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Abstract—We apply an analytical procedure that uses a 

periodic Green’s function based on the Ewald representation to 

compute the modes in a linear chain of plasmonic nanospheres, 

including the case of complex modal wave numbers. We analyze 

both transverse and longitudinal polarizations (with respect to 

the array axis) of the nanospheres’ electric dipole moments. 

Among all the modes, we discuss those excitable and that can be 

used for wave guidance through bound modes or for radiation 

through leaky modes. 

I. INTRODUCTION 

Linear chains of nanoparticles are one dimensional periodic 

arrays that have been studied to miniaturize photonic devices 

(e.g., biosensors [1]) and to efficiently transport 

electromagnetic energy (e.g., directive radiators [2], [3] and 

wave guiding structures [4]-[6]) required for the design of 

integrated photonic circuits. Linear chains reside their 

properties onto the excitation of collective resonances in 

periodic arrays with subwavelength inter-particle distance 

stemming from the resonance of the individual nanoparticles 

[7].  

Over the years, researchers have tried to address the 

problem of mode propagation in linear chains of nanoparticles 

[8]-[33]. In particular, full characterization of the modes with 

real and complex wavenumber in the linear chain of 

plasmonic nanospheres has been provided in [23] and here 

briefly summarized. The inherent difficulty to handle the 

complex wave vector space in open cylindrical coordinates 

has also been discussed in [23], [34]. The modal classification 

here discussed provides with the knowledge of the physical 

bound (non-radiating) and leaky (radiating) modes excitable 

in the linear chain of plasmonic nanospheres. We then show in 

this paper how these modes can be used to obtain nano-

waveguides and nano-antennas.  

 
Fig. 1.  Linear chain of plasmonic nanospheres (radius r, period d) embedded 

in a homogeneous host environment with relative permittivity hε . The linear 

chain is supposed to extend to infinity along the z direction. 

II. ELECTRODYNAMIC MODEL FOR THE COMPUTATION OF THE 

PHYSICAL MODES EXCITABLE IN LINEAR CHAINS OF 

PLASMONIC NANOSPHERES 

Consider the linear chain of plasmonic nanospheres 

embedded in a homogeneous background with relative 

permittivity hε  in Fig. 1. Each nanosphere is described by a 

dipole-like electric polarizability (good approximation when 

the dipolar term dominates the scattered-field multipole 

expansion) and is placed at positions ˆn nz=r z , with nz nd= , 

0, 1, 2,n = ± ± … , and d is the period of the chain.  

Suppose that the array supports a mode with dielectric 

dipole moments equal to ( )0expn z nik z=p p [the 

monochromatic time harmonic convention ( )exp i tω−  is 

assumed], hence the field is periodic except for a phase shift 

described by the Bloch wavenumber zk  aligned with the 

chain axis, which also accounts for decay when zk  is complex. 

The induced electric dipole moment 0p  of the nanosphere at 

position 0r
 
is given by 

      ( )loc
0 e 0 ,α=p E r

 
 (1) 

where eα  is its isotropic electric polarizability according to 

Mie theory [7]. The term ( )loc
0E r  in (1) is the local electric 

field acting at 0r  produced by all the nanospheres of the array 

except the one at 0r , and is given by  

           ( ) ( )loc
,0 0 0 0, , zk

∞
= ⋅E r G r r p
�

 (2)                         

where ( )0 0, , zk
∞

G r r
�

 is the electric field periodic dyadic 

Green’s function (GF) for the phased periodic array of electric 

dipoles, without considering the self coupling (the reader is 

addressed to [23] for more details). We employ the Ewald 

method for fast computation of the regularized GF in (2) 

because it provides with the analytic continuation of zk  into 

the complex wavenumber space, and the expressions for the 

required spatial and spectral terms have been reported 

elsewhere [23]. Furthermore, the Ewald representation has the 

spatial singularity explicitly shown, which makes it simple to 

regularize by subtracting the self term from the periodic GF.    
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By combining (2) with (1), one obtains a linear system 

from which one could compute the modal zk  wavenumber by 

solving 

     ( )e 0 0det , , 0zkα
∞ − =

  
I G r r

�

    (3) 

for complex zk . 

The field relative to a mode in the linear chain is expressed 

in terms of spatial Floquet waves as 

         
( ) ( ) ,mode mode

, , , ,z pik z

z p z

p

k x y k e
+∞

=−∞

= ∑E r e
    

(4) 

where , ,2 /z p z z p zk k p d iπ β α= + = +  are the Floquet 

wavenumbers, p is the order of the Floquet harmonic, and 
mode
pe  is the transverse eigenvector of the p-th Floquet 

harmonic. Moreover, each Floquet wavenumber has the same 

attenuation constant zα  and periodic (in the complex 

wavenumber domain) propagation constant ,z pβ , with period 

2 /p dπ . Due to this periodicity, a mode will be described by 

the wavenumber of its Floquet wave in the fundamental 

Brillouin zone (BZ), defined as ,0/ /zd dπ β π<− < . Here we 

assume here that the wavenumber zk  is the one that lies in the 

fundamental BZ, i.e., ,0z zk k= . Furthermore, the radial 

wavenumber is 2 2
,p z ,p ,p ,pk k k iρ ρ ρβ α= − = + , where 

0 0hk ω ε ε µ=  is the wavenumber in the host material. 

Proper waves, i.e., those that vanish for 2 2
x yρ = + → ∞ , 

are defined as those with 0,pρα > . Improper waves, i.e., 

those that grow for ρ → ∞ , are those with 0,pρα < .  

TABLE I 

CLASSIFICATION OF PHYSICAL MODES WITH COMPLEX WAVENUMBER OF THE 

FUNDAMENTAL FLOQUET HARMONIC 

 
Forward Wave 

,0 0z zβ α >  

Backward Wave 

,0 0z zβ α <  

Slow 

Wave 

,0

,0 0

z k

ρ

β

α

>

>
  (proper, bound) 

,0

,0 0

z k

ρ

β

α

>

>
 (proper, bound) 

Fast 

Wave 

,0

,0 0

z k

ρ

β

α

<

<
 (improper, leaky) 

,0

,0 0

z k

ρ

β

α

<

>
  (proper, leaky) 

 

Among all the mathematical solutions of (4), only a subset 

represents physical waves, i.e., those that can be excited by a 

localized source, a defect, or array truncation. Note that modes 

that are not classified as physical in this paper may however 

be excited by much more complicated source distributions, 

though this study is not within the scope of this paper. The 

physical waves are summarized in Table I based on the 

complex wavenumber of the fundamental Floquet harmonic in 

the first BZ, i.e., the one with 0p = . Modes are classified as 

backward when 0z zβ α <  and forward when 0z zβ α > ; 

bound when z kβ >  (slow wave) and leaky when z kβ <  

(fast wave). The periodic condition , 2 /z p zk k p dπ= +  would 

determine the behavior of Floquet harmonics with 

wavenumbers in other BZs. More details about classification 

of physical modes can be found in [23]. 

III. DISPERSION DIAGRAMS 

We show the dispersion diagrams ( ),z z kβ α − , for both 

transverse (T-pol, Fig. 2) and longitudinal (L-pol, Fig. 3) 

polarization states relative to the physical modes excitable in a 

linear chain of silver nanospheres embedded in free space 

with 1hε = . The reader is addressed to [23] for a detailed 

modal description, including nonphysical modes and modal 

wavenumber frequency evolution in the complex zk  plane. 

The radius of the nanospheres is 35r =  nm, the relative 

permittivity of silver is described by a tabulated measured 

dielectric function [35], and the period is 75d =  nm.  

 
Fig. 2.  Dispersion diagram showing the physical modes for T-pol. (a) Real 

part and (b) imaginary part of the wavenumber of the fundamental Floquet 

wave z z zk iβ α= + . Mode ‘Proper 2’ is physical only when z kβ > , i.e., 

under the light line. 

 
Fig. 3.  As in Fig. 2, for L-pol. Mode ‘Improper’ is physical only when 

z kβ < , i.e., above the light line. 

Modes ‘Proper 2’ (T-pol) and ‘Proper’ (L-pol) are good 

candidates for the development of nano-waveguides because 

they exhibit a small attenuation constant zα  for some 

frequency ranges (refer to Fig. 2 and Fig. 3); analogously, 

mode ‘Improper’ (L-pol) may be used for the design of 

directive nano-antennas. Indeed, it is well-known that a small 

attenuation constant zα  is a required condition for long mode 

propagation or directive radiation. The attenuation constant 

zα  can be further lowered by optimizing the chain 

dimensions [23], [28] or by employing active gain materials 
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[36]-[43]. For example, the latter method may be used to 

lower the attenuation constant of mode ‘Proper 1’ (T-pol) 

whose minimum value is now limited to / 0.18zdα π ≈ . 

IV. PROPAGATION LENGTH FOR WAVEGUIDE APPLICATIONS 

Considering exciting a wave travelling as ( )exp zik z  along 

the linear chain with wavenumber zk , we estimate its 

propagation length as 1/ zL α=  ( 1/ e criterion), reported in 

Fig. 4 normalized to the free space wavelength 

0 2 /h kλ π ε=
 
for both T- and L-pol states.  

We note that mode ‘Proper 2’ (T-pol) is able to propagate 

very large distances for a large frequency range. A fairly large 

propagation distance is travelled also by both modes for L-pol 

around 750 THz. Mode ‘Proper 1’ (T-pol) can propagate, in 

the best case, a length of 00.34L λ≈  at about 788 THz in the 

analysed linear chain. 

 

Fig. 4.  Propagation length 1/ zL α=
 
normalized to the free space 

wavelength 0λ  relative to the linear chain used in Fig. 2 and Fig. 3.  

V. LEAKY MODES FOR DIRECTIVE RADIATION 

We apply array factor theory [44], [45] to determine the 

radiation pattern of Eθ  in Fig. 5 of the ‘Improper’ (L-pol) 

forward leaky mode excited in a finite chain of 20 elements, 

along positive z,  to achieve radiation at a certain angle θ  (the 

angle from the z axis in Fig. 1) from the end-fire direction.  

 

Fig. 5.  Radiation pattern of Eθ  relative to the excitation of the ‘Improper’ 

(L-pol) forward leaky mode estimated using array factor theory at the three 

frequencies in the legend. The leaky wave parameters zβ  and zα  are also 

provided in the legend. 

We have chosen three frequencies pertaining to the red 

dashed dispersion modal curve in Fig. 3. From the dispersion 

curve we note that an increase in frequency determines an 

increase of the propagation constant zβ  and a decrease of the 

attenuation constant zα . This will in turn determine the beam 

to approach a pencil beam shape as well as to point at a 

smaller angle, as can be clearly seen by looking at the solid 

blue, dashed red and dashed-dotted green curves in Fig. 5. 

VI. CONCLUSION 

The strength of the shown analytical procedure based on a 

periodic Green’s function is that it allows for the 

determination of the physical modes in linear chains of 

plasmonic nanospheres excitable by a localized source, a 

defect, or array truncation. The Ewald representation of the 

periodic GF is very suitable for linear arrays because a fully 

spectral representation cannot be used when the observer is on 

the array axis, and representations based on poly-logarithmic 

functions [8], [9], [13] render the classification of complex 

modes in their Riemann sheets more difficult. Classification is 

important for determining if a mode can be excited (physical), 

and if it is proper/improper, bound/leaky, forward/backward. 

Complex mode analysis enables the use of the described 

method for designing nano-waveguides and nano-antennas. 

Future developments will consider the excitation of a linear 

chain with finite extent through a dipole source. 
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