this approach works
quickly and robustly.

Fig. 3.13 compares the 1D-averaged ZEUS-MP2 profiles and the initial MESA profiles
for our model M15. The density, entropy, and temperature are in good agreement for 0.5 .
q . 0.9. This is the critical region, because it is where carbon ignition will occur and where
the thermal energy that will power the giant phase is located. In the deep interior (q . 0.5),
our assumed isothermality means the temperature and entropy of the material has been
altered, but because the material is degenerate, this has little effect on the structure (i.e.,
the density agrees well). In the outer regions (q & 0.9), differences are introduced by the
fact that the material was not spherical, but is now assumed to be.

3.B Opacities
As discussed in Section 3.2.3, we generate and use a set of low temperature opacities for

material with a carbon-oxygen composition. The code calculates Rosseland mean opacities
considering the bound-bound, bound-free, free-free, and electron-scattering contributions. It
assumes local thermodynamic equilibrium and all photoionization cross-sections are assumed
to be hydrogenic. The input atomic data is that compiled as part of CMFGEN (Hillier 2011).
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Figure 3.13 : A comparison of the 1D-averaged ZEUS-MP2 model and the initial MESA model for
our model M15. The top panel overplots the 1D-averaged ZEUS-MP2 models (black solid lines) and
the initial MESA model (colored dashed lines). Shown are the temperature (blue; in K), specific
entropy (red; in ergs s−1 g−1), and density (yellow; in g cm−3). The bottom panel shows the relative
error in the three thermodynamic quantities. The dark shaded region indicates where the model
was relaxed to an isothermal profile and the unshaded region shows where model was relaxed to a
given entropy profile. The lighter shaded region shows the region which blends between the two.
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We calculated and used a table for a single composition: XC = 0.49, XO = 0.49, Z = 0.02,
where the relative metal abundances are drawn from Grevesse & Sauval (1998).

Fig. 3.14 shows examples of these opacities near conditions where they are applied in
our models. We also show the higher temperature opacities that we use (OPAL Type 2)
and the low temperature opacity that MESA would use if we did not override this choice
via the other_kap routines. In our calculation, we blend the OPAL and Kasen opacities
between log(T/K) = 4.1 and 4.2. Fig. 3.15 shows the regions of temperature-density space
covered by each of the opacity tables used in our MESA calculation. Additionally, the
temperature-density profiles of model M15 at the same 4 times indicated in Fig. 3.11 are
shown.

The OPAL Type 2 tables are compiled as functions of X, Y , and Z (H, He, and metals) as
well as dXC and dXO (carbon and oxygen enhancements). At this time, low-temperature
tables that incorporate the effects of C and O enhancement are not included in MESA.
Therefore, when transitioning to low temperature opacities, MESA is also transitioning into
a region in which the opacities are tabulated only as a function of X, Y , and Z. Thus,
the compositions assumed in the calculation of the low and high temperature opacities are
necessarily different. The carbon and oxygen composition of our WD model nominally
corresponds to Z = 1, but since the assumed abundance distribution within Z is based on
solar abundances, a choice of Z = 1 effectively assumes the material is dominated by N
and Fe. One of the ways MESA can handle this is to assume a user-specified value of Z
(Zbase), use the value of X, and put the rest of the abundance in Y . The line for the low
temperature FA05 opacities in Fig. 3.14 makes this choice, assuming Z = 0.02 and thus
X = 0, Y = 0.98. In addition to being physically inconsistent, these choices are numerically
unsatisfactory because they result in large change in opacity over a small temperature range.
Our use of the Kasen opacities avoids both of these issues.

The opacities used in the MESA calculations do not include the effects of molecules.
If we were to include these effects, the opacity at log(T/K) . 3.5 would be extremely
sensitive to the C/O ratio of the material (e.g., Ferguson & Dotter 2008). This quantity was
not, however, self-consistently determined in our initial WD models, which have equal mass
fractions of 12C and 16O.

3.C Critical Masses
For a contracting stellar model of a given composition, there is a critical mass above which

the temperature will become sufficiently high to ignite nuclear fusion. This is familiar for
typical hydrogen-rich compositions, where this critical mass marks the boundary between a
brown dwarf and a low mass star. Nomoto et al. (1984) calculated this critical mass for pure
neon stars and used this simple model to gain insight into the evolution of contracting ONe
cores. For pure neon models, the higher density and temperatures mean the KH contraction
is driven by neutrino cooling from the interior as opposed to photon cooling from the surface.
The density dependence of the neutrino cooling rates lead to the formation of an off-center
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Figure 3.14 : The solid black line (labeled OPAL Type 2) is the carbon- and oxygen-enhanced
radiative opacities from Iglesias & Rogers (1996). The solid grey line (labeled FA05) is the low-
temperature opacities from Ferguson et al. (2005). The difference between the OPAL and FA05
curves reflects a difference in assumed composition (see text for discussion). The calculations pre-
sented in this paper use low temperature opacities calculated with a code developed by one of us
(Kasen; red dashed line). In all cases, the relative metal abundances are drawn from Grevesse &
Sauval (1998). We blend the OPAL and Kasen opacities between log(T/K) = 4.1 and 4.2 (see
Fig. 3.15). The left panel shows the opacity as a function of temperature at fixed R; the right panel
shows it at fixed ρ.
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Figure 3.15 : Coverage of temperature-density space by the opacity tables used in our MESA
calculation. Solid grey lines show the boundaries of the two types of opacity tables: Opal Type
2 (Iglesias & Rogers 1996) and Kasen (Appendix 3.B). “Blend” indicates a smooth blend between
these two values. Recall logR = log ρ − 3 log T + 18 (cgs). The other lines show the temperature-
density profiles of our model at the set of points also marked in Figs. 3.3, 3.5, and 3.11. We observe
density inversions at both the Fe opacity bump (log(T/K) ≈ 5.3) and in bumps associated with
carbon and oxygen.
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temperature peak, and when ignition does occur, it occurs off center.
In the spirit of Nomoto et al. (1984), we run a series of MESA models with masses in the

range 1.30M� to 1.44M�, using a stride of 0.005M�, and with neon, oxygen-neon, oxygen,
and silicon compositions. We create a pre-main sequence model with the desired mass and
then relax the model to the desired composition. With nuclear reactions off, we evolve the
model until log(ρc/g cm−3) = 4. At this point, we load the model using the approx21 nuclear
network. We then evolve each model until either (1) the rate of energy release from nuclear
reactions exceeds the rate of energy loss from neutrinos anywhere in the star, in which case
we classify the model as having ignited or (2) the peak temperature reaches a maximum
value and subsequently declines, in which case we know the model will never ignite.

In Fig. 3.16, we show the evolution of three of our pure neon models. We find the
lowest mass model that ignites has M = 1.35M�. This is slightly lower than the value
of 1.37M� reported by Nomoto et al. (1984). We speculate that this minor difference is
due to differences in the input microphysics. Curves analogous to these, but for different
masses, are shown as the grey lines in Figs. 3.7 and 3.8. The qualitative agreement between
our remnant models and these simple homogeneous models demonstrates that the off-center
neon ignition found in our WD remnants is a simple consequence of their mass.

The central conditions in each model at the time of ignition are shown in Fig. 3.17. We
show 4 different compositions: pure 20Ne, 50/50 20Ne-16O, pure 16O, and pure 28Si. The large,
annotated dots indicate the lowest mass models in which off-center ignition was observed;
these are the critical ignition masses quoted in the text.
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Figure 3.16 : The evolution of temperature and density at the center (solid lines) and at the tem-
perature peak (dashed lines) during the KH contraction of pure neon models. The dotted line
shows approximately where the rate of energy release from neon burning is equal to the energy loss
rate from thermal neutrinos. The assumed energy release rate for neon-burning was that given in
Woosley et al. (2002). This figure is a reproduction of the results presented in fig. 1 of Nomoto
et al. (1984) using MESA. We find a slightly lower critical mass for neon ignition of 1.35 M�.
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ignited is indicated with a large dot and labeled by its mass. The dots are connected by lines to
guide the eye.
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Chapter 4

Thermal Runaway During the Evolution
of ONeMg Cores towards
Accretion-Induced Collapse

An earlier version of this chapter was previously published as Schwab, J. and Quataert,
E. and Bildsten, L., MNRAS, 453, 1910.

Abstract
We study the evolution of degenerate electron cores primarily composed of the carbon

burning products 16O, 20Ne, and 24Mg (hereafter ONeMg cores) that are undergoing com-
pression. Electron capture reactions on A = 20 and A = 24 isotopes reduce the electron
fraction and heat the core. We develop and use a new capability of the Modules for Experi-
ments in Stellar Astrophysics (MESA) stellar evolution code that provides a highly accurate
implementation of these key reactions. These new accurate rates and the ability of MESA
to perform extremely small spatial zoning demonstrates a thermal runaway in the core trig-
gered by the temperature and density sensitivity of the 20Ne electron capture reactions. Both
analytics and numerics show that this thermal runaway does not trigger core convection, but
rather leads to a centrally concentrated (r < km) thermal runaway that will subsequently
launch an oxygen deflagration wave from the center of the star. We use MESA to perform
a parameter study that quantifies the influence of the 24Mg mass fraction, the central tem-
perature, the compression rate, and uncertainties in the electron capture reaction rates on
the ONeMg core evolution. This allows us to establish a lower limit on the central density
at which the oxygen deflagration wave initiates of ρc & 8.5 × 109 g cm−3. Based on previ-
ous work and order-of-magnitude calculations, we expect objects which ignite oxygen at or
above these densities to collapse and form a neutron star. Calculations such as these are an
important step in producing more realistic progenitor models for studies of the signature of
accretion-induced collapse.

http://dx.doi.org/10.1093/mnras/stv1804
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4.1 Introduction
In this paper, we study the evolution of degenerate electron cores primarily composed

of the carbon burning products 16O, 20Ne, and 24Mg which are undergoing compression.
Such objects can arise in several contexts: the late stages of evolution for super asymptotic
giant branch (SAGB) stars (e.g. Miyaji & Nomoto 1987; Ritossa et al. 1999; Takahashi et al.
2013; Jones et al. 2013), where the compression is caused by the deposition of material from
exterior shell-burning; in a binary system with a massive ONeMg white dwarf (WD) (e.g.
Nomoto & Kondo 1991), where the compression is caused by accretion from a non-degenerate
companion; or as the remnant of a WD-WD merger, where the compression is caused by the
cooling of the outer layers (e.g. Saio & Nomoto 1985).

As the core is compressed, the electron Fermi energy rises, eventually triggering exother-
mic electron capture reactions. Typically, exothermic captures on 20Ne release enough energy
to cause thermonuclear ignition of 16O and formation of a deflagration. The final fate of the
core (either explosion or collapse) is determined by a competition between the energy release
from the outgoing oxygen deflagration and the energy losses and decline in the electron frac-
tion due to electron captures on the post-deflagration material, which has burned to nuclear
statistical equilibrium (NSE). The evolution of these cores has been a subject of considerable
previous study (e.g. Miyaji et al. 1980; Nomoto 1984; Isern et al. 1991; Canal et al. 1992;
Gutierrez et al. 1996; Gutiérrez et al. 2005; Jones et al. 2014).

However, we revisit this topic (i) to test the effect of using the state-of-the-art Modules for
Experiments in Stellar Astrophysics (MESA) stellar evolution code (Paxton et al. 2011, 2013,
2015), (ii) to demonstrate the effects of using the latest nuclear reaction rates (Martínez-
Pinedo et al. 2014), (iii) to perform a more detailed parameter study of the effects of a
number of quantities, including the accretion rate Ṁ , magnesium mass fraction XMg, and
initial core temperature, Tc, and (iv) to provide analytic estimates of the evolution up-to
and including the onset of the oxygen deflagration.

In the present paper, we follow the common treatment in the literature and parameterize
the evolution of ONeMg WDs as they approach the Chandrasekhar mass via compression
of the outer layers. In future work we will assess whether the revised evolutionary model of
WD merger remnants proposed by Shen et al. (2012) and Schwab et al. (2012) modifies the
likelihood of AIC in super-Chandrasekhar WD mergers. In § 4.2 we describe the treatment
of weak reactions in the MESA code. In § 4.3 we provide analytic estimates relevant to the
evolution of the core. In § 4.4 we discuss the inputs to our MESA calculations and in § 4.5
present the results of these numerical simulations. § 4.6 discusses the final fate of these cores.
In § 4.7 we draw our conclusions and describe some important avenues for future work.

4.2 Weak Reactions in MESA
Weak reactions, specifically electron-capture and beta-decay, are central to the evolution

of accreting degenerate ONeMg cores. The reduction in electron fraction (and corresponding
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reduction in pressure) due to electron captures accelerates the contraction of the cores and the
entropy generation from these electron captures can directly ignite thermonuclear reactions.

This study makes use of MESA, a state-of-the-art open source code for stellar evolution
calculations (Paxton et al. 2011, 2013). In particular we use the capability to calculate weak
reaction rates directly from nuclear level and transition data, which is documented in the
upcoming MESA Instrument Paper III (Paxton et al. 2015). This section summarizes the
input data to this capability. The precise expressions which are evaluated as part of MESA’s
on-the-fly weak reaction treatment are given in Appendix 4.A.

We restrict ourselves to considering only a small set of A = 24 isotopes (24Mg, 24Na,
24Ne) and A = 20 isotopes (20Ne, 20F, 20O). Over the range of thermodynamic conditions
encountered during the evolution of ONeMg cores, roughly 9 . log10 ρ . 10 and 8 .
log10 T . 9 (in cgs units), Takahara et al. (1989) identified the transitions that dominate
the rate of each reaction. We consider only this limited set of transitions; they are listed in
Table 4.1. We have taken the comparative half-lives of these reactions from the up-to-date
information compiled in Martínez-Pinedo et al. (2014).

In order to more easily visualize the data in Table 4.1, we present energy level diagrams
for the A = 24 (Fig. 4.1) and A = 20 (Fig. 4.2) nuclei. These figures are modeled after those
found in Takahara et al. (1989). The level structure of these nuclei is drawn from recent
compilations of nuclear data (Tilley et al. 1998; Firestone 2007b). We show all of the low-
lying states that we consider, labeled with their Jπ (spinparity) values. The arrows indicate
the limited set of transitions that we consider, which are only those which are “allowed”
(Gamow-Teller: Ji = Jj, Jj ± 1, πiπj = 1; excluding Ji = Jf = 0).

4.3 Analytic Estimates
Miyaji et al. (1980) provide a thorough discussion of the different phases of the evolution

of an ONeMg core undergoing compression. In order to gain some insight into the relevant
physics, we first discuss a simple model of the evolution up until the onset of thermonuclear
oxygen burning. In discussing the analytic estimates below, we reference some of the nu-
merical results from our fiducial MESA model for comparison. This model is a cold ONeMg
WD (XO = 0.5, XNe = 0.45, XMg = 0.05) accreting at Ṁ = 10−6M� yr−1.

4.3.1 Overview of evolution

We have a dense, degenerate core near the Chandrasekhar mass with a spatially-uniform
composition of the carbon-burning products 16O, 20Ne and 24Mg, with mass fractions XO,
XNe, XMg, respectively. Fiducially, we choose XO = 0.5, XNe = 0.45, XMg = 0.05. This is
similar to the central abundances observed in recent calculations of the evolution of interme-
diate mass stars that develop these cores (see e.g., figure 10 of Takahashi et al. 2013). Other
recent models of super-AGB evolution (Farmer et al. 2015) show typical central magnesium
fractions XMg ≈ 0.03 in the cases where the carbon deflagration wave reaches the center (R.
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Figure 4.1 : Energy level diagram for the A = 24 nuclei that we consider. The Jπ values are
sometimes given an arbitrary offset (indicated via thin lines) in order to enhance legibility. The
transitions we consider are indicated with arrows.
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Figure 4.2 : Energy level diagram for the A = 20 nuclei that we consider. The Jπ values are
sometimes given an arbitrary offset (indicated via thin lines) in order to enhance legibility. The
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4.3. ANALYTIC ESTIMATES 81

Initial Final Qg Ei Jπi Ef Jπf log10(ft)

24Mg 24Na 5.515
0.000 0+ 0.472 1+ 4.815
0.000 0+ 1.347 1+ 3.838

24Na 24Ne 2.467
0.000 4+ 3.972 4+ 6.209
0.000 4+ 4.866 3+ 4.423
0.472 1+ 0.000 0+ 4.829

20Ne 20F 7.025
1.634 2+ 0.000 2+ 4.970
0.000 0+ 1.057 1+ 4.380
0.000 0+ 0.000 2+ 9.801

20F 20O 3.815
0.000 2+ 1.674 2+ 5.429
1.057 1+ 0.000 0+ 4.211

Table 4.1 : The transitions used in the rate calculations. They are written as electron capture
transitions, but the same transitions were used for beta-decay (swapping initial and final states).
Qg is the energy difference between the ground states of the isotopes. Ei and Ef are respectively
the excitation energies of the initial and final states, relative to the ground state. Jπi and Jπf are
the spins and parities of the initial and final states. Allowed transitions do not have parity changes.
(ft) is the comparative half-life in seconds, taken from Martínez-Pinedo et al. (2014) by dividing
the constant 6144 s by their tabulated values of the transition matrix elements. The italicized (ft)

value indicates an experimental upper limit; the effects of this transition will be discussed in § 4.5.3.
All energies are in MeV. For level diagrams which illustrate the transitions, see Figs. 4.1 and 4.2.

Farmer, private communication).
The degenerate core is “accreting” at a rate Ṁ ; such accretion might be set by carbon

shell burning in an evolved star, accretion from a companion in a binary system, or cooling
(and the concomitant reduction in pressure support) of the outer layers of a WD merger
remnant. The key impact is that the core is being compressed on a timescale

tcompress =

(
d ln ρc
dt

)−1

=

(
d ln ρc
d lnM

)−1
M

Ṁ
. (4.1)

For an object supported by degeneracy pressure and in hydrostatic equilibrium, the central
density rises rapidly as one approaches the Chandrasekhar mass. Therefore, the compression
timescale is significantly shorter than the timescale for the growth of the core. For an ideal,
zero-temperature white dwarf, in the range 9 . log10 ρc . 10,

d ln ρc
d lnM

≈ 28

(
ρc

109 g cm−3

)0.55

, (4.2)

which we obtained by calculating a sequence of models and fitting a power-law to the results.
This implies

tcompress ≈ 5× 104 yr

(
ρc

109 g cm−3

)−0.55
(

Ṁ

10−6 M� yr−1

)−1

. (4.3)
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The dynamical time of the white dwarf is extremely short

tdyn ≈
1√
Gρ
≈ 10−1s

(
ρ

109 g cm−3

)−1/2

(4.4)

and so hydrostatic equilibrium will always be preserved (until collapse ensues, which we do
not study in detail in this paper).

The temperature of the core will be influenced by details of its previous evolution, such
as the accretion history and by the abundances of isotopes which participate in Urca process
cooling. However, if the compression timescale (and hence overall evolutionary timescale) is
sufficiently slow, heating from compression and cooling from thermal neutrinos will reach a
quasi-equilibrium (Paczyński 1971). Define the cooling time

tcool =
cPT

εν
, (4.5)

where cP is the specific heat at constant pressure and εν is the specific neutrino cooling rate.
Then the relation tcool = tcompress implicitly defines a temperature for a given density and
will characterize the thermal state of the core aside from periods when e-captures rapidly
release energy. In Fig. 4.3, we show this relation as a blue, dashed line and demonstrate that
our MESA models (the black solid line) described in § 4.4 and § 4.5 exhibit this relationship.

4.3.2 Effects of electron captures

At low temperature, the electron chemical potential is approximately the Fermi energy
EF (the first correction enters at order (kT/EF )2), and so we use the terms Fermi energy
and electron chemical potential interchangeably. As the core is compressed, the electron
chemical potential increases. At zero temperature, the electron captures would occur when
the Fermi energy reached the energy difference between the initial and final nuclear states,
and electrons of sufficient energy first became available. We refer to the density corresponding
to this value of the electron chemical potential as the threshold density; the terms sub-
threshold and super-threshold reference this density. At non-zero temperature, even when
the electron chemical potential is below this threshold, there are some electrons in the high
energy tail of the Fermi-Dirac distribution which are available to capture. As a result, the
electron capture rate has an exponential dependence on the density and temperature in the
sub-threshold case.

A simple form for the sub-threshold capture rate can be obtained by expanding equa-
tion (4.40) in the limit that µe +Q� −kT (where µe is the electron chemical potential and
Q = Qg + Ei − Ef is the energy difference between the parent and daughter nuclear state)
and assuming that the rate is dominated by a single transition that begins in the ground
state,

λec ≈
2 ln 2

(ft)

(
kT

mec2

)5(
Q

kT

)2

exp

(
µe +Q

kT

)
. (4.6)
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Figure 4.3 : The black solid line shows the central density and temperature of the core as it is
compressed with a surface accretion rate of Ṁ = 10−6 M�yr−1 for approximately 20000 years of
evolution. The red dashed lines indicate when the capture timescales for 24Mg and 20Ne become
equal to the fiducial compression time of 104 yr. The blue dotted line shows where the neutrino
cooling time and compression time are equal. This balance between compressional heating and
neutrino cooling determines the thermal state of the contracting WD core (aside from brief periods
when electron captures heat the core). The grey solid line shows where the energy generation from
thermonuclear oxygen burning exceeds the thermal neutrino losses and we stop the calculation.
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Define the capture timescale to be the inverse of the electron capture rate tcapture =
λ−1

ec . The onset of significant electron captures will occur when the capture time and the
compression time become approximately equal. Setting tcompress = tcapture gives an implicit
relationship between ρ and T , which is a function of Ṁ .

At zero temperature, the electron captures would occur at a density ρec,0 such that
µe(ρec,0) +Q ≈ 0. Solving equation (4.6) for µe and rewriting the solution in terms of ρ, we
find that tcompress = tcapture when

ρec ≈ ρec,0

[
1 +

3kT

Q
ln

(
2 ln 2

tcompress

(ft)

(
kT

mec2

)5(
Q

kT

)2
)]

, (4.7)

where we have neglected the much weaker density dependence of tcompress itself.
Equation (4.7) will be valid up until a temperature at which the transition rate from an

excited state, suppressed by exp(−Ei/kT ), becomes the dominant contribution to the rate.
As a rule of thumb, for the transitions we consider, this will happen when T ≈ Ei/(25k).

Fig. 4.4 shows numerical solutions for the location in density-temperature space at which
tcapture = 104 yr (which is approximately the compression timescale associated with an Ṁ =
10−6 M� yr−1) for 24Mg, 24Na, 20Ne, and 20F. The approximations for the critical density
based on equation (4.7) are overlaid as dashed black lines and are in excellent agreement.
The line for 20F is always at lower density than that of 20Ne, meaning once the first capture
in the 20Ne→ 20F→ 20O chain occurs, the second will immediately follow. This is not true
for 24Na relative to its parent 24Mg, meaning the captures in the 24Mg→ 24Na→ 24Ne chain
will happen at separate densities when log10 T . 8.4.

The electron captures also influence the temperature evolution of the core. When a
capture occurs, the chemical potential of the captured electron, minus the change in nuclear
rest mass and the energy in the emitted neutrinos, is thermalized, heating the plasma.1
This heating is substantial, because the first capture is often into an excited state (meaning
the chemical potential is higher when the rate of this transition becomes significant) and the
second is typically super-threshold. Does this heating drive convection? If so, this convection
will efficiently transport the entropy out of the core while mixing in fresh fuel for electron
captures.

The electron captures generate entropy, creating a negative radial entropy gradient in
the core. The captures also reduce the electron fraction in the core, creating a positive
radial gradient in Ye. The entropy gradient is destabilizing, but the Ye gradient is stabilizing.
Simulations which invoked the Schwarzschild criterion for convection (e.g. Miyaji et al. 1980),
which does not consider composition gradients, found that the captures do trigger convection.
Simulations which invoke the Ledoux criterion, which does consider composition gradients,
found that the captures do not trigger convection (e.g. Miyaji & Nomoto 1987). Hence the
different choices lead to qualitatively different evolution.

1A more precise definition of the heating rate is given in Appendix 4.A, specifically equations (4.54) and
(4.55).
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Figure 4.4 : The solid lines show where the electron capture timescale is equal to 104 yr (which is
approximately the compression timescale of the WD core for Ṁ = 10−6 M� yr−1). At ρ and T

greater than those delineated by the solid lines, the capture time is less than the compression time.
Each line is labeled by the name of the isotope undergoing electron capture. The black dashed lines
show the analytic approximation given in equation (4.7). For ease of comparison with the analytic
results, the Coulomb corrections discussed in Appendix 4.B are not present in these calculations.
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The following calculation demonstrates why the electron captures are unable to trigger
convection when accounting for stabilizing composition gradients. The Ledoux criterion for
convective instability is

∇ad −∇T +B < 0 (4.8)

where
B = − 1

χT

(
∂ lnP

∂ lnYe

)

ρ,T

d lnYe
d lnP

. (4.9)

The captures occur over a narrow range in Fermi energy, and hence density. Therefore the
gradients in T and Ye across the region where the captures occur will be large. This allows
us to drop the ∇ad term. Replacing the gradients with finite differences, we then check the
inequality

∆ (lnT ) > − 1

χT

(
∂ lnP

∂ lnYe

)

ρ,T

∆ (lnYe) . (4.10)

For a cold plasma with degenerate electrons and ideal ions, (∂ lnP/∂ lnYe)ρ,T ≈ 4/3 and
χT ≈ 4kT/(Z̄EF). If a mass fraction ∆Xc has undergone electron captures, the associated
change in temperature is

∆T ≈ Ā

Ac

(
Ec
cP

)
∆Xc , (4.11)

where Ac is the nuclear mass number of the species that is capturing and Ec is the average
energy deposited by a capture. At the typical densities and temperatures in our calculation,
the ions are a Coulomb liquid and so cP ≈ 3k. The change in Ye due to the captures is

∆Ye ≈
∆Z

Ac
∆Xc . (4.12)

Both the A = 24 and A = 20 chains that we consider are two electron captures long, so we
set ∆Z = −2.

Substituting these estimates into equation (4.10) and simplifying, the condition for con-
vective instability becomes

Ec
EF

> 2 . (4.13)

This inequality demonstrates that in order to trigger convective instability, the two captured
electrons—which each have a characteristic energy of EF—would have to deposit nearly all
their energy as thermal energy. This is unrealistic, since substantial amounts of energy go
into the rest mass of the daughter nucleus and to neutrinos. From our calculation of the
heating rates, it is clear this inequality is far from being violated: the A = 24 captures occur
at EF ≈ 6.5 MeV and release Ec ≈ 0.5 MeV; the A = 20 captures occur at EF ≈ 8.5 MeV
and and release Ec ≈ 3 MeV. Electron captures do not directly trigger convection.

A region which is Schwarzchild-unstable but Ledoux-stable is semiconvective. The semi-
convective diffusion coefficient used in MESA (Paxton et al. 2013, following Langer et al.
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1983) is

Dsc = αsc

(
K

6cPρ

)( ∇T −∇ad

B +∇ad −∇T

)
, (4.14)

where K is the radiative conductivity. The values of αsc, the semiconvective efficiency
adopted in the literature span the range 10−3 . αsc . 1 (Paxton et al. 2013, citing Langer
1991; Yoon et al. 2006).

Regions where the electron captures have not yet occurred and regions where they have
completed do not have a Ye gradient. Therefore the width of the semiconvective zone Hsc

will be roughly the length over which the density changes by an amount that shifts EF by
kT . We expect

Hsc ∼ 4

(
kT

EF

)
HP (4.15)

where HP is the pressure scale height. Defining f = Hsc/HP , we find f ≈ 0.03 in our MESA
models, consistent with the above estimate. We define the timescale for semiconvection to
modify the composition and thermal structure in our models as

tsc =
H2

sc

Dsc

∼ 3× 104 yr

(
1

αsc

)(
f

0.03

)2

. (4.16)

For αsc . 1, tsc in equation (4.16) is equal to or longer than time that elapses between 24Mg
captures and oxygen ignitions in our fiducial model. Moreover, tsc is an upper limit: because
of the thinness of the region with a Ye-gradient, an individual parcel spends less time in a
semiconvective region. Therefore, we do not consider semiconvection in our models.

For realistic 24Mg fractions, e-captures on 24Mg do not release enough energy to initiate
thermonuclear fusion. As a result, the core continues to compress and we eventually reach
the density where the captures begin on the A = 20 nuclei. Once the capture on 20Ne occurs,
the capture on 20F occurs immediately. Like the A = 24 captures, the bulk of the energy
deposition comes from this super-threshold capture, but in this case the energy per capture
is substantially greater, Ec ≈ 3 MeV. The characteristic temperature for oxygen ignition is
approximately 109 K and so from equation (4.11), we estimate that oxygen will ignite after
an amount ∆XNe ≈ 0.1 has undergone capture. We halt our main MESA calculations when
the energy generation rate from oxygen burning exceeds the cooling from neutrinos, implying
that a nuclear runaway is assured.

We have focused primarily on the evolution of the center of the core, but the density of
the rest of the core increases during compression. Electron captures on the A = 24 elements
have been occurring off-center as parcels of the star reach conditions favorable for these
captures. This is illustrated in Fig. 4.5, where one can see the depletion of 24Mg in the inner
0.3M� of the star.
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Figure 4.5 : The structure of the model from Fig. 4.3 at the end of the MESA calculation (when the
energy generation rate from oxygen burning exceeded the neutrino cooling). The top panel shows
the density (ρ9, ρ in units of 109 g cm−3), the temperature (T8, T in units of 108 K), and the entropy
per baryon s (in units of k), as a function of enclosed mass. The bottom panel shows the mass
fractions of 24Mg and 20Ne as well as the electron fraction Ye. The small region in which there is
a Ye gradient due to the A = 24 captures has been moving outward in a Lagrangian sense. By the
time the center reaches the density for 20Ne captures, the inner 0.3M� has already been depleted
of 24Mg due to e-captures.The subsequent evolution is discussed in § 4.6.
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4.3.3 Thermal runaway from 20Ne Captures and Oxygen Deflagra-
tion Initiation

In Fig. 4.6 we show the evolution of the center of our MESA models as the A = 20
captures begin.2 The profiles are labeled by the central heating time of the model, theat,c =
cpT/εnuc. At these temperatures, the energy generation rate is dominated by the A = 20
captures, which are undergoing a thermal runaway in the thermally conducting core. From
equation (4.11), the change in Ye associated with increasing the temperature from its value
before the A = 20 captures, T ≈ 4×108 K, to the temperature for oxygen ignition, T ≈ 109 K,
is ∆Ye ≈ 0.006, in good agreement with the change observed in the lower panel of Fig. 4.6.
Changes in T and Ye will no longer be so tightly coupled once energy release from oxygen
fusion exceeds that from electron captures, pushing the core towards convective instability.
However, in order to reach convective instability, equation (4.10) requires

∆T >
ĀEF
3k

∆Ye ≈ 3.5× 109 K

(
∆Ye
0.006

)
, (4.17)

a temperature so large that the central heating timescale from oxygen fusion would be
theat,c ≈ 10−5 s. We show here that a thermal runway is triggered long before such a condition
is reached.

The A = 20 electron captures occur in an environment where the electron Fermi energy
is below the energy threshold. In this sub-threshold case, those electrons that capture are
on the thermal tail of the distribution, making the rate very sensitive to both density and
temperature.3 We now show that this naturally leads to a local thermal runaway in the core
whose size is limited by thermal conduction. This runaway provides the “hot-spot” needed
to initiate the oxygen deflagration from the center of the star.

The strong density sensitivity of the A = 20 captures implies that the runaway will begin
at the exact center of the isothermal core. However, the pressure declines away from the core,
leading to a temperature gradient on the scale over which the electron capture rate (and hence
the heating rate) varies by order unity. In this sub-threshold case, d lnλ/d lnP = EF/(4kT ),
so the change in pressure needed to have the rate be less at the outer edge than the center
is

∆P ≈ 4Pc

(
kT

EF

)
≈
(
ρcYe
mp

)
kTc . (4.18)

Hydrostatic equilibrium provides such a pressure change over a length scale

lT =

(
3∆P

2πGρ2
c

)1/2

≈ 4× 106 cm , (4.19)

2The MESA run shown in this plot used a finer central spatial and temporal resolution than our fiducial
case in order to better resolve the onset of these steep central gradients.

3Because the bulk of the heating comes from the super-threshold electron capture on 20F that immediately
follows the 20Ne capture, the capture rate on 20Ne is a good proxy for the temperature and density dependence
of the heating rate.
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Figure 4.6 : The temperature (T ) and electron fraction (Ye) profiles in the MESA model shown
in Fig. 4.5, as it is approaching the onset of O fusion. At these temperatures, the energy release
is dominated by the A = 20 captures, so T and Ye are closely tied. The lines are labeled by the
heating timescale at the center of the model. The dotted grey line in the top panel shows the slope
of the temperature profile expected for a thermal runaway with diffusion. The mass resolution in
this calculation is significantly higher than that in other figures in order to resolve the small region
(regulated by thermal diffusion) within which thermal runaway sets in. The dots on the orange
(hottest) temperature curve indicate the locations of the innermost three MESA zones; the mass in
the central zone is roughly 4× 10−13M�.
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where we have used Tc ≈ 4 × 108 K and ρc ≈ 9 × 109 g cm−3, corresponding to the onset
of A = 20 captures in our fiducial model. This estimate is consistent with the length scale
observed at the onset of the runaway in Fig. 4.6.

The subsequent evolution of the runaway is driven by the temperature sensitivity of
the sub-threshold electron capture rate. This rate is well-approximated by equation (4.6),
yielding a logarithmic derivative of the rate with respect to temperature of

d lnλ

d lnT
= 3− µe +Q

kT
. (4.20)

Physically, the second term is the how far the transition is below its threshold energy (in units
of kT ). As in the A = 24 case, electron captures become important when λ−1

ec ≈ tcompress;
from equation (4.6) this occurs at (µe+Q)/(kT ) ≈ −14. The thermal runaway is sufficiently
rapid that µe + Q remains approximately fixed. This implies that the captures will be
extremely temperature sensitive, scaling as λ ∝ T n, where

n ≡ d lnλ

d lnT
≈ 3 + 14

(
T

4× 108 K

)−1

. (4.21)

In the following estimates, we will take n ≈ 12, and since n� 1, we will treat n ≈ n± 1.
Hence, as captures begin, their density dependence leads to a temperature gradient on

the length scale given by equation (4.19). Because convection is not initiated, the heating
remains local, and this temperature gradient will grow with time in a thermal runaway. Once
it is sufficient to cause an order unity variation of the capture rate across a given length r,
the gradient will become non-linear. The hotter part will begin to evolve more rapidly and
the evolution of the cooler part will freeze-out. This will occur when dT/dr ≈ (T/n)/r and
so on its own, thermal runaway leads to a characteristic profile where d lnT/d ln r ≈ 1/n.
However, thermal conduction limits the volume that can runaway to a fixed temperature,
keeping regions where tth . theat approximately isothermal. The thermal diffusivity from
electron conduction is Dth ≈ 30 cm2 s−1(T/109 K), meaning that the timescale for conduction
to modify the thermal structure over a lengthscale r is

tth =
r2

Dth

≈ 103 yr
( r

106 cm

)2
(

T

109 K

)−1

. (4.22)

Therefore, the size of the isothermal region at the center of the model scales like r ∝ T
1−n/2
c .

Thus, as the runaway progresses, it will create a temperature profile with d lnT/d ln r ≈
−1/5. The dotted grey line in the top panel of Fig. 4.6 shows this slope, which agrees well
with the temperature evolution in the MESA calculations. The semiconvective instability
grows on the thermal diffusion time. During the thermal runaway, by definition, theat . tth.
Hence, the evolution of the core during this phase will be sufficiently fast that semiconvection
will not modify the temperature or composition.

This thermal runaway leads to a small volume at the core reaching very high tempertures,
eventually to values large enough for heating from oxygen fusion to play a role. This occurs
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when T ≈ 1.1 × 109 K, where the heating time is theat ≈ 10−2 yr. From equation (4.22),
the hottest (isothermal, so tth ≈ theat) part of the core will have a size r ≈ 3 × 103 cm,
which encompasses about 3 × 10−13 of the total mass. The finest central zoning that we
were able to achieve in our MESA calculations (as shown in Fig. 4.6) was a mass resolution
of approximately 4 × 10−13M�. Therefore, just as oxygen burning begins to dominate the
energy release, the small size of this region prevents us from continuing to follow its evolution
in our full star MESA simulations.

The conditions created in the core of the star as energy generation by oxygen fusion
begins to dominate over A = 20 captures lead naturally to the development of an oxygen
deflagration wave. In particular, we have shown that oxygen fusion begins in a region at the
core of the star whose size is determined by tth . theat. With theat identified as the heating
time associated with oxygen fusion, this is precisely the condition for the onset of an oxygen
deflagration wave; Timmes & Woosley (1992) defined the deflagration “trigger mass” to be
the mass contained within the region satisfying this constraint. Therefore, we are confident
that the hot central region present at the end of our MESA calculations, being unstable to
thermal runaway, will continue to grow in temperature and shrink in size, eventually reaching
the laminar deflagration solutions of Timmes & Woosley (1992).4 The outgoing deflagration
wave will sweep across this thermally unstable core in less than one second.

It is important to stress that the onset of the oxygen deflagration in the AIC context is
substantially different than the “simmering phase” in single degenerate Type Ia supernovae
progenitors. There, after pycnonuclear carbon ignition occurs, the entropy release from
carbon burning drives the formation of a central convection zone. The growth and heating
of this convective zone lead to a significant decrease in the central density between the time
of carbon ignition and the development of a deflagration.

In our models, by contrast, no central mixing occurs because of the stabilizing effect of
the composition gradient associated with A = 20 captures. Therefore the central density
at which oxygen ignition occurs, and at which we halt our MESA calculations, is a good
estimate of the central density at which the oxygen deflagration develops. We discuss the
propagation of this deflagration and its influence on the final outcome in § 4.6.

4.4 Details of MESA Calculations
All of the calculations performed in this paper are based on revision 6596 (released 2014-

06-07), with some modifications to support our weak rate calculations. The incorporation
of these changes into the mainline MESA code will be discussed in the upcoming MESA
Instrument Paper III (Paxton et al. 2015). As required by the MESA manifesto, the inlists
and source code modifications necessary to reproduce our calculations will be posted on
http://mesastar.org.

4At the density in our MESA calculations, the laminar deflagration width is δ ≈ 3× 10−5 cm, far below
our ability to resolve in our full star simulations.
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4.4.1 Generation of Initial Models

In order to perform the parameter study discussed § 4.5, it is necessary to have a set
of models of ONeMg cores with a range of different temperatures and compositions to use
as initial conditions. We generate an idealized set of models via the following ad hoc steps.
During each step, all nuclear reactions are turned off, ensuring that the model will continually
contract until halted by degeneracy pressure.

We begin with a 1.325M� pre-main sequence model of normal (roughly solar) composi-
tion. We evolve this model until it reaches a central density of log10 ρ = 3 (cgs). We then
relax the (homogeneous) composition to the desired 16O, 20Ne, and 24Mg mass fractions and
allow the model to evolve until the central density reaches log10 ρ = 7. Then we set the model
to accrete at a constant Ṁ and evolve until the central density reaches log10 ρ = 9.4, which is
still below the threshold for the onset of the electron capture reactions of interest. In order to
achieve different core temperatures, we vary Ṁ ; models with higher (lower) accretion rates
have less (more) time for neutrino cooling to carry away energy and are correspondingly hot-
ter (colder). By this means, we arrive a set of models with varied compositions and central
temperatures to use as initial models.

4.4.2 Important MESA Options

While our full inlists will be made publicly available, we highlight some of the most
important MESA options used in the calculations. This section assumes the reader is familiar
with specific MESA options. Please consult the instrument papers (Paxton et al. 2011, 2013)
and the MESA website5 for a full explanation of the meaning of these options.

Since MESA is an implicit code, it is important that we choose timesteps that will
resolve the processes of interest. The evolution of the ONeMg cores is driven by the increase
in central density (and hence Fermi energy) caused by the ongoing compression. Therefore,
our default runs include a timestep criterion based specifically on changes in central density

delta_lgRho_cntr_hard_limit = 3e-3
delta_lgRho_cntr_limit = 1e-3

in addition to the primary spatial and temporal convergence settings of

varcontrol_target = 1e-3
mesh_delta_coeff = 1.0 .

Evidence demonstrating that this set of MESA options yields a converged result is shown in
Appendix 4.C.

These calculations use a nuclear network based on the co_burn.net network included
with MESA with the addition of the isotopes 20O, 20F, 24Ne, and 24Na and the weak reactions
linking the A = 20 isotopes to 20Ne and the A = 24 isotopes to 24Mg. The special treatment
of these weak reactions (as discussed in Appendix 4.A) is activated with the options

5http://mesa.sourceforge.net
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use_special_weak_rates = .true.
ion_coulomb_corrections = ’PCR2009’
electron_coulomb_corrections = ’Itoh2002’

where the last two lines select the Coulomb corrections discussed in Appendix 4.B.

4.5 Parameter Studies
In this section, we use a suite of MESA calculations to study how a variety of parameters

affect the evolution of these cores. The key question we will answer is whether reasonable
variation in these parameters will affect the final outcome.

The first parameter (§ 4.5.1), the initial 24Mg mass fraction (XMg), is an intrinsic property
of the ONeMg core, set during the process that produced the core. Variation in this value
may reflect variation in the formation process (e.g., the initial mass of the star that produced
it) as well as limits of our knowledge (e.g., uncertainties in quantities such as the 12C(α, γ)16O
reaction rate). The second parameter (§ 4.5.2), the accretion rate Ṁ , is set by the current
state of the system (e.g., the properties of a binary companion, the details of shell-burning).
The third parameter (§ 4.5.3), the strength of the second forbidden transition between the
ground states of 20Ne and 20F, reflects a limit in our current knowledge.

4.5.1 Effect of a 24Mg mass fraction

Gutiérrez et al. (2005) performed a parameter study of the effects of the 24Mg mass
fraction. We follow their approach of varying the central 24Mg fraction, while holding the
16O/20Ne ratio fixed.6 We explore a wide range of 24Mg mass fractions, from 0.01 up to 0.20.
This latter value is well above the expected 24Mg fraction given current reaction rates. Our
results are shown in Fig. 4.7.

The temperature increase due to the A = 24 electron captures scales roughly linearly with
XMg, as expected from equation (4.11). For XMg . 0.07, neutrino cooling erases the effect of
the heating and the trajectories converge back towards the tcool = tcompress relation described
in § 4.3. Correspondingly, the density at which the captures on 20Ne occur—and thus the
density at which oxygen ignites—is independent of XMg. For XMg & 0.07, an increase in
XMg leads to the onset of 20Ne captures (and oxygen ignition) at a higher density. At even
higher values (not shown), the heating from the A = 24 captures is sufficient to directly
ignite oxygen burning as noted by Miyaji & Nomoto (1987) and Gutiérrez et al. (2005).

In the limited set of models presented in Gutiérrez et al. (2005) this bifurcation in the core
evolution around XMg ≈ 0.07 is not evident. However, it has a clear physical explanation.
In Appendix 4.D we discuss a simple model of a zero-temperature white dwarf with a low-Ye

6In accordance with our fiducial model, we set this ratio be at 10/9. The choice of this ratio does slightly
influence the density at which captures occur through the dependence of the Coulomb corrections on Z̄.
However, as a small shift on top of a small shift, we do not explore variations in this ratio.
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Figure 4.7 : The evolution of the central density and temperature for different magnesium mass
fractions. At lower XMg values, the density at which oxygen ignition occurs (the end of the track)
is independent of XMg; at higher XMg values, the density at which oxygen ignition occurs increases
with increasing XMg. The text and Figs. 4.8 and 4.9 explain the origin of this trend.
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core that explains these results; here, we demonstrate the consistency of these calculations
with our MESA models, eliding the details.

Fig. 4.8 shows the compression time in two models, one on each side of this threshold
value of XMg. The core evolution for both models follows the dashed black line defined by
equation (4.3) up until the onset of the A = 24 electron captures at log10 ρc ≈ 9.6. Above this
density, the XMg = 0.05 model (blue line) follows the dotted line, which is the track expected
for the fiducial value of Ṁ and the value of d lnM/d ln ρc in equation (4.1) calculated from
a zero-temperature white dwarf model in which Ye decreases for log10 ρ > 9.6. See Fig. 4.17
and surrounding discussion for the details of this zero-temperature model.

In the XMg = 0.15 model (yellow line in Fig. 4.8), once the 24Mg captures occur at
log10 ρc ≈ 9.6, the compression timescale begins to fall dramatically. By the time 20Ne cap-
ture densities are reached (log10 ρ ≈ 10), the compression timescale is orders of magnitude
smaller than in the lower XMg models, though it remains significantly longer than the dy-
namical time. Recall that significant electron captures only occur when the capture time
satisfies the relation tcompress = tcapture; this means that for shorter compression timescales,
the core must reach higher densities, and hence higher capture rates, before the effects of the
captures become apparent. As XMg increases, models experience a larger drop in Ye, and
compress more quickly. This explains the trend of increasing oxygen ignition density with
increasing XMg seen in Fig. 4.7.

To physically understand the different evolution of the XMg & 0.07 models, we consider
an idealized model of the effect of Mg captures on the structure and stability of the ONeMg
core. We assume that the A = 24 electron captures occur instantaneously above a density
of ρn = 9.6. Using the approach described in Appendix 4.D, we can then determine the
central density of the zero temperature model with the maximum mass. The result of this
calculation is shown as the dashed line in Fig. 4.9. Any model with XMg & 0.07 will cross
the stability line before the onset of 20Ne captures. Moreover, for a larger change in Ye
(associated with a larger XMg in the current example), the onset of instability occurs at
lower central density. These results explain the qualitatively different behavior of the high
XMg models in Fig. 4.7.

Above the dashed line in Fig. 4.9, the zero temperature models are dynamically unstable
and would contract on the dynamical timescale. But the characteristic electron capture
timescales are longer than the dynamical time, and so the assumption that the captures
are effectively instantaneous (used in the idealized models in Appendix D) does not hold in
the real MESA models. As the contraction timescale gets shorter, only material at densities
where the capture timescale is shorter than the contraction timescale can have had significant
captures. Therefore the density above which the captures have completed, ρn, shifts to higher
values. There is no longer time for the total mass to change and so the timescale for the
evolution of the central density is no longer set by the accretion rate. Instead, the core
compresses on the significantly shorter neutronization timescale,

tn =

(
d lnYe
dt

)−1

=
YeAMg

XMgλec

≈ 80

(
XMg

0.15

)−1

tcapture. (4.23)
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Figure 4.8 : The compression time of selected MESA models. The model with XMg = 0.05 is
compressed at a rate controlled by the accretion rate. The dashed line shows the compression
rate given in equation (4.3) and the dotted line shows the compression rate expected for a zero
temperature white dwarf in which Ye suddenly falls at log10 ρ = 9.6, due to the electron captures
on 24Mg and 24Na. The agreement demonstrates that the central density is controlled by the total
mass. The model with XMg = 0.15 experiences a much more dramatic decrease in the compression
time because of the larger decrease in Ye (see Fig. 4.9). The black dash dotted line shows the
neutronization timescale expected from the calculations in Appendix 4.D, where the central density
is evolving at fixed mass. Note that in both cases the compression timescale still remains orders of
magnitude longer than the dynamical time.
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Given a fixed M , the models in Appendix 4.D give a relationship between ρc and ρn. Calcu-
lating tn by evaluating tcapture at the ρn corresponding to each ρc gives the dash dotted line
in Fig. 4.8, which agrees well with the result of the MESA calculation. See Fig. 4.18 and
surrounding discussion for the details of these zero-temperature models.

4.5.2 Effect of central temperature and accretion rate

As illustrated in Fig. 4.4, the density at which electron captures begin is temperature
dependent. Our fiducial model begins at a central density log10 ρc ≈ 9.4 and log10 Tc ≈ 8.4.
This central temperature is a free parameter, but as discussed in § 4.3, a new central temper-
ature will be established by the balance between neutrino cooling and compressional heating.
Therefore, the central temperature when captures occur (in particular the A = 20 captures,
and quickly thereafter oxygen ignition) is weakly dependent on the initial temperature. This
fact makes it difficult to separately illustrate the effects of the temperature and accretion
rate.

In Fig. 4.10 we show the evolution of our fiducial model with 4 different accretion rates.
The onset of captures is less temperature sensitive than one would infer from Fig. 4.4. This
is because at a higher Ṁ , while the quasi-equilibrium core temperature is higher (increasing
the electron capture rates), the compression time is also shorter, and so the density at which
tcompress ≈ tcapture ends up having a weaker dependence on the accretion rate. At the lowest
accretion rate shown in Fig. 4.10 (Ṁ = 10−8M� yr−1), the evolution appears qualitatively
different. Looking at Fig. 4.4, this is because the central temperature remains sufficiently low
that electron captures on 24Na do not occur immediately after electron captures on 24Mg,
but are delayed until higher densities (log10 ρc ≈ 9.7).

Fig. 4.11 demonstrates the independence of the oxygen ignition density on the initial
central temperature. These models begin right before the A = 24 captures, at log10 ρc ≈ 9.55,
so that the core temperature does not change substantially before the onset of the captures.
By the time the A = 20 captures occur, the temperature differences have been erased by
neutrino cooling and compressional heating, as the core evolves towards the tcompress = tcool

thermal state discussed in § 4.3. As a result, there is little effect on the density at which
oxygen ignition occurs.

4.5.3 Effect of a 20Ne forbidden transition

Martínez-Pinedo et al. (2014) discuss the non-unique second forbidden transition from
the 0+ ground state of 20Ne to the 2+ ground state of 20F. The matrix element for this tran-
sition only has an experimental upper limit. They show that this transition can potentially
dominate the rate for temperatures less than 9× 108 K.7

7The results of both Martínez-Pinedo et al. (2014) and of this work are obtained by treating the phase
space factor of this second forbidden transition as that of an allowed transition. As discussed by Martínez-
Pinedo et al. (2014), the true shape factor could contain additional powers of the energy, which would
further increase the rate, and can potentially offset the possibility that the matrix element is below the
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Figure 4.9 : The evolution of the central electron fraction and central density for two values of XMg

(blue and yellow solid lines). The time elapsed during the evolution from log10 ρ = 9.65 to the
onset of 20Ne captures is indicated next to each track. The dashed line shows the stability curve
for a zero temperature white dwarf which neutronizes to the value of Ye,c shown on the x-axis at a
density of log10 ρ = 9.6. The dotted red lines show the threshold electron capture densities for 20Ne

and 24Mg. For XMg & 0.07, the onset of A = 24 electron captures reduces Ye such that subsequent
compression drives the equivalent zero temperature models into a dynamically unstable region of
parameter space. Past this point, the contraction accelerates significantly (as shown in Fig. 4.8).
In these cases, 24Mg captures alone have assured collapse.
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Figure 4.10 : The fiducial model evolved with different values of Ṁ . The central density at which
the A = 20 captures occur depends weakly on the accretion rate. At Ṁ = 10−8M� yr−1 the central
temperature remains low enough that the 24Mg and 24Na captures occur at two separate critical
densities. The dependence of the oxygen ignition density on Ṁ is weak.
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Figure 4.11 : An illustration that the oxygen ignition density is independent of the initial central
temperature. The models begin with log10 ρc ≈ 9.55, before the A = 24 e-captures. The grey
dashed lines show when tcapture = tcompress for 24Mg and the models show the expected temperature
dependence for the A = 24 captures. However, by the time the A = 20 captures occur, the
temperature differences have been erased by neutrino cooling and compressional heating, and thus
there is little effect on the density at which oxygen ignition occurs.
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Figure 4.12 : The effect of the second forbidden transition from the 0+ ground state of 20Ne to
the 2+ ground state of 20F. The dotted, dashed, and dash-dotted lines show where the timescale
for 20Ne captures is equal to the fiducial compression timescale (104 yr) for different values of the
matrix element (see plot legend). The solid lines of matching color show the evolution of the fiducial
MESA model using these rates. While the onset of 20Ne captures shifts significantly if the 0+ → 2+

transition is at the experimental upper limit, the shift in the density at which oxygen ignition occurs
is substantially smaller.
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This transition can affect the critical density at which 20Ne captures begin. The broken
lines in Fig. 4.12 shows the critical curves for 20Ne capture obtained by setting the capture
rate equal to the fiducial compression rate, corresponding to Ṁ = 10−6 M� yr−1. With the
matrix element at the current experimental upper limit, the onset of captures is shifted to
lower density (0.15 dex in log10 ρ). At a value a factor of 103 below the upper limit, the shift
is very approximately halved (depending on the temperature). At a value a factor of 106

below the upper limit, the transition ceases to have a substantial effect.
The solid lines in Fig. 4.12 show the evolution of our fiducial model with each of these

different choices for the strength of this transition. While the choice substantially affects
the onset of 20Ne captures, it has a less significant effect on the density for oxygen ignition.
Unlike the other transitions, which reach the critical capture timescale while they are sub-
threshold, this transition is super-threshold. Correspondingly, the electron capture rate is
less temperature sensitive. Its less rapid increase, coupled with the compression timescale
dropping due to the decrease in Ye, gives time for the core density to increase before the
onset of oxygen ignition.

In the calculation with the transition at the upper limit (solid yellow line), the central
temperature does not reach the oxygen ignition line. This is because the thermal structure
of the remnant is such that ignition occurs mildly off-center. Our future calculations will
determine whether this has any effect on the ensuing evolution.

4.6 Discussion
As described by Miyaji et al. (1980), the final outcome of an ONeMg core as it approaches

the Chandrasekhar mass, either explosion or collapse, is determined by a competition be-
tween the energy release from the outgoing oxygen deflagration and the energy losses due to
electron captures on the post-deflagration material, which has burned to nuclear statistical
equilibrium (NSE).

As discussed in § 4.3, the small length scale of the deflagration means that we are unable
to follow this phase with the MESA calculations presented in this paper. However, in lieu of
a full calculation, we present a few order-of-magnitude estimates relevant to the outcome.

At the time of collapse, the total energy of our fiducial white dwarf is E ≈ −6× 1050 erg.
Oxygen burning to NSE yields approximately 1 MeV per baryon, meaning the energy release
from burning 0.3 M� of material can unbind the white dwarf. This energy release is required
for the deflagration wave to significantly change the structure of the star. Prior to the
deflagration wave burning through ≈ 0.3M� of material, the structure of the WD core
will remain relatively unchanged unless electron captures cause collapse. If the deflagration
moves at some fraction f of the sound speed, the timescale for it to propagate though the
central 0.3M� is

td ≈
∫ Mr=0.3M�

0

dr

fcs
≈ 1 s

(
0.03

f

)
, (4.24)

current experimental upper limit.
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where we have evaluated the integral using the structure of our MESA model at the end of
the calculation.

Nomoto & Kondo (1991) found that the critical deflagration speed that demarcated
the boundary between a model that explodes and a model that collapses was f ≈ 0.03.
The work of Timmes & Woosley (1992), which simulated conductively-propagating oxygen
deflagrations in detail gives a fitting formula for the laminar deflagration speed of an oxygen
flame of

vd = 51.8 km s−1

(
ρ

6× 109 g cm−3

)1.06(
XO

0.6

)0.688

. (4.25)

At ρ ≈ 9 × 109 g cm−3 and XO = 0.5, this gives vd ≈ 70 km s−1, which corresponds to
f = vd/cs ≈ 0.005. Based on an analysis of the growth of the Rayleigh-Taylor instability, they
conclude that these conductive flames are likely to remain stable. Therefore the laminar flame
velocity is representative of the true flame speed in the inner part of the star. In particular,
see figure 10 in Timmes & Woosley (1992), noting that R(Mr = 0.3M�) ≈ 300 km.

Based on these flame calculations, as well as several KEPLER simulations using these
speeds, Timmes & Woosley (1992) concluded that above a core density of 9 × 109 g cm−3

the white dwarfs should collapse to a neutron star. The lowest central density at which
oxygen ignition occurred in our parameter study (§ 4.5) was log10 ρc = 9.93. That is ρc ≈
8.5× 109 g cm−3, which is only marginally below this critical value.

The timescale on which the core is neutronizing due to electron captures on the NSE-
composition material can be written as tn = (d lnYe/dt)

−1. The methods presented in this
paper are not appropriate for calculating weak rates in NSE material. Instead, we take
Ẏe from tables generated by Seitenzahl et al. (2009). Fig. 4.13 shows the neutronization
timescale as a function of density and temperature for Ye = 0.49, the approximate central
value in our fiducial model at oxygen ignition. Once the deflagration forms, the density of the
post-deflagration material is less than the cold, upstream material. The MESA models reach
oxygen ignition at log10 ρc ≈ 10, where this density change is small, ∆ρ/ρ ≈ 0.1 (Timmes
& Woosley 1992). Therefore, the density of the post-deflagration ash will be approximately
the same as the density at which oxygen ignites, so Fig. 4.13 indicates that the relevant
neutronization timescale is approximately 0.2 s.

This estimate of the neutronization timescale is sufficiently shorter than the timescale on
which the deflagration wave unbinds the star (equation 4.24) that it suggests that the end
result of oxygen ignition following e-captures on 20Ne will be collapse to a NS rather than a
thermonuclear explosion. Future work will clarify this in the context of full-star simulations.

4.7 Conclusions
We have provided an updated analytic and numerical understanding of the evolution of

accreting and compressing ONeMg cores up to the initiation of oxygen burning in the core.
This study was enabled by new capabilities of the MESA (Paxton et al. 2011, 2013, 2015)
stellar evolution code. In particular, we have implemented a highly accurate treatment of
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Figure 4.13 : The neutronization timescale for Ye = 0.49, which is roughly the central value of
Ye at the end of our fiducial calculation. Contours are labeled by timescale. This uses the NSE
electron capture rates from Seitenzahl et al. (2009). Since our compressing ONeMg cores reach
oxygen ignition at log10 ρc ≈ 10, the relevant neutronization timescale is approximately 0.2 s. This
is less than the timescale for the O deflagration wave to release enough energy to unbind the star
(equation 4.24), suggesting that collapse to a NS will ensue.
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the key electron capture rates (on A = 20 and 24 nuclei) using modern microphysics from
Martínez-Pinedo et al. (2014), which is summarized in Appendix 4.A.

We have demonstrated analytically and numerically that neither 24Mg or 20Ne captures
release sufficient heat to generate convection in the core. Instead, the core undergoes a ther-
mal runaway triggered by the energy released by 20Ne captures. This centrally concentrated
runaway initiates oxygen burning and launches an outgoing oxygen deflagration wave at a
time when the central density is at least 8.5 × 109 g cm−3. Based on order of magnitude
estimates and previous work of Timmes & Woosley (1992), we expect objects which ignite
oxygen at such high densities will collapse and form a neutron star due to continued electron
captures on the NSE ashes produced by oxygen burning.

Given the sensitivity of the final outcome of compressing ONeMg cores to the central
density at the time oxygen burning begins (see §4.6), we also performed a parameter study
which demonstrated the influence of a number of factors on this density. We investigated
the effects of varying the initial 24Mg fraction (§ 4.5.1), the initial central temperature and
accretion rate (§ 4.5.2), as well as the potential inclusion of a particular forbidden transition
(§ 4.5.3). Figures 4.8 and 4.9 demonstrate that values of XMg & 0.07 cause the core to
contract more rapidly after A = 24 the captures, which leads to oxygen ignition at higher
densities (thus further favoring collapse to form a neutron star). We also demonstrated the
importance of the balance between neutrino cooling and compressional heating in setting
the central temperature of ONeMg cores during much of their evolution (Paczyński 1971).
This implies that the core typically loses memory of its initial central temperature.

The approach of an ONeMg core to the Chandrasekhar mass is relevant to the late
stages of evolution for super asymptotic giant branch stars, binary systems with an accreting
ONeMg WD, and the remnants of WD-WD mergers. Our calculations here are an important
step in producing more realistic progenitor models for these studies.
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4.A Physics of electron-capture and beta-decay
We are interested in the electron-capture reaction

(Z,N) + e− → (Z − 1, N + 1) + νe (4.26)

and its reverse reaction, β-decay

(Z,N)→ (Z + 1, N − 1) + e− + ν̄e (4.27)

where Z and N are respectively the proton and neutron number of the nucleus. For nuclei
in a dense plasma where the electrons are degenerate, the rates of these processes can de-
pend sensitively on the density (though the electron distribution function) and temperature
(though the occupation of nuclear energy levels and the electron distribution function). The
neutrinos are able to free stream out of the star, and therefore neutrino phase-space is ef-
fectively unfilled. For a more thorough discussion of the physics of weak reactions in stellar
environments, see e.g. Fuller et al. (1980, 1985).

This section summarizes a simple framework for the rates of these weak processes. More
detailed microscopic calculations exist in the literature such as those presented in Oda et al.
(1994). However, those particular tables are sufficiently sparse that numerical considerations
related to interpolation cause us to elect to use rates calculated in the manner described here,
rather than interpolate in tables from more detailed calculations.

The rate of the electron capture or β-decay transition from the i-th state of the parent
nucleus to the j-th state of the daughter nucleus can be written as (e.g. Fuller et al. 1980)

λij =
ln 2

(ft)ij
I(µe, T,Qij), (4.28)

where (ft) is the comparative half-life and can be either measured experimentally or theo-
retically calculated from the weak-interaction nuclear matrix elements. I is a phase space
factor which depends on the temperature T , electron chemical potential µe, and the energy
difference Qij between the (i-th) parent and (j-th) daughter nuclear states.

Qij = (µp − µd) + Ei − Ej , (4.29)

where µp and µd are the chemical potentials of the nuclei. For a classical ideal gas, the
chemical potential is

µI = mIc
2 + kT ln

(
nI
nq

)
, (4.30)

where mI is the rest mass, nI is the number density, and nq = (2πmIkT/h
2)3/2. Therefore,

Qij = (Mp −Md) c
2 + kT ln

(
np
nd

)
+ Ei − Ej (4.31)
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where Mp and Md are the nuclear rest masses of the parent and daughter nuclei, respec-
tively. Since |Mp −Md| c2 ≈ 5 MeV for the isotopes we consider and we restrict ourselves to
temperatures T < 109 K (so kT < 100 keV), the term kT ln

(
np
nd

)
is negligible in comparison

and we discard it, leaving

Qij = (Mp −Md) c
2 + Ei − Ej . (4.32)

Though not generally true, for the set of transitions that we consider, this definition means
that Qij < 0 for e-capture and Qij > 0 for β-decay.

We work in the allowed approximation, which neglects all total lepton angular momentum
(L = 0). This restricts us to the following transitions and corresponding selection rules (e.g.
Commins 1973): Fermi transitions, where the total lepton spin is S = 0, and therefore the
initial and final nuclear spins are equal (Ji = Jj), and Gamow-Teller transitions, where
S = 1, and therefore Ji = Jj, Jj ± 1 (excluding Ji = Jf = 0). In both cases, these is no
parity change: πiπf = +1.

At low temperature, the electron chemical potential is approximately the Fermi energy
EF (the first correction enters at order (kT/EF )2), and so we use the terms Fermi energy and
electron chemical potential interchangeably. In the relativistic limit, the electron chemical
potential can be approximated as

µe ≈ EF = 5.16

(
ρYe

109g cm−3

)1/3

MeV, (4.33)

where Ye =
∑

i ZiXi/Ai is the electron fraction. Zi, Xi, and Ai are respectively the charge,
mass fraction, and atomic mass of the i-th species.

The total rate of the process is the sum of the individual transition rates from the i-th
parent state to the j-th daughter state, λij, weighted by the occupation probability of the
i-th parent state, pi.

λtotal =
∑

i

pi
∑

j

λij, (4.34)

The i-sum is over all parent states and the j-sum is over all daughter states. We will al-
ways assume that the nuclear states are populated with a thermal (Boltzmann) distribution.
Some parent nuclei preferentially capture into excited daughter states, but these excited
states decay via γ-ray emission with a typical timescale ∼ 10−12 s. Therefore the level pop-
ulation returns to a thermal distribution on a timescale much shorter than the evolutionary
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timescales of interest.8 The occupation probability is

pi =
2Ji + 1

P (T )
exp (−βEi) , (4.35)

where P (T ), the nuclear partition function is P (T ) =
∑

i(2Ji + 1)e−βEi and we define
β = (kT )−1.

The remainder of this section considers the rate of a single allowed (L = 0) transition in
detail, and so for convenience we drop the i,j subscripts. In the case of electron capture, the
phase space factor is (e.g., Fuller et al. 1980)

Iec =
1

(mec2)5

∫ ∞

−Q

E2
eE

2
ν

1 + exp[β(Ee − µe)]
G(Z,Ee)dEe , (4.36)

along with the energy conservation relationship Ee +Q = Eν . The quantity G is defined as

G(Z,Ee) =

√
E2
e − (mec2)2

Ee
F (Z,Ee) (4.37)

where F (Z,Ee) is the relativistic Coulomb barrier factor (Gove & Martin 1971). We make
the approximation that the electrons are relativistic. In this limit,

G(Z,Ee) ≈
(

4πEeR

hc

)−α2Z2

exp (παZ) , (4.38)

where α is the fine structure constant and R is the size of the nucleus (Fuller et al. 1980).
We are considering nuclei with Z ≈ 10, A ≈ 20 (and so R ≈ 3 fm), at densities such
that Ee ≈ 5 MeV. Therefore, the value of the first term is

(
4πEeR

~c

)−α2Z2

≈ 0.999, with an
extremely weak Ee and R dependence (since α2Z2 ≈ 0.005). Therefore we treat G(Z,Ee) as
a constant with a value of exp(παZ).

Changing to dimensionless variables ε ≡ E
mec2

and q ≡ Q
mec2

, the phase space integral
becomes

Iec = eπαZ
∫ ∞

−q

ε2(ε+ q)2

1 + exp[βmec2(ε− µe)]
dε . (4.39)

We rewrite this integral in simpler form as

Iec =
eπαZ

(βmec2)5

[
F4(η + ζ)− 2ζF3(η + ζ) + ζ2F2(η + ζ)

]
, (4.40)

8There is one case in which this hierarchy of timescales is not so obvious. The first excited state of 24Na
is metastable with a half-life of 2×10−2 s (Firestone 2007b) and ground state of 24Mg preferentially captures
into this excited state. If the capture rate from this excited state to 24Ne were approximately equal or greater
than the rate of decay via γ-ray emission, the relative state populations would be effectively non-thermal.
Using the parameters of this transition as listed in Table 4.1, the capture timescale is approximately equal
to the half-life at a critical density of log10 ρ ≈ 10.5 (for Ye ≈ 0.5), which is safely outside of the density
range that we consider in this work.
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where we have defined the quantities η = βµe and ζ = βq and

Fk(y) =

∫ ∞

0

xk

1 + exp(x− y)
dx , (4.41)

is the complete Fermi integral. Evaluating the rate requires evaluating three complete Fermi
integrals, for which efficient numerical routines exist (e.g. Aparicio 1998).

In addition to the e-capture rate, we need the rate of energy loss via neutrinos, which for
a single transition can be written as

εν,ij =
mec

2 ln 2

(ft)ij
J(µe, T,Qij) , (4.42)

where J is phase space factor, defined by an integral similar to equation (4.36), except with
an additional power of the neutrino energy:

Jec =
1

(mec2)6

∫ ∞

−Q

E2
eE

3
ν

1 + exp[β(Ee − µe)]
G(Z,Ee)dEe . (4.43)

In terms of complete Fermi integrals, this is

Jec =
eπαZ

(βmec2)6

[
F5(η + ζ)− 2ζF4(η + ζ) + ζ2F3(η + ζ)

]
. (4.44)

The total neutrino loss rate can calculated via an occupation-weighted average, analogous
to that used to calculated the total rate in equation (4.34).

In the case of β-decay, the phase space factor is

Iβ =

∫ Q

mec2

E2
eE

2
ν

1 + exp[−β(E − µe)]
G(Z,E)dEe , (4.45)

and energy conservation Q = Ee+Eν . Following the same procedure as the electron capture
case9

Iβ = eπαZ
∫ q

1

ε2(ε− q)2

1 + exp[−βmec2(ε− µe)]
dε . (4.46)

We can convert this integral into a sum of complete Fermi integrals by making use of the
mathematical identity

∫ b

0

xk

1 + exp(x− y)
= Fk(y)−

k∑

j=0

(
k

j

)
bk−jFj(y − b) . (4.47)

9It is perhaps less obvious that the assumption that the electrons are relativistic is justified here, given
the lower integration limit. But because electron phase space is only empty near or above the Fermi energy
(and µe > 5 MeV at the densities of interest), the integrand is only significant at the upper portion of the
integration range where this approximation is justified.
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Defining ϑ ≡ βmec
2, this yields the following expression:

Iβ =
eπαZ

(βmec2)5
[F4(ζ − η) − 2ζF3(ζ − η) + ζ2F2(ζ − η)

]
−

eπαZ

(βmec2)5
[F4(ϑ− η)−

F3(ϑ− η)× (4ϑ− 2ζ) +

F2(ϑ− η)×
(
6ϑ2 − 6ϑζ + ζ2

)
−

F1(ϑ− η)×
(
4ϑ3 − 6ϑ2ζ + 2ϑζ2

)
+

F0(ϑ− η)×
(
ϑ4 − 2ϑ3ζ + ϑ2ζ2

)
] .

(4.48)

Similarly, the factor Jβ necessary to calculate the neutrino loss rate is

Jβ =

∫ Q

mec2

E2
eE

3
ν

1 + exp[−β(E − µe)]
G(Z,E)dEe , (4.49)

which can be written as

Jβ =
eπαZ

(βmec2)6
[F5(ζ − η) − 2ζF4(ζ − η) + ζ2F3(ζ − η)

]
−

eπαZ

(βmec2)6
[F5(ϑ− η)−

F4(ϑ− η)× (5ϑ− 3ζ) +

F3(ϑ− η)×
(
10ϑ2 − 12ϑζ + 3ζ2

)
−

F2(ϑ− η)×
(
10ϑ3 − 18ϑ2ζ + 9ϑζ2 − ζ3

)
+

F1(ϑ− η)×
(
5ϑ4 − 12ϑ3ζ + 9ϑ2ζ2 − 2ϑζ3

)
−

F0(ϑ− η)×
(
ϑ5 − 3ϑ4ζ + 3ϑ3ζ2 − ϑ2ζ3

)
] .

(4.50)

Given the reaction rates and neutrino energy loss rates, we can calculate the net heating
rate of the plasma. The energy equation for material in the star is

T
ds

dt
= − ∂L

∂M
+ q∗ + qec + qβ (4.51)

where qec and qβ account for the set of weak nuclear reactions we are considering separately
and q∗ includes all other heating and cooling sources such as thermal neutrino losses and
other nuclear reactions. Under the assumption of thermal equilibrium, the energy released
by the weak reactions depends only on the total reaction rate, the total neutrino loss rate,
and the ion and electron chemical potentials. The energy generation rate (per capture or
decay) is

εec = (−µI,Z + µI,Z−1 + µe)λec − εν,ec (4.52)
εβ = (−µI,Z−1 + µI,Z − µe)λβ − εν,β (4.53)
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where µI,Z , µI,Z−1 are the chemical potentials of the ions with those charges and µe is the
chemical potential of the electron. Defining Qg ≡ Q00 = (Mp − Md)c

2, which implicitly
making the same assumption used to derive equation (4.32), the specific energy generation
rates are

qec =
nec

ρ
εec =

nec

ρ
[(Qg + µe)λec − εν,ec] , (4.54)

qβ =
nβ
ρ
εβ =

nβ
ρ

[(Qg − µe)λβ − εν,β ] , (4.55)

where nec and nβ are the number densities of the species undergoing capture and decay.
Therefore, given a list of nuclear levels and the (ft)-values for the transitions between them,
we can calculate the rates of and energy generation rates from electron-capture and β-decay.

Using the above approach, it would be possible to generate tables whose points are spaced
sufficiently closely, such that interpolation would no longer incur significant errors. But
because MESA comes with fast quadrature routines to evaluate equation (4.41), it directly
evaluates equations (4.40), (4.44), (4.48), and (4.50) each time one of the weak reaction rates
is needed. While this is computationally inefficient, the overall speed of our calculations is
sufficiently unaffected that we chose not to optimize this.

4.B Coulomb Corrections
In a dense plasma, the electrostatic interactions of the ions and electrons introduce cor-

rections to the weak rates relative to rates which assume a Fermi gas of electrons and an
ideal gas of ions (as do those presented in Appendix 4.A). The leading term in the Coulomb
interaction energy for ion-ion interactions (e.g. Shapiro & Teukolsky 1983) is

ECoulomb = − 9

10

Z2e2

ai
(4.56)

where ai =
(

3
4πni

)1/3

is the inter-ionic spacing. For Z ≈ 10, ECoulomb ≈ −0.2EF indicating
that the interactions are energetically important. The Coulomb interaction energy and the
Fermi energy both scale ∝ ρ1/3 in the relativistic limit, which is the regime of interest since
we primarily consider material with ρ > 107 g cm−3.

In this section, we discuss our treatment of these corrections, and compare our approach
to previous work. Our treatment is most similar to that discussed in Appendix A of Juoda-
galvis et al. (2010). Fig. 4.15 illustrates the effects of including these corrections on the
evolution of our fiducial model. The change in the evolution is similar to that observed by
Gutierrez et al. (1996).

4.B.1 Equation of State

Most straightforwardly, a Coulomb term appears in the ion equation of state. This affects
the weak reaction rates, because at a fixed total pressure the electron density is lower. The
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MESA equation of state routines, which in the thermodynamic regime of interest are based
on the “Helmholtz” equation of state (Timmes & Swesty 2000), include these terms based on
the work of Yakovlev & Shalybkov (1989). Fig. 4.14 shows the EOS used by MESA over the
relevant portion of density-temperature space for an ONe composition. The solid line shows
the temperature density profile of a representative accreting ONe WD model. All of the
model is in the part of parameter space covered by the “Helmholtz” EOS (labeled HELM).

4.B.2 Ion Chemical Potential

The energy required to remove an ion of one species and create an ion of another species
is given by the difference in the ion chemical potentials. Since electron-capture and beta-
decay change the ion charge, the presence of the Coulomb interaction energy changes the
energy difference between the parent and daughter nuclear states. The interaction energy
is negative, and so decreasing the charge of the nucleus (as electron-capture reactions do)
requires additional energy, which will therefore shift the onset of electron captures to higher
density.

To calculate this shift, we use the excess (that is, the part in addition to the ideal
contribution) ion chemical potential µex developed in the following series of papers: Chabrier
& Potekhin (1998); Potekhin & Chabrier (2000); Potekhin et al. (2009). We incorporate
this effect by shifting the value of Q, as defined in equation (4.29), by an amount ∆E =
µex,p − µex,d. This shift,

Q′ = Q+ ∆E (4.57)

then enters the calculation of the phase space factors and the energy generation rates. In
Fig. 4.15, the red dotted line labeled “ion chemical potential”, shows the effect of including
of these corrections.

4.B.3 Screening

The electron density relevant to the reaction rate is not the average electron density,
but rather the electron density at the position of the nucleus. Itoh et al. (2002) calculated
the value of this screening correction using linear response theory. This correction can be
correctly accounted for as a shift in the value of the electron chemical potential that enters
the phase space factor.

µ′e = µe + Vs (4.58)

However, this correction does not enter the energy generation rates because it has not
changed the energy cost to add or remove an electron from the bulk Fermi sea, which is
the net effect of a capture or decay. In Fig. 4.15, the yellow dashed line labeled “electron
screening”, shows the effect of including these corrections.
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Figure 4.14 : The regions in density-temperature space of the MESA equation of state, which is an
amalgamation of other EOSes. HELM is the “Helmholtz” EOS (Timmes & Swesty 2000). PC is the
EOS from Potekhin & Chabrier (2010). The dot-dashed lines show the blend region between the
two. The solid line shows the profile of a representative accreting ONe WD model.
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Figure 4.15 : Illustration of the effect of Coulomb corrections on the evolution of the central density
and temperature of the accreting core. (To better understand this plot the reader may first want
to consult Fig. 4.3 and the surrounding discussion.) All calculations include the corrections to the
equation of state (§ 4.B.1). The dashed-dotted blue line shows the result with no other corrections.
The dashed yellow line shows the effect of the inclusion of the screening corrections (§ 4.B.3). The
dotted red line shows the effect of the inclusion of the corrections to the ion chemical potential
(§ 4.B.2).The solid black line shows the result with both corrections included, which is the default
choice for our calculations. The primary effect of including these corrections is a increase (of about
0.05 dex) in the density at which electron captures occur.
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4.B.4 Comparison with Previous Work

The effect discussed in §4.B.2, which is the dominant Coulomb correction, has previously
been included in studies of ONeMg cores (e.g. Gutierrez et al. 1996; Takahashi et al. 2013).
The approach taken in these studies is to include this effect as a shift in the electron chemical
potential

µ′e = µe −∆E (4.59)

and to use this modified electron chemical potential in the evaluation of the rates. This
approach is conceptually incorrect, because µe and Q enter the rate expression in different
ways, as can be seen in equation (4.36). However, given a table of λec(ρ, T ), one has no ability
to shift Q, so the only way to correct the rate is to shift the relation between µe and ρ. In
the sub-threshold case (see equation 4.6), the most important term is the exponential, which
is symmetric in Q and µe, and so this approach does not lead to a substantial quantitative
error in the rate.

When making this correction both Gutierrez et al. (1996) and Takahashi et al. (2013)
follow Couch & Loumos (1974) and use the form of the ion free energy from Dewitt et al.
(1973). There has been progress in calculating the free energy of electron-ion plasmas in the
last few decades. As discussed in § 4.B.2, we use the fitting formula for the free energy from
Potekhin et al. (2009). In their work on electron capture rates in NSE material, Juodagalvis
et al. (2010) use the formula quoted in Ichimaru (1993). The results of Ichimaru (1993)
and Potekhin et al. (2009) agree, while the shift calculated following Dewitt et al. (1973) is
approximately 30 per cent larger in magnitude.

The screening correction discussed in § 4.B.3 is not as widely adopted. It is included in
Juodagalvis et al. (2010), but not in Gutierrez et al. (1996). The results of Itoh et al. (2002)
are within approximately 10 per cent of the results from the Thomas-Fermi approximation

Vs ≈ Z

√
4α3

π
EF . (4.60)

This effect has approximately the magnitude of the difference between older ion chemical
potential and the one we adopt discussed in the preceding paragraph, but the opposite sign.
Therefore, despite its exclusion, the net difference between our calculations and those of
Gutierrez et al. (1996) is small.

4.C Convergence
In order to demonstrate that our results are robust, we perform a number of tests of the

spatial and temporal convergence of our MESA calculations. The parameters of these runs
are shown in Table 4.C. We performed runs with each of the spatial and temporal resolutions
each separately ten times greater than the fiducial case, as well as a run in which both the
spatial and temporal resolutions were three times greater than the fiducial case. Fig. 4.16
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shows that the central temperature evolution remains unchanged10and we observed that the
variation of the result in any quantity of interest was negligible.

10The small difference at the end of the “Temporal” track is an artifact of a difference in how the stopping
condition trigger was tripped.
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Run Name delta_lgRho_cntr_limit delta_lgRho_cntr_hard_limit varcontrol_target mesh_delta_coeff
Fiducial 1× 10−3 3× 10−3 1× 10−3 1.0
Temporal 1× 10−4 3× 10−4 1× 10−4 –
Spatial – – – 0.1
Both 3× 10−4 1× 10−3 3× 10−4 0.3

Table 4.2 : Parameters for the runs demonstrating the convergence of our results. The column names are the specific MESA con-
trols we used. The controls delta_lgRho_cntr_limit, delta_lgRho_cntr_hard_limit, varcontrol_target control the maximal
fractional change in physical variables, which in an implicit code like MESA controls the timestep. The control mesh_delta_coeff
controls the number of zones used in the calculation. Fig. 4.16 shows that central temperature evolution is essentially identical
for these different runs.
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In addition, we performed a run with a much larger network (203 isotopes; mesa_201.net
plus 20O and 20F) and confirmed that our results remained unchanged.

4.D Two-zone WD Models
This section describes the framework we use to understand the evolution of our MESA

models after the A = 24 captures have occurred. The quantitative estimates shown in
Figs. 4.8 and 4.9 were made using the approach described in this Appendix.

After the A = 24 electron captures have begun in the center of the WD, the MESA
models have two zones: an inner “neutronized” zone in which the captures have occurred
and Ye is lower, and an outer zone whose composition remains unchanged. This property of
our MESA models can be seen in Fig. 4.5. The neutronized zone is growing (in a Lagrangian
sense) as a function of time.

In § 4.D.1 we write down an idealized model of a white dwarf with this two zone structure.
In § 4.D.2 we discuss how we apply these models to understand our MESA calculations.

4.D.1 Details of the Two-Zone Model

Following Cox (1968), we write down a simple model of a zero-temperature white dwarf.
We assume spherical symmetry and hydrostatic equilibrium and so solve the Poisson equation
in spherical coordinates:

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ . (4.61)

We also assume the equation of state of a zero temperature, ideal Fermi gas, which is

P = Af(x) (4.62)

x =

(
ρYe
B

)1/3

(4.63)

where

f(x) = x
√
x2 + 1

(
2x2 − 3

)
+ 3 sinh−1(x) (4.64)

A =
πm4

ec
5

3h3
≈ 6.0× 1022 dynes cm−2

B =
8πm3

ec
3

3h3NA

≈ 9.7× 105 g cm−3 .

Combining this equation of state with equation (4.61) gives

1

r2

d

dr

[
r2 d

dr

(
x2 + 1

)1/2
]

= −πGB
2

2AY 2
e

x3 (4.65)
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Figure 4.16 : The legend shows the number of timesteps and the maximum number of zones used
in the calculation of each of the runs shown in Table 4.C. The negligible variation between models
indicates our results are converged.
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where we have made the assumption that dYe/dr = 0.
In order to non-dimensionalize these equations, define z2 = x2 + 1 and let zc be the value

of z at center of the model. We also define

α ≡
(

2A

πG

)1/2
1

Bzc
. (4.66)

and transform to the variables

r ≡ αζ (4.67)
z ≡ zcΦ . (4.68)

This yields the differential equation

d

dζ

(
ζ2dΦ

dζ

)
=

1

Y 2
e

(
Φ2 − 1

z2
c

)3/2

. (4.69)

At the center (ζ = 0), the boundary conditions are

Φ(ζ = 0) = 1 (4.70)
dΦ

dζ

∣∣∣∣
ζ=0

= 0 (4.71)

At the surface (ζ = ζs), ρ→ 0 and so z → 1, meaning

Φ(ζ = ζs) =
1

zc
. (4.72)

Now, we divide the white dwarf into two zones which have different values of Ye. By as-
suming a piecewise constant form for Ye, we can continue to solve equation (4.69) throughout
the whole white dwarf. Specifically, we use

Ye =

{
Ye,0 if z < zn

Ye,n if z > zn .
(4.73)

The transition between the two zones occurs at ζn such that Φ(ζn) = zn/zc. The following
physical conditions must be satisfied at this interface

P+ = P− (4.74)(
1

ρ

dP

dr

)

+

=

(
GMr

r2

)

−
. (4.75)

Note that the continuity of P implies the continuity of x, and hence z, even though Ye is
discontinuous. The dimensionless equivalents of these conditions are

Φ(ζ = ζ−n ) = Φ(ζ = ζ+
n ) (4.76)(

Ye
dΦ

dζ

)

ζ=ζ−n

=

(
Ye
dΦ

dζ

)

ζ=ζ+n

. (4.77)
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Constructing a two-zone model is now simple. Specify the three parameters for the
equation of state: Ye,0, Ye,n, zn. Select a central density (which sets the value of zc) and then
integrate the ODE observing the boundary and jump conditions. The solution gives the
structure of a single two-zone model. A one-parameter family of models can be constructed
by varying zc, which in turn varies the properties (e.g., mass, radius) of the model.

4.D.2 Applications of the Two-Zone Model

Our MESAmodels are in hydrostatic equilibrium: their evolution is occurring on timescales
much longer than the dynamical time. We use the two-zone model to find approximate se-
quences of hydrostatic models along which the MESA models evolve. This gives us insight
into the processes that control the timescale of the evolution.

The piecewise equation of state given in equation (4.73) can be used to represent the
A = 24 captures: setting log10 ρn = 9.6, with Ye,0 = 0.5 and Ye,n = Ye,0−XMg/12 corresponds
to instantaneous neutronization of all available 24Mg at densities above the threshold density.

Fig. 4.17 shows the schematic evolution of models with XMg = 0.05. The black line is
the family of two-zone hydrostatic models. This family of models is generated by varying
Pc (the central pressure). Because of the discontinuity in Ye, the continuous variation in
Pc gives a discontinuous variation in ρc. (In Fig. 4.17, the density jump is hidden by point
2, but the jumps are apparent in Fig. 4.18.) The grey line shows the family of models
without neutronization. For central densities less than ρn (e.g., point 1) the two families
are equivalent. At point 2, the central density crosses the threshold density and the families
diverge. At point 3, the model has a substantial low-Ye core and has a much higher central
density at fixed mass relative to the models without neutronization.

The numbered points in Fig. 4.17 represent a temporal sequence of models. The time
evolution is driven by the increase in M set by accretion. For a given value of Ṁ , the
timescale for changes in ρc is given by equation 4.1, where the value of d ln ρc/d lnM comes
from the sequence of hydrostatic models. In Fig. 4.8, the black dashed line is calculated
using the model without neutronization, while the black dotted line is calculated using the
two zone model. This latter line does an excellent job of quantitatively describing the more
rapid contraction of the MESA model following the A = 24 captures.

Fig. 4.18 shows the schematic evolution of models with XMg = 0.15. The black line
is the family of two-zone hydrostatic models. The grey line shows the family of models
without neutronization. For central densities less than ρn (e.g., point 1) the two families are
equivalent. At point 2, neutronization begins to have an effect. At point 3, the model passes
the maximum mass possible for the family of models with log10 ρn = 9.60. Up to this point,
as in the case with XMg = 0.05, the points 1-3 represent a temporal sequence of models
whose time evolution is driven by increasing M .

With the equation of state held fixed, point 3 would mark the onset of dynamical in-
stability. However, the characteristic timescale of the electron captures is longer than the
dynamical time. Therefore it is not physically possible for ρn to remain fixed. Only material
at densities where the electron capture timescale is shorter than the evolutionary timescale
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Figure 4.17 : The black line shows the sequence of two-zone hydrostatic models with electron cap-
tures above log10 ρn = 9.6 with the change in Ye corresponding to XMg = 0.05. The grey line
shows a zero-temperature model without neutronization. With neutronization taken into account,
the central density increases more rapidly with increasing mass. The numbered points indicate a
temporal series of models; specific points are discussed in more detail in the text.
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is able to completely neutronize.
For the large XMg models like that in Fig. 4.18, the evolutionary timescale becomes

sufficiently short that there is no longer time for a significant amount of mass to accrete.
Therefore, the evolution switches to a sequence of models with constant M , as indicated by
the black dashed line and points 4-6 in Fig. 4.18. The fixed value of M is the maximum
mass for a model with the initial value of log10 ρn = 9.60 (i.e., point 3).

The evolution along the temporal sequence of points 3-6 is limited by the electron capture
rates. To describe this quantitatively, for a given ρc, we find the value of ρn that corresponds
to the hydrostatic model with a given M . Then we calculate the neutronization timescale
(equation 4.23) corresponding to this value of ρn. This gives the black dash dotted line shown
in Fig. 4.8, which does a good job of reproducing the evolution observed in the MESA model.
For simplicity, we used the electron capture rates at fixed temperature (log10 T = 8.6) to
calculate λec.

The qualitatively different evolution experienced by the XMg = 0.05 and XMg = 0.15
models is due to the presence of a maximum mass in the families of two-zone models at
a central density less than the critical density for 20Ne captures. Calculating the central
density at which this maximum occurs for each value of XMg gives the critical curve shown
as a black dashed line in Fig. 4.9.
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Figure 4.18 : The black line shows the sequence of two-zone hydrostatic models corresponding to
XMg = 0.15. The grey line shows a zero-temperature model without neutronization. The colored
lines show models with neutronization at different densities. The gaps between the colored lines
and the grey line are the discontinuities in ρc caused by the discontinuity in Ye; the sequence in
continuous in Pc. The numbered points indicate a temporal series of models; specific points are
discussed in more detail in the text. The black line changes from solid to dashed when the sequence
of models changes from being defined by constant ρn to constant M .
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Chapter 5

The Importance of Urca-process Cooling
in Accreting ONe White Dwarfs

Abstract
We study the evolution of accreting oxygen-neon (ONe) white dwarfs (WDs), with a

particular emphasis on the effects of the presence of the carbon-burning products 23Na and
25Mg. These isotopes lead to substantial cooling of the WD via the 25Mg-25Na, 23Na-23Ne,
and 23Ne-23F Urca pairs. We derive an analytic formula for the peak Urca-process cooling
rate and use it to obtain a simple expression for the temperature to which the Urca process
cools the WD. We use the Modules for Experiments in Stellar Astrophysics (MESA) stellar
evolution code to evolve a suite of models that confirm these analytic results. We also use
our MESA models to demonstrate that while Urca-process cooling substantially modifies the
thermal evolution of accreting ONe WDs, it does not significantly shift the density at which
oxygen ignites and undergoes a thermonuclear runaway. It thus remains the case that these
objects will undergo collapse to a neutron star. The inclusion of the effects of Urca-process
cooling is nonetheless an important step in producing more realistic progenitor models for
studies of the signature of accretion-induced collapse.

5.1 Introduction
In the Urca process, first discussed by Gamow & Schoenberg (1941), repeated electron-

capture and beta-decay reactions give rise to neutrino emission. When this occurs in a stellar
interior where the neutrinos are able to free-stream out of the star—such as in a white dwarf
(WD)—it becomes an active cooling process. Tsuruta & Cameron (1970) calculated analytic
approximations to the energy loss rates from the Urca process and compiled a list of 132 pairs
of isotopes that contribute to these energy losses. Paczyński (1973) applied these results in a
study of the temperature evolution of degenerate carbon-oxygen (CO) cores, demonstrating
that this cooling can shift the density at which pycnonuclear carbon ignition occurs.
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In Paczyński (1973) the odd mass number nuclei that participate in the Urca process were
assumed to have cosmic abundances. Carbon burning, however, produces significant mass
fractions of 23Na and 25Mg; therefore Urca cooling will be significantly more important in
stars with oxygen-neon (ONe) compositions, where the material has already been processed
by carbon burning (Iben 1978).

Urca cooling has been shown to play an important role in the central temperature evolu-
tion of super-asymptotic giant branch stars (Jones et al. 2013). In this context, the dangers
of using coarse tabulations of the relevant weak reaction rates has been emphasized by Toki
et al. (2013). New tabulations of these rates were calculated by Toki et al. (2013) and then
used in the study of Jones et al. (2013). Recently, Paxton et al. (2015) demonstrated the
capability of the MESA (Modules for Experiments in Stellar Astrophysics; Paxton et al.
2011, 2013, 2015) code to reproduce these results using weak rates calculated “on-the-fly”
from input nuclear data.

In Schwab et al. (2015), hereafter referred to as SQB15, we developed an analytic and
numerical understanding of the evolution of ONe WDs towards accretion-induced collapse
(AIC) in which we considered only 24Mg, 20Ne, and 16O. In this work, we extend and
modify this understanding to include additional isotopes generated during carbon-burning.
We demonstrate analytically and numerically that significant temperature changes occur due
to Urca-process cooling and we illustrate its effect on the subsequent evolution. Importantly,
we find that the density at which oxygen ignition occurs is not significantly altered, and thus
the Urca-process cooling phase does not affect the fate of accreting ONe WDs calculated in
SQB15.

In Section 5.2 we provide an overview of the microphysics of the Urca process and identify
the important isotopes and transitions. In Section 5.3, we make analytic estimates of the
importance of Urca cooling in accreting ONe WDs. In Section 5.4, we discuss how we
use the MESA stellar evolution code to demonstrate the effects of Urca-process cooling. In
Section 5.5, we discuss the results and implications of our MESA calculations. In Section 5.6,
we conclude.

5.2 The Urca Process
Take two nuclei a ≡ (Z,A) and b ≡ (Z− 1, A) that are connected by an electron-capture

transition
(Z,A) + e− → (Z − 1, A) + νe (5.1)

and beta-decay transition

(Z − 1, A)→ (Z,A) + e− + ν̄e (5.2)

where Z and A are respectively the atomic number and mass number of the nucleus. In all of
the electron-capture transitions considered here, there is a threshold energy required for the
electron. In a cold, degenerate plasma, electrons with sufficient energy will become available
when the Fermi energy EF is equal to the energy difference between the parent and daughter
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states Q0, which includes both the nuclear rest mass and the energy associated with excited
states. This corresponds to a threshold density

ρ0 ≈ 1.8× 109 g cm−3

(
Ye

0.5

)−1( |Q0|
5 MeV

)3

. (5.3)

where Ye is the electron fraction.

5.2.1 Cooling Rate

If the ground state to ground state transition is allowed, then at the threshold density
the rates of electron capture and beta decay are comparable. Since each reaction produces
a neutrino that free-streams out of the star, this is a cooling process.

Suppose the total number density of the two isotopes in the Urca pair is nu = na + nb.
Because the time-scales for electron capture and beta decay are short compared to the
evolutionary time-scale of the system, an equilibrium is achieved. The relative abundances
are then given by the detailed balance condition naλec + nbλβ = 0. Under this assumption,
the specific neutrino cooling rate from the Urca process can be written as

εu =
nu
ρ
C =

XuNA

Au
C (5.4)

where Xu is the mass fraction of the Urca pair, Au is its atomic weight, NA is Avogadro’s
number, and

C =
εν,ecλβ + εν,βλec

λβ + λec

. (5.5)

In Appendix 5.A, we write out the full expressions for the rates (λ) and neutrino loss
rates (εν) for electron capture and beta decay necessary to evaluate equation (5.5). The key
result is that the Urca cooling rate for an allowed ground state to ground state transition is
sharply peaked at EF = |Qg| and that the maximum value of C is

Cmax =
7π4 ln 2

60

mec
2

(ft)β + (ft)ec

(
kBT

mec2

)4(
Qg

mec2

)2

exp(παZ) , (5.6)

where (ft) is the comparative half-life and α is the fine structure constant.

5.2.2 Isotopes and Transitions



5.2.
T

H
E

U
R

C
A

P
R

O
C

E
SS

129

Table 5.1 : A summary of the key weak reactions that occur in accreting ONe WDs. The transition that typically dominates the
rate is listed. Electron captures convert the initial isotope to the final isotope. Qg is the mass difference between the isotopes
(in MeV); unlike in the similar tabulation in SQB15 we have already accounted for the electron rest mass. Ei and Ef are the
excitation energies of the initial and final states, relative to the ground state (in MeV). Jπi and Jπf are the spins and parities
of the initial and final states. (ft) is the comparative half-life (in s) for this transition. Q0 is the threshold energy difference
(in MeV). ρ0 is the approximate density (in g cm−3) at which the reaction occurs (as defined in equation 5.3). Effect indicates
whether the net effect of the weak reactions is to cool the plasma via Urca-process cooling (odd mass number) or heat the plasma
via exothermic electron captures (even mass number).

Initial Final Qg Ei Jπi Ef Jπf log(ft) Q0 log ρ0 Effect Notes
25Mg 25Na -4.346 0.000 5/2+ 0.000 5/2+ 5.26 -4.346 9.07 Cool
23Na 23Ne -4.887 0.000 3/2+ 0.000 5/2+ 5.27 -4.887 9.22 Cool
24Mg 24Na -6.026 0.000 0+ 0.472 1+ 4.82 -6.498 9.60 Heat a

24Na 24Ne -2.978 0.000 4+ 3.972 4+ 6.21 -6.950 9.69 Heat a

25Na 25Ne -7.761 0.090 3/2+ 0.000 1/2+ 4.41 -7.671 9.81 Cool
20Ne 20F -7.536 0.000 0+ 1.057 1+ 4.38 -8.593 9.96 Heat b

23Ne 23F -8.991 0.000 5/2+ 0.000 5/2+ 5.72 -8.991 10.02 Cool c

a for log(T/K) & 8.4, the 24Na will immediately undergo an electron capture to form 24Ne; see Section 5.5.1
b the 20F will immediately undergo an electron capture to form 20O
c the oxygen deflagration begins before our models reach this density



5.3. ANALYTIC ESTIMATES 130

➤

➤

➤

➤

➤

➤

E
n
er
g
y
[M

eV
]

23Na

3/2+
5/2+

23Ne

5/2+

23F

5/2+
A = 23

0
5

1
0

1
5

Figure 5.1 : Energy level diagram for the A = 23 nuclei that we consider. The Jπ value is indicated
at the right of each level. The most important transitions we consider are indicated with arrows.

Using a nuclear reaction network with 244 species and analytic weak reaction rates, Iben
(1978) identified Urca pairs for which the the neutrino loss rates rival or exceed thermal
neutrino losses. In material processed by carbon burning, the two most abundant odd mass
number isotopes are 23Na and 25Mg and thus the most important Urca pairs are A = 23
and 25 (see figure 2 in Iben 1978). Therefore, we restrict our attention to these isotopes,
neglecting possible small contributions from A = 21 and 29 isotopes.

The nuclear data (energy levels and ft-values) required for this calculation are drawn
from the literature (Tilley et al. 1998; Firestone 2007a,b, 2009; Martínez-Pinedo et al. 2014).
Table 5.1 summarizes this data. Figures 5.1 and 5.2 show a simplified level structure (ex-
cluding excited states & 1 MeV above the ground state) of the A = 23 and A = 25 nuclei
that we consider.

5.3 Analytic Estimates
The energy equation for material in a spherically symmetric star is

T
ds

dt
= ε− ∂L

∂M
(5.7)

where ε is the specific energy generation rate, which includes nuclear reactions, neutrino
processes, etc. For these estimates, we will consider only the effects of neutrino losses, which
we sub-divide into εν (thermal neutrino loss rate) and εu (Urca process neutrino loss rate).
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Figure 5.2 : Energy level diagram for the A = 25 nuclei that we consider. The Jπ value is indicated
at the right of each level and is sometimes given an arbitrary offset (indicated via a thin line) in
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In the center of these accreting WDs, ∂L/∂M is negligible, and therefore

− (εν + εu) = Tc cv

[
d lnTc

dt
− (Γ3 − 1)

d ln ρc

dt

]
, (5.8)

where cv is the specific heat at constant volume and Γ3−1 = (d lnT/d ln ρ)ad. Depending on
which terms dominate, there are three regimes for the evolution of the central temperature:

1. When the left hand side of equation (5.8) is negligible, the central temperature will
evolve along an adiabat.

2. When εν dominates the left hand side of equation (5.8), the temperature will evolve
towards (and then along) the attractor solution discussed by Paczyński (1973), SQB15
and Brooks et al. (2016a), in which thermal neutrino cooling and compressional heating
balance. Because of the neutrino losses, this attractor solution is shallower (in ρ-T
space) than an adiabat, though it still has positive slope.

3. When εu dominates the left hand side of equation (5.8), the temperature will decrease.
Because the Urca-process cooling is sharply peaked in EF, this will occur at nearly
fixed density.

These three regimes are illustrated in Figure 5.3, which shows the evolution of the central
density and temperature in one of our MESA models, centered on the density where cooling
due to the 23Na-23Ne Urca pair occurs.

It is useful to estimate the magnitude of the temperature decrease caused by the Urca
process (regime iii). As we will show, this depends primarily on the mass fraction of the
Urca pair and the rate at which the core is being compressed. Paczyński (1973) provides a
fitting formula for the temperature change, obtained though careful numerical integration;
however this result is unsuitable for our purposes, as it assumes that the value of d ln ρ/dt
is that of a CO core growing via stable He-shell burning, as set by the core mass-luminosity
relation.

We assess the Urca-process cooling via a simpler argument. As a result of accretion, the
core is being compressed on a time-scale

tρ =

(
d ln ρc
dt

)−1

=

(
d ln ρc
d lnM

)−1
M

Ṁ
. (5.9)

For an ideal, zero-temperature white dwarf, in the range 9 . log ρc . 10 and with Ye ≈ 0.5,
SQB15 give the approximate result that

tρ ≈ 5× 104 yr ρ−0.55
9 Ṁ−1

−6 (5.10)

where ρ9 = ρ/(109 g cm−3) and Ṁ−6 = Ṁ/(10−6 M� yr−1).
The cooling from an individual Urca pair peaks when EF = Qg, and is significant for

only ∆EF ≈ 3kBT centered around this peak. We can estimate the width of the peak (in
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Figure 5.3 : The schematic evolution of central density and temperature in a ONe WD accreting at
10−6M� yr−1. The black line shows the result of evolving a MESA model that has an initial mass
fraction of 0.01 23Na. The three regimes discussed in Section 5.3 are labeled.

density) as ∆ ln ρ ≈ 3∆EF/EF. Therefore, the time-scale for a parcel to cross the cooling
region is

tcross ≈
(

9kBT

EF

)
tρ ≈ 2× 10−2 T8ρ

−1/3
9 tρ (5.11)

≈ 1× 103 yrT8ρ
−0.88
9 Ṁ−1

−6 . (5.12)

At the density where the Urca cooling peaks, the cooling time-scale tcool is

tcool =
cvT

εmax

=
3kBTAu

ĀXuCmax

(5.13)

where we have taken εmax from the combination of equations (5.4) and (5.6), and we have
assumed the specific heat is that given by the Dulong-Petit law (cv = 3kB/Ā). Assuming
Au ≈ Ā,

tcool ≈ 4× 102 yrT−3
8

(
Xu

0.01

)−1(
Qg

5 MeV

)−2(
ft

105 s

)
. (5.14)

When the core reaches a density where Urca cooling will begin, its initial temperature
will have been set by its evolution in regimes (i) or (ii). If tcross > tcool initially, since tcool

increases more rapidly with decreasing temperature than tcross, the core will evolve towards
the condition tcross ≈ tcool. When this condition is reached, the Urca cooling will effectively
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Figure 5.4 : The minimum central temperature (Tc) reached after Urca-process cooling as a function
of the mass fraction in the Urca pair (Xu). The crosses (Xs) show models with an initial mass
fraction Xu of 23Na (25Mg). The solid black circles show models with initial mass fractions Xu of
both 23Na and 25Mg. The dashed line shows the analytically expected scaling of equation (5.15).

shut off, since the core will evolve out of the cooling region before significant additional
cooling occurs. If tcross < tcool initially—which is never true in the cases we consider—then
significant Urca-process cooling will not occur.

Therefore, the relation tcross ≈ tcool gives us an estimate for the temperature to which
each Urca pair will cool the star. Combining equations (5.11) and (5.13) and taking the
fiducial values Qg = 5 MeV, (ft) = 105 s, and using a density equal to the threshold density
(equation 5.3) for this Qg, we find that the temperature to which the core cools is

Tu ≈ 9× 107 K Ṁ
1/4
−6

(
Xu

0.01

)−1/4

. (5.15)

In order to validate this relation we ran a suite of MESA models varying Xu and Ṁ . These
numerical results are shown in Figures 5.4 and 5.5 and are in excellent agreement with the
analytic scaling given in equation (5.15). We will discuss the implications of this cooling on
the subsequent evolution in Section 5.5.

We note that the Urca-process cooling can be significant enough to cause the white dwarf
to begin to crystallize. At densities ρ9 ≈ 1, the condition for this phase transition (Γ ≈ 170)
occurs at T ≈ 5× 107 K. Therefore, we expect crystallization to begin when Ṁ−6X

−1
u . 10,

at which point the Urca cooling will begin extracting the latent heat associated with the
phase transition. As shown in Figure 5.5, some of our models reach this regime, but we



5.3. ANALYTIC ESTIMATES 135

●
●

●

●

●

●

●

Tc
∝ Ṁ
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Figure 5.5 : The minimum central temperature (Tc) reached after Urca cooling as a function of the
accretion rate (Ṁ). All models have Xu = 0.01 as 23Na. The solid grey line shows the approximate
temperature at which crystallization will begin. If a model began to crystallize, the MESA run
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analytically expected scaling of equation (5.15).
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Table 5.2 : The set of compositions used in our MESA models. Each composition is referenced in
the text by the identifier listed in the top row. Each column lists the mass fractions of the isotopes
(listed at left) that were included. Dashes indicate that a particular isotope was not included.

Isotope SQB15 This Paper T13 F15
16O 0.500 0.500 0.480 0.490

20Ne 0.450 0.390 0.420 0.400
22Ne — — — 0.018
23Na — 0.050 0.035 0.060
24Mg 0.050 0.050 0.050 0.030
25Mg — 0.010 0.015 0.002

choose not to explore this further since we do not expect it to affect the final fate of the
accreting WD.

5.4 Details of MESA Calculations
The calculations performed in this paper use a version of MESA based on r7624 (released

2015-06-03). We made a few small modifications to the source code which are described
in detail in Appendix 5.B. As required by the MESA manifesto, the inlists necessary to
reproduce our calculations will be posted on http://mesastar.org.

5.4.1 Initial Models

We generate our initial models in the same manner as SQB15, except that we stop
relaxing the models at lower density (log ρc ≈ 8.6) so that the Urca processes of interest
have not yet occurred.

Our models are initially chemically homogeneous.1 The models shown as part of the
scaling studies in Section 5.3 all have the indicated abundances of 23Na and 25Mg, a mass
fraction of 0.5 16O, with the remainder as 20Ne. In Section 5.5, we show results from four
compositions, identified as follows: SQB15, the composition used in SQB15; this paper,
the composition used in SQB15 plus 23Na and 25Mg; T13, a composition based on the
intermediate-mass star models of Takahashi et al. (2013); and F15, a composition based on
the intermediate-mass star models of Farmer et al. (2015). The mass fractions of the isotopes
present in each named model are shown in Table 5.2.

5.4.2 Important MESA Options

While our full inlists will be made publicly available, we highlight some of the most
important MESA options used in the calculations. This section assumes the reader is familiar

1The evolution of models with realistic composition profiles will be addressed by Brooks et al. (in prep.).

http://mesastar.org


5.5. DISCUSSION OF MESA MODELS 137

with specific MESA options. Please consult the instrument papers (Paxton et al. 2011, 2013,
2015) and the MESA website2 for a full explanation of the meaning of these options.

Most importantly, we use the capability of MESA to calculate weak rates from input
nuclear data developed in SQB15 and validated in Paxton et al. (2015). We activate these
capabilities using the options:

use_special_weak_rates = .true.
ion_coulomb_corrections = ’PCR2009’
electron_coulomb_corrections = ’Itoh2002’

Table 5.1 summarizes the weak reactions that we include using this capability. The files
containing the input nuclear data will be made available along with our inlists.

During the calculation, material will become cold enough that the MESA equation of
state (Paxton et al. 2011, figure 1) will move from using HELM (Timmes & Swesty 2000)
to PC (Potekhin & Chabrier 2010). At low temperatures, rapid and significant composition
changes will occur as the weak equilibrium shifts. Therefore, it is necessary to ensure that
all isotopes are included in the PC calculation3 by using the options:

set_eos_PC_parameters = .true.
mass_fraction_limit_for_PC = 0d0

It is essential that we choose a temporal and spatial resolution that will resolve the effects
of Urca-process cooling and the exothermic electron captures. We discuss the the details of
our approach in Appendix 5.C and demonstrate that it leads to a converged result.

5.5 Discussion of MESA Models
Figure 5.6 compares the evolution of a model with the composition used in SQB15 with

a model using a similar composition but including representative mass fractions of 23Na
and 25Mg. (The precise compositions are given in Table 5.2.) The evolution of the central
temperature is notably different in the two cases. We now discuss the origins and implications
of these differences.

In SQB15, the temperature immediately prior to electron captures on 24Mg and 20Ne
was was set by a balance between compression and neutrino cooling (the attractor solution).
However, the results in Section 5.3 demonstrate that for a wide range ofXu and Ṁ , significant
Urca-process cooling will occur. In almost all cases, the WD is cooled to temperatures such

2http://mesa.sourceforge.net
3The MESA default is to only include isotopes with a mass fraction greater than 0.01 in the the PC

equation of state calculation. As the chemical composition changes, abundances rise above or fall below this
threshold. The sudden inclusion or exclusion of an isotope gives rise to a discontinuity in the equation of
state. While the jumps in the computed thermodynamic properties are small, the discontinuous nature of
the changes leads to convergence problems in the Newton-Raphson solver as MESA iterates of find the next
model.

http://mesa.sourceforge.net
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Figure 5.6 : Comparison of a model with (This Paper) and without (SQB15) the isotopes 23Na

and 25Mg. The precise compositions are given in Table 5.2. The key weak reactions are indicated
at the densities at which they occur. The labeled dotted lines show the attractor solution and
a sample adiabat. The SQB15 model (grey dashed line) evolves largely along the attractor solu-
tion, where neutrino cooling balances compressional heating. The model from this paper (black
solid line) exhibits significant Urca-process cooling, and as a result when the electron captures on
24Mg begin log(T/K) < 8.0. At this temperature, the electron captures on 24Na are delayed until
log(ρ/g cm−3) ≈ 9.7 (see Section 5.5.1). After the energy release from the A = 24 electron captures
completes, the model evolves back towards the attractor solution, but around log(ρc/g cm−3) ≈ 9.85,
additional Urca-process cooling associated with 25Na-25Ne occurs. At these lower temperatures, the
A = 20 electron captures begin at slightly higher densities (≈ 0.05 dex), but this shift is not signif-
icant enough to affect the final collapse to a neutron star (see Section 5.5.2).
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that energy losses by non-nuclear neutrinos (in these conditions primarily plasma neutrinos,
e.g. Itoh et al. 1996) become negligible. Therefore, we enter regime (i), and expect the
material to evolve along an adiabat. In these conditions Γ3 ≈ 1.5 (Chabrier & Potekhin
1998), so T ∝ ρ1/2.

The difference in threshold density between 23Na (cooling) and 24Mg (heating) is ≈ 0.4
dex, and therefore we expect a temperature increase of 0.2 dex. This relatively small change
in temperature means that the star does not evolve back onto the attractor solution before the
electron captures on 24Mg begin. The difference in threshold density between 25Na (cooling)
and 20Ne (heating) is much smaller, only ≈ 0.1 dex, and therefore the electron captures on
20Ne will begin at a temperature only marginally above the minimum value reached after
the cooling due to the 25Na-25Mg Urca pair.

5.5.1 Onset of electron captures on 24Mg and 24Na

When log(T/K) . 8.4, the first excited state of 24Na is no longer sufficiently thermally
populated for electron captures from this state to the ground state of 24Ne to dominate
the rate. Instead, as the density increases, the first transition to become significant is the
allowed transition from the ground state of 24Na into the third excited state of 24Ne, which
is approximately 4 MeV above the 24Ne ground state. As a result, after an electron capture
on 24Mg produces 24Na, an electron capture on 24Na does not immediately occur (as was the
case in most models shown in SQB15). Instead, the electron captures on 24Na are delayed
until a higher density, at log(ρ/g cm−3) ≈ 9.7.

As discussed in SQB15 the entropy release from these electron captures does not trigger
convection because of the stabilizing Ye-gradient. For a plot of the energy released per
capture as a function of density, see figure 12 of Martínez-Pinedo et al. (2014). With a
typical 24Mg mass fraction of ≈ 0.05, the heating from 24Mg → 24Na is not sufficient to
allow for electron captures on the first excited state of 24Na and fails to return the WD to
the attractor solution4.

When the electron captures on 24Na occur while log(T/K) . 8.4, each electron capture
deposits roughly 4 MeV of thermal energy. This rapidly heats the plasma, raising the tem-
perature enough that the electron-capture rate becomes dominated by the transition from
the first excited state of 24Na. This transition deposits ≈ 10 times less energy per capture.
In the models shown, most of the 24Na undergoes electron captures through this less efficient
channel.

After both A = 24 electron captures have concluded, whether they occurred simul-
taneously or separately, a similar peak temperature is reached (Figure 5.6). For all the
compositions studied (Table 5.2 and Figure 5.7), this peak temperature is mildly above
the attractor solution, and so neutrino cooling can quickly return the temperature to the
attractor solution.

4At log(ρ/g cm−3) ≈ 9.6 this corresponds to log(T/K) ≈ 8.5 for the fiducial accretion rate of
10−6 M� yr−1.
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based on recent results of the evolution of intermediate mass stars: (T13; Takahashi et al. 2013)
and (F15; Farmer et al. 2015). The precise compositions are given in Table 5.2. While Urca-process
cooling is sensitive to the detailed abundances, the density at which electron captures on 20Ne

trigger the oxygen deflagration is not.
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5.5.2 Onset of electron captures on 20Ne and 20F

As discussed in SQB15, the electron captures on 20Ne trigger a thermal runaway that
leads to the formation of an outgoing oxygen deflagration wave. The final fate of the star is
determined by a competition between the propagation of the oxygen deflagration and electron
captures on the material (in nuclear statistical equilibrium; NSE) behind the deflagration
front (Nomoto & Kondo 1991). The speed of the deflagration and the electron capture rate
on its NSE ash are both functions of density and electron fraction. Timmes &Woosley (1992)
found that the deflagration speed scaled ∝ ρ1.06. At the relevant densities, the neutronization
time-scale scales roughly as ρ−0.5 (see figure 13 in SQB15 and Seitenzahl et al. 2009).

The temperature effects the density at which the electron captures on 20Ne begin, with
lower temperatures corresponding to higher densities (see figure 4 in SQB15). The Urca-
process cooling by 25Na-25Ne at log(ρ/g cm−3) ≈ 9.85 cools the material sufficiently that
it cannot return to the attractor solution, and so effectively sets the temperature at which
the electron captures on 20Ne begin. This leads to electron captures on 20Ne that begin at
slightly higher density (≈ 0.05 dex) than in SQB15.

Independent of their cooling effects, the electron captures on 23Na, 25Mg, and 25Na have
reduced the Ye of the material. For the fiducial composition, this change is ∆Ye ≈ −3×10−3.
A reduction in Ye increases both of the relevant time-scales. Timmes & Woosley (1992) found
that reducing Ye from 0.50 to 0.48 reduced the deflagration speed by approximately 30 per
cent. In the tabulated electron-capture rates on NSE material from Seitenzahl et al. (2009),
changing Ye from 0.50 to 0.48 at log(ρ/g cm−3) ≈ 9.9 and log(T/K) ≈ 10 increases the
neutronization time-scale by approximately a factor of 2.5. Note that these changes are
quoted for a ∆Ye approximately 10 times greater than the difference here.

The exact competition between these two processes is best probed via simulations which
can include both the physics of the oxygen deflagration and the NSE electron captures.
However, at the level of the analysis in SQB15 the changes due to the increase in density
and the decrease in Ye, which are small and in opposite directions, leave our estimates
unaffected. Therefore, the conclusion of SQB15 (which suggests collapse to a NS) remains
unchanged.

5.5.3 Other effects of reduced electron fraction

The electron captures on the A=23 and A=25 isotopes reduce Ye in the material in the
WD that has exceeded the threshold density for these reactions. The Chandrasekhar mass
scales with Y 2

e , and so at the onset of collapse, models which experience this reduction in Ye

will have lower masses relative to models in which these composition shifts have not been
accounted for.

In SQB15, using models with an initial electron fraction of Ye = 0.5, we demonstrated
that there was a bifurcation in behavior around an initial 24Mg mass fraction of XMg ≈ 0.07.
Below this value, the core continued to evolve to higher densities on a time-scale set by
the mass accretion rate; above this value, the core evolved to higher densities on the (much
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shorter) electron-capture time-scale.
Because the electron-capture time-scale is short compared to the mass accretion time-

scale, models on different sides of this bifurcation will have different masses at the time
of the formation of the oxygen deflagration (and hence the collapse to a NS). The mass
difference between the two models shown in SQB15 (XMg = 0.05 and XMg = 0.15) was 0.007
M�. Mass differences of this order-of-magnitude have implications for studies that use the
observed mass of low-mass neutron stars (thought to be formed via AIC) to make inferences
about the nuclear equation of state (e.g. Podsiadlowski et al. 2005).

The overall reduction in Ye will not substantially affect the analysis used in SQB15 to
determine the critical value of XMg, as this value is primarily determined by the “instanta-
neous” change in Ye associated with the 24Mg electron captures. For the compositions in
Table 5.2, the values of XMg are below this critical value, and thus the mass at the onset
of collapse is most closely associated with the central density reaching threshold density for
electron captures on 20Ne.

5.6 Conclusions
We have demonstrated the substantial effects of Urca-process cooling on the thermal

evolution of accreting ONe WDs. We have provided a simple analytic expression for the peak
Urca-process cooling rate (equation 5.6) and used it to derive an approximate expression for
the temperature to which the Urca process cools the plasma (equation 5.15). We used a
suite of MESA simulations to confirm these simple analytic scalings (Figures 5.4 and 5.5).
The magnitude of these effects is inconsistent with earlier work by Gutiérrez et al. (2005),
who severely underestimate the amount of Urca-process cooling.

Urca-process cooling by 25Na-25Ne at log(ρ/g cm−3) ≈ 9.85 cools the WD and sets the
temperature at which the electron captures on 20Ne begin. This temperature is significantly
cooler than that realized in SQB15 (and previous calculations) where the temperature was
set by a balance between compressional heating and neutrino cooling (Figure 5.6). As a
result, the electron captures, and hence the formation of the oxygen deflagration occur at
slightly higher density (≈ 0.05 dex). The magnitude of this change is sufficiently small that
we do not expect the presence of Urca-process cooling to affect the conclusion that the final
outcome of accreting ONe WDs approaching the Chandrasekhar mass is accretion-induced
collapse to a neutron star (Nomoto & Kondo 1991).

Ongoing studies (e.g., Brooks et al. in prep.) are simulating the evolution of WDs in
binary systems (with non-degenerate companions) where (1) the composition profile of the
WD is set self-consistently from stellar evolution calculations and (2) the accretion rate
onto the WD is set self-consistently by modeling the orbital evolution of the binary and
the shell-burning of the accreted material. The inclusion of the weak reactions discussed
in this work and SQB15 in this type of calculation allow for the generation of models with
realistic temperature and composition profiles that have been evolved up to the onset of
AIC. Such models are the starting point for calculations of the collapse to a NS needed to
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better characterize the observational signatures of AIC.
As discussed by Paczyński (1973), Urca-process cooling will also occur in accreting CO

WDs, where it leads to an increase in the density at which carbon is ignited. This effect has
not been fully explored in the context of Type Ia supernova progenitors.5 The estimates we
provide in Section 5.3 are equally applicable in this case (Martínez-Rodríguez et al. 2016).
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5.A Maximum Urca Cooling Rate
The expressions for the rates of electron-capture and beta-decay reactions have been writ-

ten down previously (e.g. Tsuruta & Cameron 1970; Fuller et al. 1985; Martínez-Pinedo et al.
2014). In this Appendix, for completeness, we give expressions for these rates, specialized
to the Urca process, with the goal of extracting a simple expression for the maximum Urca-
process cooling rate. We consider only the allowed ground state to ground state transition
of an Urca pair. We choose the isotope undergoing electron capture to have charge Z and
thus the isotope undergoing beta decay has charge Z − 1. We always assume the electrons
are relativistic with energy Ee.

The rate of electron capture or beta decay can be written as

λ =
ln 2

(ft)
I(µ, T,Q), (5.16)

where (ft) is the comparative half-life (typically given in units of seconds) and can be either
measured experimentally or theoretically calculated from the weak-interaction nuclear matrix
elements. I is a phase space factor which depends on the temperature T , electron chemical
potential µ, and the energy difference between the parent and daughter states Q. The value

5The single citation to Paczyński (1973) in a refereed paper published within the last 25 years is a
statement that these effects were not included.
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of Q includes both the nuclear rest mass and the energy associated with excited states.
Similarly, the rate of energy loss via neutrinos is

εν =
mec

2 ln 2

(ft)
J(µ, T,Q) , (5.17)

where J is a phase space factor that contains an additional power of the neutrino energy.
For convenience, we define β = (kBT )−1 and the non-dimensionalized parameters q =

β|Q|, θ = βmec
2, η = βµ, ε = βEe. The value of I for electron capture can be written as

Iec = θ−5 exp(παZ)

∫ ∞

q

ε2(ε− q)2

1 + exp(ε− η)
dε , (5.18)

and the value of J for electron capture can be written as

Jec = θ−6 exp(παZ)

∫ ∞

q

ε2(ε− q)3

1 + exp(ε− η)
dε , (5.19)

where α is the fine structure constant. These integrals can easily be rewritten (using the
substitution x = ε− q) in terms of the complete Fermi integrals, which are defined as

Fk(y) =

∫ ∞

0

xk

1 + exp(x− y)
dx . (5.20)

Doing so gives
Iec = θ−5 exp(παZ)

[
F4(δ) + 2qF3(δ) + q2F2(δ)

]
(5.21)

and
Jec = θ−6 exp(παZ)

[
F5(δ) + 2qF4(δ) + q2F3(δ)

]
(5.22)

where we have defined δ = η − q.
The value of I for beta decay can be written as

Iβ = θ−5 exp(παZ)

∫ q

θ

ε2(ε− q)2

1 + exp[−(ε− η)]
dε , (5.23)

and the value of J for beta decay can be written as

Jβ = θ−6 exp(παZ)

∫ q

θ

ε2(ε− q)3

1 + exp[−(ε− η)]
dε . (5.24)

These integrals can be rewritten (using the substitution x = −ε+ q) to be

Iβ = θ−5 exp(παZ)

∫ q−θ

0

(x− q)2x2

1 + exp[x− (q − η)]
dε , (5.25)
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and

Jβ = θ−6 exp(παZ)

∫ q−θ

0

(x− q)2x3

1 + exp[x− (q − η)]
dε . (5.26)

We can now make use of the identity
∫ b

0

xk

1 + exp(x− y)
= Fk(y)−

k∑

j=0

(
k

j

)
bk−jFj(y − b) , (5.27)

where we identify y = q − η and b = q − θ. The Fermi integrals in the sum (those with
argument y − b) will be negligible because θ − η � −1 and Fk(−z) ∝ exp(−z). In other
words, we can extend the upper limit to ∞ without incurring substantial error. Doing so
gives

Iβ = θ−5 exp(παZ)
[
F4(−δ)− 2qF3(−δ) + q2F2(−δ)

]
(5.28)

and
Jβ = θ−6 exp(παZ)

[
F5(−δ)− 2qF4(−δ) + q2F3(−δ)

]
(5.29)

where we have again defined δ = η − q.
We are interested in the expression

C =
εν,ecλβ + εν,βλec

λβ + λec

= mec
2 ln(2)

(
IecJβ + IβJec

(ft)βIec + (ft)ecIβ

)
(5.30)

The limit of interest is q � 1 and |δ| < 1. Recall that for y � 1, Fk(y) ≈ −yΓ(k + 1).
Therefore, after retaining the dominant terms,

C = mec
2 ln(2)θ−6q2 exp(παZ)

[
F2(δ)F3(−δ) + F2(−δ)F3(δ)

(ft)βF2(δ) + (ft)ecF2(−δ)

]
. (5.31)

Evaluating the term in square braces at δ = 0 gives

C =
mec

2 ln 2

(ft)
θ−6q2 exp(παZ)

[
7π4

60

1

(ft)β + (ft)ec

]
. (5.32)

and the peak value of the Urca cooling rate is thus

Cmax =
7π4 ln 2

60

mec
2

(ft)β + (ft)ec

(
kBT

mec2

)4(
Q

mec2

)2

exp(παZ) . (5.33)

Assuming (ft)β = (ft)ec, which is true when the ground states have the same spins, we can
easily Taylor expand the term in square braces to second order:

C ∝ 1

(ft)

[
7π4

120
− π2δ2

4

]
. (5.34)

The term in square braces is zero when δ =
√

7/30π, implying that the characteristic width
of the Urca-process cooling peak is ≈ 3δ, that is when µ ≈ |Q| ± 1.5kBT .
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5.B Modifications to MESA
The calculations in this paper used a modified version of MESA (based on r7624). We

describe each of the changes we made to the source code. Patch files implementing these
changes are included along with our inlists.

5.B.1 Number of special isotopes

There is a hard-coded limit on the number of isotopes and reactions that can be treated
using the special_weak_rates capabilities. We increased these values in order to be able
to calculate the necessary reaction rates (which involve 13 isotopes and 16 reactions).

5.B.2 Temperature reconstruction when remeshing

At the beginning of each timestep, MESA dynamically adjusts its mesh in response to
the structure and composition profiles of the model. When MESA splits an existing cell, it
must assign values of the structure and composition variables to the new cells (for a detailed
description of this process, see section 6.5 of Paxton et al. 2011). When in a thermodynamic
regime where the electrons are degenerate, the new cells inherit the temperature of the cell
that was split, leaving the temperature profile unmodified. Under the conditions encountered
in the models in this paper, this approach leads to the formation of spurious convective
regions. We modify the post-remesh temperature reconstruction in order to avoid this issue.

The Ledoux criterion for convective instability is

∇ad −∇T +B < 0 (5.35)

where
B = − 1

χT

(
∂ lnP

∂ lnYe

)

ρ,T

d lnYe
d lnP

. (5.36)

When exothermic electron captures occur in our models, unstable thermal gradients (∇T )
develop but these are stabilized by the accompanying electron fraction gradients (B). Dur-
ing electron captures, the magnitude of both these gradients is typically greater than ∇ad.
Neglecting ∇ad, as shown in section 3.2 of SQB15, |B/∇T | ≈ ∆E/EF, where ∆E is the
energy released per electron capture. Because ∆E/EF < 1, we have convective stability.

As discussed in Section 5.5.1, the initial electron captures on 24Na occur when EF ≈
7 MeV and release approximately 4 MeV per capture. While using an unmodified version of
MESA r7624, we observed that convective regions began to form during the onset of these
electron captures, contrary to the previous stability estimates.

Figure 5.8 shows the temperature profile (top panel) and values of ∇T (bottom panel)
in a MESA model before and after a remesh occurs. The temperature profile remains
unchanged and the temperatures in each cell are indicated by black horizontal lines. The
vertical lines show the location of the faces. Three cells were split during the remesh and
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so three new faces (dashed lines) were added. The black circles in the bottom panel show
the corresponding values of ∇T . Because the newly split cells inherited the temperature
of their parent, the temperature gradient at the new faces is zero. Correspondingly, the
temperature gradient at existing faces between newly split cells is approximately doubled:
the temperature difference across the face has remained the same, but the size of the region
surrounding the face has been halved. Thus, when |∇T | ' 0.5|B| initially, as is the case
during the 24Na electron captures, the remesh causes faces that were previously stable by
the Ledoux criterion to become unstable. During the subsequent timestep a convective region
spanning the remeshed cells forms.

In order to preserve convective stability, the temperature reconstruction should not sub-
stantially alter the profile of ∇T . To achieve this, we modify MESA so that when cells are
split, the same monotonicity-preserving cubic interpolation used to reconstruct other quan-
tities is also applied to the temperature. The grey lines (top panel) and grey circles (bottom
panel) in Figure 5.8 demonstrate the result of this reconstruction. The new reconstruction
does not maintain a smooth ∇T profile, but the variations are smaller and no longer lead to
the formation of a convective region.

5.C Convergence
In order for the results of our MESA calculations to be meaningful, we must ensure

that the resolution (in both space and time) is sufficient to resolve the processes of interest.
Once that condition is achieved, we must also demonstrate that the answer is independent
of the resolution. The primary spatial and temporal convergence settings used in our MESA
calculations are

varcontrol_target = 1e-3
mesh_delta_coeff = 1.0 .

Because the peak Urca process cooling is accompanied by a localized composition change,
the default controls already do an acceptable job of resolving the cooling.6 As mentioned
in Section 5.4, we use run_star_extras to increase our spatial and temporal resolution
beyond that provided by these global limits. From Section 5.2, we know that the Urca-
process cooling occurs over a range corresponding to change in Fermi energy ∆EF ∼ kBT .
MESA calculates the value of the quantity η = (kBT/EF)−1 in each cell at each timestep.
If we ensure the mesh points in our model are selected as to limit variation of ∆η between
adjacent cells and ensure that our timestep is such that δη in a given cell between timesteps
is also limited, we will resolve the Urca process.

The scheme by which the spatial resolution in MESA is modified is described in section
6.5 of Paxton et al. (2011). MESA allows the user to specify other “mesh functions” whose
cell-to-cell variation will be reduced below the value of mesh_delta_coeff during remeshes.

6The effective timestep limit in a run with these controls is due to the Newton-Raphson solver taking an
excessive number of iterations to converge and MESA limiting the timestep in response.
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Figure 5.8 : The effect of remeshing on the temperature profile (top panel) and value of ∇T (bottom
panel) in a representative MESA model at the onset of electron captures on 24Na. The top panel
explicitly shows MESA’s finite-volume mesh. The location of the faces in the MESA model are
indicated with vertical lines: the dotted lines are the faces present at the end of a timestep and
the dashed lines are the faces added during the remesh. The horizontal lines show the temperature
in each of the cells. The black lines show the temperature profile before the remesh occurs. In
an unmodified version of MESA (r7624), the temperature profile of degenerate material remains
unchanged during a remesh, and thus the black lines also show the temperature profile after the
remesh. We modify the remesh step to set the temperature of split cells using monotonicity-
preserving cubic interpolation. This results in the cell temperatures indicated by the grey lines.
The bottom panel shows the values of ∇T (defined at faces) as determined by the cell temperatures
and extents. The black squares show the values of ∇T before the remesh. Values after the remesh
are shown with circles. The black circles show that MESA r7624 increases the value of ∇T at
existing faces between newly split cells. As discussed in the text, this leads to the formation of
spurious convection zones. The grey circles show the values of ∇T produced by the modified version
of MESA used in this paper. While the new reconstruction does not maintain a smooth ∇T profile,
the variations are sufficiently small that they do not lead to the formation of a convective region,
in agreement with analytic estimates.
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Table 5.3 : Parameters controlling the spatial and temporal resolution used in the convergence study
for log(ρc/g cm−3) ≤ 9.5. The empty entries for the “Defaults” run indicate that no direct limitation
on the variations in η was imposed.

Run Name ∆ηlimit (space) δηlimit (time)
Defaults — —
Fiducial 3.0 3.0
High 1.0 1.0

Therefore, we define one of the mesh functions to be f1 = η/∆ηlimit. Then MESA will limit
the change in η between adjacent cells k and k + 1 at timestep i,

∆η =
∣∣ηik+1 − ηik

∣∣ , (5.37)

to be less than ∆ηlimit. In order to allow high spatial resolutions in the center, we also reduce
the maximum central cell size to max_center_cell_dq = 1d-8.

We similarly limit the timestep. After the solver has taken the values at timestep i and
returned a proposed solution at timestep i + 1, we calculate the change in η in each cell k
and take the maximum,

δη = max
k

(∣∣ηi+1
k − ηik

∣∣) . (5.38)

If δη > δηlimit, then the proposed step is rejected and redone with a shorter timestep. This is
similar to the way in variations in the structure variables are limited via varcontrol_target.

We vary the spatial and temporal parameters and check that our results are unaffected.
Table 5.C shows the parameters. Figure 5.9 shows the results of this convergence study for
a model composed of 16O, 20Ne, and 23Na (with XNa = 0.03). The results of the fiducial and
high resolution cases are indistinguishable in the quantities of interest, demonstrating that
our results are converged.
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Figure 5.9 : The evolution of a model with XNa = 0.03 using the different resolution controls
defined in Table 5.C. The top panel shows the evolution of the central density and temperature.
Each dot is a timestep. The legend shows the number of timesteps used to go from the (local)
maximum temperature to the (local) minimum temperature. The bottom panel shows the density
and temperature profile of the model when log ρc = 9.4. Each dot is a mesh point. The legend
shows the number of mesh points covering the region from the (local) maximum temperature to the
(local) minimum temperature.
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